WorldWideScience

Sample records for strongly damped wave

  1. Nonlinear damping of drift waves by strong flow curvature

    International Nuclear Information System (INIS)

    Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.

    1993-01-01

    A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method

  2. Damping and Frequency Shift of Large Amplitude Electron Plasma Waves

    DEFF Research Database (Denmark)

    Thomsen, Kenneth; Juul Rasmussen, Jens

    1983-01-01

    The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...

  3. Exponential decay for solutions to semilinear damped wave equation

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2011-01-01

    This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data

  4. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Solís, María; Arregui, Iñigo, E-mail: mmsolis@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2017-09-10

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  5. Comparison of Damping Mechanisms for Transverse Waves in Solar Coronal Loops

    International Nuclear Information System (INIS)

    Montes-Solís, María; Arregui, Iñigo

    2017-01-01

    We present a method to assess the plausibility of alternative mechanisms to explain the damping of magnetohydrodynamic transverse waves in solar coronal loops. The considered mechanisms are resonant absorption of kink waves in the Alfvén continuum, phase mixing of Alfvén waves, and wave leakage. Our methods make use of Bayesian inference and model comparison techniques. We first infer the values for the physical parameters that control the wave damping, under the assumption of a particular mechanism, for typically observed damping timescales. Then, the computation of marginal likelihoods and Bayes factors enable us to quantify the relative plausibility between the alternative mechanisms. We find that, in general, the evidence is not large enough to support a single particular damping mechanism as the most plausible one. Resonant absorption and wave leakage offer the most probable explanations in strong damping regimes, while phase mixing is the best candidate for weak/moderate damping. When applied to a selection of 89 observed transverse loop oscillations, with their corresponding measurements of damping timescales and taking into account data uncertainties, we find that positive evidence for a given damping mechanism is only available in a few cases.

  6. Exponential decay for solutions to semilinear damped wave equation

    KAUST Repository

    Gerbi, Stéphane

    2011-10-01

    This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].

  7. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....

  8. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  9. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  10. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  11. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  12. Instability and damping of one-dimensional high-amplitude Langmuir waves

    International Nuclear Information System (INIS)

    Buchel'nikova, N.S.; Matochkin, E.P.

    1981-01-01

    Numerical experiments (methods ''of particles in cells'') on investigation of instability and damping of one-dimensional Langmuir waves in the region Esub(0)sup(2)/8πnT>m/M>(ksub(0)rsub(d))sup(2) ksub(0) is wave vector, M- ion mass, m-electron mass, v=√T/M, vsub(ph)=Wsub(0)/ksub(0), Wsub(0)-proper plasma frequency) are performed. Numerical experiments have been conducted in a wide range of initial parameters of the wave: E 0 2 /8πnT approximately 4x10 2 -10 -2 , vsub(ph)/vsub(T) approximately 3-160, M/m=10 2 , in some cases M/m=10 3 . It is shown that the basic processes are modulation instability with a modulation length less than the wave length, wave conversion at density inhomogeneity and electron capture by the wave or its harmonics. Depending on initial wave parameters the predominant role is played by this or that process. In the range of linear waves Esub(0)sup(2)/8πnT ksub(0)rsub(d) - to the collapse. In the range of 4x10sup(-2)/(ksub(0)rsub(d)sup(2)>Esub(0)sup(2)/8πnT>10sup(-3)/(ksub(0)rsub(d))sup(2) all the three processes play a comparable role. In the range of strong damping Esub(0)sup(2)/8πnT>4x10sup(-2)/(h ksub(0)rsub(d))sup(2) the main part is played by the wave electron capture resulting in damping considerably exceeding the Lamdau damping [ru

  13. The damped wave equation with unbounded damping

    Science.gov (United States)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  14. Possibility of Landau damping of gravitational waves

    International Nuclear Information System (INIS)

    Gayer, S.; Kennel, C.F.

    1979-01-01

    There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible

  15. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla

    1973-01-01

    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....

  16. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  17. Modulated Langmuir waves and nonlinear Landau damping

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.

    1975-01-01

    The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)

  18. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  19. Sheath waves, non collisional dampings

    International Nuclear Information System (INIS)

    Marec, Jean Lucien Ernest

    1974-01-01

    When a metallic conductor is inserted into an ionised gas, an area of electron depletion is formed between the conductor and the plasma: the ionic sheath. Moreover, if the conductor is excited by an electric field, this ionic sheath plays an important role with respect to microwave properties. In this research thesis, the author addresses the range of frequencies smaller than the plasma frequency, and reports the study of resonance phenomena. After a presentation of the problem through a bibliographical study, the author recalls general characteristics of sheath wave propagation and of sheath resonances, and discusses the validity of different hypotheses (for example and among others, electrostatic approximations, cold plasma). Then, the author more particularly addresses theoretical problems related to non collisional dampings: brief bibliographical study, detailed presentation and description of the theoretical model, damping calculation methods. The author then justifies the design and performance of an experiment, indicates measurement methods used to determine plasma characteristics as well as other magnitudes which allow the description of mechanisms of propagation and damping of sheath waves. Experimental results are finally presented with respect to various parameters. The author discusses to which extent the chosen theoretical model is satisfying [fr

  20. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  1. Angular characteristics of the stimulated-Brillouin-scattering spectrum from a laser plasma with strong acoustic-wave damping

    International Nuclear Information System (INIS)

    Saikia, P.

    1981-01-01

    The spectrum of stimulated Brillouin scattering from an inhomogeneous moving laser plasma is analyzed. The damping of acoustic waves and scattered electromagnetic waves is taken into account. Spectra are derived for various scattering angles and for various radii of the laser beam. For all observation angles the center of the spectral line is at an unshifted frequency. As the observation angle increases, the width of the red wing in the spectrum increases. The intensity of the scattered light is very anisotropic

  2. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  3. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  4. Landau damping in bi-dust ion-acoustic waves

    International Nuclear Information System (INIS)

    Castro, E.; Puerta, J.; Martin, P.; Cereceda, C.

    2006-01-01

    Ion acoustic dust waves in a bi-dust plasma are analyzed in this paper. In order to model this system, we assume the existence of two different kinds of grains, each characterized by a different radius. Relative velocities between grains and charge fluctuations are neglected. In order to derive the dispersion relation of this system, we use the well known hybrid fluid-kinetic model, in which ions are treated kinetically and other species as fluids. In this plasma, waves with non-relative velocities between species leads to damped waves with frequency modes, defined by the grain radius. The induced damping ratio is studied as a function of the grain and ion densities. (Author)

  5. Collisional damping rates for plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Tigik, S. F., E-mail: sabrina.tigik@ufrgs.br; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Yoon, P. H., E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  6. Propagation and damping of mode converted ion-Bernstein waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Ram, A.K.; Bers, A.

    1991-01-01

    In the heating of tokamak plasmas by waves in the ion-cyclotron range of frequencies, the fast Alfven waves launched at the plasma edge can mode convert to the ion-Bernstein waves (IBW). The propagation and damping of these mode converted waves was studied using a ray tracing code that follows the fast phase and the amplitude of the electromagnetic field along the IBW ray trajectories in a toroidal plasma. A simple analytical model is developed that describes the numerically observed features of propagation and damping of the IBW's. It is found that along the ray trajectory of the IBW there is an upshift of the poloidal mode numbers, which can lead to the electron Landau damping of the wave. This damping is dependent on the strength of the toroidal plasma current. From the properties of the upshift of the poloidal mode numbers, it is concluded that the mode converted ion-Bernstein waves are not suitable candidates for electron current drive

  7. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  8. Damping of Quasi-stationary Waves Between Two Miscible Liquids

    Science.gov (United States)

    Duval, Walter M. B.

    2002-01-01

    Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.

  9. Spectral contents of electron waves under strong Langmuir turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Maria Virginia; Dallaqua, Renato Sergio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Prado, Fabio do [Centro Universitario UNIFEI, Itajuba, MG (Brazil); Karfidov, Dmitry Mikhailovich [General Physics Inst., Moscow (Russian Federation)

    2003-07-01

    Experimental results of electron plasma waves excited in a beam plasma system are presented. Based on our experimental results we determine the transition from the quasi-linear to non-linear regime. We present the space evolution of the electron beam distribution function for both regimes. The spectrum of the electron plasma wave in the non-linear regime shows a component with frequency larger than the plasma frequency besides the plasma frequency itself. We show that the higher frequency component is strongly affected by Landau damping, indicating a dissipation region. The measured experimental power spectrum of this wave shows a dependence on wave number k given by W{sub k} {proportional_to} k{sup -7/2} as theoretically predicted. (author)

  10. Semilinear damped wave equation in locally uniform spaces

    Czech Academy of Sciences Publication Activity Database

    Michálek, Martin; Pražák, D.; Slavík, J.

    2017-01-01

    Roč. 16, č. 5 (2017), s. 1673-1695 ISSN 1534-0392 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : damped wave equations * nonlinear damping * unbounded domains Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.801, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14110

  11. Relation between tidal damping and wave celerity in estuaries

    NARCIS (Netherlands)

    Savenije, H.H.G.; Veling, E.J.M.

    2005-01-01

    Observations in estuaries indicate that an amplified tidal wave moves considerably faster than is indicated by the classical equation for wave propagation. Similarly, the celerity of propagation is lower if the tidal wave is damped. This phenomenon is clearly observed in the Schelde estuary (located

  12. HOM damping and multipacting analysis of the quarter-wave crab cavity

    International Nuclear Information System (INIS)

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.; Calaga, R.

    2012-01-01

    The quarter-wave crab cavity design has been analyzed further to accommodate LHC requirements. The goal for the design is to provide strong deflecting voltage to the proton bunches at the IP, while keeping the effective length as short as possible. We will evaluate the higher order mode damping with two or four magnetic coupling dampers installed in different configuration. In this paper, we also show possible multipacting locations which are simulated by 2D and 3D codes.

  13. On the Stochastic Wave Equation with Nonlinear Damping

    International Nuclear Information System (INIS)

    Kim, Jong Uhn

    2008-01-01

    We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping

  14. Collisional damping of Langmuir waves in the collisionless limit

    International Nuclear Information System (INIS)

    Auerbach, S.P.

    1977-01-01

    Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not

  15. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  16. CORONAL DENSITY STRUCTURE AND ITS ROLE IN WAVE DAMPING IN LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); De Moortel, I.; Kiddie, G., E-mail: p.cargill@imperial.ac.uk [School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland KY16 9SS (United Kingdom)

    2016-05-20

    It has long been established that gradients in the Alfvén speed, and in particular the plasma density, are an essential part of the damping of waves in the magnetically closed solar corona by mechanisms such as resonant absorption and phase mixing. While models of wave damping often assume a fixed density gradient, in this paper the self-consistency of such calculations is assessed by examining the temporal evolution of the coronal density. It is shown conceptually that for some coronal structures, density gradients can evolve in a way that the wave-damping processes are inhibited. For the case of phase mixing we argue that (a) wave heating cannot sustain the assumed density structure and (b) inclusion of feedback of the heating on the density gradient can lead to a highly structured density, although on long timescales. In addition, transport coefficients well in excess of classical are required to maintain the observed coronal density. Hence, the heating of closed coronal structures by global oscillations may face problems arising from the assumption of a fixed density gradient, and the rapid damping of oscillations may have to be accompanied by a separate (non-wave-based) heating mechanism to sustain the required density structuring.

  17. Landau damping of dust acoustic solitary waves in nonthermal plasmas

    Science.gov (United States)

    Ghai, Yashika; Saini, N. S.; Eliasson, B.

    2018-01-01

    Dust acoustic (DA) solitary and shock structures have been investigated under the influence of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated by the observations of Geotail spacecraft that reported two-temperature ion population in the Earth's magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA nonlinear structures. The Korteweg-de Vries (KdV) equation with an additional Landau damping term is derived and its analytical solution is presented. The solution has the form of a soliton whose amplitude decreases with time. Further, we have illustrated the influence of Landau damping and nonthermality of the ions on DA shock structures by a numerical solution of the Landau damping modified KdV equation. The study of the time evolution of shock waves suggests that an initial shock-like pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion, and dissipation due to Landau damping. The findings of the present investigation may be useful in understanding the properties of nonlinear structures in the presence of Landau damping in dusty plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth's magnetotail.

  18. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  19. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  20. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    Science.gov (United States)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  1. Strong electron dissipation by a mode converted ion hybrid (Bernstein) wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Ram, A.K.

    1996-01-01

    The fast wave approximation, extended to include the effects of electron dissipation, is used to calculate the power mode converted to the ion hybrid (Bernstein) wave in the vicinity of the ion hybrid resonance. The power absorbed from the fast wave by ion cyclotron damping and by electron Landau and transit time damping (including cross terms) is also calculated. The fast wave equation is solved for either the Budden configuration of a cut-off-resonance pair or the triplet configuration of cut-off-resonance-cut-off. The fraction mode converted is compared for the triplet case and the Budden multi-pass situation. The electron damping rate of the ion hybrid wave is obtained from the local dispersion relation and a ray tracing code is used to calculate the damping of the mode converted ion hybrid wave by the electrons as it propagates away from the resonance. Quantitative results for a range of conditions relevant to JET, TFTR and ITER are given. copyright 1996 American Institute of Physics

  2. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    Science.gov (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  3. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  4. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2014-01-01

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient

  5. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  6. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-08-01

    Full Text Available It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  7. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Science.gov (United States)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  8. Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping

    Directory of Open Access Journals (Sweden)

    Jieqiong Wu

    2015-09-01

    Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.

  9. Unified theory of damping of linear surface Alfven waves in inhomogeneous incompressible plasmas

    International Nuclear Information System (INIS)

    Ruderman, M.S.; Goossens, M.

    1996-01-01

    The viscous damping of surface Alfven waves in a non-uniform plasma is studied in the context of linear and incompressible MHD. It is shown that damping due to resonant absorption and damping on a true discontinuity are two limiting cases of the continuous variation of the damping rate with respect to the dimensionless number Rg = Δλ 2 Re, where Δ is the relative variation of the local Alfven velocity, λ is the ratio of the thickness of the inhomogeneous layer to the wavelength, and Re is the viscous Reynolds number. The analysis is restricted to waves with wavelengths that are long in comparison with the extent of the non-uniform layer (λ '' >'' 1) values of Rg. For very small values of Rg, the damping rate agrees with that found for a true discontinuity, while for very large values of Rg, it agrees with the damping rate due to resonant absorption. The dispersion relation is subsequently studied numerically over a wide range of values of Rg, revealing a continuous but non-monotonic variation of the damping rate with respect to Rg. (Author)

  10. Fast wave heating of two-ion plasmas in the Princeton large torus through minority cyclotron resonance damping

    International Nuclear Information System (INIS)

    Hosea, J.; Bernabei, S.; Colestock, P.

    1979-07-01

    Strong minority proton heating is produced in PLT through ion cyclotron resonance damping of fast waves at moderate rf power levels. In addition to demonstrating good proton confinement, the proton energy distribution is consistent with Fokker--Planck theory which provides the prescription for extrapolation of this heating regime to higher rf power levels

  11. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  12. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  13. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  14. Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Gupta, M.R.

    2005-01-01

    Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly

  15. On the solution of the equations for nonlinear interaction of three damped waves

    International Nuclear Information System (INIS)

    1976-01-01

    Three-wave interactions are analyzed in a coherent wave description assuming different linear damping (or growth) of the individual waves. It is demonstrated that when two of the coefficients of dissipation are equal, the set of equations can be reduced to a single equivalent equation, which in the nonlinearly unstable case, where one wave is undamped, asymptotically takes the form of an equation defining the third Painleve transcendent. It is then possible to find an asymptotic expansion near the time of explosion. This solution is of principal interest since it indicates that the solution of the general three-wave system, where the waves undergo different individual dissipations, belongs to a higher class of functions, which reduces to Jacobian elliptic functions only in the case where all waves suffer the same damping [fr

  16. Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons

    Science.gov (United States)

    El-Taibany, W. F.; Zedan, N. A.; Taha, R. M.

    2018-06-01

    Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson's equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q (α ). It is recognized that α plays a significant role in observing damping or growing DAW oscillations. For small values of α , damping modes have been observed until reaching a certain value of α at which ω i vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.

  17. Spin-wave damping in ferromagnets in the ordered regime

    International Nuclear Information System (INIS)

    Reinecke, T.L.; Stinchcombe, R.B.

    1978-01-01

    Theoretical results based on a high-density approach are compared with experimental measurements for the damping of long-wavelength spin waves in the nearly isotropic ferromagnet for temperatures up to the critical regime. The theory, which has no adjustable parameters, is shown to account well for the overall magnitude of the spin-wave widths measured in recent neutron scattering experiments on EuO, and it is also in satisfactory agreement with the measured wave vector and temperature dependence of these widths. An estimate is also given for the contribution of dipolar coupling to the spin-wave widths

  18. Estimate of Small Stiffness and Damping Ratio in Residual Soil Using Spectral Analysis of Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Bawadi Nor Faizah

    2016-01-01

    Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.

  19. Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G. R., E-mail: girjesh@iucaa.in [Inter-University Centre for Astronomy and Astrophysics, Post Bag-4, Ganeshkhind, Pune 411007 (India)

    2017-02-10

    We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm lines in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.

  20. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    Science.gov (United States)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  1. Damping of Mechanical Waves with Styrene/Butadiene Rubber Filled with Polystyrene Particle: Effects of Particles Size and Wave Frequency

    Directory of Open Access Journals (Sweden)

    M. Haghgo

    2007-08-01

    Full Text Available Utilizing polymeric materials for damping mechanical waves is of great importance in various fields of applications such as military camouflage, prevention of structural vibrational energy transfer, and noise attenuation. This ability originates from segmental dynamics of chain-like polymer molecules. Damping properties of styrene-butadiene rubbercontaining 10 wt% of monosize polystyrene particles with different diameters (from 80 nm to 500 μm was investigated in the frequency range of vibration, sound, and ultrasound via dynamic mechanical thermal analysis, normalsound adsorption test, and ultrasound attenuation coefficient measurement. The obtained results indicated that for different systems, containing different sizes of polystyrene particles, the area under the damping curve does not show significant change comparing to the neat SBR in the frequency range studied. However, addition of polystyrene particles, specifically nanosized particles, resulted in emergence of a secondary glass transition temperature which could be attributed to the modified dynamics of a layer of matrix molecules near the surface of PS particles. In the range of sound frequency, 0.5 to 6.3 kHz, the maximum damping was observed for the system containing polystyrene nanoparticles. However the single damping curve of neat SBR was separated into two or even three distinct curves owing to the presence of the particles. The maximum damping in the ultrasound frequency range was found for the system containing 0.5 mm polystyrene particles. This is attributed to different contributions from matrix chains dynamics and the reflection of mechanical waves from particles-matrix interface at different frequency ranges. On other words, the increase in the glass transition temperature of the elastomeric matrix phase with increasing the mechanical wave frequency causes a reduction in the contribution from matrix chains dynamics while the contribution due to diffraction from dispersed

  2. Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul; Pécseli, Hans

    1975-01-01

    A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...

  3. Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation

    International Nuclear Information System (INIS)

    Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J

    2010-01-01

    A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.

  4. Reflectivity of stimulated back scattering in a homogeneous-slab medium in the case of negligible pump-wave damping

    International Nuclear Information System (INIS)

    Cho, G.S.; Cho, B.H.

    1981-01-01

    As to the backscatter instability which is one of nonlinear three-wave resonant interactions, the reflectivity(r) in the case of homogeneous-slab medium is calculated, assuming all the three wavepackets negligible damping caused by medium. The expression has turned out such that r = tanh 2 KAsub(p)L, where K, Asub(p), and L are the constant coupling coefficient, the constant pump-wave amplitude, and the thickness of the medium engaged in the interaction each. When this result is interpreted in terms of the stimulated Brillouin back-scattering in a so-called underdense plasma in controlled fusion, we find the reflectivity twice as large as that by others in the limit of large pump-wave damping, and unfitting to former experiments in the independence on the incident laser-light intensity. We see the incompatibility rise chiefly from neglecting the damping of pump-wave in the plasma. In contrast to the former results by others in the limit of large pump-wave damping, our result might be regarded as that for cases of negligible pump-wave damping, in general stimulated back-scattering phenomena. (author)

  5. Effect of Landau damping on kinetic Alfven and ion-acoustic solitary waves in a magnetized nonthermal plasma with warm ions

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anup; Das, K.P.

    2002-01-01

    The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time

  6. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2015-01-01

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies (LHRF) for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the LHRF are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. The character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. Applications of these ideas to experiments in the DIII-D tokamak are discussed

  7. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Gelda, Dhruv, E-mail: gelda2@illinois.edu; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Sinha, Sanjiv [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Micro and Nanotechnology Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-04-28

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1–100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ∼100 GHz.

  8. Transport of energy and momentum due to spatial Landau damping and growth of electrostatic waves

    International Nuclear Information System (INIS)

    Lacina, J.

    1994-01-01

    It is shown that Landau damping in space (LDS), occuring for time-periodic electrostatic waves, does not lead to any deposition of energy in plasmas. A steady-state balance and a steady-state transport of energy, momentum and particles take place both for damped and growing waves. Because of the phase interference of coherent free and forced particle oscillations, the oscillatory energy of particles increases in the direction of wave propagation; the time-averaged flow of plasma kinetic energy being constant in space for these waves, the LDS must take place for a Maxwellian plasma in order to compensate for the growth of the particle oscillatory energy in space. (Author)

  9. Negative mobility of a Brownian particle: Strong damping regime

    Science.gov (United States)

    Słapik, A.; Łuczka, J.; Spiechowicz, J.

    2018-02-01

    We study impact of inertia on directed transport of a Brownian particle under non-equilibrium conditions: the particle moves in a one-dimensional periodic and symmetric potential, is driven by both an unbiased time-periodic force and a constant force, and is coupled to a thermostat of temperature T. Within selected parameter regimes this system exhibits negative mobility, which means that the particle moves in the direction opposite to the direction of the constant force. It is known that in such a setup the inertial term is essential for the emergence of negative mobility and it cannot be detected in the limiting case of overdamped dynamics. We analyse inertial effects and show that negative mobility can be observed even in the strong damping regime. We determine the optimal dimensionless mass for the presence of negative mobility and reveal three mechanisms standing behind this anomaly: deterministic chaotic, thermal noise induced and deterministic non-chaotic. The last origin has never been reported. It may provide guidance to the possibility of observation of negative mobility for strongly damped dynamics which is of fundamental importance from the point of view of biological systems, all of which in situ operate in fluctuating environments.

  10. Toroidal effects on propagation, damping, and linear mode conversion of lower hybrid waves

    International Nuclear Information System (INIS)

    Ignat, D.W.

    1980-09-01

    A common simplifying assumption made in the consideration of radio-frequency heating of tokamaks near the lower hybrid frequency is that the wave-length imposed by the coupling device parallel to the magnetic field is not modified by gradients along the field. In the present calculation, the parallel wave-length is allowed to vary, and important effects are found on wave penetration and damping if the toroidal aspect ratio (R/sub major//r/sub minor/) is less than approx. 5. The calculation shows that heating at the center of a small aspect ratio torus is inhibited by a decrease of k/sub parallel/ if waves are launched at the outside, and that it may be possible to change the plasma current via electron Landau damping with a coupler of symmetric power spectrum by placing the coupler at the top (or bottom) of the torus

  11. Magnon damping in two-dimensional Heisenberg ferromagnetic system

    International Nuclear Information System (INIS)

    Cheng, T.-M.; Li Lin; Ze Xianyu

    2006-01-01

    A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed

  12. Viscous damping of solitary waves in the mud banks of Kerala, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Murty, C.S.

    Analysis of wave damping in mud bank region following the process of transfer of wave energy to the interior of fluid column through the boundary layer and the energy loss computations owing to viscous shear beneath the solitary wave over a smooth...

  13. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  14. Electron Landau damping of lower hybrid waves from a finite length antenna

    International Nuclear Information System (INIS)

    Brambilla, M.

    1977-01-01

    Launching and propagation of Lower Hybrid Waves to heat large plasmas by Electron Landau Damping is discussed. Conditions on the appropriate frequency and on the antenna location in the plasma density profile are derived

  15. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Energy Technology Data Exchange (ETDEWEB)

    Hantao Ji; William Fox; David Pace; H.L. Rappaport

    2004-05-13

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  16. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    International Nuclear Information System (INIS)

    Hantao Ji; William Fox; David Pace; Rappaport, H.L.

    2004-01-01

    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed

  17. Effects of Damping Plate and Taut Line System on Mooring Stability of Small Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    2015-01-01

    Full Text Available Ocean wave energy can be used for electricity supply to ocean data acquisition buoys. A heaving buoy wave energy converter is designed and the damping plate and taut line system are used to provide the mooring stability for better operating conditions. The potential flow assumption is employed for wave generation and fluid structure interactions, which are processed by the commercial software AQWA. Effects of damping plate diameter and taut line linking style with clump and seabed weights on reduction of displacements in 6 degrees of freedom are numerically studied under different operating wave conditions. Tensile forces on taut lines of optimized mooring system are tested to satisfy the national code for wire rope utilization.

