WorldWideScience

Sample records for strongly concentration dependent

  1. Highly concentrated zinc oxide nanocrystals sol with strong blue emission

    International Nuclear Information System (INIS)

    Vafaee, M.; Sasani Ghamsari, M.; Radiman, S.

    2011-01-01

    Highly concentrated ZnO sol was synthesized by an improved sol-gel method. Water was used as a modifier to control the sol-gel reaction and provide a way to increase the sol concentration. Concentration of ZnO in the prepared sol is higher than from other methods. Optical absorption and photoluminescence were used to investigate optical properties of the prepared sol. FTIR test was performed to study the influence of water on the compounds of as-prepared sol. The size and morphology of ZnO nanoparticles have been studied by HRTEM. The prepared colloidal ZnO nanocrystals have narrow size distribution (5-8 nm) and showed strong blue emission. The prepared sol has enough potential for optoelectronic applications. - Research highlights: → Novel sol-gel route has been employed to prepare highly concentrated ZnO colloidal nanocrystals. → Water has been used to control the sources of emission in synthesized material. → A strong blue luminescent material has been obtained.

  2. Why does the martensitic transformation temperature strongly depend on composition?

    International Nuclear Information System (INIS)

    Ren, X.; Otsuka, K.

    2000-01-01

    The reason for the strong composition and heat-treatment dependence of the martensitic transformation temperature was investigated by a simple Landau-type model. Assuming the anharmonic and coupling coefficients are insensitive to composition, we obtained an important result martensitic transformation occurs at a critical elastic constant c' and a critical TA 2 phonon energy ω η 2 , which are independent of alloy composition. This result gained support from a large body of experimental data of Cu-based alloys. Since c' and phonon energy are strongly dependent on composition, the constancy of c' at Ms demands that the (transformation) temperature must exhibit an opposite effect to compensate the composition effect. Therefore, the lower the c', the higher the Ms is. Because the temperature dependence of c' is weak (due to the 1 st order nature of the transformation), the big c' change by a slight composition change must be compensated by a large change in temperature. Thus Ms has strong composition dependence. The effect of quench is to increase point defects, being equivalent to a composition change, thus has a strong effect on Ms. From the present study, we can conclude that the strong composition dependence of Ms is mainly a harmonic effect. (orig.)

  3. Concentration dependent hydrogen diffusion in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, T., E-mail: tommy.ahlgren@helsinki.fi; Bukonte, L.

    2016-10-15

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔV{sub m} ≈ 0.488 Å{sup 3}, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected. - Highlights: • The recommended value of 0.39 eV for the H in W migration barrier should be changed to 0.25 eV. • The random oscillation of atoms around the equilibrium position can be dealt with in diffusion simulations. • Hydrogen diffusion in tungsten is highly concentration dependent.

  4. Strong dependence of ultracold chemical rates on electric dipole moments

    International Nuclear Information System (INIS)

    Quemener, Goulven; Bohn, John L.

    2010-01-01

    We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d 4(L+(1/2)) where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d 6 . We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d -4 for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.

  5. Thin-source concentration dependent diffusion

    International Nuclear Information System (INIS)

    Eng, G.

    1978-01-01

    The diffusion of (Ca ++ ) in NaCl has been measured for various diffusion times and for the temperature range (575 0 to 775 0 C), using a thin-source of 45 Ca tracer, rectangular geometry, and serial sectioning. The pre-diffusion surface concentration was approximately 3 x 10 16 (Ca)-atoms/cm 2 , which, for an average penetration depth of 100 to 300 μm, produces a maximum (post-diffusion) impurity concentration comparable to or greater than the intrinsic cation vacancy concentration. The high-temperature function closely matches the D 0 (T) function obtained from low impurity concentration experiments. The lower-temperature function, combined with the sudden failure of the D(C) = D 0 (1 + [C] + 0.5[C] 2 ) function at these lower temperatures, indicates the onset of a second diffusion process, one which would operate only at extremely high impurity concentrations. This low-temperature behavior is shown to be consistent with a breakdown of the conditions assumed for vacancy equilibrium

  6. Erbium concentration dependent absorbance in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Sazali, E. S., E-mail: mdsupar@utm; Rohani, M. S., E-mail: mdsupar@utm; Sahar, M. R., E-mail: mdsupar@utm; Arifin, R., E-mail: mdsupar@utm; Ghoshal, S. K., E-mail: mdsupar@utm; Hamzah, K., E-mail: mdsupar@utm [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    Enhancing the optical absorption cross-section in topically important rare earth doped tellurite glasses is challenging for photonic devices. Controlled synthesis and detailed characterizations of the optical properties of these glasses are important for the optimization. The influence of varying concentration of Er{sup 3+} ions on the absorbance characteristics of lead tellurite glasses synthesized via melt-quenching technique are investigated. The UV-Vis absorption spectra exhibits six prominent peaks centered at 490, 526, 652, 800, 982 and 1520 nm ascribed to the transitions in erbium ion from the ground state to the excited states {sup 4}F{sub 7/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 9/2}, {sup 4}I{sub 9/2}, {sup 2}H{sub 11/2} and {sup 4}I{sub 13/2}, respectively. The results are analyzed by means of optical band gap E{sub g} and Urbach energy E{sub u}. The values of the energy band gap are found decreased from 2.82 to 2.51 eV and the Urbach energy increased from 0.15 to 0.24 eV with the increase of the Er{sub 2}O{sub 3} concentration from 0 to 1.5 mol%. The excellent absorbance of the prepared tellurite glasses makes them suitable for fabricating solid state lasers.

  7. Caffeine dependence in rats: effects of exposure duration and concentration.

    Science.gov (United States)

    Dingle, Rachel N; Dreumont-Boudreau, Sarah E; Lolordo, Vincent M

    2008-09-03

    Groups of rats were chronically exposed to a 1.0-g/L caffeine solution for 5, 10, 15 or 20 days. Upon removal of caffeine, rats were given brief exposure to a novel flavour CS (withdrawal CS) followed by 12 days of plain water and then brief exposure to a second flavour CS (neutral CS). Only rats exposed to 20 days of caffeine strongly preferred the neutral CS to the withdrawal CS in a 2-bottle test. In Experiment 2, groups of rats were chronically exposed to caffeine at one of four concentrations (1.0, 0.5, 0.25, or 0.125 g/L) for 21 days, after which withdrawal and neutral CSs were established. Only rats that drank the highest caffeine concentration, 1.0 g/L, preferred the neutral CS to the withdrawal CS. This suggests that long exposure to a strong caffeine solution is required in order to induce dependence in rats such that a CS associated with the withdrawal of caffeine becomes avoided.

  8. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  9. The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions

    OpenAIRE

    Buscall, Richard; Kusuma, Tiara E.; Stickland, Anthony D.; Rubasingha, Sayuri; Scales, Peter J.; Teo, Hui-En; Worrall, Graham L.

    2014-01-01

    The behaviour in simple shear of two concentrated and strongly cohesive mineral suspensions showing highly non-monotonic flow curves is described. Two rheometric test modes were employed, controlled stress and controlled shear-rate. In controlled stress mode the materials showed runaway flow above a yield stress, which, for one of the suspensions, varied substantially in value and seemingly at random from one run to the next, such that the up flow-curve appeared to be quite irreproducible. Th...

  10. Ascaroside expression in Caenorhabditis elegans is strongly dependent on diet and developmental stage.

    Directory of Open Access Journals (Sweden)

    Fatma Kaplan

    2011-03-01

    Full Text Available The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as "dauer pheromones" because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development.Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone. After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions.Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings

  11. Exact time-dependent exchange-correlation potentials for strong-field electron dynamics

    International Nuclear Information System (INIS)

    Lein, Manfred; Kuemmel, Stephan

    2005-01-01

    By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process

  12. Particle size- and concentration-dependent separation of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)

    2017-04-01

    Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.

  13. Temperature dependence of electron concentration in cadmium arsenide

    NARCIS (Netherlands)

    Gelten, M.J.; Blom, F.A.P.

    1979-01-01

    From measurements of the temperature dependence of the electron concentration in Cd 3 As 2 , we found values for the conduction-band parameters that are in good agreement with those recently reported by Aubin, Caron, and Jay-Gerin. However, in contrast with these authors we found no small overlap,

  14. Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region

    Directory of Open Access Journals (Sweden)

    N.I. Kashirina

    2017-12-01

    Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.

  15. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime

    DEFF Research Database (Denmark)

    Mics, Zoltán; D’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude...... model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find...

  16. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  17. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  18. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment.

    Science.gov (United States)

    Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C

    2015-12-01

    In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.

  19. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  20. Bimodal voltage dependence of TRPA1: mutations of a key pore helix residue reveal strong intrinsic voltage-dependent inactivation.

    Science.gov (United States)

    Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing

    2014-07-01

    Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.

  1. Concentration-Dependent Patterns of Leucine Incorporation by Coastal Picoplankton

    Science.gov (United States)

    Alonso, Cecilia; Pernthaler, Jakob

    2006-01-01

    Coastal pelagic environments are believed to feature concentration gradients of dissolved organic carbon at a microscale, and they are characterized by pronounced seasonal differences in substrate availability for the heterotrophic picoplankton. Microbial taxa that coexist in such habitats might thus differ in their ability to incorporate substrates at various concentrations. We investigated the incorporation patterns of leucine in four microbial lineages from the coastal North Sea at concentrations between 0.1 and 100 nM before and during a spring phytoplankton bloom. Community bulk incorporation rates and the fraction of leucine-incorporating cells in the different populations were analyzed. Significantly fewer bacterial cells incorporated the amino acid before (13 to 35%) than during (23 to 47%) the bloom at all but the highest concentration. The incorporation rate per active cell in the prebloom situation was constant above 0.1 nM added leucine, whereas it increased steeply with substrate concentration during the bloom. At both time points, a high proportion of members of the Roseobacter clade incorporated leucine at all concentrations (55 to 80% and 86 to 94%, respectively). In contrast, the fractions of leucine-incorporating cells increased substantially with substrate availability in bacteria from the SAR86 clade (8 to 31%) and from DE cluster 2 of the Flavobacteria-Sphingobacteria (14 to 33%). The incorporation patterns of marine Euryarchaeota were between these extremes (30 to 56% and 48 to 70%, respectively). Our results suggest that the contribution of microbial taxa to the turnover of particular substrates may be concentration dependent. This may help us to understand the specific niches of coexisting populations that appear to compete for the same resources. PMID:16517664

  2. Position-Dependent Dynamics Explain Pore-Averaged Diffusion in Strongly Attractive Adsorptive Systems.

    Science.gov (United States)

    Krekelberg, William P; Siderius, Daniel W; Shen, Vincent K; Truskett, Thomas M; Errington, Jeffrey R

    2017-12-12

    Using molecular simulations, we investigate the relationship between the pore-averaged and position-dependent self-diffusivity of a fluid adsorbed in a strongly attractive pore as a function of loading. Previous work (Krekelberg, W. P.; Siderius, D. W.; Shen, V. K.; Truskett, T. M.; Errington, J. R. Connection between thermodynamics and dynamics of simple fluids in highly attractive pores. Langmuir 2013, 29, 14527-14535, doi: 10.1021/la4037327) established that pore-averaged self-diffusivity in the multilayer adsorption regime, where the fluid exhibits a dense film at the pore surface and a lower density interior pore region, is nearly constant as a function of loading. Here we show that this puzzling behavior can be understood in terms of how loading affects the fraction of particles that reside in the film and interior pore regions as well as their distinct dynamics. Specifically, the insensitivity of pore-averaged diffusivity to loading arises from the approximate cancellation of two factors: an increase in the fraction of particles in the higher diffusivity interior pore region with loading and a corresponding decrease in the particle diffusivity in that region. We also find that the position-dependent self-diffusivities scale with the position-dependent density. We present a model for predicting the pore-average self-diffusivity based on the position-dependent self-diffusivity, which captures the unusual characteristics of pore-averaged self-diffusivity in strongly attractive pores over several orders of magnitude.

  3. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.

    Directory of Open Access Journals (Sweden)

    Donghee Park

    Full Text Available Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with

  4. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.

    Science.gov (United States)

    Park, Donghee; Song, Gillsoo; Jo, Yongjun; Won, Jongho; Son, Taeyoon; Cha, Ohrum; Kim, Jinho; Jung, Byungjo; Park, Hyunjin; Kim, Chul-Woo; Seo, Jongbum

    2016-01-01

    Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the

  5. Lithium concentration dependent structure and mechanics of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Yan, C., E-mail: c2.yan@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001 (Australia); Zhang, S. [Centre for Clean Environment and Energy, Environmental Futures Research Institute and Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222 (Australia)

    2016-06-28

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of Li{sub x}Si alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a Li{sub x}Si system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

  6. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  7. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  8. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  9. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey [Los Alamos National Laboratory; Daughton, W [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  10. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene

    OpenAIRE

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-01-01

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (2 to 5 layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us ...

  11. Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device

    KAUST Repository

    Sun, Jian

    2012-02-21

    A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.

  12. Concentration-dependent effect of melatonin on DSPC membrane

    Science.gov (United States)

    Sahin, Ipek; Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-11-01

    The concentration-induced effects of melatonin on distearoyl phosphatidylcholine (DSPC) model membranes were investigated by using two different non-invasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). An investigation of the Csbnd H, Cdbnd O and PO2- double bond stretching mode in FTIR spectra and DSC studies reveals that the inclusion of melatonin changes the physical properties of the DSPC multilamellar liposomes (MLVs) by shifting the main phase transition to lower temperatures, abolishing the pretransition, ordering the system in the gel phase and slightly disordering the system in the liquid crystalline phase, increasing the dynamics both in the gel phase and liquid crystalline phases. Melatonin also causes strong hydrogen bonding between Cdbnd O and PO2- groups of lipids and the water molecules around.

  13. Dependency of soil activity concentration on soil -biota concentration ratio of radionuclides for earthworm

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Kim, Byeong Ho; Jun, In; Lim, Kwang Muk; Choi, Yong Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The transfer of radionuclides to wildlife (non-human biota) is normally quantified using an equilibrium concentration ratio (CR{sub eq}), defined as the radionuclide activity concentration in the whole organism (fresh weight) divided by that in the media (dry weight for soil). The present study describes the effect of soil radionuclide activity concentration on the transfer of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn to a functionally important wildlife group, annelids, using a commonly studied experimental worm (E.andrei). Time-dependent whole body concentration ratios of {sup 137}Cs, {sup 85}Sr and {sup 65}Zn for the earthworm were experimentally measured for artificially contaminated soils with three different activity concentrations for each radionuclide which were considerably higher than normal background levels. Two parameters of a first order kinetic model, the equilibrium concentration ratio (CR{sub eq}) and the effective loss rate constant (k), were estimated by comparison of experimental CR results with the model prediction

  14. Studies of the wavelength dependence of non-sequential double ionization of xenon in strong fields

    International Nuclear Information System (INIS)

    Kaminski, P.; Wiehle, R.; Kamke, W.; Helm, H.; Witzele, B.

    2005-01-01

    Full text: The non-sequential double ionization of noble gases in strong fields is still a process which is not completely understood. The most challenging question is: what is the dominant physical process behind the knee structure in the yield of doubly charged ions which are produced in the focus of an ultrashort laser pulse in dependence of the intensity? Numerous studies can be explained with the so-called rescattering model, where an electron is freed by the strong laser field and then driven back to its parent ion due to the oscillation of the field. Through this backscattering process it is possible to kick out a second electron. However in the low intensity or multiphoton (MPI) region this model predicts that the first electron can not gain enough energy in the oscillating electric field to further ionize or excite the ion. We present experimental results for xenon in the MPI region which show a significant contribution of doubly charged ions. A Ti:sapphire laser system (800 nm, 100 fs) is used to ionize the atoms. The coincident detection of the momentum distribution of the photoelectrons with an imaging spectrometer and the time of flight spectrum of the ions allows a detailed view into the ionization process. For the first time we also show a systematic study of the wavelength dependence (780-830 nm and 1180-1550 nm) on the non-sequential double ionization. The ratio Xe 2+ /Xe + shows a surprising oscillatory behavior with varying wavelength. Ref. 1 (author)

  15. Dependence of radioprotective effect of chemical modifying agents on their intracellular concentrations

    International Nuclear Information System (INIS)

    Eidus, L.K.; Korystov, Y.N.; Kublik, L.N.; Vexler, A.M.

    1982-01-01

    Regularities of the radioprotective effect of chemical modifying agents cysteamine, caffeine benzoate, thioglycolic acid, and caffeine, all weak electrolytes, have been studied in cultured Chinese hamster cells. Efficiency of protection is shown to be dependent on pH and concentrations of the drug inside the cells and in the medium. Based on the theory of the dissociation of weak electrolytes and their distribution between the cells and the medium a strong correlation between the efficiency of modification of the radiation response and intracellular concentration of a modifying agent is shown. (author)

  16. Concentration and length dependence of DNA looping in transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Lin Han

    2009-05-01

    Full Text Available In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage, to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.

  17. Strongly scale-dependent CMB dipolar asymmetry from super-curvature fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Christian [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Domènech, Guillem; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Takahashi, Tomo, E-mail: C.Byrnes@sussex.ac.uk, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2016-12-01

    We reconsider the observed CMB dipolar asymmetry in the context of open inflation, where a supercurvature mode might survive the bubble nucleation. If such a supercurvature mode modulates the amplitude of the curvature power spectrum, it would easily produce an asymmetry in the power spectrum. We show that current observational data can be accommodated in a three-field model, with simple quadratic potentials and a non-trivial field-space metric. Despite the presence of three fields, we believe this model is so far the simplest that can match current observations. We are able to match the observed strong scale dependence of the dipolar asymmetry, without a fine tuning of initial conditions, breaking slow roll or adding a feature to the evolution of any field.

  18. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

    Science.gov (United States)

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-Wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-09-23

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

  19. Lithium concentration dependence of implanted helium retention in lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)

    2010-06-15

    Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.

  20. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity.

    Science.gov (United States)

    Linderborg, Klas; Salaspuro, Mikko; Väkeväinen, Satu

    2011-09-01

    The aim of this study was to explore oral exposure to carcinogenic (group 1) acetaldehyde after single sips of strong alcoholic beverages containing no or high concentrations of acetaldehyde. Eight volunteers tasted 5 ml of ethanol diluted to 40 vol.% with no acetaldehyde and 40 vol.% calvados containing 2400 μM acetaldehyde. Salivary acetaldehyde and ethanol concentrations were measured by gas chromatography. The protocol was repeated after ingestion of ethanol (0.5 g/kg body weight). Salivary acetaldehyde concentration was significantly higher after sipping calvados than after sipping ethanol at 30s both with (215 vs. 128 μmol/l, psipping of the alcoholic beverages. Carcinogenic concentrations of acetaldehyde are produced from ethanol in the oral cavity instantly after a small sip of strong alcoholic beverage, and the exposure continues for at least 10 min. Acetaldehyde present in the beverage has a short-term effect on total acetaldehyde exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    Science.gov (United States)

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  2. Strong composition-dependent disorder in InAs1-xNx alloys

    International Nuclear Information System (INIS)

    Benaissa, H.; Zaoui, A.; Ferhat, M.

    2009-01-01

    We investigate the main causes of disorder in the InAs 1-x N x alloys (x = 0, 0.03125, 0.0625, 0.09375, 0.125, 0.25, 0.5, 0.75, 0.875, 0.90625, 0.9375, 0.96875 and 1). The calculation is based on the density-functional theory in the local-density approximation. We use a plane wave-expansion non-norm conserving ab initio Vanderbilt pseudopotentials. To avoid the difficulty of considering the huge number of atomic configurations, we use an appropriate strategy in which we consider four configurations for a given composition where the N atoms are not randomly distributed. We mainly show that the band gap decreases (increases) rapidly with increasing (decreasing) compositions of N. As a consequence the optical band gap bowing is found to be strong and composition dependent. The obtained compounds, from these alloys, may change from semi-conducting to metal (passing to a negative bowing) and could be useful for device applications, especially at certain composition.

  3. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  4. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    Science.gov (United States)

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  5. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  6. Strong influence of deposition and vertical mixing on secondary organic aerosol concentrations in CMAQ and CAMx

    Science.gov (United States)

    Shu, Qian; Koo, Bonyoung; Yarwood, Greg; Henderson, Barron H.

    2017-12-01

    Differences between two air quality modeling systems reveal important uncertainties in model representations of secondary organic aerosol (SOA) fate. Two commonly applied models (CMAQ: Community Multiscale Air Quality; CAMx: Comprehensive Air Quality Model with extensions) predict very different OA concentrations over the eastern U.S., even when using the same source data for emissions and meteorology and the same SOA modeling approach. Both models include an option to output a detailed accounting of how each model process (e.g., chemistry, deposition, etc.) alters the mass of each modeled species, referred to as process analysis. We therefore perform a detailed diagnostic evaluation to quantify simulated tendencies (Gg/hr) of each modeled process affecting both the total model burden (Gg) of semi-volatile organic compounds (SVOC) in the gas (g) and aerosol (a) phases and the vertical structures to identify causes of concentration differences between the two models. Large differences in deposition (CMAQ: 69.2 Gg/d; CAMx: 46.5 Gg/d) contribute to significant OA bias in CMAQ relative to daily averaged ambient concentration measurements. CMAQ's larger deposition results from faster daily average deposition velocities (VD) for both SVOC (g) (VD,cmaq = 2.15 × VD,camx) and aerosols (VD,cmaq = 4.43 × Vd,camx). Higher aerosol deposition velocity would be expected to cause similar biases for inert compounds like elemental carbon (EC), but this was not seen. Daytime low-biases in EC were also simulated in CMAQ as expected but were offset by nighttime high-biases. Nighttime high-biases were a result of overly shallow mixing in CMAQ leading to a higher fraction of EC total atmospheric mass in the first layer (CAMx: 5.1-6.4%; CMAQ: 5.6-6.9%). Because of the opposing daytime and nighttime biases, the apparent daily average bias for EC is reduced. For OA, there are two effects of reduced vertical mixing: SOA and SVOC are concentrated near the surface, but SOA yields are reduced

  7. Upconversion NaYF4 Nanoparticles for Size Dependent Cell Imaging and Concentration Dependent Detection of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Shigang Hu

    2015-01-01

    Full Text Available Upconversion nanoparticles (UCNPs based on NaYF4 nanocrystals with strong upconversion luminescence are synthesized by the solvothermal method. The emission color of these NaYF4 upconversion nanoparticles can be easily modulated by the doping. These NaYF4 upconversion nanocrystals can be employed as fluorescence donors to pump fluorescent organic molecules. For example, the efficient luminescence resonant energy transfer (LRET can be achieved by controlling the distance between NaYF4:Yb3+/Er3+ UCNPs and Rhodamine B (RB. NaYF4:Yb3+/Er3+ UCNPs can emit green light at the wavelength of ~540 nm while RB can efficiently absorb the green light of ~540 nm to emit red light of 610 nm. The LRET efficiency is highly dependent on the concentration of NaYF4 upconversion fluorescent donors. For the fixed concentration of 3.2 µg/mL RB, the optimal concentration of NaYF4:Yb3+/Er3+ UCNPs is equal to 4 mg/mL which generates the highest LRET signal ratio. In addition, it is addressed that the upconversion nanoparticles with diameter of 200 nm are suitable for imaging the cells larger than 10 µm with clear differentiation between cell walls and cytoplasm.

  8. Dosis Facit Sanitatem—Concentration-Dependent Effects of Resveratrol on Mitochondria

    Directory of Open Access Journals (Sweden)

    Corina T. Madreiter-Sokolowski

    2017-10-01

    Full Text Available The naturally occurring polyphenol, resveratrol (RSV, is known for a broad range of actions. These include a positive impact on lifespan and health, but also pro-apoptotic anti-cancer properties. Interestingly, cell culture experiments have revealed a strong impact of RSV on mitochondrial function. The compound was demonstrated to affect mitochondrial respiration, structure and mass of mitochondria as well as mitochondrial membrane potential and, ultimately, mitochondria-associated cell death pathways. Notably, the mitochondrial effects of RSV show a very strict and remarkable concentration dependency: At low concentrations, RSV (<50 μM fosters cellular antioxidant defense mechanisms, activates AMP-activated protein kinase (AMPK- and sirtuin 1 (SIRT1-linked pathways and enhances mitochondrial network formation. These mechanisms crucially contribute to the cytoprotective effects of RSV against toxins and disease-related damage, in vitro and in vivo. However, at higher concentrations, RSV (>50 μM triggers changes in (sub-cellular Ca2+ homeostasis, disruption of mitochondrial membrane potential and activation of caspases selectively yielding apoptotic cancer cell death, in vitro and in vivo. In this review, we discuss the promising therapeutic potential of RSV, which is most probably related to the compound’s concentration-dependent manipulation of mitochondrial function and structure.

  9. Nevirapine Concentration in Hair Samples Is a Strong Predictor of Virologic Suppression in a Prospective Cohort of HIV-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Sanjiv M Baxi

    Full Text Available Effective antiretroviral (ARV therapy depends on adequate drug exposure, yet methods to assess ARV exposure are limited. Concentrations of ARV in hair are the product of steady-state pharmacokinetics factors and longitudinal adherence. We investigated nevirapine (NVP concentrations in hair as a predictor of treatment response in women receiving ARVs. In participants of the Women's Interagency HIV Study, who reported NVP use for >1 month from 2003-2008, NVP concentrations in hair were measured via liquid-chromatography-tandem mass-spectrometry. The outcome was virologic suppression (plasma HIV RNA below assay threshold at the time of hair sampling and the primary predictor was nevirapine concentration categorized into quartiles. We controlled for age, race/ethnicity, pre-treatment HIV RNA, CD4 cell count, and self-reported adherence over the 6-month visit interval (categorized ≤ 74%, 75%-94% or ≥ 95%. We also assessed the relation of NVP concentration with changes in hepatic transaminase levels via multivariate random intercept logistic regression and linear regression analyses. 271 women contributed 1089 person-visits to the analysis (median 3 of semi-annual visits. Viral suppression was least frequent in concentration quartile 1 (86/178 (48.3% and increased in higher quartiles (to 158/204 (77.5% for quartile 4. The odds of viral suppression in the highest concentration quartile were 9.17 times (95% CI 3.2-26, P < 0.0001 those in the lowest. African-American race was associated with lower rates of virologic suppression independent of NVP hair concentration. NVP concentration was not significantly associated with patterns of serum transaminases. Concentration of NVP in hair was a strong independent predictor of virologic suppression in women taking NVP, stronger than self-reported adherence, but did not appear to be strongly predictive of hepatotoxicity.

