WorldWideScience

Sample records for strongly correlated superconductivity

  1. Strongly correlated superconductivity and quantum criticality

    Science.gov (United States)

    Tremblay, A.-M. S.

    Doped Mott insulators and doped charge-transfer insulators describe classes of materials that can exhibit unconventional superconducting ground states. Examples include the cuprates and the layered organic superconductors of the BEDT family. I present results obtained from plaquette cellular dynamical mean-field theory. Continuous-time quantum Monte Carlo evaluation of the hybridization expansion allows one to study the models in the large interaction limit where quasiparticles can disappear. The normal state which is unstable to the superconducting state exhibits a first-order transition between a pseudogap and a correlated metal phase. That transition is the finite-doping extension of the metal-insulator transition obtained at half-filling. This transition serves as an organizing principle for the normal and superconducting states of both cuprates and doped organic superconductors. In the less strongly correlated limit, these methods also describe the more conventional case where the superconducting dome surrounds an antiferromagnetic quantum critical point. Sponsored by NSERC RGPIN-2014-04584, CIFAR, Research Chair in the Theory of Quantum Materials.

  2. Superconductivity, Antiferromagnetism, and Kinetic Correlation in Strongly Correlated Electron Systems

    Directory of Open Access Journals (Sweden)

    Takashi Yanagisawa

    2015-01-01

    Full Text Available We investigate the ground state of two-dimensional Hubbard model on the basis of the variational Monte Carlo method. We use wave functions that include kinetic correlation and doublon-holon correlation beyond the Gutzwiller ansatz. It is still not clear whether the Hubbard model accounts for high-temperature superconductivity. The antiferromagnetic correlation plays a key role in the study of pairing mechanism because the superconductive phase exists usually close to the antiferromagnetic phase. We investigate the stability of the antiferromagnetic state when holes are doped as a function of the Coulomb repulsion U. We show that the antiferromagnetic correlation is suppressed as U is increased exceeding the bandwidth. High-temperature superconductivity is possible in this region with enhanced antiferromagnetic spin fluctuation and pairing interaction.

  3. Superconductivity in strongly correlated electron systems: successes and open questions

    International Nuclear Information System (INIS)

    Shastry, B. Sriram

    2000-01-01

    Correlated electronic systems and superconductivity is a field which has unique track record of producing exciting new phases of matter. The article gives an overview of trends in solving the problems of superconductivity and correlated electronic systems

  4. Weak-coupling superconductivity in a strongly correlated iron pnictide.

    Science.gov (United States)

    Charnukha, A; Post, K W; Thirupathaiah, S; Pröpper, D; Wurmehl, S; Roslova, M; Morozov, I; Büchner, B; Yaresko, A N; Boris, A V; Borisenko, S V; Basov, D N

    2016-01-05

    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.

  5. Superconductivity by charge and spin fluctuations in strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J. [Universitat Autonoma de Barcelona (Spain). Grup d`Electromagnetisme; Gonzalez-Leon, E. [Universitat Autonoma de Barcelona (Spain). Grup d`Electromagnetisme; Lopez Aguilar, F. [Universitat Autonoma de Barcelona (Spain). Grup d`Electromagnetisme; Puig-Puig, L. [Universitat Autonoma de Barcelona (Spain). Grup d`Electromagnetisme; Sanchez-Lopez, M.M. [Universitat Autonoma de Barcelona (Spain). Grup d`Electromagnetisme

    1995-02-01

    We obtain the effective potential from a screened coulombian interaction considering separately the interaction between fermions with parallel and antiparallel spins. In both cases we analyze the possibility of obtaining superconductivity. ((orig.)).

  6. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence

    Directory of Open Access Journals (Sweden)

    G. Baskaran

    2006-01-01

    Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.

  7. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

    Science.gov (United States)

    Davis, J. C. Séamus; Lee, Dung-Hai

    2013-01-01

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268

  8. Electronic structure and superconductivity in strongly correlated systems in the pseudogap regime

    Energy Technology Data Exchange (ETDEWEB)

    Puig-Puig, L.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Departament de Fisica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Ballaterra (Barcelona) (Spain)

    1995-12-15

    We propose effective potentials from a screened Coulomb interaction which arises from spin-fluctuation effects within a three-dimensional Hubbard single-band model for systems with strongly correlated electrons within the pseudogap regime. This regime is characterized by the existence in the normal state of at least two structures located at both sides of the Fermi level and split by a gap or pseudogap. This is the most crucial assumption in the analysis performed in this work. We consider the proposed effective interactions between fermions, analyzing the possibility of obtaining superconductivity by means of the formulation of the corresponding Dyson-like equations for the normal and anomalous one-body propagators in the state with bosonic condensation. We also include vertex effects within these effective fermion-fermion interactions and discuss their influence in this formalism in order to consider a Migdal-like theory appropriate to Hubbard systems. In cases where superconductivity is found, the critical temperature is obtained and the influence of the band and potential parameters is analyzed.

  9. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  10. Superconducting states in strongly correlated systems with nonstandard quasiparticles and real space pairing: an unconventional Fermi-liquid limit

    Directory of Open Access Journals (Sweden)

    J. Spałek

    2010-01-01

    Full Text Available We use the concept of generalized (almost localized Fermi Liquid composed of nonstandard quasiparticles with spin-dependence effective masses and the effective field induced by electron correlations. This Fermi liquid is obtained within the so-called statistically-consistent Gutzwiller approximation (SGA proposed recently [cf. J. Jędrak et al., arXiv: 1008.0021] and describes electronic states of the correlated quantum liquid. Particular emphasis is put on real space pairing driven by the electronic correlations, the Fulde-Ferrell state of the heavy-fermion liquid, and the d-wave superconducting state of high temperature curate superconductors in the overdoped limit. The appropriate phase diagrams are discussed showing in particular the limits of stability of the Bardeen-Cooper-Schrieffer (BCS type of state.

  11. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  12. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  13. Stimulated Superconductivity at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  14. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  15. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  16. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  17. Strong enhancement of superconductivity in a nanosized Pb bridge

    OpenAIRE

    Misko, V. R.; Fomin, V. M.; Devreese, J. T.

    2000-01-01

    In recent experiments with a superconducting nanosized Pb bridge formed between a scanning tunneling microscope tip and a substrate, superconductivity has been detected at magnetic fields, which are few times larger than the third (surface) critical field. We describe the observed phenomenon on the basis of a numerical solution of the Ginzburg-Landau equations in a model structure consisting of six conoids. The spatial distribution of the superconducting phase is shown to be strongly inhomoge...

  18. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  19. Induced spectral gap and pairing correlations from superconducting proximity effect

    Science.gov (United States)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  20. Strong Correlation Physics in Aromatic Hydrocarbon Superconductors

    Science.gov (United States)

    Capone, Massimo; Giovannetti, Gianluca

    2012-02-01

    We show, by means of ab-initio calculations, that electron-electron correlations play an important role in doped aromatic hydrocarbon superconductors, including potassium doped picene with Tc= 18K [1], coronene and phenanthrene [2]. For the case of picene the inclusion of exchange interactions by means of hybrid functionals reproduces the correct gap for the undoped compound and predicts an antiferromagnetic state for x=3, where superconductivity has been observed [3]. The latter finding is compatible with a sizable value of the correlation strength. The differences between the different compounds are analyzed and results of Dynamical Mean-Field Theory including both correlation effects and electron-phonon interactions are presented. Finally we discuss the consequences of strong correlations in an organic superconductor in relation to the properties of Cs3C60, in which electron correlations drive an antiferromagnetic state [4] but also lead to an enhancement of superconductivity [5]. 1. R. Mitsuhashi et al. Nature 464, 76 (2010)2. X.F. Wang et al, Nat. Comm. 2, 507 (2011)3. G. Giovannetti and M. Capone, Phys. Rev. B 83, 134508 (2011)4. Y. Takabayashi et al., Science 323, 1585 (2009)5. M. Capone et al. Rev. Mod. Phys. 81, 943 (2009

  1. Strong enhancement of superconductivity in a nanosized Pb bridge

    Science.gov (United States)

    Misko, V. R.; Fomin, V. M.; Devreese, J. T.

    2001-07-01

    In recent experiments with a superconducting nanosized Pb bridge formed between a scanning tunneling microscope tip and a substrate, superconductivity has been detected at magnetic fields, that are a few times larger than the third (surface) critical field. We describe the observed phenomenon on the basis of a numerical solution of the Ginzburg-Landau equations in a model structure consisting of six conoids. The spatial distribution of the superconducting phase is shown to be strongly inhomogeneous, with a concentration of the superconducting phase near the narrowest part (the ``neck'') of the bridge. We show that suppression of superconductivity in the bridge by applied magnetic field or by temperature first occurs near the bases and then in the neck region, what leads to a continuous superconducting-to-normal resistive transition. A position of the transition midpoint depends on temperature and, typically, is by one order of magnitude higher than the second critical field Hc2. We find that the vortex states can be realized in the bridge at low temperatures T/Tc<=0.6. The vortex states lead to a fine structure of the superconducting-to-normal resistive transition. We also analyze vortex states in the bridge that are characterized by a varying vorticity as a function of the bridge's height.

  2. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  3. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  4. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  5. Superconducting correlations in Hubbard chains with correlated hopping

    Science.gov (United States)

    Arrachea, L.; Aligia, A. A.; Gagliano, E.; Hallberg, K.; Balseiro, C.

    1994-12-01

    We consider an extended one-dimensional Hubbard model in which the magnitude of the hopping between two sites for particles with given spin depends on the occupation of the states with opposite spin at both sites. Diagonalizing exactly finite-size chains, and using known results of conformal field theory we delimit the regions of parameters for which two particles bind and the pair superconducting correlation functions are the dominant ones at large distances. For Coulomb repulsion U smaller than a critical density-dependent value Uc and any density, there are ranges of the ratios of the hopping parameters for which the superconducting fluctuations dominate. At half filling, for parameters within this range, a transition from a regime with dominant superconducting correlations to an insulating state takes place as a function of U. We also study the model for parameters near a recently found exactly solvable limit in which the number of doubly occupied sites is conserved.

  6. TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS

    Directory of Open Access Journals (Sweden)

    T.Domanski

    2004-01-01

    Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.

  7. NMR study of strongly correlated electron systems

    Science.gov (United States)

    Kitaoka, Y.; Tou, H.; Zheng, G.-q.; Ishida, K.; Asayama, K.; Kobayashi, T. C.; Kohda, A.; Takeshita, N.; Amaya, K.; Onuki, Y.; Geibel, G.; Schank, C.; Steglich, F.

    1995-02-01

    Various types of ground states in strongly correlated electron systems have been systematically investigated by means of NMR/NQR at low temperatures under high magnetic field and pressure. We focus on two well-known heavy-electron families, CeCu 2X 2 (X = Si and Ge) (Ce(122)) and UM 2Al 3 (M = Ni and Pd) (U(123)). The Cu NQR experiments on CeCu 2X 2 under high pressure indicate that the physical property of CeCu 2Ge 2 at high pressure, i.e. above the transition at 7.6 GPa from antiferromagnetic (AF) to superconductivity, are clearly related to tha CeCu 2Si 2 at ambient pressure. In addition to the H-T phase diagram established below 7 T, NMR and specific heat experiments on polycrystal CeCu 2.05Si 2 have revealed the presence of a new phase above 7 T. In a high-quality polycrystal of UPd 2Al 3 with a record high- Tc of 2 K at ambient pressure and the narrowest Al NQR line width, the nuclear-spin lattice relaxation rate, 27(1/ T1) measured in zero field has been found to obey the T3 law down to 0.13 K, giving strong evidence that the energy gap vanishes along lines on the Fermi surface. Thus it seems that all heavy-electron superconductors exhibit lines of zero gap, regardless of their different magnetic properties.

  8. Superconducting proximity effect in the strong-coupling limit

    International Nuclear Information System (INIS)

    Wilvert, W.

    1975-01-01

    A generalization of the theory of the superconducting proximity effect is presented which takes into account strong-coupling in the superconductors. The results are found to agree with a model of weak-coupled superconductors with differing Debye frequencies which are in proximity. It is found that logarithmic averaging of phonon frequencies is an improvement on the original McMillan theory (1968). Comparison of the theory with data on thin films and on eutectic alloys is found to give good agreement. 19 references

  9. Crossover from weak to strong coupling superconductivity in multi-band systems

    Energy Technology Data Exchange (ETDEWEB)

    Dinola Neto, Francisco [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, Niteroi, RJ, 24.210-340 (Brazil); Continentino, Mucio A [Centro Brasileiro de Pesquisas FIsicas, Rua Dr Xavier Sigaud, 150-Urca, Rio de Janeiro, RJ, 22290-180 (Brazil); Lacroix, Claudine, E-mail: claudine.lacroix@grenoble.cnrs.f [Institut Neel, CNRS-UJF, 25 avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2010-02-24

    The study of superconductivity in correlated systems is an exciting area of condensed matter physics. In this paper we consider superconducting ground states in systems described by two-band models with different effective masses. These two bands are coupled through an effective hybridization that can be directly tuned by pressure. We consider the cases of s-wave superconductivity associated with the electrons in a narrow band and also with inter-band pairing. To study the system in the strong coupling regime we introduce the s-wave scattering length a{sub s}, and obtain the superconducting order parameters and the chemical potential as functions of the interaction strength 1/k{sub F}a{sub s} along the BCS-BEC crossover at T = 0. Finally, we discuss the phase diagram of this model as a function of external pressure and how our results can be applied for two-band systems as Fe pnictides or heavy fermions. The main result of this study is the occurrence of a superconducting quantum critical point (SQCP) in this two-band model.

  10. Noise Spectroscopy in Strongly Correlated Oxides

    Science.gov (United States)

    Alsaqqa, Ali M.

    Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T thesis, we tried to answer this question by utilizing three different tuning parameters: temperature, voltage bias and strain. Our results point to an unusual noise behavior in the high-temperature metallic phase

  11. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  12. Superconductivity in Correlated Fermions System | Babalola ...

    African Journals Online (AJOL)

    We have studied the Hubbard model which is a model that is used to describe the physics of strongly correlated Fermions systems. Using the Hubbard model, we worked on some systems in one dimension (1-D) at half fillings. We employed the numerical exact diagonalization technique and found out that there was a ...

  13. Tunable superconducting critical temperature in ballistic hybrid structures with strong spin-orbit coupling

    Science.gov (United States)

    Simensen, Haakon T.; Linder, Jacob

    2018-02-01

    We present a theoretical description and numerical simulations of the superconducting transition in hybrid structures including strong spin-orbit interactions. The spin-orbit coupling is taken to be of Rashba type for concreteness, and we allow for an arbitrary magnitude of the spin-orbit strength as well as an arbitrary thickness of the spin-orbit coupled layer. This allows us to make contact with the experimentally relevant case of enhanced interfacial spin-orbit coupling via atomically thin heavy metal layers. We consider both interfacial spin-orbit coupling induced by inversion asymmetry in an S/F junction, as well as in-plane spin-orbit coupling in the ferromagnetic region of an S/F/S and an S/F structure. Both the pair amplitudes, local density of states, and critical temperature show dependency on the Rashba strength and, importantly, the orientation of the exchange field. In general, spin-orbit coupling increases the critical temperature of a proximity system where a magnetic field is present, and enhances the superconducting gap in the density of states. We perform a theoretical derivation which explains these results by the appearance of long-ranged singlet correlations. Our results suggest that Tc in ballistic spin-orbit coupled superconducting structures may be tuned by using only a single ferromagnetic layer.

  14. Fulleride Superconductors are Phonon-Driven and Strongly Correlated

    Science.gov (United States)

    Tosatti, Erio; Capone, Massimo; Castellani, Claudio; Fabrizio, Michele

    2010-03-01

    Superconductivity in trivalent alkali fullerides is believed to be phonon-driven and s-wave, similar in that to ordinary BCS systems. There is nonetheless in these materials a metal-Mott insulator transition upon lattice expansion, indicating exceedingly strong electron-electron correlations. Using Dynamical Mean Field Theory we solved a 3-band Hubbard model, including both electron-electron and (simplified) electron-phonon interactions, which yields a phase diagram [1] in striking agreement with the experimental one for the recently discovered expanded fulleride Cs3C60 as a function of pressure.[2] A dome-shaped superconducting order parameter, a pseudogap phase, and the subsequent Mott transition upon expansion thus assimilate the phonon driven fulleride superconductors to cuprates and to 2D organics, despite their obvious differences. Some experimental predictions are made, including a kinetic energy gain and a Drude weight increase in the superconducting state relative to the normal state, contrary to BCS, but similar to cuprates. [1] M. Capone, et al., Rev. Mod. Phys. 81,943 (2009); [2] Y. Takabayashi et al., Science 323, 1585 (2009).

  15. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity

    International Nuclear Information System (INIS)

    Nozieres, P.; Schmitt-Rink, S.

    1985-01-01

    We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth

  16. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  17. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  18. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  19. Quantum Transport in Strongly Correlated Systems

    DEFF Research Database (Denmark)

    Bohr, Dan

    2007-01-01

    the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...

  20. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  1. Strong magnetic field induces superconductivity in a Weyl semimetal

    Science.gov (United States)

    Rosenstein, Baruch; Shapiro, B. Ya.; Li, Dingping; Shapiro, I.

    2017-12-01

    Microscopic theory of the normal-to-superconductor coexistence line of a multiband Weyl superconductor subjected to magnetic field is constructed. It is shown that the Weyl semimetal that is nonsuperconducting or having a small critical temperature Tc at zero field might become a superconductor at higher temperatures when the magnetic field is tuned to a series of quantized values Hn. The pairing occurs on Landau levels. It is argued that the phenomenon is detectable much easier in Weyl semimetals than in parabolic band metals since the quantum limit already has been approached in several Weyl materials. The effect of Zeeman coupling leading to splitting of the reentrant superconducting regions on the magnetic phase diagram is considered. An experimental signature of the superconductivity on Landau levels is the reduction of magnetoresistivity. This has been observed already in Cd3As2 and several other compounds. The novel kind of quantum oscillations of magnetoresistance detected in ZrTe5 is discussed along these lines.

  2. Inhomogeneities in a strongly correlated d-wave superconductors in the limit of strong disorder

    Science.gov (United States)

    Chakraborty, Debmalya; Sensarma, Rajdeep; Ghosal, Amit

    2015-03-01

    The complex interplay of the strong correlations and impurities in a high temperature superconductor is analyzed within a Hartree-Fock-Bogoliubov theory, augmented with Gutzwiller approximation for taking care of the strong electronic repulsion. The inclusion of such correlations is found to play a crucial role in reducing inhomogeneities in both qualitative and quantitative manner. This difference is comprehended by investigating the underlying one-particle ``normal states'' that includes the order parameters in the Hartree and Fock channels in the absence of superconductivity. This amounts to the renormalization of disorder both on the lattice sites and also on links. These two components of disorder turn out to be spatially anti-correlated through self-consistency. Interestingly, a simple pairing theory in terms of these normal states is found to describe the complex behaviors of dirty cuprates with reasonable accuracy. However, this framework needs modifications in the limit where disorder strengths are comparable to the band width. We will discuss appropriate updates in the formalism to describe physics of inhomogeneities with strong disorder.

  3. Transport phenomena in strongly correlated Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kontani, Hiroshi [Nagoya Univ., Aichi (Japan). Dept. of Physics

    2013-03-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  4. Towards TDDFT for Strongly Correlated Materials

    Directory of Open Access Journals (Sweden)

    Shree Ram Acharya

    2016-09-01

    Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.

  5. Exploring the physics of superconducting qubits strongly coupled to microwave frequency photons

    Energy Technology Data Exchange (ETDEWEB)

    Wallraff, Andreas [ETH Zurich (Switzerland)

    2013-07-01

    Using modern micro and nano-fabrication techniques combined with superconducting materials we realize electronic circuits the properties of which are governed by the laws of quantum mechanics. In such circuits the strong interaction of photons with superconducting quantum two-level systems allows us to probe fundamental quantum properties of light and to develop components for applications in quantum information technology. Here, I present experiments in which we have created and probed entanglement between stationary qubits and microwave photons freely propagating down a transmission line. In these experiments we use superconducting parametric amplifiers realized in our lab to detect both qubit and photon states efficiently. Using similar techniques we aim at demonstrating a deterministic scheme for teleportation of quantum states in a macroscopic system based on superconducting circuits.

  6. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  7. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  8. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  9. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    Directory of Open Access Journals (Sweden)

    Yucel Yildirim

    2011-09-01

    Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.

  10. Correlation mediated superconductivity in a 'High-Tsub(c)' model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    A simple model is presented to account for the High-Tsub(c) perovskite superconductors. The superconducting mechanism is purely electronic and comes from local Hubbard correlations. The model comprises a Hubbard model for the copper sites with a single particle oxygen band between the two copper Hubbard bands. The electrons move only between nearest neighbour atoms which are of different types. Using two very different approximation schemes, one related to 'Slave-Boson' mean field theory and the other based on an exact local Fermion transformation, the possibility of copper-oxygen or a mixture of copper-oxygen and oxygen-oxygen pairing is shown. The author believes that the most promising situation for superconductivity is with the Oxygen band over half-filled and closer in energy to the lower Hubbard band. (author)

  11. A variational study of superconducting correlations within periodic Anderson model

    International Nuclear Information System (INIS)

    Dua, Piyush; Panwar, Sunil; Singh, Ishwar

    2005-01-01

    In this work we present the study of heavy fermion (HF) systems represented by the extended periodic Anderson model (PAM). A term, which contains the superconducting correlations, has been included in the conventional PAM. The study has been carried out at finite U. We have used the variational method. The variational wavefunction contains two variational parameters A kσ and B kσ . We have found that both the variational parameters are mutually dependent. We have studied ground state as well as finite temperature properties. We have found that T c increases, as J increases

  12. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  13. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.

    Science.gov (United States)

    Wallraff, A; Schuster, D I; Blais, A; Frunzio, L; Huang, R- S; Majer, J; Kumar, S; Girvin, S M; Schoelkopf, R J

    2004-09-09

    The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.

  14. PREFACE: International Conference on Strongly Correlated Electron Systems (SCES 2011)

    Science.gov (United States)

    Littlewood, P. B.; Lonzarich, G. G.; Saxena, S. S.; Sutherland, M. L.; Sebastian, S. E.; Artacho, E.; Grosche, F. M.; Hadzibabic, Z.

    2012-11-01

    The Strongly Correlated Electron Systems Conference (SCES) 2011, was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 was dedicated to 100 years of superconductivity and covered a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The meeting welcomed to Cambridge 657 participants from 23 countries, who presented 127 talks (including 16 plenary, 57 invited, and 54 contributed) and 736 posters in 40 sessions over five full days of meetings. This proceedings volume contains papers reporting on the science presented at the meeting. This work deepens our understanding of the rich physical phenomena that arise from correlation effects. Strongly correlated systems are known for their remarkable array of emergent phenomena: the traditional subjects of superconductivity, magnetism and metal-insulator transitions have been joined by non-Fermi liquid phenomena, topologically protected quantum states, atomic and photonic gases, and quantum phase transitions. These are some of the most challenging and interesting phenomena in science. As well as the science driver, there is underlying interest in energy-dense materials, which make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion

  15. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    International Nuclear Information System (INIS)

    Abuki, Hiroaki; Brauner, Tomas

    2008-01-01

    We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the 1/N expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and the chemical potential. As a consequence, it is significant even rather deep in the BCS regime, where phenomenologically interesting values of the quark-quark coupling are expected. Possible impact on the phase diagram of color-superconducting quark matter is discussed.

  16. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  17. Strongly-correlated ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Dao, Tung-Lam

    2008-01-01

    liquids, but also in unusual phases such as the normal state of high-temperature superconductivity with a pseudo gap (leading to a differentiation between nodes and anti-nodes) observed in condensed mater physics. In the second part of this thesis, we have performed theoretical studies of several phases of strongly correlated fermions in optical lattices in the framework of theoretical models such as the Hubbard model. We have implemented and developed analytical methods (Hartree-Fock mean field theory at weak coupling, mapping on a effective spin model at strong coupling) and numerical methods (the dynamic mean field theory approach). This work has led to two particular types of studies. The first one studies the competition between a superfluid phase and a density wave (or phase separation) for fermions with mass imbalance and attractive interaction. We have shown that the superfluid phase is unstable beyond a certain value of the mass ratio, which depends on the interaction. The second study treats a gas with imbalanced populations (polarized gas) with an attractive interaction in a three dimensional optical lattice. The main result is a phase diagram showing the stability of a uniform superfluid phase with polarization (Sarma phase or breached pair phase) in a certain parameter regime. Via an energetic argument, we concluded that the stability of the polarized superfluid phase is due to the reduction of the polarizability and the critical field of the non-polarized superfluid phase. In the strong coupling regime of the Hubbard model, within the DMFT method, we have shown that the formation of the preformed pair in the normal state reduces the polarizability and favors the stability of the breached pair phase. Although some aspects have been addressed in this thesis, many interesting questions still remain open for future work. In the first part, the framework of the novel spectroscopy method established in chapter 2 can allow for different concrete studies of the

  18. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field.

    Science.gov (United States)

    Schuster, D I; Wallraff, A; Blais, A; Frunzio, L; Huang, R-S; Majer, J; Girvin, S M; Schoelkopf, R J

    2005-04-01

    We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape with measurement power is observed and theoretically explained. For weak measurement a long intrinsic dephasing time of T2>200 ns of the qubit is found.

  19. Strong-coupling superconductivity in the two-dimensional t-J model supplemented by a hole-phonon interaction

    International Nuclear Information System (INIS)

    Sherman, A.; Schreiber, M.

    1995-01-01

    We use the Eliashberg formalism for calculating T c in a model of cuprate perovskites with pairing mediated by both magnons and apex-oxygen vibrations. The influence of strong correlations on the energy spectrum is taken into account in the spin-wave approximation. It is shown that the hole-magnon interaction alone cannot yield high T c . But together with a moderate hole-phonon interaction it does lead to d-wave superconductivity at temperatures and hole concentrations observed in cuprates. High T c are connected with a large density of states due to extended Van Hove singularities, a conformity of the two interactions for the d symmetry, and high phonon frequencies

  20. Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation

    International Nuclear Information System (INIS)

    Fan, J.D.; Malozovsky, Y.M.

    2013-01-01

    Highlights: • In a layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity. • The long-range antiferromagnetism quickly disappear with doping away from the Van Hove singularity. • For pnictides the antiferromagnetism exists as a result of the nesting condition. • Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist. -- Abstract: We consider the Hubbard model in terms of the perturbative diagrammatic approach (UN F ⩽1) where the interaction between two electrons with antiparallel spins in the lowest order of perturbation is described by the short-range repulsive contact (on-site) interaction (U>0). We argue that in layered 2D cuprates the long-range order antiferromagnetism is driven mainly by the Van Hove singularity, whereas in the case of pnictides the antiferromagnetism exists as a result of the nesting condition. We show that when the interaction is quite strong (UN F ≈1) in the case of the Van Hove singularity the electron system undergoes the antiferromagnetic phase transition with the log-range order parameter and large insulating gap. The long-range antiferromagnetism quickly disappear, as shown, with the doping away from the Van Hove singularity, but the antiferromagnetic short-range correlation persists (UN F < 1) due to Coulomb repulsive interaction which is the mechanism for superconductivity in cuprates. We argue that in the case of pnictides the antiferromagnetism appears when the nesting conditions for the Fermi surface are met. Since the doping steadily changes the nesting conditions, the antiferromagnetism and superconductivity may coexist as has been observed in pnictides. We show that the proximity of the antiferromagnetism and superconductivity implies the repulsive interaction between electrons, which turns into attractive between quasiparticles as shown by the authors in the article published on the same issue as this one

  1. PREFACE: Introduction to Strongly Correlated Electrons in New Materials

    Science.gov (United States)

    Kusmartsev, Feo V.

    2003-09-01

    The discovery of new natural and artificial materials has revolutionized condensed matter physics and our views on the role of correlations between electrons. Novel properties such as high-temperature superconductivity and colossal magnetoresistance discovered in these materials have overturned our conventional representations of condensed matter physics and pushed us to reconsider many well-established concepts. For example, we must treat the Coulomb interaction between electrons far beyond perturbation theory; we must recall long-forgotten ideas of electronic phase separation introduced originally by Nagaev in the 1960s; we must reconsider the role of electron--phonon and electron--magnon interactions, orbital degrees of freedom, the Rashba effect and many other aspects of condensed matter physics that are becoming increasingly important. In many novel materials, such as the two-dimensional electron gas, the energy associated with the Coulomb interaction is typically of the order of (or even larger than) the kinetic energy of electrons or the Fermi energy. Therefore perturbation theory and associated renormalization group methods are not applicable to these situations and we may expect to find a novel state of matter associated with correlation effects. It is worth mentioning the known examples of these states proposed recently, such as marginal Fermi liquids, novel metal--insulator phase transitions in the two-dimensional electron gas associated with new metallic and insulating states, structured liquids, microscopic electronic phase separations, stripes, strings, polarons and others. The discussion of these states is now on the frontier of modern condensed matter physics and is partially covered in this special issue. The demand to treat the Coulomb interaction properly has stimulated a development of many-body theory, which considers correlations as fully as possible. Strong correlations may play an important role in the dynamics of the electronic system. In a

  2. Shift of the superconducting critical parameters due to correlated disorder

    International Nuclear Information System (INIS)

    Gitterman, M.; Shapiro, I.; Shapiro, B.Ya.

    2012-01-01

    Shift of the critical temperature and second critical magnetic field are calculated for a superconductor with Gaussian correlated disorder. All calculations have been performed in the framework of the stochastic Ginzburg-Landau equation. For uncorrelated disorder the macroscopic critical temperature is determined by the average of the local critical temperature across the sample, while for correlated disorder both the critical temperature and the upper critical magnetic field depend on disorder correlation length. In a nonuniform superconductor with randomly distributed local critical temperature both the macroscopic critical temperature and the upper critical magnetic field strongly depend on the characteristic correlation length ρ 0 of correlated disorder. The shift of the macroscopic critical parameters from those for non-correlated disorder, which does not exist for white noise, is obtained for small ρ 0 in the framework of the Ginzburg-Landau theory.

  3. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    Science.gov (United States)

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  4. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    International Nuclear Information System (INIS)

    Natividad, E.; Castro, M.; Burriel, R.; Diez, J.C.; Navarro, R.; Angurel, L.A.

    2002-01-01

    The electric and thermal properties well above and below T c of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, J c , with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of T c , makes the relation difficult between the normal state resistivity and J c (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states. (author)

  5. Reflective Amplification without Population Inversion from a Strongly Driven Superconducting Qubit

    Science.gov (United States)

    Wen, P. Y.; Kockum, A. F.; Ian, H.; Chen, J. C.; Nori, F.; Hoi, I.-C.

    2018-02-01

    Amplification of optical or microwave fields is often achieved by strongly driving a medium to induce population inversion such that a weak probe can be amplified through stimulated emission. Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7% amplitude gain for a weak probe at frequencies in between the triplet. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. We find excellent agreement between the experimental results and numerical simulations without any free fitting parameters. Since our device consists of a single two-level artificial atom, the simplest possible quantum system, it can be viewed as the most fundamental version of a four-wave-mixing parametric amplifier.

  6. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  7. Nonperturbative stochastic dynamics driven by strongly correlated colored noise

    Science.gov (United States)

    Jing, Jun; Li, Rui; You, J. Q.; Yu, Ting

    2015-02-01

    We propose a quantum model consisting of two remote qubits interacting with two correlated colored noises and establish an exact stochastic Schrödinger equation for this open quantum system. It is shown that the quantum dynamics of the qubit system is profoundly modulated by the mutual correlation between baths and the bath memory capability through dissipation and fluctuation. We report a physical effect on generating inner correlation and entanglement of two distant qubits arising from the strong bath-bath correlation.

  8. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  9. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona (Spain))

    1993-07-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity.