  18. Nonlinear wave collapse and strong turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1997-01-01

    The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society

  19. The effect of convection and shear on the damping and propagation of pressure waves

    Science.gov (United States)

    Kiel, Barry Vincent

    Combustion instability is the positive feedback between heat release and pressure in a combustion system. Combustion instability occurs in the both air breathing and rocket propulsion devices, frequently resulting in high amplitude spinning waves. If unchecked, the resultant pressure fluctuations can cause significant damage. Models for the prediction of combustion instability typically include models for the heat release, the wave propagation and damping. Many wave propagation models for propulsion systems assume negligible flow, resulting in the wave equation. In this research the effect of flow on wave propagation was studied both numerically and experimentally. Two experiential rigs were constructed, one with axial flow to study the longitudinal waves, the other with swirling flow to study circumferential waves. The rigs were excited with speakers and the resultant pressure was measured simultaneously at many locations. Models of the rig were also developed. Equations for wave propagation were derived from the Euler Equations. The resultant resembled the wave equation with three additional terms, two for the effect of the convection and a one for the effect of shear of the mean flow on wave propagation. From the experimental and numerical data several conclusions were made. First, convection and shear both act as damping on the wave propagation, reducing the magnitude of the Frequency Response Function and the resonant frequency of the modes. Second, the energy extracted from the mean flow as a result of turbulent shear for a given condition is frequency dependent, decreasing with increasing frequency. The damping of the modes, measured for the same shear flow, also decreased with frequency. Finally, the two convective terms cause the anti-nodes of the modes to no longer be stationary. For both the longitudinal and circumferential waves, the anti-nodes move through the domain even for mean flow Mach numbers less than 0.10. It was concluded that convection

  20. Structure and damping of toroidal drift waves (and their implications for anomalous transport)

    International Nuclear Information System (INIS)

    Taylor, J.B.; Connor, J.; Wilson, H.R.

    1993-05-01

    The conventional theory of high-n toroidal drift waves, based on the ballooning representation, indicates that shear-damping is generally reduced in a torus compared to its plane-slab value. It therefore describes the most unstable class of toroidal drift waves. However, modes of this type occur only i f the diamagnetic frequency ω*(r) has a maximum in r, and they affect only a small fraction, Ο(1/n l/2 ), of the plasma radius around this maximum. Consequently they may produce little anomalous transport. In the present work we show that, within the ballooning description, there is another class of toroidal drift waves with very different properties to the conventional ones. The new modes have greater shear-damping (closer to that in a plane-slab) than the conventional ones and so have a higher instability threshold. However, they occur for any plasma profile and at all radii, and they have larger radial extent. Consequently they may produce much greater anomalous transport than the possibly benign conventional modes. This suggests a picture of anomalous transport in which the plasma profile is determined by marginal stability, but marginal to the new class of modes not to the conventional ones. This might explain why marginally stable profiles calculated for drift waves with plane-slab damping sometimes agree well with the profiles in toroidal experiments. It is also consistent with the fact that experimental profiles may exceed conventional toroidal instability thresholds. The new modes may also be related to the tong radial structures which appear in some plasma simulations and in experiments

  1. Nonlinear damping based semi-active building isolation system

    Science.gov (United States)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  2. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  3. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2015-01-01

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations

  4. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es [Institute of Applied Computing and Community Code (IAC), Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2015-09-10

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations.

  5. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  6. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    OpenAIRE

    Chernicoff, Mariano; Garcia, J. Antonio; Guijosa, Alberto

    2010-01-01

    We study a `dressed' or `composite' quark in strongly-coupled N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding quantum non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a...

  7. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Verth, G. [School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom); Morton, R. J. [Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST (United Kingdom); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom); Erdélyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Christian, D. J., E-mail: krishna.prasad@qub.ac.uk [Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330 (United States)

    2017-09-20

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.

  8. Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain

    Science.gov (United States)

    Petrov, Petr V.; Newman, Gregory A.

    2014-09-01

    3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is

  9. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  10. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto

    2011-01-01

    We study the dynamics of a 'composite' or 'dressed' quark in strongly-coupled large-N c N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.

  11. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    Science.gov (United States)

    Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto

    2011-09-01

    We study the dynamics of a 'composite` or 'dressed` quark in strongly-coupled large-Nc N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.

  12. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  13. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.

  14. Asymptotic behaviors of solutions for viscoelastic wave equation with space-time dependent damping term

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    In this paper, we consider a viscoelastic wave equation with an absorbing term and space-time dependent damping term. Based on the weighted energy method, and by assuming that the kernel decaying exponentially, we obtain the L2 decay rates of the solutions. More precisely, we show that the decay rates are the same as those obtained in Lin et al. (2010) [15] for the semilinear wave equation with absorption term. © 2011 Elsevier Inc.

  15. Analytical results on the periodically driven damped pendulum. Application to sliding charge-density waves and Josephson junctions

    International Nuclear Information System (INIS)

    Azbel, M.Y.; Bak, P.

    1984-01-01

    The differential equation epsilonphi-dieresis+phi-dot-(1/2)α sin(2phi) = I+summation/sub n/ = -infinity/sup infinity/A/sub n/delta(t-t/sub n/) describing the periodically driven damped pendulum is analyzed in the strong damping limit epsilon<<1, using first-order perturbation theory. The equation may represent the motion of a sliding charge-density wave (CDW) in ac plus dc electric fields, and the resistively shunted Josephson junction driven by dc and microwave currents. When the torque I exceeds a critical value the pendulum rotates with a frequency ω. For infinite damping, or zero mass (epsilon = 0), the equation can be transformed to the Schroedinger equation of the Kronig-Penney model. When A/sub n/ is random the pendulum exhibits chaotic motion. In the regular case A/sub n/ = A the frequency ω is a smooth function of the parameters, so there are no phase-locked subharmonic plateaus in the ω(I) curve, or the I-V characteristics for the CDW or Josephson-junction systems. For small nonzero epsilon the return map expressing the phase phi(t/sub n/+1) as a function of the phase phi(t/sub n/) is a one-dimensional circle map. Applying known analytical results for the circle map one finds narrow subharmonic plateaus at all rational frequencies, in agreement with experiments on CDW systems

  16. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  17. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  18. The effect of dust size distribution on the damping of the solitary waves in a dusty plasma

    International Nuclear Information System (INIS)

    Yang, Xue; Xu, Yan-Xia; Qi, Xin; Wang, Cang-Long; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    The effect of the dust size distribution on the damping rate of the solitary wave in a dusty plasma is investigated in the present paper. It is found that the damping rate increases as either the mean radius of dust grains increases or as the total number density of the dust grains increases. The damping rate is less for usual dusty plasma (about which the number density of the smaller dust grains is larger than that of the larger dust grains) than that of the unusual dusty plasma (about which the number density of the larger dust grains is larger than that of the smaller dust grains)

  19. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  20. Response of resonant gravitational wave detectors to damped sinusoid signals

    International Nuclear Information System (INIS)

    Pai, A; Celsi, C; Pallottino, G V; D'Antonio, S; Astone, P

    2007-01-01

    Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes

  1. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  2. Nonlinear effects in the damping of third-sound pulses

    International Nuclear Information System (INIS)

    Browne, D.A.

    1984-01-01

    We show that nonlinearities in the equations of motion for a third-sound pulse in a thick superfluid film lead to the production of short-wavelength solitons. The soliton damping arises from viscous stresses in the film, rather than from coupling to thermal currents in the vapor and the substrate as in the hydrodynamic regime. These solitons are more strongly damped than a long-wavelength third-sound wave and lead to a larger attenuation of the pulse. We show that this mechanism can account for the discrepancy between attenuation calculated theoretically for the long-wavelength limit and the experimentally observed attenuation of low-amplitude third-sound pulses

  3. Global existence of solutions for semilinear damped wave equation in 2-D exterior domain

    Science.gov (United States)

    Ikehata, Ryo

    We consider a mixed problem of a damped wave equation utt-Δ u+ ut=| u| p in the two dimensional exterior domain case. Small global in time solutions can be constructed in the case when the power p on the nonlinear term | u| p satisfies p ∗=2Japon. 55 (2002) 33) plays an effective role.

  4. Fast wave current drive on ITER in the presence of energetic alphas

    International Nuclear Information System (INIS)

    Mau, T.K.

    1989-01-01

    The impact of energetic alpha particle wave absorption on the range of frequencies for efficient fast wave current drive in an ITER-like fusion reactor core is investigated. The energetic alpha damping decrement is calculated, using an exact slowing down distribution function, and compared to electron and fuel ion damping over a wide range of frequencies. A combination of strong alpha damping and edge electron absorption in the higher ion harmonic regime limits efficient core fast wave current drive to the lower harmonics (1=2.3). However, high frequency fast waves may be employed to generate current in the outer plasma region. 11 refs., 7 figs

  5. Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model

    Science.gov (United States)

    Mohan, Minette M.

    1992-08-01

    I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.

  6. Existence and asymptotic behavior of the wave equation with dynamic boundary conditions

    KAUST Repository

    Graber, Philip Jameson; Said-Houari, Belkacem

    2012-01-01

    The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.

  7. Existence and asymptotic behavior of the wave equation with dynamic boundary conditions

    KAUST Repository

    Graber, Philip Jameson

    2012-03-07

    The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.

  8. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    International Nuclear Information System (INIS)

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced

  9. CνB Damping of Primordial Gravitational Waves and the Fine-Tuning of the CγB Temperature Anisotropy

    Directory of Open Access Journals (Sweden)

    A. E. Bernardini

    2014-01-01

    Full Text Available Damping of primordial gravitational waves due to the anisotropic stress contribution owing to the cosmological neutrino background (CνB is investigated in the context of a radiation-to-matter dominated universe. Besides its inherent effects on the gravitational wave propagation, the inclusion of the CνB anisotropic stress into the dynamical equations also affects the tensor mode contribution to the anisotropy of the cosmological microwave background (CγB temperature. The mutual effects on the gravitational waves and on the CγB are obtained through a unified prescription for a radiation-to-matter dominated scenario. The results are confronted with some preliminary results for the radiation dominated scenario. Both scenarios are supported by a simplified analytical framework, in terms of a scale independent dynamical variable, kη, that relates cosmological scales, k, and the conformal time, η. The background relativistic (hot dark matter essentially works as an effective dispersive medium for the gravitational waves such that the damping effect is intensified for the universe evolving to the matter dominated era. Changes on the temperature variance owing to the inclusion of neutrino collision terms into the dynamical equations result in spectral features that ratify that the multipole expansion coefficients ClT’s die out for l~100.

  10. Comment on “Effects of damping solitary wave in a viscosity bounded plasma” [Phys. Plasmas 21, 022118 (2014)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Uday Narayan, E-mail: unghosh1@rediffmail.com; Chatterjee, Prasanta; Roychoudhury, Rajkumar [Department of Mathematics, Siksha Bhavana, Visva Bharati, Santiniketan 731235 (India)

    2015-07-15

    Recently Gun Li et al. discussed “Effects of damping solitary wave in a viscosity bounded plasma” [Phys. Plasmas 21, 022118 (2014)]. The paper contains some serious errors which have been pointed out in this Comment.

  11. Excitation and damping of transversal oscillation in coronal loops by wake phenomena

    Directory of Open Access Journals (Sweden)

    A abedini

    2018-02-01

    Full Text Available Transversal oscillation of coronal loops that are interpreted as signatures of magneto hydrodynamics (MHD waves are observed frequently in active region corona loops. The amplitude of this oscillation has been found to be strongly attenuated. The damping of transverse oscillation may be produced by the dissipation mechanism and the wake of the traveling disturbance. The damping of transversal loop oscillations with wake phenomena is not related to any dissipation mechanism. Also, these kinds of coronal loop oscillations are not related to the kink mode, although this mode can be occurred after the attenuation process by the energy of the wave packet deposited in the loop.  In this paper the excitation and damping of transversal coronal loop oscillations with wake of traveling wave packet is discussed in detail, both theoretically and observationally. Here, the transversal coronal loop oscillations is modeled with a one dimensional simple line-tied. The dynamics of the loop and the coronal is governed by the Klein–Gordon differential equation. A localized disturbance that can be generated by nearby flare produces a perturbation that undergoes dispersion as it propagates toward the loop. As a consequence, the amplitudes of oscillates decay with time roughly t-1/2 at the external cutoff frequency. These observed data on 2016-Dec-4 by Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO observations data, consisting of 560 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of excitation and damping of transverse oscillations of coronal loop that is situated near a flare. In this analyzed signatures of transverse oscillations that are damped rapidly were found, with periods in the range of P=18.5-23.85 minutes. Furthermore, oscillation of loop segments attenuate with time roughly as t-α that average values of α for 4 different loops change form 0.65-0.80. The magnitude values of α are in

  12. First Test of Long-Range Collisional Drag via Plasma Wave Damping

    Science.gov (United States)

    Affolter, Matthew

    2017-10-01

    In magnetized plasmas, the rate of particle collisions is enhanced over classical predictions when the cyclotron radius rc is less than the Debye length λD. Classical theories describe local velocity scattering collisions with impact parameters ρ exchange energy and momentum over the range rc regime, the measured damping rates exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agree with the new long-range enhanced collision theory. The enhanced slowing is most significant for strong magnetization and low temperatures. For example, the slowing of anti-protons at a density of 107 cm-3 and a temperature of 10 K in a 6 T trap is enhanced by a factor of 30. Supported by NSF Grant PHY-1414570 and DOE Grant DE-SC0002451. In collaboration with F. Anderegg, D.H.E. Dubin, and C.F. Driscoll.

  13. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2011-12-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  14. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2011-01-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  15. Induced scattering due to nonlinear Landau and cyclotron damping of electromagnetic and electrostatic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Sugaya, Reiji

    1989-01-01

    General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)

  16. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    International Nuclear Information System (INIS)

    Escande, D F; Elskens, Yves; Doveil, F

    2015-01-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion. (paper)

  17. An experimental study on damping characteristics of mechanical snubber for nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1983-01-01

    The objectives of this study are 1) to clarify the damping characteristics and the dynamic stiffness of mechanical snubber, 2) to take the damping characteristics of mechanical snubber into the damping evaluation method obtained in SDREP. Therefore, following vibration tests were conducted. 1) Component test: As a first step, mechanical snubbers were excited with sinusoidal wave, and damping ratio and dynamic stiffness were measured at several loading levels. 2) Piping model test: Second, a 8'' diameter x 16 m length 3-dimensional piping model simulating the supporting conditions of actual piping systems was tested. Damping ratio and made shapes of piping model with mechanical snubbers were measured at several supporting conditions and response levels. From the results of these tests, the damping characteristics and the dynamic stiffness of mechanical snubber can be summarized as follows: 1) The damping effect of mechanical snubber is as strong as that of oil snubber. 2) Mechanical snubber contributes effectively to the damping of piping system, and it is indicated that the damping characteristics of mechanical snubber is applicable to the damping evaluation method obtained in SDREP. (orig./HP)

  18. Thermal equilibrium in strongly damped collisions

    International Nuclear Information System (INIS)

    Samaddar, S.K.; De, J.N.; Krishan, K.

    1985-01-01

    Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data

  19. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard

    2008-01-01

    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  20. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    Science.gov (United States)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  1. Improving the Magnetic Damping of an AS-1 Seismometer

    Science.gov (United States)

    Marton, F.; Echreshzadeh, M.; Tokman, T. L.; Palaric, K. D.; Filippone, N. V.; Balzarette, M.; Sivo, J.

    2016-12-01

    Last year, students working on the SeismoSTEM project at Bergen Community College in New Jersey successfully manufactured and assembled an AS-1 seismometer1. For 2016, our objective has been to improve the magnetic damping mechanism invented by Chris Chapman2. As the mass on the boom is displaced by seismic waves, the spring will cause the mass to oscillate, therefore, damping is required. To achieve this, a paddle-shaped piece of copper, along with steel plates holding strong neodymium magnets are used. A localized eddy current is then induced, which then creates an opposing magnetic field. The challenges we faced for the summer internship was the fact that there was either too much or too little damping to distinguish the waves of an earthquake. However, we resolved the issue by designing our own prototype for moving the steel plates away and toward the copper paddle, to achieve critical damping. This was successfully completed by attaching two L-shaped pieces of aluminum, along with a cylindrical piece, to form a yoke. We then drilled a hole through the cylindrical piece and a plastic block for a bolt to slide through. Finally, the head of the bolt would then be used as a knob to shift the two plates away from and toward the paddle simultaneously. Although this was our solution for moving the plates horizontally, we also needed to find a way to lock the plates in place once we found the correct amount of damping. We accomplished this task by drilling two slotted holes on two symmetrical sheets of aluminum, which will allow us to slide the plates, and finally, lock them into place to avoid wobbling. References: 1Tokman, T.L. et al., What's shaking? Manufacturing & assembling an AS-1 educational seismometer for undergraduate stem research, Geological Society of America Abstracts with Programs. Vol. 47, No. 7, p.524, 2015. 2http://www.jclahr.com/science/psn/chapman/as1%20damping/

  2. Fully kinetic simulation of ion acoustic and dust-ion acoustic waves

    International Nuclear Information System (INIS)

    Hosseini Jenab, S. M.; Kourakis, I.; Abbasi, H.

    2011-01-01

    A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e ≅ T i . The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.

  3. Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.

    Directory of Open Access Journals (Sweden)

    Elijah E W Van Houten

    Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.

  4. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  5. The 938 MHz resonant damping loops for the 200 MHz SPS travelling wave cavities

    CERN Document Server

    Caspers, F

    2012-01-01

    Measurements of the beam stability in the SPS in 1982 - 1983 have shown a transversal instability for high intensity beams [1]. The fact that this related technical note is published nearly 30 years later, is related to the revival of interest in the frame of SPS impedance evaluation for LS1. Until now there was just a barely known paper folder available which could be consulted on request. The instability mentioned above was identified from beam measurements as raised by a deflecting mode at approximately 940 MHz in the 200 MHz travelling wave cavities of the SPS. Estimates showed that an attenuation of this particular mode by 20 dB would be desirable. In order to achieve this attenuation some vacuum ports on top of the cavities were available. For the damping devices three requirements had to be met: - sufficient damping at about 940 MHz - no serious change of cavity input VSWR at 200 MHz - no water cooling requirement for this higher order mode coupler.

  6. Parametric excitation of drift waves in a sheared slab geometry

    International Nuclear Information System (INIS)

    Vranjes, J.; Weiland, J.

    1992-01-01

    The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)

  7. Damping of type III solar radio bursts

    International Nuclear Information System (INIS)

    Levin, B.N.

    1982-01-01

    The meter- and decameter-wavelength damping of type III bursts may be attributable to stabilization of the Langmuir-wave instability of the fast-electron streams through excitation of cyclotron-branch plasma waves

  8. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations

  9. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  10. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  11. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  12. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  13. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    Science.gov (United States)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.

  14. Theory of Spin Waves in Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Cooke, J. F.

    1976-01-01

    A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...

  15. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  16. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  17. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    International Nuclear Information System (INIS)

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10 18 W/cm 2 ) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed

  18. Simulation of the collapse and dissipation of Langmuir wave packets

    International Nuclear Information System (INIS)

    Newman, D.L.; Winglee, R.M.; Robinson, P.A.; Glanz, J.; Goldman, M.V.

    1990-01-01

    The collapse of isolated Langmuir wave packets is studied numerically in two dimensions using both particle-in-cell (PIC) simulations and by integrating the Zakharov partial differential equations (PDE's). The initial state consists of a localized Langmuir wave packet in an ion background that either is uniform or has a profile representative of the density wells in which wave packets form during strong plasma turbulence. Collapse thresholds are determined numerically and compared to analytical estimates. A model in which Langmuir damping is significantly stronger than Landau damping is constructed which, when included in the PDE simulations, yields good agreement with the collapse dynamics observed in PIC simulations for wave packets with initial wave energy densities small compared to the thermal level. For more intense initial Langmuir fields, collapse is arrested in PIC simulations at lower field strengths than in PDE simulations. Neither nonlinear saturation of the density perturbation nor fluid electron nonlinearities can account for the difference between simulation methods in this regime. However, at these wave levels inhomogeneous electron heating and coherent jets of transit-time accelerated electrons in phase space are observed, resulting in further enhancement of wave damping and the consequent reduction of fields in the PIC simulations

  19. Study on global performances and mooring-induced damping of a semi-submersible

    Science.gov (United States)

    Xiong, Ling-zhi; Yang, Jian-min; Lv, Hai-ning; Zhao, Wen-hua; Kou, Yu-feng

    2016-10-01

    The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooring-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival environments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study.

  20. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  1. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach.

    Science.gov (United States)

    Chronopoulos, Dimitrios; Collet, Manuel; Ichchou, Mohamed

    2015-02-17

    The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  2. Damping Enhancement of Composite Panels by Inclusion of Shunted Piezoelectric Patches: A Wave-Based Modelling Approach

    Directory of Open Access Journals (Sweden)

    Dimitrios Chronopoulos

    2015-02-01

    Full Text Available The waves propagating within complex smart structures are hereby computed by employing a wave and finite element method. The structures can be of arbitrary layering and of complex geometric characteristics as long as they exhibit two-dimensional periodicity. The piezoelectric coupling phenomena are considered within the finite element formulation. The mass, stiffness and piezoelectric stiffness matrices of the modelled segment can be extracted using a conventional finite element code. The post-processing of these matrices involves the formulation of an eigenproblem whose solutions provide the phase velocities for each wave propagating within the structure and for any chosen direction of propagation. The model is then modified in order to account for a shunted piezoelectric patch connected to the composite structure. The impact of the energy dissipation induced by the shunted circuit on the total damping loss factor of the composite panel is then computed. The influence of the additional mass and stiffness provided by the attached piezoelectric devices on the wave propagation characteristics of the structure is also investigated.

  3. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction

    KAUST Repository

    Said-Houari, Belkacem

    2012-09-01

    The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.

  4. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction

    KAUST Repository

    Said-Houari, Belkacem; Nascimento, Flá vio A Falcã o

    2012-01-01

    The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.

  5. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    Science.gov (United States)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  6. Spatial Damping of Linear Compressional Magnetoacoustic Waves ...

    Indian Academy of Sciences (India)

    The uncertainty in the radiative relaxation time, how- ever, does .... For spatial damping, we take ω to be real and k to be complex as kR +ikI . The disper- ... bances may travel up in the solar atmosphere through the magnetic field lines that are.

  7. DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION

    International Nuclear Information System (INIS)

    Xu, Siyao; Yan, Huirong; Lazarian, A.

    2016-01-01

    We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  8. Symmetry Reductions, Integrability and Solitary Wave Solutions to High-Order Modified Boussinesq Equations with Damping Term

    Science.gov (United States)

    Yan, Zhen-Ya; Xie, Fu-Ding; Zhang, Hong-Qing

    2001-07-01

    Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of Ablowitz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation. The project supported by National Natural Science Foundation of China under Grant No. 19572022, the National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119

  9. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    Science.gov (United States)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  10. Wave function of free electron in a strong laser plasma

    International Nuclear Information System (INIS)

    Zhu Shitong; Shen Wenda; Guo Qizhi

    1993-01-01

    The wave function of free electron in a strong laser plasma is obtained by solving exactly the Dirac equation in a curved space-time with optical metric for the laser plasma. When the laser field is diminished to zero, the wave function is naturally reduced to relativistic wave function of free electron. The possible application of the wave function is discussed

  11. Viscoelastic love-type surface waves

    Science.gov (United States)

    Borcherdt, Roger D.

    2008-01-01

    The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.

  12. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    Science.gov (United States)

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  13. Geometric size effect on the extrinsic Gilbert damping in laterally confined magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyon-Seok [Department of Emerging Materials Science, DGIST, Daegu 42988 (Korea, Republic of); Lee, Kyeong-Dong [Department of Materials Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of); You, Chun-Yeol [Department of Physics, Inha University, Incheon 22212 (Korea, Republic of); Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Jung-Il, E-mail: jihong@dgist.ac.kr [Department of Emerging Materials Science, DGIST, Daegu 42988 (Korea, Republic of); Research Centre for Emerging Materials, DGIST, Daegu 42988 (Korea, Republic of)

    2016-05-15

    We investigated spin dynamics in micron-length scale patterned thin films using the GPU-based micromagnetic simulation program. Spin precessional motion was induced by a Gaussian-pulse magnetic field. The effective Gilbert damping was examined by tracking the precessional motion of the spins, and we found that the damping constant depends on the size and shape of the pattern as well as the externally applied magnetic field. Additional extrinsic damping generated around the edge region was attributed to the dephasing effect between the fundamental spin wave and other spin wave modes. We find that the effect of extrinsic damping could be eliminated by proper adjustments of sample size, external bias field, position, and area of observation. - Highlights: • GPU based micromagnetic simulation of spin dynamics in the micropatterned ferromagnetic films. • Effect of edge regions of the pattern on the Gilbert damping behaviors. • Guide for the analyses of intrinsic magnetic damping in the micron scale patterned films.

  14. Damping in building structures during earthquakes: test data and modeling

    International Nuclear Information System (INIS)

    Coats, D.W. Jr.

    1982-01-01

    A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for

  15. Propagation of magnetoacoustic waves in the solar atmosphere with random inhomogeneities of density and magnetic fields

    International Nuclear Information System (INIS)

    Ryutova, M.

    1990-08-01

    Effects of strong and random inhomogeneities of the magnetic fields, plasma density, and temperature in the solar atmosphere on the properties of magnetoacoustic waves of arbitrary amplitudes are studied. The procedure which allows one to obtain the averaged equation containing the nonlinearity of a wave, dispersion properties of a system, and dissipative effects is described. It is shown that depending on the statistical properties of the medium, different scenarios of wave propagation arise: in the predominance of dissipative effects the primary wave is damped away in the linear stage and the efficiency of heating due to inhomogeneities is much greater than that in homogeneous medium. Depending on the interplay of nonlinear and dispersion effects, the process of heating can be afforded through the formation of shocks or through the storing of energy in a system of solitons which are later damped away. Our computer simulation supports and extends the above theoretical investigations. In particular the enhanced dissipation of waves due to the strong and random inhomogeneities is observed and this is more pronounced for shorter waves

  16. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  17. Scalings, spectra, and statistics of strong wave turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1996-01-01

    A two-component model of strongly nonlinear wave turbulence is developed for a broad class of systems in which high-frequency electrostatic waves interact with low-frequency sound-like waves. In this model coherent nonlinear wave packets form and collapse amid a sea of incoherent background waves. It is shown that three classes of turbulence exist, typified by Langmuir, lower-hybrid, and upper-hybrid turbulence. Balance between power input to incoherent waves, and dissipation at the end of collapse determines power-law scalings of turbulent electrostatic energy density, density fluctuations, length and time scales. Knowledge of the evolution of collapsing packets enables probability distributions of the magnitudes of electric fields and density fluctuations to be calculated, yielding power-law dependences. Wavenumber spectra of collapsing waves and associated density fluctuations are also calculated and shown to have power-law forms. Applications to Langmuir, lower-hybrid, and upper-hybrid waves are discussed. In the Langmuir case the results agree with earlier theory and simulations, with one exception, which is consistent only with earlier simulations. In the lower-hybrid and upper-hybrid cases, the results are consistent with the few simulations to date. copyright 1996 American Institute of Physics

  18. Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures

    Science.gov (United States)

    Sharma Pyakurel, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T. N.; Drake, J. F.; Cassak, P. A.; Gary, S. Peter

    2018-01-01

    The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x line is not well understood. In this study, this damping is examined using kinetic particle-in-cell simulations of antiparallel symmetric magnetic reconnection in a one-dimensional current sheet equilibrium. In the reconnection simulations, the KAW wave vector has a typical magnitude comparable to an inverse fluid Larmor radius (effectively an inverse ion Larmor radius) and a direction of 85-89° relative to the local magnetic field. We find that the damping of the reconnection KAW is consistent with linear Landau damping results from a numerical Vlasov dispersion solver. This knowledge allows us to generalize our damping predictions to regions in the magnetotail and solar corona where the magnetic geometry can be approximated as a current sheet. For the magnetotail, the KAW from reconnection will not damp away before propagating the approximately 20 Earth radii associated with global magnetotail distances. For the solar corona, on the other hand, these KAWs will completely damp before reaching the distances comparable to the flare loop length.