  10. DASH-FP, Multicomponent Time-Dependent Concentration Diffusion

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.; Carruthers, L.M.; Shinn, J.F.; Lee, C.E.

    1995-01-01

    1 - Description of program or function: The program DASH-FP calculates the transient concentration of multiple diffusing species with radioactive decay. 2 - Method of solution: Uses finite difference and exponential operator techniques

  11. Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment.

    Science.gov (United States)

    Ramírez-Guinart, Oriol; Salaberria, Aitor; Vidal, Miquel; Rigol, Anna

    2018-03-01

    The sorption and desorption behaviour of samarium (Sm), an emerging contaminant, was examined in soil samples at varying Sm concentrations. The obtained sorption and desorption parameters revealed that soil possessed a high Sm retention capacity (sorption was higher than 99% and desorption lower than 2%) at low Sm concentrations, whereas at high Sm concentrations, the sorption-desorption behaviour varied among the soil samples tested. The fractionation of the Sm sorbed in soils, obtained by sequential extractions, allowed to suggest the soil properties (pH and organic matter solubility) and phases (organic matter, carbonates and clay minerals) governing the Sm-soil interaction. The sorption models constructed in the present work along with the sorption behaviour of Sm explained in terms of soil main characteristics will allow properly assessing the Sm-soil interaction depending on the contamination scenario under study. Moreover, the sorption and desorption K d values of radiosamarium in soils were strongly correlated with those of stable Sm at low concentrations (r = 0.98); indicating that the mobility of Sm radioisotopes and, thus, the risk of radioactive Sm contamination can be predicted using data from low concentrations of stable Sm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Longitudinal dispersion with time-dependent source concentration ...

    Indian Academy of Sciences (India)

    industries, especially coal-based industries in the industrial states such as Jharkhand and its neigh- bouring states. These industries ..... of the concentration levels of contaminants with time and distance travel- led, may help to rehabilitate the contaminated aquifer and may be useful for groundwater resource management.

  13. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases

    DEFF Research Database (Denmark)

    Piyatheerawong, W.; Iwasaki, Y; Xu, Xuebing

    2004-01-01

    tested (Rhizomucor miehei lipase, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase) required larger amounts of free water (ca. 7-9 wt.%) for their best performance and exhibited no ethanolysis reaction at low free water concentrations. The CALB's anomalous behavior was also observed...

  14. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    Science.gov (United States)

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  15. Dependence of carbon dioxide concentration on microalgal carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeoung Sang; Park, Song Moon [Department of Chemical Engineering, School of Environmental Engineering, Pohang University of Science and Technology, Pohang (Korea); Bolesky, Bohumil [Department of Chemical Engineering, McGill University (Canada)

    1999-10-01

    Batch cultivation of chlorella vulgaris was carried out under various CO{sub 2} concentrations in order to understand and describe mathematically the CO{sub 2} inhibition of microalgal CO{sub 2} fixation. The volumetric CO{sub 2} transfer coefficient from mixture gas to culture medium was estimated from the volumetric O{sub 2} transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO{sub 2} was calculated during microalgal culture. When air containing 0.035%(v/v) CO{sub 2} was supplied into microalgal culture, the fixation rate was limited by CO{sub 2} transfer rate. However, the limitation was disappeared by supplying mixture gas containing above 2%(v/v) CO{sub 2} and the dissolved CO{sub 2} concentration was maintained at the saturated value. In the range of CO{sub 2} partial pressure in the flue gases from thermal power sations and steel-making plants, the microalgal CO{sub 2} fixation rate was inhibited. The CO{sub 2} fixation rate was successfully formulated by a new empirical equation as a function of dissolved CO{sub 2} concentration, which could be useful for modeling and simulating the performance of photobioreaction with enriched CO{sub 2}. Also, it was found that the CO{sub 2} inhibition of microalgal CO{sub 2} fixation was reversible and that microalgal CO{sub 2} fixation process could be stable against a shock of unusually high CO{sub 2} concentration. 29 refs., 8 figs.

  16. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column.

    Directory of Open Access Journals (Sweden)

    Edwin T H M Peeters

    Full Text Available Nutrients can determine the outcome of the competition between different floating plant species. The response of floating plants to current phosphorus levels may be affected by previously experienced phosphorus concentrations because some species have the ability to store excess phosphorus for later use. This might have an impact on their competition. Here, we investigate the effect of previous and actual phosphorus concentrations on the growth rate of free-floating plant species (Azolla filiculoides, Lemna minor/gibba and Ricciocarpus natansand the effect of phosphorus history on the competition between L. minor/gibba and A. filiculoides and between L. minor/gibba and R. natans. As expected, plant growth was lower when previously kept at low instead of high phosphorus concentrations. Growth of L. minor/gibba and A. filiculoides with a phosphorus rich history was comparable for low and high actual phosphorus concentrations, however, internal phosphorus concentrations were significantly lower with low actual phosphorus concentration. This indicates that both species perform luxury phosphorus uptake. Furthermore, internal P concentration in Azolla and Lemna increased within two weeks after a period of P deficit without a strong increase in growth. A. filiculoides in a mixture with L. minor/gibba grew faster than its monoculture. Morphological differences may explain why A. filiculoides outcompeted L. minor/gibba and these differences may be induced by phosphorus concentrations in the past. Growth of L. minor/gibba was only reduced by the presence of A. filiculoides with a high phosphorus history. Growth of L. minor/gibba and R. natans in mixtures was positively affected only when they had a high phosphorus history themselves and their competitor a low phosphorus history. These observations clearly indicate that phosphorus history of competing plants is important for understanding the outcome of the competition. Therefore, actual and previously

  17. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column

    Science.gov (United States)

    Peeters, Edwin T. H. M.; Neefjes, Rozemarijn E. M.; van Zuidam, Bastiaan G.

    2016-01-01

    Nutrients can determine the outcome of the competition between different floating plant species. The response of floating plants to current phosphorus levels may be affected by previously experienced phosphorus concentrations because some species have the ability to store excess phosphorus for later use. This might have an impact on their competition. Here, we investigate the effect of previous and actual phosphorus concentrations on the growth rate of free-floating plant species (Azolla filiculoides, Lemna minor/gibba and Ricciocarpus natans)and the effect of phosphorus history on the competition between L. minor/gibba and A. filiculoides and between L. minor/gibba and R. natans. As expected, plant growth was lower when previously kept at low instead of high phosphorus concentrations. Growth of L. minor/gibba and A. filiculoides with a phosphorus rich history was comparable for low and high actual phosphorus concentrations, however, internal phosphorus concentrations were significantly lower with low actual phosphorus concentration. This indicates that both species perform luxury phosphorus uptake. Furthermore, internal P concentration in Azolla and Lemna increased within two weeks after a period of P deficit without a strong increase in growth. A. filiculoides in a mixture with L. minor/gibba grew faster than its monoculture. Morphological differences may explain why A. filiculoides outcompeted L. minor/gibba and these differences may be induced by phosphorus concentrations in the past. Growth of L. minor/gibba was only reduced by the presence of A. filiculoides with a high phosphorus history. Growth of L. minor/gibba and R. natans in mixtures was positively affected only when they had a high phosphorus history themselves and their competitor a low phosphorus history. These observations clearly indicate that phosphorus history of competing plants is important for understanding the outcome of the competition. Therefore, actual and previously experienced phosphorus

  18. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column.

    Science.gov (United States)

    Peeters, Edwin T H M; Neefjes, Rozemarijn E M; Zuidam, Bastiaan G van

    2016-01-01

    Nutrients can determine the outcome of the competition between different floating plant species. The response of floating plants to current phosphorus levels may be affected by previously experienced phosphorus concentrations because some species have the ability to store excess phosphorus for later use. This might have an impact on their competition. Here, we investigate the effect of previous and actual phosphorus concentrations on the growth rate of free-floating plant species (Azolla filiculoides, Lemna minor/gibba and Ricciocarpus natans)and the effect of phosphorus history on the competition between L. minor/gibba and A. filiculoides and between L. minor/gibba and R. natans. As expected, plant growth was lower when previously kept at low instead of high phosphorus concentrations. Growth of L. minor/gibba and A. filiculoides with a phosphorus rich history was comparable for low and high actual phosphorus concentrations, however, internal phosphorus concentrations were significantly lower with low actual phosphorus concentration. This indicates that both species perform luxury phosphorus uptake. Furthermore, internal P concentration in Azolla and Lemna increased within two weeks after a period of P deficit without a strong increase in growth. A. filiculoides in a mixture with L. minor/gibba grew faster than its monoculture. Morphological differences may explain why A. filiculoides outcompeted L. minor/gibba and these differences may be induced by phosphorus concentrations in the past. Growth of L. minor/gibba was only reduced by the presence of A. filiculoides with a high phosphorus history. Growth of L. minor/gibba and R. natans in mixtures was positively affected only when they had a high phosphorus history themselves and their competitor a low phosphorus history. These observations clearly indicate that phosphorus history of competing plants is important for understanding the outcome of the competition. Therefore, actual and previously experienced phosphorus

  19. Strong renormalization scheme dependence in τ-lepton decay: Fact or fiction?

    International Nuclear Information System (INIS)

    Chyla, J.

    1995-01-01

    The question of the renormalization scheme dependence of the τ semileptonic decay rate is examined in response to a recent criticism. Particular attention is payed to a distinction between a consistent quantitative description of this dependence and the actual selection of a subset of ''acceptable'' renormalization schemes. It is pointed out that this criticism is valid only within a particular definition of the ''strength'' of the renormalization scheme dependence and should not discourage further attempts to use the semileptonic τ decay rate for quantitative tests of perturbative QCD

  20. Photon and spin dependence of the resonance line shape in the strong coupling regime

    NARCIS (Netherlands)

    Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel

    2012-01-01

    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings

  1. Concentration Dependence of Gold Nanoparticles for Fluorescence Enhancement

    Science.gov (United States)

    Solomon, Joel; Wittmershaus, Bruce

    Noble metal nanoparticles possess a unique property known as surface plasmon resonance in which the conduction electrons oscillate due to incoming light, dramatically increasing their absorption and scattering of light. The oscillating electrons create a varying electric field that can affect nearby molecules. The fluorescence and photostability of fluorophores can be enhanced significantly when they are near plasmonic nanoparticles. This effect is called metal enhanced fluorescence (MEF). MEF from two fluorescence organic dyes, Lucifer Yellow CH and Riboflavin, was measured with different concentrations of 50-nm colloidal gold nanoparticles (Au-NP). The concentration range of Au-NP was varied from 2.5 to 250 pM. To maximize the interaction, the dyes were chosen so their emission spectra had considerable overlap with the absorption spectra of the Au-NP, which is common in MEF studies. If the dye molecules are too close to the surface of Au-NP, fluorescence quenching can occur instead of MEF. To try to observe this difference, silica-coated Au-NP were compared to citrate-based Au-NP; however, fluorescence quenching was observed with both Au-NP. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  2. Genomic Analysis Reveals Distinct Concentration-Dependent Evolutionary Trajectories for Antibiotic Resistance in Escherichia coli

    Science.gov (United States)

    Mogre, Aalap; Sengupta, Titas; Veetil, Reshma T.; Ravi, Preethi; Seshasayee, Aswin Sai Narain

    2014-01-01

    Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time. PMID:25281544

  3. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    Science.gov (United States)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to {˜ } 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  4. Strong dopant dependence of electric transport in ion-gated MoS2

    NARCIS (Netherlands)

    Piatti, Erik; Chen, Qihong; Ye, Jianting

    2017-01-01

    We report modifications of the temperature-dependent transport properties of MoS2 thin flakes via field-driven ion intercalation in an electric double layer transistor. We find that intercalation with Li+ ions induces the onset of an inhomogeneous superconducting state. Intercalation with K+ leads

  5. Sleep/wake dependent changes in cortical glucose concentrations.

    Science.gov (United States)

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  6. A note on the almost sure central limit theorems for the maxima of strongly dependent nonstationary Gaussian vector sequences

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2016-06-01

    Full Text Available Abstract We prove some almost sure central limit theorems for the maxima of strongly dependent nonstationary Gaussian vector sequences under some mild conditions. The results extend the ASCLT to nonstationary Gaussian vector sequences and give substantial improvements for the weight sequence obtained by Lin et al. (Comput. Math. Appl. 62(2:635-640, 2011.

  7. On an nth-order infinitesimal generator and time-dependent operator differential equation with a strongly almost periodic solution

    Directory of Open Access Journals (Sweden)

    Aribindi Satyanarayan Rao

    2002-01-01

    Full Text Available In a Banach space, if u is a Stepanov almost periodic solution of a certain nth-order infinitesimal generator and time-dependent operator differential equation with a Stepanov almost periodic forcing function, then u,u′,…,u (n−2 are all strongly almost periodic and u (n−1 is weakly almost periodic.

  8. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  9. Strong diameter-dependence of nanowire emission coupled to waveguide modes

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Abujetas, Diego R.; Sánchez-Gil, José A. [Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas Serrano, 121, 28006 Madrid (Spain); Bakkers, Erik P. A. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gómez Rivas, Jaime, E-mail: j.gomezrivas@differ.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)

    2016-03-21

    The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guided modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.

  10. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    Science.gov (United States)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  11. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode

    Energy Technology Data Exchange (ETDEWEB)

    Akhrymuk, Ivan; Frolov, Ilya; Frolova, Elena I., E-mail: evfrolova@UAB.edu

    2016-01-15

    Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus–host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellular pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5. - Highlights: • Both RIG-I and MDA5 detect alphavirus replication. • Alphavirus-induced transcriptional shutoff affects type I IFN induction. • Sensing of alphavirus replication by RIG-I and MDA5 depends on their concentrations. • High basal level of RIG-I and MDA5 allows IFN induction by pathogenic alphaviruses. • This dependence determines the discrepancy between the in vivo and in vitro data.

  12. Laser based imaging of time depending microscopic scenes with strong light emission

    Science.gov (United States)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  13. On Strong Positive Frequency Dependencies of Quality Factors in Local-Earthquake Seismic Studies

    Science.gov (United States)

    Morozov, Igor B.; Jhajhria, Atul; Deng, Wubing

    2018-03-01

    Many observations of seismic waves from local earthquakes are interpreted in terms of the frequency-dependent quality factor Q( f ) = Q0 f^{η } , where η is often close to or exceeds one. However, such steep positive frequency dependencies of Q require careful analysis with regard to their physical consistency. In particular, the case of η = 1 corresponds to frequency-independent (elastic) amplitude decays with time and consequently requires no Q-type attenuation mechanisms. For η > 1, several problems with physical meanings of such Q-factors occur. First, contrary to the key premise of seismic attenuation, high-frequency parts of the wavefield are enhanced with increasing propagation times relative to the low-frequency ones. Second, such attenuation cannot be implemented by mechanical models of wave-propagating media. Third, with η > 1, the velocity dispersion associated with such Q(f) occurs over unrealistically short frequency range and has an unexpected oscillatory shape. Cases η = 1 and η > 1 are usually attributed to scattering; however, this scattering must exhibit fortuitous tuning into the observation frequency band, which appears unlikely. The reason for the above problems is that the inferred Q values are affected by the conventional single-station measurement procedure. Both parameters Q 0 and are apparent, i.e., dependent on the selected parameterization and inversion method, and they should not be directly attributed to the subsurface. For η ≈ 1, parameter Q 0 actually describes the frequency-independent amplitude decay in access of some assumed geometric spreading t -α , where α is usually taken equal one. The case η > 1 is not allowed physically and could serve as an indicator of problematic interpretations. Although the case 0 < η < 1 is possible, its parameters Q 0 and may also be biased by the measurement procedure. To avoid such difficulties of Q-based approaches, we recommend measuring and interpreting the amplitude-decay rates

  14. Polarization-dependent solitons in the strong coupling regime of semiconductor microcavities

    International Nuclear Information System (INIS)

    Fu, Y.; Zhang, W.L.; Wu, X.M.

    2015-01-01

    This paper studies the influence of polarization on formation of vectorial polariton soliton in semiconductor microcavities through numerical simulations. It is found that the polariton solution greatly depends on the polarization of both the pump and exciting fields. By properly choosing the pump and exciting field polarization, bright–bright or bright–dark vectorial polariton solitons can be formed. Especially, when the input conditions of pump or exciting field of the two opposite polarizations are slightly asymmetric, an interesting phenomenon that the dark solitons transform into bright solitons occurs in the branch of soliton solutions.

  15. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  16. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    Science.gov (United States)

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  17. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: al-samman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Chowdhury, S. Ghosh [CSIR National Metallurgical Laboratory, MST Division, Jamshedpur 831007 (India)

    2010-06-15

    Over recent years there have been a remarkable number of studies dealing with compression of magnesium. A literature search, however, shows a noticeably less number of papers concerned with tension and a very few papers comparing both modes, systematically, in one study. The current investigation reports the anisotropic deformation behavior and concomitant texture and microstructure evolution investigated in uniaxial tension and compression tests in two sample directions performed on an extruded commercial magnesium alloy AZ31 at different Z conditions. For specimens with the loading direction parallel to the extrusion axis, the tension-compression strength anisotropy was pronounced at high Z conditions. Loading at 45{sup o} from the extrusion axis yielded a tension-compression strength behavior that was close to isotropic. During tensile loading along the extrusion direction the extrusion texture resists twinning and favors prismatic slip (contrary to compression). This renders the shape change maximum in the basal plane and equal to zero along the c-axis, which resulted in the orientation of individual grains remaining virtually intact during all tension tests at different Z conditions. For the other investigated sample direction, straining was accommodated along the c-axis, which was associated with a lattice rotation, and thus, a change of crystal orientation. Uniaxial compression at a low Z condition (400 deg. C/10{sup -4} s{sup -1}) yielded a desired texture degeneration, which was explained on the basis of a more homogeneous partitioning of slip systems that reduces anisotropy and enhanced dynamic recrystallization (DRX), which counteracts the strong deformation texture. The critical strains for the nucleation of DRX in tensiled specimens at the highest investigated Z condition (200 deg. C/10{sup -2} s{sup -1}) were found to range between 4% and 5.6%.

  18. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  19. A cosmic-ray nuclear event with an anomalously strong concentration of energy and particles in the central region

    International Nuclear Information System (INIS)

    Amato, N.M.; Arata, N.; Maldonado, R.H.C.

    1986-01-01

    A cosmic-ray induced nuclear event detected in the emulsion chamber is described. The event consists of 217 shower cores with ΣEγ = 1,275 TeV. In log scale, energy and particles are emitted most densely at the small lateral distance corresponding to 0.5 mm; 77 % of the total energy and 61 % of the total multiplicity are inside the radius of 0.65 cm. The shower cores in the central region show exponential-type energy distribution and non-isotropic azimuthal distribution. This event indicates a possibility that phenomena of large transverse momentum could happen to produce a strong concentration of energy and particles in the very forward direction. (Authors) [pt

  20. Mechanism of bactericidal activity of Silver Nitrate - a concentration dependent bi-functional molecule

    Directory of Open Access Journals (Sweden)

    Sureshbabu Ram Kumar Pandian

    2010-10-01

    Full Text Available Silver nitrate imparts different functions on bacteria depending upon its concentration. At lower concentration it induced synthesis of nanoparticles, whereas at higher concentrations it induced cell death. Bacillus licheniformis was used as model system. The MIC was 5 mM, and it induced catalase production, apoptotic body formation and DNA fragmentation.

  1. PROLARM: Cancer risk from medical diagnostic exposures is strongly dependent upon patients' prognosis

    International Nuclear Information System (INIS)

    Eschner, Wolfgang; Schmidt, Matthias; Dietlein, Markus; Schicha, Harald

    2008-01-01

    Full text: Purpose: a) To evaluate the impact of the reduced life expectancy of patients (compared to a non-patient group with same age distribution) on their risk of developing cancer from the diagnostic use of radiation. b) To find an approximation to such reduction in risk which depends only on the patient's age, a, and his life expectancy, but is independent of the choice of values for the baseline risk of cancer incidence, m(a), and the enhanced relative risk ERR(a) from radiation exposure. Method: The lifetime attributable risk LAR (of a radiation-induced malignancy to manifest itself) is a function of age at exposure, e, and given by integrating over attained age, a, the product of ERR(a), baseline cancer risk m(a) and the relative probability of surviving to age a, S'(a,e). We define a 'prognosis-based LAR modifier' (PROLARM) as the ratio of risks for non-patient, LAR(a), and patient, LAR p (a), a dimensionless quantity that gives a measure of reduction of LAR due to the patient's prognosis. With the survival of the patient group, S p ' (a,e), and for any choice of fitted function for ERR(a) like those used in BEIR VII report, PROLARM ≥∫d'(a,e) da/∫S p '(a,e) da, i.e. the ratio of the survival integrals gives a lower (thus conservative) estimate of the reduction in risk. Results: The method was applied to n=4285 patients with metastatic breast cancer for whom survival as a function of age at metastasis was known. Figure shows that LAR is decreased significantly for all ages at exposure. At younger ages, this decrease is more pronounced (PROLARM ≥ 20 for e ≤ 65). Example: using ERR values of BEIR VII, the LAR due to 10 mSv effective dose at age a = 50 would drop from 1.2 E-3 for non-patient to 4.3E-5 for a patient, i.e. by a factor (PROLARM) of 29. Using only survival data, that factor is 27 (but no LAR can be computed). In other words: 10 mSv for a patient correspond risk-wise to 0.4 mSv for non-patient. The method can be applied to any pathology

  2. Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect.

    Science.gov (United States)

    Panáček, Aleš; Smékalová, Monika; Kilianová, Martina; Prucek, Robert; Bogdanová, Kateřina; Večeřová, Renata; Kolář, Milan; Havrdová, Markéta; Płaza, Grażyna Anna; Chojniak, Joanna; Zbořil, Radek; Kvítek, Libor

    2015-12-28

    The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.

  3. Current dependent angular magnetoresistance in strongly Pr-doped Y Ba2Cu3O7-δ single crystal

    International Nuclear Information System (INIS)

    Sandu, V; Gyawali, P; Katuwal, T; Almasan, C C; Taylor, B J; Maple, M B

    2009-01-01

    We report a strong dependence of the angular magnetoresistance (AMR) on the current density in Y Ba 2 Cu 3 O 7-δ single crystal above the critical temperature T c = 13 K for any applied field up to 14 T. We estimated the current dependence from the angular dependence of the top resistance R top , as measured on the face where the current is applied, and the bottom resistance R bot as measured on the opposite face. At any temperature, both below and above T c , R top decreases as the field becomes parallel to the current and ab-plane with an angle dependence that suggests an important contribution arising from the vortex flow. R bot evolves from a monotonic to nonmonotonic angle dependence with three minima and two maxima in the angle range 0 - 180 deg. as the temperature increases. For less Pr-doped samples, Y 0.58 Pr 0.42 Ba 2 Cu 3 O 7-δ (T c = 39 K) and Y 0.68 rP 0.32 Ba 2 Cu 3 O 7-δ (T c = 55 K), where the interplane resistivity is much lower, both R top and R bot follow the same monotonic angle dependence in all temperature and field range.

  4. Unexpected high 35S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia

    Science.gov (United States)

    Lin, Mang; Zhang, Zhisheng; Su, Lin; Su, Binbin; Liu, Lanzhong; Tao, Jun; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-03-01

    October is the monsoon transitional period in East Asia (EA) involving a series of synoptic activities that may enhance the downward transport of stratospheric air to the planetary boundary layer (PBL). Here we use cosmogenic 35S in sulfate aerosols (35SO42-) as a tracer for air masses originating from the stratosphere and transported downward to quantify these mixing processes. From 1 year 35SO42- measurements (March 2014 to February 2015) at a background station in EA we find remarkably enhanced 35SO42- concentration (3150 atoms m-3) in October, the highest value ever reported for natural sulfate aerosols. A four-box 1-D model and meteorological analysis reveal that strong downward transport from the free troposphere is a vital process entraining aged stratospheric air masses to the PBL. The aged stratospheric masses are accumulated in the PBL, accelerating the SO2 transformation to SO42-. Implications for the tropospheric O3 budget and the CO2 biogeochemical cycle are discussed.

  5. Growth and xanthan production of Xanthomonas campestris depending on the N-source concentration

    Energy Technology Data Exchange (ETDEWEB)

    Prell, A [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Lasik, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Konicek, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Sobotka, M [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology; Sys, J [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Microbiology

    1995-11-01

    Growth of X. campestris and production of xanthan were studied in several batch fermentations with different starting concentrations of N-source. The dependencies of growth, productivity and yields on initial N-source concentration were observed. The maximum yields in the course of cultivations were identified. (orig.)

  6. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Giuseppe Vecchio

    Full Text Available The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs of different sizes (5, 15, 40, and 80 nm in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES, while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN. We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size.

  7. Prediction of strong acceleration motion depended on focal mechanism; Shingen mechanism wo koryoshita jishindo yosoku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, Y; Ejiri, J [Obayashi Corp., Tokyo (Japan)

    1996-10-01

    This paper describes simulation results of strong acceleration motion with varying uncertain fault parameters mainly for a fault model of Hyogo-ken Nanbu earthquake. For the analysis, based on the fault parameters, the strong acceleration motion was simulated using the radiation patterns and the breaking time difference of composite faults as parameters. A statistic waveform composition method was used for the simulation. For the theoretical radiation patterns, directivity was emphasized which depended on the strike of faults, and the maximum acceleration was more than 220 gal. While, for the homogeneous radiation patterns, the maximum accelerations were isotopically distributed around the fault as a center. For variations in the maximum acceleration and the predominant frequency due to the breaking time difference of three faults, the response spectral value of maximum/minimum was about 1.7 times. From the viewpoint of seismic disaster prevention, underground structures including potential faults and non-arranging properties can be grasped using this simulation. Significance of the prediction of strong acceleration motion was also provided through this simulation using uncertain factors, such as breaking time of composite faults, as parameters. 4 refs., 4 figs., 1 tab.