  10. Joint statistics of strongly correlated neurons via dimensionality reduction

    Science.gov (United States)

    Deniz, Taşkın; Rotter, Stefan

    2017-06-01

    The relative timing of action potentials in neurons recorded from local cortical networks often shows a non-trivial dependence, which is then quantified by cross-correlation functions. Theoretical models emphasize that such spike train correlations are an inevitable consequence of two neurons being part of the same network and sharing some synaptic input. For non-linear neuron models, however, explicit correlation functions are difficult to compute analytically, and perturbative methods work only for weak shared input. In order to treat strong correlations, we suggest here an alternative non-perturbative method. Specifically, we study the case of two leaky integrate-and-fire neurons with strong shared input. Correlation functions derived from simulated spike trains fit our theoretical predictions very accurately. Using our method, we computed the non-linear correlation transfer as well as correlation functions that are asymmetric due to inhomogeneous intrinsic parameters or unequal input.

  11. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  12. Neutron Scattering and Its Application to Strongly Correlated Systems

    OpenAIRE

    Zaliznyak, Igor A.; Tranquada, John M.

    2013-01-01

    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an ...

  13. Strong pressure-energy correlations in van der Waals liquids

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Bailey, Nicholas; Schrøder, Thomas

    2008-01-01

    in the crystal and glass phases reflect an effective inverse power-law repulsive potential dominating fluctuations, even at zero and slightly negative pressure. In experimental data for supercritical argon, the correlations are found to be approximately 96%. Consequences for viscous liquid dynamics are discussed.......Strong correlations between equilibrium fluctuations of the configurational parts of pressure and energy are found in computer simulations of the Lennard-Jones liquid and other simple liquids, but not for hydrogen-bonding liquids such as methanol and water. The correlations that are present also...

  14. Charge frustration and quantum criticality for strongly correlated fermions

    NARCIS (Netherlands)

    Huijse, L.; Halverson, J.; Fendley, P.; Schoutens, K.

    2008-01-01

    We study a model of strongly correlated electrons on the square lattice which exhibits charge frustration and quantum critical behavior. The potential is tuned to make the interactions supersymmetric. We establish a rigorous mathematical result which relates quantum ground states to certain tiling

  15. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.

  16. Mismeasurement and the resonance of strong confounders: correlated errors.

    Science.gov (United States)

    Marshall, J R; Hastrup, J L; Ross, J S

    1999-07-01

    Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.

  17. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  18. Exact Kohn-Sham potential of strongly correlated finite systems

    International Nuclear Information System (INIS)

    Helbig, N.; Tokatly, I. V.; Rubio, A.

    2009-01-01

    The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.

  19. Magnetic properties of metallic impurities with strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Ringel, Matouš

    2009-01-01

    Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html

  20. Multiorbital simplified parquet equations for strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Augustinský, Pavel; Janiš, Václav

    2011-01-01

    Roč. 83, č. 3 (2011), "035114-1"-"035114-13" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GC202/07/J047 Institutional research plan: CEZ:AV0Z10100520 Keywords : multi-orbital model * strongly correlated electrons * parquet equations * Kondo regime Subject RIV: BE - Theoretical Physics Impact factor: 3.691, year: 2011 http://prb.aps.org/abstract/PRB/v83/i3/e035114

  1. Towards a large deviation theory for strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Guiomar, E-mail: guiomar.ruiz@upm.es [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros s.n., 28040 Madrid (Spain); Tsallis, Constantino, E-mail: tsallis@cbpf.br [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 (United States)

    2012-07-23

    A large-deviation connection of statistical mechanics is provided by N independent binary variables, the (N→∞) limit yielding Gaussian distributions. The probability of n≠N/2 out of N throws is governed by e{sup −Nr}, r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q,γ) are studied, the (N→∞) limit yielding Q-Gaussians (Q→1 recovers a Gaussian). Its large deviations are governed by e{sub q}{sup −Nr{sub q}} (∝1/N{sup 1/(q−1)}, q>1), q=(Q−1)/(γ[3−Q])+1. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics. -- Highlights: ► We introduce the formalism of relative entropy for a single random binary variable and its q-generalization. ► We study a model of N strongly correlated binary random variables and their large-deviation probabilities. ► Large-deviation probability of strongly correlated model exhibits a q-exponential decay whose argument is proportional to N, as extensivity requires. ► Our results point to a q-generalized large deviation theory and suggest a large-deviation foundation of nonextensive statistical mechanics.

  2. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.; Fletcher, L.; Pak, A.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Galtier, E.; Gericke, D. O.; Gregori, G.; Hastings, J.; Landen, O. L.; Le Pape, S.; Lee, H. J.; Nagler, B.; Neumayer, P.; Turnbull, D.; Vorberger, J.; White, T. G.; Wünsch, K.; Zastrau, U.; Glenzer, S. H.; Döppner, T.

    2014-05-01

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4k=4Å-1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  3. Sideband transitions and two-tone spectroscopy of a superconducting qubit strongly coupled to an on-chip cavity.

    Science.gov (United States)

    Wallraff, A; Schuster, D I; Blais, A; Gambetta, J M; Schreier, J; Frunzio, L; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-08-03

    Sideband transitions are spectroscopically probed in a system consisting of a Cooper pair box strongly but nonresonantly coupled to a superconducting transmission line resonator. When the Cooper pair box is operated at the optimal charge bias point, the symmetry of the Hamiltonian requires a two-photon process to access sidebands. The observed large dispersive ac-Stark shifts in the sideband transitions induced by the strong nonresonant drives agree well with our theoretical predictions. Sideband transitions are important in realizing qubit-photon and qubit-qubit entanglement in the circuit quantum electrodynamics architecture for quantum information processing.

  4. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  5. Theory and simulation of strong correlations in quantum Coulomb systems

    Science.gov (United States)

    Bonitz, M.; Semkat, D.; Filinov, A.; Golubnychyi, V.; Kremp, D.; Gericke, D. O.; Murillo, M. S.; Filinov, V.; Fortov, V.; Hoyer, W.; Koch, S. W.

    2003-06-01

    Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.

  6. Quantum simulation of strongly correlated condensed matter systems

    Science.gov (United States)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  7. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  8. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  9. Kondo memory in driven strongly correlated quantum dots.

    Science.gov (United States)

    Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano

    2013-08-23

    We investigate the real-time current response of strongly correlated quantum dot systems under sinusoidal driving voltages. By means of an accurate hierarchical equations of motion approach, we demonstrate the presence of prominent memory effects induced by the Kondo resonance on the real-time current response. These memory effects appear as distinctive hysteresis line shapes and self-crossing features in the dynamic current-voltage characteristics, with concomitant excitation of odd-number overtones. They emerge as a cooperative effect of quantum coherence-due to inductive behavior-and electron correlations-due to the Kondo resonance. We also show the suppression of memory effects and the transition to classical behavior as a function of temperature. All these phenomena can be observed in experiments and may lead to novel quantum memory applications.

  10. Correlation mediated superconductivity in a Spin Peierls Phase of the Hubbard Model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    The author explores the consequences of a mapping of the Hubbard Hamiltonian with a view to finding possible superconducting phases. The transformation pairs up all the sites and is therefore a much more natural starting point for describing a 'Spin Peierls' transition, generating enhanced singlet correlations for this pairing, than it is for describing the 'Resonating Valence Bond' state. It is shown that in the less than half filling case, an effective non-linear hopping Hamiltonian is quite useful in describing half of the electrons. This effective Hamiltonian can show a form of superconducting instability when nearest neighbour hopping is introduced to stabilise it. This superconducting phase seems to be a very unlikely possibility for the standard Hubbard model. (author)

  11. Bridging the Gap for High-Coherence, Strongly Coupled Superconducting Qubits

    Science.gov (United States)

    Yoder, Jonilyn; Kim, David; Baldo, Peter; Day, Alexandra; Fitch, George; Holihan, Eric; Hover, David; Samach, Gabriel; Weber, Steven; Oliver, William

    Crossovers can play a critical role in increasing superconducting qubit device performance, as long as device coherence can be maintained even with the increased fabrication and circuit complexity. Specifically, crossovers can (1) enable a fully-connected ground plane, which reduces spurious modes and crosstalk in the circuit, and (2) increase coupling strength between qubits by facilitating interwoven qubit loops with large mutual inductances. Here we will describe our work at MIT Lincoln Laboratory to integrate superconducting air bridge crossovers into the fabrication of high-coherence capacitively-shunted superconducting flux qubits. We will discuss our process flow for patterning air bridges by resist reflow, and we will describe implementation of air bridges within our circuits. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  12. Pair correlation functions of strongly coupled two-temperature plasma

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-09-01

    Using molecular dynamics simulations, we perform the first direct tests of three proposed models for the pair correlation functions of strongly coupled plasmas with species of unequal temperature. The models are all extensions of the Ornstein-Zernike/hypernetted-chain theory used to good success for equilibrium plasmas. Each theory is evaluated at several coupling strengths, temperature ratios, and mass ratios for a model plasma in which the electrons are positively charged. We show that the model proposed by Seuferling et al. [Phys. Rev. A 40, 323 (1989)] agrees well with molecular dynamics over a wide range of mass and temperature ratios, as well as over a range of coupling strength similar to that of the equilibrium hypernetted-chain (HNC) theory. The SVT model also correctly predicts the strength of interspecies correlations and exhibits physically reasonable long-wavelength limits of the static structure factors. Comparisons of the SVT model with the Yukawa one-component plasma (YOCP) model are used to show that ion-ion pair correlations are well described by the YOCP model up to Γe≈1 , beyond which it rapidly breaks down.

  13. Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium

    Directory of Open Access Journals (Sweden)

    David Dahmen

    2016-08-01

    Full Text Available Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.

  14. Imaginary-time formulation of strongly correlated nonequilibrium

    Science.gov (United States)

    Heary, Ryan Joseph

    Strongly correlated nanostructures and lattices of electrons are studied when these systems reside in a steady-state nonequilibrium. Much of the work done to date has made use of the nonequilibrium real-time Keldysh Green function technique. These methods include: the Keldysh Green function perturbation theory, time-dependent numerical renormalization group, density matrix renormalization group, and diagrammatic quantum Monte Carlo. In the special case of steady-state nonequilibrium we construct an imaginary-time theory. The motivation to do this is simple: there exist an abundant number of well-established strongly correlated computational solvers for imaginary-time theory and perturbation theory on the imaginary-time contour is much more straightforward than that of the real-time contour. The first model system we focus on is a strongly interacting quantum dot situated between source and drain electron reservoirs. The steady-state nonequilibrium boundary condition is established by applying a voltage bias phi across the reservoirs, in turn modifying the chemical potentials of the leads. For a symmetric voltage drop we have mu source = phi/2 and mudrain = -phi/2. The dynamics of the electrons are governed by the Hamiltonian Ĥ which is inherently independent of the imbalance in the source and drain chemical potentials. The statistics though are determined by the operator Ĥ-Ŷ , where Ŷ imposes the nonequilibrium boundary condition. We show that it is possible to construct a single effective Hamiltonian K̂ able to describe both the dynamics and statistics of the system. Upon formulating the theory we explicitly show that it is consistent with the real-time Keldysh theory both formally and through an example using perturbation theory. In these systems there exists a strong interplay between the interactions and nonequilibrium leading to novel nonperturbative phenomena. Therefore, we combine our theory with the Hirsch-Fye quantum Monte Carlo algorithm to study

  15. Muon spin relaxation studies in strongly correlated electron systems

    Science.gov (United States)

    Uemura, Y. J.; Luke, G. M.

    1993-05-01

    We describe recent progress of muon spin relaxation (μSR) studies in heavy-fermion (HF) and other strongly correlated electron systems. Measurements of the magnetic field penetration depth λ in HF superconductors UPt 3, URu 2Si 2, UPd 2Al 3 and U 2PtC 2 have revealed that these systems are characterized by large ratios Tc/ TF = 0.1-0.01 of Tc vs Fermi temperature TF derived from λ. This feature is common to high- Tc cuprate and other exotic superconductors. Zero-field μSR studies of magnetic order have elucidated a cross-over from spin glass ordering to nonmagnetic ground states in the ‘quadrupolar Kondo regime’ of (Y 1- xU x)Pd 3, and also suggested a possibility of incommensurate spin-density-wave (SDW) ordering in UNi 2Al 3.

  16. Doubly excited helium. From strong correlation to chaos

    International Nuclear Information System (INIS)

    Jiang, Yuhai

    2006-03-01

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I 15 , and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I 5 to I 9 and I 7 , respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I 4 were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I 4 by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  17. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  18. Bulk superconductivity at 84 K in the strongly overdoped regime of cuprates

    Science.gov (United States)

    Gauzzi, A.; Klein, Y.; Nisula, M.; Karppinen, M.; Biswas, P. K.; Saadaoui, H.; Morenzoni, E.; Manuel, P.; Khalyavin, D.; Marezio, M.; Geballe, T. H.

    2016-11-01

    By means of magnetization, specific heat, and muon-spin relaxation measurements, we investigate newly synthesized high-pressure oxidized Cu0.75Mo0.25Sr2YCu2O7.54 , in which overdoping is achieved up to p ˜0.46 hole/Cu, well beyond the Tc-p superconducting dome of cuprates, where Fermi-liquid behavior is expected. Surprisingly, we find bulk superconductivity with Tc=84 K and superfluid density similar to those of optimally doped YBa2Cu3O7 -δ . On the other hand, specific heat data display a large electronic contribution at low temperature, comparable to that of nonsuperconducting overdoped La2 -xSrxCuO4 . These results point at an unusual high-Tc phase with a large fraction of unpaired holes. Further experiments may assess the Fermi-liquid properties of the present phase, which would put into question the paradigm that the high Tc of cuprates originates from a non-Fermi-liquid ground state.

  19. Correlated electron-ion collisions in a strong laser field

    International Nuclear Information System (INIS)

    Ristow, T.

    2007-01-01

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  20. Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Vijay; Nguyen, Thuy-Anh; Mansell, Rhodri; Ritchie, David [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Mussler, Gregor [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425, Juelich (Germany)

    2016-03-15

    There is much current interest in combining superconductivity and spin-orbit coupling in order to induce the topological superconductor phase and associated Majorana-like quasiparticles which hold great promise towards fault-tolerant quantum computing. Experimentally these effects have been combined by the proximity-coupling of super-conducting leads and high spin-orbit materials such as InSb and InAs, or by controlled Cu-doping of topological insu-lators such as Bi{sub 2}Se{sub 3}. However, for practical purposes, a single-phase material which intrinsically displays both these effects is highly desirable. Here we demonstrate coexisting superconducting correlations and spin-orbit coupling in molecular-beam-epitaxy-grown thin films of GeTe. The former is evidenced by a precipitous low-temperature drop in the electrical resistivity which is quelled by a magnetic field, and the latter manifests as a weak antilocalisation (WAL) cusp in the magnetotransport. Our studies reveal several other intriguing features such as the presence of two-dimensional rather than bulk transport channels below 2 K, possible signatures of topological superconductivity, and unexpected hysteresis in the magnetotransport. Our work demonstrates GeTe to be a potential host of topological SC and Majorana-like excitations, and to be a versatile platform to develop quantum information device architectures. (copyright 2016 The Authors. Phys. Status Solidi RRL published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Correlated magnetic impurities in a superconductor: electron density profiles and robustness of superconductivity.

    Science.gov (United States)

    Sacramento, P D; Dugaev, V K; Vieira, V R; Araújo, M A N

    2010-01-20

    The insertion of magnetic impurities in a conventional superconductor leads to various effects. In this work we show that the electron density is affected by the spins (considered as classical) both locally and globally. The charge accumulation is solved self-consistently. This affects the transport properties along magnetic domain walls. Also, we show that superconductivity is more robust if the spin locations are not random but correlated. © 2010 IOP Publishing Ltd

  2. Strongly correlated electron physics in nanotube-encapsulated metallocene chains

    Science.gov (United States)

    García-Suárez, V. M.; Ferrer, J.; Lambert, C. J.

    2006-11-01

    The structural, electronic, and transport properties of metallocene molecules (MCp2) and isolated or nanotube-encapsulated metallocene chains are studied by using a combination of density functional theory and nonequilibrium Green’s functions. The analysis first discusses the whole series of isolated (MCp2) molecules, where M=V , Cr, Mn, Fe, Co, Ni, Ru, and Os. The series presents a rich range of electronic and magnetic behaviors due to the interplay between the crystal field interaction and Hund’s rules, as the occupation of the d shell increases. The article then shows how many of these interesting properties can also be seen when (MCp2) molecules are linked together to form periodic chains. Interestingly, a large portion of these chains display metallic, and eventually magnetic, behavior. These properties may render these systems as useful tools for spintronics applications but this is hindered by the lack of mechanical stability of the chains. It is finally argued that encapsulation of the chains inside carbon nanotubes, that is exothermic for radii larger than 4.5Å , provides the missing mechanical stability and electrical isolation. The structural stability, charge transfer, magnetic, and electronic behavior of the ensuing chains, as well as the modification of the electrostatic potential in the nanotube wall produced by the metallocenes are thoroughly discussed. We argue that the full devices can be characterized by two doped, strongly correlated Hubbard models whose mutual hybridization is almost negligible. The charge transferred from the chains produces a strong modification of the electrostatic potential in the nanotube walls, which is amplified in case of semiconducting and endothermic nanotubes. The transport properties of isolated metallocenes between semi-infinite nanotubes are also analyzed and shown to lead to important changes in the transmission coefficients of clean nanotubes for high energies.

  3. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  4. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  5. Segmented correlation measurements on superconducting bandpass delta-sigma modulator with and without input tone

    International Nuclear Information System (INIS)

    Bulzacchelli, John F; Lee, Hae-Seung; Hong, Merit Y; Misewich, James A; Ketchen, Mark B

    2003-01-01

    Segmented correlation is a useful technique for testing a superconducting analogue-to-digital converter, as it allows the output spectrum to be estimated with fine frequency resolution even when data record lengths are limited by small on-chip acquisition memories. Previously, we presented segmented correlation measurements on a superconducting bandpass delta-sigma modulator sampling at 40.2 GHz under idle channel (no input) conditions. This paper compares the modulator output spectra measured by segmented correlation with and without an input tone. Important practical considerations of calculating segmented correlations are discussed in detail. Resolution enhancement by segmented correlation does reduce the spectral width of the input tone in the desired manner, but the signal power due to the input increases the variance of the spectral estimate near the input frequency, hindering accurate calculation of the in-band noise. This increased variance, which is predicted by theory, must be considered carefully in the application of segmented correlation. Methods for obtaining more accurate estimates of the quantization noise spectrum which are closer to those measured with no input are described

  6. Fermiology of the strongly spin-orbit coupled superconductor Sn(1-x)In(x)Te: implications for topological superconductivity.

    Science.gov (United States)

    Sato, T; Tanaka, Y; Nakayama, K; Souma, S; Takahashi, T; Sasaki, S; Ren, Z; Taskin, A A; Segawa, Kouji; Ando, Yoichi

    2013-05-17

    We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.

  7. Hund Interaction, Spin-Orbit Coupling, and the Mechanism of Superconductivity in Strongly Hole-Doped Iron Pnictides

    Science.gov (United States)

    Vafek, Oskar; Chubukov, Andrey V.

    2017-02-01

    We present a novel mechanism of s -wave pairing in Fe-based superconductors. The mechanism involves holes near dx z/dy z pockets only and is applicable primarily to strongly hole doped materials. We argue that as long as the renormalized Hund's coupling J exceeds the renormalized interorbital Hubbard repulsion U', any finite spin-orbit coupling gives rise to s -wave superconductivity. This holds even at weak coupling and regardless of the strength of the intraorbital Hubbard repulsion U . The transition temperature grows as the hole density decreases. The pairing gaps are fourfold symmetric, but anisotropic, with the possibility of eight accidental nodes along the larger pocket. The resulting state is consistent with the experiments on KFe2 As2 .

  8. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    Science.gov (United States)

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  9. Relation of extended Van Hove singularities to high-temperature superconductivity within strong-coupling theory

    International Nuclear Information System (INIS)

    Radtke, R.J.; Norman, M.R.

    1994-01-01

    Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling

  10. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    2001) was an arte- fact of extreme directional selection for rapid development that led to changes in the correlational structure of develop- ment time, larval feeding rate, dry weight at eclosion, and preadult survivorship. A positive genetic correlation between larval feeding rate and development time in the control pop-.

  11. Excitonic condensation in systems of strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan

    2015-01-01

    Roč. 27, č. 33 (2015), s. 333201 ISSN 0953-8984 Institutional support: RVO:68378271 Keywords : electronic correlations * exciton * Bose-Einstein condensation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.209, year: 2015

  12. Study of the metal-insulator transition and superconducting correlations of a generalized Hubbard model

    Science.gov (United States)

    Arrachea, Liliana; Aligia, A. A.; Gagliano, E.

    1996-02-01

    We study the metal-insulator transition of a generalized Hubbard model in which the magnitude of the nearest-neighbor hopping depends on the occupations of the sites involved. Numerical results for finite chains at half-filling show that when 0 0 for which the system is metallic. This is consistent with a Hartree-Fock calculation. The metallic phase collapses to one point, U = 0, in the Hubbard limit. In the metallic phase we obtain that the superconducting correlations are the dominant ones, at least for doped systems.

  13. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  14. Strong Country Level Correlation between Syphilis and HSV-2 Prevalence

    Directory of Open Access Journals (Sweden)

    Chris Richard Kenyon

    2016-01-01

    Full Text Available Background. Syphilis is curable but Herpes Simplex Virus-2 (HSV-2 is not. As a result, the prevalence of syphilis but not HSV-2 may be influenced by the efficacy of national STI screening and treatment capacity. If the prevalence of syphilis and HSV-2 is found to be correlated, then this makes it more likely that something other than differential STI treatment is responsible for variations in the prevalence of both HSV-2 and syphilis. Methods. Simple linear regression was used to evaluate the relationship between national antenatal syphilis prevalence and HSV-2 prevalence in women in two time periods: 1990–1999 and 2008. Adjustments were performed for the laboratory syphilis testing algorithm used and the prevalence of circumcision. Results. The prevalence of syphilis was positively correlated with that of HSV-2 for both time periods (adjusted correlations, 20–24-year-olds: 1990–99: R2=0.54, P<0.001; 2008: R2=0.41, P<0.001 and 40–44-year-olds: 1990–99: R2=0.42, P<0.001; 2008: R2=0.49, P<0.001. Conclusion. The prevalence of syphilis and HSV-2 is positively correlated. This could be due to a common set of risk factors underpinning both STIs.

  15. Strong Country Level Correlation between Syphilis and HSV-2 Prevalence

    Science.gov (United States)

    Kenyon, Chris Richard; Tsoumanis, Achilleas

    2016-01-01

    Background. Syphilis is curable but Herpes Simplex Virus-2 (HSV-2) is not. As a result, the prevalence of syphilis but not HSV-2 may be influenced by the efficacy of national STI screening and treatment capacity. If the prevalence of syphilis and HSV-2 is found to be correlated, then this makes it more likely that something other than differential STI treatment is responsible for variations in the prevalence of both HSV-2 and syphilis. Methods. Simple linear regression was used to evaluate the relationship between national antenatal syphilis prevalence and HSV-2 prevalence in women in two time periods: 1990–1999 and 2008. Adjustments were performed for the laboratory syphilis testing algorithm used and the prevalence of circumcision. Results. The prevalence of syphilis was positively correlated with that of HSV-2 for both time periods (adjusted correlations, 20–24-year-olds: 1990–99: R 2 = 0.54, P < 0.001; 2008: R 2 = 0.41, P < 0.001 and 40–44-year-olds: 1990–99: R 2 = 0.42, P < 0.001; 2008: R 2 = 0.49, P < 0.001). Conclusion. The prevalence of syphilis and HSV-2 is positively correlated. This could be due to a common set of risk factors underpinning both STIs. PMID:27069710

  16. Rydberg-atom formation in strongly correlated ultracold plasmas

    International Nuclear Information System (INIS)

    Bannasch, G.; Pohl, T.

    2011-01-01

    In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.

  17. Some Applications of Holography to Study Strongly Correlated Systems

    Directory of Open Access Journals (Sweden)

    Bhatnagar Neha

    2018-01-01

    Full Text Available In this work, we study the transport coefficients of strongly coupled condensed matter systems using gauge/gravity duality (holography. We consider examples from the real world and evaluate the conductivities from their gravity duals. Adopting the bottom-up approach of holography, we obtain the frequency response of the conductivity for (1+1-dimensional systems. We also evaluate the DC conductivities for non-relativistic condensed matter systems with hyperscaling violating geometry.

  18. Electronic properties of strongly correlated fermions in nanostructures

    International Nuclear Information System (INIS)

    Lopez-Sandoval, R; Pastor, G M

    2004-01-01

    Lattice density-functional theory is applied to small clusters described by the Hubbard model in order to study the effect of the correlation on these nano-objects. Results for the ground-state energy and charge excitation gap of small clusters are presented and discussed as a function of the number of sites N a , Coulomb repulsion U/t, and band filling n

  19. Correlation of Fe-Based Superconductivity and Electron-Phonon Coupling in an FeAs /Oxide Heterostructure

    Science.gov (United States)

    Choi, Seokhwan; Johnston, Steven; Jang, Won-Jun; Koepernik, Klaus; Nakatsukasa, Ken; Ok, Jong Mok; Lee, Hyun-Jung; Choi, Hyun Woo; Lee, Alex Taekyung; Akbari, Alireza; Semertzidis, Yannis K.; Bang, Yunkyu; Kim, Jun Sung; Lee, Jhinhwan

    2017-09-01

    Interfacial phonons between iron-based superconductors (FeSCs) and perovskite substrates have received considerable attention due to the possibility of enhancing preexisting superconductivity. Using scanning tunneling spectroscopy, we studied the correlation between superconductivity and e -ph interaction with interfacial phonons in an iron-based superconductor Sr2VO3FeAs (Tc≈33 K ) made of alternating FeSC and oxide layers. The quasiparticle interference measurement over regions with systematically different average superconducting gaps due to the e -ph coupling locally modulated by O vacancies in the VO2 layer, and supporting self-consistent momentum-dependent Eliashberg calculations provide a unique real-space evidence of the forward-scattering interfacial phonon contribution to the total superconducting pairing.

  20. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Sinclair IV, John W [ORNL; Zuev, Yuri L [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Cook, Sylvester W [ORNL; Kumar, Dhananjay [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  1. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  2. Can strong correlations be experimentally revealed for Ҡ -mesons?

    Directory of Open Access Journals (Sweden)

    Hiesmayr Beatrix C.

    2014-01-01

    Full Text Available In 1964 the physicists John St. Bell working at CERN took the 1935-idea of Einstein-Podolsky-Rosen seriously and found that all theories based on local realism have to satisfy a certain inequality, nowadays dubbed Bell’s inequality. Experiments with ordinary matter systems or light show violations of Bell’s inequality favouring the quantum theory though a loophole free experiment has not yet been performed. This contribution presents an experimentally feasible Bell inequality for systems at higher energy scales, i.e. entangled neutral Ҡ -meson pairs that are typically produced in Φ -mesons decays or proton-antiproton annihilation processes. Strong requirements have to be overcome in order to achieve a conclusive tests, such a proposal was recently published. Surprisingly, this new Bell inequality reveals new features for weakly decaying particles, in particular, a strong sensitivity to the combined charge-conjugation-parity (CP symmetry. Here-with, a puzzling relation between a symmetry breaking for mesons and Bell’s inequality—which is a necessary and sufficient condition for the security of quantum cryptography protocols— is established. This becomes the more important since CP symmetry is related to the cosmological question why the antimatter disappeared after the Big Bang.

  3. Vector neural net identifying many strongly distorted and correlated patterns

    Science.gov (United States)

    Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.

    2005-01-01

    We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.

  4. Signatures of pairing in the magnetic excitation spectrum of strongly correlated two-leg ladders

    Science.gov (United States)

    Nocera, A.; Patel, N. D.; Dagotto, E.; Alvarez, G.

    2017-11-01

    Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the density matrix renormalization group technique, we calculate the dynamical spin structure factor S (k ,ω ) of a generalized t -U -J Hubbard model away from half filling in a two-leg ladder geometry. The addition of J enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength, that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of (π ,π ) . In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave vector krung=0 does not change substantially with doping where pairing dominates and thus plays a minor role. We discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one-dimensional magnetic materials can be measured and also address implications for recent resonant inelastic x-ray scattering experiments.

  5. Lattice disorder in strongly correlated lanthanide and actinide intermetallics

    International Nuclear Information System (INIS)

    Booth, C.H.; Bauer, E.D.; Maple, M.B.; Lawrence, J.M.; Kwei, G.H.; Sarrao, J.L.

    2001-01-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu 4 and UPd x Cu 5-x systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu 4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd x Cu 5-x series. Nevertheless, the measured bond-length disorder in UPdCu 4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model. (au)

  6. Quantum phase transitions of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Imada, Masatoshi

    1998-01-01

    Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions

  7. Lattice disorder in strongly correlated lanthanide and actinide intermetallics.

    Science.gov (United States)

    Booth, C H; Bauer, E D; Maple, M B; Lawrence, J M; Kwei, G H; Sarrao, J L

    2001-03-01

    Lanthanide and actinide intermetallic compounds display a wide range of correlated-electron behavior, including ferromagnetism, antiferromagnetism, nonmagnetic (Kondo) ground states, and so-called 'non-Fermi liquid' (NFL) behavior. The interaction between f electrons and the conduction band is a dominant factor in determining the ground state of a given system. However, lattice disorder can create a distribution of interactions, generating unusual physical properties. These properties may include NFL behavior in many materials. In addition, lattice disorder can cause deviations from standard Kondo behavior that is less severe than NFL behavior. A review of the lattice disorder mechanism within a tight-binding model is presented, along with measurements of the YbBCu4 and UPd(x)Cu(5-x) systems, demonstrating the applicability of the model. These measurements indicate that while the YbBCu4 system appears to be well ordered, both site interchange and continuous bond-length disorder occur in the UPd(x)Cu(5-x) series. Nevertheless, the measured bond-length disorder in UPdCu4 does not appear to be enough to explain the NFL properties simply with the Kondo disorder model.

  8. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  9. Three-qutrit correlations violate local realism more strongly than those of three qubits

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Gosal, Darwin; Ling, E.J.; Oh, C.H.; Kwek, L.C.; Zukowski, Marek

    2002-01-01

    We present numerical data showing that three-qutrit correlations for a pure state, which is not maximally entangled, violate local realism more strongly than three-qubit correlations. The strength of violation is measured by the minimal amount of noise that must be admixed to the system so that the noisy correlations have a local and realistic model

  10. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, Robert A.; Averitt, Richard D.

    2006-11-14

    Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale

  11. Description of the magnetic properties of strongly correlated disordered solid solutions in the coherent potential approximation

    Science.gov (United States)

    Korotin, M. A.; Skorikov, N. A.

    2015-06-01

    A method for electronic structure calculations of strongly correlated materials based on the coherent potential approximation is formulated and implemented. Method is applied for investigation of the electronic structure and local magnetic moments of the strongly correlated systems with d- and f-electrons: NiO-ZnO solid solution, nonstoichiometric perovskite LaMnO3-x, doped compound TiO2:Fe, and rare-earth transition-metal intermetallic compound GdNi2:Mn.

  12. Strongly correlated one-dimensional Bose–Fermi quantum mixtures: symmetry and correlations

    Science.gov (United States)

    Decamp, Jean; Jünemann, Johannes; Albert, Mathias; Rizzi, Matteo; Minguzzi, Anna; Vignolo, Patrizia

    2017-12-01

    We consider multi-component quantum mixtures (bosonic, fermionic, or mixed) with strongly repulsive contact interactions in a one-dimensional harmonic trap. In the limit of infinitely strong repulsion and zero temperature, using the class-sum method, we study the symmetries of the spatial wave function of the mixture. We find that the ground state of the system has the most symmetric spatial wave function allowed by the type of mixture. This provides an example of the generalized Lieb–Mattis theorem. Furthermore, we show that the symmetry properties of the mixture are embedded in the large-momentum tails of the momentum distribution, which we evaluate both at infinite repulsion by an exact solution and at finite interactions using a numerical DMRG approach. This implies that an experimental measurement of the Tan’s contact would allow to unambiguously determine the symmetry of any kind of multi-component mixture.