  19. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  20. Damping in accelerators due to classical radiation

    International Nuclear Information System (INIS)

    Mills, F.E.

    1962-01-01

    The rates of change of the magnitudes of the adiabatic invariants is calculated in the case of a Hamiltonian system subjected to generalized non conservative forces. These results are applied to the case of the classical radiation of electrons in an accelerator or storage ring. The resulting expressions for the damping rates of three independent oscillation modes suggest structures which are damping in all three modes, while at the same time allowing 'strong focussing' and the attendant strong momentum compaction. (author)

  1. Process Damping and Cutting Tool Geometry in Machining

    Science.gov (United States)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  2. Process Damping and Cutting Tool Geometry in Machining

    International Nuclear Information System (INIS)

    Taylor, C M; Sims, N D; Turner, S

    2011-01-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  3. Exploring damping characteristics of composite tower of cable ...

    Indian Academy of Sciences (India)

    SHEHATA E ABDEL RAHEEM

    the seismic design [1–7] by dividing the cable-stayed bridge into several ..... damping characteristics is represented by a simple model to study the effect of ...... lent modal damping of short-span bridges subjected to strong motion. J. Bridge ...

  4. Damping mechanisms and heating scenarii in the ICRF

    International Nuclear Information System (INIS)

    Jacquinot, J.; Lapierre, Y.

    1980-09-01

    A wave damping and heating model is presented. It permits to treat a wide range of plasma parameters and complex ion species composition. Applied to JET parameters, two selected wave scenarii are found to allow a great flexibility, in particular with respect to complex gas composition. A major results is the possibility of single pass absorption

  5. On Landau damping

    KAUST Repository

    Mouhot, Clément

    2011-09-01

    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  6. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.

    1986-07-01

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  7. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  8. On the effect of damping on dispersion curves in plates

    DEFF Research Database (Denmark)

    Manconia, Elisabetta; Sorokin, Sergey

    2013-01-01

    This paper presents a study on quantitative prediction and understanding of time-harmonic wave characteristics in damped plates. Material dissipation is modelled by using complex-valued velocities of free dilatation and shear waves in an unbounded volume. As a numerical example, solution...

  9. Source Estimation for the Damped Wave Equation Using Modulating Functions Method: Application to the Estimation of the Cerebral Blood Flow

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-19

    In this paper, a method based on modulating functions is proposed to estimate the Cerebral Blood Flow (CBF). The problem is written in an input estimation problem for a damped wave equation which is used to model the spatiotemporal variations of blood mass density. The method is described and its performance is assessed through some numerical simulations. The robustness of the method in presence of noise is also studied.

  10. Caviton dynamics in strong Langmuir turbulence

    Science.gov (United States)

    DuBois, Don; Rose, Harvey A.; Russell, David

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.

  11. Caviton dynamics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    DuBois, D.; Rose, H.A.; Russell, D.

    1990-01-01

    Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. (orig.)

  12. DAMPING OF ELECTRON DENSITY STRUCTURES AND IMPLICATIONS FOR INTERSTELLAR SCINTILLATION

    International Nuclear Information System (INIS)

    Smith, K. W.; Terry, P. W.

    2011-01-01

    The forms of electron density structures in kinetic Alfven wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ∼ 10 8 -10 10 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  13. Strong SH-to-Love wave scattering off the Southern California Continental Borderland

    Science.gov (United States)

    Yu, Chunquan; Zhan, Zhongwen; Hauksson, Egill; Cochran, Elizabeth S.

    2017-01-01

    Seismic scattering is commonly observed and results from wave propagation in heterogeneous medium. Yet, deterministic characterization of scatterers associated with lateral heterogeneities remains challenging. In this study, we analyze broadband waveforms recorded by the Southern California Seismic Network and observe strongly scattered Love waves following the arrival of teleseismic SH wave. These scattered Love waves travel approximately in the same (azimuthal) direction as the incident SH wave at a dominant period of ~10 s but at an apparent velocity of ~3.6 km/s as compared to the ~11 km/s for the SH wave. Back-projection suggests that this strong scattering is associated with pronounced bathymetric relief in the Southern California Continental Borderland, in particular the Patton Escarpment. Finite-difference simulations using a simplified 2-D bathymetric and crustal model are able to predict the arrival times and amplitudes of major scatterers. The modeling suggests a relatively low shear wave velocity in the Continental Borderland.

  14. Formation and damping of a shock wave induced by laser in a metallic target

    International Nuclear Information System (INIS)

    Cottet, F.

    1981-01-01

    In the first part of this work, a numerical simulation of the formation and of the damping of the shock wave induced in a solid target by a laser impulse is developed. It allows to interpret the experimental obtained in the second part of the study. Two series of experiments have been realized. An iron target metallographic study is intended to verify if laser shocks produce effects comparable with conventional shocks, particularly a deformation by albite twinning the existence of which is related to the shock amplitude and its evolution during the propagation in the target. Macles observation become a possible mean to estimate the value of the induced pressures. Another experiment series has been realized to determine more directly the shock parameters. Piezoelectric cermets have been used to detect a shock-wave passage and to measure the time taken to go through targets of variable thickness. The numerical solution allows, afterwards, to deduce the maximum pressure of the induced shock. The most part of the tests have been done on copper targets, the behaviour of which is well known in a large pressure domain. Some tests have been realized on aluminium and iron targets [fr

  15. Chaotic transport and damping from θ-ruffled separatrices.

    Science.gov (United States)

    Kabantsev, A A; Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A

    2010-11-12

    Variations in magnetic or electrostatic confinement fields give rise to trapping separatrices, and neoclassical transport theory analyzes effects from collision-induced separatrix crossings. Experiments on pure electron plasmas now quantitatively characterize a broad range of transport and wave damping effects due to "chaotic" separatrix crossings, which occur due to equilibrium plasma rotation across θ-ruffled separatrices, and due to wave-induced separatrix fluctuations.

  16. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif

    2007-01-01

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  17. Ultra-low magnetic damping in metallic and half-metallic systems

    Science.gov (United States)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  18. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  19. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  20. Kinetic theory of wave spectra in semiconductors at the strong constant electric field

    International Nuclear Information System (INIS)

    Grinev, B.V.; Seminozhenko, V.P.; Yatsenko, A.A.

    1984-01-01

    With allowanse made for the effect of strong static electric field on the electronic interaction with collective oscillations in plasms, the Languemure oscillations, ion acoustic instability of plasma with current are considered in the collisionless limit. The electric field dependence of the collisionless damping of transversal wayes is determined borh in the degenerate and the nondegenerate cases. The influence of the constant electric field on the anomalous skineffect isstudied

  1. Hot-ion Bernstein wave with large kparallel

    International Nuclear Information System (INIS)

    Ignat, D.W.; Ono, M.

    1995-01-01

    The complex roots of the hot plasma dispersion relation in the ion cyclotron range of frequencies have been surveyed. Progressing from low to high values of perpendicular wave number k perpendicular we find first the cold plasma fast wave and then the well-known Bernstein wave, which is characterized by large dispersion, or large changes in k perpendicular for small changes in frequency or magnetic field. At still higher k perpendicular there can be two hot plasma waves with relatively little dispersion. The latter waves exist only for relatively large k parallel, the wave number parallel to the magnetic field, and are strongly damped unless the electron temperature is low compared to the ion temperature. Up to three mode conversions appear to be possible, but two mode conversions are seen consistently

  2. Shear-wave velocity compilation for Northridge strong-motion recording sites

    Science.gov (United States)

    Borcherdt, Roger D.; Fumal, Thomas E.

    2002-01-01

    Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.

  3. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  4. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters

    International Nuclear Information System (INIS)

    Rahm, Magnus

    2010-01-01

    This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs

  5. Refraction traveltime tomography based on damped wave equation for irregular topographic model

    Science.gov (United States)

    Park, Yunhui; Pyun, Sukjoon

    2018-03-01

    Land seismic data generally have time-static issues due to irregular topography and weathered layers at shallow depths. Unless the time static is handled appropriately, interpretation of the subsurface structures can be easily distorted. Therefore, static corrections are commonly applied to land seismic data. The near-surface velocity, which is required for static corrections, can be inferred from first-arrival traveltime tomography, which must consider the irregular topography, as the land seismic data are generally obtained in irregular topography. This paper proposes a refraction traveltime tomography technique that is applicable to an irregular topographic model. This technique uses unstructured meshes to express an irregular topography, and traveltimes calculated from the frequency-domain damped wavefields using the finite element method. The diagonal elements of the approximate Hessian matrix were adopted for preconditioning, and the principle of reciprocity was introduced to efficiently calculate the Fréchet derivative. We also included regularization to resolve the ill-posed inverse problem, and used the nonlinear conjugate gradient method to solve the inverse problem. As the damped wavefields were used, there were no issues associated with artificial reflections caused by unstructured meshes. In addition, the shadow zone problem could be circumvented because this method is based on the exact wave equation, which does not require a high-frequency assumption. Furthermore, the proposed method was both robust to an initial velocity model and efficient compared to full wavefield inversions. Through synthetic and field data examples, our method was shown to successfully reconstruct shallow velocity structures. To verify our method, static corrections were roughly applied to the field data using the estimated near-surface velocity. By comparing common shot gathers and stack sections with and without static corrections, we confirmed that the proposed tomography

  6. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  7. Phase locking in backward-wave oscillators with strong end reflections

    International Nuclear Information System (INIS)

    Nusinovich, G. S.; Sinitsyn, O. V.; Rodgers, J.; Shkvarunets, A. G.; Carmel, Y.

    2007-01-01

    The theory of phase-locked oscillations in a backward-wave oscillator with strong end reflections is developed. Numerical results demonstrate that the locking bandwidth of such a device phase-locked by a prebunched electron beam can be twice the bandwidth of a resonator formed by a waveguide with strong end reflections. It is also shown that the device can operate with the efficiency exceeding 50% and that, in some cases, it can exhibit a hysteresis in the process of tuning the signal frequency. The applicability of the results obtained to the experiments with the plasma-assisted backward-wave oscillator currently underway at the University of Maryland is discussed

  8. Approximate damped oscillatory solutions and error estimates for the perturbed Klein–Gordon equation

    International Nuclear Information System (INIS)

    Ye, Caier; Zhang, Weiguo

    2015-01-01

    Highlights: • Analyze the dynamical behavior of the planar dynamical system corresponding to the perturbed Klein–Gordon equation. • Present the relations between the properties of traveling wave solutions and the perturbation coefficient. • Obtain all explicit expressions of approximate damped oscillatory solutions. • Investigate error estimates between exact damped oscillatory solutions and the approximate solutions and give some numerical simulations. - Abstract: The influence of perturbation on traveling wave solutions of the perturbed Klein–Gordon equation is studied by applying the bifurcation method and qualitative theory of dynamical systems. All possible approximate damped oscillatory solutions for this equation are obtained by using undetermined coefficient method. Error estimates indicate that the approximate solutions are meaningful. The results of numerical simulations also establish our analysis

  9. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok

    2015-07-28

    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  10. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-10-15

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  11. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    International Nuclear Information System (INIS)

    Chou, Chia-Chun

    2016-01-01

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.

  12. Gravitational waves from a very strong electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar [IFIMAR (UNMdP-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, (7600) Mar del Plata (Argentina)

    2016-05-01

    We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.

  13. Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2016-12-01

    Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.

  14. Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma

    International Nuclear Information System (INIS)

    Leleko, Ya.F.; Stepanov, K.N.

    2010-01-01

    A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.

  15. Excitation and propagation of the fast wave in a two component non uniform plasma

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1980-09-01

    The purpose of this study is to compute the coupling of antennas in presence of plasma, and to derive the electric field distribution taking into account inhomogeneity in the magnetic field and in the density. The only calculations which have been down, up to now, were made under two kinds of assumptions: very low damping or very strong radial damping. Our calculation takes into account the mode conversion as it affects wave propagation. This might be of great importance for large machines

  16. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, Iver H.

    2001-01-01

    Localized bursty plasma waves are detected by spacecraft in many space plasmas. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the system, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it far longer than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. These mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing and power-law distributed in strong turbulence. Recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type III solar radio sources, the Earth's foreshock, magnetosheath, and polar cap regions. It is shown that when combined with wave-wave processes, SGT also accounts for associated radio emissions

  17. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  18. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    Science.gov (United States)

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  19. On Coulomb and Viscosity damped single-degree-of-freedom vibrating systems

    DEFF Research Database (Denmark)

    Jakobsen, J.; Sivebæk, Ion Marius

    2016-01-01

    influence. The amount of analyses of friction damped system is comparatively more limited. The periodic square wave is a frequently occurring type of friction in this type of analyses. This periodic square wave is often named Coulomb friction. It can be resolved in an infinite series of harmonic components...... with frequencies 1, 3, 5, … times the basic frequency of the square wave and with respective amplitudes: (4/π)∗(1, 1/3, 1/5... )∗Fμ(ωt). Fμ(ωt): the square wave amplitude. The governing equation for the sequence of a free vibration with Coulomb friction damping is nonlinear, but is linear within each ½ period....... A complete solution can therefore be made up compounding solutions from ½ periods by inserting end conditions from one ½ period as initial conditions for the following ½ period. – Only spring and Coulomb forces act together. As a Coulomb force is conceivable as an infinite series of harmonic components...

  20. Helical waves in easy-plane antiferromagnets

    Science.gov (United States)

    Semenov, Yuriy G.; Li, Xi-Lai; Xu, Xinyi; Kim, Ki Wook

    2017-12-01

    Effective spin torques can generate the Néel vector oscillations in antiferromagnets (AFMs). Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can excite a helical type of spin wave in the strip whose properties are drastically different from characteristic spin waves. An analysis based on both a Néel vector dynamical equation and the micromagnetic simulation identifies the direction of magnetic anisotropy and the damping factor as the two key parameters determining the dynamics. Helical wave propagation requires the hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping limits its spatial extent. If the damping is neglected, the calculation leads to a uniform periodic domain wall structure. On the other hand, finite damping decelerates the helical wave rotation around the hard axis, ultimately causing stoppage of its propagation along the strip. With the group velocity staying close to spin-wave velocity at the wave front, the wavelength becomes correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state oscillation can be established whose frequency is controlled by the waveguide length as well as the excitation energy or torque.

  1. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    Science.gov (United States)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of

  2. Asymptotic analysis for a weakly damped wave equation with application to a problem arising in elasticity

    Directory of Open Access Journals (Sweden)

    Gabriel Nguetseng

    2010-01-01

    Full Text Available The present work is devoted to the study of homogenization of the weakly damped wave equation ∫Ωρε∂2uε∂t2(t⋅υdx+2ε2μ∫ΩfεEij(∂uε∂t(tEij(υdx+ε2λ∫Ωfεdiv(∂uε∂t(tdiv υdx+ϑ∫Ωfεdiv(uε(tdivυdx=∫Ωf(t⋅υdx  for all υ=(υ1,υ2,υ3∈Vε(0

  3. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    Science.gov (United States)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  4. Effect of Local Thermal Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M. [Centre for Fusion, Space and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Afanasyev, A. N. [Institute of Solar-Terrestrial Physics SB RAS, P.O. Box 291, Lermontov St. 126A, Irkutsk 664033 (Russian Federation); Kumar, S.; Moon, Y.-J., E-mail: V.Nakariakov@warwick.ac.uk [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2017-11-01

    Evolution of slow magnetoacoustic waves guided by a cylindrical magnetic flux tube that represents a coronal loop or plume, is modeled accounting for the effects of finite gas pressure, weak nonlinearity, dissipation by thermal conduction and viscosity, and the misbalance between the cooling by optically thin radiation and unspecified heating of the plasma. An evolutionary equation of the Burgers–Malthus type is derived. It is shown that the cooling/heating misbalance, determined by the derivatives of the combined radiative cooling and heating function, with respect to the density, temperature, and magnetic field at the thermal equilibrium affect the wave rather strongly. This effect may either cause additional damping, or counteract it, or lead to the gradual amplification of the wave. In the latter case, the coronal plasma acts as an active medium for the slow magnetoacoustic waves. The effect of the cooling/heating misbalance could be important for coronal slow waves, and could be responsible for certain discrepancies between theoretical results and observations, in particular, the increased or decreased damping lengths and times, detection of the waves at certain heights only, and excitation of compressive oscillations. The results obtained open up a possibility for the diagnostics of the coronal heating function by slow magnetoacoustic waves.

  5. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  6. Asymptotic behavior of tidal damping in alluvial estuaries

    NARCIS (Netherlands)

    Cai, H.; Savenije, H.H.G.

    2013-01-01

    Tidal wave propagation can be described analytically by a set of four implicit equations, i.e., the phase lag equation, the scaling equation, the damping equation, and the celerity equation. It is demonstrated that this system of equations has an asymptotic solution for an infinite channel,

  7. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  8. Wave Tank Studies of Phase Velocities of Short Wind Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  9. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  10. Harmonic surface wave propagation in plasma

    International Nuclear Information System (INIS)

    Shivarova, A.; Stoychev, T.

    1980-01-01

    Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)

  11. Bifurcation of rupture path by linear and cubic damping force

    Science.gov (United States)

    Dennis L. C., C.; Chew X., Y.; Lee Y., C.

    2014-06-01

    Bifurcation of rupture path is studied for the effect of linear and cubic damping. Momentum equation with Rayleigh factor was transformed into ordinary differential form. Bernoulli differential equation was obtained and solved by the separation of variables. Analytical or exact solutions yielded the bifurcation was visible at imaginary part when the wave was non dispersive. For the dispersive wave, bifurcation of rupture path was invisible.

  12. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  13. The damping of spin motions in ultrathin films: Is the Landau-Lifschitz-Gilbert phenomenology applicable?

    International Nuclear Information System (INIS)

    Mills, D.L.; Arias, Rodrigo

    2006-01-01

    The Landau-Lifschitz-Gilbert (LLG) equation is used widely in device design to describe spin motions in magnetic nanoscale structures. The damping term in this equation plays an essential role in the description of the magnetization dynamics. The form of this term is simple and appealing, but it is derived through use of elementary phenomenological considerations. An important question is whether or not it provides a proper description of the damping of the magnetization in real materials. Recently, it was predicted that a mechanism called two magnon damping should contribute importantly to linewidths and consequently spin damping in ultrathin ferromagnetic films. This process yields ferromagnetic resonance (FMR) linewidths whose frequency dependence is incompatible with the linear variation expected from the Landau-Lifschitz equation. This prediction has now been confirmed experimentally. Furthermore, subsequent experimental and theoretical studies have demonstrated that the damping rate depends strongly on wave vector as well. It is thus clear that for many samples, the LLG equation fails to account for the systematics of the damping of the magnetization in ultrathin ferromagnets, at the linear response level. The paper will review the recent literature on this topic relevant to this issue. One must then inquire into the nature of a proper phenomenology to describe these materials. At the linear response level, the theory of the two magnon mechanism is sufficiently complete that one can describe the response of these systems without resort to LLG phenomenology. However, currently there is very great interest in the large amplitude response of the magnetization in magnetic nanostructures. In the view of the authors, it is difficult to envision a generally applicable extension of linear response theory into the large amplitude regime

  14. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode

    Science.gov (United States)

    Imran, Ali KHAN; G, MURTAZA

    2018-03-01

    Data from spacecrafts suggest that space plasma has an abundance of suprathermal particles which are controlled by the spectral index κ when modeled on kappa particle velocity distribution. In this paper, considering homogeneous plasma, the effect of integer values of κ on the damping rate of an obliquely propagating magnetosonic (MS) wave is studied. The frequency of the MS wave is assumed to be less than ion cyclotron frequency, i.e., ω \\ll {ω }{{i}}. Under this assumption, the dispersion relation is investigated both numerically and analytically, and it is found that the real frequency of the wave is not a sensitive function of κ, but the imaginary part of the frequency is. It is also shown that for those values of κ where a large number of resonant particles participate in wave-particle interaction, the wave is heavily damped, as expected. The possible application of the results to the solar wind is discussed.

  15. Stochastic growth of localized plasma waves

    International Nuclear Information System (INIS)

    Robinson, P.A.; Cairns, I.H.

    2000-01-01

    Full text: Localized bursty plasma waves occur in many natural systems, where they are detected by spacecraft. The large spatiotemporal scales involved imply that beam and other instabilities relax to marginal stability and that mean wave energies are low. Stochastic wave growth occurs when ambient fluctuations perturb the wave-driver interaction, causing fluctuations about marginal stability. This yields regions where growth is enhanced and others where damping is increased; observed bursts are associated with enhanced growth and can occur even when the mean growth rate is negative. In stochastic growth, energy loss from the source is suppressed relative to secular growth, preserving it for much longer times and distances than otherwise possible. Linear stochastic growth can operate at wave levels below thresholds of nonlinear wave-clumping mechanisms such as strong-turbulence modulational instability and is not subject to their coherence and wavelength limits. Growth mechanisms can be distinguished by statistics of the fields, whose strengths are lognormally distributed if stochastically growing, power-law distributed in strong turbulence, and uniformly distributed in log under secular growth. After delineating stochastic growth and strong-turbulence regimes, recent applications of stochastic growth theory (SGT) are described, involving bursty plasma waves and unstable particle distributions in type II and III solar radio sources, foreshock regions upstream of the bow shocks of Earth and planets, and Earth's magnetosheath, auroras, and polar-caps. It is shown that when combined with wave-wave processes, SGT accounts for type II and III solar radio emissions. SGT thus removes longstanding problems in understanding persistent unstable distributions, bursty fields, and radio emissions observed in space

  16. Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.

    Science.gov (United States)

    Vallone, Giuseppe; Dequal, Daniele

    2016-01-29

    Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.

  17. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  18. Testing the Speed of Gravitational Waves over Cosmological Distances with Strong Gravitational Lensing.

    Science.gov (United States)

    Collett, Thomas E; Bacon, David

    2017-03-03

    Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.

  19. Ion Bernstein wave heating research

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity (ω/k perpendicular ∼ V Ti much-lt V α ) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α-particles. In addition, the property of IBW's that k perpendicular ρ i ∼ 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research

  20. Tropospheric mid-latitude geopotential wave characteristics associated with strong wind events in the North Atlantic/European region

    Science.gov (United States)

    Wild, Simon; Simmonds, Ian; Leckebusch, Gregor C.

    2015-04-01

    The variability of strong synoptic scale wind events in the mid-latitudes have long been linked to baroclinic wave activity in the mid troposphere. Previous studies have also shown that greater amplitudes of planetary waves in the mid troposphere are likely to increase the occurrence of regional extremes in temperature and precipitation. In this study we examine whether characteristics of planetary and synoptic mid-latitude waves show systematic anomalies in the North Atlantic/ European region which can be related to the occurrence of a strong surface wind event. We will mainly focus on two questions: 1) Do amplitudes for waves with different wave lengths show a systematic anomaly when a strong wind event occurs? 2) Can phases of the individual wave components be detected that favour strong wind events? In order to decompose the mid-tropospheric flow into longitudinal waves we employ the fast Fourier transform to the meridional mean of the geopotential height in 500hPa between 35° and 60°N for i) the entire latitude belt and ii) for a North Atlantic/European sector (36°W to 36°E). Our definition of strong wind events is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. First results using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM) for the 50 most intense strong wind systems with respect to the SSI reveal a greater amplitude for all investigated wave numbers. Especially waves with wave lengths below 2000km show an increase of about 25% of the daily standard deviation on average. The distribution of wave phases for the different wave numbers with respect to the location of a strong wind event shows a less homogenous picture. There is however a high proportion of events that can be associated with phases around 3π/4 and 5π/4 of waves with lengths of around 6000km, equivalent to wave number 5 on a planetary scale

  1. Wave propagation in elastic layers with damping

    DEFF Research Database (Denmark)

    Sorokin, Sergey; Darula, Radoslav

    2016-01-01

    The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....

  2. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria

    International Nuclear Information System (INIS)

    Frieman, E.A.; Chen, L.

    1981-10-01

    A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency

  3. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  4. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  6. Waves in Strong Centrifugal Field

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  7. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  8. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  9. A full wave code for ion cyclotron waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1996-02-01

    The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron frequency range in arbitrary axisymmetric toroidal geometry. The model used describes the compressional and torsional Alfven waves (or, depending on the parallel phase velocity, the kinetic counterpart of the latter), and ion Bernstein waves excited by mode conversion near the first ion cyclotron harmonic. In the ion response the broadening of the absorption regions due to the finite width of the cyclotron resonance of individual ions in toroidal geometry is taken into account. The parallel component of the wave electric field is evaluated on the same footing as the transverse ones; the response of the electrons includes Landau damping, Transit Time damping and the mixed term. The numerical approach uses a spectral representation of the solution in the poloidal angle θ, and cubic finite elements in the radial variable ψ. Great flexibility is provided in the way ion Bernstein waves excited by mode conversion are damped when their wavelength becomes comparable with the ion Larmor radius, in the regularization of Alfven resonances, and in the treatment of the outer plasma layers. As an option, we have also implemented the Order Reduction Algorithm, which provides a particularly fast, yet accurate evaluation of the power deposition profiles in toroidal geometry. Thee present report describes the model and its numerical implementation, and provides the information needed to use the code. A few examples illustrating applications of TORIC are also included. (orig.)