  8. Effect of nitrogen concentration on temperature dependent mechanical properties of vanadium

    International Nuclear Information System (INIS)

    Carlson, O.N.; Rehbein, D.K.

    1979-01-01

    The critical resolved shear stress and strain rate sensitivity of vanadium were determined for vanadium-nitrogen alloys over the temperature range of 77K to 400K for concentrations of 1 to 500 wt ppm nitrogen. The concentration dependence of the hardening rate agrees quite well with either the Fleischer or Labusch strengthening model but the combined temperature and concentration dependence follows more closely the form predicted by Ono and Sommer. The strain rate sensitivity exhibits a peak at 140K which decreases with increasing nitrogen content but above 250K there is a reversal in this effect. (orig.) [de

  9. Dependence of spleen sequestration on erythrocytes following administration of various concentrations of BMHP-197Hg

    International Nuclear Information System (INIS)

    Kapff, S. v.

    1980-01-01

    In the course of routine splenic scintiscanning, the effects of BMHP-Hg 197 concentrations on the kinetics of damaged erythrocytes and on image quality have been investigated. The following findings were obtained: 1. Significant displacement of the Price-Jones curve in dependence of BMHP concentrations. 2. No significant enzymatic changes 3. An enhanced labelling index at high concentrations and a higher spleen sequestration rate 4. A significant improvement of scintiscan quality at higher concentrations 5. Erythrocyte washing before incubation with BMHP was unnecessary as it does not improve the results to an extent that would warrant the tedious procedure. (orig.) [de

  10. The association between etanercept serum concentration and psoriasis severity is highly age-dependent.

    Science.gov (United States)

    Detrez, Iris; Van Steen, Kristel; Segaert, Siegfried; Gils, Ann

    2017-06-01

    The association between etanercept serum concentration and psoriasis disease severity is poorly investigated, and currently etanercept serum concentration monitoring that is aiming to optimize the psoriasis treatment lacks evidence. In this prospective study, we investigated the relation between etanercept exposure and disease severity via measuring etanercept concentrations at five consecutive time points in 56 psoriasis patients. Disease severity assessments included the Psoriasis Area and Severity Index (PASI), body surface area (BSA) and Physician Global Assessment (PGA), and etanercept and anti-etanercept antibody concentrations were determined every 3 months for a period of 1 year. The present study demonstrated that the association between etanercept concentration and psoriasis severity is age-dependent: when patients were stratified into three groups, patients in the youngest age group (-50 years) showed a lower PASI at a higher etanercept concentration (β = -0.26), whereas patients in the oldest age group (+59 years) showed the opposite trend (β =0.22). Similar age effects were observed in the relation of etanercept concentration with BSA ( P =0.02) and PGA ( P =0.02). The influence of age and length of time in therapy on the etanercept concentration-disease severity relation was unaffected by body mass index (BMI) or any other possible confounder. Incidence of anti-etanercept antibodies was low (2%). The age-dependent relation between etanercept serum concentrations is both unexpected and intriguing and needs further investigation. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey

    Science.gov (United States)

    Mandal, Partha Sarathi

    2018-04-01

    In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.

  12. Bombarding energy dependence of nucleon exchange and energy dissipation in the strongly damped reaction 209Bi + 136Xe

    International Nuclear Information System (INIS)

    Wilcke, W.W.; Schroeder, W.U.; Huizenga, J.R.; Birkelund, J.R.; Randrup, J.

    1980-01-01

    Although considerable progress has been achieved in the understanding of strongly damped reactions at energies several MeV/u above the Coulomb barrier, some important experimental results are not yet clearly understood. Among these is the degree of correlation between the nucleon exchange and the large energy losses observed. Experimental evidence suggesting nucleon exchange as described by a one-body model to be the major component of the dissipation mechanism is discussed. It is concluded that the previously unexplained bombarding energy dependence between energy loss and fragment charge dispersion can be understood on the basis of a nucleon exchange model, provided the Pauli exclusion principle is taken into account. No necessity is seen to invoke further energy dissipation mechanisms. 7 figures

  13. Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    The concentration dependent diffusion coefficient of nitrogen in expanded austenite was determined from of the rate of retracting nitrogen from thin initially N-saturated coupons. Nitrogen saturated homogeneous foils of expanded austenite were obtained by nitriding AISI 304 and AISI 316 in pure...... in the composition range where nitrogen can be extracted by hydrogen gas at the diffusion temperature. Numerical simulation of the denitriding experiments shows that the thus determined concentration dependent diffusion coefficients are an accurate approximation of the actual diffusivity of nitrogen in expanded...... ammonia at 693 K and 718 K. Denitriding experiments were performed by equilibrating the foils with a successively lower nitrogen activity, as imposed by a gas mixture of ammonia and hydrogen. The concentration dependent diffusion coefficient of nitrogen in expanded austenite was approximated...

  14. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  15. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  16. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    International Nuclear Information System (INIS)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-01-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  17. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    Science.gov (United States)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.

    2016-05-01

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  18. Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M., E-mail: smavilac@cityu.edu.hk [City University of Hong Kong, Department of Physics and Materials Science (Hong Kong, People’s Republic of China) (China)

    2016-05-15

    Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.

  19. Determination of Concentration Dependent Diffusion Coefficients of Carbon in Expanded Austenite

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    Abstract. In the present paper various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. To this end thermogravimetric carburization was simulated for various experimental conditions and the evaluated...... composition dependent diffusivity of carbon derived from the simulated experiments was compared with the input data. The most promising procedure for an accurate determination is shown to be stepwise gaseous carburizing of thin foils in a gaseous atmosphere; the finer the stepsize, the more accurate...

  20. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Hye; Joo, Sang-Woo [Department of Chemistry, Soongsil University, Seoul 156-743 (Korea, Republic of); Cho, Keunchang [Logos Biosystems, Incorporated, Anyang 431-070 (Korea, Republic of); Lee, So Yeong, E-mail: leeso@snu.ac.kr, E-mail: sjoo@ssu.ac.kr [Laboratory of Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2011-06-10

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  1. Concentration-dependent fluorescence live-cell imaging and tracking of intracellular nanoparticles

    International Nuclear Information System (INIS)

    Seo, Ji Hye; Joo, Sang-Woo; Cho, Keunchang; Lee, So Yeong

    2011-01-01

    Using live-cell imaging techniques we investigated concentration-dependent intracellular movements of fluorescence nanoparticles (NPs) in real-time after their entry into HeLa cells via incubation. Intracellular particle traces appeared to be a mixture of both random and fairly unidirectional movements of the particles. At rather low concentrations of NPs, a majority of the non-random intracellular particle trajectories are assumed to mostly go along microtubule networks after endocytosis, as evidenced from the inhibition test with nocodazole. On the other hand, as the concentrations of NPs increased, random motions were more frequently observed inside the cells.

  2. External K+ dependence of strong inward rectifier K+ channel conductance is caused not by K+ but by competitive pore blockade by external Na.

    Science.gov (United States)

    Ishihara, Keiko

    2018-06-15

    Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.

  3. Concentration dependence of the Huang scattering intensity of TaHsub(x) alloys

    International Nuclear Information System (INIS)

    Behr, H.; Metzger, H.; Peisl, J.

    1983-01-01

    The analysis of the concentration dependence of the Huang diffuse scattering intensity from ThHsub(x) single crystals has been re-evaluated using two quantities recently determined from independent measurements of the Bragg diffraction intensities. Good agreement between experiment and theory has been achieved. (author)

  4. Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Olsen, Mark Holm; Svane, Inge Marie

    2015-01-01

    Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinement...

  5. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis

    Science.gov (United States)

    Janssens, Lizanne; Stoks, Robby

    2013-01-01

    Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance). Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i) were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii) strongly differed depending on the fitness-related variable under study, (iii) were not always predictable based on the effect of the environmental condition in isolation, and (iv) bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities. PMID:23840819

  6. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions.

    Directory of Open Access Journals (Sweden)

    Joy Ogbechi

    2015-07-01

    Full Text Available A well-known histopathological feature of diseased skin in Buruli ulcer (BU is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM expression on the surface of human dermal microvascular endothelial cells (HDMVEC at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this

  7. Fitness Effects of Chlorpyrifos in the Damselfly Enallagma cyathigerum Strongly Depend upon Temperature and Food Level and Can Bridge Metamorphosis.

    Directory of Open Access Journals (Sweden)

    Lizanne Janssens

    Full Text Available Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance. Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii strongly differed depending on the fitness-related variable under study, (iii were not always predictable based on the effect of the environmental condition in isolation, and (iv bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities.

  8. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef.

    Science.gov (United States)

    Mueller, Benjamin; Meesters, Erik H; van Duyl, Fleur C

    2017-01-01

    Photosynthates released by benthic primary producers (BPP), such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC) production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light), DOC concentrations near Dictyota sp. were elevated by 15 µmol C L -1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively), or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type, light

  9. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Benjamin Mueller

    2017-06-01

    Full Text Available Photosynthates released by benthic primary producers (BPP, such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light, DOC concentrations near Dictyota sp. were elevated by 15 µmol C L−1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively, or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type

  10. Concentration dependent luminescence quenching of Er{sup 3+}-doped zinc boro-tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Said Mahraz, Zahra Ashur; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.; Reza Dousti, M.

    2013-12-15

    Understanding the mechanism of luminescence quenching in rare earth doped tellurite glass is an important issue. The Er{sup 3+}-doped boro-tellurite glasses with compositions 30B{sub 2}O{sub 3}+10ZnO+(60−x)TeO{sub 2}+xEr{sub 2}O{sub 3} (where x=0, 0.5, 1, 1.5 and 2 mol%) were prepared by melt quenching method. Structural and optical properties of the proposed glasses were characterized using XRD, FTIR, density, UV–vis-IR absorption and PL spectroscopy. The amorphous nature of these glasses was confirmed by XRD technique. The IR-spectrum reveals five absorption bands assigned to different B–O and Te–O vibrational groups. UV–vis-IR absorption spectrum exhibits seven absorption bands at 6553, 10,244, 12,547, 15,360, 19,230, 20,661 and 22,522 cm{sup −1} corresponding to {sup 4}I{sub 13/2}, {sup 4}I{sub 11/2}, {sup 4}I{sub 9/2}, {sup 4}F{sub 9/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 7/2} and {sup 4}F{sub 3/2} excited states of Er{sup 3+} ion respectively. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions decreased, while the Urbach energy and cut-off wavelengths are increased by the introduction of Er{sup 3+} ions. The refractive index, density and phonon cut-off edge of the samples are increased and the molar volume decreased with the further addition of dopants. The Judd–Ofelt parameter (Ω{sub 2}) decreased from 5.73 to 3.13×10{sup −20} cm{sup 2} with the increase of erbium ions concentration from 0.5 to 2 mol%. The PL spectra show green emissions for the transition from {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} excited states to {sup 4}I{sub 15/2} ground state, which show strong quenching due to the addition of Er{sup 3+} ions. -- Highlights: • Er{sup 3+}-doped zinc boro-tellurite glass has been synthesized by melt quench method. • Spectroscopic properties dependent concentration is analyzed by different techniques. • Judd–Ofelt intensity parameter (Ω{sub 2}) decreased by increase in erbium

  11. Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability

    Directory of Open Access Journals (Sweden)

    Zha YY

    2012-06-01

    Full Text Available Ying-ying Zha,1 Bo Yang,1 Ming-liang Tang,2 Qiu-chen Guo,1 Ju-tao Chen,1 Long-ping Wen,3 Ming Wang11CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 2Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, 3Laboratory of Nano-biology, School of Life Sciences, University of Science and Technology of China, Hefei, People's Republic of ChinaBackground: Recent studies have shown that the biological actions and toxicity of the water-soluble compound, polyhydroxyfullerene (fullerenol, are related to the concentrations present at a particular site of action. This study investigated the effects of different concentrations of fullerenol on cultured rat hippocampal neurons.Methods and results: Fullerenol at low concentrations significantly enhanced hippocampal neuron viability as tested by MTT assay and Hoechst 33342/propidium iodide double stain detection. At high concentrations, fullerenol induced apoptosis confirmed by Comet assay and assessment of caspase proteins.Conclusion: These findings suggest that fullerenol promotes cell death and protects against cell damage, depending on the concentration present. The concentration-dependent effects of fullerenol were mainly due to its influence on the reduction-oxidation pathway.Keywords: fullerenol, nanomaterial, neurotoxicity, neuroprotection, hippocampal neuron

  12. Behaviour of trace element concentration in human organs in dependence of age and environment

    International Nuclear Information System (INIS)

    Persigehl, M.; Schicha, H.; Kasperek, K.; Feinendegen, L.E.; Kernforschungsanlage Juelich G.m.b.H.

    1977-01-01

    To study the behaviour of trace elements in dependence of age and environment, samples of skin, lung, heart, aorta, kidney, liver and brain were assayed for concentrations of Fe, Zn, Rb, Co, Cr, Se, Sc, Sb, Cs, Al and partly Eu. All samples were dried at 100 deg C for two days. Instrumental neutron-activation analysis was used to determine the element concentrations. The neutron flux was 5 x 10 13 n cm -2 sec -1 . After decay of the short lived radioisotopes, the Al-concentration was measured following a second irradiation of 1 minute and directly comparing with a standard sample. Nearly all element concentrations changed with processing age, but they showed no clear correlation to either parameter assessed. The non-essential elements Se, Sb and Sc were increasingly concentrated in all organs except the skin. Comparing lung samples of patients from highly industrialized regions with those of lesser industrialization, the elements Sc, Al, Sb, Eu and Co were accumulated by a factor of 10 to 100. Thus the concentrations of trace elements in human organism also depend on the degree of industrialization. (T.G.)

  13. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    Science.gov (United States)

    Zhang, Caiyun; Zhu, Xiaohong; Wang, Zhongxing; Sun, Ping; Ren, Yinjuan; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2014-09-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles.

  14. Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors

    Science.gov (United States)

    2014-01-01

    Graphene has attracted much attention since it was firstly stripped from graphite by two physicists in 2004, and the supercapacitor based on graphene has obtained wide attention and much investment as well. For practical applications of graphene-based supercapacitors, however, there are still many challenges to solve, for instance, to simplify the technological process, to lower the fabrication cost, and to improve the electrochemical performance. In this work, graphene/MnO2 composites are prepared by a microwave sintering method, and we report here a relatively simple method for the supercapacitor packaging, i.e., dipping Ni-foam into a graphene/MnO2 composite solution directly for a period of time to coat the active material on a current collector. It is found that the microwave reaction time has a significant effect on the microstructure of graphene/MnO2 composites, and consequently, the electrochemical properties of the supercapacitors based on graphene/MnO2 composites are strongly microstructure dependent. An appropriately longer microwave reaction time, namely, 15 min, facilitates a very dense and homogeneous microstructure of the graphene/MnO2 composites, and thus, excellent electrochemical performance is achieved in the supercapacitor device, including a high specific capacitance of 296 F/g and a high capacitance retention of 93% after 3,000 times of charging/discharging cycles. PACS 81.05.ue; 78.67.Sc; 88.80.fh PMID:25258609

  15. Dependence of indoor radon concentration on the year of house construction

    International Nuclear Information System (INIS)

    Fujimoto, K.; Sanada, T.

    1999-01-01

    The dependence of indoor radon concentration on the year of house construction was studied using the results of two nationwide indoor radon surveys in Japan. The data of radon concentration in the surveys were classified into structure type as well as year of construction to obtain the current radon concentration for each structure type as a function of year of construction. The indoor radon concentration in wooden houses was found to be relatively constant with year of house construction until 1960, and then decreased, whereas the radon concentration in concrete houses increased sharply in houses constructed after 1970. The concentration in concrete houses built before 1975 was almost the same as that in contemporary wooden houses. However, the concentration in concrete houses built at present was about two times higher than that in wooden houses. The time trends found for wooden and concrete houses in the first nationwide indoor radon survey were confirmed by the second nationwide survey. In addition, these same time trends were mostly observed in the data classified into 7 districts in Japan. The increase of indoor radon concentration in concrete houses provides relatively high dose, and this increasing trend seems to continue, judging from the results of two nationwide surveys

  16. Measurements of the size dependence of the concentration of nonvolatile material in fog droplets

    Science.gov (United States)

    Ogren, J. A.; Noone, K. J.; Hallberg, A.; Heintzenberg, J.; Schell, D.; Berner, A.; Solly, I.; Kruisz, C.; Reischl, G.; Arends, B. G.; Wobrock, W.

    1992-11-01

    Measurements of the size dependence of the mass concentration of nonvolatile material dissolved and suspended in fog droplets were obtained with three complementary approaches, covering a size range from c. 1 50µm diameter: a counterflow virtual impactor, an eight-stage aerosol impactor, and a two-stage fogwater impactor. Concentrations were observed to decrease with size over the entire range, contrary to expectations of increasing concentrations at larger sizes. It is possible that the larger droplets had solute concentrations that increased with increasing size, but that the increase was too weak for the measurements to resolve. Future studies should consider the hypothesis that the droplets were coated with a surface-active substance that hindered their uptake of water.

  17. Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium.

    Science.gov (United States)

    Kitanovic, Ana; Walther, Thomas; Loret, Marie Odile; Holzwarth, Jinda; Kitanovic, Igor; Bonowski, Felix; Van Bui, Ngoc; Francois, Jean Marie; Wölfl, Stefan

    2009-06-01

    Maintenance and adaptation of energy metabolism could play an important role in the cellular ability to respond to DNA damage. A large number of studies suggest that the sensitivity of cells to oxidants and oxidative stress depends on the activity of cellular metabolism and is dependent on the glucose concentration. In fact, yeast cells that utilize fermentative carbon sources and hence rely mainly on glycolysis for energy appear to be more sensitive to oxidative stress. Here we show that treatment of the yeast Saccharomyces cerevisiae growing on a glucose-rich medium with the DNA alkylating agent methyl methanesulphonate (MMS) triggers a rapid inhibition of respiration and enhances reactive oxygen species (ROS) production, which is accompanied by a strong suppression of glycolysis. Further, diminished activity of pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase upon MMS treatment leads to a diversion of glucose carbon to glycerol, trehalose and glycogen accumulation and an increased flux through the pentose-phosphate pathway. Such conditions finally result in a significant decline in the ATP level and energy charge. These effects are dependent on the glucose concentration in the medium. Our results clearly demonstrate that calorie restriction reduces MMS toxicity through increased respiration and reduced ROS accumulation, enhancing the survival and recovery of cells.

  18. Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions

    Science.gov (United States)

    Tsiovkin, Yu. Yu.; Povzner, A. A.; Tsiovkina, L. Yu.; Dremov, V. V.; Kabirova, L. R.; Dyachenko, A. A.; Bystrushkin, V. B.; Ryabukhina, M. V.; Lukoyanov, A. V.; Shorikov, A. O.

    2010-01-01

    The temperature and concentration dependences of the electrical resistivity for alloys of americium with plutonium are analyzed in terms of the multiband conductivity model for binary disordered substitution-type alloys. For the case of high temperatures ( T > ΘD, ΘD is the Debye temperature), a system of self-consistent equations of the coherent potential approximation has been derived for the scattering of conduction electrons by impurities and phonons without any constraints on the interaction intensity. The definitions of the shift and broadening operator for a single-electron level are used to show qualitatively and quantitatively that the pattern of the temperature dependence of the electrical resistivity for alloys is determined by the balance between the coherent and incoherent contributions to the electron-phonon scattering and that the interference conduction electron scattering mechanism can be the main cause of the negative temperature coefficient of resistivity observed in some alloys involving actinides. It is shown that the great values of the observed resistivity may be attributable to interband transitions of charge carriers and renormalization of their effective mass through strong s-d band hybridization. The concentration and temperature dependences of the resistivity for alloys of plutonium and americium calculated in terms of the derived conductivity model are compared with the available experimental data.

  19. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  20. Competition between free-floating plants is strongly driven by previously experienced phosphorus concentrations in the water column

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Neefjes, Rozemarijn; Zuidam, van B.G.

    2016-01-01

    Nutrients can determine the outcome of the competition between different floating plant species. The response of floating plants to current phosphorus levels may be affected by previously experienced phosphorus concentrations because some species have the ability to store excess phosphorus for later

  1. Utilization of roughages and concentrates relative to that of milk replacer increases strongly with age in veal calves

    NARCIS (Netherlands)

    Berends, H.; Borne, van den J.J.G.C.; Mollenhorst, H.; Reenen, van C.G.; Bokkers, E.A.M.; Gerrits, W.J.J.

    2014-01-01

    We aimed to investigate the feeding values of milk replacer (MR), roughage, and concentrates for veal calves in a paired-gain setting, thus avoiding any prior assumptions in feeding values and major differences in nutrient intakes. One hundred sixty male Holstein-Friesian calves at 2 wk of age and

  2. Analytical description of concentration dependence of surface tension in multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.

  3. Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension

    Science.gov (United States)

    Rinehart, Benjamin S.; Cao, Caroline G. L.

    2016-08-01

    Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.

  4. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.

    Science.gov (United States)

    Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang

    2016-03-01

    The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.

  6. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    OpenAIRE

    Yavkin, Boris V; Mamin, Georgy V; Gafurov, Marat R.; Orlinskii, Sergei B.

    2015-01-01

    Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...

  7. Concentration-dependent oligomerization of cross-linked complexes between ferredoxin and ferredoxin–NADP+ reductase

    International Nuclear Information System (INIS)

    Kimata-Ariga, Yoko; Kubota-Kawai, Hisako; Lee, Young-Ho; Muraki, Norifumi; Ikegami, Takahisa; Kurisu, Genji; Hase, Toshiharu

    2013-01-01

    Highlights: •Cross-linked complexes of ferredoxin (Fd) and Fd–NADP + reductase form oligomers. •In the crystal structures, Fd- and FNR moieties swap across the molecules. •The complexes exhibit concentration-dependent oligomerization at sub-milimolar order. -- Abstract: Ferredoxin–NADP + reductase (FNR) forms a 1:1 complex with ferredoxin (Fd), and catalyzes the electron transfer between Fd and NADP + . In our previous study, we prepared a series of site-specifically cross-linked complexes of Fd and FNR, which showed diverse electron transfer properties. Here, we show that X-ray crystal structures of the two different Fd–FNR cross-linked complexes form oligomers by swapping Fd and FNR moieties across the molecules; one complex is a dimer from, and the other is a successive multimeric form. In order to verify whether these oligomeric structures are formed only in crystal, we investigated the possibility of the oligomerization of these complexes in solution. The mean values of the particle size of these cross-linked complexes were shown to increase with the rise of protein concentration at sub-milimolar order, whereas the size of dissociable wild-type Fd:FNR complex was unchanged as analyzed by dynamic light scattering measurement. The oligomerization products were detected by SDS–PAGE after chemical cross-linking of these complexes at the sub-milimolar concentrations. The extent and concentration-dependent profile of the oligomerizaion were differentiated between the two cross-linked complexes. These results show that these Fd–FNR cross-linked complexes exhibit concentration-dependent oligomerization, possibly through swapping of Fd and FNR moieties also in solution. These findings lead to the possibility that some native multi-domain proteins may present similar phenomenon in vivo

  8. A novel technique to determine concentration-dependent solvent dispersion in Vapex

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. R. [Department of Chemical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)

    2009-07-01

    Vapex (vapor extraction of heavy oil and bitumen) is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen. (author)

  9. A Novel Technique to Determine Concentration-Dependent Solvent Dispersion in Vapex

    Directory of Open Access Journals (Sweden)

    Hadil Abukhalifeh

    2009-10-01

    Full Text Available Vapex (vapor extraction of heavy oil and bitumen is a promising recovery technology because it consumes low energy, and is very environmentally-friendly. The dispersion of solvents into heavy oil and bitumen is a crucial transport property governing Vapex. The accurate determination of solvent dispersion in Vapex is essential to effectively predict the amount and time scale of oil recovery as well to optimize the field operations. In this work, a novel technique is developed to experimentally determine the concentration-dependent dispersion coefficient of a solvent in Vapex process. The principles of variational calculus are utilized in conjunction with a mass transfer model of the experimental Vapex process. A computational algorithm is developed to optimally compute solvent dispersion as a function of its concentration in heavy oil. The developed technique is applied to Vapex utilizing propane as a solvent. The results show that dispersion of propane is a unimodal function of its concentration in bitumen.

  10. Concentration-dependent sedimentation properties of ferritin: implications for estimation of iron contents of serum ferritins

    International Nuclear Information System (INIS)

    Niitsu, Y.; Adachi, C.; Takahashi, F.; Goto, Y.; Kohgo, Y.; Urushizaki, I.; Listowsky, I.

    1985-01-01

    Serum ferritins from various sources sedimented at lower densities than tissue ferritins in sucrose gradient centrifugation systems. The sedimentation patterns of ferritins, however, were shown to be dependent on the concentration of the protein; as the concentration decreased the protein appeared to sediment at lower densities. Thus, at the low concentration levels usually used for analysis of serum ferritin, tissue ferritins also sedimented in the same lower density regions. Iron labeling experiments indicated that the sedimentation changes upon dilution were not due to release of iron or was there any indication that the protein dissociated into subunits. The anomalous sedimentation behavior of serum ferritin should therefore not be interpreted in terms of its iron content. The disclosure that serum ferritins may have full complements of iron is counter to the prevalent view that serum ferritins are low iron forms and has potential implications with regard to the sources and possible function of this protein in the circulation

  11. Temperature-dependent transformation thermotics for unsteady states: Switchable concentrator for transient heat flow

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: 13110290008@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Shen, Xiangying, E-mail: 13110190068@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Huang, Jiping, E-mail: jphuang@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Ni, Yushan, E-mail: niyushan@fudan.edu.cn [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2016-04-22

    For manipulating heat flow efficiently, recently we established a theory of temperature-dependent transformation thermotics which holds for steady-state cases. Here, we develop the theory to unsteady-state cases by considering the generalized Fourier's law for transient thermal conduction. As a result, we are allowed to propose a new class of intelligent thermal metamaterial — switchable concentrator, which is made of inhomogeneous anisotropic materials. When environmental temperature is below or above a critical value, the concentrator is automatically switched on, namely, it helps to focus heat flux in a specific region. However, the focusing does not affect the distribution pattern of temperature outside the concentrator. We also perform finite-element simulations to confirm the switching effect according to the effective medium theory by assembling homogeneous isotropic materials, which bring more convenience for experimental fabrication than inhomogeneous anisotropic materials. This work may help to figure out new intelligent thermal devices, which provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect. - Highlights: • Established the unsteady-state temperature dependent transformation thermotics. • A thermal concentrator with switchable functionality. • An effective-medium design for experimental realization.