  13. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  14. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  15. Wilson loop correlators at strong coupling: from matrices to bubbling geometries

    Science.gov (United States)

    Gomis, Jaume; Matsuura, Shunji; Okuda, Takuya; Trancanelli, Diego

    2008-08-01

    We compute at strong coupling the large N correlation functions of supersymmetric Wilson loops in large representations of the gauge group with local operators of Script N = 4 super Yang-Mills. The gauge theory computation of these correlators is performed using matrix model techniques. We show that the strong coupling correlator of the Wilson loop with the stress tensor computed using the matrix model exactly matches the semiclassical computation of the correlator of the 't Hooft loop with the stress tensor, providing a non-trivial quantitative test of electric-magnetic duality of Script N = 4 super Yang-Mills. We then perform these calculations using the dual bulk gravitational picture, where the Wilson loop is described by a ``bubbling'' geometry. By applying holographic methods to these backgrounds we calculate the Wilson loop correlation functions, finding perfect agreement with our gauge theory results.

  16. Development of high-brightness ultrafast electron microscope for studying nanoscale dynamics associated with strongly correlated materials

    Science.gov (United States)

    Tao, Zhensheng

    Strongly correlated-electron materials are a class of materials that exhibit numerous intriguing emergent phenomena, including metal-to-insulator transition, colossal magnetoresistance, high-temperature superconductivity, etc. These phenomena are beyond the reach of the conventional solid state physics, which is based on the band theory. Instead, strong electron-electron correlations are found to play important roles, which leads to complicated interplay between different degrees of freedoms (charge, lattice, spins...). In this thesis, ultrafast electron diffraction (UED) is used to investigate the photo-induced ultrafast structural dynamics of strongly correlated materials, among which VO2 is taken as an exemplar system, one that reveals the fundamental physics behind photo-induced phase transitions, electron-electron correlation on nanometer scales, and the electron-phonon coupling in this exotic class of materials. The phenomena presented here are expected to have more general significance as they may reflect the physics to which other strongly correlated materials also conform. In polycrystalline VO2 thin films, the structural changes resulting from photoexcitation with femtosecond laser pulses with different wavelengths are observed to lead to non-thermal phase transitions, which require less energy compared to the phase transitions induced by thermal excitation. The details of the structural change are extracted from the UED results revealing stepwise atomic movements after photoexcitation, which suggests the phase transition starts with a dilation of the correlated d electrons. On the other hand, the structural phase transition is found to be decoupled from the metal-to-insulator transition when the sample dimension is reduced to the sub-micrometer scale, which is attributed to the interface charge doping effects from different substrates. A new phase (M3, monoclinic metallic phase) is distinguished, which has not been discussed by the existing theoretical

  17. Inducing Strong Non-Linearities in a Phonon Trapping Quartz Bulk Acoustic Wave Resonator Coupled to a Superconducting Quantum Interference Device

    Directory of Open Access Journals (Sweden)

    Maxim Goryachev

    2018-04-01

    Full Text Available A quartz Bulk Acoustic Wave resonator is designed to coherently trap phonons in such a way that they are well confined and immune to suspension losses so they exhibit extremely high acoustic Q-factors at low temperature, with Q × f products of order 10 18 Hz. In this work we couple such a resonator to a Superconducting Quantum Interference Device (SQUID amplifier and investigate effects in the strong signal regime. Both parallel and series connection topologies of the system are investigated. The study reveals significant non-Duffing response that is associated with the nonlinear characteristics of Josephson junctions. The nonlinearity provides quasi-periodic structure of the spectrum in both incident power and frequency. The result gives an insight into the open loop behaviour of a future Cryogenic Quartz Oscillator in the strong signal regime.

  18. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  19. Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach

    International Nuclear Information System (INIS)

    Kuleeva, N. A.; Kuchinskii, E. Z.

    2013-01-01

    The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears

  20. Nonlinear waves from a localized vortex source in strongly correlated fluids

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2017-11-01

    Highly charged quasi two-dimensional grain medium (complex plasma) is a remarkable test-bed to study wave like phenomena. Understanding of such wave propagation has many important applications in geophysics, petroleum engineering, and mining, earthquakes, and seismology. In the present study, for the first time, the propagation of nonlinear wave which originates from localized coherent vortex source has been studied using molecular dynamics simulation taking Yukawa liquids as a prototype for strongly correlated fluid. In this work, the coupling of transverse and longitudinal mode, effect of azimuthal speed of vortex source on the linear and nonlinear properties of generated wave will be presented as a function of strong correlation.

  1. Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    OpenAIRE

    Aryanpour, K.; Roberts, A.; Sandhu, A.; Rathore, R.; Shukla, A.; Mazumdar, S.

    2013-01-01

    Strong electron correlation effects in the photophysics of quasi-one-dimensional $\\pi$-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional $\\pi$-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with $D_{6h}$ symmetry. We show that...

  2. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  3. Communication: Thermodynamics of condensed matter with strong pressure-energy correlations

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Bøhling, Lasse; Schrøder, Thomas

    2012-01-01

    in the phase diagram of invariant structure and dynamics) are described by h(ρ)/T = Const., (2) the density-scaling exponent is a function of density only, and (3) a Grüneisen-type equation of state applies for the configurational degrees of freedom. For strongly correlating atomic systems one has h(ρ) = ∑n...

  4. The Role of screening in the strongly correlated 2D systems

    CERN Document Server

    Hwang, E H

    2003-01-01

    We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.

  5. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  6. Strongly Correlated Electron Systems in The Half Filled Band of The ...

    African Journals Online (AJOL)

    Strong correlation of interacting electrons has been widely studied under the single band Hubbard model with the aid of several techniques. These numerous studies have been carried out at different band filling. In this work, the ground state properties in the half filled band in one dimension are studied employing a ...

  7. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    Science.gov (United States)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2012-04-01

    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.

  8. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  9. Thermal Phase Transitions of Strongly Correlated Bosons with Spin-Orbit Coupling

    Science.gov (United States)

    Hickey, Ciarán; Paramekanti, Arun

    2014-12-01

    Experiments on ultracold atoms have started to explore lattice effects and thermal fluctuations for two-component bosons with spin-orbit coupling (SOC). Motivated by this, we derive and study a t J model for lattice bosons with equal Rashba-Dresselhaus SOC and strong Hubbard repulsion in a uniform Zeeman magnetic field. Using the Gutzwiller ansatz, we find strongly correlated ground states with stripe superfluid (SF) order. We formulate a finite temperature generalization of the Gutzwiller method, and show that thermal fluctuations in the doped Mott insulator drive a two-step melting of the stripe SF, revealing a wide regime of a stripe normal fluid.

  10. Quantum correlations responsible for remote state creation: strong and weak control parameters

    Science.gov (United States)

    Doronin, S. I.; Zenchuk, A. I.

    2017-03-01

    We study the quantum correlations between the two remote qubits (sender and receiver) connected by the transmission line (homogeneous spin-1/2 chain) depending on the parameters of the sender's and receiver's initial states (control parameters). We consider two different measures of quantum correlations: the entanglement (a traditional measure) and the informational correlation (based on the parameter exchange between the sender and receiver). We find the domain in the control parameter space yielding (i) zero entanglement between the sender and receiver during the whole evolution period and (ii) non-vanishing informational correlation between the sender and receiver, thus showing that the informational correlation is responsible for the remote state creation. Among the control parameters, there are the strong parameters (which strongly effect the values of studied measures) and the weak ones (whose effect is negligible), therewith the eigenvalues of the initial state are given a privileged role. We also show that the problem of small entanglement (concurrence) in quantum information processing is similar (in certain sense) to the problem of small determinants in linear algebra. A particular model of 40-node spin-1/2 communication line is presented.

  11. Probing spin correlations with phonons in the strongly frustrated magnet ZnCr2O4.

    Science.gov (United States)

    Sushkov, A B; Tchernyshyov, O; Ratcliff, W; Cheong, S W; Drew, H D

    2005-04-08

    The spin-lattice coupling plays an important role in strongly frustrated magnets. In ZnCr2O4, an excellent realization of the Heisenberg antiferromagnet on the pyrochlore network, a lattice distortion relieves the geometrical frustration through a spin-Peierls-like phase transition at T(c)=12.5 K. Conversely, spin correlations strongly influence the elastic properties of a frustrated magnet. By using infrared spectroscopy and published data on magnetic specific heat, we demonstrate that the frequency of an optical phonon triplet in ZnCr2O4 tracks the nearest-neighbor spin correlations above T(c). The splitting of the phonon triplet below T(c) provides a way to measure the spin-Peierls order parameter.

  12. Effects of Strong Correlations on the Disorder-Induced Zero Bias Anomaly

    Science.gov (United States)

    Atkinson, William; Song, Yun; Bulut, Sinan; Wortis, Rachel

    2009-03-01

    In conventional metals and semiconductors, density of states anomalies result from the interplay between disorder and interactions. Motivated by a number of experiments that find zero bias anomalies (ZBA) in transition metal oxides, we have performed calculations to determine the effect of strong correlations on the ZBA in disordered interacting systems. We use a self-consistent mean-field theory that incorporates strong correlations and treats spatial fluctuations of the disorder potential exactly. We discuss both the Anderson-Hubbard model and the extended Anderson-Hubbard model. We find that, even for a zero-range interaction, nonlocal self-energy corrections lead to the formation of an Altshuler-Aronov-like ZBA. In the extended Anderson-Hubbard model, Efros-Shklovskii-like physics dominates at large disorder.

  13. Extended Aharonov-Bohm period analysis of strongly correlated electron systems

    OpenAIRE

    Arita, Ryotaro; Kusakabe, Koichi; Kuroki, Kazuhiko; Aoki, Hideo

    1996-01-01

    The `extended Aharonov-Bohm (AB) period' recently proposed by Kusakabe and Aoki [J. Phys. Soc. Jpn (65), 2772 (1996)] is extensively studied numerically for finite size systems of strongly correlated electrons. While the extended AB period is the system length times the flux quantum for noninteracting systems, we have found the existence of the boundary across which the period is halved or another boundary into an even shorter period on the phase diagram for these models. If we compare this r...

  14. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  15. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E

    2015-01-01

    OBJECTIVE: It is well known that reproductive capacity is lower in obese individuals, but what mediators and signals are involved is unclear. Kisspeptin is a potent stimulator of GnRH release, and it has been suggested that kisspeptin neurons located in the arcuate nucleus transmit metabolic...... signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats...... with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0.004). CONCLUSION: We...

  16. Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping

    Science.gov (United States)

    Aligia, A. A.; Gagliano, E.; Arrachea, L.; Hallberg, K.

    1998-10-01

    We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n_b of spin down (up) electrons on both sites involved. The hopping parameters are t_{AA}, t_{AB} and t_{BB} for n_b=0,1,2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for t_{AB}superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences.

  17. Superconductivity with s and p symmetries in an extended Hubbard model with correlated hopping

    Energy Technology Data Exchange (ETDEWEB)

    Aligia, A.A.; Gagliano, E.; Hallberg, K. [Comision Nacional de Energia Atomica (CNEA), San Carlos de Bariloche (Argentina). Centro Atomico Bariloche (CAB); Arrachea, L. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, 01187 Dresden (Germany)

    1998-10-01

    We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation n{sub b} of spin down (up) electrons on both sites involved. The hopping parameters are t{sub AA}, t{sub AB} and t{sub BB} for n{sub b}=0,1,2 respectively. We briefly summarize results which support that the model exhibits s-wave superconductivity for certain parameters and extend them by studying the Berry phases. Using a generalized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for t{sub AB}superconductivity for a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with that obtained numerically using two quantized Berry phases (topological numbers) as order parameters. While this novel method supports the previous results, there are quantitative differences. (orig.) 68 refs.

  18. Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations

    Science.gov (United States)

    Lee, Tsung-Han

    Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials. This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we

  19. Selective Mottness as a key to iron superconductors: weak and strong correlations

    Science.gov (United States)

    de Medici, Luca

    2014-03-01

    I will discuss the strength of electronic correlations in the normal phase of Fe-superconductors and trace a comparison with cuprates. The phase diagram of the high-Tc cuprates is dominated by the Mott insulating phase of the parent compounds. Approaching it from large doping, a standard Fermi-liquid is seen to gradually turn into a bad non-Fermi liquid metal in which quasiparticles have heavily differentiated coherence depending on momentum, a process which culminates in the pseudogap regime, in which the antinodal region in momentum space acquires a gap before the material reaches a fully gapped Mott state. I will show that experiments for electron- and hole-doped BaFe2As2 support an analogous scenario. The doping evolution is dominated by the influence of a Mott insulator that would be realized for half-filled conduction bands, while the stoichiometric compound does not play a special role. Weakly and strongly correlated conduction electrons coexist in much of the phase diagram, a differentiation that increases with hole-doping. We identify the reason for this ``selective Mottness'' in a simple emergent mechanism, an ``orbital decoupling,'' triggered by the strong Hund's coupling. When this mechanism is active charge excitations in the different orbitals are decoupled and each orbital behaves as a single band Hubbard model, where the correlation degree almost only depends on how doped is each orbital from half-filling. This scenario reconciles contrasting evidences on the electronic correlation strength, implies a strong asymmetry between hole- and electron-doping and establishes a deep connection with the cuprates. L. de' Medici, G. Giovannetti and M. Capone, ArXiv:1212.3966 Work supported by CNRS - ESPCI ParisTech, France

  20. Microstructural and crystallographic imperfections of MgB2 superconducting wire and their correlation with the critical current density

    Science.gov (United States)

    Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho

    2014-01-01

    A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.

  1. Theoretical development and first-principles analysis of strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    A variety of quantum many-body methods have been developed for studying the strongly correlated electron systems. We have also proposed a computationally efficient and accurate approach, named the correlation matrix renormalization (CMR) method, to address the challenges. The initial implementation of the CMR method is designed for molecules which have theoretical advantages, including small size of system, manifest mechanism and strongly correlation effect such as bond breaking process. The theoretic development and benchmark tests of the CMR method are included in this thesis. Meanwhile, ground state total energy is the most important property of electronic calculations. We also investigated an alternative approach to calculate the total energy, and extended this method for magnetic anisotropy energy (MAE) of ferromagnetic materials. In addition, another theoretical tool, dynamical mean- field theory (DMFT) on top of the DFT , has also been used in electronic structure calculations for an Iridium oxide to study the phase transition, which results from an interplay of the d electrons' internal degrees of freedom.

  2. On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Sakhel, Roger R., E-mail: rogersakhel@yahoo.com [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Balqa Applied University, Amman 11134 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)

    2015-12-01

    The dynamics of a Bose–Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross–Pitaevskii equation is solved numerically by the split-step Crank–Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.

  3. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  4. Fermionic Statistics in the Strongly Correlated Limit of Density Functional Theory

    Science.gov (United States)

    2017-01-01

    Exact pieces of information on the adiabatic connection integrand, Wλ[ρ], which allows evaluation of the exchange-correlation energy of Kohn–Sham density functional theory, can be extracted from the leading terms in the strong coupling limit (λ → ∞, where λ is the strength of the electron–electron interaction). In this work, we first compare the theoretical prediction for the two leading terms in the strong coupling limit with data obtained via numerical implementation of the exact Levy functional in the simple case of two electrons confined in one dimension, confirming the asymptotic exactness of these two terms. We then carry out a first study on the incorporation of the Fermionic statistics at large coupling λ, both numerical and theoretical, confirming that spin effects enter at orders ∼e–√λ. PMID:29111724

  5. Discovering, Understanding and Predicting Emergent Phenomena at Strongly Correlated Oxide Interfaces

    Science.gov (United States)

    2013-03-31

    avenues to test our hypothesis that RP phases would be less accommodating than perovskites to point defects: comparison of the properties of (i) the... properties of materials, the next question is how does it impact transport properties ? Emergent phenomena, including superconductivity and magnetism ...oxide analogs of lattice-matched perovskites that offer increased oxygen stability, higher carrier densities, and an intrinsically reduced dimensionality

  6. Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices

    Science.gov (United States)

    2013-08-29

    ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709...Superconductivity:100 years young", Natal, Brasil , May 16-27 (2011). 30. Invited speaker, \\Workshop on Frontiers in Ultracold Fermi Gases", ICTP, Trieste

  7. Microscopic origin of marginal Fermi-liquid in strongly correlated spin systems

    International Nuclear Information System (INIS)

    Protogenov, A.P.; Ryndyk, D.A.

    1992-08-01

    We consider the consequences of separation of spin and charge degrees of freedom in 2+1D strongly correlated spin systems. Self-consistent spin and charge motions induced by doping in sites of ground and dual lattices form such a spectrum of quasiparticles which together with the dispersionless character of the collective excitation spectrum and the chemical potential pinning in the band centre yield the necessary behavior of charge and spin polarizability to support the theory of marginal liquid formulated by C.M. Varma et al. (Phys. Rev. Lett. 63, 1996 (1989)). (author). 28 refs, 4 figs

  8. Entanglement-enhanced information transfer through strongly correlated systems and its application to optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Yang Song [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026 (China); Bayat, Abolfazl; Bose, Sougato [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2011-08-15

    We show that the inherent entanglement of the ground state of strongly correlated systems can be exploited for both classical and quantum communications. Our strategy is based on a single-qubit rotation that encodes information in the entangled nature of the ground state. In classical communication, our mechanism conveys more than one bit of information in each shot, just as dense coding does, without demanding long-range entanglement. In our scheme for quantum communication, the quality is higher than the widely studied attaching scenarios. Moreover, we propose to implement this way of communication in optical lattices.

  9. Magnetic and resonant X-ray scattering investigations of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Paolasini, L.; Bergevin, F. de

    2008-01-01

    Resonant X-ray scattering is a method which combines high-Q resolution X-ray elastic diffraction and atomic core-hole spectroscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques, which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly correlated electron systems. (authors)

  10. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    Science.gov (United States)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  11. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    Science.gov (United States)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  12. Electronic Correlations, Jahn-Teller Distortions and Mott Transition to Superconductivity in Alkali-C60 Compounds

    Directory of Open Access Journals (Sweden)

    Alloul H.

    2012-03-01

    Full Text Available The discovery in 1991 of high temperature superconductivity (SC in A3C60 compounds, where A is an alkali ion, has been rapidly ascribed to a BCS mechanism, in which the pairing is mediated by on ball optical phonon modes. While this has lead to consider that electronic correlations were not important in these compounds, further studies of various AnC60 with n=1, 2, 4 allowed to evidence that their electronic properties cannot be explained by a simple progressive band filling of the C60 six-fold degenerate t1u molecular level. This could only be ascribed to the simultaneous influence of electron correlations and Jahn-Teller Distortions (JTD of the C60 ball, which energetically favour evenly charged C60 molecules. This is underlined by the recent discovery of two expanded fulleride Cs3C60 isomeric phases which are Mott insulators at ambient pressure. Both phases undergo a pressure induced first order Mott transition to SC with a (p, T phase diagram displaying a dome shaped SC, a common situation encountered nowadays in correlated electron systems. NMR experiments allowed us to study the magnetic properties of the Mott phases and to evidence clear deviations from BCS expectations near the Mott transition. So, although SC involves an electron-phonon mechanism, the incidence of electron correlations has an importance on the electronic properties, as had been anticipated from DMFT calculations.

  13. Strongdeco: Expansion of analytical, strongly correlated quantum states into a many-body basis

    Science.gov (United States)

    Juliá-Díaz, Bruno; Graß, Tobias

    2012-03-01

    We provide a Mathematica code for decomposing strongly correlated quantum states described by a first-quantized, analytical wave function into many-body Fock states. Within them, the single-particle occupations refer to the subset of Fock-Darwin functions with no nodes. Such states, commonly appearing in two-dimensional systems subjected to gauge fields, were first discussed in the context of quantum Hall physics and are nowadays very relevant in the field of ultracold quantum gases. As important examples, we explicitly apply our decomposition scheme to the prominent Laughlin and Pfaffian states. This allows for easily calculating the overlap between arbitrary states with these highly correlated test states, and thus provides a useful tool to classify correlated quantum systems. Furthermore, we can directly read off the angular momentum distribution of a state from its decomposition. Finally we make use of our code to calculate the normalization factors for Laughlin's famous quasi-particle/quasi-hole excitations, from which we gain insight into the intriguing fractional behavior of these excitations. Program summaryProgram title: Strongdeco Catalogue identifier: AELA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5475 No. of bytes in distributed program, including test data, etc.: 31 071 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which Mathematica can be installed Operating system: Linux, Windows, Mac Classification: 2.9 Nature of problem: Analysis of strongly correlated quantum states. Solution method: The program makes use of the tools developed in Mathematica to deal with multivariate polynomials to decompose analytical strongly correlated states of bosons

  14. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    International Nuclear Information System (INIS)

    Backes, Steffen

    2017-04-01

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  16. Density functional theory and dynamical mean-field theory. A way to model strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen

    2017-04-15

    The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non

  17. High-Tc superconductivity in the d-p electron system

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zaitsev, R.A.

    1991-01-01

    The relaxation time with spin flip τ s and the parameters ξ, δ, χ of superconducting phase have been calculated on the basis of the kinematical mechanism of superconductivity in strongly correlated oxide models. An inter-relation between the superconducting gap Δ o and the specific heat jump Δ c allowing the experimental verification was obtained and the Ginsburg-Landau equation derived. (author). 8 refs., 2 figs

  18. The ALPS project release 2.0: open source software for strongly correlated systems

    International Nuclear Information System (INIS)

    Bauer, B; Gamper, L; Gukelberger, J; Hehn, A; Isakov, S V; Ma, P N; Mates, P; Carr, L D; Evertz, H G; Feiguin, A; Freire, J; Koop, D; Fuchs, S; Gull, E; Guertler, S; Igarashi, R; Matsuo, H; Parcollet, O; Pawłowski, G; Picon, J D

    2011-01-01

    We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/

  19. Numerical path integral solution to strong Coulomb correlation in one dimensional Hooke's atom

    Science.gov (United States)

    Ruokosenmäki, Ilkka; Gholizade, Hossein; Kylänpää, Ilkka; Rantala, Tapio T.

    2017-01-01

    We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic structure calculations and quantum dynamics, which includes correlations between particles exactly but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke's atom, a two-electron system with very strong correlation, as our test case, which we solve with incoherent RTPI (iRTPI) and compare against DMC. This system provides an excellent test case due to exact solutions for some confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case of strong confinements.

  20. Describing nonequilibrium behavior in strongly correlated materials via dynamical mean-field theory

    Science.gov (United States)

    Freericks, James

    2010-03-01

    Dynamical mean-field theory was introduced in 1989 and has become one of the most successful methods for solving models of strongly correlated electrons in equilibrium (it becomes exact in the infinite-dimensional limit). In this talk, I show how to generalize dynamical mean-field theory to nonequilibrium situations. For transient response, one discretizes the Kadanoff-Baym-Keldysh contour then solves the discrete problem directly. For steady-state response, one can formulate a theory directly in the long-time limit for the retarded Green's functions. These techniques are applied to the problem of the quenching of Bloch oscillations due to electron-electron interactions and to the problem of time-resolved pump/probe photoemission spectroscopy of strongly correlated electrons when a system is driven to a nonequilibrium steady state and cannot be described by the quasiequilibrium approximation with an effective temperature. This work was completed in collaboration with Tom Devereaux, Sasha Joura, Hulikal Krishnamurthy, Brian Moritz, Thomas Pruschke, Volodomyr Turkowski, and Velko Zlati'c. Recent references include: J. K. Freericks, V. M. Turkowski, and V. Zlati'c, Phys. Rev. Lett. 97, 266408 (2006); J. K. Freericks, Phys. Rev. B 77, 075109 (2008); A. V.Joura, J. K. Freericks, and Th. Pruschke, Phys. Rev. Lett. 101, 196401 (2008); J. K. Freericks, H. R. Krishnamurthy and Th. Pruschke, Phys. Rev. Lett. 102, 136401 (2009); and B. Moritz, T. P. Devereaux, and J. K. Freericks, arXiv:0908.1807.

  1. Ensemble DFT Approach to Excited States of Strongly Correlated Molecular Systems.

    Science.gov (United States)

    Filatov, Michael

    2016-01-01

    Ensemble density functional theory (DFT) is a novel time-independent formalism for obtaining excitation energies of many-body fermionic systems. A considerable advantage of ensemble DFT over the more common Kohn-Sham (KS) DFT and time-dependent DFT formalisms is that it enables one to account for strong non-dynamic electron correlation in the ground and excited states of molecular systems in a transparent and accurate fashion. Despite its positive aspects, ensemble DFT has not so far found its way into the repertoire of methods of modern computational chemistry, probably because of the perceived lack of practically affordable implementations of the theory. The spin-restricted ensemble-referenced KS (REKS) method is perhaps the first computationally feasible implementation of the ideas behind ensemble DFT which enables one to describe accurately electronic transitions in a wide class of molecular systems, including strongly correlated molecules (biradicals, molecules undergoing bond breaking/formation), extended π-conjugated systems, donor-acceptor charge transfer adducts, etc.

  2. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.

    Science.gov (United States)

    Li, Tianqi; Patz, Aaron; Mouchliadis, Leonidas; Yan, Jiaqiang; Lograsso, Thomas A; Perakis, Ilias E; Wang, Jigang

    2013-04-04

    The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.

  3. Novel strongly correlated electron states in filled skutterudite lanthanide osmium antimonides

    International Nuclear Information System (INIS)

    Maple, M.B.; Frederick, N.A.; Ho, P.-C.; Yuhasz, W.M.; Sayles, T.A.; Butch, N.P.; Jeffries, J.R.; Taylor, B.J.

    2005-01-01

    Recent measurements on the filled skutterudite compounds Pr(Os 1-x Ru x ) 4 Sb 12 , NdOs 4 Sb 12 , and SmOs 4 Sb 12 are discussed. Pr(Os 1-x Ru x ) 4 Sb 12 displays superconductivity for all values of x with a minimum at x=0.6, and only the compounds with x 4 Sb 12 and the BCS superconductivity of PrRu 4 Sb 12 . NdOs 4 Sb 12 is a heavy fermion ferromagnet, with a sharp transition observed at 1.0K. SmOs 4 Sb 12 is also a heavy fermion material, and it may display weak ferromagnetic behavior below 2.6K

  4. Strongly correlated fermions in 2 D : Variational Monte Carlo study of magnetism and supraconductivity

    Science.gov (United States)

    Giamarchi, Thierry; Lhuillier, Claire

    1990-08-01

    Variational Monte Carlo techniques have been used to investigate the nature of the fundamental state of the Hubbard's for repulsions in the range 4 < {U}/{t} < 10 and for dopings up to 0.4. Away from half filling the antiferromagnetic phase is to be unstable against the formation of diagonal domain walls. This phase with diagonal domain walls is at our knowled stabler phase actually exhibited, but the antiferromagnetic order may still be stabilized by a superconducting pairing.

  5. Dramatic reduction of dimensionality in large biochemical networks owing to strong pair correlations

    Science.gov (United States)

    Dworkin, Michael; Mukherjee, Sayak; Jayaprakash, Ciriyam; Das, Jayajit

    2012-01-01

    Large multi-dimensionality of high-throughput datasets pertaining to cell signalling and gene regulation renders it difficult to extract mechanisms underlying the complex kinetics involving various biochemical compounds (e.g. proteins and lipids). Data-driven models often circumvent this difficulty by using pair correlations of the protein expression levels to produce a small number (fewer than 10) of principal components, each a linear combination of the concentrations, to successfully model how cells respond to different stimuli. However, it is not understood if this reduction is specific to a particular biological system or to nature of the stimuli used in these experiments. We study temporal changes in pair correlations, described by the covariance matrix, between concentrations of different molecular species that evolve following deterministic mass-action kinetics in large biologically relevant reaction networks and show that this dramatic reduction of dimensions (from hundreds to less than five) arises from the strong correlations between different species at any time and is insensitive to the form of the nonlinear interactions, network architecture, and to a wide range of values of rate constants and concentrations. We relate temporal changes in the eigenvalue spectrum of the covariance matrix to low-dimensional, local changes in directions of the system trajectory embedded in much larger dimensions using elementary differential geometry. We illustrate how to extract biologically relevant insights such as identifying significant timescales and groups of correlated chemical species from our analysis. Our work provides for the first time, to our knowledge, a theoretical underpinning for the successful experimental analysis and points to a way to extract mechanisms from large-scale high-throughput datasets. PMID:22378749

  6. Dramatic reduction of dimensionality in large biochemical networks owing to strong pair correlations.

    Science.gov (United States)

    Dworkin, Michael; Mukherjee, Sayak; Jayaprakash, Ciriyam; Das, Jayajit

    2012-08-07

    Large multi-dimensionality of high-throughput datasets pertaining to cell signalling and gene regulation renders it difficult to extract mechanisms underlying the complex kinetics involving various biochemical compounds (e.g. proteins and lipids). Data-driven models often circumvent this difficulty by using pair correlations of the protein expression levels to produce a small number (fewer than 10) of principal components, each a linear combination of the concentrations, to successfully model how cells respond to different stimuli. However, it is not understood if this reduction is specific to a particular biological system or to nature of the stimuli used in these experiments. We study temporal changes in pair correlations, described by the covariance matrix, between concentrations of different molecular species that evolve following deterministic mass-action kinetics in large biologically relevant reaction networks and show that this dramatic reduction of dimensions (from hundreds to less than five) arises from the strong correlations between different species at any time and is insensitive to the form of the nonlinear interactions, network architecture, and to a wide range of values of rate constants and concentrations. We relate temporal changes in the eigenvalue spectrum of the covariance matrix to low-dimensional, local changes in directions of the system trajectory embedded in much larger dimensions using elementary differential geometry. We illustrate how to extract biologically relevant insights such as identifying significant timescales and groups of correlated chemical species from our analysis. Our work provides for the first time, to our knowledge, a theoretical underpinning for the successful experimental analysis and points to a way to extract mechanisms from large-scale high-throughput datasets.

  7. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    would be a great contribution in the growing field of quantum optics in semiconductors. The efforts in QD systems are again driven by the atomic systems which not only have shown the vacuum Rabi splitting, but also the second rung, e.g. via direct spectroscopy and via photon-correlation measurements. In this thesis, it is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission. The resonance fluorescence equations are derived and solved for strong-coupling semiconductor quantum-dot systems using a fully quantized multimode theory and a cluster-expansion approach. A reduced model is developed to explain the origin of auto- and cross-correlation resonances in the two-photon emission spectrum of the fluorescent light. These resonances are traced back to the two-photon strong-coupling states of Jaynes-Cummings ladder. The accuracy of the reduced model is verified via numerical solution of the resonance fluorescence equations. The analysis reveals the direct relation between the squeezed-light emission and the strong-coupling states in optically excited semiconductor systems. (orig.)

  8. Two-dimensional superconducting state of monolayer Pb films grown on GaAs(110) in a strong parallel magnetic field.

    Science.gov (United States)

    Sekihara, Takayuki; Masutomi, Ryuichi; Okamoto, Tohru

    2013-08-02

    Two-dimensional (2D) superconductivity was studied by magnetotransport measurements on single-atomic-layer Pb films on a cleaved GaAs(110) surface. The superconducting transition temperature shows only a weak dependence on the parallel magnetic field up to 14T, which is higher than the Pauli paramagnetic limit. Furthermore, the perpendicular-magnetic-field dependence of the sheet resistance is almost independent of the presence of the parallel field component. These results are explained in terms of an inhomogeneous superconducting state predicted for 2D metals with a large Rashba spin splitting.