  10. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...

  11. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  12. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  13. Interaction between counter-streaming ion-acoustic solitons and the Langmuir waves

    International Nuclear Information System (INIS)

    Basovich, A.Ya.; Gromov, E.M.; Talanov, V.I.

    1984-01-01

    The interaction between strong counter-streaming ion-acoustic solitons and the Langmuir waves is considered. At first the Langmuir waves spectrum transformation by counter-streaming ion-acoustic solutions of a preset amplitude e has been found. An increase in the frequency and number of the Langmuir waves due to the Doppler effect in the course of multiple reflection from the f front soliton slope has been determined and the wave number range in which the confinement of the Langmuir waves by counter-streaning solitons is possible has s been found. It is shown that the time of the Langmuir wave transformation into the short-wave region under the effect of the counter-streaming soliton may y be short as compared with the time of the Langmuir wave diffusion into the Landau damping region under the effect of random fields of ion-acoustic waves. In the adiabatic fpproximation changes in the counter-streaming ion acoustic parameters of solitons owing to the Langmuir waves have been

  14. Explicit and exact solutions for a generalized long-short wave resonance equations with strong nonlinear term

    International Nuclear Information System (INIS)

    Shang Yadong

    2005-01-01

    In this paper, the evolution equations with strong nonlinear term describing the resonance interaction between the long wave and the short wave are studied. Firstly, based on the qualitative theory and bifurcation theory of planar dynamical systems, all of the explicit and exact solutions of solitary waves are obtained by qualitative seeking the homoclinic and heteroclinic orbits for a class of Lienard equations. Then the singular travelling wave solutions, periodic travelling wave solutions of triangle functions type are also obtained on the basis of the relationships between the hyperbolic functions and that between the hyperbolic functions with the triangle functions. The varieties of structure of exact solutions of the generalized long-short wave equation with strong nonlinear term are illustrated. The methods presented here also suitable for obtaining exact solutions of nonlinear wave equations in multidimensions

  15. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  16. Strong winds and waves offshore

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    2016-01-01

    is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions.......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...

  17. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  18. Electron cyclotron wave absorption by the fast tail generated by the dc electric field in tokamak plasmas

    International Nuclear Information System (INIS)

    Giruzzi, G.; Krivenski, V.; Fidone, I.; Ziebell, L.F.

    1985-03-01

    Wave damping near the electron gyrofrequency in a tokamak plasma with the energetic tail generated by the dc electric field is investigated. The electron tail is computed by a Fokker-Planck initial value code as a function of the relevant parameter Esub(parallel)/Esub(c)=Esub(parallel)Tsub(e)/(2πsub(e)c 3 Λ). It is shown that in most cases of physical interest strong damping of the e-mode occurs for oblique propagation. The results are of relevance for studies of ECRH in present-day tokamaks and in future reactors where a mildly relativistic electron tail is naturally present for large tsub(e). Special emphasis is therefore given to wave absorption for frequencies f significantly below the central electron gyrofrequency, and to the associated rf-driven current

  19. How to turn gravity waves into Alfven waves and other such tricks

    International Nuclear Information System (INIS)

    Newington, Marie E; Cally, Paul S

    2011-01-01

    Recent observations of travelling gravity waves at the base of the chromosphere suggest an interplay between gravity wave propagation and magnetic field. Our aims are: to explain the observation that gravity wave flux is suppressed in magnetic regions; to understand why we see travelling waves instead of standing waves; and to see if gravity waves can undergo mode conversion and couple to Alfven waves in regions where the plasma beta is of order unity. We model gravity waves in a VAL C atmosphere, subject to a uniform magnetic field of various orientations, considering both adiabatic and radiatively damped propagation. Results indicate that in the presence of a magnetic field, the gravity wave can propagate as a travelling wave, with the magnetic field orientation playing a crucial role in determining the wave character. For the majority of magnetic field orientations, the gravity wave is reflected at low heights as a slow magneto-acoustic wave, explaining the observation of reduced flux in magnetic regions. In a highly inclined magnetic field, the gravity wave undergoes mode conversion to either field guided acoustic waves or Alfven waves. The primary effect of incorporating radiative damping is a reduction in acoustic and magnetic fluxes measured at the top of the integration region. By demonstrating the mode conversion of gravity waves to Alfven waves, this work identifies a possible pathway for energy transport from the solar surface to the upper atmosphere.

  20. Site-response Estimation by 1D Heterogeneous Velocity Model using Borehole Log and its Relationship to Damping Factor

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    2014-01-01

    In the Niigata area, which suffered from several large earthquakes such as the 2007 Chuetsu-oki earthquake, geographical observation that elucidates the S-wave structure of the underground is advancing. Modeling of S-wave velocity structure in the subsurface is underway to enable simulation of long-period ground motion. The one-dimensional velocity model by inverse analysis of micro-tremors is sufficiently appropriate for long-period site response but not for short-period, which is important for ground motion evaluation at NPP sites. The high-frequency site responses may be controlled by the strength of heterogeneity of underground structure because the heterogeneity of the 1D model plays an important role in estimating high-frequency site responses and is strongly related to the damping factor of the 1D layered velocity model. (author)

  1. 60 MHz fast wave current drive experiment for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, M.J.; Chiu, S.C.; Porkolab, M.; Chan, V.; Freeman, R.; Harvey, R.; Pinsker, R. (General Atomics, San Diego, CA (USA))

    1989-07-01

    The DIII-D facility provides an opportunity to test fast wave current drive appoach. Efficient FWCD is achieved by direct electron absorption due to Landa damping and transit time magnetic pumping. To avoid competing damping mechamisms we seek to maximize the single-pass asorption of the fast waves by electrons. (AIP)

  2. Fluid Damping Variation of a Slender Rod in Axial Flow Field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam-Gyu; Yoo, Jong-Sung; Jung, Yil-Sup [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study proposed an analytic damping model considering the axial flow condition. In addition, the specific damping values with respect to the flow speeds are calculated. The flow induced damping is beneficial to fuel integrity in that impact energy due to severe accidents such as earthquake dissipates rapidly. A nuclear fuel bundle is composed of many slender fuel rods which contain fission material. The slender rod is typical structure in the fuel, therefore fluid damping estimation on the rod should be an important clue leading to fuel bundle damping identification. Severe accidents could cause fuel assembly vibration in the core, but large motion could be damped out rapidly when a strong damping mechanism is involved. This paper suggested a mathematical model of the slender structure. The physical meaning of the model is described, and the simulation results with the model are also provided. Actual damping due to the fluid is nonlinear, therefore further works are required to explain the detail behavior with the nonlinearity. The model validation test is on-going in KEPCO Nuclear Fuel, but it is believed that performance of the model is well correlated to the published work.

  3. Mode structure and continuum damping of high-n toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.

    1992-02-01

    An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma

  4. Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2013-01-01

    The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.

  5. Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2013-01-15

    The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.

  6. Wave analysis at frictional interface: A case wise study

    Science.gov (United States)

    Srivastava, Akanksha; Chattopadhyay, Amares; Singh, Pooja; Singh, Abhishek Kumar

    2018-03-01

    The present article deals with the propagation of a Stoneley wave and with the reflection as well as refraction of an incident P -wave at the frictional bonded interface between an initially stressed isotropic viscoelastic semi-infinite superstratum and an initially stressed isotropic substratum as case I and case II, respectively. The complex form of the velocity equation has been derived in closed form for the propagation of a Stoneley wave in the said structure. The real and imaginary parts of the complex form of the velocity equation correspond to the phase velocity and damped velocity of the Stoneley wave. Phase and damped velocity have been analysed against the angular frequency. The expressions of the amplitude ratios of the reflected and refracted waves are deduced analytically. The variation of the amplitude ratios is examined against the angle of incidence of the P -wave. The influence of frictional boundary parameters, initial stress, viscoelastic parameters on the phase and damped velocities of the Stoneley wave and the amplitude ratios of the reflected as well as refracted P - and SV -wave have been revealed graphically through numerical results.

  7. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  8. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction

    International Nuclear Information System (INIS)

    Sobol, A.; Ellison, J.A.

    2003-01-01

    We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique

  9. Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

    Science.gov (United States)

    Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.

    2017-09-01

    We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.

  10. Identification of support structure damping of a full scale offshore wind turbine in normal operation

    DEFF Research Database (Denmark)

    Koukoura, Christina; Natarajan, Anand; Vesth, Allan

    2015-01-01

    damping from the decaying time series. The Enhanced Frequency Domain Decomposition (EFDD) method was applied to the wind turbine response under ambient excitation, for estimation of the damping in normal operation. The aero-servo-hydro-elastic tool HAWC2 is validated with offshore foundation load...... maxima of an impulse response caused by a boat impact. The result is used in the verification of the non aerodynamic damping in normal operation for low wind speeds. The auto-correlation function technique for damping estimation of a structure under ambient excitation was validated against the identified...... measurements. The model was tuned to the damping values obtained from the boat impact to match the measured loads. Wind turbulence intensity and wave characteristics used in the simulations are based on site measurements. A flexible soil model is included in the analysis. The importance of the correctly...

  11. Overview on methods for formulating explicit damping matrices for non-classically damped structures

    International Nuclear Information System (INIS)

    Xu, J.

    1998-04-01

    In computing the dynamic response of a connected system with multiple components having dissimilar damping characteristics, which is often referred to as nonclassically damped system such as nuclear power plant piping systems supported by stiff structures, one needs to define the system-level damping based upon the damping information of components. This is frequently done in practice using approximate methods expressed as composite modal damping with weighting functions. However, when the difference in damping among components is substantial, the composite modal damping may become inappropriate in the characterization of the damping behavior of such systems. In recent years, several new methods have emerged with the expectation that they could produce more exact system-level damping for a group of nonclassically damped structures which are comprised of components that possess classical modal damping. In this paper, an overview is presented to examine these methods in the light of their theoretical basis, the technical merits, and practical applications. To this end, a synthesis method is described, which was shown to reduce to the other methods in the literature

  12. Nonlinear wavenumber of an electron plasma wave

    International Nuclear Information System (INIS)

    Vidmar, P.J.; Malmberg, J.H.; Starke, T.P.

    1976-01-01

    The wavenumber of a large-amplitude electron plasma wave propagating on a collisionless plasma column is measured. The wavenumber is shifted from that of a small-amplitude wave of the same frequency. This nonlinear wavenumber shift, deltak/subr/, depends on position, frequency, and initial wave amplitude, Phi. The observed spatial oscillations of deltak/subr/ agree qualitatively with recent theories. Experimentally deltak/subr/proportionalk/subi/S (Phi) rootPhi where k/subi/ is the linear Landau damping coefficient, S (Phi) equivalentk/subi/(Phi)/k/subi/, and k/subi/(Phi) is the initial damping coefficient which depends on Phi

  13. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  14. Effect of losses on acceleration of energetic particles by diffusive scattering through shock waves

    International Nuclear Information System (INIS)

    Voelk, H.J.; Morfill, G.E.; Forman, M.A.

    1981-01-01

    The effect of local losses on the acceleration of energetic particles by shocks is discussed considering both energy losses of individual particles and damping processes for the scattering hydromagnetic waves. The calculations are all time asymptotic and steady state. For locally plane and infinitely extended shocks, the requirement for acceleration is that the loss time exceed the acceleration time. The resulting modifications of the spatial structure and of the momentum dependence of the cosmic-ray distribution are described. For acceleration to be a local effect within the Galaxy, the local scattering mean free path must be small compared to the effective overall galactic mean free path as deduced from the cosmic-ray escape time. The required strengths of the scattering wave fields are such that neutral molecular clouds do not allow acceleration; in a partially ionized, warm interstellar medium, quite large shock strengths are needed. Such strong shock discontinuities are surrounded by an ionization layer within which Alfven wave damping is presumably negligible. Given the spatial extent of the layer for strong shocks propagating into neutral interstellar clouds, the possibility of localized diffusive acceleration is investigated. The estimated strength and extent of the scattering region is not large enough to confine acceleration within the layer. Rather, it will extend across the whole cloud, whose integrated losses then determine the efficiency

  15. Detectable gravitational waves from very strong phase transitions in the general NMSSM

    International Nuclear Information System (INIS)

    Huber, Stephan J.; Nardini, Germano; Bern Univ.

    2015-12-01

    We study the general NMSSM with an emphasis on the parameter regions with a very strong first-order electroweak phase transition (EWPT). In the presence of heavy fields coupled to the Higgs sector, the analysis can be problematic due to the existence of sizable radiative corrections. In this paper we propose a subtraction scheme that helps to circumvent this problem. For simplicity we focus on a parameter region that is by construction hidden from the current collider searches. The analysis proves that (at least) in the identified parameter region the EWPT can be very strong and striking gravitational wave signals can be produced. The corresponding gravitational stochastic background can potentially be detected at the planned space-based gravitational wave observatory eLISA, depending on the specific experiment design that will be approved.

  16. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  17. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    2001-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  18. Experimental investigation on the hydrodynamic performance of a wave energy converter

    Science.gov (United States)

    Zheng, Xiong-bo; Ma, Yong; Zhang, Liang; Jiang, Jin; Liu, Heng-xu

    2017-06-01

    Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio ( R M) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches R M and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and R M are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, R M was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω.

  19. Crumb Rubber Recycling in Enhancing Damping Properties of Concrete

    Science.gov (United States)

    Sugapriya, P.; Ramkrishnan, R.

    2018-02-01

    Damping plays a major role in the design of roadside structures that gets affected due to vibrations transmitted from moving traffic. In this study, fine aggregates were partially replaced with crumb rubber in concrete, at varying percentages of 5, 10, 15 and 20% by weight. Three different sets of concrete, mixed with crumb rubber were prepared using raw rubber, treated rubber and treated rubber with partial replacement of cement. Cement was partially replaced with Ultra-Fine Ground Granulated Blast furnace Slag (UFGGBS) for this study. Samples were cast, cured and tested for various properties on the 7th and 28th day. The damping ratio and frequency of the peak value from a number of waves in rubber incorporated beams were found out using a FFT Analyser along with its Strength, Damping and Sorptivity characteristics. SEM analysis was conducted to analyse the micro structural bonding between rubber and concrete. The mode shapes of pavement slabs were modelled and analysed using a FEM tool, ANSYS. From the results, the behaviour of the three sets of rubberized concrete were compared and analysed, and an optimum percentage for crumb rubber and UFGGBS was proposed to achieve best possible damping without compromising the strength properties.

  20. Scenarios for the nonlinear evolution of alpha particle induced Alfven wave instability

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.; Ye, Huanchun.

    1992-03-01

    Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in a background plasma and simultaneously causing instability of the background plasma waves. If the background damping is sufficiently weak, a steady-state wave is established as described by Berk and Breizman. For larger background damping rate pulsations develop. Saturation occurs when the wave amplitude rises to where the wave trapping frequency equals the growth rate. The wave then damps due to the small background dissipation present and a relatively long quiet interval exists between bursts while the free energy of the distribution is refilled by classical transport. In this scenario the anomalous energy loss of energetic particles due to diffusion is small compared to the classical collisional energy exchange with the background plasma. However, if at the trapping frequency, the wave amplitude is large enough to cause orbit stochasticity, a phase space ''explosion'' occurs where the wave amplitudes rise to higher levels which leads to rapid loss of energetic particles

  1. Vibration of fusion reactor components with magnetic damping

    Energy Technology Data Exchange (ETDEWEB)

    D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)

    2016-11-01

    The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.

  2. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  3. Controllable damping of high-Q violin modes in fused silica suspension fibers

    Science.gov (United States)

    Dmitriev, A. V.; Mescheriakov, S. D.; Tokmakov, K. V.; Mitrofanov, V. P.

    2010-01-01

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 108. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  4. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  5. Application of a planetary wave breaking parameterization to stratospheric circulation statistics

    Science.gov (United States)

    Randel, William J.; Garcia, Rolando R.

    1994-01-01

    The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.

  6. Strong lensing of gravitational waves as seen by LISA.

    Science.gov (United States)

    Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C

    2010-12-17

    We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).

  7. Ceramic coatings: A phenomenological modeling for damping behavior related to microstructural features

    International Nuclear Information System (INIS)

    Tassini, N.; Patsias, S.; Lambrinou, K.

    2006-01-01

    Recent research has shown that both stiffness and damping of ceramic coatings exhibit different non-linearities. These properties strongly depend on the microstructure, which is characterized by heterogeneous sets of elastic elements with mesoscopic sizes and shapes, as in non-linear mesoscopic elastic materials. To predict the damping properties of this class of materials, we have implemented a phenomenological model that characterizes their elastic properties. The model is capable of reproducing the basic features of the observed damping behavior for zirconia coatings prepared by air plasma spraying and electron-beam physical-vapor-deposition

  8. Stochastic acceleration by a single wave in a magnetized plasma

    International Nuclear Information System (INIS)

    Smith, R.

    1977-01-01

    A particularly simple problem exhibiting stochasticity is the motion of a charged particle in a uniform magnetic field and a single wave. Detailed studies of this wave-particle interaction show the following features. An electrostatic wave propagating obliquely to the magnetic field causes stochastic motion if the wave amplitude exceeds a certain threshold. The overlap of cyclotron resonances then destroys a constant of the motion, allowing strong particle acceleration. A wave of large enough amplitude would thus suffer severe damping and lead to rapid heating of a particle distribution. The stochastic motion resembles a diffusion process even though the wave spectrum contains only a single wave. The motion of ions in a nonuniform magnetic field and a single electrostatic wave is treated in our study of a possible saturation mechanism of the dissipative trapped-ion instability in a tokamak. A theory involving the overlap of bounce resonances predicts the main features found in the numerical integration of the equations of motion. Ions in a layer near the trapped-circulating boundary move stochastically. This motion leads to nonlinear stabilization mechanisms which are described qualitatively

  9. Stochastic particle acceleration by plasma waves in AGN jets

    International Nuclear Information System (INIS)

    Li, Hui; Colgate, S.A.; Miller, J.A.

    1997-01-01

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  10. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  11. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.; Pellat, R.

    1990-01-01

    By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature

  12. A damped and detuned accelerating structure for the main linacs of the compact linear collider

    CERN Document Server

    Khan, V

    2011-01-01

    Linear colliders are an option for lepton collision at several TeV. The Compact Linear Collider (CLIC) aims at electron and positron collisions at a centre of mass energy of 3 TeV. In CLIC, the main accelerating structures are designed to operate at an X-band frequency of 12 GHz with an accelerating gradient of 100 MV/m. Two significant issues in linear accelerators that can prevent high gradient being achieved are electrical breakdown and wakefields. The baseline design for the CLIC main linacs relies on a small aperture size to reduce the breakdown probability and a strong damping scheme to suppress the wakefields. The strong damping scheme may have a higher possibility of electrical breakdown. In this thesis an alternative design for the main accelerating structures of CLIC is studied and various aspects of this design are discussed. This design is known as a Damped and Detuned Structure (DDS) which relies on moderate damping and strong detuning of the higher order modes (HOMs). The broad idea of DDS is ba...

  13. Approximation of wave action flux velocity in strongly sheared mean flows

    Science.gov (United States)

    Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei

    2017-08-01

    Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.

  14. Bulk damping of sound in superfluid 3He--4He under stagnation of the normal component

    International Nuclear Information System (INIS)

    Karchava, T.A.; Sanikidze, D.G.; Chkhaidze, N.D.

    1983-01-01

    The propagation of waves in superfluid 3 He-- 4 He solutions is considered under partial stagnation of the normal component. The wave processes in capillaries are presented as a superposition of the first sound, second sound, and viscous and diffusion waves. The damping coefficients are calculated for the modified first sound and for the thermal wave in superfluid 3 He-- 4 He solutions and related to the viscosity, thermal conductivity, diffusion, barodiffusion, and thermodiffusion coefficients

  15. Can mobile phones used in strong motion seismology?

    Science.gov (United States)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude

  16. New high accuracy super stable alternating direction implicit methods for two and three dimensional hyperbolic damped wave equations

    Directory of Open Access Journals (Sweden)

    R.K. Mohanty

    2014-01-01

    Full Text Available In this paper, we report new three level implicit super stable methods of order two in time and four in space for the solution of hyperbolic damped wave equations in one, two and three space dimensions subject to given appropriate initial and Dirichlet boundary conditions. We use uniform grid points both in time and space directions. Our methods behave like fourth order accurate, when grid size in time-direction is directly proportional to the square of grid size in space-direction. The proposed methods are super stable. The resulting system of algebraic equations is solved by the Gauss elimination method. We discuss new alternating direction implicit (ADI methods for two and three dimensional problems. Numerical results and the graphical representation of numerical solution are presented to illustrate the accuracy of the proposed methods.

  17. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    Science.gov (United States)

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  18. Magnetized Langmuir wave packets excited by a strong beam-plasma interaction

    International Nuclear Information System (INIS)

    Pelletier, G.; Sol, H.; Asseo, E.

    1988-01-01

    The physics of beam-plasma interaction, which has been investigated for a long time mostly in relation with solar bursts, is now more widely invoked in various astrophysical contexts such as pulsars, active galactic nuclei, close binaries, cataclysmic variables, γ bursters, and so on. In these situations the interaction is more likely in the spirit of strong Langmuir turbulence rather than in the spirit of quasilinear theory. Many investigations have been done for two opposite extremes, namely, in very weak and in very strong magnetic fields. Very few properties of the strong Langmuir turbulence are known in the most usual astrophysical situation where the magnetic field plays a significant role but is not strong enough to force the electrons into one-dimensional motion. For this case, we analyze the dynamics of Langmuir wave packets and provide new results about the stability of the solitons against transverse perturbations. It turns out that both the averaged Lagrangian method and the adiabatic perturbation method derived from the inverse scattering transform give exactly the same results (which is not obvious in soliton perturbation theory). In particular, they predict the stability of the solitons as long as the electron gyrofrequency is greater than the plasma frequency (strong magnetic field) and their instability against transverse self-modulation in the opposite case (weak magnetic field); moreover, they allow one to deduce the self-similar collapsing oblate cavitons in the latter case. The laws governing the collapse of the wave packets determine the relaxation of the beam in the surrounding medium and we derive a useful formula giving the power loss of the beam. We outline the astrophysical consequences of this investigation

  19. Exact result in strong wave turbulence of thin elastic plates

    Science.gov (United States)

    Düring, Gustavo; Krstulovic, Giorgio

    2018-02-01

    An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.

  20. Microscopic nuclear-dissipation mechanism as damping of collective motion in the second RPA

    International Nuclear Information System (INIS)

    Yannouleas, C.; Dworzecka, M.; Griffin, J.J.

    1982-01-01

    A microscopic model for the damping of the one-phonon RPA collective state, absolute value c > = Q/sub c/ 0 > /sub S//sub R/, has been previously described. This one-phonon RPA collective state is defined within a restricted subspace, S/sub R/, of the discrete 1p-1h structure. Its damping is described within an extended subspace, S = S/sub R/ + S/sub A/, by the time evolution of a wave packet according to the RPA and the Second RPA approximations of the complete Schroedinger equation when initialized with the one-phonon state. The one-phonon state, however, is unable to describe time-varying oscillations of the mean field. Such oscillations require wave packets formed by linear superposition of the RPA many-phonon eigenstates. Coherent time-varying oscillations of the mean field (multi-phonon initial states) are discussed

  1. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...

  2. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  3. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

    Science.gov (United States)

    Kochetov, A. V.

    2018-05-01

    This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

  4. Induced photoassociation in the field of a strong electomagnetic wave

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.; Lyul'ka, V.A.

    1979-01-01

    The quantum-mechanical problem of the stimulated transition of a system in the field of a strong electromagnetic wave from the continuous spectrum to a bound state possessing a finite lifetime is considered. The expressions obtained are employed to calculate stimulated production of mesic atoms and mesic molecules (ddμ). It is demonstrated that in an external electromagnetic field the probability for production of this type may considerably increase

  5. Excitation of short-scale fluctuations by parametric decay of helicon waves into ion-sound and Trivelpiece-Gould waves

    International Nuclear Information System (INIS)

    Lorenz, B; Kraemer, M; Selenin, V L; Aliev, Yu M

    2005-01-01

    The helicon wave field and the excitation of short-scale electrostatic fluctuations in a helicon-produced plasma are closely related as both the helicon wave damping and the fluctuation level are shown to increase with the launched rf power. Correlation methods using electrostatic probes as well as microwave back-scattering at the upper-hybrid resonance are applied to obtain the dispersion relations of the fluctuations in the low-frequency and high-frequency ranges. The frequency and wavenumber spectra measured for all components of the wave vector allow us to identify the fluctuations as ion-sound and Trivelpiece-Gould waves that originate from parametric decay of the helicon pump wave. The growth rates and thresholds inferred from the evolution of the fluctuations in a wide range of helicon plasma parameters are in good agreement with predictions for the parametric decay instability that takes into account realistic damping rates for the decay waves as well as non-vanishing parallel wavenumber of the helicon pump

  6. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  7. Nonperturbative study of the damping of giant resonances in hot nuclei

    International Nuclear Information System (INIS)

    De Blasio, F.V.; Cassing, W.; Tohyama, M.; Bortignon, P.F.; Broglia, R.A.