  12. Dependence of Initial Oxygen Concentration on Ozone Yield Using Inductive Energy Storage System Pulsed Power Generator

    Science.gov (United States)

    Go, Tomio; Tanaka, Yasushi; Yamazaki, Nobuyuki; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya

    Dependence of initial oxygen concentration on ozone yield using streamer discharge reactor driven by an inductive energy storage system pulsed power generator is described in this paper. Fast recovery type diodes were employed as semiconductor opening switch to interrupt a circuit current within 100 ns. This rapid current change produced high-voltage short pulse between a secondary energy storage inductor. The repetitive high-voltage short pulse was applied to a 1 mm diameter center wire electrode placed in a cylindrical pulse corona reactor. The streamer discharge successfully occurred between the center wire electrode and an outer cylinder ground electrode of 2 cm inner diameter. The ozone was produced with the streamer discharge and increased with increasing pulse repetition rate. The ozone yield changed in proportion to initial oxygen concentration contained in the injected gas mixture at 800 ns forward pumping time of the current. However, the decrease of the ozone yield by decreasing oxygen concentration in the gas mixture at 180 ns forward pumping time of the current was lower than the decrease at 800 ns forward pumping time of the current. This dependence of the initial oxygen concentration on ozone yield at 180 ns forward pumping time is similar to that of dielectric barrier discharge reactor.

  13. Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations

    DEFF Research Database (Denmark)

    Svenningsen, Per; Uhrenholt, Torben R; Palarasah, Yaseelan

    2009-01-01

    by which plasmin stimulates ENaC activity. Cy3-labeled plasmin was found to bind to the surface of the mouse cortical collecting duct cell line, M-1. Binding depended on a glycosylphosphatidylinositol (GPI)-anchored protein. Biotin-label transfer showed that plasmin interacted with the GPI-anchored protein...... plasmin-stimulated ENaC current in monolayers of M-1 cells at low plasmin concentration (1-4 microg/ml). At a high plasmin concentration of 30 microg/ml, there was no difference between cell layers treated with or without PI-PLC. Knockdown of prostasin attenuated binding of plasmin to M1 cells and blocked...... labeling of M-1 cells. Pretreatment with plasmin abolished labeling of M-1 cells in a prostasin-dependent way. We conclude that, at low concentrations, plasmin interacts with GPI-anchored prostasin, which leads to cleavage of the gamma-subunit and activation of ENaC, while at higher concentrations, plasmin...

  14. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells.

    Science.gov (United States)

    Ravera, Silvia; Cossu, Vanessa; Tappino, Barbara; Nicchia, Elena; Dufour, Carlo; Cavani, Simona; Sciutto, Andrea; Bolognesi, Claudia; Columbaro, Marta; Degan, Paolo; Cappelli, Enrico

    2018-02-01

    Metformin (MET) is the drug of choice for patients with type 2 diabetes and has been proposed for use in cancer therapy and for treating other metabolic diseases. More than 14,000 studies have been published addressing the cellular mechanisms affected by MET. However, several in vitro studies have used concentrations of the drug 10-100-fold higher than the plasmatic concentration measured in patients. Here, we evaluated the biochemical, metabolic, and morphologic effects of various concentrations of MET. Moreover, we tested the effect of MET on Fanconi Anemia (FA) cells, a DNA repair genetic disease with defects in energetic and glucose metabolism, as well as on human promyelocytic leukemia (HL60) cell lines. We found that the response of wild-type cells to MET is concentration dependent. Low concentrations (15 and 150 µM) increase both oxidative phosphorylation and the oxidative stress response, acting on the AMPK/Sirt1 pathway, while the high concentration (1.5 mM) inhibits the respiratory chain, alters cell morphology, becoming toxic to the cells. In FA cells, MET was unable to correct the energetic/respiratory defect and did not improve the response to oxidative stress and DNA damage. By contrast, HL60 cells appear sensitive also at 150 μM. Our findings underline the importance of the MET concentration in evaluating the effect of this drug on cell metabolism and demonstrate that data obtained from in vitro experiments, that have used high concentrations of MET, cannot be readily translated into improving our understanding of the cellular effects of metformin when used in the clinical setting. © 2017 Wiley Periodicals, Inc.

  15. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    Science.gov (United States)

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  16. Two tropical conifers show strong growth and water-use efficiency responses to altered CO2 concentration.

    Science.gov (United States)

    Dalling, James W; Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Garcia, Milton; Virgo, Aurelio; Cheesman, Alexander W; Baresch, Andres; Jaramillo, Carlos; Turner, Benjamin L

    2016-11-01

    Conifers dominated wet lowland tropical forests 100 million years ago (MYA). With a few exceptions in the Podocarpaceae and Araucariaceae, conifers are now absent from this biome. This shift to angiosperm dominance also coincided with a large decline in atmospheric CO 2 concentration (c a ). We compared growth and physiological performance of two lowland tropical angiosperms and conifers at c a levels representing pre-industrial (280 ppm), ambient (400 ppm) and Eocene (800 ppm) conditions to explore how differences in c a affect the growth and water-use efficiency (WUE) of seedlings from these groups. Two conifers (Araucaria heterophylla and Podocarpus guatemalensis) and two angiosperm trees (Tabebuia rosea and Chrysophyllum cainito) were grown in climate-controlled glasshouses in Panama. Growth, photosynthetic rates, nutrient uptake, and nutrient use and water-use efficiencies were measured. Podocarpus seedlings showed a stronger (66 %) increase in relative growth rate with increasing c a relative to Araucaria (19 %) and the angiosperms (no growth enhancement). The response of Podocarpus is consistent with expectations for species with conservative growth traits and low mesophyll diffusion conductance. While previous work has shown limited stomatal response of conifers to c a , we found that the two conifers had significantly greater increases in leaf and whole-plant WUE than the angiosperms, reflecting increased photosynthetic rate and reduced stomatal conductance. Foliar nitrogen isotope ratios (δ 15 N) and soil nitrate concentrations indicated a preference in Podocarpus for ammonium over nitrate, which may impact nitrogen uptake relative to nitrate assimilators under high c a SIGNIFICANCE: Podocarps colonized tropical forests after angiosperms achieved dominance and are now restricted to infertile soils. Although limited to a single species, our data suggest that higher c a may have been favourable for podocarp colonization of tropical South America 60

  17. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S M; Abo-Elmagdb, M [Faculty of Science, Department of Physics, Ain Shams University, P. O. Box 11566, Cairo (Egypt); Salamaa, E [National Institute for Standard, Radiation Measurements Department, Cairo (Egypt)

    2007-06-15

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate {phi}=C{sub ra}{lambda}{sub rn} f{rho}{sub s}(1-{epsilon})L; C{sub ra} the effective radium content, {lambda}{sub rn} decay constant, f emanation fraction, {rho}{sub s} soil grain density, {epsilon} porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures.

  18. Reduced plasma aldosterone concentrations in randomly selected patients with insulin-dependent diabetes mellitus.

    LENUS (Irish Health Repository)

    Cronin, C C

    2012-02-03

    Abnormalities of the renin-angiotensin system have been reported in patients with diabetes mellitus and with diabetic complications. In this study, plasma concentrations of prorenin, renin, and aldosterone were measured in a stratified random sample of 110 insulin-dependent (Type 1) diabetic patients attending our outpatient clinic. Fifty-four age- and sex-matched control subjects were also examined. Plasma prorenin concentration was higher in patients without complications than in control subjects when upright (geometric mean (95% confidence intervals (CI): 75.9 (55.0-105.6) vs 45.1 (31.6-64.3) mU I-1, p < 0.05). There was no difference in plasma prorenin concentration between patients without and with microalbuminuria and between patients without and with background retinopathy. Plasma renin concentration, both when supine and upright, was similar in control subjects, in patients without complications, and in patients with varying degrees of diabetic microangiopathy. Plasma aldosterone was suppressed in patients without complications in comparison to control subjects (74 (58-95) vs 167 (140-199) ng I-1, p < 0.001) and was also suppressed in patients with microvascular disease. Plasma potassium was significantly higher in patients than in control subjects (mean +\\/- standard deviation: 4.10 +\\/- 0.36 vs 3.89 +\\/- 0.26 mmol I-1; p < 0.001) and plasma sodium was significantly lower (138 +\\/- 4 vs 140 +\\/- 2 mmol I-1; p < 0.001). We conclude that plasma prorenin is not a useful early marker for diabetic microvascular disease. Despite apparently normal plasma renin concentrations, plasma aldosterone is suppressed in insulin-dependent diabetic patients.

  19. Modeling the dependency of radon concentration levels inside ancient Egyptian tombs on the ambient temperature variations

    International Nuclear Information System (INIS)

    Metwally, S.M.; Abo-Elmagdb, M.; Salamaa, E.

    2007-01-01

    Radon concentration inside partially closed places like dwellings, caves and tombs, depends on many parameters. Some parameters are known quantitatively as radon exhalation rate for walls, decay constant, surface to volume ratio and outdoor concentration while other parameters as ventilation rate is in common known qualitatively due to useless of traditional methods (tracer gases) in many places as ancient Egyptian tombs. This work introduces a derived mathematical model to evaluate the sensitivity of radon concentration levels inside single sided opening places as ancient Egyptian tombs on the ambient temperature differences. The obtained formula for the natural ventilation rate depends on the indoor and outdoor temperature difference and the geometrical dimensions of the doorway. The effects of in and out flow mixing, air viscosity, streamline contraction, swirling flow and turbulence, were taken into consideration in terms of an empirical correction factor. According UNSCEAR reports, the exhalation rate Φ=C ra λ rn fρ s (1-ε)L; C ra the effective radium content, λ rn decay constant, f emanation fraction, ρ s soil grain density, ε porosity and L diffusion length, these are approximately static parameters but the variability of ambient temperature introduces a source of energy of fluctuating strength to radon atoms in rocks which controls the flow rate and the ambient content of radon. Therefore, the change of outdoor and indoor temperature difference causes fluctuation of value and direction of volume flow rate in such places consequently causes the daily variation and on average the seasonal variation of radon concentration. Therefore according to the present model, the daily accurate expectation of radon concentrations inside ancient Egyptian tombs, require precise measurements of indoor and outdoor temperatures

  20. Temperature dependence of 1H NMR chemical shifts and its influence on estimated metabolite concentrations.

    Science.gov (United States)

    Wermter, Felizitas C; Mitschke, Nico; Bock, Christian; Dreher, Wolfgang

    2017-12-01

    Temperature dependent chemical shifts of important brain metabolites measured by localised 1 H MRS were investigated to test how the use of incorrect prior knowledge on chemical shifts impairs the quantification of metabolite concentrations. Phantom measurements on solutions containing 11 metabolites were performed on a 7 T scanner between 1 and 43 °C. The temperature dependence of the chemical shift differences was fitted by a linear model. Spectra were simulated for different temperatures and analysed by the AQSES program (jMRUI 5.2) using model functions with chemical shift values for 37 °C. Large differences in the temperature dependence of the chemical shift differences were determined with a maximum slope of about ±7.5 × 10 -4  ppm/K. For 32-40 °C, only minor quantification errors resulted from using incorrect chemical shifts, with the exception of Cr and PCr. For 1-10 °C considerable quantification errors occurred if the temperature dependence of the chemical shifts was neglected. If 1 H MRS measurements are not performed at 37 °C, for which the published chemical shift values have been determined, the temperature dependence of chemical shifts should be considered to avoid systematic quantification errors, particularly for measurements on animal models at lower temperatures.

  1. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  2. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    International Nuclear Information System (INIS)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-01-01

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  3. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    International Nuclear Information System (INIS)

    Pandiyarajan, T.; Udayabhaskar, R.; Vignesh, S.; James, R. Arthur; Karthikeyan, B.

    2013-01-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A u and B u modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes

  4. Glymphatic clearance controls state-dependent changes in brain lactate concentration

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Lu, Minh Lon; Yang, Ezra

    2017-01-01

    Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lacta......-lymphatic clearance. This analysis provides fundamental new insight into brain energy metabolism by demonstrating that glucose that is not fully oxidized can be exported as lactate via glymphatic-lymphatic fluid transport.......Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lactate...... concentration. Suppression of glymphatic function via acetazolamide treatment, cisterna magna puncture, aquaporin 4 deletion, or changes in body position reduced the decline in brain lactate normally observed when awake mice transition into sleep or anesthesia. Concurrently, the same manipulations diminished...

  5. Dependence of aggregation behavior on concentration in triblock copolymer solutions: The effect of chain architecture

    International Nuclear Information System (INIS)

    Han, Xiang-Gang; Zhang, Xue-Feng

    2015-01-01

    Using the self-consistent field lattice technique, the effects of concentration and hydrophobic middle block length (where the chain length remains constant) on aggregation behavior are studied in amphiphilic symmetric triblock copolymer solutions. The heat capacity peak for the unimer-micelle transition and the distribution peaks for the different degrees of aggregation for micelles and small aggregates (submicelles) are calculated. Analysis of the conducted computer simulations shows that the transition broadness dependence on concentration is determined by the hydrophobic middle block length, and this dependence is distinctly different when the length of the hydrophobic middle block changes. Different size for small aggregates simultaneously appear in the transition region. As temperature decreases, the number of different size small aggregates for the large hydrophobic middle block length first ascends and then descends in aggregation degree order. These results indicate that any transition broadness change with concentration is related to the mechanism of fragmentation and fusion. These results are helpful for interpreting the aggregation process of amphiphilic copolymers at equilibrium

  6. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Vignesh, S.; James, R. Arthur [Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024 (India); Karthikeyan, B., E-mail: balkarin@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2013-05-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A{sub u} and B{sub u} modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes.

  7. Concentration dependence of surface properties and molar volume of multicomponent system indium-tin-lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    The results of an experimental research of surface properties of the four-component system indium-tin-lead-bismuth are presented. The researches under discussion were carried out in a combined device in which the surface tension ({sigma}) is measured by the method of maximum pressure in a drop, and density ({rho}) is measured by advanced aerometry. Measurement errors are 0.7 % for surface tension measurement, and 0.2 % for density measurement. The study of the concentration dependence of {sigma} in this system has revealed the influence of the third and fourth components upon the characteristics of surface tension isotherms of the binary system indium-tin. It was found out that with an increase in the content of the third and fourth components the depth of the minimum on the surface tension isotherms of the indium-tin system {sigma} decreases. On the basis of the concentration dependence of the phenomenon of concentration bufferity is revealed. It is shown that despite the complex character, isotherms of {sigma} on beam sections of a multicomponent system do not contain qualitatively new features in comparison with the isotherms of these properties in lateral binary systems.

  8. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-12-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half-saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents) and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  9. Concentration dependence of the wings of a dipole-broadened magnetic resonance line in magnetically diluted lattices

    Energy Technology Data Exchange (ETDEWEB)

    Zobov, V. E., E-mail: rsa@iph.krasn.ru [Russian Academy of Sciences, Kirenskii Institute of Physics, Siberian Branch (Russian Federation); Kucherov, M. M. [Siberian Federal University, Institute of Space and Information Technologies (Russian Federation)

    2017-01-15

    The singularities of the time autocorrelation functions (ACFs) of magnetically diluted spin systems with dipole–dipole interaction (DDI), which determine the high-frequency asymptotics of autocorrelation functions and the wings of a magnetic resonance line, are studied. Using the self-consistent fluctuating local field approximation, nonlinear equations are derived for autocorrelation functions averaged over the independent random arrangement of spins (magnetic atoms) in a diamagnetic lattice with different spin concentrations. The equations take into account the specificity of the dipole–dipole interaction. First, due to its axial symmetry in a strong static magnetic field, the autocorrelation functions of longitudinal and transverse spin components are described by different equations. Second, the long-range type of the dipole–dipole interaction is taken into account by separating contributions into the local field from distant and near spins. The recurrent equations are obtained for the expansion coefficients of autocorrelation functions in power series in time. From them, the numerical value of the coordinate of the nearest singularity of the autocorrelation function is found on the imaginary time axis, which is equal to the radius of convergence of these expansions. It is shown that in the strong dilution case, the logarithmic concentration dependence of the coordinate of the singularity is observed, which is caused by the presence of a cluster of near spins whose fraction is small but contribution to the modulation frequency is large. As an example a silicon crystal with different {sup 29}Si concentrations in magnetic fields directed along three crystallographic axes is considered.

  10. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  11. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration.

    Science.gov (United States)

    Sakamoto, Kazuhiro; Matsumura, Shigenobu; Okafuji, Yoko; Eguchi, Ai; Lee, Shinhye; Adachi, Shin-ichi; Fujitani, Mina; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru

    2015-01-01

    High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.

  12. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Crommentuijn, T.; Doodeman, C.J.A.M.; Doornekamp, A.; Pol, J.J.C. van der; Bedaux, J.J.M.; Gestel, C.A.M. van (Vrije Univ., Amsterdam (Netherlands))

    1994-11-01

    Time-dependent toxicity in bioassays is usually explained in terms of uptake and elimination kinetics of the toxicant. By comparing different species with essentially different accumulation kinetics, a firm test of this concept may be made. This article compares the sensitivity of six soil arthropods, the collembolans Orchesella cincta and Tomocerus minor, the oribatid mite Platynothrus peltifer, the isopods Porcellio scaber and Oniscus asellus, and the diplopod Cylindroiulus britannicus, when exposed to cadmium in the food. Survival was determined at various time intervals; accumulation of cadmium in the animals was measured at one time interval. Kinetic-based toxicity models were fitted to the data, and estimates were obtained for lethal body concentration, uptake rate constant, elimination rate constant, and ultimate LC50. Two different accumulation patterns could be discerned; these were correlated with time-survival relationships. One, species that have the possibility to eliminate cadmium will reach an equilibrium for the internal concentration and also an ultimate LC50. Two, species that are unable to eliminate cadmium but store it in the body will have an ultimate LC50 equal to zero. For these species the time in which the lethal body concentration is reached is more important. Taxonomically related species appeared to have comparable accumulation patterns, but lethal body concentrations differed. It is concluded that knowledge of the accumulation pattern is indispensable for the evaluation of species' sensitivities to toxicants.

  13. Concentration-dependent gene expression responses to flusilazole in embryonic stem cell differentiation cultures

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Fonteyne, Liset J.J. de la; Brauers, Karen J.J.; Claessen, Sandra; Delft, Joost H. van; Kleinjans, Jos C.S.; Piersma, Aldert H.

    2011-01-01

    The murine embryonic stem cell test (EST) is designed to evaluate developmental toxicity based on compound-induced inhibition of embryonic stem cell (ESC) differentiation into cardiomyocytes. The addition of transcriptomic evaluation within the EST may result in enhanced predictability and improved characterization of the applicability domain, therefore improving usage of the EST for regulatory testing strategies. Transcriptomic analyses assessing factors critical for risk assessment (i.e. dose) are needed to determine the value of transcriptomic evaluation in the EST. Here, using the developmentally toxic compound, flusilazole, we investigated the effect of compound concentration on gene expression regulation and toxicity prediction in ESC differentiation cultures. Cultures were exposed for 24 h to multiple concentrations of flusilazole (0.54-54 μM) and RNA was isolated. In addition, we sampled control cultures 0, 24, and 48 h to evaluate the transcriptomic status of the cultures across differentiation. Transcriptomic profiling identified a higher sensitivity of development-related processes as compared to cell division-related processes in flusilazole-exposed differentiation cultures. Furthermore, the sterol synthesis-related mode of action of flusilazole toxicity was detected. Principal component analysis using gene sets related to normal ESC differentiation was used to describe the dynamics of ESC differentiation, defined as the 'differentiation track'. The concentration-dependent effects on development were reflected in the significance of deviation of flusilazole-exposed cultures from this transcriptomic-based differentiation track. Thus, the detection of developmental toxicity in EST using transcriptomics was shown to be compound concentration-dependent. This study provides further insight into the possible application of transcriptomics in the EST as an improved alternative model system for developmental toxicity testing.

  14. The dependence of magnetic ordering temperature in amorphous semiconductors on paramagnetic centre concentration

    International Nuclear Information System (INIS)

    Khokhlov, A.F.; Mashin, A.I.; Satanin, A.M.

    1981-01-01

    In silicon amorphized by ion implantation (a-Si) the dependence of magnetic ordering temperature (theta) on localized spin concentration (Nsub(s)) is studied by EPR method. Nsub(s) changes by varying the Ne + ion dose from 6x10 14 to 2x10 17 cm -2 and sample annealing. From the comparison of the data obtained with literature ones conclusions are made about the existence of two critical values of Nsub(s) in a-Si (approximately 10 19 and approximately 2x10 20 cm -3 ), when a transition occurs from paramagnetism to antiferromagnetism (at T < theta) and from antiferromagnetism to ferromagnetism, respectively. (author)

  15. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  16. Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.

    Science.gov (United States)

    Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-11-18

    We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.

  17. Solute concentration dependence of the decay curves of the liquid scintillation

    International Nuclear Information System (INIS)

    Onishi, Masayoshi; Niki, Eiji.

    1976-01-01

    The decay curves of the liquid scintillation of 2,5-diphenyloxazole (PPO) in toluene by the irradiation of β ray from 14 C were measured. Solute concentration dependences of the decay times of the fast and slow components were studied. The decay time tau sub(f) of the fast component of the air saturated scintillator was the smallest at 1.8x10 -2 --4.5x10 -2 mol/l, and about (3.4--3.5)ns. When the concentration became less than 1.8x10 -2 mol/l, the peak of the decay curve became roundish and the pulse width became large. The increase of the necessary time for the energy transfer due to the difficulty of the nonradiative transfer from excited solvent molecules to the solute was the reason. When the concentration became less than about 2.26x10 -3 mol/l, tau sub(f) became larger and the energy transfer became radiative. The pulse width and tau sub(f) were very small because of oxygen quenching compared with oxygen free. At higher concentrations such as 1.6x10 -1 and 2.3x10 -1 mol/l, the effect of the PPO excimer was observed on the fast component, and tau sub(f) became larger apparently. This denied the presumption of the close relation between PPO molecular interaction and the slow component together with the fact that the decay time tau sub(s) of the slow component was independent of PPO concentration. (auth.)

  18. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  19. Temperature response of soil respiration is dependent on concentration of readily decomposable C

    Directory of Open Access Journals (Sweden)

    A. A. Larionova

    2007-12-01

    Full Text Available Temperature acclimation of soil organic matter (SOM decomposition is one of the major uncertainties in predicting soil CO2 efflux associated with the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006 based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax and half-saturation constant (Ks cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of data obtained in incubation experiments with forest and arable soils. Our data support the hypothesis and suggest that concentration of readily decomposable C substrate (as glucose equivalents and temperature dependent substrate release are the important factors controlling temperature sensitivity of soil respiration. The highest temperature sensitivity of soil respiration was observed when substrate release was temperature dependent and C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant by glucose addition resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, attributing this phenomenon to changes in concentration of readily decomposable C substrate.

  20. a Study of the Concentration Dependence of Macromolecular Diffusion Using Photon Correlation Spectroscopy.

    Science.gov (United States)

    Marlowe, Robert Lloyd

    The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.

  1. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  2. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  3. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  4. Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating

    Science.gov (United States)

    Wang, Yinghui; Wang, Yanting; Dev Verma, Sachin; Tan, Mingrui; Liu, Qinghui; Yuan, Qilin; Sui, Ning; Kang, Zhihui; Zhou, Qiang; Zhang, Han-Zhuang

    2017-05-01

    The concentration dependence of the carrier dynamics is a key parameter to describe the photo-physical properties of semiconductor films. Here, we investigate the carrier dynamics in the CsPbBr3 perovskite nanocrystal film by employing the transient grating (TG) technique with continuous bias light. The concentration of initial carriers is determined by the average number of photons per nanocrystals induced by pump light (⟨N⟩). The multi-body interaction would appear and accelerate the TG dynamics with ⟨N⟩. When ⟨N⟩ is more than 3.0, the TG dynamics slightly changes, which implies that the Auger recombination would be the highest order multi-body interaction in carrier recombination dynamics. The concentration of non-equilibrium carriers in the film is controlled by the average number of photons per nanocrystals excited by continuous bias light (⟨nne⟩). Increasing ⟨nne⟩ would improve the trapping-detrapping process by filling the trapping state, which would accelerate the carrier diffusion and add the complexity of the mono-molecular recombination mechanism. The results should be useful to further understand the mechanism of carrier dynamics in the CsPbBr3 perovskite nanocrystal film and of great importance for the operation of the corresponding optoelectronic devices.

  5. A NOVEL INTERPRETATION OF CONCENTRATION DEPENDENCE OF VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Yan Pan; Rong-shi Cheng

    2000-01-01

    The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.

  6. Modelling reaustenitisation in Fe-C steels with concentration-dependent diffusivity of carbon

    Directory of Open Access Journals (Sweden)

    Mancini, R.

    2002-12-01

    Full Text Available A finite difference method used to model reaustenitisation from a ferrite/cementite mixture in Fe-C steels is presented in this paper. Concentration-dependent carbon diffusivity in austenite is taken into account in order to generalize our earlier numerical model. We select some parameters, such as cementite dissolution time, and compare their values as calculated by different approximations available in the literature (in particular at steady state for planar and spherical geometries. When the dependence of diffusivity on concentration or temperature is increased, the steady state approximation fails to predict correctly the above mentioned parameters and the use of numerical techniques becomes indispensable.

    En este trabajo se presenta un método numérico de diferencias finitas para modelar la reaustenización en aceros Fe-C a partir de una distribución inicial de ferrita y cementita. Se tiene en cuenta la dependencia de la difusividad en la austenita con la concentración de carbono, a fin de generalizar el propio modelo numérico previo. Se han seleccionado algunos parámetros, como el tiempo de disolución de la cementita, para comparar los valores obtenidos en este caso con los calculados con diferentes aproximaciones (en particular con la de estado estacionario para los casos de geometrías plana y esférica. Los resultados obtenidos muestran que, cuando la difusividad depende fuertemente de la concentración, la aproximación de estado estacionario no predice correctamente los parámetros calculados y se hace imprescindible la aplicación de métodos numéricos.