  9. Strong electron correlation in the decomposition reaction of dioxetanone with implications for firefly bioluminescence.

    Science.gov (United States)

    Greenman, Loren; Mazziotti, David A

    2010-10-28

    Dioxetanone, a key component of the bioluminescence of firefly luciferin, is itself a chemiluminescent molecule due to two conical intersections on its decomposition reaction surface. While recent calculations of firefly luciferin have employed four electrons in four active orbitals [(4,4)] for the dioxetanone moiety, a study of dioxetanone [F. Liu et al., J. Am. Chem. Soc. 131, 6181 (2009)] indicates that a much larger active space is required. Using a variational calculation of the two-electron reduced-density-matrix (2-RDM) [D. A. Mazziotti, Acc. Chem. Res. 39, 207 (2006)], we present the ground-state potential energy surface as a function of active spaces from (4,4) to (20,17) to determine the number of molecular orbitals required for a correct treatment of the strong electron correlation near the conical intersections. Because the 2-RDM method replaces exponentially scaling diagonalizations with polynomially scaling semidefinite optimizations, we readily computed large (18,15) and (20,17) active spaces that are inaccessible to traditional wave function methods. Convergence of the electron correlation with active-space size was measured with complementary RDM-based metrics, the von Neumann entropy of the one-electron RDM as well as the Frobenius and infinity norms of the cumulant 2-RDM. Results show that the electron correlation is not correctly described until the (14,12) active space with small variations present through the (20,17) space. Specifically, for active spaces smaller than (14,12), we demonstrate that at the first conical intersection, the electron in the σ(∗) orbital of the oxygen-oxygen bond is substantially undercorrelated with the electron of the σ orbital and overcorrelated with the electron of the carbonyl oxygen's p orbital. Based on these results, we estimate that in contrast to previous treatments, an accurate calculation of the strong electron correlation in firefly luciferin requires an active space of 28 electrons in 25 orbitals

  10. Holstein-Primakoff representation and supercoherent states for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Azakov, S.

    1999-09-01

    First we show that the algebra of operators entering the Hamiltonian of the t-J model describing the strongly correlated electron system is graded spl(2.1) algebra. Then after a brief discussion of its atypical representations we construct the Holstein-Primakoff nonlinear realization of these operators which allows to carry out the systematic semiclassical approximation, similarly to the spin-wave theory of localized magnetism. The fact that the t-J model describes the itinerant magnetism is reflected in the presence of the spinless fermions. For the supersymmetric spl(2.1) algebra the supercoherent states are proposed and the partition function of the t-J model is represented as a path integral with the help of these states. (author)

  11. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  12. Hard X-ray PhotoEmission Spectroscopy of strongly correlated systems

    Science.gov (United States)

    Panaccione, Giancarlo; Offi, Francesco; Sacchi, Maurizio; Torelli, Piero

    2008-06-01

    Hard X-ray PhotoEmission Spectroscopy (HAXPES) is a new tool for the study of bulk electronic properties of solids using synchrotron radiation. We review recent achievements of HAXPES, with particular reference to the VOLPE project, showing that high energy resolution and bulk sensitivity can be obtained at kinetic energies of 6-8 keV. We present also the results of recent studies on strongly correlated materials, such as vanadium sesquioxide and bilayered manganites, revealing the presence of different screening properties in the bulk with respect to the surface. We discuss the relevant experimental features of the metal-insulator transition in these materials. To cite this article: G. Panaccione et al., C. R. Physique 9 (2008).

  13. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-07

    In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.

  14. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  15. Long Range Order and Spin-Fluctuations in Strongly Correlated Electron System with Valence Instability

    Science.gov (United States)

    Alekseev, P. A.; Menushenkov, A. P.; Mignot, J.-M.; Nemkovski, K. S.; Yaroslavtsev, A. A.; Kozlenko, D. P.

    Rare-earth based strongly correlated electron systems (SCES) exhibit a large variety of different ground states, ranging from the simple paramagnetism of crystal-field-split f-electron multiplets to highly unconventional Kondo-insulator states with a combination of charge gap, spin gap and valence instability, in which long-range magnetic order can eventually arise from an initially singlet state. The physical background for these properties of the electron subsystem may be clarified by performing detailed neutron scattering experiments, namely magnetic neutron scattering spectroscopy and diffraction. This report reviews the results of the previous and new experimental studies on a number of rare-earth intermetallic compounds, which shed light on peculiar features of those unusual ground states.

  16. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    A new type of scaling observed in heavy-electron metal β-YbAlB 4 , where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  17. Collective oscillations of strongly correlated one-dimensional bosons on a lattice.

    Science.gov (United States)

    Rigol, M; Rousseau, V; Scalettar, R T; Singh, R R P

    2005-09-09

    We study the dipole oscillations of strongly correlated 1D bosons, in the hard-core limit, on a lattice, by an exact numerical approach. We show that far from the regime where a Mott insulator appears in the system, damping is always present and increases for larger initial displacements of the trap, causing dramatic changes in the momentum distribution, n(k). When a Mott insulator sets in the middle of the trap, the center of mass barely moves after an initial displacement, and n(k) remains very similar to the one in the ground state. We also study changes introduced by the damping in the natural orbital occupations, and the revival of the center-of-mass oscillations after long times.

  18. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  19. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  20. Respiratory insufficiency correlated strongly with mortality of rodents infected with West Nile virus.

    Directory of Open Access Journals (Sweden)

    John D Morrey

    Full Text Available West Nile virus (WNV disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory

  1. The shot noise of a strongly correlated quantum dot coupled to the Luttinger liquid leads

    International Nuclear Information System (INIS)

    Yang, Kai-Hua; He, Xian; Wang, Huai-Yu; Liu, Kai-Di; Liu, Bei-Yun

    2014-01-01

    We study the shot noise of a strongly correlated quantum dot weakly coupled to Luttinger liquid leads in the Kondo regime by means of the extended equation of motion method. A general zero-frequency shot noise formula with good convergence is derived. The shot noise exhibits a non-monotonic dependence on voltage for weak intralead interaction. There is a peak around the Kondo temperature at low voltage when the interaction is very weak, and its height decreases rapidly with the intralead interaction increasing. When the interaction is moderately strong the peak disappears and the shot noise scales as a power law in bias voltage, indicating that the intralead electron interaction suppresses the shot noise. It is possible that the measurements of the shot noise spectrum can extract the information of the intralead interaction. - Highlights: • The shot noise of a dot coupled to Luttinger liquid leads in the Kondo regime. • A shot noise formula is derived. • Intralead interaction suppresses the shot noise. • The noise shows different voltage-dependence for different intralead interaction

  2. Correlations between the Hall coefficient and the superconducting transport properties of oxygen-deficient YBa2Cu3O7-δ epitaxial thin films

    International Nuclear Information System (INIS)

    Jones, E.C.; Christen, D.K.; Thompson, J.R.; Feenstra, R.; Zhu, S.; Lowndes, D.H.; Phillips, J.M.; Siegal, M.P.; Budai, J.D.

    1993-01-01

    Strong correlations between the Hall coefficient R H , the transition temperature T c , and the critical current density J c were established in a series of epitaxial YBa 2 Cu 3 O 7-δ thin films as a function of oxygen deficiency δ. Steady increases in R H with δ suggest that deoxygenation reduces the density of states which, according to BCS theory, should lead to corresponding decreases in T c . In contrast, two well-known plateaus occurring at 90 K and 60 K were observed in T c vs δ. Others have ascribed these plateaus to either electronic phenomena or phase separations. We find that in the 90-K plateau, the critical current density J c (δ,H=0) decreases with δ and extrapolates toward zero at the edge of the plateau, while the relative-field dependence of J c (δ,H) and the flux-creep pinning energies are independent of δ. These observations suggest that the phase-separation scenario occurs on the 90-K plateau. However, electronic origins cannot be ruled out at present due to difficulties in determining the equilibrium superconducting properties of oxygen-deficient YBa 2 Cu 3 O 7-δ films

  3. Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence

    Science.gov (United States)

    Morton, Elise R.; Lynch, Joshua; Froment, Alain; Lafosse, Sophie; Heyer, Evelyne; Przeworski, Molly; Blekhman, Ran; Ségurel, Laure

    2015-01-01

    The human gut microbiota is impacted by host nutrition and health status and therefore represents a potentially adaptive phenotype influenced by metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that industrialization is strongly correlated with patterns in human gut microbiota; however, we know little about the relative contribution of factors such as climate, diet, medicine, hygiene practices, host genetics, and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i) contrast the gut microbiota of populations inhabiting similar environments but having different traditional subsistence modes and either shared or distinct genetic ancestry, and (ii) examine the relationship between gut parasites and bacterial communities. Characterizing the fecal microbiota of Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon, we found that the gut parasite Entamoeba is significantly correlated with microbiome composition and diversity. We show that across populations, colonization by this protozoa can be predicted with 79% accuracy based on the composition of an individual's gut microbiota, and that several of the taxa most important for distinguishing Entamoeba absence or presence are signature taxa for autoimmune disorders. We also found gut communities to vary significantly with subsistence mode, notably with some taxa previously shown to be enriched in other hunter-gatherers groups (in Tanzania and Peru) also discriminating hunter-gatherers from neighboring farming or fishing populations in Cameroon. PMID:26619199

  4. Record statistics of a strongly correlated time series: random walks and Lévy flights

    Science.gov (United States)

    Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory

    2017-08-01

    We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.

  5. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  6. Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence.

    Science.gov (United States)

    Morton, Elise R; Lynch, Joshua; Froment, Alain; Lafosse, Sophie; Heyer, Evelyne; Przeworski, Molly; Blekhman, Ran; Ségurel, Laure

    2015-11-01

    The human gut microbiota is impacted by host nutrition and health status and therefore represents a potentially adaptive phenotype influenced by metabolic and immune constraints. Previous studies contrasting rural populations in developing countries to urban industrialized ones have shown that industrialization is strongly correlated with patterns in human gut microbiota; however, we know little about the relative contribution of factors such as climate, diet, medicine, hygiene practices, host genetics, and parasitism. Here, we focus on fine-scale comparisons of African rural populations in order to (i) contrast the gut microbiota of populations inhabiting similar environments but having different traditional subsistence modes and either shared or distinct genetic ancestry, and (ii) examine the relationship between gut parasites and bacterial communities. Characterizing the fecal microbiota of Pygmy hunter-gatherers as well as Bantu individuals from both farming and fishing populations in Southwest Cameroon, we found that the gut parasite Entamoeba is significantly correlated with microbiome composition and diversity. We show that across populations, colonization by this protozoa can be predicted with 79% accuracy based on the composition of an individual's gut microbiota, and that several of the taxa most important for distinguishing Entamoeba absence or presence are signature taxa for autoimmune disorders. We also found gut communities to vary significantly with subsistence mode, notably with some taxa previously shown to be enriched in other hunter-gatherers groups (in Tanzania and Peru) also discriminating hunter-gatherers from neighboring farming or fishing populations in Cameroon.

  7. Atomic physics of strongly correlated systems: Progress report, 1 February 1988--15 January 1989

    International Nuclear Information System (INIS)

    Lin Chii-Dong.

    1989-01-01

    This report presents the progress made in our continuing study of strongly correlated atomic systems for the last contract period. In the area of hyperspherical coordinates for Coulombic three-body systems of arbitrary masses a general computing code has been developed. Calculation of the adiabatic potential curves have been accomplished for the e/sup /minus//e + e/sup /minus// system of arbitrary L, S and parity π. It was found that these curves behave very similar to the potential curves of H/sup /minus// except for a mass scaling. We have also examined the mass dependence of the ground state potential curves for systems of three charged particles, AAB, and showed that the curves become more attractive as the mass m/sub A/ becomes larger than m/sub B/. For ion-atom collisions we have examined the transfer-excitation (TE) processes to establish the importance of electron correlations in these two-electron transitions. We have also examined the orientation parameters for excited states formed in collisions with positive and negative charged particles to establish the relation between the sign of the charge of the incident particles to the sign of

  8. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  9. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.

    Science.gov (United States)

    Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas

    2017-01-17

    The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than

  10. Strain-Induced Enhancement of the Electron Energy Relaxation in Strongly Correlated Superconductors

    Directory of Open Access Journals (Sweden)

    C. Gadermaier

    2014-03-01

    Full Text Available We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate Γ_{1} of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ_{1} increases monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the literature suggest that increased negative strain enhances electron-phonon coupling, which implies that the observed direct correspondence between a and Γ_{1} is consistent with the canonical assignment of Γ_{1} to the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting critical temperature T_{c} on the a-axis strain is also reflected in a systematic dependence T_{c} on Γ_{1}, with a distinct maximum at intermediate values (∼16  ps^{−1} at room temperature. The empirical nonmonotonic systematic variation of T_{c} with the strength of the electron-phonon interaction provides us with unique insight into the role of electron-phonon interaction in relation to the mechanism of high-T_{c} superconductivity as a crossover phenomenon.

  11. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  12. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  13. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  14. Intricacies of modern supercomputing illustrated with recent advances in simulations of strongly correlated electron systems

    Science.gov (United States)

    Schulthess, Thomas C.

    2013-03-01

    The continued thousand-fold improvement in sustained application performance per decade on modern supercomputers keeps opening new opportunities for scientific simulations. But supercomputers have become very complex machines, built with thousands or tens of thousands of complex nodes consisting of multiple CPU cores or, most recently, a combination of CPU and GPU processors. Efficient simulations on such high-end computing systems require tailored algorithms that optimally map numerical methods to particular architectures. These intricacies will be illustrated with simulations of strongly correlated electron systems, where the development of quantum cluster methods, Monte Carlo techniques, as well as their optimal implementation by means of algorithms with improved data locality and high arithmetic density have gone hand in hand with evolving computer architectures. The present work would not have been possible without continued access to computing resources at the National Center for Computational Science of Oak Ridge National Laboratory, which is funded by the Facilities Division of the Office of Advanced Scientific Computing Research, and the Swiss National Supercomputing Center (CSCS) that is funded by ETH Zurich.

  15. Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model

    Science.gov (United States)

    Mohan, Minette M.

    1992-08-01

    I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.

  16. Supersolidity of lattice bosons immersed in strongly correlated Rydberg dressed atoms

    Science.gov (United States)

    Li, Yongqiang; Geißler, Andreas; Hofstetter, Walter; Li, Weibin

    2018-02-01

    Recent experiments have illustrated that long-range two-body interactions can be induced by laser coupling atoms to highly excited Rydberg states. Stimulated by this achievement, we study the supersolidity of lattice bosons in an experimentally relevant situation. In our setup, we consider two-component atoms on a square lattice, where one species is weakly dressed to an electronically high-lying (Rydberg) state, generating a tunable, soft-core shape long-range interaction. Interactions between atoms of the second species and between the two species are characterized by local inter- and intraspecies interactions. Using a dynamical mean-field calculation, we find that interspecies on-site interactions can stabilize a pronounced region of supersolid phases. This is characterized by two distinctive types of supersolids, where the bare species forms supersolid phases that are immersed in strongly correlated quantum phases, i.e., a crystalline solid or supersolid of the dressed atoms. We show that the interspecies interaction leads to a rotonlike instability in the bare species and therefore is crucially important to the supersolid formation. We provide a detailed calculation of the interaction potential to show how our results can be explored under current experimental conditions.

  17. Strong Tracking Filter for Nonlinear Systems with Randomly Delayed Measurements and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Hongtao Yang

    2018-01-01

    Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.

  18. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  19. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    Science.gov (United States)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  20. PREFACE: International Conference on Strongly Correlated Electron Systems 2014 (SCES2014)

    Science.gov (United States)

    2015-03-01

    The 2014 International Conference on Strongly Correlated Electron Systems (SCES) was held in Grenoble from the 7th to 11th of July on the campus of the University of Grenoble. It was a great privilege to have the conference in Grenoble after the series of meetings in Sendai (1992), San Diego (1993), Amsterdam (1994), Goa (1995), Zürich (1996), Paris (1998), Nagano (1999), Ann Arbor (2001), Krakow (2002), Karlsruhe (2004), Vienna (2005), Houston (2007), Buzios (2008), Santa Fe (2010), Cambridge (2011) and Tokyo (2013). Every three years, SCES joins the triennial conference on magnetism ICM. In 2015, ICM will take place in Barcelona. The meeting gathered an audience of 875 participants who actively interacted inside and outside of conference rooms. A large number of posters (530) was balanced with four parallel oral sessions which included 86 invited speakers and 141 short oral contributions. A useful arrangement was the possibility to put poster presentations on the website so participants could see them all through the conference week. Each morning two plenary sessions were held, ending on Friday with experimental and theoretical summaries delivered by Philipp Gegenwart (Augsburg) and Andrew Millis (Columbia). The plenary sessions were given by Gabriel Kotliar (Rutgers), Masashi Kawasaki (Tokyo), Jennifer Hoffman (Harvard), Mathias Vojta (Dresden), Ashvin Vishwanath (Berkeley), Andrea Cavalleri (Hamburg), Marc-Henri Julien (Grenoble), Neil Mathur (Cambridge), Giniyat Khaliullin (Stuttgart), and Toshiro Sakakibara (Tokyo). The parallel oral sessions were prepared by 40 symposium organizers selected by the chairman (Antoine Georges) and co-chairman (Kamran Behnia) of the Program Committee with the supplementary rule that speakers had not delivered an invited talk at the previous SCES conference held in 2013 in Tokyo. Special attention was given to help young researchers via grants to 40 overseas students. Perhaps due to the additional possibility of cheap

  1. Ab initio molecular-orbital study on electron correlation effects in CuO6 clusters relating to high-Tc superconductivity

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yamaguchi, K.; Nasu, K.

    1990-01-01

    Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity

  2. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms

    Science.gov (United States)

    2014-09-24

    which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO support from the start of the project

  3. The filled skutterudite PrOs{sub 4}Sb{sub 12}: superconductivity and correlations; La skutterudite PrOs{sub 4}Sb{sub 12}: supraconductivite et correlations

    Energy Technology Data Exchange (ETDEWEB)

    Measson, M.A

    2005-12-15

    The filled skutterudite PrOs{sub 4}Sb{sub 12} is the first Pr-based heavy fermion superconductor. This thesis addresses several important open questions including the determination of the quasi-particle mass renormalisation, the nature and mechanism of superconductivity, and the intrinsic or extrinsic nature of the double superconducting transition seen in the specific heat. A fit of the specific heat with magnetic interactions between the ions Pr is proposed. We extract from it an electronic term of between 300-750 mJ/K{sup 2}.mol(Pr). Analysis of the specific heat jump provides evidence that heavy carriers are involved in Cooper pairing and that superconductivity is strongly coupled. Extensive characterizations by specific heat, resistivity, susceptibility measurements show that a double transition appears in the best samples. Nevertheless we bring the first serious doubts on the intrinsic nature of the double transition, because we have found samples with a single sharp transition at Tc2 and because the ratio of the two specific heat jumps shows strong dispersion among the samples. Furthermore we have measured the superconducting phase diagrams with an A.C. specific heat technique under magnetic field and under pressure up to 4.2 GPa, and we show that the two transitions, Tc1 and Tc2, exhibit similar behaviours with magnetic field and pressure. We find a strong change in the pressure dependence of Tc's above 2 GPa which might be related to a change in the nature of the superconductivity under pressure (at least partially mediated by fluctuations and only by phonons at respectively low and high pressure) which may be linked to the increase of the crystal field gap of the Pr ions. Analysis of the upper critical field shows the presence of at least two superconducting bands and concludes to a singlet nature of the pairing. A strong distortion of the flux-line lattice, which is constant with temperature and field, is obtained by small angle neutron scattering

  4. Establishing a Consistent Theory of Transport in Strongly Correlated Fermi Superfluids

    Science.gov (United States)

    Boyack, Rufus M.

    A diagrammatic method of obtaining exact gauge-invariant response functions in strongly correlated Fermi superfluids is implemented for several example condensed matter systems of current interest. These include: topological superfluids, high temperature superconductors, and superfluids with finite center-of-mass momentum pairing known as Fulde-Ferrell superfluids. Much of the literature on these systems has focused on single-particle properties or alternatively has invoked simple approximations to treat response functions. The goal is to show that, for this wide class of topical problems, one can compute exact response functions. This enables assessment of the validity of different physical scenarios and allows a very broad class of experiments to be addressed. The method developed is based on deriving the full electromagnetic vertex, which satisfies the Ward-Takahashi identity, and determining the collective modes in a manner compatible with the self-consistent gap equation. In the condensed phase of a superfluid and a superconductor, where gauge invariance is spontaneously broken, it is crucial to determine the collective modes from the gap equation in a manner which restores gauge invariance. Our diagrammatic framework provides a very general and powerful method for obtaining these collective modes in a variety of strongly correlated Fermi superfluids. We show that a full electromagnetic vertex satisfying the Ward-Takahashi identity ensures the f-sum rule is satisfied and thus charge is conserved. This diagrammatic method is implemented for both normal and superfluid phases. While there are no collective modes in the normal phase, the Ward-Takahashi identity plays a similarly important role. In particular, for the normal phase we study Rashba spin-orbit coupled Fermi gases with intrinsic pairing in the absence and presence of a magnetic field. Exact density and spin response functions are obtained, even in the absence of a spin conservation law, providing

  5. Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom

    Science.gov (United States)

    Ducatman, Samuel Charles

    The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are

  6. Electronic properties of Pu19Os simulating β-Pu: the strongly correlated Pu phase

    Science.gov (United States)

    Havela, L.; Mašková, S.; Kolorenč, J.; Colineau, E.; Griveau, J.-C.; Eloirdi, R.

    2018-02-01

    We established the basic electronic properties of ζ-Pu19Os, which is a close analogue to β-Pu, and its low-temperature variety, η-Pu19Os. Their magnetic susceptibility is 15% higher than for δ-Pu. A specific heat study of ζ-Pu19Os shows a soft lattice similar to δ-Pu, leading to a low Debye temperature Θ D  =  101 K. The linear electronic coefficient γ related to the quasiparticle density of states at the Fermi level points to a higher value, 55  ±  2 mJ (mol Pu K2)–1, compared to 40 mJ (mol K2)–1 for δ-Pu. The results confirm that β-Pu is probably the most strongly correlated Pu phase, as had been indicated by resistivity measurements. The volume and related Pu–Pu spacing is clearly not the primary tuning parameter for Pu metal, as the β-Pu density stands close to the ground-state α-phase and is much higher than that for δ-Pu. The η-Pu19Os phase has a record γ-value of 74  ±  2 mJ (mol Pu K2)–1. The enhancement is not reproduced by LDA+DMFT calculations in the fcc structure, which suggests that multiple diverse sites can be the key to the understanding of β-Pu.

  7. Electronic properties of Pu19Os simulating β-Pu: the strongly correlated Pu phase.

    Science.gov (United States)

    Havela, Ladislav; Maskova, Silvie; Kolorenc, Jindrich; Colineau, E; Griveau, Jean-Christophe; Eloirdi, Rachel

    2018-01-04

    We established basic electronic properties of ζ-Pu19Os, which is a close analogue to β-Pu, and its low-temperature variety, η-Pu19Os. Their magnetic susceptibility is by 15% higher than for δ-Pu. Specific heat study of ζ-Pu19Os shows a soft lattice similar to δ-Pu, leading to a low Debye temperature ΘD = 101 K. The linear electronic coefficient γ related to the quasiparticle density of states at the Fermi level points to a higher value, 55±2 mJ/mol Pu K2, compared to 40 mJ/mol K2 for δ-Pu. The results confirm that β-Pu is probably the most strongly correlated Pu phase, as had been indicated by resistivity measurements. The volume and related Pu-Pu spacing is clearly not the primary tuning parameter for Pu metal, as the β-Pu density stands close to the ground-state α-phase and is much higher than that for δ-Pu. The η-Pu19Os phase has a record γ-value of 74±2 mJ/mol Pu K2. The enhancement is not reproduced by LDA+DMFT calculations in the fcc structure, which suggests that the multiple diverse sites can be the key to the understanding of β-Pu. © 2018 IOP Publishing Ltd.

  8. Superconducting pairing of spin polarons in the t - J model

    International Nuclear Information System (INIS)

    Plakida, N.M.; Horsch, P.; Liechtenstein, A.; Oudovenko, V.S.

    1995-07-01

    A spin polaron model derived from the t - J model on a two-sublattice antiferromagnet is considered. The self-consistent Born approximation for the matrix Green functions for doped holes (spin polarons) and magnons is used to study temperature and doping dependence of the quasi-particle hole spectrum and superconducting pairing of two holes on different sublattices. A numerical solution of the self-consistent system of equations by the fast Fourier transformation method shows a strong renormalization of the quasi-particle hole spectrum due to spin fluctuations, and a singlet superconducting pairing of d-wave symmetry with maximal T c ∼ 0.01t around the hole concentration 0.25. We argue that the superconducting pairing of spin polarons for the model with strong electron correlations represents the mechanism of high-temperature superconductivity. (author). 26 refs, 10 figs

  9. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    Science.gov (United States)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  10. The strongly correlated electron systems CeNi sub 2 Ge sub 2 and Sr sub 2 RuO sub 4

    CERN Document Server

    Diver, A J

    1996-01-01

    susceptibility and magnetoresistance on a single crystal CeNi sub 2 Ge sub 2 sample are discussed. The low temperature resistivity is found to show non-Fermi liquid behaviour both at low field and at 16 T. Chapter four is concerned with the layered perovskite superconductor Sr sub 2 RuO sub 4 which has a very similar structure to the La sub 2 sub - sub x Sr sub x CuO sub 4 family of high-T sub c superconductors. De Haas-van Alphen oscillations were detected allowing a study in which all of the Fermi surface sheets were detected. These oscillations are analysed and shown to obey the form expected for a conventional Fermi liquid. The results are compared with the predictions of recent band structure calculations. Measurements of the Hall effect and upper critical field for superconductivity are explained in terms of the measured Fermi surface. Strongly correlated electron systems provide many challenges for condensed matter physics which attempts to find new ways to understand the behaviour of vast numbers of p...

  11. Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Laura

    2016-11-04

    In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.

  12. Matrix-product states for strongly correlated systems and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Saberi, Hamed

    2008-12-12

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any

  13. Matrix-product states for strongly correlated systems and quantum information processing

    International Nuclear Information System (INIS)

    Saberi, Hamed

    2008-01-01

    This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any entangled multiqubit state. We give

  14. Correlation between non-Fermi-liquid behavior and superconductivity in (Ca, La)(Fe,Co)As2 iron arsenides: A high-pressure study

    Science.gov (United States)

    Zhou, W.; Ke, F.; Xu, Xiaofeng; Sankar, R.; Xing, X.; Xu, C. Q.; Jiang, X. F.; Qian, B.; Zhou, N.; Zhang, Y.; Xu, M.; Li, B.; Chen, B.; Shi, Z. X.

    2017-11-01

    Non-Fermi-liquid (NFL) phenomena associated with correlation effects have been widely observed in the phase diagrams of unconventional superconducting families. Exploration of the correlation between the normal state NFL, regardless of its microscopic origins, and the superconductivity has been argued as a key to unveiling the mystery of the high-Tc pairing mechanism. Here we systematically investigate the pressure-dependent in-plane resistivity (ρ ) and Hall coefficient (RH) of a high-quality 112-type Fe-based superconductor Ca1 -xLaxFe1 -yCoyAs2 (x =0.2 ,y =0.02 ). With increasing pressure, the normal-state resistivity of the studied sample exhibits a pronounced crossover from non-Fermi-liquid to Fermi-liquid behaviors. Accompanied with this crossover, Tc is gradually suppressed. In parallel, the extremum in the Hall coefficient RH(T ) curve, possibly due to anisotropic scattering induced by spin fluctuations, is also gradually suppressed. The symbiosis of NFL and superconductivity implies that these two phenomena are intimately related. Further study on the pressure-dependent upper critical field reveals that the two-band effects are also gradually weakened with increasing pressure and reduced to the one-band Werthamer-Helfand-Hohenberg limit in the low-Tc regime. Overall, our paper supports the picture that NFL, multigap, and extreme RH(T ) are all of the same magnetic origin, i.e., the spin fluctuations in the 112 iron arsenide superconductors.

  15. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  16. Strong-coupling d-wave superconductivity in PuCoGa.sub.5./sub. probed by point-contact spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Daghero, D.; Tortello, M.; Ummarino, G.A.; Griveau, J.C.; Colineau, E.; Eloirdi, R.; Shick, Alexander; Kolorenč, Jindřich; Lichtenstein, A.I.; Caciuffo, R.

    2012-01-01

    Roč. 3, Apr (2012), "786-1"-"786-8" ISSN 2041-1723 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : superconductivity * PuCoGa 5 * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 10.015, year: 2012 http://www.nature.com/ncomms/journal/v3/n4/full/ncomms1785.html

  17. Method of correlation operators in the theory of a system of particles with strong interactions

    International Nuclear Information System (INIS)

    Kuz'min, Y.M.

    1985-01-01

    A similarity transformation of the density matrix is performed with the help of the correlation operator. This does not change the value of the partition function. A method of calculating the transformed partition function with the help of a finite translation operator is given. A general system of coupled equations is obtained from which the matrix elements of correlation operators of increasing order can be found

  18. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition; Deux systemes d'electrons fortement correles: le modele de reseau Kondo dans la limite du couplage fort et un modele bidimensionnel d'electrons au voisinage d'une transition topologique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bouis, F

    1999-10-14

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  19. Algorithmic implementation of particle-particle ladder diagram approximation to study strongly-correlated metals and semiconductors

    Science.gov (United States)

    Prayogi, A.; Majidi, M. A.

    2017-07-01

    In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.

  20. Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation

    International Nuclear Information System (INIS)

    Zegrodnik, M; Spałek, J; Bünemann, J

    2013-01-01

    An orbitally degenerate two-band Hubbard model is analyzed with the inclusion of the Hund's rule-induced spin-triplet even-parity paired states and their coexistence with magnetic ordering. The so-called statistically consistent Gutzwiller approximation (SGA) has been applied to the case of a square lattice. The superconducting gaps, the magnetic moment and the free energy are analyzed as a function of the Hund's rule coupling strength and the band filling. Also, the influence of the intersite hybridization on the stability of paired phases is discussed. In order to examine the effect of correlations the results are compared with those calculated earlier within the Hartree–Fock (HF) approximation combined with the Bardeen–Cooper–Schrieffer (BCS) approach. Significant differences between the two methods used (HF + BCS versus SGA + real-space pairing) appear in the stability regions of the considered phases. Our results supplement the analysis of this canonical model used widely in the discussions of pure magnetic phases with the detailed elaboration of the stability of the spin-triplet superconducting states and the coexistent magnetic-superconducting states. At the end, we briefly discuss qualitatively the factors that need to be included for a detailed quantitative comparison with the corresponding experimental results. (paper)

  1. Ferromagnetic instabilities in disordered systems in the limit of strong correlations

    International Nuclear Information System (INIS)

    Magalhaes, A.N.; Troper, A.; Gomes, A.A.

    1976-05-01

    One derives the criterion for ferromagnetic instabilities in hybridized disordered systems, e.g. transition metal like systems and actinides, within the Coherent Potential Approximation (CPA), the electron-electron correlations being described by Hubbard' approximation. In the case of actinides, one treats approximately the motion of d electrons while the diagonal disorder within the f band is fully taken into account. In the case of a trnsition metal like system, except for Hubbard's approximation in dealing with d-d electron correlations, our procedure is exact within the spirit of CPA

  2. Various scenarios of metal-insulator transition in strongly correlated materials

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Anisimov, V.I.

    2011-01-01

    Roč. 523, 8-9 (2011), 682-688 ISSN 0003-3804 R&D Projects: GA ČR GAP204/10/0284 Institutional research plan: CEZ:AV0Z10100521 Keywords : electronic correlations * metal-insulator transition * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.841, year: 2011

  3. Dynamical mean-field approach to materials with strong electronic correlations

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Leonov, I.; Kollar, M.; Byczuk, K.; Anisimov, V.I.; Vollhardt, D.