    1992-01-01

    The damping of dipole and quadrupole motion in 16 O and 40 Ca at zero and finite temperature is studied including particle-particle and particle-hole interactions to all orders of perturbation. We find that the dipole dynamics in these light nuclei is well described in terms of mean-field theory (time-dependent Hartree-Fock), while the quadrupole motion is strongly damped through the coupling to more complicated configurations. Both the centroid and the damping width of the quadrupole and dipole giant resonances show a clear stability with temperature as a consequence of the weakening of the interaction, which contrasts with the increase of the phase space

  8. Weakly damped modes in star clusters and galaxies

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.

  9. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  10. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  11. Controllable damping of high-Q violin modes in fused silica suspension fibers

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P [Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Tokmakov, K V, E-mail: dmitriev@hbar.phys.msu.r, E-mail: mitr@hbar.phys.msu.r [Present address: Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-01-21

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10{sup 8}. They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  12. Controllable damping of high-Q violin modes in fused silica suspension fibers

    International Nuclear Information System (INIS)

    Dmitriev, A V; Mescheriakov, S D; Mitrofanov, V P; Tokmakov, K V

    2010-01-01

    Fused silica fiber suspension of the test masses will be used in the interferometric gravitational wave detectors of the next generation. This allows a significant reduction of losses in the suspension and thermal noise associated with the suspension. Unfortunately, unwanted violin modes may be accidentally excited in the suspension fibers. The Q-factor of the violin modes also exceeds 10 8 . They have a ring-down time that is too long and may complicate the stable control of the interferometer. Results of the investigation of a violin mode active damping system are described. An original sensor and actuator were especially developed to realize the effective coupling of a thin, optically transparent, non-conducting fused silica fiber with an electric circuit. The damping system allowed the changing of the violin mode's damping rate over a wide range.

  13. Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Hyebin Lee

    2018-02-01

    Full Text Available Wind-wave hybrid power generation systems have the potential to become a significant source of affordable renewable energy. However, their strong interactions with both wind- and wave-induced forces raise a number of technical challenges for modelling. The present study undertakes a numerical investigation on multi-body hydrodynamic interaction between a wind-wave hybrid floating platform and multiple wave energy converters (WECs in a frequency domain. In addition to the exact responses of the platform and the WECs, the power take-off (PTO mechanism was taken into account for analysis. The coupled hydrodynamic coefficients and wave exciting forces were obtained from WAMIT, the 3D diffraction/radiation solver based on the boundary element method. The overall performance of the multiple WECs is presented and compared with the performance of a single isolated WEC. The analysis showed significant differences in the dynamic responses of the WECs when the multi-body interaction was considered. In addition, the PTO damping effect made a considerable difference to the responses of the WECs. However, the platform response was only minimally affected by PTO damping. With regard to energy capture, the interaction effect of the designed multiple WEC array layout is evaluated. The WEC array configuration showed both constructive and destructive effects in accordance with the incident wave frequency and direction.

  14. Mechanical characterisation of the first centimeters of concrete with surface waves

    International Nuclear Information System (INIS)

    Chekroun, M.

    2008-01-01

    Cover concrete is the part of concrete structures directly in contact with the outside. Its thickness is a few centimetres and its main role is to protect reinforcement bars. Surface waves with wavelength varying from a few millimetres to a few centimetres are used to characterise this cover concrete. An estimation of the properties of the propagation of waves (phase and group velocities, damping factor) may allow us to evaluate mechanical properties and to detect possible damages. However, these waves will interact strongly with the numerous heterogeneities of the concrete (sand, aggregates,.) which dimensions are close to the wavelength. Waves will propagate in a multiple scattering regime. These effects have to be quantified in order to separate them from other effects linked to mechanical properties. An analytical and numerical study present theories of effective mediums to describe coherent wave propagation in an elastic matrix with random elastic inclusions. These models are then extended to take into account the viscoelasticity of the materials and the granulometry. We quantify with such model the importance of multiple scattering on surface wave propagation in concrete. Experimental measurements are carried on, using a specific protocol and efficient signal processing methods, allowing precise evaluation of phase and group velocity and of the damping factor of coherent surface waves on concrete or mortar slabs. The results show that these three parameters can provide complementary information on concrete properties (water to cement ratio, aggregate distribution,...), but also on other phenomenon like varying effective properties with depth. Effects of multiple scattering predicted by the model are experimentally observed, which opens interesting perspectives for the inverse problem. (author)

  15. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  16. Damping of electron center-of-mass oscillation in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-01-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  17. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  18. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  19. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    International Nuclear Information System (INIS)

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-01-01

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B ≤ 10 13 G. For realistic values of the saturation amplitude α sat , the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  20. RF heating and current drive on NSTX with high harmonic fast waves

    International Nuclear Information System (INIS)

    Ryan, P.M.

    2002-01-01

    NSTX is a small aspect ratio tokamak with a large dielectric constant (50-100); under these conditions high harmonic fast waves (HHFW) will readily damp on electrons via Landau damping and TTMP. The HHFW system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3-4 MW for 100-200 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas, for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with large fractions (0.4) of bootstrap current. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial power deposition profiles are being calculated with ray tracing and kinetic full-wave codes and benchmarked against measurements. (author)

  1. Entanglement near the optical instability point in damped four wave mixing systems

    Science.gov (United States)

    Chiangga, S.; Temnuch, W.; Frank, T. D.

    2018-06-01

    Entanglement of electromagnetic field modes of signal and idler photons generated by four-wave mixing (FWM) devices is a quantum phenomenon that has been examined in various experimental and theoretical studies. The focus of this theoretical study is on two aspects of this phenomenon: the emergence of signal and idler photons due to an optical instability and the entanglement of the signal and idler modes above the instability threshold. For simple FWM devices that are subjected to damping it is shown that the signal and idler modes are entangled close to the point of optical instability at which the signal and idler photons emerges. The degree of entanglement as measured by a particular entanglement function proposed earlier in the literature assumes at the point of optical instability a unique value that is independent of the model parameters of the devices. The value is slightly higher than the value reported in a FWM experiment by Boyer et al (2008 Science 321 544). Numerical simulations suggest that the aforementioned entanglement function is U-shaped such that the degree of entanglement at the instability point is the maximal possible one and represents the optimal value. A similar U-shaped pattern was observed in an FWM experiment conducted by Lawrie et al (2016 Appl. Phys. Lett. 108 151107). Our semi-analytical findings are derived within the framework of the positive P representation of quantum optical processes and are compared with the aforementioned experimental observations by Boyer et al and Lawrie et al.

  2. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  3. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    Science.gov (United States)

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  4. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  5. Potentiality of fast wave current drive in non-maxwellian plasmas

    International Nuclear Information System (INIS)

    Moreau, D.; O'Brien, M.R.; Cox, M.; Start, D.F.H.

    1987-06-01

    After a short analysis of the available experimental data on pure fast wave electron current drive we propose a theoretical scaling law for the wave absorption through combined electron Landau damping and transit time magnetic pumping. We then present the result of a fully relativistic calculation which we apply to a bi-Maxwellian electron distribution function and conclude on the requirements to be fulfilled by the energetic tail for obtaining significant damping in Tore-Supra

  6. Simulation study of wave phenomena from the sheath region in single frequency capacitively coupled plasma discharges; field reversals and ion reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.; Turner, M. M. [National Centre for Plasma Science and Technology, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2013-07-15

    Capacitively coupled radio-frequency (RF) discharges have great significance for industrial applications. Collisionless electron heating in such discharges is important, and sometimes is the dominant mechanism. This heating is usually understood to originate in a stochastic interaction between electrons and the electric fields. However, other mechanisms may also be important. There is evidence of wave emission with a frequency near the electron plasma frequency, i.e., ω{sub pe}, from the sheath region in collisionless capacitive RF discharges. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. These waves are damped in a few centimeters during their propagation from the sheath towards the bulk plasma. The damping occurs because of the Landau damping or some related mechanism. This research work reports that the emission of waves is associated with a field reversal during the expanding phase of the sheath. Trapping of electrons near to this field reversal region is observed. The amplitude of the wave increases with increasing RF current density amplitude J(tilde sign){sub 0} until some maximum is reached, beyond which the wave diminishes and a new regime appears. In this new regime, the density of the bulk plasma suddenly increases because of ion reflection, which occurs due to the presence of strong field reversal near sheath region. Our calculation shows that these waves are electron plasma waves. These phenomena occur under extreme conditions (i.e., higher J(tilde sign){sub 0} than in typical experiments) for sinusoidal current waveforms, but similar effects may occur with non-sinusoidal pulsed waveforms for conditions of experimental interest, because the rate of change of current is a relevant parameter. The effect of electron elastic collisions on plasma waves is also investigated.

  7. Study on Dissipation of Landslide Generated Waves in Different Shape of Reservoirs

    Science.gov (United States)

    An, Y.; Liu, Q.

    2017-12-01

    The landslide generated waves are major risks for many reservoirs located in mountainous areas. As the initial wave is often very huge (e.g. 30m of the height in Xiaowan event, 2009, China), the dissipation of the wave, which is closely connected with the shape of the reservoir (e.g. channel type vs. lake type), is a crucial factor in risk estimation and prevention. While even for channel type reservoir, the wave damping also varies a lot due to details of the shape such as branches and turnings. Focusing on the influence of this shape details on the wave damping in channel type reservoir, we numerically studied two landslide generated wave events with both a triangle shape of the cross section but different longitudinal shape configurations (Xiaowan event in 2009 and an assuming event in real topography). The two-dimensional Saint-Venant equation and dry-wet boundary treatment method are used to simulate the wave generation and propagation processes. The simulation is based on an open source code called `Basilisk' and the adaptive mesh refinement technique is used to achieve enough precision with affordable computational resources. The sensitivity of the parameters representing bed drag and the vortex viscosity is discussed. We found that the damping is relatively not sensitive to the bed drag coefficient, which is natural as the water depth is large compared with wave height. While the vortex viscosity needs to be chosen carefully as it is related to cross sectional velocity distribution. It is also found that the longitudinal shape, i.e. the number of turning points and branches, is the key factor influencing the wave damping. The wave height at the far field could be only one seventh comparing with the initial wave in the case with complex longitudinal shape, while the damping is much weaker in the straight channel case. We guess that this phenomenon is due to the increasing sloshing at these abruptly changed positions. This work could provide a deeper

  8. Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions

    Science.gov (United States)

    Mahéo, Laurent; Grolleau, Vincent; Rio, Gérard

    2009-11-01

    To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa-Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used. To cite this article: L. Mahéo et al., C. R. Mecanique 337 (2009).

  9. Calculated dependence of FePt damping on external field magnitude and direction

    Directory of Open Access Journals (Sweden)

    N. A. Natekar

    2017-05-01

    Full Text Available Near the Curie temperature (Tc, magnetic parameters including magnetization, anisotropy, and damping depend strongly on both temperature and length scale. This manifestation of renormalization theory is most readily seen in the case of magnetization where the magnitude of the atomic spin is largely unaffected by temperature, but the bulk magnetization vanishes at Tc. It has been previously argued that the Landau-Lifshitz-Gilbert damping parameter alpha exhibits a similar effect owing to its dependence on both atomic effects and magnon-magnon scattering, the latter having a strong length dependence. Here, we calculate, using an anisotropic exchange description of L10 FePt (Tc = 705 K, the damping (and other magnetic properties dependence on temperature for FePt at length scales around 1.0 nm as appropriate for high temperature micromagnetic simulation. While the damping reduces as the applied field along the easy direction increases, it tends to increase as the field direction is changed to in-plane. The renormalized parameters are also calculated for higher and lower Tc (770K and 630K by invoking the linear relationship between the exchange stiffness parameter and Curie temperature. This corresponds to doped and/or non-stoichiometric FePt and allows better understanding of the effects of varying anisotropy to exchange ratio.

  10. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  11. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  12. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  13. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  14. Performance of a Tethered Point Wave-Energy Absorber in Regular and Irregular Waves

    KAUST Repository

    Bachynski, Erin E.; Young, Yin Lu; Yeung, Ronald W.

    2010-01-01

    The importance of the mooring system on the dynamic response of a point-absorber type ocean-wave energy converter (WEC) is investigated using a frequency-domain approach. In order to ensure the safety of WECs, careful consideration of the response and resonance frequencies in all motions must be evaluated, including the effects of the mooring system. In this study, a WEC floater with a closed, flat bottom is modeled as a rigid vertical cylinder tethered by elastic mooring lines. The WEC hydrodynamic added mass and damping are obtained using established potential-flow methods, with additional damping provided by the energy-extraction system. The results show that the response of the WEC, and the corresponding power takeoff, varies with the diameter-to-draft (D=T) ratio, mooring system stiffness, and mass distribution. For a given wave climate in Northern California, near San Francisco, the heave energy extraction is found to be best for a shallow WEC with a soft mooring system, compared to other systems that were examined. This result assumes a physical limit (cap) on the motion which is related to the significant wave height to draft ratio. Shallow draft designs, however, may experience excessive pitch motions and relatively larger viscous damping. In order to mitigate the pitch response, the pitch radius of gyration should be small and the center of mass should be low. Copyright © 2010 by ASME.

  15. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    International Nuclear Information System (INIS)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel

    2013-01-01

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences

  16. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  17. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  18. Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals

    Science.gov (United States)

    Ducceschi, M.; Touzé, C.

    2015-05-01

    This paper presents a modal, time-domain scheme for the nonlinear vibrations of perfect and imperfect plates. The scheme can take into account a large number of degrees-of-freedom and is energy-conserving. The targeted application is the sound synthesis of cymbals and gong-like musical instruments, which are known for displaying a strongly nonlinear vibrating behaviour. This behaviour is typical of a wave turbulence regime, in which the wide-band spectrum of excited modes is observable in the form of an energy cascade. The modal method is selected for its versatility in handling complex damping laws that can be implemented easily by selecting appropriate damping values in each one of the modal equations. In the first part of the paper, the modal method is explained in its generality, and it will be seen that the method is valid for plates with arbitrary geometry and boundary conditions as long as the eigenmodes are known. Secondly, a time-integration, energy-conserving scheme for perfect and imperfect plates is presented, and implementation comments are given in order to treat efficiently the high-dimensionality of the resulting dynamical system. The scheme is run with appropriate parameters in order to produce sound samples. A simple impact law is considered for the excitation, whereas the flexibility of the method is highlighted by showing simulations for free-edge circular plates and simply-supported rectangular plates, together with various damping laws.

  19. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Porkolab, M.; Heidbrink, W.W.; Luo, Y.; Petty, C.C.; Prater, R.; Choi, M.; Schaffner, D.A.; Baity, F.W.; Fredd, E.; Hosea, J.C.; Harvey, R.W.; Smirnov, A.P.; Murakami, M.; Zeeland, M.A. Van

    2006-01-01

    The absorption of fast Alfven waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed

  20. Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.

    Science.gov (United States)

    Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia

    2017-05-13

    Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design

  1. On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer

    Directory of Open Access Journals (Sweden)

    W. B. Zimmermann

    1994-01-01

    Full Text Available Shear flow in a stable stratification provides a waveguide for internal gravity waves. In the inviscid approximation, internal gravity waves are known to be unstable below a threshold in Richardson number. However, in a viscous fluid, at low enough Reynolds number, this threshold recedes to Ri = 0. Nevertheless, even the slightest viscosity strongly damps internal gravity waves when the Richardson number is small (shear forces dominate buoyant forces. In this paper we address the dynamics that approximately govern wave propagation when the Richardson number is small and the fluid is viscous. When Ri ξ = λ1A + λ2Aξξ + λ3Aξξξ + λ4AAξ + b(ξ where ξ is the coordinate of the rest frame of the passing temperature wave whose horizontal profile is b(ξ. The parameters λi are constants that depend on the Reynolds number. The above dynamical system is know to have limit cycle and chaotic attrators when forcing is sinusoidal and wave attenuation negligible.

  2. Low temperature spin wave dynamics in classical Heisenberg chains

    International Nuclear Information System (INIS)

    Heller, P.; Blume, M.

    1977-11-01

    A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions

  3. Estimation of added-mass and damping coefficients of a tethered spherical float using potential flow theory

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Chandramohan, P.; Sastry, J.S.; Narasimhan, S.

    Added-mass (alpha) and damping coefficients (beta) of a tethered spherical float, undergoing oscillatory motion in sinusoidal waves, have been derived from the motion generated velocity potential for one degree-of-freedom (surge) using potential...

  4. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-06-03

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  5. Estimates of wave decay rates in the presence of turbulent currents

    Energy Technology Data Exchange (ETDEWEB)

    Thais, L. [Universite des Sciences et Technologies de Lille, URA-CNRS 1441, Villenauve d' Ascq (France). Lab. de Mecanique; Chapalain, G. [Universite des Sciences et Technologies de Lille, URA-CNRS 8577, Villenauve d' Ascq (France). Sedimentologie et Geodynamique; Klopman, G. [Albatros Flow Research, Vollenhove (Netherlands); Simons, R.R. [University College, London (United Kingdom). Civil and Environmental Engineering; Thomas, G.P. [University College, Cork (Ireland). Dept. of Mathematical Physics

    2001-06-01

    A full-depth numerical model solving the free surface flow induced by linear water waves propagating with collinear vertically sheared turbulent currents is presented. The model is used to estimate the wave amplitude decay rate in combined wave current flows. The decay rates are compared with data collected in wave flumes by Kemp and Simons [J Fluid Mech, 116 (1982) 227; 130 (1983) 73] and Mathisen and Madsen [J Geophys Res, 101 (C7) (1996) 16,533]. We confirm the main experimental finding of Kemp and Simons that waves propagating downstream are less damped, and waves propagating upstream significantly more damped than waves on fluid at rest. A satisfactory quantitative agreement is found for the decay rates of waves propagating upstream, whereas not more than a qualitative agreement has been observed for waves propagating downstream. Finally, some wave decay rates in the presence of favourable and adverse currents are provided in typical field conditions. (Author)

  6. Electron wind in strong wave guide fields

    Science.gov (United States)

    Krienen, F.

    1985-03-01

    The X-ray activity observed near highly powered waveguide structures is usually caused by local electric discharges originating from discontinuities such as couplers, tuners or bends. In traveling waves electrons move in the direction of the power flow. Seed electrons can multipactor in a traveling wave, the moving charge pattern is different from the multipactor in a resonant structure and is self-extinguishing. The charge density in the wave guide will modify impedance and propagation constant of the wave guide. The radiation level inside the output wave guide of the SLAC, 50 MW, S-band, klystron is estimated. Possible contributions of radiation to window failure are discussed.

  7. Full-wave calculation of fast-wave current drive in tokamaks including kparallel upshifts

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.

    1991-01-01

    Numerical calculations of fast-wave current drive (FWCD) efficiency have generally been of two types: ray tracing or global wave calculations. Ray tracing shows that the projection of the wave number (k parallel) along the magnetic field can vary greatly over a ray trajectory, particularly when the launch point is above or below the equatorial plane. As the wave penetrates toward the center of the plasma, k parallel increases, causing a decrease in the parallel phase speed and a corresponding decrease in the current drive efficiency, γ. But the assumptions of geometrical optics, namely short wavelength and strong single-pass absorption, are not greatly applicable in FWCD scenarios. Eigenmode structure, which is ignored in ray tracing, can play an important role in determining electric field strength and Landau damping rates. In such cases, a full-wave or global solution for the wave fields is desirable. In full-wave calculations such as ORION k parallel appear as a differential operator (rvec B·∇) in the argument of the plasma dispersion function. Since this leads to a differential system of infinite order, such codes of necessity assume k parallel ∼ k var-phi = const, where k var-phi is the toroidal wave number. Thus, it is not possible to correctly include effects of the poloidal magnetic field on k parallel. The problem can be alleviated by expressing the electric field as a superposition of poloidal modes, in which case k parallel is purely algebraic. This paper describes a new full-wave calculation, Poloidal Ion Cyclotron Expansion Solution, which uses poloidal and toroidal mode expansions to solve the wave equation in general flux coordinates. The calculation includes a full solution for E parallel and uses a reduced-order form of the plasma conductivity tensor to eliminate numerical problems associated with resolution of the very short wavelength ion Bernstein wave

  8. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Perimeter Institute of Theoretical Physics, 35 King Street North, Waterloo, Ontario, N2J 2G9 (Canada); Kelly, Bernard [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry and Department of Physics, 104 Davey Laboratory, University Park, PA 16802 (United States); Krishnan, Badri [Max Planck Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Finn, Lee Samuel [Center for Gravitational Wave Physics, Center for Gravitational Physics and Geometry, Department of Physics and Department of Astronomy and Astrophysics, 104 Davey Laboratory, University Park, PA 16802 (United States); Garrison, David [University of Houston, Clear Lake, 2700 Bay Area Bvd, Room 3531-2, Houston, TX 77058 (United States); Lopez-Aleman, Ramon [Physical Sciences Department, University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico 00931 (Puerto Rico)

    2004-02-21

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources.

  9. Black-hole spectroscopy: testing general relativity through gravitational-wave observations

    International Nuclear Information System (INIS)

    Dreyer, Olaf; Kelly, Bernard; Krishnan, Badri; Finn, Lee Samuel; Garrison, David; Lopez-Aleman, Ramon

    2004-01-01

    Assuming that general relativity is the correct theory of gravity in the strong-field limit, can gravitational-wave observations distinguish between black holes and other compact object sources? Alternatively, can gravitational-wave observations provide a test of one of the fundamental predictions of general relativity: the no-hair theorem? Here we describe a definitive test of the hypothesis that observations of damped, sinusoidal gravitational waves originate from a black hole or, alternatively, that nature respects the general relativistic no-hair theorem. For astrophysical black holes, which have a negligible charge-to-mass ratio, the black-hole quasi-normal mode spectrum is characterized entirely by the black-hole mass and angular momentum and is unique to black holes. In a different theory of gravity, or if the observed radiation arises from a different source (e.g., a neutron star, strange matter or boson star), the spectrum will be inconsistent with that predicted for general relativistic black holes. We give a statistical characterization of the consistency between the noisy observation and the theoretical predictions of general relativity and a demonstration, through simulation, of the effectiveness of the test for strong sources

  10. Experimental study of the fast wave propagation in TFR

    International Nuclear Information System (INIS)

    1981-02-01

    Several experiments (PLT, DIVA, ERASMUS, TFR) have shown that the heating mechanism of ICRF is dominated in Tokamaks by the presence of the ion-ion hybrid layer. The first experimental evidence of this effect came from propagation studies: a very strong damping was observed on magnetic probes since the hybrid layer was inside the plasma. Comparison with simple models which do not take into account boundary conditions have been undertaken. Recently a new theoretical model has been developped. Based on a plane, inhomogeneous, bounded plasma, it shows that the radial structure of the fast wave and hence the loading impedance of the launching coil depends on the position of the hybrid layer with respect to the plasma boundaries. This result is obtained by solving the wave equation, in the cold plasma approximation. We present here, a serie of experiments, performed in TFR. It confirms the validity of that model underlining thus the importance of radial eigenmodes, when the wave conversion layer is inside the plasma

  11. The dust acoustic wave in a bounded dusty plasma with strong electrostatic interactions between dust grains

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2011-01-01

    The dispersion relation for the dust acoustic wave (DAW) in an unmagnetized dusty plasma cylindrical waveguide is derived, accounting for strong electrostatic interactions between charged dust grains. It is found that the boundary effect limits the radial extent of the DAW. The present result should be helpful for understanding the frequency spectrum of the DAW in a dusty plasma waveguide with strongly coupled charged dust grains. - Highlights: → We study the dust acoustic wave (DAW) in a bounded plasma. → We account for interactions between dust grains. → The boundary effect limits the radial extent of the DAW.

  12. Waves and instabilities in plasmas

    International Nuclear Information System (INIS)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  13. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  14. Emergent large mechanical damping in ferroelastic-martensitic systems driven by disorder

    Science.gov (United States)

    Ni, Yan; Zhang, Zhen; Fang, Minxia; Hao, Yanshuang; Ding, Xiangdong; Otsuka, Kazuhiro; Ren, Xiaobing

    2018-05-01

    Disorders and point defects strongly interplay with the phase transition and alter the properties of ferroelastic-martensitic systems. Unusual static and quasistatic behaviors, such as time-dependent phase transitions, are discovered when disorders are introduced. However, the role of disorders on the ferroelastic system in vibrational environments at moderate frequency is rarely known, investigation of which could further shed light on their application as mechanical damping materials. Here we present the emergence of large damping capacity in ferroelastic-martensitic systems [including both the T i50 -xN i50 +x alloy and (C a1 -xS rx) Ti O3 ceramics] by introducing disorder (i.e., substitutional Ni and Sr, respectively). As the level disorder increases, the damping capacity of both systems raises and eventually reaches a maximum when long-range-ordered martensite tends to vanish. Moreover, near the disorder-induced phase boundary, we observe a large mechanical damping in ferroelastic ceramics (C a1 -xS rx) Ti O3 with a figure of merit ˜2 GP a1 /2 . Microscopic and dynamic investigations indicate that such damping plateau could result from the competing evolution of density and mobility of domain boundaries when disorder is introduced. Our work provides a degree of freedom to develop ferroelastic damping materials and a potential way to tune domain-boundary-mediated functionalities for other ferroic materials.

  15. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    Science.gov (United States)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  16. Solitary drift waves in the presence of magnetic shear

    International Nuclear Information System (INIS)

    Meiss, J.D.; Horton, W.

    1982-07-01

    The two-component fluid equations describing electron drift and ion acoustic waves in a nonuniform magnetized plasma are shown to possess nonlinear two-dimensional solitary wave solutions. In the presence of magnetic shear, radiative shear damping is exponentially small in L/sub s//L/sub n/ for solitary drift waves, in contrast to linear waves

  17. Elastic-wave generation in the evolution of displacement peaks

    International Nuclear Information System (INIS)

    Zhukov, V.P.; Boldin, A.A.