  7. On the model dependence of the determination of the strong coupling constant in second order QCD from e+e--annihilation into hadrons

    International Nuclear Information System (INIS)

    Achterberg, O.; D'Agostini, G.; Apel, W.D.; Engler, J.; Fluegge, G.; Forstbauer, B.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Henkes, T.; Hopp, G.; Krueger, M.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Bonneaud, G.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Ros, E.; Veillet, J.J.; Behrend, H.J.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.

    1983-12-01

    Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations. (orig.)

  8. Dependences of deposition rate and OH content on concentration of added trichloroethylene in low-temperature silicon oxide films deposited using silicone oil and ozone gas

    Science.gov (United States)

    Horita, Susumu; Jain, Puneet

    2018-03-01

    We investigated the dependences of the deposition rate and residual OH content of SiO2 films on the concentration of trichloroethylene (TCE), which was added during deposition at low temperatures of 160-260 °C with the reactant gases of silicone oil (SO) and O3. The deposition rate depends on the TCE concentration and is minimum at a concentration of ˜0.4 mol/m3 at 200 °C. The result can be explained by surface and gas-phase reactions. Experimentally, we also revealed that the thickness profile is strongly affected by gas-phase reaction, in which the TCE vapor was blown directly onto the substrate surface, where it mixed with SO and O3. Furthermore, it was found that adding TCE vapor reduces residual OH content in the SiO2 film deposited at 200 °C because TCE enhances the dehydration reaction.

  9. Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic broken-symmetry random-phase approximation

    International Nuclear Information System (INIS)

    Strinati, G.C.; Pieri, P.

    2004-01-01

    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations

  10. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek; Lyubinetsky, Igor

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Both STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.

  11. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    Science.gov (United States)

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  12. Energy dependence of jet-structures and determination of the strong coupling constant αsub(s) in e+e- annihilation with the CELLO detector

    International Nuclear Information System (INIS)

    Hopp, G.

    1985-07-01

    We considered multihadronic events and we studied the energy dependence of the jet-structure of those events. We confirmed the existence of 3-jet and 4-jet events in high energy data as predicted by QCD. In parallel we checked the energy dependence of different jet-measures which is predicted by the fragmentation models. We determined the strong coupling constant αsub(s) using different methods and we found a strong model dependence of the αsub(s) determination in second order QCD. The study of the particle density between the jet-axes resulted in a light preference for the LUND-String model as compared to models with independent jet-fragmentation. (orig.) [de

  13. Dependence of ion - photon emission characteristics on the concentration of implanted atoms of the bombarding beam

    International Nuclear Information System (INIS)

    Belykh, S.F.; Evtukhov, R.N.; Redina, I.V.; Ferleger, V.Kh.

    1989-01-01

    Results of experiment, where Dy + beams, its spraying products emitting intensively optical radiation with continuous spectrum (CSR), are used for tantalum surface bombardment, are presented. The given experiment allowed one to separate the scattered particle CSR contribution and was conducted under controlled beam n atom concentration on the target surface. E 0 energy and j 0 dysprosium ion flux density made up respectively 3.5 keV and 3x10 5 Axcm -2 . The obtained result analysis has shown that a notable dependence of spectrum type on n value is detected. Dy scattered atoms to not emit CSR. The main contribution to CSR is made by sprayed particles, containing dysprosium atoms

  14. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections

    International Nuclear Information System (INIS)

    Rothenstein, W.

    2004-01-01

    The current study is a sequel to a paper by Rothenstein and Dagan [Ann. Nucl. Energy 25 (1998) 209] where the ideal gas based kernel for scatterers with internal structure was introduced. This double differential kernel includes the neutron energy after scattering as well as the cosine of the scattering angle for isotopes with strong scattering resonances. A new mathematical formalism enables the inclusion of the new kernel in NJOY [MacFarlane, R.E., Muir, D.W., 1994. The NJOY Nuclear Data Processing System Version 91 (LA-12740-m)]. Moreover the computational time of the new kernel is reduced significantly, feasible for practical application. The completeness of the new kernel is proven mathematically and demonstrated numerically. Modifications necessary to remove the existing inconsistency of the secondary energy distribution in NJOY are presented

  16. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes.

    Science.gov (United States)

    Barnett, Gregory V; Razinkov, Vladimir I; Kerwin, Bruce A; Blake, Steven; Qi, Wei; Curtis, Robin A; Roberts, Christopher J

    2016-04-07

    Preferential interactions of proteins with water and osmolytes play a major role in controlling the thermodynamics of protein solutions. While changes in protein stability and shifts in phase behavior are often reported with the addition of osmolytes, the underlying protein interactions with water and/or osmolytes are typically inferred rather than measured directly. In this work, Kirkwood-Buff integrals for protein-water interactions (G12) and protein-osmolyte interactions (G23) were determined as a function of osmolyte concentration from density measurements of antistreptavidin immunoglobulin gamma-1 (AS-IgG1) in ternary aqueous solutions for a set of common neutral osmolytes: sucrose, trehalose, sorbitol, and poly(ethylene glycol) (PEG). For sucrose and PEG solutions, both protein-water and protein-osmolyte interactions depend strongly on osmolyte concentrations (c3). Strikingly, both osmolytes change from being preferentially excluded to preferentially accumulated with increasing c3. In contrast, sorbitol and trehalose solutions do not show large enough preferential interactions to be detected by densimetry. G12 and G23 values are used to estimate the transfer free energy for native AS-IgG1 (Δμ2N) and compared with existing models. AS-IgG1 unfolding via calorimetry shows a linear increase in midpoint temperatures as a function of trehalose, sucrose, and sorbitol concentrations, but the opposite behavior for PEG. Together, the results highlight limitations of existing models and common assumptions regarding the mechanisms of protein stabilization by osmolytes. Finally, PEG preferential interactions destabilize the Fab regions of AS-IgG1 more so than the CH2 or CH3 domains, illustrating preferential interactions can be specific to different protein domains.

  17. Time-dependent irisin concentration changes in patients affected by overt hypothyroidism.

    Science.gov (United States)

    Zybek-Kocik, Ariadna; Sawicka-Gutaj, Nadia; Wrotkowska, Elżbieta; Sowiński, Jerzy; Ruchała, Marek

    2016-01-01

    Irisin, a cleaved and secreted part of the transmembrane protein FNDC5, is a recently discovered adipo-myokine that is said to have a significant influence on body metabolism. Changes in thyrometabolic state may also alter the serum irisin level. Since already reported data are not fully consistent, the aim of the present research is to evaluate the time-dependent changes in serum irisin level in patients affected by overt hypothyroidism. The study involved 36 subjects - two groups of 12 patients with long-lasting (AITD) and short-term (TC) overt hypothyroidism, and a control group (CG) of 12 subjects, matched for age and gender. Serum irisin level, thyrometabolic state, creatine kinase (CK - muscle damage marker), glucose, and insulin concentration were assessed and compared between groups. The irisin level was significantly lower in AITD than in TC and CG (p = 0.02; p 0.05). There was no significant difference between free triiodothyronine and free thyroxine levels in AITD and TC patients (p > 0.05). CK concentration was significantly higher in AITD than in CG patients (p 0.05) as well as TC and CG patients (p > 0.05). Additionally, the CK level negatively correlated with the irisin level (r = -0.58; p hypothyroidism have lower irisin levels that those with short-term disorder. (Endokrynol Pol 2016; 67 (5): 476-480).

  18. Inverse size scaling of the nucleolus by a concentration-dependent phase transition.

    Science.gov (United States)

    Weber, Stephanie C; Brangwynne, Clifford P

    2015-03-02

    Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Glymphatic clearance controls state-dependent changes in brain lactate concentration.

    Science.gov (United States)

    Lundgaard, Iben; Lu, Minh Lon; Yang, Ezra; Peng, Weiguo; Mestre, Humberto; Hitomi, Emi; Deane, Rashid; Nedergaard, Maiken

    2017-06-01

    Brain lactate concentration is higher during wakefulness than in sleep. However, it is unknown why arousal is linked to an increase in brain lactate and why lactate declines within minutes of sleep. Here, we show that the glymphatic system is responsible for state-dependent changes in brain lactate concentration. Suppression of glymphatic function via acetazolamide treatment, cisterna magna puncture, aquaporin 4 deletion, or changes in body position reduced the decline in brain lactate normally observed when awake mice transition into sleep or anesthesia. Concurrently, the same manipulations diminished accumulation of lactate in cervical, but not in inguinal lymph nodes when mice were anesthetized. Thus, our study suggests that brain lactate is an excellent biomarker of the sleep-wake cycle and increases further during sleep deprivation, because brain lactate is inversely correlated with glymphatic-lymphatic clearance. This analysis provides fundamental new insight into brain energy metabolism by demonstrating that glucose that is not fully oxidized can be exported as lactate via glymphatic-lymphatic fluid transport.

  20. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  1. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  2. Pharmacodynamic Model To Describe the Concentration-Dependent Selection of Cefotaxime-Resistant Escherichia coli

    Science.gov (United States)

    Olofsson, Sara K.; Geli, Patricia; Andersson, Dan I.; Cars, Otto

    2005-01-01

    Antibiotic dosing regimens may vary in their capacity to select mutants. Our hypothesis was that selection of a more resistant bacterial subpopulation would increase with the time within a selective window (SW), i.e., when drug concentrations fall between the MICs of two strains. An in vitro kinetic model was used to study the selection of two Escherichia coli strains with different susceptibilities to cefotaxime. The bacterial mixtures were exposed to cefotaxime for 24 h and SWs of 1, 2, 4, 8, and 12 h. A mathematical model was developed that described the selection of preexisting and newborn mutants and the post-MIC effect (PME) as functions of pharmacokinetic parameters. Our main conclusions were as follows: (i) the selection between preexisting mutants increased with the time within the SW; (ii) the emergence and selection of newborn mutants increased with the time within the SW (with a short time, only 4% of the preexisting mutants were replaced by newborn mutants, compared to the longest times, where 100% were replaced); and (iii) PME increased with the area under the concentration-time curve (AUC) and was slightly more pronounced with a long elimination half-life (T1/2) than with a short T1/2 situation, when AUC is fixed. We showed that, in a dynamic competition between strains with different levels of resistance, the appearance of newborn high-level resistant mutants from the parental strains and the PME can strongly affect the outcome of the selection and that pharmacodynamic models can be used to predict the outcome of resistance development. PMID:16304176

  3. A-FABP Concentration Is More Strongly Associated with Cardiometabolic Risk Factors and the Occurrence of Metabolic Syndrome in Premenopausal Than in Postmenopausal Middle-Aged Women

    Directory of Open Access Journals (Sweden)

    Anna Stefanska

    2014-01-01

    Full Text Available We aimed at the evaluation of the relationship between adipocyte fatty acid binding protein (A-FABP and cardiometabolic risk factors in premenopausal and postmenopausal women. Additionally, we compared A-FABP with adipokines related to metabolic syndrome (MetS such as leptin and adiponectin. 94 premenopausal and 90 early postmenopausal middle-aged Caucasian women were subject to examinations. Postmenopausal women had higher A-FABP than premenopausal; this difference became insignificant after controlling for age. We found significantly higher correlation coefficients between A-FABP and TC/HDL-C ratio and number of MetS components in premenopausal women, compared to postmenopausal. Each 1 ng/dL increase in A-FABP concentration significantly increased the probability of occurrence of atherogenic lipid profile in premenopausal women, even after multivariate adjustment. All odds ratios became insignificant after controlling for BMI in postmenopausal women. A-FABP was more strongly associated with MetS than leptin and adiponectin in premenopausal women. Adiponectin concentration was a better biomarker for MetS after menopause. Our results suggest that the A-FABP is more strongly associated with some cardiometabolic risk factors in premenopausal than in postmenopausal women. Higher values of A-FABP after menopause are mainly explained by the fact that postmenopausal women are older. Because of the limitation of study, these results should be interpreted with caution.

  4. The extent to which ATP demand controls the glycolytic flux depends strongly on the organism and conditions for growth

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Westerhoff, H.V.; Snoep, J.L.

    2002-01-01

    Using molecular genetics we have introduced uncoupled ATPase activity in two different bacterial species, Escherichia coli and Lactococcus lactis, and determined the elasticities of the growth rate and glycolytic flux towards the intracellular [ATP]/[ADP] ratio. During balanced growth in batch...... cultures of E. coli the ATP demand was found to have almost full control on the glycolytic flux (FCC=0.96) and the flux could be stimulated by 70%. In contrast to this, in L. lactis the control by ATP demand on the glycolytic flux was close to zero. However, when we used non-growing cells of L. lactis...... (which have a low glycolytic flux) the ATP demand had a high flux control and the flux could be stimulated more than two fold. We suggest that the extent to which ATP demand controls the glycolytic flux depends on how much excess capacity of glycolysis is present in the cells....

  5. THE DEPENDENCE OF GLYCEROL ACCUMULATION AND STARCH HYDROLYZATES FERMENTATION FROM WORT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Оliynichuk S. Т.

    2015-08-01

    Full Text Available The purpose of this work is to study the dependence of ethanol accumulation by-products and secondary products (glycerol and propionic acid during the fermentation in the case of increasing the wort concentration from 12 to 21% by weight of sugar as an example of commonly used in the alcohol industry the commercial dry yeast company “Danisco” and experimental osmophilic strain Saccharomyces cerevisiae DS-02-E, isolated from a concentrated (80% DM of rye malt wort which spontaneously fermented. The enzyme preparations “AMYLEX 4T”, “ALPHALASE AFP” and “DIAZYME SSF” were used for the liquefaction and saccharification of starch wort. The finished industrial of both yeast strains were added to the fermentation flasks in an amount of 10% by volume of the primary wort. In the mature brew the unfermented carbohydrates content was determined by colorimetric method with anthrone reagent, alcohol — by glass areometer-alcoholometer, acidity — potentiometrically, the concentration of dry matter — by areometer, glycerol content — by photocolorimetry method. In the brew distillate a volatile impurities content, namely propionic acid, was determined using gas chromatography. Statistical processing of the results of three series of experiments were carried out by calculating the arithmetical mean value of 5 measurements, their standard deviations and errors. To determine the probable differences between the mean values were used Student’s t test. Differences were considered statistically significant at P < 0.05. Reduction for accumulation of glycerol (between 38 till 53% at higher concentrations of nutrient medium in the case of the yeast Saccharomyces cerevisiae DS-02-E as compared with commercial dry yeast, reduction the formation of unwanted by-product of fermentation — propionic acid (up to 34%, a better ability of the experimental strain to accumulate sugar of wort and to accumulate ethanol (up to 0.1–0.25% vol. were shown. It

  6. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.

    Science.gov (United States)

    Kaifas, Delphine; Malleret, Laure; Kumar, Naresh; Fétimi, Wafa; Claeys-Bruno, Magalie; Sergent, Michelle; Doumenq, Pierre

    2014-05-15

    Nanoscale zero-valent iron (nZVI) particles are efficient for the remediation of aquifers polluted by trichloroethylene (TCE). But for on-site applications, their reactivity can be affected by the presence of common inorganic co-pollutants, which are equally reduced by nZVI particles. The aim of this study was to assess the potential positive effects of nZVI surface modification and concentration level on TCE removal in the concomitant presence of two strong oxidants, i.e., Cr(VI) and NO3(-). A design of experiments, testing four factors (i.e. nZVI concentration, nZVI surface modification, Cr(VI) concentration and NO3(-) concentration), was used to select the best trials for the identification of the main effects of the factors and of the factors interactions. The effects of these factors were studied by measuring the following responses: TCE removal rates at different times, degradation kinetic rates, and the transformation products formed. As expected, TCE degradation was delayed or inhibited in most of the experiments, due to the presence of inorganics. The negative effects of co-pollutants can be palliated by combining surface modification with a slight increase in nZVI concentration. Encouragingly, complete TCE removal was achieved for some given experimental conditions. Noteworthily, nZVI surface modification was found to promote the efficient degradation of TCE. When degradation occurred, TCE was mainly transformed into innocuous non-chlorinated transformation products, while hazardous chlorinated transformation products accounted for a small percentage of the mass-balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    International Nuclear Information System (INIS)

    Mathew, D; Tanny, S; Parsai, E; Sperling, N

    2015-01-01

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm 2 to 0.6×0.6 cm 2 , normalized to values at 5×5cm 2 . Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm 2 fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference

  8. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, D; Tanny, S; Parsai, E; Sperling, N [University of Toledo Medical Center, Toledo, OH (United States)

    2015-06-15

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class

  9. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.; Griffiths, Ian M.; Vella, Dominic; Field, Robert W.

    2014-01-01

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls

  10. Integration of Distinct Objects in Visual Working Memory Depends on Strong Objecthood Cues Even for Different-Dimension Conjunctions.

    Science.gov (United States)

    Balaban, Halely; Luria, Roy

    2016-05-01

    What makes an integrated object in visual working memory (WM)? Past evidence suggested that WM holds all features of multidimensional objects together, but struggles to integrate color-color conjunctions. This difficulty was previously attributed to a challenge in same-dimension integration, but here we argue that it arises from the integration of 2 distinct objects. To test this, we examined the integration of distinct different-dimension features (a colored square and a tilted bar). We monitored the contralateral delay activity, an event-related potential component sensitive to the number of objects in WM. The results indicated that color and orientation belonging to distinct objects in a shared location were not integrated in WM (Experiment 1), even following a common fate Gestalt cue (Experiment 2). These conjunctions were better integrated in a less demanding task (Experiment 3), and in the original WM task, but with a less individuating version of the original stimuli (Experiment 4). Our results identify the critical factor in WM integration at same- versus separate-objects, rather than at same- versus different-dimensions. Compared with the perfect integration of an object's features, the integration of several objects is demanding, and depends on an interaction between the grouping cues and task demands, among other factors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The Complete Solution of Fick's Second Law of Diffusion with Time-dependent Diffusion Coefficient and Surface Concentration

    DEFF Research Database (Denmark)

    Mejlbro, Leif

    1996-01-01

    Fick's Second Law of Diffusion with time-dependent diffusioncoefficient and surface concentration is solved. Mimicking the classicalsolution, special time-dependent surface concentration functions areconsidered. These models are used in giving estimates of the lifetimeof the structure, when...... the concrete cover is given, as well as estimatesof the thickness of the concrete cover, when the expected lifetime is given.*Note: Book tilte: Durability of Concrete in Saline Environment...

  12. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2008-07-01

    Full Text Available Abstract Background During HIV-1 infection, the Tat protein plays a key role by transactivating the transcription of the HIV-1 proviral DNA. In addition, Tat induces apoptosis of non-infected T lymphocytes, leading to a massive loss of immune competence. This apoptosis is notably mediated by the interaction of Tat with microtubules, which are dynamic components essential for cell structure and division. Tat binds two Zn2+ ions through its conserved cysteine-rich region in vitro, but the role of zinc in the structure and properties of Tat is still controversial. Results To investigate the role of zinc, we first characterized Tat apo- and holo-forms by fluorescence correlation spectroscopy and time-resolved fluorescence spectroscopy. Both of the Tat forms are monomeric and poorly folded but differ by local conformational changes in the vicinity of the cysteine-rich region. The interaction of the two Tat forms with tubulin dimers and microtubules was monitored by analytical ultracentrifugation, turbidity measurements and electron microscopy. At 20°C, both of the Tat forms bind tubulin dimers, but only the holo-Tat was found to form discrete complexes. At 37°C, both forms promoted the nucleation and increased the elongation rates of tubulin assembly. However, only the holo-Tat increased the amount of microtubules, decreased the tubulin critical concentration, and stabilized the microtubules. In contrast, apo-Tat induced a large amount of tubulin aggregates. Conclusion Our data suggest that holo-Tat corresponds to the active form, responsible for the Tat-mediated apoptosis.

  13. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating

    Energy Technology Data Exchange (ETDEWEB)

    Pajęcka, Kamilla, E-mail: kpaj@novonordisk.com [Global Research, Novo Nordisk A/S, Måløv (Denmark); Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus (Denmark); Nielsen, Malik Nygaard [Global Research, Novo Nordisk A/S, Måløv (Denmark); Hansen, Troels Krarup [Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus (Denmark); Williams, Julie M. [Global Research, Novo Nordisk A/S, Måløv (Denmark)

    2017-04-01

    Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.

  14. The formation of quiescent glomerular endothelial cell monolayer in vitro is strongly dependent on the choice of extracellular matrix coating

    International Nuclear Information System (INIS)

    Pajęcka, Kamilla; Nielsen, Malik Nygaard; Hansen, Troels Krarup; Williams, Julie M.

    2017-01-01

    Background and aims: Nephropathy involves pathophysiological changes to the glomerulus. The primary glomerular endothelial cells (GEnCs) have emerged as an important tool for studying glomerulosclerotic mechanisms and in the screening process for drug-candidates. The success of the studies is dependent on the quality of the cell model. Therefore, we set out to establish an easy, reproducible model of the quiescent endothelial monolayer with the use of commercially available extracellular matrices (ECMs). Methods: Primary hGEnCs were seeded on various ECMs. Cell adhesion was monitored by an impedance sensing system. The localization of junctional proteins was assessed by immunofluorescence and the barrier function by passage of fluorescent dextrans and magnitude of VEGF response. Results: All ECM matrices except recombinant human laminin 111 (rhLN111) supported comparable cell proliferation. Culturing hGEnCs on rhLN521, rhLN511 or fibronectin resulted in a physiologically relevant barrier to 70 kDa dextrans which was 82% tighter than that formed on collagen type IV. Furthermore, only hGEnCs cultured on rhLN521 or rhLN511 showed plasma-membrane localized zonula occludens-1 and vascular endothelial cadherin indicative of proper tight and adherens junctions (AJ). Conclusion: We recommend culturing hGEnCs on the mature glomerular basement membrane laminin - rhLN521 – which, as the only commercially available ECM, promotes all of the characteristics of the quiescent hGEnC monolayer: cobblestone morphology, well-defined AJs and physiological perm-selectivity. - Highlights: • rhLN521, rhLN511 and hFN assure physiologically relevant permeability. • rhLN521 and rhLN511 ensure best cell morphology and adherens junction formation. • Collagen IV and I based coating results in disorganized hGEnC monolayer. • Physiologically relevant ECM may lead to down-regulation of self-produced matrices.

  15. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    International Nuclear Information System (INIS)

    Noormets, Asko; Kull, Olevi; Sober, Anu; Kubiske, Mark E.; Karnosky, David F.

    2010-01-01

    The effect of elevated CO 2 and O 3 on apparent quantum yield (φ), maximum photosynthesis (P max ), carboxylation efficiency (V cmax ) and electron transport capacity (J max ) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O 3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO 2 alone did not affect φ or P max , and increased J max in the O 3 -sensitive, but not in the O 3 -tolerant clone. Elevated O 3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O 3 increased through time. Significant interaction effect, whereby the negative impact of elevated O 3 was exaggerated by elevated CO 2 was seen in Chl, N and J max , and occurred in both O 3 -tolerant and O 3 -sensitive clones. The clonal differences in the level of CO 2 x O 3 interaction suggest a relationship between photosynthetic acclimation and background O 3 concentration. - Photosynthetic acclimation to elevated CO 2 depends on the background oxidant levels.

  16. Activation of endoplasmic reticulum calcium leak by 2-APB depends on the luminal calcium concentration.

    Science.gov (United States)

    Leon-Aparicio, Daniel; Chavez-Reyes, Jesus; Guerrero-Hernandez, Agustin

    2017-07-01

    It has been shown that 2-APB is a nonspecific modulator of ion channel activity, while most of the channels are inhibited by this compound, there are few examples of channels that are activated by 2-APB. Additionally, it has been shown that, 2-APB leads to a reduction in the luminal endoplasmic reticulum Ca 2+ level ([Ca 2+ ] ER ) and we have carried out simultaneous recordings of both [Ca 2+ ] i and the [Ca 2+ ] ER in HeLa cell suspensions to assess the mechanism involved in this effect. This approach allowed us to determine that 2-APB induces a reduction in the [Ca 2+ ] ER by activating an ER-resident Ca 2+ permeable channel more than by inhibiting the activity of SERCA pumps. Interestingly, this effect of 2-APB of reducing the [Ca 2+ ] ER is auto-limited because depends on a replete ER Ca 2+ store; a condition that thapsigargin does not require to decrease the [Ca 2+ ] ER . Additionally, our data indicate that the ER Ca 2+ permeable channel activated by 2-APB does not seem to participate in the ER Ca 2+ leak revealed by inhibiting SERCA pump with thapsigargin. This work suggests that, prolonged incubations with even low concentrations of 2-APB (5μM) would lead to the reduction in the [Ca 2+ ] ER that might explain the inhibitory effect of this compound on those signals that require Ca 2+ release from the ER store. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  18. Calculation of the structural properties of a strange quark star in the presence of a strong magnetic field using a density dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Hajar Bahri; Fatemeh Kayanikhoo

    2012-01-01

    We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field.To this end,we use the MITbag model with a density dependent bag constant.To parameterize the density dependence of the bag constant,we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter.By calculating the equation of state of strange quark matter,we have shown that the pressure of this system increases by increasing both density and magnetic field.Finally,we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.

  19. Influence of local emissions on concentration and isotopic composition of trace gases (CO2 and CH4) under strong anthropopression: A case study from Krakow, southern Poland

    International Nuclear Information System (INIS)

    Florkowski, T.; Korus, A.; Kuc, T.; Lasa, J.; Necki, J.M.; Zimnoch, M.