    2010-01-01

    Roč. 180, - (2010), s. 5-28 ISSN 1951-6355 Institutional research plan: CEZ:AV0Z10100521 Keywords : dynamical mean-field * electronic correlations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.838, year: 2010

  4. On strongly correlated N-electron systems | Enaibe | Journal of the ...

    African Journals Online (AJOL)

    An attempt is made in this work to extend the correlated variational approach of Chen and Mei [1], which was developed for two-electron systems, to N-electron systems (N>2). Preliminary results are reported here for four electrons interacting under a Hubbard-type potential in a one-dimensional lattice with only four sites

  5. The thermodynamic spin magnetization of strongly correlated 2d electrons in a silicon inversion layer

    OpenAIRE

    Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.

    2002-01-01

    A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...

  6. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Tlustý, David

    2009-01-01

    Roč. 103, č. 25 (2009), 251601/1-251601/7 ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * local parity violation * strong interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009

  7. Quantum Glassiness in Strongly Correlated Clean Systems: An Example of Topological Overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-01-01

    This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, (1)have no quenched disorder, (2)have solely local interactions, (3)have an exactly solvable spectrum, (4)have topologically ordered ground states, and (5)have slow dynamical relaxation rates akin to those of strong structural glasses.

  8. Sharp correlations in the ARPES spectra of strongly disordered topological boundary modes

    OpenAIRE

    Ringel, Zohar

    2015-01-01

    Data from angle resolved photo-emission spectroscopy (ARPES) often serves as a smoking-gun evidence for the existence of topological materials. It provides the energy dispersion curves of the topological boundary modes which characterize these phases. Unfortunately this method requires a sufficiently regular boundary such that these boundary modes remain sharp in momentum space. Here the seemingly random data obtained from performing ARPES on strongly disordered topological insulators and Wey...

  9. Perturbation theory of strongly correlated electrons with and without slave boson technique

    International Nuclear Information System (INIS)

    Nguyen Van Hieu; Ha Vinh Tan; Nguyen Toan Thang; Nguyen Ai Viet.

    1988-10-01

    The Green functions of the electrons in the two-band Hubbard model with the strong on-site Coulomb repulsion were calculated by means of the perturbation theory with respect to the hopping term of the Hamiltonian. It was shown that in the slave boson technique we obtain the expressions different from the results of the calculations involving directly electron operators without using slave bosons. The physical meaning of this discrepancy was discussed. (author)

  10. Superconductivity Bordering Rashba Type Topological Transition

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M. L.; Sun, F.; Xing, L. Y.; Zhang, S. J.; Feng, S. M.; Kong, P. P.; Li, W. M.; Wang, X. C.; Zhu, J. L.; Long, Y. W.; Bai, H. Y.; Gu, C. Z.; Yu, R. C.; Yang, W. G.; Shen, G. Y.; Zhao, Y. S.; Mao, H. K.; Jin, C. Q.

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

  11. Superconducting in the near half-filling Hubbard model

    International Nuclear Information System (INIS)

    Hoang Anh Tuan; Nguyen Toan Thang; Nguyen Ngoc Thuan

    1994-06-01

    The near half-filling Hubbard model of strongly correlated electron systems is considered within the framework of the new functional integral method without slave boson. A dynamical system of equations determining the superconducting phase of the Hubbard model is derived. Both singlet and triplet Cooper pairings are studied. (author). 18 refs

  12. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  13. Reply to ``Comment on `Cluster methods for strongly correlated electron systems' ''

    Science.gov (United States)

    Biroli, G.; Kotliar, G.

    2005-01-01

    We reply to the Comment by Aryanpour, Maier, and Jarrell [Phys. Rev. B 71, 037101 (2005)] on our paper [Phys. Rev. B 65, 155112 (2002)]. We demonstrate, using general arguments and explicit examples, that whenever the correlation length is finite, local observables converge exponentially fast in the cluster size Lc within cellular dynamical mean field theory. This is a faster rate of convergence than the 1/ L2c behavior of the dynamical cluster approximation, thus refuting the central assertion of their Comment.

  14. Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device

    KAUST Repository

    Sun, Jian

    2012-02-21

    A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.

  15. Strong-Weak Coupling Self-Duality and Dimensional Reduction in the Two-Dimensional p+ip Superconducting Arrays and Frustrated Magnets

    Science.gov (United States)

    Xu, Cenke; Moore, Joel

    2005-03-01

    We discuss models of superconducting arrays and frustrated magnets in two dimensions which show quantum phase transitions and self-dualities that are characteristic of one-dimensional problems. The first part of the talk explains how the geometric dependence of Josephson tunneling in time-reversal-breaking superconductors leads naturally to effective Hamiltonians containing four-point interactions rather than two-point interactions. This work was motivated by the observation of possible T-breaking p+ip order in Sr2RuO4, but similar four-point interactions appear in the 1/S expansion of certain standard models of frustrated magnetism. We show that many models on the square lattice with four-point interactions contain infinitely many gauge-like symmetries, and generalize the self-duality of the quantum Ising model in one dimension to related models in all higher dimensions. The existence of these nonperturbative self-dualities gives exact information on the phase diagram of the superconducting array models and on the phase transition between globally T-ordered and globally T-breaking states.

  16. Correlation of superconducting properties and microstructure in MgB{sub 2} using SEM, EPMA and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Birajdar, Balaji I.

    2008-04-14

    This thesis can be subdivided as follows: (I) Development of the quantitative electron microscopy and spectroscopy methods essential for the microstructural analysis of MgB{sub 2} and thereby assess the performance of two energy-filtered TEMs. (II) Application of these methods to few selected samples: (a) Pure and Al-alloyed MgB{sub 2} bulk samples prepared by solid-state reaction or by mechanical alloying, (b) In-situ and ex-situ MgB{sub 2} wires and tapes with and without SiC additives prepared by different variants of the powder-in-tube technology. Quantitative B analysis by EDX spectroscopy was applied in the SEM and TEM, which is a major achievement. (III) Establishing a model which quantitatively explains the correlation between microstructure and critical current density as a function of magnetic field. The actual Al mole fraction in the MgB{sub 2} matrix was found to be less than the nominal Al mole fraction and the difference increased with increasing Al mole fraction. Al is incorporated into MgB{sub 2} grains of {approx}1{mu}m size by substitution of Mg atoms causing T{sub c} and c lattice parameter to decrease at a rate of 1.56 K and 1.15 pm per at.% of Al alloying. Precipitation of Al was not detected up to highest Al mole fractions but Al was inhomogeneously distributed in the sample, which explained the broadening of the superconducting transition width ({delta}T{sub c}) with increasing Al mole fraction. For wires and tapes, significant differences were observed in the microstructure of in-situ and ex-situ samples. This holds particularly if SiC was added and yielded Mg{sub 2}Si for in-situ samples annealed at 600 -650 C and Mg-Si-O phases for ex-situ samples annealed between 900 -1050 C. Four microstructural parameters were identified as relevant for the I{sub c} of wires and tapes and these were: 1) MgB{sub 2} grain size which lies in the range of 20-1000 nm, 2) colony size (colony is a dense arrangement of MgB{sub 2} grains) which lies in the range

  17. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2016-04-28

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.

  18. Tunneling probe of fluctuating superconductivity in disordered thin films

    Science.gov (United States)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  19. Energy diffusion in strongly driven quantum chaotic systems: the role of correlations of the matrix elements

    International Nuclear Information System (INIS)

    Elyutin, P V; Rubtsov, A N

    2008-01-01

    The energy evolution of a quantum chaotic system under the perturbation that harmonically depends on time is studied for the case of large perturbation, in which the rate of transition calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For this case, the models of the Hamiltonian with random non-correlated matrix elements demonstrate that the energy evolution retains its diffusive character, but the rate of diffusion increases slower than the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence for the energy diffusion and the energy absorption in the classical limit ℎ → 0. The numerical calculation carried out for a model built from the first principles (the quantum analog of the Pullen-Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the diffusive component, contains a ballistic one with the energy dispersion that is proportional to the square of time. This component originates from the chains of matrix elements with correlated signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic component formally extends the applicability of the FGR to the non-perturbative domain and restores the quantum-classical correspondence

  20. Assessing the importance of frustration in a narrow-band strongly correlated electronic chain

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. In this limit, we find the one dimensional transverse field Ising model (TFIM) to be the effective Hamiltonian governing the dynamics of the charge degrees of freedom. We find two different charge-ordered (CO) ground states as the strength of the longer range interactions is varied. At lower energies, these CO states drive two different spin-ordered ground states. A variety of response functions computed here bear a remarkable resemblance to recent experimental observations for organic TMTSF systems, and so we propose that these systems are proximate to a QCP associated with T = 0 charge order. (author)

  1. Quantum glassiness in clean strongly correlated systems: an example of topological overprotection

    Science.gov (United States)

    Chamon, Claudio

    2005-03-01

    Describing matter at near absolute zero temperature requires understanding a system's quantum ground state and the low energy excitations around it, the quasiparticles, which are thermally populated by the system's contact to a heat bath. However, this paradigm breaks down if thermal equilibration is obstructed. I present solvable examples of quantum many-body Hamiltonians of systems that are unable to reach their ground states as the environment temperature is lowered to absolute zero. These examples, three dimensional generalizations of quantum Hamiltonians proposed for topological quantum computing, 1) have no quenched disorder, 2) have solely local interactions, 3) have an exactly solvable spectrum, 4) have topologically ordered ground states, and 5) have slow dynamical relaxation rates akin to those of strong structural glasses.

  2. Quantum distillation: Dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich-Meisner, F. [Institut fur Physikalische Chemie der RWTH; Manmana, S. R. [Ecole Polytechnique Federale de Lausanne, Switzerland; Rigol, M. [Georgetown University; Muramatsu, A. [Universitat Stuttgart, Institute fur Plasmaforschung, Germany; Feiguin, A. E. [University of Maryland; Dagotto, Elbio R [ORNL

    2009-01-01

    Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion and in the case of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.

  3. Generalized-active-space pair-density functional theory: an efficient method to study large, strongly correlated, conjugated systems.

    Science.gov (United States)

    Ghosh, Soumen; Cramer, Christopher J; Truhlar, Donald G; Gagliardi, Laura

    2017-04-01

    Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e. , systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. We recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functional theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet-triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet-triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.

  4. Serum obestatin level strongly correlates with lipoprotein subfractions in non-diabetic obese patients.

    Science.gov (United States)

    Szentpéteri, Anita; Lőrincz, Hajnalka; Somodi, Sándor; Varga, Viktória Evelin; Paragh, György; Seres, Ildikó; Paragh, György; Harangi, Mariann

    2018-03-05

    Obestatin is a ghrelin-associated peptide, derived from preproghrelin. Although many of its effects are unclear, accumulating evidence supports positive actions on both metabolism and cardiovascular function. To date, level of obestatin and its correlations to the lipid subfractions in non-diabetic obese (NDO) patients have not been investigated. Fifty NDO patients (BMI: 41.96 ± 8.6 kg/m 2 ) and thirty-two normal-weight, age- and gender-matched healthy controls (BMI: 24.16 ± 3.3 kg/m 2 ) were enrolled into our study. Obestatin level was measured by ELISA. Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) subfractions, intermediate density lipoprotein (IDL) and very low-density lipoprotein (VLDL) levels and mean LDL size were detected by nongradient polyacrylamide gel electrophoresis (Lipoprint). Serum level of obestatin was significantly lower in NDO patients compared to controls (3.01 ± 0.5 vs. 3.29 ± 0.6 μg/ml, p level of obestatin and BMI (r = - 0.33; p level of serum glucose (r = - 0.27, p level and the levels of ApoA1 (r = 0.25; p level (r = 0.23; p level negatively correlated with obestatin (r = - 0.32; p level. Based on our data, measurement of obestatin level in obesity may contribute to understand the interplay between gastrointestinal hormone secretion and metabolic alterations in obesity.

  5. The robustness of high-Tc superconductivity in underdoped YBa2Cu3O6+x investigated in under strong magnetic fields

    Science.gov (United States)

    Harrison, Neil; Hsu, Y.-T.; Hartstein, M.; Chan, M.; Porras, J.; Loew, T.; Le Tacon, M.; Lonzarich, G.; Keimer, B.; Flux, V.; Sebastian, S.

    A central unresolved mystery in high-Tc superconductivity is whether the pairing amplitude is small in the underdoped regime and relates to the superfluid density or whether it is large and relate to the intrinsic energy scales of the Mott insulating parent state. The magnetic field provides a sensitive probe of the pairing amplitude. However, experimental probes of the extent of the vortex state in temperature and magnetic field have thus far been indirect and hence subject to debate. Here we report measurements over a broad range of temperature and magnetic fields which we use to probe the extent of the vortex region in underdoped YBa2Cu3O6+x. and its interplay with quantum oscillations. N.H. acknowledges UU DOE BES Support for ''Science of 100 Tesla''.

  6. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  7. Calculations of the one-body electronic structure of the strongly correlated systems including self-energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Sanchez-Lopez, M.M.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Edifici Cn, Universitat Autonoma de Barcelona 08193, Bellaterra, Barcelona (Spain)

    1996-10-01

    We give a method to obtain the quasiparticle band structure and renormalized density of states by diagonalizing the interacting system Green function. This method operates for any self-energy approximation appropriated to strongly correlated systems. Application to CeSi{sub 2} and YBa{sub 2}Cu{sub 3}O{sub 7} is analyzed as a probe for this band calculation method. {copyright} {ital 1996 The American Physical Society.}

  8. Inelastic light scattering to probe strongly correlated bosons in optical lattices

    International Nuclear Information System (INIS)

    Fort, Chiara; Fabbri, Nicole; Fallani, Leonardo; Clement, David; Inguscio, Massimo

    2011-01-01

    We have used inelastic light scattering to study correlated phases of an array of one-dimensional interacting Bose gases. In the linear response regime, the observed spectra are proportional to the dynamic structure factor. In particular we have investigated the superfluid to Mott insulator crossover loading the one-dimensional gases in an optical lattice and monitoring the appearance of an energy gap due to finite particle-hole excitation energy. We attribute the low frequency side of the spectra to the presence of some superfluid and normal phase fraction between the Mott insulator regions with different fillings produced in the inhomogeneous systems. In the Mott phase we also investigated excitations to higher excited bands of the optical lattice, the spectra obtained in this case being connected to the single particle spectral function. In one-dimensional systems the effect of thermal fluctuations and interactions is enhanced by the reduced dimensionality showing up in the dynamic structure factor. We measured the dynamic structure factor of an array of one-dimensional bosonic gases pointing out the effect of temperature-induced phase fluctuations in reducing the coherence length of the system.

  9. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    International Nuclear Information System (INIS)

    Heilmann, D.B.

    2007-02-01

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  10. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice.

    Science.gov (United States)

    Dutta, Partha; Molitor-Dart, Melanie; Bobadilla, Joseph L; Roenneburg, Drew A; Yan, Zhen; Torrealba, Jose R; Burlingham, William J

    2009-10-22

    In mice and humans, the immunologic effects of developmental exposure to noninherited maternal antigens (NIMAs) are quite variable. This heterogeneity likely reflects differences in the relative levels of NIMA-specific T regulatory (T(R)) versus T effector (T(E)) cells. We hypothesized that maintenance of NIMA-specific T(R) cells in the adult requires continuous exposure to maternal cells and antigens (eg, maternal microchimerism [MMc]). To test this idea, we used 2 sensitive quantitative polymerase chain reaction (qPCR) tests to detect MMc in different organs of NIMA(d)-exposed H2(b) mice. MMc was detected in 100% of neonates and a majority (61%) of adults; nursing by a NIMA+ mother was essential for preserving MMc into adulthood. MMc was most prevalent in heart, lungs, liver, and blood, but was rarely detected in unfractionated lymphoid tissues. However, MMc was detectable in isolated CD4+, CD11b+, and CD11c+ cell subsets of spleen, and in lineage-positive cells in heart. Suppression of delayed type hypersensitivity (DTH) and in vivo lymphoproliferation correlated with MMc levels, suggesting a link between T(R) and maternal cell engraftment. In the absence of neonatal exposure to NIMA via breastfeeding, MMc was lost, which was accompanied by sensitization to NIMA in some offspring, indicating a role of oral exposure in maintaining a favorable T(R) > T(E) balance.

  11. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  12. the tj model and superconductivity

    African Journals Online (AJOL)

    DJFLEX

    Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).

  13. Thermospin effects in superconducting heterostructures

    Science.gov (United States)

    Bobkova, I. V.; Bobkov, A. M.

    2017-09-01

    Recently, thermally created pure spin currents were predicted for Zeeman-split superconductor/normal-metal heterostructures. Here it is shown that this "thermospin" current can lead to an accumulation of a pure spin imbalance in a system. The thermally induced spin imbalance can reach the value of Zeeman splitting of the superconducting density of states and strongly influences superconductivity in the heterostructure. Depending on the temperature difference between the superconductor and the normal reservoir it can enhance the critical temperature of the superconductor or additionally suppress the zero-temperature superconducting state. The last possibility gives rise to an unusual superconducting state, which starts to develop at finite temperature.

  14. Antiferromagnetic exchange mechanism of superconductivity in cuprates

    CERN Document Server

    Plakida, N M

    2001-01-01

    One examines theory of superconducting coupling resulted from antiferromagnetic exchange in terms of which one explains strong dependence of T sub c superconducting transition temperature on alpha lattice constant. Calculations are based on the Hubbard p-d two-region model within strong correlation limit. DELTA pd excitation high energy at antiferromagnetic exchange of two particles from different Hubbard subregions results in suppression o delay effects and in coupling of all particles in conductivity subregion with Fermi energy E sub F >= DELTA pd : T sub c approx = E sub F exp(-1/lambda), where lambda propor to J. T sub c (alpha) and isotopic effect are explained by J exchange interaction dependence on alpha and on zero oscillations of oxygen ions

  15. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  16. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  17. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Magnetic and resonant X-ray scattering investigations of strongly correlated electron systems; Etude de systemes electroniques fortement correles par diffusion magnetique et resonnante des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Paolasini, L.; Bergevin, F. de [European Synchrotron Radiation Facility, 38 - Grenoble (France)

    2008-06-15

    Resonant X-ray scattering is a method which combines high-Q resolution X-ray elastic diffraction and atomic core-hole spectroscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques, which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly correlated electron systems. (authors)

  19. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  20. Communication: The description of strong correlation within self-consistent Green's function second-order perturbation theory

    International Nuclear Information System (INIS)

    Phillips, Jordan J.; Zgid, Dominika

    2014-01-01

    We report an implementation of self-consistent Green's function many-body theory within a second-order approximation (GF2) for application with molecular systems. This is done by iterative solution of the Dyson equation expressed in matrix form in an atomic orbital basis, where the Green's function and self-energy are built on the imaginary frequency and imaginary time domain, respectively, and fast Fourier transform is used to efficiently transform these quantities as needed. We apply this method to several archetypical examples of strong correlation, such as a H 32 finite lattice that displays a highly multireference electronic ground state even at equilibrium lattice spacing. In all cases, GF2 gives a physically meaningful description of the metal to insulator transition in these systems, without resorting to spin-symmetry breaking. Our results show that self-consistent Green's function many-body theory offers a viable route to describing strong correlations while remaining within a computationally tractable single-particle formalism

  1. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    Science.gov (United States)

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  2. Importance of strong-correlation on the lattice dynamics of light-actinides Th-Pa alloy

    Science.gov (United States)

    de La Peã+/-A Seaman, Omar; Heid, Rolf; Bohnen, Klaus-Peter

    We have studied the structural, electronic, and lattice dynamics of the Th1-xPax actinide alloy. This system have been analyzed within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the virtual crystal approximation (VCA) for modeling the alloy. In particular, the energetics is analyzed as the ground-state crystal structure is changed form fcc to bct, as well as the electronic density of states (DOS), and the phonon frequencies. Such properties have been calculated with and without strong correlations effects through the LDA+U formalism. Although the strong-correlation does not influence on a great manner the Th properties, such effects are more important as the content increases towards Pa, affecting even the definition of the ground-state crystal structure for Pa (experimentally determined as bct). The evolution of the density of states at the Fermi level (N (EF)) and the phonon frequencies as a function of Pa-content are presented and discussed in detail, aiming to understand their influence on the electron-phonon coupling for the Th-Pa alloy. This research was supported by Conacyt-México under project No. CB2013-221807-F.

  3. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering; Electrons correles sous haute pression: une approche par diffusion inelastique des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, J.P

    2007-06-15

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  4. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  5. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  6. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  7. Correlation between structural relaxation enthalpy and superconducting properties of amorphous Zr70Cu30 and Zr70Ni30 alloys

    International Nuclear Information System (INIS)

    Inoue, A.; Matsuzaki, K.; Toyota, N.; Chen, H.S.; Masumoto, T.; Fukase, T.

    1985-01-01

    The anneal-induced change in the superconducting properties together with the irrecoverable relaxation enthalpy (ΔHsub(i,exo)) and recoverable relaxation enthalpy (ΔHsub(r,endo)) of amorphous Zr 70 Cu 30 and Zr 70 Ni 30 alloys was examined. The increase in ΔHsub(i,exo) and the degradation of Tsub(c) progress logarithmically with annealing time tsub(a) in a temperature range of 373 to 523 K. The activation energy and the attempted frequency were respectively estimated to be 1.5 eV and 6.6 x 10 13 sec -1 for the increase in ΔHsub(i,exo) and 1.5 eV and 1.9 x 10 14 sec -1 for the degradation of Tsub(c). The recoverable structure relaxation exerts little effect on Tsub(c). Based on the agreement between the kinetic parameters for the changes of ΔHsub(i,exo) and Tsub(c), it appears that the degradation of Tsub(c) on annealing is associated with the irrecoverable structural relaxation as a result of the annihilation of frozen-in defects and the topological and compositional atomic rearrangement. The values of the attempted frequency being of the order of Debye frequency suggest that the irrecoverable structural relaxation processes occur more or less independently from each other. (author)

  8. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  9. Onset of magnetic order in strongly-correlated systems from ab initio electronic structure calculations: application to transition metal oxides

    Science.gov (United States)

    Hughes, I. D.; Däne, M.; Ernst, A.; Hergert, W.; Lüders, M.; Staunton, J. B.; Szotek, Z.; Temmerman, W. M.

    2008-06-01

    We describe an ab initio theory of finite temperature magnetism in strongly-correlated electron systems. The formalism is based on spin density functional theory, with a self-interaction corrected local spin density approximation (SIC-LSDA). The self-interaction correction is implemented locally, within the Kohn-Korringa-Rostoker (KKR) multiple-scattering method. Thermally induced magnetic fluctuations are treated using a mean-field 'disordered local moment' (DLM) approach and at no stage is there a fitting to an effective Heisenberg model. We apply the theory to the 3d transition metal oxides, where our calculations reproduce the experimental ordering tendencies, as well as the qualitative trend in ordering temperatures. We find a large insulating gap in the paramagnetic state which hardly changes with the onset of magnetic order.

  10. A chloroplast DNA phylogeny of lilacs (Syringa, Oleaceae): plastome groups show a strong correlation with crossing groups.

    Science.gov (United States)

    Kim, K J; Jansen, R K

    1998-09-01

    Phylogenetic relationships and genomic compatibility were compared for 60 accessions of Syringa using chloroplast DNA (cpDNA) and nuclear ribosomal DNA (rDNA) markers. A total of 669 cpDNA variants, 653 of which were potentially phylogenetically informative, was detected using 22 restriction enzymes. Phylogenetic analyses reveal four strongly supported plastome groups that correspond to four genetically incompatible crossing groups. Relationships of the four plastome groups (I(II(III,IV))) correlate well with the infrageneric classification except for ser. Syringa and Pinnatifoliae. Group I, which includes subg. Ligustrina, forms a basal lineage within Syringa. Group II includes ser. Syringa and Pinnatifoliae and the two series have high compatibility and low sequence divergence. Group III consists of three well-defined species groups of ser. Pubescentes. Group IV comprises all members of ser. Villosae and has the lowest interspecific cpDNA sequence divergences. Comparison of cpDNA sequence divergence with crossability data indicates that hybrids have not been successfully generated between species with divergence greater than 0.7%. Hybrid barriers are strong among the four major plastome groups, which have sequence divergence estimates ranging from 1.096 to 1.962%. In contrast, fully fertile hybrids occur between species pairs with sequence divergence below 0.4%. Three regions of the plastome have length variants of greater than 100 bp, and these indels identify 12 different plastome types that correlate with phylogenetic trees produced from cpDNA restriction site data. Biparentally inherited nuclear rDNA and maternally inherited cpDNA length variants enable the identification of the specific parentage of several lilac hybrids.

  11. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  12. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  13. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records

    Directory of Open Access Journals (Sweden)

    Z. T. Guo

    2009-02-01

    Full Text Available We correlate the China loess and Antarctica ice records to address the inter-hemispheric climate link over the past 800 ka. The results show a broad coupling between Asian and Antarctic climates at the glacial-interglacial scale. However, a number of decoupled aspects are revealed, among which marine isotope stage (MIS 13 exhibits a strong anomaly compared with the other interglacials. It is characterized by unusually positive benthic oxygen (δ18O and carbon isotope (δ13C values in the world oceans, cooler Antarctic temperature, lower summer sea surface temperature in the South Atlantic, lower CO2 and CH4 concentrations, but by extremely strong Asian, Indian and African summer monsoons, weakest Asian winter monsoon, and lowest Asian dust and iron fluxes. Pervasive warm conditions were also evidenced by the records from northern high-latitude regions. These consistently indicate a warmer Northern Hemisphere and a cooler Southern Hemisphere, and hence a strong asymmetry of hemispheric climates during MIS-13. Similar anomalies of lesser extents also occurred during MIS-11 and MIS-5e. Thus, MIS-13 provides a case that the Northern Hemisphere experienced a substantial warming under relatively low concentrations of greenhouse gases. It suggests that the global climate system possesses a natural variability that is not predictable from the simple response of northern summer insolation and atmospheric CO2 changes. During MIS-13, both hemispheres responded in different ways leading to anomalous continental, marine and atmospheric conditions at the global scale. The correlations also suggest that the marine δ18O record is not always a reliable indicator of the northern ice-volume changes, and that the asymmetry of hemispheric climates is one of the prominent factors controlling the strength of Asian, Indian and African monsoon circulations, most likely through modulating the position of

  14. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  15. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  16. Correlated electron-ion collisions in a strong laser field; Korrelierte Elektron-Ion-Stoesse in starken Laserfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Ristow, T.

    2007-12-17

    Electron-ion-collisions in plasmas in the presence of an ultra-short intensive laser pulse can cause high energy transfers to the electrons. During the collision the oscillation energy of the electron in the laser field is changed into drift energy. In this regime, multi-photon processes, known from the ionization of neutral atoms (Above-Threshold Ionization), and successive, so called correlated collisions, are important. The subject of the thesis is a study of binary Coulomb collisions in strong laser fields. The collisions are treated both in the context of classical Newtonian mechanics and in the quantum-mechanical framework by the Schroedinger equation. In the classical case a simplified instantaneous collision model and a complete dynamical treatment are discussed. Collisions can be treated instantaneously, if the ratio of the impact parameter to the quiver amplitude is small. The energy distributions calculated in this approximation show an elastic peak and a broad plateau due to rescattered electrons. At incident velocities smaller than the quiver velocity, correlated collisions are observed in the electron trajectories of the dynamical model. This effect leads to characteristic momentum distributions of the electrons, that are explicitly calculated and compared with the results of the instantaneous model. In addition, the time-dependence of the collisions is discussed in the framework of a singular perturbation theory. The complete description of the Coulomb scattering requires a quantum-mechanical description. A time-dependent method of wave-packet scattering is used and the corresponding time-dependent three-dimensional Schroedinger equation is solved by an implicit ADImethod on a spatial grid. The momentum and the energy distributions of the scattered electrons are calculated by the Fourier transformation of the wavefunction. A comparison of the scattering from a repulsive and an attractive potential is used to distinguish between simple collisions and

  17. Nonequilibrium self-energy functional theory. Accessing the real-time dynamics of strongly correlated fermionic lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix

    2016-07-05

    The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the

  18. Strong Correlation Between Isoprene Emission and Gross Photosynthetic Capacity During Leaf Phenology of the Tropical Tree Species Hymenaea courbaril

    Science.gov (United States)

    Kuhn, U.; Rottenberger, S.; Biesenthal, T.; Wolf, A.; Schebeske, G.; Ciccioli, P.; Kesselmeier, J.

    2004-12-01

    Composition and amount of volatile organic compound (VOC) emission of the tropical tree species Hymenaea courbaril was studied under different developmental stages at a remote Amazonian rainforest site. The different stages covered young leaves (= grown full in size, but not fully turgescent) in the end of the dry season, mature leaves in the end of dry and wet season, and senescent leaves in the end of dry season. Though the diel isoprene emissions pattern could adequately be modelled by a current isoprene algorithm, the basal emission capacity of isoprene changed considerably over the course of leaf development. The inadequacy of using one single standard emission factor to represent the VOC emission capacity of tropical vegetation for an entire seasonal cycle is obvious. A strong linear correlation between the isoprene emission capacity and the gross photosynthetic capacity (GPmax) covering all developmental stages and seasons was observed. Hence, basic leaf photosynthetic activity may offer a valuable basis to model the seasonal variation of isoprene emission, especially in tropical regions where the environmental conditions vary less than in temperate regions. Of special interest was the light dependent monoterpene emission found exclusively in the period between bud break and leave maturity. The finding of this temporary emergence of monoterpene emission may be of general interest in understanding both the ecological functions of isoprenoid production and the regulatory processes involved.

  19. Predictive Modeling for Strongly Correlated f-electron Systems: A first-principles and database driven machine learning approach

    Science.gov (United States)

    Ahmed, Towfiq; Khair, Adnan; Abdullah, Mueen; Harper, Heike; Eriksson, Olle; Wills, John; Zhu, Jian-Xin; Balatsky, Alexander

    Data driven computational tools are being developed for theoretical understanding of electronic properties in f-electron based materials, e.g., Lanthanides and Actnides compounds. Here we show our preliminary work on Ce compounds. Due to a complex interplay among the hybridization of f-electrons to non-interacting conduction band, spin-orbit coupling, and strong coulomb repulsion of f-electrons, no model or first-principles based theory can fully explain all the structural and functional phases of f-electron systems. Motivated by the large need in predictive modeling of actinide compounds, we adopted a data-driven approach. We found negative correlation between the hybridization and atomic volume. Mutual information between these two features were also investigated. In order to extend our search space with more features and predictability of new compounds, we are currently developing electronic structure database. Our f-electron database will be potentially aided by machine learning (ML) algorithm to extract complex electronic, magnetic and structural properties in f-electron system, and thus, will open up new pathways for predictive capabilities and design principles of complex materials. NSEC, IMS at LANL.

  20. Strong correlation between the 6-minute walk test and accelerometry functional outcomes in boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Davidson, Zoe E; Ryan, Monique M; Kornberg, Andrew J; Walker, Karen Z; Truby, Helen

    2015-03-01

    Accelerometry provides information on habitual physical capability that may be of value in the assessment of function in Duchenne muscular dystrophy. This preliminary investigation describes the relationship between community ambulation measured by the StepWatch activity monitor and the current standard of functional assessment, the 6-minute walk test, in ambulatory boys with Duchenne muscular dystrophy (n = 16) and healthy controls (n = 13). All participants completed a 6-minute walk test and wore the StepWatch™ monitor for 5 consecutive days. Both the 6-minute walk test and StepWatch accelerometry identified a decreased capacity for ambulation in boys with Duchenne compared to healthy controls. There were strong, significant correlations between 6-minute walk distance and all StepWatch parameters in affected boys only (r = 0.701-0.804). These data proffer intriguing observations that warrant further exploration. Specifically, accelerometry outcomes may compliment the 6-minute walk test in assessment of therapeutic interventions for Duchenne muscular dystrophy. © The Author(s) 2014.