    1988-01-01

    This paper investigated the character of elastic shock wave generation and damping in irradiated materials along with the possibility of their long-range influence on the structure of the irradiated materials. Dispersion at the elastoplastic stage of atomic displacement peak development was taken into account. The three-dimensional nonlinear wave was described by an equation in the approximation of weak nonlinearity and weak spatial dispersion. Numerical modeling of the propagation of a plane shock wave in a crystal lattice was conducted. The distribution of the density and mass velocity of the material at the instant of complete damping of the plastic shock-wave component was determined. The appearance of solitary waves (solitons) at large amplitudes, localized in space, which propagate without distortion to arbitrary distances and retain their amplitude and form in interacting with one another, was investigated. Some physical consequences of the influence of solitary waves on the irradiated materials were considered

  18. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    Science.gov (United States)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  19. Landau Damping Revisited

    International Nuclear Information System (INIS)

    Rees, John; Chao, Alexander

    2008-01-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread

  20. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Directory of Open Access Journals (Sweden)

    H. K. Lee

    2016-05-01

    Full Text Available We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La0.7Sr0.3MnO3 (LSMO and Pt capped LSMO thin films on SrTiO3 (001 substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1 × 10−3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  1. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. K., E-mail: hankl@uci.edu; Barsukov, I.; Yang, L.; Krivorotov, I. N. [Physics and Astronomy, University of California, Irvine, California 92697 (United States); Swartz, A. G.; Kim, B. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hwang, H. Y. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and Pt capped LSMO thin films on SrTiO{sub 3} (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10{sup −3}, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  2. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  3. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  4. Nonlinear wave propagation through a ferromagnet with damping in ...

    Indian Academy of Sciences (India)

    magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.

  5. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    Science.gov (United States)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  6. Modelling alongshore flow in a semi-enclosed lagoon strongly forced by tides and waves

    Science.gov (United States)

    Taskjelle, Torbjørn; Barthel, Knut; Christensen, Kai H.; Furaca, Noca; Gammelsrød, Tor; Hoguane, António M.; Nharreluga, Bilardo

    2014-08-01

    Alongshore flows strongly driven by tides and waves is studied in the context of a one-dimensional numerical model. Observations from field surveys performed in a semi-enclosed lagoon (1.7 km×0.2 km) outside Xai-Xai, Mozambique, are used to validate the model results. The model is able to capture most of the observed temporal variability of the current, but sea surface height tends to be overestimated at high tide, especially during high wave events. Inside the lagoon we observed a mainly uni-directional alongshore current, with speeds up to 1 ms-1. The current varies primarily with the tide, being close to zero near low tide, generally increasing during flood and decreasing during ebb. The observations revealed a local minimum in the alongshore flow at high tide, which the model was successful in reproducing. Residence times in the lagoon were calculated to be less than one hour with wave forcing dominating the flushing. At this beach a high number of drowning casualties have occurred, but no connection was found between them and strong current events in a simulation covering the period 2011-2012.

  7. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  8. s- and p-wave neutron spectroscopy. Xc. Intermediate structure: 88Sr

    International Nuclear Information System (INIS)

    Malan, J.G.; Pineo, W.F.E.; Divadeenam, M.; Choi, B.H.; Bilpuch, E.G.; Newson, H.W.

    1975-01-01

    Neutron total cross section measurements of natural Sr were made from 50-875 keV using a high resolution proton beam and the 7 Li(p,n) reaction as a neutron source. These data were analyzed with the help of an R-Matrix code to extract resonance (energies and other) parameters up to about 850 keV. 2p-1h and particle-vibration doorway interpretation of the s-,p- and d-wave resonances is attempted in terms of the sum rule Σγ/subn/ 2 =γ/subd/ 2 . Predictions based on both of these models agree with the experimental results. As expected the p-wave resonances are stronger than either s- and d-wave structure. Theory accounts for the p-wave strength remarkably well. Possible location of the p-wave s.p. resonance is reproduced with a real potential and its damping due to the imaginary potential is calculated. More fragmentation of the strong p-wave doorways is observed than was expected for a compound nucleus so near 90 Zr, but a larger strength function is observed, apparently due to the p-wave giant resonance. (U.S.)

  9. The study of waves, instabilities, and turbulence using Thomson scattering in laser plasmas

    International Nuclear Information System (INIS)

    Drake, R.P.

    1995-01-01

    Much basic work in plasma physics has been devoted to the study of wave properties in plasmas, one of the nonlinear development of driven waves, and of the instabilities in which such waves may participate. The use of laser-plasma techniques has allowed one to extend such studies into new regimes. Such techniques and their results are the subject here. Once one chooses a physical problem within this subject area, it is now possible to design a laser-plasma experiment that is optimized for the study of that problem. The plasma can be designed to have a variety of density and flow-velocity profiles, the damping of ion acoustic waves and of electron plasma waves can be independently controlled, and the waves can be driven weakly or strongly. By using Nd-glass lasers and their harmonics one can non-invasively drive and diagnose the waves, using separate laser beams to produce the plasma, drive the waves, and diagnose their properties. The author uses as examples some recent work with his collaborators, including the first experimental detection of ion plasma waves and the first direct observation of the plasma wave driven by the acoustic decay of laser light

  10. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  11. Nonlinear generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-04-20

    We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.

  12. Two-dimensional flow characteristics of wave interactions with a free-rolling rectangular structure

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Hyo Jung; Kuang-An Chang [Texas A and M University, College Station, TX (United States). Dept. of Civil Engineering; Huang, E.T. [Naval Facilities Engineering Service Center, Port Hueneme, CA (United States). Amphibious System Div.

    2005-01-01

    This paper presents laboratory observations of flow characteristics for regular waves passing a rectangular structure in a two-dimensional wave tank. The structure with a draft one-half of its height was hinged at the center of gravity and free to roll (one degree of freedom) by waves. Particle image velocimetry (PIV) was used to measure the velocity field in the vicinity of the structure. The mean velocity and turbulence properties were obtained by phase-averaging the PIV velocity maps from repeated test runs. Since the viscous damping (also called the eddy making damping) in a vortical flow affects the roll motion of a blunt body, the quantitative flow pattern was represented to elucidate the coupled interactions between the body motion and the waves. Additionally, the turbulence properties including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the interactions. The results show that vortices were generated near the structure corners at locations opposing to that of the roll damping effect for waves with a period longer than the roll natural period of the structure. (Author)

  13. Effect of a relative phase of waves constituting the initial perturbation and the wave interference on the dynamics of strong-shock-driven Richtmyer-Meshkov flows

    Science.gov (United States)

    Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.

    2017-07-01

    While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.

  14. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...

  15. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  16. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2007-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  17. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Science.gov (United States)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  18. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    Science.gov (United States)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  19. The acceleration of energetic particles in the interplanetary medium by transit time damping

    International Nuclear Information System (INIS)

    Fisk, L.A.

    1976-01-01

    It has been reported recently by McDonald et al. (1976) that 1-MeV protons may undergo considerable acceleration in corotating streams. It has been suggested recently by Fisk et al. (1974b) that interstellar neutral particles which are ionized in the solar cavity may be accelerated in the solar wind and may account for the anomalous component that is observed in low-energy cosmic rays (at approx.10 MeV/nucleon). It is shown here that the particles in both of these cases could be accelerated by transit time damping propagating fluctuations in the magnitude of the interplanetary magnetic field (e.g., magnetosonic waves). The protons in corotating streams may be accelerated by transit time damping the small-scale variations in the field magnitude that are observed at a low level in the inner solar system. The interstellar ions may be accelerated by transit time damping large-scale field variations in the outer solar system

  20. CARS Measurement of Vibrational/Rotational Temperatures with Total Radiation Visualization behind Strong Shock Waves of 5-7 km/s

    Science.gov (United States)

    Sakurai, K.; Bindu, V. Hima; Niinomi, S.; Ota, M.; Maeno, K.

    2011-05-01

    In the development of aerospace technology the design of space vehicles is important in phase of reentry flight. The space vehicles reenter into the atmosphere with range of 6-8 km/s. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. The experimental data for re-entry analyses, however, have remained in classical level. Recent development of optical instruments enables us to have novel approach of diagnostics to the re-entry problems. We employ the CARS (Coherent Anti-Stokes Raman Spectroscopy) method for measurement of real gas temperatures of N2 with radiation of the strong shock wave. The CARS signal can be acquired even in the strong radiation area behind the strong shock waves. In addition, we try to use the CCD camera to obtain 2D images of total radiation simultaneously. The strong shock wave in front of the reentering space vehicles is experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas.

  1. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    International Nuclear Information System (INIS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-01-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency

  2. Full-wave and Fokker Planck analysis of ICRF heating experiments in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Golovato, S.; Porkolab, M.; Takase, Y.

    1996-01-01

    The Alcator C-Mod device is a high field, high density, shaped tokamak with parameters a = 0.22 m, R 0 = 0.67 m, B 0 ≤ 9.0 T, κ ≤ 1.8, δ ≤ 0.8, and 1.0 x 10 20 m -3 n e (0) ≤ 1.0 x 10 21 m -3 . Four megawatt of ICRF power is available at 80 MHz. The wide operating range in magnetic field makes several heating schemes possible: (i) Second harmonic heating of hydrogen (f 0 = 2f CH ) at 2.6 T in (D-H); (ii) Fundamental heating of (H) (f 0 = f CH ) at 5.3T in a D-(H) plasma; and (iii) Fundamental heating of ( 3 He) (f 0 = f C 3 He ) at 7.9 T in a D-( 3 He) plasma. The most successful heating regime to date has been (H)-minority heating at 5.3 T. Pellet enhanced performance (PEP) modes have also been achieved in C-Mod in D-(H) at 5.3 T and in D-( 3 He) at 7.9 T, with a combination of intense ICRF heating and Li-pellet injection. A variety of numerical models are used to analyze these heating schemes. A 1-D full-wave code (FELICE) is used to study open-quotes single passclose quotes damping of the ICRF wavefront and damping of mode-converted ion Bernstein waves. A toroidal full-wave code (FISIC) is used to study interference and focussing effects of the ICRF waves as well as damping of the ICRF power upon multiple passes of the ICRF wavefront. A combined bounce averaged Fokker Planck and toroidal full-wave code (FPPRF) is used to study the ion tail formation, orbit losses, and the power partition of the ICRF tail to the background electrons and ions. Full-wave and Fokker Planck analyses confirm the strong single pass absorption of the ICRF power in D-(H) at 5.3 T. Analysis of PEP-mode plasmas in D-( 3 He) indicates improved wave focussing and 3 He-cyclotron absorption of the ICRF waves relative to L-mode. A dramatic increase in the transfer of 3 He tail power to the background deuterium is also found for PEP-mode plasmas

  3. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  4. Alfven wave studies on a tokamak

    International Nuclear Information System (INIS)

    Kortbawi, D.

    1987-10-01

    The continuum modes of the shear Alfven resonance are studied on the Tokapole II device, a small tokamak operated in a four node poloidal divertor configuration. A variety of antenna designs and the efficiency with which they deliver energy to the resonant layer are discussed. The spatial structure of the driven waves is studied by means of magnetic probes inserted into the current channel. In an attempt to optimize the coupling of energy in to the resonant layer, the angle of antenna currents with respect to the equilibrium field, antenna size, and plasma-to-antenna distance are varied. The usefulness of Faraday shields, particle shields, and local limiters are investigated. Antennas should be well shielded, either a dense Faraday shield or particle shield being satisfactory. The antenna should be large and very near to the plasma. The wave magnetic fields measured show a spatial resonance, the position of which varies with the value of the equilibrium field and mass density. They are polarized perpendicular to the equilibrium field. A wave propagates radially in to the resonant surface where it is converted to the shear Alfven wave. The signal has a short risetime and does not propagate far toroidally. These points are all consistent with a strongly damped shear Alfven wave. Comparisons of this work to theoretical predictions and results from other tokamaks are made

  5. The prospects for electron Bernstein wave heating of spherical tokamaks

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.

    2000-02-01

    Electron Bernstein waves are analysed as possible candidates for heating spherical tokamaks. An inhomogeneous plane slab model of the plasma with a sheared magnetic field is used to calculate the linear conversion of the ordinary mode (O-mode) to the extraordinary mode (X-mode). A formula for the fraction of the incident O-mode energy which is converted to the X-mode at the O-mode cut-off is derived. This fraction is then able to propagate to the upper hybrid resonance where it is converted to the electron Bernstein mode. The damping of electron Bernstein waves at the fourth harmonic resonance, corresponding to a 60GHz source on the Mega Amp Spherical Tokamak MAST [A C Darke et al Proc 16th Symposium on Fusion Energy, Champaign- Urbana, Illinois USA IEEE, 2 p1456 (1995)], is computed. This is shown to be so strongly absorbing that the electron Bernstein wave would be totally absorbed in the outer regions of the resonance. This feature implies that electron Bernstein wave current drive (on- or off-axis) could be very efficient. (author)

  6. Effects of counterion valency on the damping of phonons propagating along the axial direction of liquid-crystalline DNA

    Science.gov (United States)

    Liu, Yun; Chen, Sow-Hsin; Berti, Debora; Baglioni, Piero; Alatas, Ahmet; Sinn, Harald; Alp, Ercan; Said, Ayman

    2005-12-01

    The phonon propagation and damping along the axial direction of films of aligned 40wt% calf-thymus DNA rods are studied by inelastic x-ray scattering (IXS). The IXS spectra are analyzed with the generalized three effective eigenmode theory, from which we extract the dynamic structure factor S (Q,E) as a function of transferred energy E =ℏω, and the magnitude of the transferred wave vector Q. S (Q,E) of a DNA sample typically consists of three peaks, one central Rayleigh scattering peak, and two symmetric Stokes and anti-Stokes Brillouin side peaks. By analyzing the Brillouin peaks, the phonon excitation energy and damping can be extracted at different Q values from about 4 to 30nm-1. A high-frequency sound speed is obtained from the initial slope of the linear portion of the dispersion relation below Q =4nm-1. The high-frequency sound speed obtained in this Q range is 3100m /s, which is about twice faster than the ultrasound speed of 1800m/s, measured by Brillouin light scattering at Q ˜0.01nm-1 at the similar hydration level. Our observations provide further evidence of the strong coupling between the internal dynamics of a DNA molecule and the dynamics of the solvent. The effect on damping and propagation of phonons along the axial direction of DNA rods due to divalent and trivalent counterions has been studied. It is found that the added multivalent counterions introduce stronger phonon damping. The phonons at the range between ˜12.5 and ˜22.5nm-1 are overdamped by the added counterions according to our model analyses. The intermediate scattering function is extracted and it shows a clear two-step relaxation with the fast relaxation time ranging from 0.1 to 4ps.

  7. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...... acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions...... of all velocities exchange energy with the wave....

  8. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  9. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  10. Radiation stress and mean drift in continental shelf waves

    Science.gov (United States)

    Weber, Jan Erik H.; Drivdal, Magnus

    2012-03-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E̅̅ over the shelf region, the radiation stress tensor component S̅11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio S̅11/E̅ depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of latter depends on ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deepwater drilling accidents.

  11. Linear interaction of gravitational waves

    International Nuclear Information System (INIS)

    Ciubotariu, C.D.

    1992-01-01

    Starting with the linearized Einstein equations written in the same form as Maxwell equations, a damping term is found in the wave equation. The analogy with the propagation of the electromagnetic wave in ohmic media is obvious if we introduce an 'ohmic relation' for gravitational interaction. The possibility of the amplification of gravitational waves by a suitable choice of the velocity field of a dust ('dust with negative viscosity'), for example by the use of the free-electron laser principle, is indicated. (Author)

  12. Effect of second-order and fully nonlinear wave kinematics on a tension-leg-platform wind turbine in extreme wave conditions

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Borg, Michael; Robertson, Amy

    2017-01-01

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equa...... damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping....

  13. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    Science.gov (United States)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  14. Damping in Timber Structures

    OpenAIRE

    Labonnote, Nathalie

    2012-01-01

    Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models h...

  15. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  16. Multi-fluid Approach to High-frequency Waves in Plasmas. II. Small-amplitude Regime in Partially Ionized Media

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume, E-mail: david.martinez@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2017-03-01

    The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.

  17. Propagation of a surface electromagnetic wave in a plasma with allowance for electron heating

    International Nuclear Information System (INIS)

    Boev, A.G.; Prokopov, A.V.

    1978-01-01

    Considered is propagation of a surface high-frequency wave in a semibounded plasma, which electron component is heated within the wave field. Dissipative effects are considered small, that is possible if wave frequency is much higher than the collision frequency and phase velocity of wave considerably exceeds electron heat velocity. Under conditions of anomalous skin-effect the distributions of electron temperature and wave damping have been found. It is established, that higher electron temperature on the boundary results in a higher decrease of temperature inside a plasma, far from the boundary temperature decreases exponentially; damping coefficient under anomalous skin-effect conditions is characterized by a stronger dependence not only on the wave amplitude, but as well as on gas pressure and wave frequency in comparison with normal conditions

  18. Study of hydrodynamic characteristics of a Sharp Eagle wave energy converter

    Science.gov (United States)

    Zhang, Ya-qun; Sheng, Song-wei; You, Ya-ge; Huang, Zhen-xin; Wang, Wen-sheng

    2017-06-01

    According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture.

  19. Statistical theory of wave propagation and multipass absorption for current drive in Tokamaks

    International Nuclear Information System (INIS)

    Moreau, D.; Litaudon, X.

    1993-07-01

    The effect of ray stochasticity on the multipass absorption of lower-hybrid waves, used to drive current in tokamaks, is considered. In toroidal geometry, stochasticity arises as an intrinsic property of the Hamiltonian ray trajectories for lower-hybrid waves. Based on the wave kinetic equation, a diffusion equation is derived, with damping and sources, for the wave energy density in the stochastic layer. This equation is solved simultaneously with the electron Fokker-Planck equation to describe the quasilinear flattening of the electron distribution function and the subsequent modification of the wave damping. It is shown that the spectral gap is filled in a self-regulating manner, so that the boundaries of the diffused wave spectrum are independent of the level of ray stochastic diffusion. A simple model for the self-consistent wave spectrum and the radial profile of absorbed power is proposed

  20. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-11-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.

  1. MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2013-01-01

    Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given

  2. Mean Lagrangian drift in continental shelf waves

    Science.gov (United States)

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  3. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  4. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  5. Seismic damage diagnosis of a masonry building using short-term damping measurements

    Science.gov (United States)

    Kouris, Leonidas Alexandros S.; Penna, Andrea; Magenes, Guido

    2017-04-01

    It is of considerable importance to perform dynamic identification and detect damage in existing structures. This paper describes a new and practical method for damage diagnosis of masonry buildings requiring minimum computational effort. The method is based on the relative variation of modal damping and validated against experimental data from a full scale two storey shake table test. The experiment involves a building subjected to uniaxial vibrations of progressively increasing intensity at the facilities of EUCENTRE laboratory (Pavia, Italy) up to a near collapse damage state. Five time-histories are applied scaling the Montenegro (1979) accelerogram. These strong motion tests are preceded by random vibration tests (RVT's) which are used to perform modal analysis. Two deterministic methods are applied: the single degree of freedom (SDOF) assumption together with the peak-picking method in the discrete frequency domain and the Eigen realisation algorithm with data correlations (ERA-DC) in the discrete time domain. Regarding the former procedure, some improvements are incorporated to locate rigorously the natural frequencies and estimate the modal damping. The progressive evolution of the modal damping is used as a key indicator to characterise damage on the building. Modal damping is connected to the structural mass and stiffness. A square integrated but only with two components expression for proportional (classical) damping is proposed to fit better with the experimental measurements of modal damping ratios. Using this Rayleigh order formulation the contribution of each of the damping components is evaluated. The stiffness component coefficient is proposed as an effective index to detect damage and quantify its intensity.

  6. Drift wave stabilized by an additional streaming ion or plasma population

    Science.gov (United States)

    Bashir, M. F.; Vranjes, J.

    2015-03-01

    It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vp h-vf 0) exp[-(vph-vf 0) 2] , where vf 0 is the flow speed and vp h is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf 0

  7. Anisotropic damping of Timoshenko beam elements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.

    2001-05-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)

  8. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  9. Evaluation of Resonant Damping Techniques for Z-Source Current-Type Inverter

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, Poh Chiang; Gajanayake, C.J.

    2008-01-01

    For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current......-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator...... for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control...

  10. Full wave simulations of lower hybrid wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.

    2009-01-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.

  11. Dampness in buildings and health. Building characteristics as predictors for dampness in 8681 Swedish dwellings

    DEFF Research Database (Denmark)

    Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan

    2002-01-01

    Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality....

  12. Regulation of ion drifts and anisotropies by parametrically unstable finite-amplitude Alfvén-cyclotron waves in the fast solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Araneda, J. A. [Departamento de Física, Universidad de Concepción, 4070386 (Chile); Marsch, E., E-mail: yana.g.maneva@nasa.gov [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany)

    2014-03-10

    We study the preferential heating and differential acceleration of minor ions by dissipation of ion-acoustic waves (IAWs) generated by parametric instabilities of a finite-amplitude monochromatic Alfvén-cyclotron pump wave. We consider the associated kinetic effects of Landau damping and nonlinear pitch-angle scattering of protons and α particles in the tenuous plasma of coronal holes and the fast solar wind. Various data collected by Wind spacecraft show signatures for a local transverse heating of the minor ions, presumably by Alfvén-cyclotron wave dissipation, and an unexpected parallel heating by a so far unknown mechanism. Here, we present the results from a set of 1.5 dimensional hybrid simulations in search for a plausible explanation for the observed field-aligned kinetic features in the fast solar wind minor ions. We investigate the origin and regulation of ion relative drifts and temperature anisotropies in low plasma β, fast solar wind conditions. Depending on their initial drifts, both ion species can heat up not only transversely through cyclotron resonance and non-resonant wave-particle interactions, but also strongly in the parallel direction by Landau damping of the daughter IAWs. We discuss the dependence of the relative ion drifts and temperature anisotropies on the plasma β of the individual species and we describe the effect of the pump wave amplitude on the ion heating and acceleration.

  13. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    Science.gov (United States)

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  14. Resonance localization in tokamaks excited with ICRF waves

    International Nuclear Information System (INIS)

    Kerbel, G.D.; McCoy, M.G.

    1985-01-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. The non-local effects of rotational transform and toroidicity can play a significant role in both the propagation and the absorption physics. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. The most common approach is to use Maxwellian absorption rates. We have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field

  15. On The Dynamics and Design of a Two-body Wave Energy Converter

    Science.gov (United States)

    Liang, Changwei; Zuo, Lei

    2016-09-01

    A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.

  16. Evolution Of Nonlinear Waves in Compressing Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.

    2011-01-01

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  17. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  18. Approximation of the modal damping coefficients equivalent to material damping by harmonic excitation with ASKA

    International Nuclear Information System (INIS)

    Edme, R.

    1983-01-01

    If a dynamic response analysis (harmonic excitation) is carried out with the modal method, the modal damping coefficients must be approximated to match the structural damping. The program ASKA-Damping, which also supplies an error assessment of the approximation, was developed for this purpose. The modal method and the direct method are applied to a test example and their results compared. It is suggested that the ASKA manufacturers extend the spectral earthquake response analysis to take these modal damping coefficients into account so that the results become less conservative. (orig.) [de

  19. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    International Nuclear Information System (INIS)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo; Martinet, Philippe

    2008-01-01

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  20. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo [Sungkyunkwan University, Suwon (Korea, Republic of); Martinet, Philippe [Blaise Pascal University, Clermont-Ferrand Cedex (France)

    2008-07-15

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  1. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique

    Science.gov (United States)

    Ji, Hongli; Luo, Jing; Qiu, Jinhao; Cheng, Li

    2018-05-01

    Acoustic Black Holes (ABHs), as a new type of passive structure for vibration damping enhancement and noise attenuation, have been drawing increasing attentions of many researchers. Due to the difficulty in manufacturing the sharp edges required by the ABH structures, it is important to understand the wave propagation and attenuation process in the presence of damping layers in non-ideal ABHs with a truncated edge. In this paper, an analytical expression of the wave reflection coefficient in a modified one-dimensional ABH is derived and a time-domain experimental method based on a laser excitation technique is used to visualize the wave propagation. In the experimental studies, the flexural waves in the ABH were excited by a scanning pulse laser and measured by a Laser Doppler Vibrometer (LDV). The incident wave and reflected wave were separated from the measured original wave field and the decrease of the wave velocity in the ABH was exhibited. The reflection coefficient was calculated from the ratio of the amplitude of the reflected wave to that of the incident wave for different ABH parameters and different thicknesses of the damping layer. The measured reflection coefficients were used to identify the unknown coefficients in the theoretical formula. The results confirm that there exists an optimal thickness for the damping layer, which leads to the minimum wave reflection. Based on the laser-induced visualization technique and various signal processing and feature extraction methods, the entire process of the wave propagation in a non-ideal one-dimensional ABH structure can be visualized and scrutinized.

  2. Clustering of galaxies near damped Lyman-alpha systems with (z) = 2.6

    Science.gov (United States)

    Wolfe, A. M

    1993-01-01

    The galaxy two-point correlation function, xi, at (z) = 2.6 is determined by comparing the number of Ly-alpha-emitting galaxies in narrowband CCD fields selected for the presence of damped L-alpha absorption to their number in randomly selected control fields. Comparisons between the presented determination of (xi), a density-weighted volume average of xi, and model predictions for (xi) at large redshifts show that models in which the clustering pattern is fixed in proper coordinates are highly unlikely, while better agreement is obtained if the clustering pattern is fixed in comoving coordinates. Therefore, clustering of Ly-alpha-emitting galaxies around damped Ly-alpha systems at large redshifts is strong. It is concluded that the faint blue galaxies are drawn from a parent population different from normal galaxies, the presumed offspring of damped Ly-alpha systems.

  3. Dynamics of beam-driven Langmuir and ion-acoustic waves including electrostatic decay

    International Nuclear Information System (INIS)

    Li, B.; Willes, A.J.; Robinson, P.A.; Cairns, I.H.