    2002-01-01

    Full text: Measurements of the isotopic composition of carbon dioxide and methane together with their concentrations in the atmosphere, yield useful information on the contribution of anthropogenic sources to regional budgets of these gases and their seasonal changes. Observed correlation between isotopic composition and inverse concentration of these gases is used for estimation of mean isotopic composition of the local source. Monitoring of atmospheric CO 2 has been initiated in Krakow in 1982. The sampling point is located in a polluted urban area with strong contribution of anthropogenic gases originating both from local sources (coal burning, car traffic, leakages from city gas network, landfills) and large distant emitters - industrial district located ca. 80 km to the west from Krakow (Silesia district). Quasi-continuous measurements of CO 2 , and CH 4 concentrations in the low atmosphere are performed using gas chromatographic method. For isotope measurements, the atmospheric CO 2 is continuously sampled by sorption on molecular sieve in be-weekly intervals and radiocarbon concentration is measured by liquid scintillation spectrometer, while δ 13 C is determined by isotope ratio mass spectrometer. Measurement error (1σ for single measurement) is in the order of 0.1 ppm for CO 2 concentration, ±8 per mille for δ 14 C, and ± 0.1 per mille for δ 13 C. In 1994, a new station for regular observations of greenhouse gases in lower atmosphere was set up in the High Tatra mountains, at Kasprowy Wierch (49 deg. N, 20 deg. E, 1980 m a.s.l., 300 m above the tree line). Kasprowy Wierch, with only small influences from local sources of trace gases can be considered as a reference station for this region of Poland. The record of CO 2 and CH 4 concentration and their isotope composition obtained at Kasprowy Wierch is considered as a background level for Krakow observations. The presented study was aimed at better characterisation and quantification of the local

  20. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    International Nuclear Information System (INIS)

    Kaushik, R.; Rosenfeld, Clint A.; Sultatos, L.G.

    2007-01-01

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k i 's that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K d (binding affinity) and k 2 (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve

  1. Carrier concentration dependence of structural disorder in thermoelectric Sn1−xTe

    Directory of Open Access Journals (Sweden)

    Mattia Sist

    2016-09-01

    Full Text Available SnTe is a promising thermoelectric and topological insulator material. Here, the presumably simple rock salt crystal structure of SnTe is studied comprehensively by means of high-resolution synchrotron single-crystal and powder X-ray diffraction from 20 to 800 K. Two samples with different carrier concentrations (sample A = high, sample B = low have remarkably different atomic displacement parameters, especially at low temperatures. Both samples contain significant numbers of cation vacancies (1–2% and ordering of Sn vacancies possibly occurs on warming, as corroborated by the appearance of multiple phases and strain above 400 K. The possible presence of disorder and anharmonicity is investigated in view of the low thermal conductivity of SnTe. Refinement of anharmonic Gram–Charlier parameters reveals marginal anharmonicity for sample A, whereas sample B exhibits anharmonic effects even at low temperature. For both samples, no indications are found of a low-temperature rhombohedral phase. Maximum entropy method (MEM calculations are carried out, including nuclear-weighted X-ray MEM calculations (NXMEM. The atomic electron densities are spherical for sample A, whereas for sample B the Te electron density is elongated along the 〈100〉 direction, with the maximum being displaced from the lattice position at higher temperatures. Overall, the crystal structure of SnTe is found to be defective and sample-dependent, and therefore theoretical calculations of perfect rock salt structures are not expected to predict the properties of real materials.

  2. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  3. Otolith Sr concentration analyzed by PIXE in Ariake estuary-dependent sea bass juveniles

    International Nuclear Information System (INIS)

    Ohta, Taro; Arai, Nobuaki; Tanaka, Masaru; Yoshida, Koji

    1997-01-01

    Japanese sea bass (Lateolabrax japonicus) is a typical euryhaline marine fish and frequently migrates from salt to freshwater environments during early life stages. We hypothesized that strontium concentrations in the otolith could be a useful index to examine freshwater entry because of its lower concentration in freshwater. Otoliths of Japanese sea bass juveniles collected in the Chikugo river and estuary were analyzed by Particle Induced X-ray Emission (PIXE) to see relationship between strontium concentration and ambient salinity. Strontium concentrations in otoliths of sea bass juveniles are significantly lower in the river samples than in brackish water samples. (author)

  4. Age-dependent changes in the total protein concentrations in the ...

    African Journals Online (AJOL)

    related changes in total protein concentrations in ten regions of the pig brain and hypophyses from birth to 36 months of age. Age-related changes in protein concentrations in all the brain regions except the pons and cerebral cortex were not ...

  5. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, L.M. (Department of Molecular Genetics, Institute of Genetics, Sofia (Bulgaria)); Mullenders, L.H.F.; Natarajan, A.T. (J.A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection, Leiden (Netherlands))

    1994-12-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations.

  6. Caffeine potentiates or protects against radiation-induced DNA and chromosomal damage in human lymphocytes depending on temperature and concentration

    International Nuclear Information System (INIS)

    Stoilov, L.M.; Mullenders, L.H.F.; Natarajan, A.T.

    1994-01-01

    The effect of caffeine on radiation-induced chromosomal aberrations and DNA strand breaks in unstimulated human lymphocytes was investigated. When present prior to and during the radiation exposure, caffeine treatment was found to cause either potentiation or protection against induction of chromosomal aberrations depending on the concentration and temperature. When the nucleoid sedimentation technique was applied, enhancement or reduction of radiation-induced DNA strand breaks by caffeine was also found to be dependent on temperature and caffeine concentration. It is proposed that caffeine, in addition to its suspected ability to influence DNA repair, can also influence the induction of DNA damage, leading to alterations in the yield of chromosomal aberrations

  7. Dependence of Shear and Concentration on Fouling in a Membrane Bioreactor with Rotating Membrane Discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Pedersen, Malene Thostrup; Christensen, Morten Lykkegaard

    2014-01-01

    Rotating ceramic membrane discs were fouled with lab-scale membrane bioreactors (MBR) sludge. Sludge filtrations were performed at varying rotation speeds and in different concentric rings of the membranes on different sludge concentrations. Data showed that the back transport expressed by limiting...... flux increased with rotation speed and distance from membrane center as an effect of shear. Further, the limiting flux decreased with increasing sludge concentration. A model was developed to link the sludge concentration and shear stress to the limiting flux. The model was able to simulate the effect...... of shear stress and sludge concentration on the limiting flux. The model was developed by calculating the shear rate at laminar flow regime at different rotation speeds and radii on the membrane. Furthermore, through the shear rate and shear stress, the non-Newtonian behavior of MBR sludge was addressed...

  8. Dependence of radiocaesium biological half-life in freshwater fish on water potassium concentration and temperature

    International Nuclear Information System (INIS)

    Carreiro, M.C.V.; Corisco, J.A.G.

    1998-01-01

    Short-term experiments (35-49 days) showed that the rate of cesium elimination from fish increases with increasing potassium concentration in water (the biological half-life decreases); this, however, is only true of the potassium concentration range of 0.35 to 3.5 ppm, whereas higher potassium concentrations do not seem to affect the elimination rate. Decrease in water temperature within the 20 degC to 5 degC range slows down the cesium elimination process. (P.A.)

  9. Borderline maintenance of erythrocyte 2,3-diphosphoglycerate concentrations in normoxic type 1 (insulin dependent) diabetic subjects.

    Science.gov (United States)

    Story, C J; Roberts, A P; Ryall, R G

    1986-02-01

    Erythrocyte 2,3-diphosphoglycerate and haemoglobin A1c concentrations were measured in 26 clinically normoxic patients with type 1 (insulin dependent) diabetes mellitus. The concentration of 2,3-diphosphoglycerate theoretically required to maintain normal erythrocyte oxygen delivery function in each subject was calculated and compared with the measured concentrations. In the majority of diabetic patients 2,3-diphosphoglycerate concentrations were sufficient to keep the erythrocyte oxygen dissociation curve within the normal range under otherwise normal blood conditions. There was, however, a minority of patients in which this was not true. It is concluded that the increased erythrocyte 2,3-diphosphoglycerate concentrations in clinically normoxic diabetic subjects are generally less than compensatory for the effect of haemoglobin A1c formation on the haemoglobin-oxygen dissociation curve.

  10. Changes in concentration of visfatin during four weeks of inpatient treatment of alcohol dependent males

    Directory of Open Access Journals (Sweden)

    Damian Czarnecki

    2015-09-01

    Conclusions: The dynamic of change in the concentration of visfatin during four weeks of abstinence is not associated with a reduction in craving for alcohol at the time and is associated with alcohol drinking and liver functioning.

  11. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    Science.gov (United States)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  12. Concentration and temperature dependence of short-range order in Ni-Ta solid solution using X-ray diffraction method

    International Nuclear Information System (INIS)

    Khwaja, F.A.; Alam, A.

    1980-09-01

    Diffuse X-ray scattering investigations about the existence of short-range order (SRO) have been carried out in the Ni-Ta system for different concentrations and annealing temperatures. It is observed that the values of the SRO parameters for the first co-ordination shell have anomalously large negative values for all the samples studied. These values of the α 1 depend upon the annealing temperatures and the concentration of Ta atoms in the Ni-Ta system. The results of the theoretical predictions of the ordering potential obtained using the formulae of the electronic theory of SRO, confirm the existence of very strong attractive correlation between the atoms of the different species in this system. (author)

  13. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men

    DEFF Research Database (Denmark)

    Wachters-Hagedoorn, Renate E; Priebe, Marion G; Heimweg, Janneke A J

    2006-01-01

    and slowly available glucose. In a crossover study, glucose, insulin, GLP-1, and GIP concentrations were monitored for 6 h after consumption of glucose, uncooked cornstarch (UCCS) or corn pasta in 7 healthy men. All test meals were naturally labeled with 13C. Using a primed, continuous D-[6,6-2H2]glucose...... in the early postprandial phase (15-90 min) occurred after consumption of glucose. There was a strong positive within-subject correlation between RaEx and GIP concentrations (r = 0.73, P meals. Rapidly and slowly digestible carbohydrates differ considerably in their ability to stimulate...

  14. Concentration dependence of the partial volume, viscosity, and electric conductivity of solutions of lithium salts in aliphatic alcohols

    International Nuclear Information System (INIS)

    Eliseeva, O.V.; Golubev, V.V.

    2003-01-01

    Concentration dependence of partial volumes, electric conductivity and viscosity of lithium nitrate and chloride solutions in methanol, propanol, isopropanol, butanol, isobutanol, pentanol and isopentanol at 298.15 K were studied by the methods of densimetry, conductometry and viscosimetry. Structural specific features of the solutions studied are discussed on the basis of the calculated volumetric characteristics of the substance dissolved and solvent [ru

  15. Dependence of electrical resistance in nonstoichiometric titanium carbide TiCy on carbon vacancy concentration and distribution

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    Electric conductivity in nonstoichiometric titanium carbide TiC y (0.5 ≤ y ≤ 0.98) is studied depending on concentration and distribution of carbon sublattice vacancies as well as on temperature. It is established that in TiC y at y y on the one hand and by the atom-vacancy interaction on the other hand [ru

  16. Azone® decreases the buccal mucosal permeation of Diazepam in a concentration-dependent manner via a reservoir effect

    DEFF Research Database (Denmark)

    Meng-Lund, Emil; Jacobsen, Jette; Jin, Liang

    2014-01-01

    The purpose of this study was to examine concentration-dependent effects of Azone® (AZ) on the buccal absorption of diazepam (DIAZ). Porcine buccal mucosa was placed in modified Ussing chambers and pretreated with 10 μL of 0%, 5%, 20%, and 50% (w/v) AZ in ethanol. DIAZ was administered to the don...

  17. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Sinclair IV, John W [ORNL; Zuev, Yuri L [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Cook, Sylvester W [ORNL; Kumar, Dhananjay [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  18. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  19. In-situ potential risk dependence of environmental radon concentration mapping

    International Nuclear Information System (INIS)

    Sajo B, L.; Horvath, A.; Mark, G.; Kasztovszky, Z.; Toth, E.

    1996-01-01

    In this study we present the importance of a close mesh measurements for radon concentration mapping and we demonstrate its necessity when dose calculations are involved. Our results indicate that large errors may be derived from data related to large area mapped with measurements considered characteristic; mean value of a selected region. We point out also that from place to place distant 30 cm radon concentration in the soil at the relaxation depth of 70 cm may differ by a factor of 2 or more. Waters of household wells were monitored also for information on the radon dynamic behaviour. We conclude that for effective dose calculations, particularly in areas with high radon concentration gradient and relatively high population density, the approximate spatial scale variation should be replaced by a systematic dose mesh sampling approach. (authors). 13 refs., 3 figs

  20. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  1. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef

    NARCIS (Netherlands)

    Mueller, Benjamin; Meesters, Erik H.; Duyl, Van Fleur C.

    2017-01-01

    Photosynthates released by benthic primary producers (BPP), such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC) production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water

  2. A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

    NARCIS (Netherlands)

    Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.

    2007-01-01

    We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and

  3. Concentrations of Chemical Elements in Willow Biomass Depend on Clone, Site and Management in the Field

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    Eight willow (Salix) clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) were planted on two soil types in Denmark. The biomass quality was evaluated after 3 years of growth by measuring differences in concentrations of 14 elements associated with ash behavior during combus...

  4. Concentration-Dependant Changes of PCB Patterns in Fish-Eating Mammals

    DEFF Research Database (Denmark)

    Boon, J.P.; van der Meer, J.; Allchin, C.R.

    1997-01-01

    Data sets on CB concentrations in fish-eating mammals from five laboratories were combined to test and refine a pharmacokinetic model. Clear differences in PCB patterns were observed between species, The ability to metabolize chlorobiphenyl (CB) congeners with vicinal H-atoms only in the ortho...

  5. Dependence of soil-to-plant transfer factors of elements on their concentrations in soil

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Watabe, Teruhisa.

    1996-01-01

    Transfer factors (TFs) of 31 stable elements from soil to plant were determined by neutron activation analysis. Soil and plant samples were collected from 112 farm fields in Aomori prefecture, Japan. The elements described are those that could be detected by this method, which include essential elements for plant growth and nonessential elements. Several of these elements were divided into two groups, each having different TF characteristics. In the first group of elements there was an inverse correlation between the TFs and the soil concentrations of the elements, especially for Cl, K and Ca. The concentrations of these elements in plants were independent of their soil concentrations. However, in the second group, especially Sc and Co, the TFs were independent of the soil concentrations of the elements. The fluctuation of TFs observed in this study was smaller than that previously reported. This may be attributed to the relatively narrow geographic area of the present study. In addition, the TFs for the stable elements in this study were generally one to three orders of magnitude lower than those compiled for radioactive isotopes in previous publications. (author)

  6. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  7. Time-dependent Taylor–Aris dispersion of an initial point concentration

    DEFF Research Database (Denmark)

    Vedel, Søren; Hovad, Emil; Bruus, Henrik

    2014-01-01

    -specific theoretical results, and furthermore predict new phenomena. In particular, for the transient phase before the well-described steady Taylor–Aris limit is reached, we find anomalous diffusion with a dependence of the temporal scaling exponent on the initial release point, generalizing this finding in specific...... cases. During this transient we furthermore identify maxima in the values of the dispersion coefficient which exceed the Taylor–Aris value by amounts that depend on channel geometry, initial point release position, velocity profile and Péclet number. We show that these effects are caused by a difference...

  8. Dose-dependent interaction between gemfibrozil and repaglinide in humans: strong inhibition of CYP2C8 with subtherapeutic gemfibrozil doses.

    Science.gov (United States)

    Honkalammi, Johanna; Niemi, Mikko; Neuvonen, Pertti J; Backman, Janne T

    2011-10-01

    Gemfibrozil 1-O-β-glucuronide inactivates CYP2C8 irreversibly. We investigated the effect of gemfibrozil dose on CYP2C8 activity in humans using repaglinide as a probe drug. In a randomized, five-phase crossover study, 10 healthy volunteers ingested 0.25 mg of repaglinide 1 h after different doses of gemfibrozil or placebo. Concentrations of plasma repaglinide, gemfibrozil, their metabolites, and blood glucose were measured. A single gemfibrozil dose of 30, 100, 300, and 900 mg increased the area under the concentration-time curve of repaglinide 1.8-, 4.5-, 6.7-, and 8.3-fold (P Gemfibrozil pharmacokinetics was characterized by a slightly more than dose-proportional increase in the area under the curve of gemfibrozil and its glucuronide. The gemfibrozil-repaglinide interaction could be mainly explained by gemfibrozil 1-O-β-glucuronide concentration-dependent, mechanism-based inhibition of CYP2C8, with a minor contribution by competitive inhibition of organic anion-transporting polypeptide 1B1 at the highest gemfibrozil dose. The findings are consistent with ∼50% inhibition of CYP2C8 already with a single 30-mg dose of gemfibrozil and >95% inhibition with 900 mg. In clinical drug-drug interaction studies, a single 900-mg dose of gemfibrozil can be used to achieve nearly complete inactivation of CYP2C8.

  9. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier–Stokes equations with vacuum

    Science.gov (United States)

    Lü, Boqiang; Shi, Xiaoding; Zhong, Xin

    2018-06-01

    We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.

  10. Indoor radon concentration and its possible dependence on ventilation rate and flooring type

    International Nuclear Information System (INIS)

    Ashok, G. V.; Nagaiah, N.; Shiva Prasad, N. G.

    2012-01-01

    The results of radon concentration measurements carried out in dwellings with natural ventilation for 1 y in Bangalore are reported. Measurements, covering three sessions of the day (morning, afternoon, night) were performed two times in a month for 1 y at a fixed place of each dwelling at a height of 1 m above the ground surface in selected dwellings. The low-level radon detection system (LLRDS), an active method, was used for the estimation of radon concentration. The measurements were aimed to understand the diurnal variation and the effect of ventilation rate and flooring type on indoor radon concentration. The geometric mean (±geometric standard deviation) of indoor radon concentration from about 500 measurements carried out in 20 dwellings is found to be 25.4 ±1.54 Bq m -3 . The morning, afternoon and night averages were found to be 42.6 ±2.05, 15.3 ±2.18 and 28.5 ±2.2 Bq m -3 , respectively. The approximate natural ventilation rates of the dwellings were calculated using the PHPAIDA-the on-line natural ventilation, mixed mode and air infiltration rate calculation algorithm and their effects on indoor radon concentrations were studied. The inhalation dose and the lung cancer risk due to indoor radon exposure were found to be 0.66 mSv y -1 and 11.9 per 10 6 persons, respectively. The gamma exposure rate was also measured in all the dwellings and its correlation with the inhalation dose rate was studied. (authors)

  11. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.

    Science.gov (United States)

    Gittings, William; Aggarwal, Harish; Stull, James T; Vandenboom, Rene

    2015-01-01

    The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK(-/-)) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK(-/-)) of prestimulus levels, respectively (data n = 6-8, p muscles.

  12. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    Science.gov (United States)

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  13. Time-and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells

    Science.gov (United States)

    2007-07-01

    and toxic chemicals may also be tested using this assay. A greater understanding of the mechanism(s) of the action of toxins of biosecurity importance...critical care nursing . AACN Clin Issues, 13, 452-69. DSTO-TR-2024 12 Olsnes, S. & Saltvedt, E. (1975). Conformation-dependent antigenic determinants

  14. Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases ▿ †

    Science.gov (United States)

    Heer, Dominik; Heine, Daniel; Sauer, Uwe

    2009-01-01

    Biofuels derived from lignocellulosic biomass hold promises for a sustainable fuel economy, but several problems hamper their economical feasibility. One important problem is the presence of toxic compounds in processed lignocellulosic hydrolysates, with furfural as a key toxin. While Saccharomyces cerevisiae has some intrinsic ability to reduce furfural to the less-toxic furfuryl alcohol, higher resistance is necessary for process conditions. By comparing an evolved, furfural-resistant strain and its parent in microaerobic, glucose-limited chemostats at increasing furfural challenge, we elucidate key mechanism and the molecular basis of both natural and high-level furfural resistance. At lower concentrations of furfural, NADH-dependent oxireductases are the main defense mechanism. At furfural concentrations above 15 mM, however, 13C-flux and global array-based transcript analysis demonstrated that the NADPH-generating flux through the pentose phosphate pathway increases and that NADPH-dependent oxireductases become the major resistance mechanism. The transcript analysis further revealed that iron transmembrane transport is upregulated in response to furfural. While these responses occur in both strains, high-level resistance in the evolved strain was based on strong induction of ADH7, the uncharacterized open reading frame (ORF) YKL071W, and four further, likely NADPH-dependent, oxireductases. By overexpressing the ADH7 gene and the ORF YKL071W, we inversely engineered significantly increased furfural resistance in the parent strain, thereby demonstrating that these two enzymes are key elements of the resistance phenotype. PMID:19854918

  15. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    Science.gov (United States)

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dependence of Ca outflow and depression of frog myocardium contraction on ryodipine concentration.

    Science.gov (United States)

    Narusevicius, E; Gendviliene, V; Macianskiene, R; Hmelj-Dunai, G; Velena, A; Duburs, G

    1988-02-01

    The effect of ryodipine on calcium outflow from tissues, on contraction force, the duration of action potentials and the relaxation phase time-constant in the contraction cycles of myocardial strips was studied using frog heart preparations. It was found that calcium outflow (delta Ca) as a function on ryodipine concentration can be represented as: (formula; see text) A linear correlation exists between Ca2+, contraction blocking and the shortening of the action potential in the presence of various ryodipine concentrations. Ryodipine (10(-5) mol/l) decreased the relaxation time-constant by about 20% as compared to controls. It was concluded that calcium outflow from myocardial tissues in response to ryodipine is due to blockade of calcium entry into the cells and their output through the Na+--Ca2+ exchange system. Frog heart myocardial contractions are essentially under the control of calcium entry through sarcolemmal calcium channels.

  17. Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration

    Science.gov (United States)

    Dodd, Brandon M.; Tepper, Gary

    2017-09-01

    Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.

  18. CONCENTRATION-DEPENDENT LINKAGE OF DIETARY METHIONINE RESTRICTION TO THE COMPONENTS OF ITS METABOLIC PHENOTYPE

    OpenAIRE

    Forney, Laura A.; Wanders, Desiree; Stone, Kirsten P.; Pierse, Alicia; Gettys, Thomas W.

    2017-01-01

    Objective Restricting dietary methionine to 0.17% produces a series of physiological responses through coordinated transcriptional effects in liver and adipose tissue. The goal of the present work was to determine the threshold concentrations above and below 0.17% at which the beneficial responses to 0.17% dietary methionine are preserved. Methods Diets were formulated to restrict methionine to different degrees, followed by evaluation of the transcriptional and physiological responses to the...

  19. Dependence of yield of nuclear track-biosensors on track radius and analyte concentration

    Science.gov (United States)

    García-Arellano, H.; Muñoz H., G.; Fink, D.; Vacik, J.; Hnatowicz, V.; Alfonta, L.; Kiv, A.

    2018-04-01

    In swift heavy ion track-based polymeric biosensor foils with incorporated enzymes one exploits the correlation between the analyte concentration and the sensor current, via the enrichment of charged enzymatic reaction products in the track's confinement. Here we study the influence of the etched track radius on the biosensor's efficiency. These sensors are analyte-specific only if both the track radii and the analyte concentration exceed certain threshold values of ∼15 nm and ∼10-6 M (for glucose sensing), respectively. Below these limits the sensor signal stems un-specifically from any charge carrier. In its proper working regime, the inner track walls are smoothly covered by enzymes and the efficiency is practically radius independent. Theory shows that the measured current should be slightly sub-proportional to the analyte concentration; the measurements roughly reconfirm this. Narrower tracks (∼5-15 nm radius) with reduced enzyme coverage lead to decreasing efficiency. Tiny signals visible when the tracks are etched to effective radii between 0 and ∼5 nm are tentatively ascribed to enzymes bonded to surface-near nano-cracks in the polymer foil, resulting from its degradation due to aging, rather than to the tracks. Precondition for this study was the accurate determination of the etched track radii, which is possible only by a nanofluidic approach. This holds to some extent even for enzyme-covered tracks, though in this case most of the wall charges are compensated by enzyme bonding.

  20. Time-dependent radiolytic product concentrations in the water flow of a spinning wheel target

    International Nuclear Information System (INIS)

    Burns, W.G.; Goodall, J.A.B.

    1989-01-01

    Using the Harwell Facsimile computer simulation package, values of water radiolytic product concentrations, for both transient radicals and stable molecules were calculated for a single revolution of the cooling water at 75 0 C in a spallation neutron source target wheel irradiated with 1000 MeV protons and consequential secondary radiation. The radiation was pulsed except for part of the γ radiation, which was continuous. The stable product concentrations at first rose and eventually came to steady values before the end of the revolution. Comparison with results for steady radiation suggested that with the mixed radiation molecular products from the more densely ionizing radiation were largely destroyed by the radicals from the more lightly ionizing radiation. The distribution of the dose rate in time and space also tended to give a lower extent of radiolysis than calculated for uniform irradiation at the arithmetic mean dose rate. The effect of a second revolution on the diluted products showed a smaller increase in product concentrations than for the first revolution. The Authors consider that the extent of radiolysis should be manageable. (author)

  1. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  2. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  3. Influence of repeated permanent coloring and bleaching on ethyl glucuronide concentrations in hair from alcohol-dependent patients.

    Science.gov (United States)

    Crunelle, Cleo L; Yegles, Michel; De Doncker, Mireille; Dom, Geert; Cappelle, Delphine; Maudens, Kristof E; van Nuijs, Alexander L N; Covaci, Adrian; Neels, Hugo

    2015-02-01

    Ethyl glucuronide (EtG), a minor metabolite of alcohol, is used as a sensitive marker in hair to detect the retrospective consumption of alcohol. The proximal 0-3 cm hair segment is often used for analysis, providing information on alcohol consumption over the past 3 months. Using more distal segments would allow the detection of alcohol consumption over longer time periods, thereby addressing the chronicity of the consumption. In view of this, permanent coloring and bleaching were shown in vitro to alter EtG concentrations in hair, but no in vivo studies are available to prove or disprove this. To investigate the influence of repeated bleaching and permanent coloring on EtG concentrations in vivo and to assess the stability of EtG concentrations in distal compared to proximal hair segments. Hair samples from alcohol-dependent patients with uncolored/unbleached (N=4), permanent coloration (N=5) and bleached hair (N=5) were analyzed in two to six 3 cm long segments for EtG concentrations, and alcohol consumption and hair cosmetic treatments were assessed. We observed that hair bleaching and permanent coloring reduces EtG concentrations by 82±11% and 65±24%, respectively, with correlations between the number of cosmetic treatments and the decrease in EtG concentrations. EtG remained stable in untreated hair samples up to 18 cm. EtG is a sensitive marker to assess chronic alcohol consumption up to 18 months in alcohol-dependent patients with no cosmetic hair treatments. However, in alcohol-dependent patients who color or bleach their hair, care should be taken when interpreting EtG measurements. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Electron-induced desorption of europium atoms from oxidized tungsten surface: concentration dependence of low-energy peak

    CERN Document Server

    Davydov, S Y

    2002-01-01

    One discusses nature of electron induced desorption of Eu sup 0 europium atoms under E sub e irradiating electron low-energies (approx 30 eV) and peculiarities of yield dependence of Eu sup 0 atoms on their concentration at oxidized tungsten surface. Primary act of vacancy origination in europium adatom inner 5p-shell turned to be the determining stage. Evaluations have shown that just the first of two possible scenarios of ionization (electron intra-atomic to Eu adatom external quasi-level or realise of knocked out electron into vacuum) leads to Eu sup 0 desorption. One determined concentration threshold for yield of Eu sup 0 atoms

  5. Solution-processed organic thermoelectric materials exhibiting doping-concentration-dependent polarity.

    Science.gov (United States)

    Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya

    2016-10-26

    Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.