  1. [Theoretical studies of dynamics and correlations in heavy electron materials:]: Progress report, August 15, 1987-August 15, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This paper discusses progress in heavy electron research and high temperature superconductivity research. Particular topics discussed are: quadrupolar Kondo effect; coherence in the Anderson Lattice; Hall effect in heavy electron systems, suppression of supeconductivity by disorder in strongly correlated electronic materials; and charge transfer mechanisms for high temperature superconductivity

  2. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  3. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  4. Superconducting rotating electronic machine

    International Nuclear Information System (INIS)

    Cheon, Hui Yeong

    1989-04-01

    This book is divided into ten chapters, which handles summary of superconducting electronic machine, aspect of using of superconductor, superconducting direct current : Homopolar D. C. Machines, Drum machines, segmented slip-ring principle and carbon fibre brushes, superconducting alternating current turbine generator, design of superconducting alternating current machine, performance of superconducting alternating current machine, superconducting turbo generator by new rotor design, basic design of superconducting current generator, generator and power model, design of rotor and information of material property.

  5. Alternative superconducting systems

    International Nuclear Information System (INIS)

    1992-01-01

    In the context of the experiment on 'Development of high temperature superconducting system components' supported by the German Ministry of Research and Technology, investigations were carried out by the Working Party of Prof. von Schnering at the Max Planck Institute for Solids Research, the aim of which is to find characteristic structural features of superconducting substances. Alternative systems are to be looked for with the aid of correlation of superconducting properties with simple electronic and chemical structure models, where very powerful 3D computer graphics are used to visualize them. The theoretical and information technology part of the work was supplemented by experiments. Superconducting phases and related compounds were represented and their structures and physical properties were determined. According to the tasks described above, the report is divided into three sections. Starting with the description of a program system for three-dimensional representation of structures and properties of periodic systems, in the second section a process for calculating node surfaces is explained and the importance of curvature in chemical structures is pointed out. The results of the experiments are collected in the third part. (orig.) [de

  6. PREFACE: Correlated Electrons (Japan)

    Science.gov (United States)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states

  7. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  8. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  9. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  10. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  11. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  12. First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot

    Directory of Open Access Journals (Sweden)

    Romain Maurand

    2012-02-01

    Full Text Available We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device loop in order to investigate the competition of strong electron correlations with a proximity effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum dot will exhibit a positive or a negative supercurrent, referred to as a 0 or π Josephson junction, respectively. In the regime of a strong Coulomb blockade, the 0-to-π transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling amplitude, the Kondo effect develops for an odd-charge (magnetic dot in the normal state, and quenches magnetism. In this situation, we find that a first-order 0-to-π quantum phase transition can be triggered at a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The superconducting-quantum-interference-device geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, which we associate with the two accessible superconducting states. Our results finally demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far from the mixed-valence regime in odd-charge superconducting quantum dots.

  13. Superconductivity at disordered interfaces

    International Nuclear Information System (INIS)

    Simanek, E.

    1979-01-01

    The increase of the superconducting transition temperature Tsub(c) due to the tunneling of conduction electrons into negative-u centers at a disordered metal-semiconductor interface is calculated. The strong dependence of the experimental increase of Tsub(c) on the Fermi energy of the metal is accounted for by the polaronic reduction of the tunneling matrix elements. The latter reduction is dynamically suppressed by the decreasing lifetime of the localized state as Esub(F) increases. The theoretical enhancement is sufficiently strong to explain the increase of Tsub(c) observed in eutectic alloys. (author)

  14. Inhomogeneous Stripe Phase Revisited for Surface Superconductivity

    Science.gov (United States)

    Barzykin, Victor; Gor'kov, Lev P.

    2002-11-01

    We consider 2D surface superconductivity in high magnetic fields parallel to the surface. We demonstrate that the spin-orbit interaction at the surface changes the properties of the inhomogeneous superconducting Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state that develops above fields given by the paramagnetic criterion. Strong spin-orbit interaction significantly broadens the range of existence of the LOFF phase, which takes the form of periodic superconducting stripes running along the field direction on the surface, leading to the anisotropy of its properties. Our results provide a tool for studying surface superconductivity as a function of doping.

  15. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  16. Simultaneous optimization of spin fluctuations and superconductivity under pressure in an iron-based superconductor.

    Science.gov (United States)

    Ji, G F; Zhang, J S; Ma, Long; Fan, P; Wang, P S; Dai, J; Tan, G T; Song, Y; Zhang, C L; Dai, Pengcheng; Normand, B; Yu, Weiqiang

    2013-09-06

    We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe0.94Co0.06As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation rate 1/(75)T1T, first increase strongly with pressure but fall again at P>Popt=2.2  GPa. Neither long-ranged magnetic order nor a structural phase transition is encountered up to 2.5 GPa. The superconducting transition temperature Tc shows a pressure dependence identical to the spin fluctuations. Our observations demonstrate that magnetic correlations and superconductivity are optimized simultaneously as a function of the electronic structure, thereby supporting very strongly a magnetic origin of superconductivity.

  17. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  18. Towards inducing superconductivity into graphene

    Science.gov (United States)

    Efetov, Dmitri K.

    Graphenes transport properties have been extensively studied in the 10 years since its discovery in 2004, with ground-breaking experimental observations such as Klein tunneling, fractional quantum Hall effect and Hofstadters butterfly. Though, so far, it turned out to be rather poor on complex correlated electronic ground states and phase transitions, despite various theoretical predictions. The purpose of this thesis is to help understanding the underlying theoretical and experimental reasons for the lack of strong electronic interactions in graphene, and, employing graphenes high tunability and versatility, to identify and alter experimental parameters that could help to induce stronger correlations. In particular graphene holds one last, not yet experimentally discovered prediction, namely exhibiting intrinsic superconductivity. With its vanishingly small Fermi surface at the Dirac point, graphene is a semi-metal with very weak electronic interactions. Though, if it is doped into the metallic regime, where the size of the Fermi surface becomes comparable to the size of the Brillouin zone, the density of states becomes sizeable and electronic interactions are predicted to be dramatically enhanced, resulting in competing correlated ground states such as superconductivity, magnetism and charge density wave formation. Following these predictions, this thesis first describes the creation of metallic graphene at high carrier doping via electrostatic doping techniques based on electrolytic gates. Due to graphenes surface only properties, we are able to induce carrier densities above n>1014 cm-2 (epsilonF>1eV) into the chemically inert graphene. While at these record high carrier densities we yet do not observe superconductivity, we do observe fundamentally altered transport properties as compared to semi-metallic graphene. Here, detailed measurements of the low temperature resistivity reveal that the electron-phonon interactions are governed by a reduced, density

  19. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    Science.gov (United States)

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-09

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).

  20. Superconductivity, antiferromagnetism, and neutron scattering

    International Nuclear Information System (INIS)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations

  1. Morphological variation and habitat modification are strongly correlated for the autogenic ecosystem engineer Spartina anglica (common cordgrass)

    NARCIS (Netherlands)

    van Hulzen, J.B.; Van Soelen, J.; Bouma, T.J.

    2007-01-01

    We explored to what extent morphological variation and habitat modification are correlated for an autogenic ecosystem engineer, which is an organism that modifies its habitat via its own physical structures. The intertidal salt marsh species Spartina anglica is well known for its capacity to enhance

  2. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selecti...

  3. Hand-Held Dynamometer Measurements Obtained in a Home Environment Are Reliable but Not Correlated Strongly with Function.

    Science.gov (United States)

    Bohannon, R. W.

    1996-01-01

    This research report describes the reliability and validity of hand-held dynamometer measurements of knee extension force obtained from 13 patients referred for physical therapy. Results found that hand-held dynamometry can be used to obtain reliable measures of muscle strength; however, correlation between strength measures and function was not…

  4. Students’ delinquency and correlates with strong and weaker ties : A study of students’ networks in Dutch high schools

    NARCIS (Netherlands)

    Baerveldt, Chris; Rossem, Ronan van; Vermande, Marjolein; Weerman, Frank

    2004-01-01

    The goal of the present study was to investigate three issues in the current debate on youth delinquency: (1) Whether the level of delinquency of adolescents is negatively correlated with the quality of her/his personal networks (as stated by the social inability model) or not (as stated by the

  5. Modern aspects of superconductivity theory of superconductivity

    CERN Document Server

    Kruchinin, Sergei; Aono, Shigeyuki

    2011-01-01

    Superconductivity remains one of the most interesting research areas in physics and stood as a major scientific mystery for a large part of this century. This book, written for graduate students and researchers in the field of superconductivity, discusses important aspects of the experiment and theory surrounding superconductivity. New experimental investigations of magnetic and thermodynamic superconducting properties of mesoscopic samples are explored with the help of recent developments in nanotechnologies and measurement techniques, and the results are predicted based upon theoretical mode

  6. Boson-Jet Correlations in a Hybrid Strong/Weak Coupling Model for Jet Quenching in Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, Jose Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2016-06-11

    We confront a hybrid strong/weak coupling model for jet quenching to data from LHC heavy ion collisions. The model combines the perturbative QCD physics at high momentum transfer and the strongly coupled dynamics of non- abelian gauge theories plasmas in a phenomenological way. By performing a full Monte Carlo simulation, and after fitting one single parameter, we successfully describe several jet observables at the LHC, including dijet and photon jet measurements. Within current theoretical and experimental uncertainties, we find that such observables show little sensitivity to the specifics of the microscopic energy loss mechanism. We also present a new observable, the ratio of the fragmentation function of inclusive jets to that of the associated jets in dijet pairs, which can discriminate among different medium models. Finally, we discuss the importance of plasma response to jet passage in jet shapes.

  7. Pressure-induced phase transitions and correlation between structure and superconductivity in iron-based superconductor Ce(O(0.84)F(0.16))FeAs.

    Science.gov (United States)

    Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing

    2013-07-15

    High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.

  8. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  9. Discovering superconductivity an investigative approach

    CERN Document Server

    Ireson, Gren

    2012-01-01

    The highly-illustrated text will serve as excellent introduction for students, with and without a physics background, to superconductivity. With a strong practical, experimental emphasis, it will provide readers with an overview of the topic preparing them for more advanced texts used in more advanced undergraduate and post-graduate courses.

  10. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  11. Quantum correlations in a system of nuclear s = 1/2 spins in a strong magnetic field

    International Nuclear Information System (INIS)

    Fel’dman, E B; Kuznetsova, E I; Yurishchev, M A

    2012-01-01

    Entanglement and quantum discord for a pair of nuclear spins s = 1/2 in a nanopore filled with a gas of spin-carrying molecules (atoms) are studied. The correlation functions describing dynamics of dipolar-coupled spins in a nanopore are found. The dependence of spin-pair entanglement on the temperature and the number of spins is obtained from the reduced density matrix, which is centrosymmetric (CS). An analytic expression for the concurrence is obtained for an arbitrary CS density matrix. It is shown that the quantum discord as a measure of quantum correlations attains a significant value at low temperatures. It is also shown that the discord in the considered model has ‘flickering’ character and disappears periodically in the course of time evolution of the system. The geometric discord is studied for arbitrary 4 × 4 CS density matrices. (paper)

  12. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    Science.gov (United States)

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  13. Superconducting magnets for fusion reactors

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1978-01-01

    Superconducting magnets for fusion reactor applications are being developed in the U.S., Europe, Japan and the USSR. A substantial technological base already exists, but magnets for fusion face special problems and strong incentives for higher performance. In the U.S. high-field magnets for mirrors are being addressed by construction of the superconducting (NbTi) MFTF and by Nb 3 Sn conductor development. Large toroidal field magnets for tokamaks are being developed through the Large Coil Program, which involves design and construction of NbTi and Nb 3 Sn coils by six industrial teams, three in the U.S. and three in other countries

  14. Modification of heparanase gene expression in response to conditioning and LPS treatment: strong correlation to rs4693608 SNP.

    Science.gov (United States)

    Ostrovsky, Olga; Shimoni, Avichai; Baryakh, Polina; Morgulis, Yan; Mayorov, Margarita; Beider, Katia; Shteingauz, Anna; Ilan, Neta; Vlodavsky, Israel; Nagler, Arnon

    2014-04-01

    Heparanase is an endo-β-glucuronidase that specifically cleaves the saccharide chains of HSPGs, important structural and functional components of the ECM. Cleavage of HS leads to loss of the structural integrity of the ECM and release of HS-bound cytokines, chemokines, and bioactive angiogenic- and growth-promoting factors. Our previous study revealed a highly significant correlation of HPSE gene SNPs rs4693608 and rs4364254 and their combination with the risk of developing GVHD. We now demonstrate that HPSE is up-regulated in response to pretransplantation conditioning, followed by a gradual decrease thereafter. Expression of heparanase correlated with the rs4693608 HPSE SNP before and after conditioning. Moreover, a positive correlation was found between recipient and donor rs4693608 SNP discrepancy and the time of neutrophil and platelet recovery. Similarly, the discrepancy in rs4693608 HPSE SNP between recipients and donors was found to be a more significant factor for the risk of aGVHD than patient genotype. The rs4693608 SNP also affected HPSE gene expression in LPS-treated MNCs from PB and CB. Possessors of the AA genotype exhibited up-regulation of heparanase with a high ratio in the LPS-treated MNCs, whereas individuals with genotype GG showed down-regulation or no effect on HPSE gene expression. HPSE up-regulation was mediated by TLR4. The study emphasizes the importance of rs4693608 SNP for HPSE gene expression in activated MNCs, indicating a role in allogeneic stem cell transplantation, including postconditioning, engraftment, and GVHD.

  15. Charge- and parity-projected Hartree-Fock method for the strong tensor correlation and its application to the alpha particle

    International Nuclear Information System (INIS)

    Sugimoto, Satoru; Ikeda, Kiyomi; Toki, Hiroshi

    2004-01-01

    We propose a new mean-field-type framework which can treat the strong correlation induced by the tensor force. To treat the tensor correlation we break the charge and parity symmetries of a single-particle state and restore these symmetries of the total system by the projection method. We perform the charge and parity projections before variation and obtain a Hartree-Fock-like equation, which is solved self-consistently. We apply the Hartree-Fock-like equation to the alpha particle and find that by breaking the parity and charge symmetries, the correlation induced by the tensor force is obtained in the projected mean-field framework. We emphasize that the projection before the variation is important to pick up the tensor correlation in the present framework

  16. Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V2O3

    Science.gov (United States)

    Poteryaev, Alexander I.; Tomczak, Jan M.; Biermann, Silke; Georges, Antoine; Lichtenstein, Alexander I.; Rubtsov, Alexey N.; Saha-Dasgupta, Tanusri; Andersen, Ole K.

    2007-08-01

    We present a study of the paramagnetic metallic and insulating phases of vanadium sesquioxide by means of the Nth order muffin-tin orbital implementation of density functional theory combined with dynamical mean-field theory. The transition is shown to be driven by a correlation-induced enhancement of the crystal-field splitting within the t2g manifold, which results in a suppression of the hybridization between the a1g and egπ bands. We discuss the changes in the effective quasiparticle band structure caused by the correlations and the corresponding self-energies. At temperatures of about 400K , we find the a1g orbital displays coherent quasiparticle behavior, while a large imaginary part of the self-energy and broad features in the spectral function indicate that the egπ orbitals are still far above their coherence temperature. The local spectral functions are in excellent agreement with recent bulk sensitive photoemission data. Finally, we also make a prediction for angle-resolved photoemission experiments by calculating momentum-resolved spectral functions.

  17. Updating the (supermassive black hole mass)-(spiral arm pitch angle) relation: a strong correlation for galaxies with pseudobulges

    Science.gov (United States)

    Davis, Benjamin L.; Graham, Alister W.; Seigar, Marc S.

    2017-10-01

    We have conducted an image analysis of the (current) full sample of 44 spiral galaxies with directly measured supermassive black hole (SMBH) masses, MBH, to determine each galaxy's logarithmic spiral arm pitch angle, ϕ. For predicting black hole masses, we have derived the relation: log (MBH/M⊙) = (7.01 ± 0.07) - (0.171 ± 0.017)[|ϕ| - 15°]. The total root mean square scatter associated with this relation is 0.43 dex in the log MBH direction, with an intrinsic scatter of 0.30 ± 0.08 dex. The MBH-ϕ relation is therefore at least as accurate at predicting SMBH masses in spiral galaxies as the other known relations. By definition, the existence of an MBH-ϕ relation demands that the SMBH mass must correlate with the galaxy discs in some manner. Moreover, with the majority of our sample (37 of 44) classified in the literature as having a pseudobulge morphology, we additionally reveal that the SMBH mass correlates with the large-scale spiral pattern and thus the discs of galaxies hosting pseudobulges. Furthermore, given that the MBH-ϕ relation is capable of estimating black hole masses in bulge-less spiral galaxies, it therefore has great promise for predicting which galaxies may harbour intermediate-mass black holes (IMBHs, MBH < 105 M⊙). Extrapolating from the current relation, we predict that galaxies with |ϕ| ≥ 26.7° should possess IMBHs.

  18. Strong correlations between empathy, emotional intelligence, and personality traits among podiatric medical students: A cross-sectional study.

    Science.gov (United States)

    Bertram, Kurtis; Randazzo, John; Alabi, Nathaniel; Levenson, Jack; Doucette, John T; Barbosa, Peter

    2016-01-01

    The ability of health-care providers to demonstrate empathy toward their patients results in a number of positive outcomes improving the quality of care. In addition, a provider's level of emotional intelligence (EI) can further the doctor-patient relationship, stimulating a more personalized and comprehensive manner of treating patients. Furthermore, personality traits of a clinician may positively or negatively influence that relationship, as well as clinical outcomes. This study was designed to evaluate empathy levels in podiatric medical students in a 4-year doctoral program. Moreover, this study aimed to determine whether EI, personality traits, and demographic variables exhibit correlations with the observed empathy patterns. This cross-sectional study collected data using an anonymous web-based survey completed by 150 students registered at the New York College of Podiatric Medicine. There were four survey sections: (1) demographics, (2) empathy (measured by the Jefferson Scale of Physicians' Empathy), (3) EI (measured by the Assessing Emotions Scale), and (4) personality traits (measured by the NEO-Five-Factor Inventory-3). Empathy levels were significantly correlated with EI scores (r = 0.62, n = 150, Pmedical students. Given the suggested importance and effect of such qualities on patient care, these findings may serve as guidance for possible amendments and warranted curriculum initiatives in medical education.

  19. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  20. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  1. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    forest in Soro, Zealand, Denmark, amounted on average to 42% of the measured flux, while it was only 4% for the CO2 flux, which was measured with the same EC system. We recommend using the described method to correct water vapour fluxes measured in any closed-path EC system for unintended low......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour...

  2. Field-induced magnetic instability within a superconducting condensate

    DEFF Research Database (Denmark)

    Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis

    2017-01-01

    The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...

  3. Diamagnetism in quasicrystalline superconducting networks

    International Nuclear Information System (INIS)

    Qian Niu; Nori, F.

    1990-01-01

    In this paper, we review recent results on superconducting structures with quasicrystalline geometry. Specifically, we consider the superconducting-normal phase boundaries of a variety of wire networks and Josephson junction arrays. We have computed the mean field phase diagrams for a number of geometries and compared them to the corresponding experimental data. We have introduced an analytical approach to the analysis of the structures present in the phase boundaries. Furthermore, we have shown in great detail how the gross structure is determined by the statistical distributions of the cell areas, and how the fine structures are determined by correlations among neighboring cells in the lattices. (author). 12 refs, 2 figs

  4. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.). 14 refs.

  5. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology, Lund (Sweden)

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density 37 refs, 15 figs

  6. Bentonite swelling pressure in strong NaCl solutions. Correlation between model calculations and experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1997-12-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed by different researchers over the years. The present report examines some of the models which possibly may be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved thermodynamic model predicts substantial bentonite swelling pressures also in saturated sodium chloride solution if the density of the system is high enough. In practice, the model predicts a substantial swelling pressure for the buffer in a KBS-3 repository if the system is exposed to brines, but the positive effects of mixing bentonite into a backfill material will be lost, since the available compaction technique does not give a sufficiently high bentonite density

  7. Disease quantification in dermatology: in vivo near-infrared spectroscopy measures correlate strongly with the clinical assessment of psoriasis severity

    Science.gov (United States)

    Greve, Tanja Maria; Kamp, Søren; Jemec, Gregor B. E.

    2013-03-01

    Accurate documentation of disease severity is a prerequisite for clinical research and the practice of evidence-based medicine. The quantification of skin diseases such as psoriasis currently relies heavily on clinical scores. Although these clinical scoring methods are well established and very useful in quantifying disease severity, they require an extensive clinical experience and carry a risk of subjectivity. We explore the opportunity to use in vivo near-infrared (NIR) spectra as an objective and noninvasive method for local disease severity assessment in 31 psoriasis patients in whom selected plaques were scored clinically. A partial least squares (PLS) regression model was used to analyze and predict the severity scores on the NIR spectra of psoriatic and uninvolved skin. The correlation between predicted and clinically assigned scores was R=0.94 (RMSE=0.96), suggesting that in vivo NIR provides accurate clinical quantification of psoriatic plaques. Hence, NIR may be a practical solution to clinical severity assessment of psoriasis, providing a continuous, linear, numerical value of severity.

  8. Bentonite swelling pressure in strong NaCl solutions. Correlation of model calculations to experimentally determined data

    International Nuclear Information System (INIS)

    Karnland, O.

    1998-01-01

    A number of quite different quantitative models concerning swelling pressure in bentonite clay have been proposed. This report discusses a number of models which possibly can be used also for saline conditions. A discrepancy between calculated and measured values was noticed for all models at brine conditions. In general the models predicted a too low swelling pressure compared to what was experimentally found. An osmotic component in the clay/water system is proposed in order to improve the previous conservative use of the thermodynamic model. Calculations of this osmotic component is proposed to be made by use of the clay cation exchange capacity and Donnan equilibrium. Calculations made by this approach showed considerably better correlation to literature laboratory data, compared to calculations made by the previous conservative use of the thermodynamic model. A few verifying laboratory tests were made and are briefly described in the report. The improved model predicts a substantial bentonite swelling pressure also in a saturated sodium chloride solution if the density of the system is sufficiently high. This means in practice that the buffer in a KBS-3 repository will give rise to an acceptable swelling pressure, but that the positive effects of mixing bentonite into a backfill material will be lost if the system is exposed to brines. (orig.)

  9. The iron-age of superconductivity: structural correlations and commonalities among the various families having -Fe-Pn- slabs (Pn = P, As and Sb).

    Science.gov (United States)

    Ganguli, Ashok K; Prakash, Jai; Thakur, Gohil S

    2013-01-21

    The fascination of mankind towards a sudden change of a property, like colour, shape, elasticity, viscosity, electrical conductivity and magnetism, is well known. If the change in property is such that it leads to disapperance of an existing property or development of a new property then the effect is magical. It is for this reason that superconductivity remains an enigma for scientists for over a century after Kammerlingh Onnes discovered that the electrical resistance of mercury falls to zero below a temperature of 4.2 K. Since then scientists have been enchanted by superconductivity. Over these hundred years attempts have been made to discover materials which show this effect at higher temperatures. After a very exciting period of Cu oxide superconductors (1986-1993) there has been a lull in the search for high T(c) materials. The discovery of superconductivity in 2008 at 26 K in LaOFeAs (F-doped) has renewed the excitement in the field of superconductivity. This breakthrough in an Fe-containing compound led to the discovery of several new families of Fe-based superconductors having either pnictogens (P, As) or chalcogen (Se, Te) of the type AFFeAs (A = alkaline-earth metal), AFe(2)As(2), AFeAs (A = alkali metals), A(3)M(2)O(5)Fe(2)As(2) (M = transition metals) and A(4)M(2)O(6)Fe(2)As(2). This review article discusses in detail the structural aspects of these new Fe-based superconductors which primarily consist of edge-shared distorted FeX(4) (X = pnictogen and chalcogen) tetrahedra and these tetrahedral layers are reponsible for enabling superconductivity. Extremely large upper critical field (>200 Tesla) of these superconductors make them promising for high field application. Structural commonalities and differences among different families of these superconductors have been outlined. We also discuss the common features and differences with the copper-oxide based superconductors. Here we have discussed all the Fe-based oxypnictide families (like LnOFePn, AFe(2

  10. Electron-hole balance and the anomalous pressure-dependent superconductivity in black phosphorus

    Science.gov (United States)

    Guo, Jing; Wang, Honghong; von Rohr, Fabian; Yi, Wei; Zhou, Yazhou; Wang, Zhe; Cai, Shu; Zhang, Shan; Li, Xiaodong; Li, Yanchun; Liu, Jing; Yang, Ke; Li, Aiguo; Jiang, Sheng; Wu, Qi; Xiang, Tao; Cava, Robert J.; Sun, Liling

    2017-12-01

    Here we report the in situ high-pressure (up to ˜50 -GPa) Hall-effect measurements on single-crystal black phosphorus. We find a strong correlation between the sign of the Hall coefficient, an indicator of the dominant carrier type, and the superconducting transition temperature (TC). Importantly, we find a change from electron-dominant to hole-dominant carriers in the simple cubic phase of phosphorus at a pressure of ˜17.2 GPa, providing an explanation for the puzzling valley it displays in its superconducting TC vs pressure phase diagram. Our results reveal that hole carriers play an important role in developing superconductivity in elemental phosphorus and the valley in TC at 18.8 GPa is associated with a Lifshitz transition.

  11. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    Science.gov (United States)

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  12. Anomalous magnetism of superconducting Mg-doped InN film

    Directory of Open Access Journals (Sweden)

    P. H. Chang

    2016-02-01

    Full Text Available We report on the Meissner effect of Mg-doped InN film with superconducting transition onset temperature Tc,onset of 5 K. Mg-doped InN is magnetically ordered and exhibits a simultaneous first-order magnetic and electric transition near 50 K. Its behavior is similar to that of iron-based superconductors. A strong correlation is proposed to exist between structural distortion and superconductivity when Mg is doped into InN. The suppression of magnetic ordering close to Tc by doping is further demonstrated by anisotropic magnetoresistance and M-H measurements. The findings suggest that the superconducting mechanism in the system may not be conventional BCS.

  13. How strongly do word reading times and lexical decision times correlate? Combining data from eye movement corpora and megastudies.

    Science.gov (United States)

    Kuperman, Victor; Drieghe, Denis; Keuleers, Emmanuel; Brysbaert, Marc

    2013-01-01

    We assess the amount of shared variance between three measures of visual word recognition latencies: eye movement latencies, lexical decision times, and naming times. After partialling out the effects of word frequency and word length, two well-documented predictors of word recognition latencies, we see that 7-44% of the variance is uniquely shared between lexical decision times and naming times, depending on the frequency range of the words used. A similar analysis of eye movement latencies shows that the percentage of variance they uniquely share either with lexical decision times or with naming times is much lower. It is 5-17% for gaze durations and lexical decision times in studies with target words presented in neutral sentences, but drops to 0.2% for corpus studies in which eye movements to all words are analysed. Correlations between gaze durations and naming latencies are lower still. These findings suggest that processing times in isolated word processing and continuous text reading are affected by specific task demands and presentation format, and that lexical decision times and naming times are not very informative in predicting eye movement latencies in text reading once the effect of word frequency and word length are taken into account. The difference between controlled experiments and natural reading suggests that reading strategies and stimulus materials may determine the degree to which the immediacy-of-processing assumption and the eye-mind assumption apply. Fixation times are more likely to exclusively reflect the lexical processing of the currently fixated word in controlled studies with unpredictable target words rather than in natural reading of sentences or texts.

  14. Superconductivity, Antiferromagnetism, and Neutron Scattering

    OpenAIRE

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2013-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements...

  15. Tuning orbital-selective correlation effects in the superconducting iron chalcogenides Rb{sub 1-x}Fe{sub 1.6}Se{sub 2-z}S{sub z}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Schmidt, Michael; Loidl, Alois; Deisenhofer, Joachim [Experimetal Physics V, University of Augsburg (Germany); Tsurkan, Vladimir [Experimetal Physics V, University of Augsburg (Germany); Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of)

    2016-07-01

    We report a terahertz time-domain spectroscopy study on superconducting and metallic iron chalcogenides Rb{sub 1-x}Fe{sub 1.6}Se{sub 2-z}S{sub z}. With increasing sulfur doping the superconducting transition is reduced from T{sub c} = 32 K for z = 0 and finally suppressed at z = 1.4. The dielectric constant and the optical conductivity exhibit a metal-to-insulator-type transition associated to an orbital-selective Mott phase. This orbital-selective Mott transition appears at T{sub met} = 90 K for z = 0 and shifts to higher temperatures for higher doping levels, identifying sulfur substitution as an efficient parameter to tune orbital-dependent correlation effects in the iron-chalcogenide superconductors. The reduced correlation strength of the dxy charge carriers may also account for the suppression of the pseudogap-like feature between T{sub c} and T{sub met} that was observed for z = 0.

  16. Correlation between in-field critical currents in Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes at 30 and 77 K

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Xu, A; Liu, Y; Khatri, ND; Lei, C; Chen, Y; Galstyan, E; Majkic, G

    2014-03-11

    Critical current (I-c) values of 1384 Lambda/12 mm, corresponding to a critical current density of 12.47 MA cm(-2) and a pinning force of 374 GN m(-3), have been achieved at 30 K, 3 T in the orientation of field parallel to the c axis (B parallel to c) in (Gd, Y)BaCuO tapes with 15 mol% Zr addition made by metal organic chemical vapor deposition (MOCVD). These tapes show pinning force levels as high as 453 GN m(-3) at 30 K. An analysis of the properties of 24-28 (Gd, Y)BaCuO tapes with 15 mol% Zr addition showed a lack of correlation between their critical currents at 30 K, 3 T (B parallel to c) and I-c values both at 77 K, zero field and at 77 K, 1 T (B parallel to c). However, a strong correlation was found between the critical currents at 30 K, 3 T and at 77 K, 3 T (B parallel to c). It has also been discovered that the minimum critical current (I-c, (min)) value at 77 K, 3 T has no influence on the I-c,I- (min) value at 30 K, 3 T, and it in turn depends on the ratio of the I-c values in the orientations of field parallel and perpendicular to the c axis at 77 K, 3 T.

  17. Correlations between critical current density, jc, critical temperature, Tc, and structural quality of Y1B2Cu3O7-x thin superconducting films

    International Nuclear Information System (INIS)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-01-01

    Correlations between critical current density (j c ) critical temperature (T c ) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO 3 single crystals. Distinct maxima in j c as a function of the linewidths of the (00 ell) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j c indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical current density. T c increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j c and the density of edge dislocations N D was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N D ∼1-2 x 10 9 /cm 2

  18. Cooperative phenomena in superconducting atom-chips

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Sebastian; Kubala, Bjoern; Ankerhold, Joachim [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany)

    2013-07-01

    We theoretically investigate the physics of hybrid quantum systems, where a cloud of cold atoms is coupled to superconducting microstructures, so called superconducting atom-chips. Coherent enhancement, due to the large number of atoms in the cloud, opens a path to the study of strong coupling effects, like superradiance/Dicke-physics in a decohering environment. A structured environment can be designed by embedding a Cooper pair box within the cavity. Moreover, in such a system the transfer of quantum information between the atomic cloud and the superconducting solid state system can be studied.

  19. Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes

    OpenAIRE

    A. Xu; L. Delgado; N. Khatri; Y. Liu; V. Selvamanickam; D. Abraimov; J. Jaroszynski; F. Kametani; D. C. Larbalestier

    2014-01-01

    Applications of REBCO coated conductors are now being developed for a very wide range of temperatures and magnetic fields and it is not yet clear whether vortex pinning strategies aimed for high temperature, low field operation are equally valid at lower temperatures and higher fields. A detailed characterization of the superconducting properties of a 15 mol. % Zr-added REBCO thin film made by metal organic chemical vapor deposition, from 4.2 to 77 K under magnetic fields up to 31 T is presen...