    2003-01-01

    The evolution of Langmuir waves and ion-acoustic waves stimulated by a hot electron beam in an initially homogeneous plasma is investigated numerically in time, position, and wave number space. Quasilinear interactions between the beam particles and Langmuir waves, nonlinear interactions between the Langmuir and ion-acoustic waves through Langmuir decay processes, and spontaneous emission are taken into account in the kinetic theory employed. For illustrative parameters of those in the solar wind near 1 a.u., nonlinear Langmuir decays are observed to transfer the beam-driven Langmuir waves rapidly out of resonance. The scattered Langmuir waves then undergo further decays, moving sequentially toward small wave numbers, until decay is kinematically prohibited. The main features of the evolution of Langmuir and ion-acoustic waves are spatially inhomogeneous. The scattered Langmuir spectra increase and eventually reach or exceed the beam-driven Langmuir spectra at a given spatial location (except in regions where further decays proceed). The ion-acoustic waves are relatively weak and subject to damping at the later stages of their evolution. The development of fine structures in the product Langmuir and ion-acoustic waves are observed, due to depletion of their energy by decay and dominant damping effects, respectively. The propagation of the beam is essentially unaffected by the operation of the decay process. The decay process is thus slaved to the primary beam-plasma evolution, as assumed in previous studies. A variation of the ratio of electron temperature to ion temperature is found to affect not only the ion-acoustic wave levels through effects on the damping rate, but also the dynamics of decay via effects on the decay rate. The latter was not addressed in previous studies. Furthermore, spontaneous emission of ion-acoustic waves is found to affect the dynamics of decay, thus its inclusion is necessary to correctly model the Langmuir and ion-acoustic spectra

  4. Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification

    Science.gov (United States)

    Yigit, Ufuk; Cigeroglu, Ender; Budak, Erhan

    2017-09-01

    Chatter is a self-excited type of vibration that develops during machining due to process-structure dynamic interactions resulting in modulated chip thickness. Chatter is an important problem as it results in poor surface quality, reduced productivity and tool life. The stability of a cutting process is strongly influenced by the frequency response function (FRF) at the cutting point. In this study, the effect of piezoelectric shunt damping on chatter vibrations in a boring process is studied. In piezoelectric shunt damping method, an electrical impedance is connected to a piezoelectric transducer which is bonded on cutting tool. Electrical impedance of the circuit consisting of piezoceramic transducer and passive shunt is tuned to the desired natural frequency of the cutting tool in order to maximize damping. The optimum damping is achieved in analytical and finite element models (FEM) by using a genetic algorithm focusing on the real part of the tool point FRF rather than the amplitude. Later, a practical boring bar is considered where the optimum circuit parameters are obtained by the FEM. Afterwards, the effect of the optimized piezoelectric shunt damping on the dynamic rigidity and absolute stability limit of the cutting process are investigated experimentally by modal analysis and cutting tests. It is both theoretically and experimentally shown that application of piezoelectric shunt damping results in a significant increase in the absolute stability limit in boring operations.

  5. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  6. The Universal Role of Tubulence in the Propagation of Strong Shocks and Detonation Waves

    Science.gov (United States)

    Lee, John H.

    2001-06-01

    The passage of a strong shock wave usually results in irreversible physical and chemical changes in the medium. If the chemical reactions are sufficiently exothermic, the shock wave can be self-propagating, i.e., sustained by the chemical energy release via the expansion work of the reaction products. Although shocks and detonations can be globally stable and propagate at constant velocities (in the direction of motion), their structure may be highly unstable and exhibit large hydrodynamic fluctuations, i.e., turbulence. Recent investigations on plastic deformation of polycrystalline material behind shock waves have revealed particle velocity dispersion at the mesoscopic level, a result of vortical rotational motion similar to that of turbulent fluid flows at high Reynolds number.1 Strong ionizing shocks in noble gases2, as well as dissociating shock waves in carbon dioxide,3 also demonstrate a turbulent density fluctuation in the non-equilibrium shock transition zone. Perhaps the most thoroughly investigated unstable structure is that of detonation waves in gaseous explosives.4 Detonation waves in liquid explosives such as nitromethane also take on similar unstable structure as gaseous detonations.5 There are also indications that detonations in solid explosives have a similar unsteady structure under certain conditions. Thus, it appears that it is more of a rule than an exception that the structure of strong shocks and detonations are unstable and exhibit turbulent-like fluctuations as improved diagnostics now permit us to look more closely at the meso- and micro-levels. Increasing attention is now devoted to the understanding of the shock waves at the micro-scale level in recent years. This is motivated by the need to formulate physical and chemical models that contain the correct physics capable of describing quantitatively the shock transition process. It should be noted that, in spite of its unstable 3-D structure, the steady 1-D conservation laws (in the

  7. Deep subsurface structure modeling and site amplification factor estimation in Niigata plain for broadband strong motion prediction

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    2009-01-01

    This report addresses a methodology of deep subsurface structure modeling in Niigata plain, Japan to estimate site amplification factor in the broadband frequency range for broadband strong motion prediction. In order to investigate deep S-wave velocity structures, we conduct microtremor array measurements at nine sites in Niigata plain, which are important to estimate both long- and short-period ground motion. The estimated depths of the top of the basement layer agree well with those of the Green tuff formation as well as the Bouguer anomaly distribution. Dispersion characteristics derived from the observed long-period ground motion records are well explained by the theoretical dispersion curves of Love wave group velocities calculated from the estimated subsurface structures. These results demonstrate the deep subsurface structures from microtremor array measurements make it possible to estimate long-period ground motions in Niigata plain. Moreover an applicability of microtremor array exploration for inclined basement structure like a folding structure is shown from the two dimensional finite difference numerical simulations. The short-period site amplification factors in Niigata plain are empirically estimated by the spectral inversion analysis from S-wave parts of strong motion data. The resultant characteristics of site amplification are relative large in the frequency range of about 1.5-5 Hz, and decay significantly with the frequency increasing over about 5 Hz. However, these features can't be explained by the calculations from the deep subsurface structures. The estimation of site amplification factors in the frequency range of about 1.5-5 Hz are improved by introducing a shallow detailed structure down to GL-20m depth at a site. We also propose to consider random fluctuation in a modeling of deep S-wave velocity structure for broadband site amplification factor estimation. The Site amplification in the frequency range higher than about 5 Hz are filtered

  8. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    Science.gov (United States)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  9. Strong ground motion spectra for layered media

    International Nuclear Information System (INIS)

    Askar, A.; Cakmak, A.S.; Engin, H.

    1977-01-01

    This article presents an analytic method and calculations of strong motion spectra for the energy, displacement, velocity and acceleration based on the physical and geometric ground properties at a site. Although earthquakes occur with large deformations and high stress intensities which necessarily lead to nonlinear phenomena, most analytical efforts to date have been based on linear analyses in engineering seismology and soil dynamics. There are, however, a wealth of problems such as the shifts in frequency, dispersion due to the amplitude, the generation of harmonics, removal of resonance infinities, which cannot be accounted for by a linear theory. In the study, the stress-strain law for soil is taken as tau=G 0 γ+G 1 γ 3 +etaγ where tau is the stress, γ is the strain, G 0 and G 1 are the elasticity coefficients and eta is the damping and are different in each layer. The above stress-strain law describes soils with hysterisis where the hysterisis loops for various amplitudes of the strain are no longer concentric ellipses as for linear relations but are oval shapes rotated with respect to each other similar to the materials with the Osgood-Ramberg law. It is observed that even slight nonlinearities may drastically alter the various response spectra from that given by linear analysis. In fact, primary waves cause resonance conditions such that secondary waves are generated. As a result, a weak energy transfer from the primary to the secondary waves takes place, thus altering the wave spectrum. The mathematical technique that is utilized for the solution of the nonlinear equation is a special perturbation method as an extension of Poincare's procedure. The method considers shifts in the frequencies which are determined by the boundedness of the energy

  10. On the damping effect of gas rarefaction on propagation of acoustic waves in a microchannel

    Science.gov (United States)

    Manela, A.; Radtke, G. A.; Pogorelyuk, L.

    2014-03-01

    We consider the response of a gas in a microchannel to instantaneous (small-amplitude) non-periodic motion of its boundaries in the normal direction. The problem is formulated for an ideal monatomic gas using the Bhatnagar, Gross, and Krook (BGK) kinetic model, and solved for the entire range of Knudsen (Kn) numbers. Analysis combines analytical (collisionless and continuum-limit) solutions with numerical (low-variance Monte Carlo and linearized BGK) calculations. Gas flow, driven by motion of the boundaries, consists of a sequence of propagating and reflected pressure waves, decaying in time towards a final equilibrium state. Gas rarefaction is shown to have a "damping effect" on equilibration process, with the time required for equilibrium shortening with increasing Kn. Oscillations in hydrodynamic quantities, characterizing gas response in the continuum limit, vanish in collisionless conditions. The effect of having two moving boundaries, compared to only one considered in previous studies of time-periodic systems, is investigated. Comparison between analytical and numerical solutions indicates that the collisionless description predicts the system behavior exceptionally well for all systems of the size of the mean free path and somewhat larger, in cases where boundary actuation acts along times shorter than the ballistic time scale. The continuum-limit solution, however, should be considered with care at early times near the location of acoustic wavefronts, where relatively sharp flow-field variations result in effective increase in the value of local Knudsen number.

  11. The ROSETTA PHILAE Lander damping mechanism as probe for the Comet soil strength.

    Science.gov (United States)

    Roll, R.

    2015-10-01

    The ROSETTA Lander is equipped with an one axis damping mechanism to dissipate kinetic energy during the touch down. This damping is necessary to avoid damages to the Lander by a hard landing shock and more important to avoid re-bouncing from ground with high velocity. The damping mechanism works best for perpendicular impact, which means the velocity vector is parallel to the damper axis and all three feet touch the ground at the same time. That is usually not the case. Part of the impact energy can be transferred into rotational energy at ground contact if the impact is not perpendicular. This energy will lift up the Lander from the ground if the harpoons and the hold down thruster fail, as happen in mission. The damping mechanism itself is an electrical generator, driven by a spindle inside a telescopic tube. This tube was extended in mission for landing by 200mm. A maximum damping length of 140mm would be usually required to compensate a landing velocity of 1m/s, if the impact happens perpendicular on hard ground. After landing the potentiometer of the telescopic tube reading shows a total damping length of only 42,5mm. The damping mechanism and the overall mechanical behavior of the Lander at touch down are well tested and characterized and transferred to a multi-body computer model. The incoming and outgoing flightpath of PHILAE allow via computer-simulation the reconstruction of the touch down. It turns out, that the outgoing flight direction is dominated by the local ground slope and that the damping length is strongly dependent on the soil strength. Damping of soft comet ground must be included to fit the damping length measured. Scenario variations of the various feet contact with different local surface features (stone or regolith) and of different soil models finally lead to a restricted range for the soil strength at the touch down area.

  12. Performance of Process Damping in Machining Titanium Alloys at Low Cutting Speed with Different Helix Tools

    International Nuclear Information System (INIS)

    Shaharun, M A; Yusoff, A R; Reza, M S; Jalal, K A

    2012-01-01

    Titanium is a strong, lustrous, corrosion-resistant and transition metal with a silver color to produce strong lightweight alloys for industrial process, automotive, medical instruments and other applications. However, it is very difficult to machine the titanium due to its poor machinability. When machining titanium alloys with the conventional tools, the wear rate of the tool is rapidly accelerate and it is generally difficult to achieve at high cutting speed. In order to get better understanding of machining titanium alloy, the interaction between machining structural system and the cutting process which result in machining instability will be studied. Process damping is a useful phenomenon that can be exploited to improve the limited productivity of low speed machining. In this study, experiments are performed to evaluate the performance of process damping of milling under different tool helix geometries. The results showed that the helix of 42° angle is significantly increase process damping performance in machining titanium alloy.

  13. Long-wave model for strongly anisotropic growth of a crystal step.

    Science.gov (United States)

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  14. A PSO based unified power flow controller for damping of power system oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Daneshgah Street, P.O. Box 179, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)

    2009-10-15

    On the basis of the linearized Phillips-Herffron model of a single-machine power system, we approach the problem of select the best input control signal of the unified power flow controller (UPFC) and design optimal UPFC based damping controller in order to enhance the damping of the power system low frequency oscillations. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. This controller is tuned to simultaneously shift the undamped electromechanical modes to a prescribed zone in the s-plane. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multiobjective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based UPFC controller using the proposed multiobjective function has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to the m{sub B} based controller. (author)

  15. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled self-interaction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore, the particular field self-regularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C,P,T, although its individual interaction terms are of V-A and thus C,P nonconserving type

  16. Wave, particle-family duality and the conservation of discrete symmetries in strong interaction

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1984-01-01

    This paper starts from a nonlinear fermion field equation of motion with a strongly coupled selfinteraction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore the particular field selfregularizes the interactions and naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C, P, T although its individual interaction terms are of V - A and thus C, P nonconserving type

  17. Damping scaling factors for elastic response spectra for shallow crustal earthquakes in active tectonic regions: "average" horizontal component

    Science.gov (United States)

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Abrahamson, Norman; Campbell, Kenneth; Silva, Walter

    2014-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra are typically developed at a 5% viscous damping ratio. In reality, however, structural and nonstructural systems can have other damping ratios. This paper develops a new model for a damping scaling factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE for damping ratios between 0.5% to 30%. The model is developed based on empirical data from worldwide shallow crustal earthquakes in active tectonic regions. Dependencies of the DSF on potential predictor variables, such as the damping ratio, spectral period, ground motion duration, moment magnitude, source-to-site distance, and site conditions, are examined. The strong influence of duration is captured by the inclusion of both magnitude and distance in the DSF model. Site conditions show weak influence on the DSF. The proposed damping scaling model provides functional forms for the median and logarithmic standard deviation of DSF, and is developed for both RotD50 and GMRotI50 horizontal components. A follow-up paper develops a DSF model for vertical ground motion.

  18. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.

    Science.gov (United States)

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin

    2015-11-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Wave trajectory and electron cyclotron heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  20. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Konomi, T., E-mail: konomi@ims.ac.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yasuda, F. [University of Tokyo, Bunkyo-ku, Tokyo 113-8654 (Japan); Furuta, F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853 (United States); Saito, K. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-01-11

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q{sub 0} was 1.5×10{sup 10} with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity

  1. Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.

    2014-01-01

    We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R and D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q 0 was 1.5×10 10 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni–Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and

  2. Electron plasma waves and plasma resonances

    International Nuclear Information System (INIS)

    Franklin, R N; Braithwaite, N St J

    2009-01-01

    In 1929 Tonks and Langmuir predicted of the existence of electron plasma waves in an infinite, uniform plasma. The more realistic laboratory environment of non-uniform and bounded plasmas frustrated early experiments. Meanwhile Landau predicted that electron plasma waves in a uniform collisionless plasma would appear to be damped. Subsequent experimental work verified this and revealed the curious phenomenon of plasma wave echoes. Electron plasma wave theory, extended to finite plasmas, has been confirmed by various experiments. Nonlinear phenomena, such as particle trapping, emerge at large amplitude. The use of electron plasma waves to determine electron density and electron temperature has not proved as convenient as other methods.

  3. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  4. Optimizing parameter of particle damping based on Leidenfrost effect of particle flows

    Science.gov (United States)

    Lei, Xiaofei; Wu, Chengjun; Chen, Peng

    2018-05-01

    Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.

  5. Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2015-06-01

    Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.

  6. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  7. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    OpenAIRE

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...

  8. Numerical Simulation of a Lee Wave Case over Three-Dimensional Mountainous Terrain under Strong Wind Condition

    Directory of Open Access Journals (Sweden)

    Lei Li

    2013-01-01

    Full Text Available This study of a lee wave event over three-dimensional (3D mountainous terrain in Lantau Island, Hong Kong, using a simulation combining mesoscale model and computational fluid dynamics (CFD model has shown that (1 3D steep mountainous terrain can trigger small scale lee waves under strong wind condition, and the horizontal extent of the wave structure is in a dimension of few kilometers and corresponds to the dimension of the horizontal cross-section of the mountain; (2 the life cycle of the lee wave is short, and the wave structures will continuously form roughly in the same location, then gradually move downstream, and dissipate over time; (3 the lee wave triggered by the mountainous terrain in this case can be categorized into “nonsymmetric vortex shedding” or “turbulent wake,” as defined before based on water tank experiments; (4 the magnitude of the wave is related to strength of wind shear. This study also shows that a simulation combining mesoscale model and CFD can capture complex wave structure in the boundary layer over realistic 3D steep terrain, and have a potential value for operational jobs on air traffic warning, wind energy utilization, and atmospheric environmental assessment.

  9. Investigation of wave emission phenomena in dual frequency capacitive discharges using particle-in-cell simulation

    International Nuclear Information System (INIS)

    Sharma, S; Turner, M M

    2014-01-01

    Dual frequency capacitively coupled discharges are widely used during fabrication of modern-day integrated circuits, because of low cost and robust uniformity over broad areas. At low pressure, stochastic or collisionless electron heating is important in such discharges. The stochastic heating occurs adjacent to the sheath edge due to energy transfer from the oscillating high voltage electron sheath to electrons. The present research discusses evidence of wave emission from the sheath in such discharges, with a frequency near the electron plasma frequency. These waves are damped very promptly as they propagate away from the sheath towards the bulk plasma, by Landau damping or some related mechanism. In this work, the occurrence of strong wave phenomena during the expanding and collapsing phase of the low frequency sheath has been investigated. This is the result of a progressive breakdown of quasi-neutrality close to the electron sheath edge. The characteristics of waves in the dual-frequency case are entirely different from the single-frequency case studied in earlier works. The existence of a field reversal phenomenon, occurring several times within a lower frequency period in the proximity of the sheath is also reported. Electron trapping near to the field reversal regions also occurs many times during a lower frequency period. The emission of waves is associated with these field reversal regions. It is observed that the field reversal and electron trapping effects appear under conditions typical of many recent experiments, and are consequently of much greater practical interest than similar effects in single frequency discharges, which occur only under extreme conditions that are not usually realized in experiments. (paper)

  10. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  11. Modelling of Dampers and Damping in Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess

    2006-01-01

    and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions......, and thereby the damping, of flexible structures are generally described in terms of the dominant vibration modes. A system reduction technique, where the damped vibration mode is constructed as a linear combination of the undamped mode shape and the mode shape obtained by locking the damper, is applied....... This two-component representation leads to a simple solution for the modal damping representing the natural frequency and the associated damping ratio. It appears from numerical examples that this system reduction technique provides very accurate results. % Analytical expressions for the optimal tuning...

  12. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    Energy Technology Data Exchange (ETDEWEB)

    Erokhin, A. N., E-mail: nerokhin@mx.iki.rssi.ru [People’s Friendship University of Russia (Russian Federation); Zol’nikova, N. N. [Russian Academy of Sciences, Space Research Institute (Russian Federation); Erokhin, N. S. [People’s Friendship University of Russia (Russian Federation)

    2016-01-15

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g{sub y}(0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g{sub y}(0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones.

  13. Analysis of the dependence of surfatron acceleration of electrons by an electromagnetic wave in space plasma on the particle momentum along the wave front

    International Nuclear Information System (INIS)

    Erokhin, A. N.; Zol’nikova, N. N.; Erokhin, N. S.

    2016-01-01

    Based on the numerical solution of the nonlinear nonstationary second-order equation for the wave phase on the particle trajectory, the dynamics of surfatron acceleration of electrons by an electromagnetic wave propagating across the external magnetic field in space plasma is analyzed as a function of the electron momentum along the wave front. Numerical calculations show that, for strongly relativistic initial values of the electron momentum component along the wave front g y (0) (the other parameters of the problem being the same), electrons are trapped into the regime of ultrarelativistic surfatron acceleration within a certain interval of the initial wave phase Ψ(0) on the particle trajectory. It is assumed in the calculations that vertical bar Ψ(0) vertical bar ≤ π. For strongly relativistic values of g y (0), electrons are immediately trapped by the wave for 19% of the initial values of the phase Ψ(0) (favorable phases). For the rest of the values of Ψ(0), trapping does not occur even at long times. This circumstance substantially simplifies estimations of the wave damping due to particle acceleration in subsequent calculations. The dynamics of the relativistic factor and the components of the electron velocity and momentum under surfatron acceleration is also analyzed. The obtained results are of interest for the development of modern concepts of possible mechanisms of generation of ultrarelativistic particle fluxes in relatively calm space plasma, as well as for correct interpretation of observational data on the fluxes of such particles and explanation of possible reasons for the deviation of ultrarelativistic particle spectra detected in the heliosphere from the standard power-law scalings and the relation of these variations to space weather and large-scale atmospheric processes similar to tropical cyclones

  14. Radiation damping and decoherence in quantum electrodynamics

    International Nuclear Information System (INIS)

    Breuer, H.P.

    2000-01-01

    The processes of radiation damping and decoherence in quantum electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in quantum electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states. (orig.)

  15. Modeling of Waves Propagating in Water with a Crushed Ice Layer on the Free Surface

    Science.gov (United States)

    Szmidt, Kazimierz

    2017-12-01

    A transformation of gravitational waves in fluid of constant depth with a crushed ice layer floating on the free fluid surface is considered. The propagating waves undergo a slight damping along their path of propagation. The main goal of the study is to construct an approximate descriptive model of this phenomenon.With regard to small displacements of the free surface, a viscous type model of damping is considered, which corresponds to a continuous distribution of dash-pots at the free surface of the fluid. A constant parameter of the dampers is assumed in advance as known parameter of damping. This parameter may be obtained by means of experiments in a laboratory flume.

  16. TCSC robust damping controller design based on particle swarm optimization for a multi-machine power system

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H., E-mail: hshayeghi@gmail.co [Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jalilzadeh, S.; Safari, A. [Technical Engineering Department, Zanjan University, Zanjan (Iran, Islamic Republic of)

    2010-10-15

    In this paper, a new approach based on the particle swarm optimization (PSO) technique is proposed to tune the parameters of the thyristor controlled series capacitor (TCSC) power oscillation damping controller. The design problem of the damping controller is converted to an optimization problem with the time-domain-based objective function which is solved by a PSO technique which has a strong ability to find the most optimistic results. To ensure the robustness of the proposed stabilizers, the design process takes a wide range of operating conditions into account. The performance of the newly designed controller is evaluated in a four-machine power system subjected to the different types of disturbances in comparison with the genetic algorithm based damping controller. The effectiveness of the proposed controller is demonstrated through the nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based TCSC damping controller using the proposed fitness function has an excellent capability in damping power system inter-area oscillations and enhances greatly the dynamic stability of the power systems. Moreover, it is superior to the genetic algorithm based damping controller.

  17. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  18. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  19. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  20. Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves

    Science.gov (United States)

    Pécseli, Hans; Engvold, OddbjØrn

    2000-05-01

    The nature of thin, highly inclined threads observed in quiescent prominences has puzzled solar physicists for a long time. When assuming that the threads represent truly inclined magnetic fields, the supporting mechanism of prominence plasma against gravity has remained an open issue. This paper examines the levitation of prominence plasma exerted by weakly damped MHD waves in nearly vertical magnetic flux tubes. It is shown that the wave damping, and resulting `radiation pressure', caused predominantly by ion-neutral collisions in the `cold' prominence plasma, may balance the acceleration of gravity provided the oscillation frequency is ω~ 2 rad s^-1 (f~0.5 Hz). Such short wave periods may be the result of small-scale magnetic reconnections in the highly fragmentary magnetic field of quiescent prominences. In the proposed model, the wave induced levitation acts predominantly on plasma - neutral gas mixtures.

  1. Model Testing of Hydraulic Damping of the Reflector Joint on Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030......Further development of the Wave Dragon wave energy converter in preparation for full-scale demonstration in the North Sea, PHASE A. FU4305, A4305 & ENS j.nr. 7903-030...

  2. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  3. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  4. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  5. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  6. Hele-Shaw beach creation by breaking waves: a mathematics-inspired experiment

    NARCIS (Netherlands)

    Thornton, Anthony Richard; van der Horn, Avraham/Bram; van der Horn, Avraham J.; Gagarina, Elena; Zweers, Wout; van der Meer, Roger M.; Bokhove, Onno

    2014-01-01

    Fundamentals of nonlinear wave-particle interactions are studied experimentally in a Hele-Shaw configuration with wave breaking and a dynamic bed. To design this configuration, we determine, mathematically, the gap width which allows inertial flows to survive the viscous damping due to the side

  7. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    NARCIS (Netherlands)

    Berkel, van M.; Zwart, Heiko J.; Tamura, N.; Hogeweij, G.M.D.; Inagaki, S.; de Baar, M.R.; Ida, K.

    2014-01-01

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The

  8. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  9. Tsunami damping by mangrove forest: a laboratory study using parameterized trees

    Directory of Open Access Journals (Sweden)

    A. Strusińska-Correia

    2013-02-01

    Full Text Available Tsunami attenuation by coastal vegetation was examined under laboratory conditions for mature mangroves Rhizophora sp. The developed novel tree parameterization concept, accounting for both bio-mechanical and structural tree properties, allowed to substitute the complex tree structure by a simplified tree model of identical hydraulic resistance. The most representative parameterized mangrove model was selected among the tested models with different frontal area and root density, based on hydraulic test results. The selected parameterized tree models were arranged in a forest model of different width and further tested systematically under varying incident tsunami conditions (solitary waves and tsunami bores. The damping performance of the forest models under these two flow regimes was compared in terms of wave height and force envelopes, wave transmission coefficient as well as drag and inertia coefficients. Unlike the previous studies, the results indicate a significant contribution of the foreshore topography to solitary wave energy reduction through wave breaking in comparison to that attributed to the forest itself. A similar rate of tsunami transmission (ca. 20% was achieved for both flow conditions (solitary waves and tsunami bores and the widest forest (75 m in prototype investigated. Drag coefficient CD attributed to the solitary waves tends to be constant (CD = 1.5 over the investigated range of the Reynolds number.

  10. Anisotropic structure of the Inner Core and its uncertainty from transdimensional body-wave tomography

    Science.gov (United States)

    Burdick, S.; Waszek, L.; Lekic, V.