  6. Intermittent Chaos in the Bray-Liebhafsky Oscillator. Dependence of Dynamic States on the Iodate Concentration

    Science.gov (United States)

    Bubanja, I. N.; Ivanović-Šašić, A.; Čupić, Ž.; Anić, S.; Kolar-Anić, Lj.

    2017-12-01

    Chaotic dynamic states with intermittent oscillations were generated in a Bray-Liebhafsky (BL) oscillatory reaction in an isothermal open reactor i.e., in the continuously-fed well-stirred tank reactor (CSTR) when the inflow concentration of potassium iodate was the control parameter. They are found between periodic oscillations obtained when [KIO3]0 4.10 × 10-2 M. It was shown that the most chaotic states obtained experimentally somewhere in the middle of this region are in high correlation with results obtained by means of largest Lyapunov exponents and phenomenological analysis based on the quantitative characteristics of intermittent oscillations.

  7. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zwe-Ling, E-mail: kongzl@mail.ntou.edu.tw; Chang, Jenq-Sheng; Chang, Ke Liang B. [National Taiwan Ocean University, Department of Food Science (China)

    2013-09-15

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  8. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Science.gov (United States)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  9. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan–silica nanoparticles strongly depends on the metabolic activity type of the cell line

    International Nuclear Information System (INIS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-01-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica–chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica–chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica–chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan–silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line

  10. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.

    2014-02-02

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of mixing the suspension first compared with point injection by considering inlet concentration distributions of different widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane pressure difference due to osmotic pressure, is investigated. © 2014 American Institute of Chemical Engineers.

  11. Determination of solvent concentration-dependent dispersion in the vapor extraction (VAPEX) process

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. [Ryerson Polytechnic Univ., Toronto, ON (Canada)

    2008-07-01

    This paper presented the results of a computational algorithm that revealed the optimal conditions required for vapor extraction (VAPEX) for a solvent gas-heavy oil system. VAPEX is a promising recovery process because it requires low energy use and emits fewer greenhouse gases to the atmosphere compared to other enhanced oil recovery methods. The process is governed by the dispersion of solvent gases into heavy oil and bitumen. As such, it is essential to accurately determine solvent dispersion in VAPEX in order to effectively predict the amount and time scale of oil recovery, and to optimize field operations. VAPEX experiments were conducted in this study to determined the dispersion coefficient of a solvent as a function of its concentration in heavy oil and bitumen. The principles of variational calculus were used together with a mass transfer model of the experimental process. It was concluded that the oil production determined by the model should agree with its experimental counterpart, given the optimal gas dispersion versus concentration function.

  12. pH dependence of steroid hormone-organic matter interactions at environmental concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Peta A. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)], E-mail: p.neale@ed.ac.uk; Escher, Beate I. [Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Duebendorf (Switzerland); Schaefer, Andrea I. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-01-15

    The interaction of estradiol, estrone, progesterone and testosterone with environmentally relevant concentrations of Aldrich humic acid, alginic acid and tannic acid was studied using solid-phase microextraction (SPME). Since bulk organic matter and certain hormones such as estradiol and estrone contain dissociable functional groups, the effect of pH on sorption was investigated as this will influence their fate and bioavailability. For humic acid and tannic acid, sorption was strongest at acidic pH when the bulk organic matter was in a non-dissociated form and decreased when they became partially negatively charged. At acidic and neutral pH the strength of partitioning was influenced by hormone functional groups content, with the strongest sorption observed for progesterone and estrone. At alkaline pH conditions, when the bulk organics were dissociated, sorption decreased considerably (up to a factor of 14), although the non-dissociated hormones testosterone and progesterone indicated greater sorption to humic acid at pH 10 compared to the partially deprotonated estradiol and estrone. This study demonstrates that SPME can be used to assess organic matter sorption behaviour of a selected range of micropollutants and at environmentally relevant organic matter concentrations.

  13. EPR study of concentration dependence in Ce, Ce : La and Ce:Y doped SrF2

    NARCIS (Netherlands)

    Dankert, O.; Vainchtein, David; Datema, H.C.; den Hartog, Hendrik

    1995-01-01

    Experimental results of an EPR-study of the concentration dependence of the doubly integrated intensity and linewidth of the signals associated with tetragonal Ce3+-F--dipoles in Sr1-xCexF2+x, Sr-1-0.005-x Ce0.005LaxF2+0.005+x and Sr-1-0.005-x Ce0.005YxF2+0.005+x are presented. Both show a nonlinear

  14. Dependence of plant biometrics of cutting lettuce (Lactuca sativa L. varietis on the concentration of microfertilizer Avatar-1

    Directory of Open Access Journals (Sweden)

    В. Б. Кутовенко

    2017-09-01

    Full Text Available Purpose. To investigate the variability of plant biometrics of cutting lettuce (Lactuca sativa L. varieties depending on the concentration of microfertilizer Avatar-1. Methods. Field study, biometric technique, comparative approach, statistical evaluation, generalization. Results. Dependence of the plant height, the diameter of the leaf rosette, the number of leaves per plant, the leaf area of plants on the concentration of microfertilizer Avatar-1 was defined. Investigations of cutting lettuce ‘Afitsyon’ and ‘Concord’ varieties by Dutch breeding were conducted in 2016–2017 in the collection sites of the department of vegetable growing in the scientific-experimental field  “Fruit and vegetable garden” of the National University of Life and Environmental Sciences of Ukraine. In order to determine dependence of plant biometrics of cutting lettuce varieties on the concentration of complex microfertilizer Avatar-1, the following scheme was used for the both varieties: variant 1 – water (control; variant 2 – 0,10% solution; variant 3 – 0,25% solution; variant 4 – 0,50% solution. Plants were treated with microfertilizer three times during the vegetative period. Alterations of plant biometrics of cutting lettuce ‘Afitsyon’ and ‘Concord’ varieties  depending on the concentration of complex microfertilizer Avatar-1 was studied. Conclusions. It was found that in case of three-time plant treatment with complex microfertilizer Avatar-1 at the time of harvesting, the best plant biometrics was registered in variant 3 (concentration 0,25% for the both ‘Afitsyon’ and ‘Concord’ varie­ties of cutting lettuce. The height of plants of the cutting lettuce in ‘Afitsyon’ variety exceeded this figure in ‘Concord variety by 1,1–1,4 cm. The concentration of microfertilizer had no significant effect on the diameter of the leaf rosette of ‘Concord’ variety (25,1–25,9 см. The diame­ter of the leaf rosette of

  15. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, A.Y., E-mail: aefremenko@thehamner.org [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Campbell, J.L.; Dodd, D.E. [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Oller, A.R. [NiPERA, Inc., 2525 Meridian Parkway, Suite 240, Durham, NC 27713 (United States); Clewell, H.J. [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2014-09-15

    Objective: To provide insights into the mode of action for Ni{sub 3}S{sub 2} lung carcinogenicity by examining gene expression changes in target cells after inhalation exposure. Methods: Gene expression changes were determined in micro-dissected lung broncho-alveolar cells from Fischer 344 rats following inhalation of Ni{sub 3}S{sub 2} at 0.0, 0.04, 0.08, 0.15, and 0.60 mg/m{sup 3} (0.03, 0.06, 0.11, and 0.44 mg Ni/m{sup 3}) for one and four weeks (6 h/day, 5 days/week). Results: Broncho-alveolar lavage fluid evaluation and lung histopathology provided evidence of inflammation only at the two highest concentrations, which were similar to those tested in the 2-year bioassay. The number of statistically significant up- and down-regulated genes decreased markedly from one to four weeks of exposure, suggesting adaptation. Cell signal pathway enrichment at both time-points primarily reflected responses to toxicity, including inflammatory and proliferative signaling. While proliferative signaling was up-regulated at both time points, some inflammatory signaling reversed from down-regulation at 1 week to up-regulation at 4 weeks. Conclusions: These results support a mode of action for Ni{sub 3}S{sub 2} carcinogenicity driven by chronic toxicity, inflammation and proliferation, leading to mis-replication, rather than by direct genotoxicity. Benchmark dose (BMD) analysis identified the lowest pathway transcriptional BMD exposure concentration as 0.026 mg Ni/m{sup 3}, for apoptosis/survival signaling. When conducted on the basis of lung Ni concentration the lowest pathway BMD was 0.64 μg Ni/g lung, for immune/inflammatory signaling. Implications: These highly conservative BMDs could be used to derive a point of departure in a nonlinear risk assessment for Ni{sub 3}S{sub 2} toxicity and carcinogenicity. - Highlights: • The mode of action for lung carcinogenicity of inhaled Ni{sub 3}S{sub 2} was investigated in rats. • Gene expression changes were determined in micro

  16. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide

    International Nuclear Information System (INIS)

    Efremenko, A.Y.; Campbell, J.L.; Dodd, D.E.; Oller, A.R.; Clewell, H.J.

    2014-01-01

    Objective: To provide insights into the mode of action for Ni 3 S 2 lung carcinogenicity by examining gene expression changes in target cells after inhalation exposure. Methods: Gene expression changes were determined in micro-dissected lung broncho-alveolar cells from Fischer 344 rats following inhalation of Ni 3 S 2 at 0.0, 0.04, 0.08, 0.15, and 0.60 mg/m 3 (0.03, 0.06, 0.11, and 0.44 mg Ni/m 3 ) for one and four weeks (6 h/day, 5 days/week). Results: Broncho-alveolar lavage fluid evaluation and lung histopathology provided evidence of inflammation only at the two highest concentrations, which were similar to those tested in the 2-year bioassay. The number of statistically significant up- and down-regulated genes decreased markedly from one to four weeks of exposure, suggesting adaptation. Cell signal pathway enrichment at both time-points primarily reflected responses to toxicity, including inflammatory and proliferative signaling. While proliferative signaling was up-regulated at both time points, some inflammatory signaling reversed from down-regulation at 1 week to up-regulation at 4 weeks. Conclusions: These results support a mode of action for Ni 3 S 2 carcinogenicity driven by chronic toxicity, inflammation and proliferation, leading to mis-replication, rather than by direct genotoxicity. Benchmark dose (BMD) analysis identified the lowest pathway transcriptional BMD exposure concentration as 0.026 mg Ni/m 3 , for apoptosis/survival signaling. When conducted on the basis of lung Ni concentration the lowest pathway BMD was 0.64 μg Ni/g lung, for immune/inflammatory signaling. Implications: These highly conservative BMDs could be used to derive a point of departure in a nonlinear risk assessment for Ni 3 S 2 toxicity and carcinogenicity. - Highlights: • The mode of action for lung carcinogenicity of inhaled Ni 3 S 2 was investigated in rats. • Gene expression changes were determined in micro-dissected lung tissue at 1–4 weeks. • A non-genotoxic mode

  17. Concentration state dependence of the rheological and structural properties of reconstituted silk.

    Science.gov (United States)

    Mo, Chunli; Holland, Chris; Porter, David; Shao, Zhengzhong; Vollrath, Fritz

    2009-10-12

    The ability to control the processing of artificial silk is key to the successful application of this important and high performance biopolymer. Understanding where our current reconstitution process can be improved will not only aid us in the creation of better materials, but will also provide insight into the natural material along the way. This study aims to understand what proportion of reconstituted silk contributes to its rheological properties and what conformational state the silk proteins are in. It shows, for the first time, that a change in rheological properties can be related to a change in silk structures present in solution and reveals a low concentration gel state for silk that may have important implications for future successful artificial processing of silk.

  18. DNA Duplex Length and Salt Concentration Dependence of Enthalpy−Entropy Compensation Parameters for DNA Melting

    KAUST Repository

    Starikov, E. B.

    2009-08-20

    Systematical differential calorimetry experiments on DNA oligomers with different lengths and placed in water solutions with various added salt concentrations may, in principle, unravel important information about the structure and dynamics of the DNA and their water-counterion surrounding. With this in mind, to reinterpret the most recent results of calorimetric experiments on DNA oligomers of such a kind, the recent enthalpy-entropy compensation theory has been used. It is demonstrated that the application of the latter could enable direct estimation of thermodynamic parameters of the microphase transitions connected to the changes in DNA dynamical regimes versus the length of the biopolymers and the ionic strengths of their water solutions, and this calls for much more systematical experimental and theoretical studies in this field. © 2009 American Chemical Society.

  19. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing.

    Science.gov (United States)

    Xian, Law Jia; Chowdhury, Shiplu Roy; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2015-03-01

    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing. Human keratinocytes and fibroblasts were harvested via co-isolation technique and separated via differential trypsinization. These cells were then indirectly co-cultured in medium supplemented with 10% or 20% PRP for 3 days without medium change for analysis of wound-healing potential. The wound-healing potential of keratinocytes and fibroblasts was evaluated in terms of growth property, migratory property, extracellular matrix gene expression and soluble factor secretion. The co-isolation technique yielded a skin cell population dominated by fibroblasts and keratinocytes, with a small amount of melanocytes. Comparison between the 10% and 20% PRP cultures showed that the 10% PRP culture exhibited higher keratinocyte apparent specific growth rate, and secretion of hepatocyte growth factor, monocyte chemoattractant protein-1, epithelial-derived neutrophil-activating protein 78 and vascular endothelial growth factor A, whereas the 20% PRP culture has significantly higher collagen type 1 and collagen type 3 expressions and produced more granulocyte-macrophage colony-stimulating factor. PRP concentration modulates keratinocyte and fibroblast wound healing potential, whereby the 10% PRP promotes wound remodeling, whereas the 20% PRP enhances inflammation and collagen deposition. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Concentration-dependent Sildenafil citrate (Viagra) effects on ROS production, energy status, and human sperm function.

    Science.gov (United States)

    Sousa, Maria Inês; Amaral, Sandra; Tavares, Renata Santos; Paiva, Carla; Ramalho-Santos, João

    2014-04-01

    Literature regarding the effects of sildenafil citrate on sperm function remains controversial. In the present study, we specifically wanted to determine if mitochondrial dysfunction, namely membrane potential, reactive oxygen species production, and changes in energy content, are involved in in vitro sildenafil-induced alterations of human sperm function. Sperm samples of healthy men were incubated in the presence of 0.03, 0.3, and 3 μM sildenafil citrate in a phosphate buffered saline (PBS)-based medium for 2, 3, 12, and 24 hours. Sperm motility and viability were evaluated and mitochondrial function, i.e., mitochondrial membrane potential and mitochondrial superoxide production were assessed using flow-cytometry. Additionally, adenosine triphosphate (ATP) levels were determined by high performance liquid chromatography (HPLC) analysis. Results show a decrease in sperm motility correlated with the level of mitochondria-generated superoxide, without a visible effect on mitochondrial membrane potential or viability upon exposure to sildenafil. The effect on both motility and superoxide production was higher for the intermediate concentration of sildenafil (0.3 µM) indicating that the in vitro effects of sildenafil on human sperm do not vary linearly with drug concentration. Adenosine triphosphate levels also decreased following sildenafil exposure, but this decrease was only detected after a decrease in motility was already evident. These results suggest that along with the level of ATP and mitochondrial function other factors are involved in the early sildenafil-mediated decline in sperm motility. However, the further decrease in ATP levels and increase in mitochondria-generated reactive oxygen species after 24 hours of exposure might further contribute towards declining sperm motility.

  1. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation.

    Science.gov (United States)

    Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G

    2010-05-01

    The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms

  2. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    Science.gov (United States)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  3. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    International Nuclear Information System (INIS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-01-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC 50 values in WST-1 assays. The IC 50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles

  4. Radium concentrations in Adriatic coastal area and their dependence on circulation of the sea currents

    International Nuclear Information System (INIS)

    Marovic, G.; Sencar, J.; Kovac, J.; Hrsak, H.

    2002-01-01

    The aim of this study was to assess natural radioactivity in the area of the coal-fired power plant in the Plomin Bay with special emphasis on possible radiation contamination of the seawater caused by plant operation. The purpose was to determine vertical and horizontal distribution of radium and its dependence on the seawater currents at different sea depths. The level of 2 26R a in seawater was assessed four times a year, at three locations and at two sea depths. Measurements of physical, chemical and biological parameters were performed in order to provide a tangible basis for a long-term systematic monitoring of the environmental effects of plant operation on the surrounding area

  5. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  6. Dependence of chlorine isotope separation in ion exchange chromatography on the nature and concentration of the eluent

    International Nuclear Information System (INIS)

    Heumann, K.G.; Baier, K.

    1980-01-01

    In a heterogeneous electrolyte system of a strongly basic anion exchanger and solutions of NaBF 4 or NaClO 4 we established the influence of the nature and concentration of the eluent in chromatographic experiments on chlorine isotope separation. Results show that when the elctrolyte concentration is increased the degree of isotope separation decreases. With NaBF 4 the separation factor is greater than with NaClO 4 under conditions which are otherwise the same. For electrolyte solutions containing ClO 4 -, NO 3 - and BF 4 - there is a linear relation between the separation factor of the chlorine isotopes and the logarithm of the heat of anion hydration of the elution electrolyte. (orig.)

  7. Analysis of the time dependence of the tritium concentration in the Embalse Rio Tercero lake

    International Nuclear Information System (INIS)

    Lopez, F.O.; Bruno, H.A.

    1998-01-01

    In natural uranium and heavy water reactors, tritium is produced mainly as the activation product of the deuterium in the moderator and cooling medium. About 75% of the liquid effluents discharged by nuclear power plants in Argentina correspond to tritium. In the case of the Embalse nuclear power plant, the liquid effluents are discharged into the Rio Tercero reservoir. As its water is used for drinking, 98% of the dose received by the critical group is due to these discharges. A simple mathematical model was developed which predicts the variation in the tritium concentration in the reservoir. It is a complete mixture type model and the entry parameters are the lake volume, entrance volume and discharge volume. The model was solved by means of a Runge-Kutta method of second order. The chosen method is a modified Euler. A good correlation is observed when the values obtained by means of the numeric resolution of the developed model are compared with the values obtained by the tritium measurement made during the 1996 and 1997 environmental monitoring program. (author) [es

  8. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics.

    Science.gov (United States)

    Li, Kai; Zhang, Peng; Ge, Linke; Ren, Honglei; Yu, Chunyan; Chen, Xiaoyang; Zhao, Yuanfeng

    2014-09-01

    Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

    DEFF Research Database (Denmark)

    Fuchs, W; Larsen, Erik Hviid; Lindemann, B

    1977-01-01

    1. The inward facing membranes of in vitro frog skin epithelium were depolarized with solutions of high K concentration. The electrical properties of the epithelium are then expected to be governed by the outward facing, Na-selective membrane.2. In this state, the transepithelial voltage (V...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... of the inward facing membranes but reflects the true behaviour of P(Na).6. The steady-state P(Na) at a given (Na)(o) is smaller than the transient P(Na) observed right after a stepwise increase of (Na)(o) to this value. The time constant of P(Na)-relaxation is in the order of seconds.7. In conclusion, Na...

  10. Hormonal regulation of gluconeogenesis in cereal aleurone is strongly cultivar-dependent and gibberellin action involves SLENDER1 but not GAMYB.

    Science.gov (United States)

    Eastmond, Peter J; Jones, Russell L

    2005-11-01

    Storage oil is a major constituent in the cereal aleurone layer. The aim of this study was to investigate how gibberellin (GA) and abscisic acid (ABA) regulate conversion of oil to sugar in barley aleurone. The activity of the glyoxylate cycle enzyme isocitrate lyase (ICL) was surveyed in eight barley cultivars. Surprisingly, some cultivars do not require GA for the induction of ICL (e.g. Himalaya), whereas some do (e.g. Golden Promise). Furthermore, in Golden Promise, GA also stimulates triacylglycerol breakdown and enhances the net flux of carbon from acetate to sugar. In contrast, ABA strongly represses ICL activity and the flux of carbon from oil to sugar in both Golden Promise and Himalaya. Biolistics using a promoter reporter showed that GA and ABA regulate ICL at the level of transcription. Studies using barley and rice mutants and pharmacological agents show that GA-dependent induction of ICL activity is mediated by SLENDER1 and requires cGMP, but does not involve the transcription factor GAMYB. Gibberellin and ABA therefore act antagonistically to regulate gluconeogenesis in the aleurone layer as well as controlling the production and secretion of hydrolases into the starchy endosperm. We suggest that the variation between different barley cultivars might be a result of selective breeding to alter seed dormancy.

  11. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    Science.gov (United States)

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  12. Dopant concentration dependent magnetism of Cu-doped TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com [University of Kerala, Centre for Nanoscience and Nanotechnology (India)

    2016-06-15

    Undoped and Cu-doped nanocrystals of TiO{sub 2} having the size range of 8–11 nm were synthesized by peroxide gel method. XRD analysis using Rietveld refinement confirmed anatase phase with a small percentage of rutile content for undoped TiO{sub 2} nanocrystals while a pure anatase phase with preferential growth along [004] direction was observed for nanocrystals of Cu-doped TiO{sub 2}. Variation in the intensity ratios of the XRD peaks of the doped samples compared to that of the undoped sample offered an evidence for the substitutional incorporation of Cu ions in the TiO{sub 2} lattice. The preferential growth of the nanocrystals along the [004] direction was verified using HRTEM analysis. Cu doping extended the optical absorption edge of TiO{sub 2} nanocrystals to the visible spectral region and caused a blue shift and broadening of the E{sub g} (1) Raman active mode of anatase TiO{sub 2}. Undoped TiO{sub 2} sample showed a weak ferromagnetism superimposed on a diamagnetic background while Cu-doped TiO{sub 2} samples exhibited a weak ferromagnetism in the low-field region with a paramagnetic component in the high-field region. The magnetic moment exhibited by the doped samples is interpreted as the resultant of a weak ferromagnetic moment in the low-field region arising from the presence of defects near the surface of TiO{sub 2} nanoparticles or from the interaction of the substituted Cu ions with the oxygen vacancies, and the paramagnetic contribution from the increased Cu dopant concentration near the surface of the particles arising from self-purification mechanism.

  13. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Science.gov (United States)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  14. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  15. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    A. Montoro

    2011-01-01

    Full Text Available Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP, including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.

  16. Dynamics from seconds to hours in Hodgkin-Huxley model with time-dependent ion concentrations and buffer reservoirs.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-12-01

    Full Text Available The classical Hodgkin-Huxley (HH model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds, the buffer time constants (tens of seconds, and the slower backward buffering (minutes to hours. The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.

  17. Dynamics from seconds to hours in Hodgkin-Huxley model with time-dependent ion concentrations and buffer reservoirs.

    Science.gov (United States)

    Hübel, Niklas; Dahlem, Markus A

    2014-12-01

    The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively.

  18. Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles.

    Science.gov (United States)

    Wetteland, Cheyann Lee; Nguyen, Nhu-Y Thi; Liu, Huinan

    2016-04-15

    This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation. BMSCs density increased significantly when cultured in 200μg/mL of MgO in comparison to the Cells Only control without MgO. The density of BMSCs decreased significantly after culture in the media with 500μg/mL or more of MgO. Concentrations at or above 1000μg/mL of MgO resulted in complete BMSCs death. Quantification of colony forming units (CFU) revealed that the minimum bactericidal concentration (MBC) of MgO for E. coli and S. epidermidis was 1200μg/mL. The addition of MgO nanoparticles into the cultures increased the pH and Mg(2+) ion concentration in the respective culture media, which might have played a role in the observed cell responses but not the main factors. E. coli and S. epidermidis still proliferated significantly at alkaline pH up to 10 or with supplemental Mg(2+) dosages up to 50mM, indicating bactericidal properties of MgO are beyond the effects of increased media pH and Mg(2+) ion concentrations. MgO nanoparticles at a concentration of 200μg/mL provided dual benefits of promoting BMSC proliferation while reducing bacterial adhesion, which should be further studied for potential medical implant applications. The use of free MgO nanoparticles yielded detrimental effects to BMSCs in concentrations above 300μg/mL. We recommend further study into MgO nanoparticle as a coating material or as a part of a

  19. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area.

    Science.gov (United States)

    Rotllant, David; Armario, Antonio

    2012-02-01

    Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post

  20. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Mühlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Auderset, Katya; Meier, Roland; Joseph, Jean-Marc; Gross, Nicole

    2006-01-01

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  1. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  2. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  3. Dependence of the degree of antibacterial and antiphage action of ozone on cell and phage particle concentrations in nutrient media

    Energy Technology Data Exchange (ETDEWEB)

    Grits, N.V.; Fomichev, A.Iu.

    1985-05-01

    The work was aimed at studying the inactivating effect of ozone on Escherichia coli K-12 AB1157, Pseudomonas aeruginosa PA01, Erwinia herbicola EH103 and their phages T4, SM and I4. The degree of bacterial and phage inactivation was found to increase with a decrease in their initial concentration during the treatment. The effect depends on differences in the quantity of ozone per cell or per phage particle in the reaction medium. This conclusion is based on the fact that, irrespective of the suspension density, the amount of surviving bacteria and phages plotted versus O3 concentration and recalculated per one bacterial cell or phage particle is described graphically by one and the same curve typical of a strain under study. This technique for assessing the sensitivity of microbiological objects to ozone can be used in order to compare experimental data obtained in different laboratories.