  20. Parity violation and superconductivity in doped Mott insulators

    International Nuclear Information System (INIS)

    Khveshchenko, D.V.; Kogan, Ya.I.

    1989-12-01

    We study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU(2N)-symmetric generalization of the system involved we give the arguments supporting the existence of these states at a filling number different from one-half. We derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. We establish that the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation. (author). 48 refs, 3 figs

  1. Parity violation and superconductivity in doped Mott insulators

    International Nuclear Information System (INIS)

    Khveshchenko, D.Y.; Kogan, Y.I.

    1990-01-01

    The authors study parity violating states of strongly correlated two-dimensional electronic systems. On the basis of mean field theory for the SU(2N)-symmetric generalization of the system involved the authors give the arguments supporting the existence of these states at a filling number different from one-half. The authors derive an effective Lagrangian describing the long wavelength dynamics of magnetic excitations and their interaction with charged spinless holes. This paper establishes the ground state of a doped system is superconducting and discuss the phenomenological manifestations of the parity violation

  2. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  3. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  4. Measurement of angular correlations of jets at {radical}(s)=1.96 TeV and determination of the strong coupling at high momentum transfers

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Abbott, B. [University of Oklahoma, Norman, OK 73019 (United States); Acharya, B.S. [Tata Institute of Fundamental Research, Mumbai (India); Adams, M. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Adams, T. [Florida State University, Tallahassee, FL 32306 (United States); Alexeev, G.D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alkhazov, G. [Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Alton, A. [University of Michigan, Ann Arbor, MI 48109 (United States); Alverson, G. [Northeastern University, Boston, MA 02115 (United States); Askew, A. [Florida State University, Tallahassee, FL 32306 (United States); Atkins, S. [Louisiana Tech University, Ruston, LA 71272 (United States); Augsten, K. [Czech Technical University in Prague, Prague (Czech Republic); Avila, C. [Universidad de los Andes, Bogota (Colombia); Badaud, F. [LPC, Universite Blaise Pascal, CNRS/IN2P3, Clermont (France); Bagby, L.; Baldin, B. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bandurin, D.V. [Florida State University, Tallahassee, FL 32306 (United States); Banerjee, S. [Tata Institute of Fundamental Research, Mumbai (India); Barberis, E. [Northeastern University, Boston, MA 02115 (United States); Baringer, P. [University of Kansas, Lawrence, KS 66045 (United States); and others

    2012-11-15

    We present a measurement of the average value of a new observable at hadron colliders that is sensitive to QCD dynamics and to the strong coupling constant, while being only weakly sensitive to parton distribution functions. The observable measures the angular correlations of jets and is defined as the number of neighboring jets above a given transverse momentum threshold which accompany a given jet within a given distance {Delta}R in the plane of rapidity and azimuthal angle. The ensemble average over all jets in an inclusive jet sample is measured and the results are presented as a function of transverse momentum of the inclusive jets, in different regions of {Delta}R and for different transverse momentum requirements for the neighboring jets. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb{sup -1} collected with the D0 detector at the Fermilab Tevatron Collider in pp{sup Macron} collisions at {radical}(s)=1.96 TeV. The results are well described by a perturbative QCD calculation in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects. From these results, we extract the strong coupling and test the QCD predictions for its running over a range of momentum transfers of 50-400 GeV.

  5. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  6. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  7. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  8. Simple anthropometric measures correlate with metabolic risk indicators as strongly as magnetic resonance imaging-measured adipose tissue depots in both HIV-infected and control subjects.

    Science.gov (United States)

    Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Heymsfield, Steven B; Grunfeld, Carl

    2008-06-01

    Studies in persons without HIV infection have compared percentage body fat (%BF) and waist circumference as markers of risk for the complications of excess adiposity, but only limited study has been conducted in HIV-infected subjects. We compared anthropometric and magnetic resonance imaging (MRI)-based adiposity measures as correlates of metabolic complications of adiposity in HIV-infected and control subjects. The study was a cross-sectional analysis of 666 HIV-positive and 242 control subjects in the Fat Redistribution and Metabolic Change in HIV Infection (FRAM) study assessing body mass index (BMI), waist (WC) and hip (HC) circumferences, waist-to-hip ratio (WHR), %BF, and MRI-measured regional adipose tissue. Study outcomes were 3 metabolic risk variables [homeostatic model assessment (HOMA), triglycerides, and HDL cholesterol]. Analyses were stratified by sex and HIV status and adjusted for demographic, lifestyle, and HIV-related factors. In HIV-infected and control subjects, univariate associations with HOMA, triglycerides, and HDL were strongest for WC, MRI-measured visceral adipose tissue, and WHR; in all cases, differences in correlation between the strongest measures for each outcome were small (r HDL, WC appeared to be the best anthropometric correlate of metabolic complications, whereas, for triglycerides, the best was WHR. Relations of simple anthropometric measures with HOMA, triglycerides, and HDL cholesterol are approximately as strong as MRI-measured whole-body adipose tissue depots in both HIV-infected and control subjects.

  9. Serum 17-hydroxyprogesterone strongly correlates with intratesticular testosterone in gonadotropin-suppressed normal men receiving various dosages of human chorionic gonadotropin

    Science.gov (United States)

    Amory, John K.; Coviello, Andrea D.; Page, Stephanie T.; Anawalt, Bradley D.; Matsumoto, Alvin M.; Bremner, William J.

    2009-01-01

    Objective: To determine if serum concentrations of testosterone precursors would correlate with intratesticular testosterone (ITT) concentration measured directly by testicular aspiration and allow for a less invasive means of inferring ITT. Design: Controlled clinical study. Setting: Healthy volunteers in an academic research environment. Patients: Twenty-nine normal men. Intervention: We determined ITT concentration by testicular aspiration before and after treatment in men receiving exogenous testosterone to block endogenous gonadotropin production and randomly assigned to one of four doses of human chorionic gonadotropin (hCG) (0, 125 IU, 250 IU, 500 IU every other day) for 3 weeks. Outcome measures: The association between serum 17-hydroxyprogesterone, androstenedione and dihydroepiandrosterone (DHEA) and ITT. Results: With testosterone administration alone, serum 17-hydroxyprogesterone decreased significantly and increased significantly when 500 IU hCG was administered. End-of-treatment ITT strongly correlated with serum 17-hydroxyprogesterone. Moreover, serum 17-hydroxyprogesterone, but not androstenedione or DHEA, was independently associated with end-of-treatment ITT by multivariate linear regression. Conclusion: Serum 17-hydroxyprogesterone is highly correlated with ITT in gonadotropin suppressed normal men receiving testosterone and stimulated with hCG. Serum 17-hydroxyprogesterone is a surrogate biomarker of ITT and may be useful in research and in men receiving gonadotropin therapy for infertility. PMID:17462643

  10. Theory of parametrically amplified electron-phonon superconductivity

    Science.gov (United States)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016), 10.1038/nature16522], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  11. Investigations of the surface resistance of superconducting materials

    International Nuclear Information System (INIS)

    Junginger, Tobias

    2012-01-01

    In particle accelerators superconducting RF cavities are widely used to achieve high accelerating gradients and low losses. Power consumption is proportional to the surface resistance R S which depends on a number of external parameters, including frequency, temperature, magnetic and electric field. Presently, there is no widely accepted model describing the increase of R S with applied field. In the frame of this project the 400 MHz Quadrupole Resonator has been extended to 800 and 1200 MHz to study surface resistance and intrinsic critical RF magnetic field of superconducting samples over a wide parameter range, establishing it as a world-wide unique test facility for superconducting materials. Different samples were studied and it was shown that R S is mainly caused by the RF electric field in the case of strongly oxidized surfaces. This can be explained by interface tunnel exchange of electrons between the superconductor and localized states in adjacent oxides. For well prepared surfaces, however, the majority of the dissipation is caused by the magnetic field and R S factorizes into field and temperature dependent parts. These different loss mechanisms were correlated to surface topography of the samples and distribution of oxides by using ultrasonic force microscopy and X-ray photon spectroscopy.

  12. Inhomogeneous LOFF phase revisited for surface superconductivity

    Science.gov (United States)

    Barzykin, Victor; Gor'kov, Lev P.

    2003-03-01

    We consider 2D surface superconductivity in high magnetic fields parallel to the surface. We demonstrate that the spin-orbit interaction at the surface changes the properties of the inhomogeneous superconducting Larkin-Ovchinnikov-Fulde-Ferrell state that develops above fields given by the paramagnetic criterion. Strong spin-orbit interaction significantly broadens the range of existence of the LOFF phase, which takes the form of periodic superconducting stripes running along the field direction on the surface, leading to the anisotropy of its properties. We also discuss this problem for the d-wave pairing to indicate the possibility of a re-orientation transition as the magnetic field direction is rotated in the plane parallel to the surface. Our results provide a tool for studying surface superconductivity This work was supported in part by NHMFL through the NSF Cooperative agreement No. DMR-9521035 and the State of Florida, in part (VB) by the University of Tennessee.

  13. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    Science.gov (United States)

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  14. Superconducting Magnets

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Starting from the beam requirements for accelerator magnets, we will outline the main issues and the physical limitations for producing strong and pure magnetic fields with superconductors. The seminar will mainly focus on the magnets for the accelerator, and give some hints on the magnets for the experiments. Prerequisite knowledge: Basic knowledge of Maxwell equations, and linear optics for particle accelerators (FODO cell, beta functions).

  15. Coupled cluster valence bond theory for open-shell systems with application to very long range strong correlation in a polycarbene dimer.

    Science.gov (United States)

    Small, David W; Head-Gordon, Martin

    2017-07-14

    The Coupled Cluster Valence Bond (CCVB) method, previously presented for closed-shell (CS) systems, is extended to open-shell (OS) systems. The theoretical development is based on embedding the basic OS CCVB wavefunction in a fictitious singlet super-system. This approach reveals that the OS CCVB amplitude equations are quite similar to those of CS CCVB, and thus that OS CCVB requires the same level of computational effort as CS CCVB, which is an inexpensive method. We present qualitatively correct CCVB potential energy curves for all low-lying spin states of P 2 and Mn 2 + . CCVB is successfully applied to the low-lying spin states of some model linear polycarbenes, systems that appear to be a hindrance to standard density functionals. We examine an octa-carbene dimer in a side-by-side orientation, which, in the monomer dissociation limit, exhibits maximal strong correlation over the length of the polycarbene.

  16. Superconductivity in the background of disordered flux state of spins

    International Nuclear Information System (INIS)

    Feng Shiping; Guo Rui; Han Fei

    1992-01-01

    The phase diagram of the copper oxide materials with the antiferromagnetic and the superconducting properties as a function of doping δ is obtained in the framework of the t-J model by using the Schwinger boson-slave fermion theory. The results show that the spiral order of spins competes and coexists with superconductivity for small doping δ. For large doping δ, superconductivity appears, which may be caused by the occurrence of a disordered flux state of spins. The phase diagram suggests a strong relationship between antiferromagnetism and superconductivity. (orig.)

  17. Simple anthropometric measures correlate with metabolic risk indicators as strongly as magnetic resonance imaging–measured adipose tissue depots in both HIV-infected and control subjects2

    Science.gov (United States)

    Scherzer, Rebecca; Shen, Wei; Bacchetti, Peter; Kotler, Donald; Lewis, Cora E; Shlipak, Michael G; Heymsfield, Steven B

    2008-01-01

    Background Studies in persons without HIV infection have compared percentage body fat (%BF) and waist circumference as markers of risk for the complications of excess adiposity, but only limited study has been conducted in HIV-infected subjects. Objective We compared anthropometric and magnetic resonance imaging (MRI)–based adiposity measures as correlates of metabolic complications of adiposity in HIV-infected and control subjects. Design The study was a cross-sectional analysis of 666 HIV-positive and 242 control subjects in the Fat Redistribution and Metabolic Change in HIV Infection (FRAM) study assessing body mass index (BMI), waist (WC) and hip (HC) circumferences, waist-to-hip ratio (WHR), %BF, and MRI-measured regional adipose tissue. Study outcomes were 3 metabolic risk variables [homeostatic model assessment (HOMA), triglycerides, and HDL cholesterol]. Analyses were stratified by sex and HIV status and adjusted for demographic, lifestyle, and HIV-related factors. Results In HIV-infected and control subjects, univariate associations with HOMA, triglycerides, and HDL were strongest for WC, MRI-measured visceral adipose tissue, and WHR; in all cases, differences in correlation between the strongest measures for each outcome were small (r ≤ 0.07). Multivariate adjustment found no significant difference for optimally fitting models between the use of anthropometric and MRI measures, and the magnitudes of differences were small (adjusted R2 ≤ 0.06). For HOMA and HDL, WC appeared to be the best anthropometric correlate of metabolic complications, whereas, for triglycerides, the best was WHR. Conclusion Relations of simple anthropometric measures with HOMA, triglycerides, and HDL cholesterol are approximately as strong as MRI-measured whole-body adipose tissue depots in both HIV-infected and control subjects. PMID:18541572

  18. Spin-orbit scattering in superconducting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alhassid, Y. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut, 06520 (United States); Nesterov, K.N. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, 53706 (United States)

    2017-06-15

    We review interaction effects in chaotic metallic nanoparticles. Their single-particle Hamiltonian is described by the proper random-matrix ensemble while the dominant interaction terms are invariants under a change of the single-particle basis. In the absence of spin-orbit scattering, the nontrivial invariants consist of a pairing interaction, which leads to superconductivity in the bulk, and a ferromagnetic exchange interaction. Spin-orbit scattering breaks spin-rotation invariance and when it is sufficiently strong, the only dominant nontrivial interaction is the pairing interaction. We discuss how the magnetic response of discrete energy levels of the nanoparticle (which can be measured in single-electron tunneling spectroscopy experiments) is affected by such pairing correlations and how it can provide a signature of pairing correlations. We also consider the spin susceptibility of the nanoparticle and discuss how spin-orbit scattering changes the signatures of pairing correlations in this observable. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  20. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  1. Superconductivity and their applications

    OpenAIRE

    Roque, António

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  2. Surface and Superconductivity

    Science.gov (United States)

    Gor'kov, L. P.

    2006-07-01

    Experiments reveal the existence of metallic bands at surfaces of metals and insulators. The bands can be doped externally. We review properties of surface superconductivity that may set up in such bands at low temperatures and various means of superconductivity defection. The fundamental difference as compared to the ordinary superconductivity in metals, besides its two-dimensionality lies in the absence of the center of space inversion. This results in mixing between the singlet and triplet channels of the Cooper pairing.

  3. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  4. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  5. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  6. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  7. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  8. Macroscopic structural coherence in two-component superconductivity

    International Nuclear Information System (INIS)

    Bar-Yam, Y.

    1991-01-01

    In two-component theory pairing arises from localized negative-U states and mobility arises from extended single particle states. A small hybridization of localized and extended states enables mobility and pairing to provide a high Tc. RPA analysis of the ''normal'' state implies uncondensed charged pairs carry current, while long lived single particle excitations are neutral electron-hole hybrids. At Tc pairs condense and single particle states undergo Cooper pairing. In the superconducting state pair-pair excitations exist in the BCS-like fermionic gap. Signatures of this theory range from distintive Tc, Δ, H c , ξ, conductance anomalies in sound and bulk modulii at Tc, linear temperature dependence of normal state resistivity, 2e charge carriers in the normal state, linear voltage dependence in normal-state-tunneling conductance, and finite zero-bias conductance in superconducting state tunneling. Quantitative comparisons with superconducting properties of YBa 2 Cu 3 O 7 were presented. A distinctive signature is the prediction of dynamical structural correlations which are local above Tc and macroscopic below Tc. Experiments provide direct evidence for such dynamical correlations: neutron diffraction ''thermal ovals'', channeling experiment cross section changes as a function of temperature near Tc, pair-distribution-function neutron diffraction including inelastic and elastic scattering showing direct evidence for dynamic correlations which change at Tc, and EXAFS showing a large dynamical displacement of oxygen atoms tunneling between sites separated by 0.13A. In two-component theory strong lattice coupling is consistent with low isotope shifts since tunneling occurs by a virtual Franck-Condon transition. Predictions for the dynamical structure factor are presented. (orig.)

  9. Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y-Ba-Cu-O superconducting tapes

    Directory of Open Access Journals (Sweden)

    A. Xu

    2014-04-01

    Full Text Available Applications of REBCO coated conductors are now being developed for a very wide range of temperatures and magnetic fields and it is not yet clear whether vortex pinning strategies aimed for high temperature, low field operation are equally valid at lower temperatures and higher fields. A detailed characterization of the superconducting properties of a 15 mol. % Zr-added REBCO thin film made by metal organic chemical vapor deposition, from 4.2 to 77 K under magnetic fields up to 31 T is presented in this article. Even at a such high level of Zr addition, Tc depression has been avoided (Tc = 91 K, while at the same time an exceptionally high irreversibility field Hirr ≈ 14.8 T at 77 K and a remarkably high vortex pinning force density Fp ≈ 1.7 TN/m3 at 4.2 K have been achieved. We ascribe the excellent pinning performance at high temperatures to the high density (equivalent vortex matching field ∼7 T of self-assembled BZO nanorods, while the low temperature pinning force is enhanced by large additional pinning which we ascribe to strain-induced point defects induced in the REBCO matrix by the BZO nanorods. Our results suggest even more room for further performance enhancement of commercial REBCO coated conductors and point the way to REBCO coil applications at liquid nitrogen temperatures since the critical current density Jc(H//c characteristic at 77 K are now almost identical to those of fully optimized Nb-Ti at 4 K.

  10. Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, A; Delgado, L; Khatri, N; Liu, Y; Selvamanickam, V; Abraimov, D; Jaroszynski, J; Kametani, F; Larbalestier, DC

    2014-04-01

    Applications of REBCO coated conductors are now being developed for a very wide range of temperatures and magnetic fields and it is not yet clear whether vortex pinning strategies aimed for high temperature, low field operation are equally valid at lower temperatures and higher fields. A detailed characterization of the superconducting properties of a 15 mol.% Zr-added REBCO thin film made by metal organic chemical vapor deposition, from 4.2 to 77 K under magnetic fields up to 31 T is presented in this article. Even at a such high level of Zr addition, T-c depression has been avoided (T-c = 91 K), while at the same time an exceptionally high irreversibility field H-irr approximate to 14.8 T at 77 K and a remarkably high vortex pinning force density F-p approximate to 1.7 TN/m(3) at 4.2 K have been achieved. We ascribe the excellent pinning performance at high temperatures to the high density (equivalent vortex matching field similar to 7 T) of self-assembled BZO nanorods, while the low temperature pinning force is enhanced by large additional pinning which we ascribe to strain-induced point defects induced in the REBCO matrix by the BZO nanorods. Our results suggest even more room for further performance enhancement of commercial REBCO coated conductors and point the way to REBCO coil applications at liquid nitrogen temperatures since the critical current density J(c)(H//c) characteristic at 77 K are now almost identical to those of fully optimized Nb-Ti at 4 K. (C) 2014 Author(s).

  11. Unconventional superconductivity in magic-angle graphene superlattices

    Science.gov (United States)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high

  12. Ginzburg-Landau expansion in strongly disordered attractive Anderson-Hubbard model

    Science.gov (United States)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-07-01

    We have studied disordering effects on the coefficients of Ginzburg-Landau expansion in powers of superconducting order parameter in the attractive Anderson-Hubbard model within the generalized DMFT+Σ approximation. We consider the wide region of attractive potentials U from the weak coupling region, where superconductivity is described by BCS model, to the strong coupling region, where the superconducting transition is related with Bose-Einstein condensation (BEC) of compact Cooper pairs formed at temperatures essentially larger than the temperature of superconducting transition, and a wide range of disorder—from weak to strong, where the system is in the vicinity of Anderson transition. In the case of semielliptic bare density of states, disorder's influence upon the coefficients A and B of the square and the fourth power of the order parameter is universal for any value of electron correlation and is related only to the general disorder widening of the bare band (generalized Anderson theorem). Such universality is absent for the gradient term expansion coefficient C. In the usual theory of "dirty" superconductors, the C coefficient drops with the growth of disorder. In the limit of strong disorder in BCS limit, the coefficient C is very sensitive to the effects of Anderson localization, which lead to its further drop with disorder growth up to the region of the Anderson insulator. In the region of BCS-BEC crossover and in BEC limit, the coefficient C and all related physical properties are weakly dependent on disorder. In particular, this leads to relatively weak disorder dependence of both penetration depth and coherence lengths, as well as of related slope of the upper critical magnetic field at superconducting transition, in the region of very strong coupling.

  13. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi......-particle states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  14. Superconductivity: Is there a problem in transuranics?

    International Nuclear Information System (INIS)

    Colineau, Eric; Griveau, Jean-Christophe; Eloirdi, Rachel; Hen, Amir; Caciuffo, Roberto

    2014-01-01

    Superconductivity was first reported in 1942 for uranium metal (¡-U) and in 1958 for U compounds: UCo, U6Mn, U6Fe, and U6Co, with critical temperatures Tc, of 1.7, 2.3, 3.9, and 2.3K, respectively. A new class of U superconductors emerged in the early 1980’s with the discovery of U heavy fermion superconductors : UBe13 (Tc = 0.85K), UPt3 (Tc = 0.53K), URu2Si2 (Tc = 1.5K) , UPd2Al3 (Tc = 1.9K) … Furthermore, in most of these systems, the superconducting phases coexist with antiferromagnetic (AF) correlations which have characteristic temperatures, usually the Néel temperature TN, that are typically one order of magnitude greater than the corresponding superconducting critical temperatures Tc. Superconductivity was even shown to co-exist with ferromagnetism in e.g. UGe2 (Tc ï» 0.8K, TC ï» 30K at p ï» 1.2GPa) and URhGe (Tc = 0.25K, TC = 9.5K). Heavy fermion superconductors still remain a major challenge for condensed matter physics. The existence of heavy fermion superconductivity and its coexistence or proximity with magnetic order suggests that the conventional mechanism of phonon-mediated superconductivity is inappropriate and that alternative mechanisms, like spin fluctuations, should be considered for Cooper pairing

  15. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  16. Superconductivity in the periodic Anderson model with anisotropic hybridization

    International Nuclear Information System (INIS)

    Sarasua, L.G.; Continentino, Mucio A.

    2003-01-01

    In this work we study superconductivity in the periodic Anderson model with both on-site and intersite hybridization, including the interband Coulomb repulsion. We show that the presence of the intersite hybridization together with the on-site hybridization significantly affects the superconducting properties of the system. The symmetry of the hybridization has a strong influence in the symmetry of the superconducting order parameter of the ground state. The interband Coulomb repulsion may increase or decrease the superconducting critical temperature at small values of this interaction, while is detrimental to superconductivity for strong values. We show that the present model can give rise to positive or negative values of dT c /dP, depending on the values of the system parameters

  17. A novel VU-MRCC formalism for the simultaneous treatment of strong relaxation and correlation effects with applications to electron affinity of neutral radicals

    International Nuclear Information System (INIS)

    Jana, Debasis; Datta, Dipayan; Mukherjee, Debashis

    2006-01-01

    We present and implement in this paper a novel spin-free valence-universal multi-reference coupled cluster (VU-MRCC) formalism for energy differences which can capture orbital relaxation and correlation relaxation to all orders. Unlike in the traditional normal ordered cluster Ansatz for computing energy differences, this cluster expansion formalism allows contractions between various valence excitation operators with valence spectator lines. These contractions simulate the orbital relaxation and correlation relaxation effects for the ionized/excited states via Thouless-like exponential type of operators. Generally such operators are non-commuting. To ensure that each distinct excitation generated by contracted composites formed by these operators appear only once in the wave-operators, the factors accompanying these composites have to be judiciously chosen. Hence, the combinatoric factors accompanying such contracted composites are not taken to be 1/n! for nth-power, but rather the inverse of the automorphic factor (the number of ways the n operators can be connected in various permutations generating the same composite). It is shown that this Ansatz leads to a set of VU-MRCC equations for the valence cluster amplitudes, in which all the cluster operators are attached to the hamiltonian by at least one non-spectator line (a strongly connected series). The series is thus terminating at the quartic power. Illustrative applications are presented by computing electron affinity of neutral doublet radicals (viz., NH 2 , OH, F, BO and CN), where the orbital relaxation effect attendant on the anion formation is considerable. Several basis-sets capable of describing the anions have been studied. It has been found that aug-cc-pVTZ basis gives the best overall results, while aug-cc-pVQZ overestimates the electron affinity, presumably because of an imbalance in describing the neutral radicals. The method performs consistently much better then the one with the traditional

  18. What is strange about high-temperature superconductivity in cuprates?

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2017-10-01

    Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.

  19. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    Science.gov (United States)

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  20. Strong Electron Correlation in the High-Temperature Phase of (EDO-TTF)2PF6 as a Quasi-One-Dimensional Molecular Conductor

    Science.gov (United States)

    Iwano, Kaoru; Shimoi, Yukihiro

    2010-10-01

    We focus on the electronic property of the high-temperature phase of (EDO-TTF)2PF6. Applying a cluster-based density-functional theory (DFT) calculation augmented by a self-consistent environment, we recognize a strong electron-electron repulsion in a dimer-Mott-type ground state. On the basis of this ground state, we obtain an absorption spectrum that takes a form of a single peak in the mid-infrared (mid-IR) region. We next analyze a Hubbard model with alternate transfers, of which the values are determined by the DFT calculations. The obtained absorption peak energy is comparable to the mid-IR peak energy observed in the experiment. Finally, we also investigate other one-dimensional conductors, (TMTSF)2PF6 and (TMTTF)2PF6, which are known as correlated metals, and conclude that (EDO-TTF)2PF6 also falls in this category, in spite of its unique (0110)-type charge ordering observed in the low-temperature phase.

  1. Stripes developed at the strong limit of nematicity in FeSe film

    Science.gov (United States)

    Li, Wei; Zhang, Yan; Deng, Peng; Xu, Zhilin; Mo, S.-K.; Yi, Ming; Ding, Hao; Hashimoto, M.; Moore, R. G.; Lu, D.-H.; Chen, Xi; Shen, Z.-X.; Xue, Qi-Kun

    2017-10-01

    A single monolayer of iron selenide grown on strontium titanate shows an impressive enhancement of superconductivity compared with the bulk, as well as a novel Fermi surface topology, extreme two-dimensionality, and the possibility of phonon-enhanced electron pairing. For films thicker than one unit cell, however, the electronic structure is markedly different, with a drastically suppressed superconductivity and strong nematicity appearing. The physics driving this extraordinary dichotomy of superconducting behaviour is far from clear. Here, we use low-temperature scanning tunnelling microscopy to study multilayers of iron selenide grown by molecular beam epitaxy, and find a stripe-type charge ordering instability that develops beneath the nematic state. The charge ordering is visible and pinned in the vicinity of impurities. And as it emerges in the strong limit of nematicity, it suggests that a magnetic fluctuation with a rather small wavevector may be competing with the ordinary collinear antiferromagnetic ordering in multilayer films. The existence of stripes in iron-based superconductors, which resemble the stripe order in cuprates, not only suggests that electronic anisotropy and correlation are playing an important role, but also provides a platform for probing the complex interactions between nematicity, charge ordering, magnetism and superconductivity in high-temperature superconductors.

  2. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  3. Large superconducting magnets

    CERN Document Server

    Pérot, J

    1981-01-01

    Discusses the use of large superconducting magnets in the areas of particle physics, thermonuclear fusion, and magnetohydrodynamics. In addition to considering the physics of the superconducting state, the article considers machines such as BEBC (Big European Bubble Chamber) at CERN, the LINAC at SLAC and possible Tokamak applications. The future application of superconductors to high speed trains is discussed. (0 refs).

  4. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  5. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  6. Nonlinear electrodynamics in microwave-stimulated superconductivity

    International Nuclear Information System (INIS)

    Mooij, J.E.; Klapwijk, T.M.

    1983-01-01

    In practical experiments on microwave-stimulated superconductivity the current source character of the microwave coupling leads to a strong dependence of the field strength on the value of the gap. Various consequences are pointed out, in particular, for a quantitative comparison between critical current and gap or order-parameter enhancement

  7. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    Science.gov (United States)

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  8. Qubit compatible superconducting interconnects

    Science.gov (United States)

    Foxen, B.; Mutus, J. Y.; Lucero, E.; Graff, R.; Megrant, A.; Chen, Yu; Quintana, C.; Burkett, B.; Kelly, J.; Jeffrey, E.; Yang, Yan; Yu, Anthony; Arya, K.; Barends, R.; Chen, Zijun; Chiaro, B.; Dunsworth, A.; Fowler, A.; Gidney, C.; Giustina, M.; Huang, T.; Klimov, P.; Neeley, M.; Neill, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Martinis, John M.

    2018-01-01

    We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the three dimensional integration of quantum circuits without introducing lossy amorphous dielectrics. They are composed of indium bumps several microns tall separated from an aluminum base layer by titanium nitride which serves as a diffusion barrier. We measure the whole structure to be superconducting (transition temperature of 1.1 K), limited by the aluminum. These interconnects have an average critical current of 26.8 mA, and mechanical shear and thermal cycle testing indicate that these devices are mechanically robust. Our process provides a method that reliably yields superconducting interconnects suitable for use with superconducting qubits.

  9. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...

  10. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  11. Role of electron correlation effects in δ-Pu and "115"-Pu-based unconventional superconductors

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Kolorenč, Jindřich

    2014-01-01

    Roč. 15, č. 7 (2014), 640-647 ISSN 1631-0705 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : electronic structure * strong electron correlations * photoemission * unconventional superconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.035, year: 2014

  12. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  13. Strong correlation between cross-amplification success and genetic distance across all members of 'True Salamanders' (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci.

    Science.gov (United States)

    Hendrix, Ralf; Susanne Hauswaldt, J; Veith, Michael; Steinfartz, Sebastian

    2010-11-01

    The unpredictable and low cross-amplification success of microsatellite loci tested for congeneric amphibian species has mainly been explained by the size and complexity of amphibian genomes, but also by taxonomy that is inconsistent with phylogenetic relationships among taxa. Here, we tested whether the cross-amplification success of nine new and 11 published microsatellite loci cloned for an amphibian source species, the fire salamander (Salamandra salamandra), correlated with the genetic distance across all members of True Salamanders (genera Chioglossa, Lyciasalamandra, Mertensiella and Salamandra that form a monophyletic clade within the family of Salamandridae) serving as target species. Cross-amplification success varied strongly among the species and showed a highly significant negative relationship with genetic distance and amplification success. Even though lineages of S. salamandra and Lyciasalamndra have separated more than 30 Ma, a within genus amplification success rate of 65% was achieved for species of Lyciasalamandra thus demonstrating that an efficient cross-species amplification of microsatellite loci in amphibians is feasible even across large evolutionary distances. A decrease in genome size, on the other hand, paralleled also a decrease in amplified loci and therefore contradicted previous results and expectations that amplification success should increase with a decrease in genome size. However, in line with other studies, our comprehensive dataset clearly shows that cross-amplification success of microsatellite loci is well explained by phylogenetic divergence between species. As taxonomic classifications on the species and genus level do not necessarily mirror phylogenetic divergence between species, the pure belonging of species to the same taxonomic units (i.e. species or genus) might be less useful to predict cross-amplification success of microsatellite loci between such species. © 2010 Blackwell Publishing Ltd.

  14. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    Science.gov (United States)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.