    2017-12-01

    Studies of body waves and normal modes have revealed strong quasi-hemispheric variations in seismic velocity, anisotropy and attenuation in the inner core. A rigorous mapping of the hemispheric boundaries and smaller scale heterogeneity within the hemispheres is crucial for distinguishing between hypotheses about inner core formation and evolution. However, the relatively sparse and heterogeneous distribution of paths piercing the inner core creates difficulties in constraining the boundaries and sub-hemispheric variations with body wave tomography. Damped tomographic inversions tend to smooth out strong structural gradients and risk carrying the imprint of sparse path coverage, while under-parametrized models can miss pertinent small-scale variations. For these reasons, we apply a probabilistic and transdimensional (THB) tomography method on core-sensitive differential P-wave traveltimes. The THB approach is well-suited to the problem of inner core tomography since 1) it remains parsimonious by allowing the parametrization to be determined the requirements of the data and 2) it preserves sharp boundaries in seismic properties, allowing it to capture both short-wavelength structure and the strong hemispheric dichotomy. Furthermore, the approach yields estimates of uncertainty in isotropic and anisotropic velocity, hemispheric boundary geometry, anisotropy axis and the tradeoffs between these properties. We quantify the effects of mantle heterogeneity with inner core structure and place constraints on inner core dynamics and minerology.

  11. Pressure and intracorporal acceleration measurements in pigs exposed to strong shock waves in a free field

    International Nuclear Information System (INIS)

    Vassout, P.; Franke, R.; Parmentier, G.; Evrard, G.; Dancer, A.

    1987-01-01

    A theoretical study on the propagation of a pressure wave in a diphasic medium, when compared to the onset mechanism of pulmonary lesions in subjects exposed to strong shock waves, shows an increase in the incident overpressure at the interface level. Using hydrophones, intracorporal pressure was measured in pigs. The authors recorded the costal wall acceleration on the side directly exposed to the shock wave and calculated the displacement of the costal wall after a shock wave passed by. These experiments were conducted for shock waves in a free field, at an overpressure peak level ranging from 26 kFPa to 380 kPa and for a first positive phase lasting 2 ms. Sensors placed in an intracorporal position detected no increase of the overpressure level for any value of the incident pressure. A comparison of the costal wall displacement, measured experimentally, relative to the theoretical displacement of the entire animal mass indicates that the largest relative displacement of the costal wall could be the origin of the pulmonary lesions found. 5 refs., 13 figs

  12. Using AORSA to simulate helicon waves in DIII-D

    International Nuclear Information System (INIS)

    Lau, C.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Jaeger, E. F.; Berry, L. A.; Bertelli, N.; Pinsker, R. I.; Prater, R.

    2015-01-01

    Recent efforts have shown that helicon waves (fast waves at > 20ω ci ) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects

  13. Using AORSA to simulate helicon waves in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN (United States); Jaeger, E. F.; Berry, L. A. [XCEL Engineering, Inc., 1066 Commerce Park Dr., Oak Ridge, TN (United States); Bertelli, N. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Pinsker, R. I.; Prater, R. [General Atomics, San Diego, CA (United States)

    2015-12-10

    Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.

  14. On the Wave Stresses in the Rods of Anvil Hammers

    Directory of Open Access Journals (Sweden)

    V. M. Sinitskiy

    2014-01-01

    Full Text Available With operating anvil hammers, there are rigid impacts of die tools, and as a result, almost instantaneous impact stops of the falling parts of hammer. Such operating conditions lead to the accelerated breakdowns of rods because of significant wave stresses arising in them. Common differential and integral methods to estimate wave stresses are widespread in engineering practice. However, to use them a researcher has to possess certain skills and special software. We consider the method for estimating the wave stresses in the rods of anvil hammers based on Laplace transforms (LT of wave equation. The article shows a procedure to set up and solve differential wave equations by operator method. These equations describe the wave propagation process of strains and stresses in the rods of anvil hammers with rigid impact and taking into account a damping rod connection with the head of hammer. The method takes into consideration an influence of both piston and rod weights and of mechanical and geometrical characteristics of rod on the stress value in the placement of rod in hammer head. Results analysis shows that a sufficiently efficient method for practical improving the durability of rods is the method of damping impact load on the rod through setting the damping devices in the form either of elastic "pad" of one or another design or of hydraulic shock absorbers in the placement of its connection with the hammer head. In this case there is a change of the wave front, it becomes flatter. It is shown that the stresses in the rod are proportional to the amount of wave stresses because of the own impact of rod and piston, which make a total weight of the system. Effect of piston weight on the stresses value at the rod during impact is directly proportional to the ratio of its weight to the rod weight. The geometric parameters of rod and the speed of the falling parts before the impact also influence on the value of stresses in the rod.The represented

  15. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  16. Identification of Damping from Structural Vibrations

    DEFF Research Database (Denmark)

    Bajric, Anela

    Reliable predictions of the dynamic loads and the lifetime of structures are influenced by the limited accuracy concerning the level of structural damping. The mechanisms of damping cannot be derived analytically from first principles, and in the design of structures the damping is therefore based...... on experience or estimated from measurements. This thesis consists of an extended summary and three papers which focus on enhanced methods for identification of damping from random struc-tural vibrations. The developed methods are validated by stochastic simulations, experimental data and full-scale measurements...... which are representative of the vibrations in small and large-scale structures. The first part of the thesis presents an automated procedure which is suitable for estimation of the natural frequencies and the modal damping ratios from random response of structures. The method can be incorporated within...

  17. Three-dimensional ray tracing of electrostatic cyclotron harmonic waves and Z mode electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hashimoto, K.; Yamaashi, K.; Kimura, I.; Kyoto Univ., Japan)

    1987-01-01

    Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere. 20 references

  18. Locked magnetic island chains in toroidally flow damped tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R; Waelbroeck, F L

    2010-01-01

    The physics of a locked magnetic island chain maintained in the pedestal of an H-mode tokamak plasma by a static, externally generated, multi-harmonic, helical magnetic perturbation is investigated. The non-resonant harmonics of the external perturbation are assumed to give rise to significant toroidal flow damping in the pedestal, in addition to the naturally occurring poloidal flow damping. Furthermore, the flow damping is assumed to be sufficiently strong to relax the pedestal ion toroidal and poloidal fluid velocities to fixed values determined by neoclassical theory. The resulting neoclassical ion flow causes a helical phase-shift to develop between the locked island chain and the resonant harmonic of the external perturbation. Furthermore, when this phase-shift exceeds a critical value, the chain unlocks from the resonant harmonic and starts to rotate, after which it decays away and is replaced by a helical current sheet. The neoclassical flow also generates an ion polarization current in the vicinity of the island chain which either increases or decreases the chain's radial width, depending on the direction of the flow. If the polarization effect is stabilizing, and exceeds a critical amplitude, then the helical island equilibrium becomes unstable, and the chain again decays away. The critical amplitude of the resonant harmonic of the external perturbation at which the island chain either unlocks or becomes unstable is calculated as a function of the pedestal ion pressure, the neoclassical poloidal and toroidal ion velocities and the poloidal and toroidal flow damping rates.

  19. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.

    1993-01-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency. (Author)

  20. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  1. Wakefield damping in a pair of X-band accelerators for linear colliders

    Directory of Open Access Journals (Sweden)

    Roger M. Jones

    2006-10-01

    Full Text Available We consider the means to damp the wakefield left behind ultrarelativistic charges. In particular, we focus on a pair of traveling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wakefield left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wakefield on trailing bunches. This method entails detuning the characteristic mode frequencies which make up the electromagnetic field, damping the wakefield, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wakefield and modes, based on a circuit model, are compared with experimental measurements of the wakefield conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wakefields in a future linear collider consisting of several thousand of these accelerating structures.

  2. Wakefield Damping in a Pair of X-Band Accelerators for Linear Colliders

    International Nuclear Information System (INIS)

    Jones, R.M.; Adolphsen, C.E.; Wang, J.W.; Li, Z.; SLAC

    2006-01-01

    We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures

  3. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  4. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    Ohe, K.; Hashimoto, M.

    1985-01-01

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  5. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  6. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  7. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  8. Energetic particle destabilization of shear Alfven waves in stellarators and tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.; Carreras, B.A.; Hedrick, C.L.; Leboeuf, J.N.; Weller, A.

    1994-01-01

    An important issue for ignited devices is the resonant destabilization of shear Alfven waves by energetic populations. These instabilities have been observed in a variety of toroidal plasma experiments in recent years, including: beam-destabilized toroidal Alfven instabilities (TAE) in low magnetic field tokamaks, ICRF destabilized TAE's in higher field tokamaks, and global Alfven instabilities (GAE) in low shear stellarators. In addition, excitation and study of these modes is a significant goal of the TFIR-DT program and a component of the ITER physics tasks. The authors have developed a gyrofluid model which includes the wave-particle resonances necessary to excite such instabilities. The TAE linear mode structure is calculated nonperturbatively, including many of the relevant damping mechanisms, such as: continuum damping, non-ideal effects (ion FLR and electron collisionality), and ion/electron Landau damping. This model has been applied to both linear and nonlinear regimes for a range of experimental cases using measured profiles

  9. Kinetic effects on the propagation of surface waves and their relevance to the heating of the solar corona

    International Nuclear Information System (INIS)

    Kuperus, M.; Heyvaerts, J.

    1980-01-01

    The MHD oscillations of the Alfven type running along surfaces of discontinuity generate motions in the discontinuity region which come rapidly out of phase. It is shown how the mathematical theory of this phase detuning predicts that surface wave should suffer dissipationless damping. Real damping is actually achieved by viscosity or kinetic effects. When detuning has grown to a large enough level, however, oscillations must be described by kinetic theory. Kinetic Alfven waves differ from perfect MHD Alfven waves in that they are able to propagate across the field. A theory of kinetic type oscillations in a finite thickness boundary is described, which predicts that surface waves generate intense kinetic Alfven waves in this boundary. The subsequent dissipation of these waves may be a powerful heating mechanism [fr

  10. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  11. Experimental Study on the Langlee Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Weisz, A.

    This report presents the results of an experimental study of the wave energy converting abilities of the Langlee wave energy converter (WEC). It focused mainly on evaluating the power generating capabilities of the device, including investigations of the following issues: Scaling ratiosPTO loadingWave...... height and wave period dependencyOblique incoming waves and directional spreading of waves (3D waves)Damping platesMooring forces and fixed structure setupPitch, surge and heave motion During the study the model supplied by the client (Langlee Wave Power AS) has been heavily instrumented - up to 23...... different instruments was deployed to measure and record data. Tests were performed at scales of 1:30 and 1:20 based on the realized reference wave states....

  12. Wave-particle interaction and Hamiltonian dynamics investigated in a traveling wave tube

    International Nuclear Information System (INIS)

    Doveil, Fabrice; Macor, Alessandro

    2006-01-01

    For wave-particle interaction studies, the one-dimensional (1-D) beam-plasma system can be advantageously replaced by a Traveling Wave Tube (TWT). This led us to a detailed experimental analysis of the self-consistent interaction between unstable waves and a small either cold or warm beam. More recently, a test electron beam has been used to observe its non-self-consistent interaction with externally excited wave(s). The velocity distribution function of the electron beam is investigated with a trochoidal energy analyzer that records the beam energy distribution at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the slow wave structure (a 4 m long helix) of the TWT. The nonlinear synchronization of particles by a single wave responsible for Landau damping is observed. The resonant velocity domain associated to a single wave is also observed, as well as the transition to large-scale chaos when the resonant domains of two waves and their secondary resonances overlap leading to a typical 'devil's staircase' behavior. A new strategy for the control of chaos is tested

  13. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  14. Energy-imbalance mechanism of domain wall motion induced by propagation spin waves in finite magnetic nanostripe

    International Nuclear Information System (INIS)

    Zhu, Jinrong; Han, Zhaoyan; Su, Yuanchang; Hu, Jingguo

    2014-01-01

    The mechanism of the domain wall (DW) motions induced by spin wave in finite magnetic nanostripe is studied by micromagnetic simulations. We find that the spin-wave induced DM motions are always accompanied by an energy imbalance between two sides of the DW. The DW motion can be attributed to the expansion of the low-energy-density area and the contraction of the high-energy-density area. The energy imbalance strongly depends on whether the spin wave passes through the DW or is reflected by the DW. In the area of the spin wave propagation, the energy density increases with the time. However, in the superposition area of the incident spin wave and the reflected spin wave, the energy density decreases with the increasing of the time. It shows that this energy imbalance can be controlled by tuning the frequency of the spin wave. Finally, the effect of the damping parameter value is discussed. - Highlights: • The mechanism of the spin-wave induced DW motions is studied. • The spin-wave induced DW motions and the energy imbalance mechanism are given. • The DW motion with the same direction to that of SW is explained. • The DW motion with the opposite direction to that of SW is explained

  15. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  16. Improvement of Transient Stability in a Hybrid Power Multi-System Using a Designed NIDC (Novel Intelligent Damping Controller

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2017-04-01

    Full Text Available This paper endeavors to apply a novel intelligent damping controller (NIDC for the static synchronous compensator (STATCOM to reduce the power fluctuations, voltage support and damping in a hybrid power multi-system. In this paper, we discuss the integration of an offshore wind farm (OWF and a seashore wave power farm (SWPF via a high-voltage, alternating current (HVAC electric power transmission line that connects the STATCOM and the 12-bus hybrid power multi-system. The hybrid multi-system consists of a battery energy storage system (BESS and a micro-turbine generation (MTG. The proposed NIDC consists of a designed proportional–integral–derivative (PID linear controller, an adaptive critic network and a proposed functional link-based novel recurrent fuzzy neural network (FLNRFNN. Test results show that the proposed controller can achieve better damping characteristics and effectively stabilize the network under unstable conditions.

  17. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  18. Propagation of stationary Rossby waves in the Martian lower atmosphere

    Science.gov (United States)

    Ghosh, Priyanka; Thokuluwa, Ramkumar

    The Martian lower atmospheric (-1.5 km to 29.3 km) temperature, measured by radio occultation technique during the Mars Global Surveyor (MGS) mission launched by US in November 1996, at the Northern winter hemispheric latitude of about 63(°) N clearly shows a statistically significant (above 95 percent confidential level white noise) and strong 3.5-day oscillation during 1-10 January 2006. This strong signal occurs in the longitudinal sectors of 0-30(°) E and 190-230(°) E but statistically insignificant in almost all the other longitudes. This 180 degree separation between the two peaks of occurrence of strong 3.5 day oscillation indicates that this may be associated with zonal wave number 2 structure global scale wave. At the lowest height of -1.5 km, the power observed in the longitude of 0-30(°) E is 50 K (2) and it increased gradually to the maximum power of 130 K (2) at the height of 0.8 - 1.7 km. Above this height, the power decreased monotonously and gradually to insignificant level at the height of 3.7 km (20 K (2) ). This gradual decrease of power above the height of 1.7 km indicates that radiative damping (infra red cooling due to large abundance of CO _{2} molecules and dust particles) would have played an important role in the dissipation of waves. The height and longitudinal profiles of phase of the 3.5-day wave indicate that this wave is a vertically standing and eastward propagating planetary wave respectively. Since the statistically significant spectral amplitude occurs near the high topography structures, it seems that the wave is generated by flows over the topography. In the Northern winter, it is possible that the large gradient of temperature between the low and high latitudes would lead to flow of winds from the tropical to polar latitudes. Due to the Coriolis effect, this flow would in turn move towards the right and incite wave generation when the air flows over the high topographic structures. This lead to speculate that the observed 3

  19. Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave.

    Science.gov (United States)

    Gershman, Daniel J; F-Viñas, Adolfo; Dorelli, John C; Boardsen, Scott A; Avanov, Levon A; Bellan, Paul M; Schwartz, Steven J; Lavraud, Benoit; Coffey, Victoria N; Chandler, Michael O; Saito, Yoshifumi; Paterson, William R; Fuselier, Stephen A; Ergun, Robert E; Strangeway, Robert J; Russell, Christopher T; Giles, Barbara L; Pollock, Craig J; Torbert, Roy B; Burch, James L

    2017-03-31

    Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  20. Linear spin waves in a trapped Bose gas

    International Nuclear Information System (INIS)

    Nikuni, T.; Williams, J.E.; Clark, C.W.

    2002-01-01

    An ultracold Bose gas of two-level atoms can be thought of as a spin-1/2 Bose gas. It supports spin-wave collective modes due to the exchange mean field. Such collective spin oscillations have been observed in recent experiments at JILA with 87 Rb atoms confined in a harmonic trap. We present a theory of the spin-wave collective modes based on the moment method for trapped gases. In the collisionless and hydrodynamic limits, we derive analytic expressions for the frequencies and damping rates of modes with dipole and quadrupole symmetry. We find that the frequency for a given mode is given by a temperature-independent function of the peak density n, and falls off as 1/n. We also find that, to a very good approximation, excitations in the radial and axial directions are decoupled. We compare our model to the numerical integration of a one-dimensional version of the kinetic equation and find very good qualitative agreement. The damping rates, however, show the largest deviation for intermediate densities, where one expects Landau damping--which is unaccounted for in our moment approach--to play a significant role

  1. Swing damped movement of suspended objects

    International Nuclear Information System (INIS)

    Jones, J.F.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented

  2. Fast wave current drive in DIII-D

    International Nuclear Information System (INIS)

    Petty, C.C.; Callis, R.W.; Chiu, S.C.; deGrassie, J.S.; Forest, C.B.; Freeman, R.L.; Gohil, P.; Harvey, R.W.; Ikezi, H.; Lin-Liu, Y.-R.

    1995-02-01

    The non-inductive current drive from fast Alfven waves launched by a directional four-element antenna was measured in the DIII-D tokamak. The fast wave frequency (60 MHz) was eight times the deuterium cyclotron frequency at the plasma center. An array of rf pickup loops at several locations around the torus was used to verify the directivity of the four-element antenna. Complete non-inductive current drive was achieved using a combination of fast wave current drive (FWCD) and electron cyclotron current drive (ECCD) in discharges for which the total plasma current was inductively ramped down from 400 to 170 kA. For discharges with steady plasma current, up to 110 kA of FWCD was inferred from an analysis of the loop voltage, with a maximum non-inductive current (FWCD, ECCD, and bootstrap) of 195 out of 310 kA. The FWCD efficiency increased linearly with central electron temperature. For low current discharges, the FWCD efficiency was degraded due to incomplete fast wave damping. The experimental FWCD was found to agree with predictions from the CURRAY ray-tracing code only when a parasitic loss of 4% per pass was included in the modeling along with multiple pass damping

  3. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    International Nuclear Information System (INIS)

    Qiu, R.K.; Guo, F.F.; Zhang, Z.D.

    2016-01-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  4. Green’s function theory of ferromagnetic resonance in magnetic superlattices with damping

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.K., E-mail: rkqiu@163.com [Shenyang University of Technology, Shenyang 110870 (China); Guo, F.F. [Shenyang University of Technology, Shenyang 110870 (China); Zhang, Z.D. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-02-01

    We explore a quantum Green’s-function method to study the resonance absorption of magnetic materials. The relationship between the resonance magnon (spin wave) density and the resonance frequency of a superlattice consisting of two magnetic layers with damping and antiferromagnetic interlayer exchange coupling is studied. The effects of temperature, interlayer coupling, anisotropy, external magnetic field and damping on the the resonance frequency and resonance magnon density are investigated. The resonance excitation probability for a magnon is proportional to the resonance magnon density. In the classic methods, the imaginary part of magnetic permeability represents the resonance absorption in magnetic materials. In the quantum approach, the resonance magnon density can be used to estimate the strength of the resonance absorption. In the present work, a quantum approach is developed to study resonance absorption of magnetic materials and the results show the method to obtain a magnetic multilayered materials with both high resonance frequency and high resonance absorption.

  5. A review of damping of two-phase flows

    International Nuclear Information System (INIS)

    Hara, Fumio

    1993-01-01

    Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms

  6. Alfven wave heating

    International Nuclear Information System (INIS)

    Stix, H.

    1981-01-01

    The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered

  7. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  8. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  9. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  10. Experimental investigation and modeling of dynamic performance of wave springs

    OpenAIRE

    Tang, N.; Rongong, J.; Lord, C.; Sims, N.

    2016-01-01

    This paper investigates vibration suppression potentials for a novel frictional system - a wave spring.\\ud Two different types of wave springs, crest-to-crest and nested ones, were used in this work. Compared with\\ud nested wave springs, crest-to-crest wave springs have lower damping and a larger range for the linear stiffness\\ud due to a reduced level of contact. Dynamic compressive tests, subject to different static compression levels,\\ud are carried out to investigate the force-displacemen...

  11. Damping Estimation of Friction Systems in Random Vibrations

    DEFF Research Database (Denmark)

    Friis, Tobias; Katsanos, Evangelos; Amador, Sandro

    Friction is one of the most efficient and economical mechanisms to reduce vibrations in structural mechanics. However, the estimation of the equivalent linear damping of the friction damped systems in experimental modal analysis and operational modal analysis can be adversely affected by several...... assumptions regarding the definition of the linear damping and the identification methods or may be lacking a meaningful interpretation of the damping. Along these lines, this project focuses on assessing the potential to estimate efficiently the equivalent linear damping of friction systems in random...

  12. Emittance damping considerations for TESLA

    International Nuclear Information System (INIS)

    Floettmann, K.; Rossbach, J.

    1993-03-01

    Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)

  13. Electromagnetic wave in a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Krasovitskiy, V. B.

    2009-01-01

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  14. Current drive with fast waves, electron cyclotron waves, and neutral injection in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Prater, R.; Petty, C.C.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.; Harvey, R.W.; Ikel, H.; Lin-Liu, Y.R.; Luce, T.C.; James, R.A.; Porkolab, M.; Baity, F.W.; Goulding, R.H.; Hoffmann, D.J.; Kawashima, H.; Trukhin, V.

    1992-09-01

    Current drive experiments have been performed on the DIII-D tokamak using fast waves, electron cyclotron waves, and neutral injection. Fast wave experiments were performed using a 4-strap antenna with 1 MW of power at 60 MHz. These experiments showed effective heating of electrons, with a global heating efficiency equivalent to that of neutral injection even when the single pass damping was calculated to be as small as 5%. The damping was probably due to the effect of multiple passes of the wave through the plasma. Fast wave current drive experiments were performed with a toroidally directional phasing of the antenna straps. Currents driven by fast wave current drive (FWCD) in the direction of the main plasma current of up to 100 kA were found, not including a calculated 40 kA of bootstrap current. Experiments with FWCD in the counter current direction showed little current drive. In both cases, changes in the sawtooth behavior and the internal inductance qualitatively support the measurement of FWCD. Experiments on electron cyclotron current drive have shown that 100 kA of current can be driven by 1 MW of power at 60 GHz. Calculations with a Fokker-Planck code show that electron cyclotron current drive (ECCD) can be well predicted when the effects of electron trapping and of the residual electric field are included. Experiments on driving current with neutral injection showed that effective current drive could be obtained and discharges with full current drive were demonstrated. Interestingly, all of these methods of current drive had about the same efficiency, 0.015 x 10 20 MA/MW/m 2

  15. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  16. A combined ADER-DG and PML approach for simulating wave propagation in unbounded domains

    KAUST Repository

    Amler, Thomas

    2012-09-19

    In this work, we present a numerical approach for simulating wave propagation in unbounded domains which combines discontinuous Galerkin methods with arbitrary high order time integration (ADER-DG) and a stabilized modification of perfectly matched layers (PML). Here, the ADER-DG method is applied to Bérenger’s formulation of PML. The instabilities caused by the original PML formulation are treated by a fractional step method that allows to monitor whether waves are damped in PML region. In grid cells where waves are amplified by the PML, the contribution of damping terms is neglected and auxiliary variables are reset. Results of 2D simulations in acoustic media with constant and discontinuous material parameters are presented to illustrate the performance of the method.

  17. A wave model for dwarf novae

    International Nuclear Information System (INIS)

    Sparks, W.M.; Kutter, G.S.

    1980-01-01

    The rapid coherent oscillation during a dwarf nova outburst is attributed to an accretion-driven wave going around the white dwarf component of the binary system. The increase and decrease in the period of this oscillation is due to the change in the velocity of the wave as it is first being driven and then damped. Qualitatively, a large number of observations can be explained with such a model. The beginnings of a mathematical representation of this model are developed. (orig.)

  18. Influence of W-phase on mechanical properties and damping capacity of Mg–Zn–Y–Nd–Zr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hao, E-mail: haofeng804@gmail.com [College of Science, Hebei North University, Zhangjiakou 075000, Hebei (China); Yang, Yang [College of Science, Hebei North University, Zhangjiakou 075000, Hebei (China); Chang, Haixia [College of Law and Politics, Hebei North University, Zhangjiakou 075000 (China)

    2014-07-15

    This work mainly investigated the influence of W-phase on the mechanical properties and damping capacities of as-cast Mg–Zn–Y–Nd–Zr alloys with Zn/RE (rare element) ratio about 1.0. Obtained results indicate that the alloys with Zn and RE addition are composed of α-Mg matrix and W-phase. With the contents of Zn and RE increasing, the diffraction peaks of W-phase are gradually intensified and the morphology of W-phase transforms from fine-network microstructure to coarse-network microstructure. The tensile strength and fracture mechanism are strongly dependent on the quality of W-phase and the alloy with W-phase content of 8.0% has the highest strength as a result of strong atomic bonding between the W-phase and the Mg matrix. The damping capacities of Mg–Zn–Y–Nd–Zr alloys decrease gradually with the increasing amount of W-phase and then maintain at high level at high strain amplitude. The decline of damping capacity can be explained by the forming of W-phase, which makes more phases and interfaces form in the alloys. And the mobile dislocation densities in the alloys increase as residual stress at the interface of W-phase/Mg matrix and long dislocations generate in the α-Mg matrix. Therefore, the damping of alloy with high W-phase content improves accordingly with the increasing amount of moving dislocations.

  19. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien

    2016-01-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  20. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu

    2016-06-21

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.