    2018-04-01

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1  +  1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  15. The superconducting phases of UPt3

    Science.gov (United States)

    Joynt, Robert; Taillefer, Louis

    2002-01-01

    The heavy-fermion compound UPt3 is the first compelling example of a superconductor with an order parameter of unconventional symmetry. To this day, it is the only unambiguous case of multiple superconducting phases. Twenty years of experiment and theory on the superconductivity of UPt3 are reviewed, with the aim of accounting for the multicomponent phase diagram and identifying the superconducting phases. First, the state above the superconducting critical temperature at Tc=0.5 K is briefly described: de Haas-van Alphen and other measurements demonstrate that this state is a Fermi liquid, with degeneracy fully achieved at Tc. This implies that the usual BCS theory of superconductivity should hold, although the strong magnetic interactions suggest the possibility of an unconventional superconducting order parameter. The role of the weak antiferromagnetic order below TN=5 K in causing phase multiplicity is examined. A comprehensive analysis of which superconducting states are possible is given, and the theoretical basis for each of the main candidates is considered. The behavior of various properties at low temperature (Tnodes in the superconducting gap function of all three phases. In particular, the low-temperature low-field phase has a gap with a line node in the basal plane and point nodes along the hexagonal c axis. The phase diagram in the magnetic-field-temperature plane has been determined in detail by ultrasound and thermodynamic measurements. Experiments under pressure indicate a coupling between antiferromagnetism and superconductivity and provide additional clues about the order parameter. Theoretically, Ginzburg-Landau theory is the tool that elucidates the phase diagram, while calculations of the temperature and field dependence of physical quantities have been used to compare different order parameters to experiment. On balance, the data point to a two-component order parameter belonging to either the E1g or the E2u representation, with degeneracy

  16. Crystal growth of YFe{sub 2}Ge{sub 2} and the dependence of its superconducting properties on sample preparation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiasheng; Semeniuk, Konstantin; Reiss, Pascal; Brown, Philip; Grosche, Malte [Cavendish Lab., Cambridge (United Kingdom); Feng, Zhuo [London Centre of Nanotechnology, UCL, London (United Kingdom); Lampronti, Giulio [Cambridge Univ., Dept. of Earth Sciences, Cambridge (United Kingdom)

    2016-07-01

    The d-electron system YFe{sub 2}Ge{sub 2} exhibits an unusually high Sommerfeld ratio of specific heat capacity of C/T ∝ 100 mJ/(molK{sup 2}), signaling strong electronic correlations. Evidence of superconductivity has been reported in polycrystals and in flux-grown single crystals with residual resistance ratios (RRR) of the order of 50, but these samples show no thermodynamic signatures of a bulk superconducting transition. We find that by combining (i) a prereaction of YFe{sub 2}, (ii) careful control of nominal composition, and (iii) subsequent annealing procedures, the polycrystalline YFe{sub 2}Ge{sub 2} samples grown using a radio-frequency (RF) induction furnace can reach RRR values ∝ 200 with resistive superconducting transitions temperatures of around 1.85 K. This new generation of sample displays clear heat capacity anomalies as well as nearly 100% diamagnetic screening, confirming the bulk nature of its superconductivity. We present details of the sample preparation and characterization and discuss the correlation between nominal composition and superconductivity.

  17. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  18. Superconducting tin core fiber

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary [Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA (United States)

    2014-11-13

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  19. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  20. The chronicle of superconductivity

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1981-01-01

    The chronicle of the superconductivity is shown, since the first observation made of Kamerlingh-Onnes, in the begining of our century about superconductivity effects, by describing several models and theories made by the physicists, by trying to explain the phenomenons referred about supercurrent, up to the modern BCS Theory. Our fundamental purpose rather than to make a historical-philosophical evolution about the superconductivity is only to make a sequence as who made what, when and how, by using the Solla-Price meaning. (Author) [pt

  1. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  2. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  3. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  4. Optical and electrical properties of thin superconducting films

    Science.gov (United States)

    Covington, Billy C.; Jing, Feng Chen

    1990-01-01

    Infrared spectroscopic techniques can provide a vital probe of the superconducting energy gap which is one of the most fundamental physical properties of superconductors. Currently, the central questions regarding the optical properties of superconductors are how the energy gap can be measured by infrared techniques and at which frequency the gap exists. An effective infrared spectroscopic method to investigate the superconducting energy gap, Eg, was developed by using the Bomem DA 3.01 Fourier Transformation Spectrophotometer. The reflectivity of a superconducting thin film of YBaCuO deposited on SrTiO3 was measured. A shoulder was observed in the superconducting state reflectance R(sub S) at 480/cm. This gives a value of Eg/kT(sub c) = 7.83, where k is the Boltzmann constant and T(sub c) is the superconducting transition temperature, from which, it is suggested that YBaCuO is a very strong coupling superconductor.

  5. The transport properties in strongly correlated BaCo sub 0 sub . sub 9 Ni sub 0 sub . sub 1 S sub 1 sub . sub 8 sub 7

    CERN Document Server

    Zhou, J S; Goodenough, J B

    2002-01-01

    Layered tetragonal BaCo sub 0 sub . sub 9 Ni sub 0 sub . sub 1 S sub 2 contains high-spin Co(II) in octahedral sites and is an insulator. Hole doping by introducing sulfur vacancies results in a polaronic conductivity and produces a transition to a monoclinic metallic phase with a nearly isotropic conductivity. Pressure P >=1.5 kbar suppresses the monoclinic phase and at P >=10 kbar the high temperature tetragonal phase is transferred to an isostructural metallic phase containing low-spin Co(II). The single-crystal resistivity along the c-axis and in the a-b plane of high-pressure, tetragonal BaCo sub 0 sub . sub 9 Ni sub 0 sub . sub 1 S sub 1 sub . sub 8 sub 7 is shown to be highly anisotropic and to resemble that of the overdoped superconductive system La sub 2 sub sub - sub x Sr sub x CuO sub 4.

  6. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  7. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  8. Superconductivity: Heike's heritage

    NARCIS (Netherlands)

    van der Marel, D.; Golden, M.

    2011-01-01

    A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.

  9. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  10. Industrial applied superconductivity

    International Nuclear Information System (INIS)

    Sabrie, J.L.

    1984-01-01

    This paper reviews the main applications of superconductivity in D.C. in variable current and in A.C. The existing markets are now worth the effort of producing commercial superconductors and of developing applications [fr

  11. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  12. Gutzwiller-RVB theory of high temperature superconductivity. Results from renormalized mean field theory and variational Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Edegger, B.

    2007-08-10

    We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)

  13. Superconductivity in bundles of double-wall carbon nanotubes.

    Science.gov (United States)

    Shi, Wu; Wang, Zhe; Zhang, Qiucen; Zheng, Yuan; Ieong, Chao; He, Mingquan; Lortz, Rolf; Cai, Yuan; Wang, Ning; Zhang, Ting; Zhang, Haijing; Tang, Zikang; Sheng, Ping; Muramatsu, Hiroyuki; Kim, Yoong Ahm; Endo, Morinobu; Araujo, Paulo T; Dresselhaus, Mildred S

    2012-01-01

    We present electrical and thermal specific heat measurements that show superconductivity in double-wall carbon nanotube (DWCNT) bundles. Clear evidence, comprising a resistance drop as a function of temperature, magnetoresistance and differential resistance signature of the supercurrent, suggest an intrinsic superconducting transition below 6.8 K for one particular sample. Additional electrical data not only confirm the existence of superconductivity, but also indicate the T(c) distribution that can arise from the diversity in the diameter and chirality of the DWCNTs. A broad superconducting anomaly is observed in the specific heat of a bulk DWCNT sample, which yields a T(c) distribution that correlates well with the range of the distribution obtained from the electrical data. As quasi one dimensionality of the DWCNTs dictates the existence of electronic density of state peaks, confirmation of superconductivity in this material system opens the exciting possibility of tuning the T(c) through the application of a gate voltage.

  14. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  15. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  16. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  17. Electron pairing without superconductivity

    Science.gov (United States)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  18. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  19. Charge Kondo effect in negative-U quantum dots with superconducting electrodes

    Science.gov (United States)

    Fang, Tie-Feng; Guo, Ai-Min; Lu, Han-Tao; Luo, Hong-Gang; Sun, Qing-Feng

    2017-08-01

    Recent experimental realization of superconducting quantum dot devices with intradot attraction U [Nature (London) 521, 196 (2015), 10.1038/nature14398; Phys. Rev. X 6, 041042 (2016), 10.1103/PhysRevX.6.041042] offers unique opportunities to study the charge Kondo effect in a superconducting environment. In such devices pseudospin flips are caused by two tunneling processes. One is the cotunneling of normal electrons which generates near-gap Kondo resonances in the single-electron spectral density. This negative-U charge Kondo effect is more robust than the conventional spin Kondo effect against the suppression by the superconductivity. The other tunneling is the mean-field Cooper-pair tunneling which produces a zero-energy bound state in the pair spectral density. Interesting crossover physics from the strongly-correlated Kondo screening to the mean-field polarization of local pseudospin is demonstrated. Due to the interplay of these two tunnelings, the supercurrent is suppressed for intermediate couplings, but it can increase to the unitary limits both in the strong and weak coupling regimes. We obtain the magnetic field-dependent supercurrent which is consistent with the key experimental findings.

  20. Reduction of effective dimensionality in lattice models of superconducting arrays and frustrated magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Cenke [Department of Physics, University of California, Berkeley, CA 94720 (United States); Moore, J.E. [Department of Physics, University of California, Berkeley, CA 94720 (United States) and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: jemoore@socrates.berkeley.edu

    2005-06-13

    Some frustrated magnets and superconducting arrays possess unusual symmetries that cause the free energy or other physics of a D-dimensional quantum or classical problem to be that of a different problem in a reduced dimension dsuperconducting array, the Heisenberg antiferromagnet on the checkerboard lattice (studied by a combination of 1/S expansion and numerical transfer matrix), and the ring-exchange superconducting array. Physical consequences are discussed both for 'weak' dimensional reduction, which appears only in the ground state degeneracy, and 'strong' dimensional reduction, which applies throughout the phase diagram. The 'strong' dimensional reduction cases have the full lattice symmetry and do not decouple into independent chains, but their phase diagrams, self-dualities, and correlation functions indicate a reduced effective dimensionality. We find a general phase diagram for quantum-dimensional reduction models in two quantum dimensions with N-fold anisotropy, and obtain the Kosterlitz-Thouless-like phase transition as a deconfinement of dipoles of 3D solitons.

  1. Reduction of effective dimensionality in lattice models of superconducting arrays and frustrated magnets

    Science.gov (United States)

    Xu, Cenke; Moore, J. E.

    2005-06-01

    Some frustrated magnets and superconducting arrays possess unusual symmetries that cause the free energy or other physics of a D-dimensional quantum or classical problem to be that of a different problem in a reduced dimension dsuperconducting array, the Heisenberg antiferromagnet on the checkerboard lattice (studied by a combination of 1/S expansion and numerical transfer matrix), and the ring-exchange superconducting array. Physical consequences are discussed both for "weak" dimensional reduction, which appears only in the ground state degeneracy, and "strong" dimensional reduction, which applies throughout the phase diagram. The "strong" dimensional reduction cases have the full lattice symmetry and do not decouple into independent chains, but their phase diagrams, self-dualities, and correlation functions indicate a reduced effective dimensionality. We find a general phase diagram for quantum-dimensional reduction models in two quantum dimensions with N-fold anisotropy, and obtain the Kosterlitz-Thouless-like phase transition as a deconfinement of dipoles of 3D solitons.

  2. A theoretical quest for high temperature superconductivity on the example of low-dimensional carbon structures.

    Science.gov (United States)

    Wong, C H; Lortz, R; Buntov, E A; Kasimova, R E; Zatsepin, A F

    2017-11-17

    High temperature superconductivity does not necessarily require correlated electron systems with complex competing or coexisting orders. Instead, it may be achieved in a phonon-mediated classical superconductor having a high Debye temperature and large electronic density of states at the Fermi level in a material with light atoms and strong covalent bonds. Quasi-1D conductors seem promising due to the Van Hove singularities in their electronic density of states. In this sense, quasi-1D carbon structures are good candidates. In thin carbon nanotubes, superconductivity at ~15 K has been reported, and it is likely the strong curvature of the graphene sheet which enhances the electron-phonon coupling. We use an ab-initio approach to optimize superconducting quasi-1D carbon structures. We start by calculating a T c of 13.9 K for (4.2) carbon nanotubes (CNT) that agrees well with experiments. Then we reduce the CNT to a ring, open the ring to form chains, optimize bond length and kink structure, and finally form a new type of carbon ring that reaches a T c value of 115 K.

  3. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  4. Long range correlations in condensed matter

    International Nuclear Information System (INIS)

    Bochicchio, R.C.

    1990-01-01

    Off diagonal long range order (ODLRO) correlations are strongly related with the generalized Bose-Einstein condensation. Under certain boundary conditions, one implies the other. These phenomena are of great importance in the description of quantum situations with a macroscopic manifestation (superfluidity, superconductivity, etc.). Since ion pairs are not bosons, the definition of ODLRO is modified. The information contained with the 2-particle propagator (electron pairs) and the consequences that lead to pairs statistics are shown in this presentation. The analogy between long range correlations and fluids is also analyzed. (Author). 17 refs

  5. Chiral Spin-Density Wave, Spin-Charge-Chern Liquid, and d+id Superconductivity in 1/4-Doped Correlated Electronic Systems on the Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Shenghan Jiang

    2014-09-01

    Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1correlated electronic materials on the honeycomb lattice.

  6. Effect of Fibonacci modulation on superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanjay [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata-700032 (India); Sil, Shreekantha [Department of Physics, Vishwabharati, Shantiniketan 731235, Birbhum, West Bengal (India); Bhattacharyya, Bibhas [Department of Physics, Scottish Church College, 1 and 3, Urquhart Square, Kolkata-700006 (India)

    2006-02-15

    We have studied finite-sized single band models with short-range pairing interactions between electrons in the presence of diagonal Fibonacci modulation in one dimension. Two models, namely the attractive Hubbard model and the Penson-Kolb model, have been investigated at half-filling at zero temperature by solving the Bogoliubov-de Gennes equations in real space within a mean-field approximation. The competition between 'disorder' and the pairing interaction leads to a suppression of superconductivity (of usual pairs with zero centre-of-mass momenta) in the strong-coupling limit while an enhancement of the pairing correlation is observed in the weak-coupling regime for both models. However, the dissimilarity of the pairing mechanisms in these two models brings about notable differences in the results. The extent to which the bond-ordered wave and the {eta}-paired (of pairs with centre-of-mass momenta = {pi}) phases of the Penson-Kolb model are affected by the disorder has also been studied in the present calculation. Some finite size effects are also identified.

  7. Circuit QED and engineering charge-based superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, S M; Devoret, M H; Schoelkopf, R J [Department of Applied Physics, Yale University, P.O. Box 208284, New Haven, CT 06520-8248 (United States)], E-mail: steven.girvin@yale.edu, E-mail: michel.devoret@yale.edu, E-mail: robert.schoelkopf@yale.edu

    2009-12-15

    The last two decades have seen tremendous advances in our ability to generate and manipulate quantum coherence in mesoscopic superconducting circuits. These advances have opened up the study of quantum optics of microwave photons in superconducting circuits as well as providing important hardware for the manipulation of quantum information. Focusing primarily on charge-based qubits, we provide a brief overview of these developments and discuss the present state of the art. We also survey the remarkable progress that has been made in realizing circuit quantum electrodynamics (QED) in which superconducting artificial atoms are strongly coupled to individual microwave photons.

  8. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  9. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  10. Many-body problems in high temperature superconductivity

    International Nuclear Information System (INIS)

    Yu Lu.

    1991-10-01

    In this brief review the basic experimental facts about high T c superconductors are outlined. The superconducting properties of these superconductors are not very different from those of the ordinary superconductors. However, their normal state properties cannot be described by the standard Fermi liquid (FL) theory. Our current understanding of the strongly correlated models is summarized. In one dimension these systems behave like a ''Luttinger liquid'', very much distinct from the FL. In spite of the enormous efforts made in two-dimensional studies, the question of FL vs non-FL behaviour is still open. The numerical results as well as various approximation schemes are discussed. Both the single hole problem in a quantum antiferromagnet and finite doping regime are considered. (author). 104 refs, 9 figs

  11. Three superconducting phases with different categories of pairing in hole- and electron-doped LaFeAs1 -xPxO

    Science.gov (United States)

    Miyasaka, S.; Uekubo, M.; Tsuji, H.; Nakajima, M.; Tajima, S.; Shiota, T.; Mukuda, H.; Sagayama, H.; Nakao, H.; Kumai, R.; Murakami, Y.

    2017-06-01

    The phase diagram of the LaFeAs1 -xPxO system has been extensively studied through hole and electron doping as well as As/P substitution. It has been revealed that there are three different superconducting phases with different Fermi surface (FS) topologies and thus with possibly different pairing glues. One of them is well understood as spin fluctuation-mediated superconductivity within a FS nesting scenario. Another one with the FSs in a bad nesting condition must be explained in a different context such as orbital or spin fluctuation in a strongly correlated electronic system. In both phases, T -linear resistivity was commonly observed when the superconducting transition temperature Tc becomes the highest value, indicating that the strength of bosonic fluctuation determines Tc. In the last superconducting phase, the nesting condition of FSs and the related bosonic fluctuation are moderate. Variety of phase diagram characterizes the multiple orbital nature of the iron-based superconductors which are just near the boundary between weak and strong correlation regimes.

  12. Disappearance of superconductivity and critical resistance in thin indium films

    International Nuclear Information System (INIS)

    Okuma, Satoshi; Nishida, Nobuhiko

    1991-01-01

    In thin granular films composed of two-dimensionally coupled indium particles, we have studied influences of average particle sizes anti d on the superconducting transition. For films with anti d=280A and 224A, superconducting transition temperature stays almost constant with increasing the sheet resistance R n in the normal state, while for a film with anti d=140A, it decreases linearly with R n . This means that the system changes to a dirty superconductor by reducing anti d. With further increasing R n , superconductivity disappears when R n exceeds the value R c of order h/4e 2 , which seems to correlate with anti d. (orig.)

  13. Superconductivity transformers in power systems

    International Nuclear Information System (INIS)

    Martini, L.; Bocchi, M.; De Nigris, M.; Morandi, A.; Trevisan, L.; Fabbri, M.; Ribani, P.; Negrini, F.

    2008-01-01

    Transformers in superconducting materials at high temperatures offer many advantages in economic, environmental and functional aspects, compared to traditional transformers. Are presented the potentials of superconducting transformers available, aspects of design and the international state of the art [it

  14. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  15. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  16. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  17. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    International Nuclear Information System (INIS)

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  18. Investigation of the source size and strong interaction with the femtoscopic correlations of baryons and antibaryons in heavy-ion collisions registered by ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00508100

    The strong interaction is one of the four fundamental forces of nature. It binds together quarks inside protons and neutrons (which are example of baryons - particles composed of three quarks) and assures the stability of the atomic nucleus. Parameters describing the strong potential are also crucial for the neutron stars models used in astrophysics. What is more, a precise study of strongly interacting particles may help to better understand the process of baryon annihilation. The current knowledge of the strong interactions between baryons other than nucle- ons is limited - there exist only a few measurements of the cross sections for pairs of (anti)baryons. The reason is that in many cases it is not possible to perform scattering experiments with beams of particles and antiparticles, as the exotic matter (such as Λ, Ξ or Σ baryons) is very shot-living. This issue can be solved thanks to the recent particle colliders like the Large Hadron Collider and experiments dedicated to study the heavy-ion collisio...

  19. Superconductivity driven by pairing of the coherent parts of the physical electrons

    Science.gov (United States)

    Su, Yuehua; Zhang, Chao

    2018-03-01

    How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.

  20. Excitonic condensation of strongly correlated electrons: the case of Pr.sub.0.5./sub. Ca.sub.0.5./sub. CoO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 90, č. 23 (2014), "235112-1"-"235112-5" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * strongly correlated electrons * cobaltites Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  1. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  2. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  3. Superconductive Signal-Processing Circuits

    Science.gov (United States)

    1994-08-01

    September 1991. 13. P. H. Xiao, E. Charbon , A. Sangiovanni-Vincentelli, T. Van Duzer,and S.W. Whiteley, "INDEX: An inductance extractor for superconducting...APPLIED SUPERCONDUCTIVITY, VOL. 3, ,Q I, MARCH 1993 2629 INDEX: An Inductance Extractor for Superconducting Circuits P. H. Xiao, E. Charbon , A

  4. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  5. Nonlinear terahertz superconducting plasmonics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi, E-mail: bbjin@nju.edu.cn, E-mail: tonouchi@ile.osaka-u.ac.jp, E-mail: phwu@nju.edu.cn [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Wang, Huabing [Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  6. Applied Superconductivity Conference 2014

    CERN Document Server

    2015-01-01

    Energy Efficiency is a worldwide imperative driven by an increasing awareness of the need to conserve valuable natural resources. Superconductivity, the technology which revolutionized non-invasive medical imaging through MRI starting in the 1980’s, is one of the most promising enablers of energy efficiency in the 21st century. From energy efficient supercomputers to power generation, transmission, and storage, the spectrum of applications of superconductivity is broad in its reach and potential. As ASC comes to Charlotte, site of the hall of fame of NASCAR, our theme, “Race to Energy Efficiency,” is intended to inspire the world experts in superconductivity who will converge to Charlotte to present their latest results, exchange information, network, and plan and project the future breakthroughs.

  7. On anyon superconductivity--

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.

    1989-01-01

    We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology

  8. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  9. Superconductivity for mass spectroscopy

    International Nuclear Information System (INIS)

    Ohkubo, Masataka

    2007-01-01

    Time-of-Flight Mass Spectroscopy (TOF-MS) with super-conducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described. (author)

  10. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  11. General parenting styles are not strongly associated with fruit and vegetable intake and social-environmental correlates among 11-year-old children in four countries in Europe.

    Science.gov (United States)

    De Bourdeaudhuij, I; Te Velde, S J; Maes, L; Pérez-Rodrigo, C; de Almeida, M D V; Brug, J

    2009-02-01

    To investigate whether fruit and vegetable (F&V) intake in 11-year-olds, and social-environmental correlates of F&V intake such as parental modelling and encouragement, family food rules and home availability, differ according to general parenting styles in Belgium, The Netherlands, Portugal and Spain. Cross-sectional study. Primary schools in four countries. Pupils and one of their parents completed questionnaires to measure F&V intake, related social-environmental correlates and general parenting styles. The sample size was 4555 (49.3 % boys); 1180 for Belgium, 883 for The Netherlands, 1515 for Portugal and 977 for Spain. Parenting styles were divided into authoritative, authoritarian, indulgent and neglectful. No differences were found in F&V intake across parenting styles and only very few significant differences in social-environmental correlates. The authoritarian (more parental encouragement and more demands to eat fruit) and the authoritative (more availability of fruit and vegetables) parenting styles resulted in more favourable correlates. Despite earlier studies suggesting that general parenting styles are associated with health behaviours in children, the present study suggests that this association is weak to non-existent for F&V intakes in four different European countries.

  12. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa.

    Science.gov (United States)

    Bastide, Héloïse; Yassin, Amir; Johanning, Evan J; Pool, John E

    2014-08-13

    Pigmentation has a long history of investigation in evolutionary biology. In Drosophila melanogaster, latitudinal and altitudinal clines have been found but their underlying causes remain unclear. Moreover, most studies were conducted on cosmopolitan populations which have a relatively low level of genetic structure and diversity compared to sub-Saharan African populations. We investigated: 1) the correlation between pigmentation traits within and between the thorax and the fourth abdominal segment, and 2) their associations with different geographical and ecological variables, using 710 lines belonging to 30 sub-Saharan and cosmopolitan populations. Pigmentation clines substantially differed between sub-Saharan and cosmopolitan populations. While positive correlations with latitude have previously been described in Europe, India and Australia, in agreement with Bogert's rule or the thermal melanism hypothesis, we found a significant negative correlation in Africa. This correlation persisted even after correction for altitude, which in its turn showed a positive correlation with pigmentation independently from latitude. More importantly, we found that thoracic pigmentation reaches its maximal values in this species in high-altitude populations of Ethiopia (1,600-3,100 m). Ethiopian flies have a diffuse wide thoracic trident making the mesonotum and the head almost black, a phenotype that is absent from all other sub-Saharan or cosmopolitan populations including high-altitude flies from Peru (~3,400 m). Ecological analyses indicated that the variable most predictive of pigmentation in Africa, especially for the thorax, was ultra-violet (UV) intensity, consistent with the so-called Gloger's rule invoking a role of melanin in UV protection. Our data suggest that different environmental factors may shape clinal variation in tropical and temperate regions, and may lead to the evolution of different degrees of melanism in different high altitude populations in the

  13. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K

    2003-10-15

    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  14. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  15. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  16. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  17. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  18. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  19. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  20. Ultrahigh pressure superconductivity in molybdenum disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Zhenhua [Chinese Academy of Sciences (CAS), Hefei (China); Yen, Feihsiang [Chinese Academy of Sciences (CAS), Hefei (China); Peng, Feng [Luoyang Normal Univ., Luoyang (China); Zhu, Jinlong [Univ. of Nevada, Las Vegas, NV (United States); Zhang, Yijin [Univ. of Tokyo, Tokyo (Japan); Chen, Xuliang [Chinese Academy of Sciences (CAS), Hefei (China); Yang, Zhaorong [Chinese Academy of Sciences (CAS), Hefei (China); Nanjing Univ., Nanjing (China); Liu, Xiaodi [Chinese Academy of Sciences (CAS), Hefei (China); Ma, Yaming [Jilin Univ., Changchun (China); Zhao, Yusheng [Univ. of Nevada, Las Vegas, NV (United States); Kagayama, Tomoko [Osaka Univ., Osaka (Japan); Iwasa, Yoshihiro [Univ. of Tokyo, Tokyo (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako (Japan)

    2015-03-18

    Superconductivity commonly appears under pressure in charge densit wave (CDW)-bearing transition metal dichalcogenides (TMDs)1,2, but ha emerged so far only via either intercalation with electron donors3 or electrostati doping4 in CDW-free TMDs. Theoretical calculations have predicted that th latter should be metallized through bandgap closure under pressure5,6, bu superconductivity remained elusive in pristine 2H-MoS2 upon substantia compression, where a pressure of up to 60 GPa only evidenced the metalli state7,8. Here we report the emergence of superconductivity in pristine 2H-MoS at 90 GPa. The maximum onset transition temperature Tc(onset) of 11.5 K, th highest value among TMDs and nearly constant from 120 up to 200 GPa, is wel above that obtained by chemical doping3 but comparable to that obtained b electrostatic doping4. Tc(onset) is more than an order of magnitude larger tha present theoretical expectations, raising questions on either the curren calculation methodologies or the mechanism of the pressure-induced pairin state. Lastly, our findings strongly suggest further experimental and theoretical effort directed toward the study of the pressure-induced superconductivity in all CDWfre TMDs.

  1. Lattice parameters guide superconductivity in iron-arsenides

    International Nuclear Information System (INIS)

    Konzen, Lance M N; Sefat, Athena S

    2017-01-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a -lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c -lattice parameter changes with chemical substitution. For example, a decrease in c -lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS. (topical review)

  2. Superconducting niobium in high rf magnetic fields

    International Nuclear Information System (INIS)

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  3. Signal processing: opportunities for superconductive circuits

    International Nuclear Information System (INIS)

    Ralston, R.W.

    1985-01-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers

  4. Electronic structure of YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ including strong correlation effects

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.

    1989-05-01

    The occupied and unoccupied valence-band density of states of YBa/sub 2/Cu/sub 3/O/sub 7-//sub delta/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies.

  5. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  6. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  7. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    Superconductivity, the awe-inspiring word came into existence when KamerIingh Onnes (Box 1) discovered a new phenom- enon in 1911. When he cooled a sample of liquid metal mercury, it lost its electrical resistance at temperatures close to 0 K. Years of careful experimentation at Leiden preceded his success in the.

  8. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  9. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  10. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  11. Superconducting electronics testing

    International Nuclear Information System (INIS)

    Moskowitz, P.A.; Guernsey, R.W.; Stasiak, J.W.; Flint, E.B.

    1983-01-01

    An I/O assembly has been designed and constructed to support the operation of superconducting circuitry. A system, previously described for chip testing, has been adapted for use with a Josephson technology system level experiment. The cryoinsert assembly, constructed of non-magnetic parts, provides 80 high frequency I/O lines between room temperature and 4.2 K. (author)

  12. High temperature superconductivity: Proceedings

    International Nuclear Information System (INIS)

    Bedell, K.S.; Coffey, D.; Meltzer, D.E.; Pines, D.; Schrieffer, J.R.

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  13. Superconductivity : Controlling magnetism

    NARCIS (Netherlands)

    Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.

    Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the

  14. Superconducting magnets 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design

  15. Superconductors for superconducting magnets

    Science.gov (United States)

    Larbalestier, David

    2011-03-01

    Even in 1913 Kamerlingh Onnes envisioned the use of superconductors to create powerful magnetic fields well beyond the capability provided by cooling normal metals with liquid helium. Only some ``bad places'' in his Hg and Pb wires seemed to impede his first attempts at this dream, one that he imagined would be resolved in a few weeks of effort. In fact, of course, resolution required another 50 years and development of both a true understanding of the difference between type I and type II superconductors and the discovery of compounds such as Nb 3 Sn that could remain superconducting to fields as high as 30 T. And then indeed, starting in the 1960s, Onnes's dreams were comfortably surpassed. In the last 45 years virtually all superconducting magnets have been made from just two Nb-base materials, Nb-Ti and Nb 3 Sn. Now it seems that a new generation of magnets based on cuprate high temperature superconductors with fields well above 30 T are possible using Bi-Sr-Ca-Cu-O and the RE-Ba-Cu-O compounds. We hope that a first demonstration of this possibility will be an all-superconducting 32 T magnet with RE-Ba-Cu-O insert that we are building for NHMFL users. The magnet application potential of this new generation of superconducting conductors will be discussed.

  16. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  17. MOCVD superconducting oxide films

    Science.gov (United States)

    Hirai, Toshio; Yamane, Hisanori

    1991-01-01

    Preparation of high- Tc superconducting oxide films by MOCVD, their films structure and superconducting properties are reviewed from the standpoint of "nano-composites" and "fine-composites". Y-Ba-Cu-O (YBCO) films formed on SrTiO 3(100) at 850°C showed a superconducting transition temperature with zero resistivity above 90 K. The maximum critical current density was 2.0×10 6 A/cm 2 at 77.3 K and 0 T, and 6.5×10 4 A/cm 2 at 77.3 K and 27 T. CuO and a-axis oriented YBCO grains were contained in the matrix of c-axis oriented YBCO. A transmission electron microscope observation revealed that inclusions of about 10-30 nm were embedded in the a- b plane of YBCO. MOCVD-YBCO films prepared on MgO(100) were used for superconducting devices. Some studies on the MOCVD films of Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O are also reviewed.

  18. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  19. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Electrical Conduction and Superconductivity. Suresh V Vettoor. General Article Volume 8 Issue 9 September 2003 pp 41-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/09/0041-0048 ...

  20. The itinerant resonating-valence-bond model for superconductivity

    International Nuclear Information System (INIS)

    Liu, S.H.

    1987-08-01

    It has been proposed by Anderson that the pairing interaction in high temperature superconductors La/sub 2-x/ Sr/sub x/ Cuo 4 and Yba 2 Cu 3 O/sub 7-x/ is magnetic in origin, and the recent discovery of antiferromagnetic ordering in La 2 CuO 4 has been regarded as strong evidence in support of this so-called resonating-valence-bond (RVB) model. Close examination of the ordered state of this material reveals that it is an itinerant antiferromagnet. Accordingly, the superconducting properties must also be studied using the itinerant model approach, rather than the local moment model discussed so far in literature. This paper reports an approximate solution of the itinerant RVB model of superconductivity. It is shown that superconductivity can take place in a narrow region of the parameter space, and that the fluctuating local exchange field causes the superconducting state to be gapless. 19 refs