  4. A Novel Reconfigurable Logic Unit Based on the DNA-Templated Potassium-Concentration-Dependent Supramolecular Assembly.

    Science.gov (United States)

    Yang, Chunrong; Zou, Dan; Chen, Jianchi; Zhang, Linyan; Miao, Jiarong; Huang, Dan; Du, Yuanyuan; Yang, Shu; Yang, Qianfan; Tang, Yalin

    2018-03-15

    Plenty of molecular circuits with specific functions have been developed; however, logic units with reconfigurability, which could simplify the circuits and speed up the information process, are rarely reported. In this work, we designed a novel reconfigurable logic unit based on a DNA-templated, potassium-concentration-dependent, supramolecular assembly, which could respond to the input stimuli of H + and K + . By inputting different concentrations of K + , the logic unit could implement three significant functions, including a half adder, a half subtractor, and a 2-to-4 decoder. Considering its reconfigurable ability and good performance, the novel prototypes developed here may serve as a promising proof of principle in molecular computers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations

    Directory of Open Access Journals (Sweden)

    Chen Xuanmao

    2010-12-01

    Full Text Available Abstract Concentrations of extracellular divalent cations (Ca2+ and Mg2+ fall substantially during intensive synaptic transmission as well as during some pathophysiological conditions such as epilepsy and brain ischemia. Here we report that a synthetic serine protease inhibitor, nafamostat mesylate (NM, and several of its analogues, block recombinant TRPM7 currents expressed in HEK293T cells in inverse relationship to the concentration of extracellular divalent cations. Lowering extracellular Ca2+ and Mg2+ also evokes a divalent-sensitive non-selective cation current that is mediated by TRPM7 expression in hippocampal neurons. In cultured hippocampal neurons, NM blocked these TRPM7-mediated currents with an apparent affinity of 27 μM, as well as the paradoxical Ca2+ influx associated with lowering extracellular Ca2+. Unexpectedly, pre-exposure to NM strongly potentiated TRPM7 currents. In the presence of physiological concentrations of extracellular divalent cations, NM activates TRPM7. The stimulating effects of NM on TRPM7 currents are also inversely related to extracellular Ca2+ and Mg2+. DAPI and HSB but not netropsin, blocked and stimulated TRPM7. In contrast, mono-cationic, the metabolites of NM, p-GBA and AN, as well as protease inhibitor leupeptin and gabexate failed to substantially modulate TRPM7. NM thus provides a molecular template for the design of putative modulators of TRPM7.

  6. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    Science.gov (United States)

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Calculation of the total plasma concentration of nonvolatile weak acids and the effective dissociation constant of nonvolatile buffers in plasma for use in the strong ion approach to acid-base balance in cats.

    Science.gov (United States)

    McCullough, Sheila M; Constable, Peter D

    2003-08-01

    To determine values for the total concentration of nonvolatile weak acids (Atot) and effective dissociation constant of nonvolatile weak acids (Ka) in plasma of cats. Convenience plasma samples of 5 male and 5 female healthy adult cats. Cats were sedated, and 20 mL of blood was obtained from the jugular vein. Plasma was tonometered at 37 degrees C to systematically vary PCO2 from 8 to 156 mm Hg, thereby altering plasma pH from 6.90 to 7.97. Plasma pH, PCO2, and concentrations of quantitatively important strong cations (Na+, K+, and Ca2+), strong anions (Cl-, lactate), and buffer ions (total protein, albumin, and phosphate) were determined. Strong ion difference was estimated from the measured strong ion concentrations and nonlinear regression used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference. Mean (+/- SD) values were as follows: Atot = 24.3 +/- 4.6 mmol/L (equivalent to 0.35 mmol/g of protein or 0.76 mmol/g of albumin); Ka = 0.67 +/- 0.40 x 10(-7); and the negative logarithm (base 10) of Ka (pKa) = 7.17. At 37 degrees C, pH of 7.35, and a partial pressure of CO2 (PCO2) of 30 mm Hg, the calculated venous strong ion difference was 30 mEq/L. These results indicate that at a plasma pH of 7.35, a 1 mEq/L decrease in strong ion difference will decrease pH by 0.020, a 1 mm Hg decrease in PCO2 will increase plasma pH by 0.011, and a 1 g/dL decrease in albumin concentration will increase plasma pH by 0.093.

  8. Sensitivity of Helicobacter pylori detection by Giemsa staining is poor in comparison with immunohistochemistry and fluorescent in situ hybridization and strongly depends on inflammatory activity.

    Science.gov (United States)

    Kocsmár, Éva; Szirtes, Ildikó; Kramer, Zsófia; Szijártó, Attila; Bene, László; Buzás, György Miklós; Kenessey, István; Bronsert, Peter; Csanadi, Agnes; Lutz, Lisa; Werner, Martin; Wellner, Ulrich Friedrich; Kiss, András; Schaff, Zsuzsa; Lotz, Gábor

    2017-08-01

    Conventional stainings (including H&E and special stains like Giemsa) are the most widely applied histopathologic detection methods of Helicobacter pylori (HP). We aimed to compare the diagnostic performance of Giemsa staining with immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) on a monocentric cohort of 2896 gastric biopsies and relate results to histologic alterations in order to find such histopathologic subgroups in which these methods underperform. All cases were categorized regarding presence or absence of chronic gastritis, inflammatory activity, and mucosal structural alterations. Giemsa revealed 687 cases (23.7%), IHC 795 cases (27.5%), and FISH 788 cases (27.2%) as being HP positive. Giemsa showed significantly lower overall sensitivity (83.3%) compared to IHC (98.8%) and FISH (98.0%). Moreover, the sensitivity of Giemsa dramatically dropped to 33.6% in the nonactive cases. We found that sensitivity of Giemsa strongly depends on HP density and, accordingly, on the presence of activity. Structural alterations (intestinal metaplasia, atrophy, etc.) had only no or weak effect on sensitivity of the three stainings. Both IHC and FISH proved to be equally reliable HP detecting techniques whose diagnostic performance is minimally influenced by mucosal inflammatory and structural alterations contrary to conventional stainings. We highly recommend immunohistochemistry for clinically susceptible, nonactive chronic gastritis cases, if the conventional stain-based HP detection is negative. Moreover, we recommend to use IHC more widely as basic HP stain. Helicobacter pylori FISH technique is primarily recommended to determine bacterial clarithromycin resistance. Furthermore, it is another accurate diagnostic tool for HP. © 2017 John Wiley & Sons Ltd.

  9. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  10. Endogenous Proteolytic Cleavage of Disease-associated Prion Protein to Produce C2 Fragments Is Strongly Cell- and Tissue-dependent*

    Science.gov (United States)

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-01-01

    The abnormally folded form of the prion protein (PrPSc) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrPSc N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrPSc accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrPSc proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrPSc fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrPSc and cell pathogenesis of prion infection. PMID:20154089

  11. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    Science.gov (United States)

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  12. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice

    Science.gov (United States)

    Poole, Rachel L.; Braak, David; Gould, Thomas J.

    2015-01-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, this suggests that the developing hippocampus may be sensitive to the effects of caffeine. PMID:25827925

  13. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Poole, Rachel L; Braak, David; Gould, Thomas J

    2016-02-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, which suggests that the developing hippocampus may be sensitive to the effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    Science.gov (United States)

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that

  15. The Concentration Dependence of the (Delta)s Term in the Gibbs Free Energy Function: Application to Reversible Reactions in Biochemistry

    Science.gov (United States)

    Gary, Ronald K.

    2004-01-01

    The concentration dependence of (delta)S term in the Gibbs free energy function is described in relation to its application to reversible reactions in biochemistry. An intuitive and non-mathematical argument for the concentration dependence of the (delta)S term in the Gibbs free energy equation is derived and the applicability of the equation to…

  16. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2018-03-01

    Full Text Available Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of

  17. Temperature Dependency of the Correlation between Secondary Organic Aerosol and Monoterpenes Concentrations at a Boreal Forest Site in Finland

    Science.gov (United States)

    Zhou, Y.; Zhang, W.; Rinne, J.

    2016-12-01

    Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.

  18. Molecular Binding Contributes to Concentration Dependent Acrolein Deposition in Rat Upper Airways: CFD and Molecular Dynamics Analyses.

    Science.gov (United States)

    Xi, Jinxiang; Hu, Qin; Zhao, Linlin; Si, Xiuhua April

    2018-03-27

    Existing in vivo experiments show significantly decreased acrolein uptake in rats with increasing inhaled acrolein concentrations. Considering that high-polarity chemicals are prone to bond with each other, it is hypothesized that molecular binding between acrolein and water will contribute to the experimentally observed deposition decrease by decreasing the effective diffusivity. The objective of this study is to quantify the probability of molecular binding for acrolein, as well as its effects on acrolein deposition, using multiscale simulations. An image-based rat airway geometry was used to predict the transport and deposition of acrolein using the chemical species model. The low Reynolds number turbulence model was used to simulate the airflows. Molecular dynamic (MD) simulations were used to study the molecular binding of acrolein in different media and at different acrolein concentrations. MD results show that significant molecular binding can happen between acrolein and water molecules in human and rat airways. With 72 acrolein embedded in 800 water molecules, about 48% of acrolein compounds contain one hydrogen bond and 10% contain two hydrogen bonds, which agreed favorably with previous MD results. The percentage of hydrogen-bonded acrolein compounds is higher at higher acrolein concentrations or in a medium with higher polarity. Computational dosimetry results show that the size increase caused by the molecular binding reduces the effective diffusivity of acrolein and lowers the chemical deposition onto the airway surfaces. This result is consistent with the experimentally observed deposition decrease at higher concentrations. However, this size increase can only explain part of the concentration-dependent variation of the acrolein uptake and acts as a concurrent mechanism with the uptake-limiting tissue ration rate. Intermolecular interactions and associated variation in diffusivity should be considered in future dosimetry modeling of high

  19. Time- and concentration-dependent effects of resveratrol in HL-60 and HepG2 cells

    DEFF Research Database (Denmark)

    Stervbo, Ulrik; Vang, Ole; Bonnesen, Christine

    2006-01-01

    Resveratrol, a phytochemical present in grapes, has been demonstrated to inhibit tumourigenesis in animal models. However, the specific mechanism by which resveratrol exerts its anticarcinogenic effect has yet to be elucidated. In the present study, the inhibitory effects of resveratrol on cell...... proliferation and apoptosis were evaluated in the human leukaemia cell line HL-60 and the human hepatoma derived cell line HepG2. We found that after a 2 h incubation period, resveratrol inhibited DNA synthesis in a concentration-dependent manner. The IC50 value was 15 μM in both HL-60 and HepG2 cells. When...... the time of treatment was extended, an increase in IC50 value was observed; for example, at 24 h the IC50 value was 30 μM for HL-60 cells and 60 μM for HepG2 cells. Flow cytometry revealed that cells accumulated in different phases of the cell cycle depending on the resveratrol concentration. Furthermore...

  20. High Pre-β1 HDL Concentrations and Low Lecithin: Cholesterol Acyltransferase Activities Are Strong Positive Risk Markers for Ischemic Heart Disease and Independent of HDL-Cholesterol

    Science.gov (United States)

    Sethi, Amar A.; Sampson, Maureen; Warnick, Russell; Muniz, Nehemias; Vaisman, Boris; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Remaley, Alan T.

    2016-01-01

    BACKGROUND We hypothesized that patients with high HDL-cholesterol (HDL-C) and ischemic heart disease (IHD) may have dysfunctional HDL or unrecognized nonconventional risk factors. METHODS Individuals with IHD (Copenhagen University Hospital) and either high HDL-C (n = 53; women ≥735 mg/L; men ≥619 mg/L) or low HDL-C (n = 42; women ≤387 mg/L; men ≤341 mg/L) were compared with individuals without IHD (Copenhagen City Heart Study) matched by age, sex, and HDL-C concentrations (n = 110). All participants had concentrations within reference intervals for LDL-C (lecithin:cholesterol acyltransferase (LCAT) activity by using a proteoliposome cholesterol esterification assay. RESULTS Pre-β1 HDL concentrations were 2-fold higher in individuals with IHD vs no IHD in both the high [63 (5.7) vs 35 (2.3) mg/L; P < 0.0001] and low HDL-C [49 (5.0) vs 27 (1.5) mg/L; P = 0.001] groups. Low LCAT activity was also associated with IHD in the high [95.2 (6.7) vs 123.0 (5.3) μmol · L−1 · h−1; P = 0.002] and low [93.4 (8.3) vs 113.5 (4.9) μmol · L−1 · h−1; P = 0.03] HDL-C groups. ROC curves for pre-β1 HDL in the high–HDL-C groups yielded an area under the curve of 0.71 (95% CI: 0.61–0.81) for predicting IHD, which increased to 0.92 (0.87–0.97) when LCAT was included. Similar results were obtained for low HDL-C groups. An inverse correlation between LCAT activity and pre-β1 HDL was observed (r2 = 0.30; P < 0.0001) in IHD participants, which was stronger in the low HDL-C group (r2 = 0.56; P < 0.0001). CONCLUSIONS IHD was associated with high pre-β1 HDL concentrations and low LCAT levels, yielding correct classification in more than 90% of the IHD cases for which both were measured, thus making pre-β1 HDL concentration and LCAT activity level potentially useful diagnostic markers for cardiovascular disease. PMID:20511449

  1. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA.

    Science.gov (United States)

    Block, Robert C; Abdolahi, Amir; Tu, Xin; Georas, Steve N; Brenna, J Thomas; Phipps, Richard P; Lawrence, Peter; Mousa, Shaker A

    2015-05-01

    Aspirin's prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin's effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a "V"-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Furubayashi, Y [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hirose, Y [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Shimada, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2007-10-07

    Nb{sub 0.06}Sn{sub x}Ti{sub 0.94-x}O{sub 2} (x {<=} 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of {lambda} = 500 nm is estimated to be 12.4% for Nb{sub 0.06}Sn{sub 0.3} Ti{sub 0.64}O{sub 2} thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO{sub 2}. Low resistivity on the order of 10{sup -4} {omega} cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb{sub 0.06}Sn{sub x} Ti{sub 0.94-x}O{sub 2} thin films (x {<=} 0.2). Optical and transport analyses demonstrate that doping Sn into Nb{sub 0.06} Ti{sub 0.94}O{sub 2} can reduce the refractivity while maintaining low resistivity and high transparency.

  3. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    International Nuclear Information System (INIS)

    Chen, T L; Furubayashi, Y; Hirose, Y; Hitosugi, T; Shimada, T; Hasegawa, T

    2007-01-01

    Nb 0.06 Sn x Ti 0.94-x O 2 (x ≤ 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb 0.06 Sn 0.3 Ti 0.64 O 2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO 2 . Low resistivity on the order of 10 -4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb 0.06 Sn x Ti 0.94-x O 2 thin films (x ≤ 0.2). Optical and transport analyses demonstrate that doping Sn into Nb 0.06 Ti 0.94 O 2 can reduce the refractivity while maintaining low resistivity and high transparency

  4. Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbate concentrations in an ascorbate depleted setting.

    Science.gov (United States)

    Senthilkumari, Srinivasan; Talwar, Badri; Dharmalingam, Kuppamuthu; Ravindran, Ravilla D; Jayanthi, Ramamurthy; Sundaresan, Periasamy; Saravanan, Charu; Young, Ian S; Dangour, Alan D; Fletcher, Astrid E

    2014-07-01

    We have previously reported low concentrations of plasma ascorbate and low dietary vitamin C intake in the older Indian population and a strong inverse association of these with cataract. Little is known about ascorbate levels in aqueous humor and lens in populations habitually depleted of ascorbate and no studies in any setting have investigated whether genetic polymorphisms influence ascorbate levels in ocular tissues. Our objectives were to investigate relationships between ascorbate concentrations in plasma, aqueous humor and lens and whether these relationships are influenced by Single Nucleotide Polymorphisms (SNPs) in sodium-dependent vitamin C transporter genes (SLC23A1 and SLC23A2). We enrolled sixty patients (equal numbers of men and women, mean age 63 years) undergoing small incision cataract surgery in southern India. We measured ascorbate concentrations in plasma, aqueous humor and lens nucleus using high performance liquid chromatography. SLC23A1 SNPs (rs4257763, rs6596473) and SLC23A2 SNPs (rs1279683 and rs12479919) were genotyped using a TaqMan assay. Patients were interviewed for lifestyle factors which might influence ascorbate. Plasma vitamin C was normalized by a log10 transformation. Statistical analysis used linear regression with the slope of the within-subject associations estimated using beta (β) coefficients. The ascorbate concentrations (μmol/L) were: plasma ascorbate, median and inter-quartile range (IQR), 15.2 (7.8, 34.5), mean (SD) of aqueous humor ascorbate, 1074 (545) and lens nucleus ascorbate, 0.42 (0.16) (μmol/g lens nucleus wet weight). Minimum allele frequencies were: rs1279683 (0.28), rs12479919 (0.30), rs659647 (0.48). Decreasing concentrations of ocular ascorbate from the common to the rare genotype were observed for rs6596473 and rs12479919. The per allele difference in aqueous humor ascorbate for rs6596473 was -217 μmol/L, p humor ascorbate were higher for the GG genotype of rs6596473: GG, β = 1460 compared to

  5. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  6. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  7. Inhibitory Effects of Cytosolic Ca2+ Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets

    Directory of Open Access Journals (Sweden)

    Hyuk-Woo Kwon

    2015-01-01

    Full Text Available Intracellular Ca2+ ([Ca2+]i is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro, an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI (Ser1756 to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756 by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa, indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756 phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  8. Ethanol concentration-dependent alterations in gene expression during acute binge drinking in the HIV-1 transgenic rat.

    Science.gov (United States)

    Sarkar, Sraboni; Chang, Sulie L

    2013-07-01

    Binge drinking of high ethanol (EtOH) concentration beverages is common among young adults and can be a risk factor for exposure to sexually transmitted diseases, including HIV-1. We used a novel noninfectious HIV-1 transgenic (HIV-1Tg) rat model that mimics HIV-1 patients in terms of altered immune responses and deficits in cognitive learning and memory to investigate EtOH concentration-dependent effects on 48 alcohol-modulated genes during binge EtOH administration. HIV-1Tg and control F344 rats were administered water, 8% EtOH, or 52% EtOH by gavage (i.g.) for 3 days (2.0 g/kg/d). Two hours after final treatment, blood, liver, and spleen were collected from each animal. Serum blood EtOH concentration (BEC) was measured, and gene expression in the liver and spleen was determined using a specifically designed PCR array. The BEC was significantly higher in the 52% EtOH-treated HIV-1Tg rats compared with the 8% EtOH group; however, the BEC was higher in the 8% EtOH-treated control rats compared with the 52% EtOH group. There was no change in expression of the EtOH metabolism-related genes, Adh1, Adh4, and Cyp2e1, in either the 8 or 52% EtOH-treated HIV-1Tg rats, whereas expression of those genes was significantly higher in the liver of the 52% EtOH control rats, but not in the 8% EtOH group. In the HIV-1Tg rats, expression of the GABAA , metabotropic glutamate, and dopamine neurotransmitter receptor genes was significantly increased in the spleen of the 52% EtOH group, but not in the 8% EtOH group, whereas no change was observed in those genes in either of the control groups. Our data indicate that, in the presence of HIV-1 infection, EtOH concentration-dependent binge drinking can have significantly different molecular effects. Copyright © 2013 by the Research Society on Alcoholism.

  9. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  10. Seminal Plasma HIV-1 RNA Concentration Is Strongly Associated with Altered Levels of Seminal Plasma Interferon-γ, Interleukin-17, and Interleukin-5

    Science.gov (United States)

    Hoffman, Jennifer C.; Anton, Peter A.; Baldwin, Gayle Cocita; Elliott, Julie; Anisman-Posner, Deborah; Tanner, Karen; Grogan, Tristan; Elashoff, David; Sugar, Catherine; Yang, Otto O.

    2014-01-01

    Abstract Seminal plasma HIV-1 RNA level is an important determinant of the risk of HIV-1 sexual transmission. We investigated potential associations between seminal plasma cytokine levels and viral concentration in the seminal plasma of HIV-1-infected men. This was a prospective, observational study of paired blood and semen samples from 18 HIV-1 chronically infected men off antiretroviral therapy. HIV-1 RNA levels and cytokine levels in seminal plasma and blood plasma were measured and analyzed using simple linear regressions to screen for associations between cytokines and seminal plasma HIV-1 levels. Forward stepwise regression was performed to construct the final multivariate model. The median HIV-1 RNA concentrations were 4.42 log10 copies/ml (IQR 2.98, 4.70) and 2.96 log10 copies/ml (IQR 2, 4.18) in blood and seminal plasma, respectively. In stepwise multivariate linear regression analysis, blood HIV-1 RNA level (pplasma HIV-1 RNA level. After controlling for blood HIV-1 RNA level, seminal plasma HIV-1 RNA level was positively associated with interferon (IFN)-γ (p=0.03) and interleukin (IL)-17 (p=0.03) and negatively associated with IL-5 (p=0.0007) in seminal plasma. In addition to blood HIV-1 RNA level, cytokine profiles in the male genital tract are associated with HIV-1 RNA levels in semen. The Th1 and Th17 cytokines IFN-γ and IL-17 are associated with increased seminal plasma HIV-1 RNA, while the Th2 cytokine IL-5 is associated with decreased seminal plasma HIV-1 RNA. These results support the importance of genital tract immunomodulation in HIV-1 transmission. PMID:25209674

  11. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  12. Regional analysis of groundwater phosphate concentrations under acidic sandy soils: Edaphic factors and water table strongly mediate the soil P-groundwater P relation.

    Science.gov (United States)

    Mabilde, Lisa; De Neve, Stefaan; Sleutel, Steven

    2017-12-01

    Historic long-term P application to sandy soils in NW-Europe has resulted in abundant sorption, saturation and eventually leaching of P from soil to the groundwater. Although many studies recognize the control of site-specific factors like soil texture and phosphate saturation degree (PSD), the regional-scaled relevance of effects exerted by single factors controlling P leaching is unclear. Very large observational datasets of soil and groundwater P content are furthermore required to reveal indirect controls of soil traits through mediating soil variables. We explored co-variation of phreatic groundwater orthophosphate (o-P) concentration and soil factors in sandy soils in Flanders, Belgium. Correlation analyses were complemented with an exploratory model derived using 'path analysis'. Data of oxalate-extractable Al, Fe, P and pH KCl , phosphate sorption capacity (PSC) and PSD in three depth layers (0-30, 30-60, 60-90 cm), topsoil SOC, % clay and groundwater depth (fluctuation) were interpolated to predict soil properties on exact locations of a very extensive net of groundwater monitoring wells. The mean PSD was only poorly correlated to groundwater o-P concentration, indicating the overriding control of other factors in the transport of P to the groundwater. A significant (P soil pH and groundwater table depth than by PSD indicates the likely oversimplification of the latter index to measure the long-term potential risk of P leaching. Accounting for controls on leaching not included in PSD via an alternative index, however, seems problematic as in Flanders for example groundwater o-P turned out to be higher in finer textured soils or soils with higher pedogenic Fe content, probably because of their lower pedogenic Al content and higher soil pH. Path analysis of extensive soil and groundwater datasets seems a viable way to identify prime local determinants of soil P leaching and could be further on used for 'ground-truthing' more complex P-migration simulation

  13. Resting spore formation of aphid-pathogenic fungus Pandora nouryi depends on the concentration of infective inoculum.

    Science.gov (United States)

    Huang, Zhi-Hong; Feng, Ming-Guang

    2008-07-01

    Resting spore formation of some aphid-pathogenic Entomophthorales is important for the seasonal pattern of their prevalence and survival but this process is poorly understood. To explore the possible mechanism involved in the process, Pandora nouryi (obligate aphid pathogen) interacted with green peach aphid Myzus persicae on cabbage leaves under favourable conditions. Host nymphs showered with primary conidia of an isolate (LC(50): 0.9-6.7 conidia mm(-2) 4-7 days post shower) from air captures in the low-latitude plateau of China produced resting spores (azygospores), primary conidia or both spore types. Surprisingly, the proportion of mycosed cadavers forming resting spores (P(CFRS)) increased sharply within the concentrations (C) of 28-240 conidia mm(-2), retained high levels at 240-1760, but was zero or extremely low at 0.3-16. The P(CFRS)-C relationship fit well the logistic equation P(CFRS) = 0.6774/[1 + exp(3.1229-0.0270C)] (r(2) = 0.975). This clarified for the first time the dependence of in vivo resting spore formation of P. nouryi upon the concentration of infective inoculum. A hypothesis is thus proposed that some sort of biochemical signals may exist in the host-pathogen interaction so that the fungal pathogen perceives the signals for prompt response to forthcoming host-density changes by either producing conidia for infecting available hosts or forming resting spores for surviving host absence in situ.

  14. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  15. CO partial pressure dependence of the kinetics of melting of HbS aggregates studied in high concentration phosphate buffer

    Science.gov (United States)

    Aroutiounian, Svetlana

    2002-10-01

    Deoxygenated sickle cell hemoglobin (HbS) monomers enter the polymer phase either by incorporation into a critical nucleus, through heterogeneous nucleation and or through linear growth of the polymers when the concentration of monomers exceeds the solubility. CO-bound, R-state HbS monomers do not polymerize. Thus, polymer melting is enhanced by binding of carbon monoxide (CO) to HbS polymerized monomers. In our study, the melting of HbS aggregates mediated by dilution and CO binding to polymerized monomers is observed with time-resolved extinction spectroscopy. The CO partial pressure (pCO) dependence of the kinetics of melting is studied for pCO = 0, 0.25, 0.5, 0.75, 1 atm with difference progress curves. A phenomenological description with slow and fast relaxation modes reveals a variable relaxation time near the pCO=0.5 due to competition of kinetic mechanisms. The slow component increases with increasing pCO. It has a positive intercept due to the combined action of dilution of the sample and CO-ligation. The pCO dependence is near linear due to non-cooperative CO binding. Significant slowing down of aged samples, most likely due to gelation, is observed. As possible mechanism for variable relaxation time near pCO=0.5atm the fractional percolation threshold is discussed. This work was supported by NIH grant HL58091 (awarded to Daniel. B. Kim-Shapiro).

  16. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants

    Directory of Open Access Journals (Sweden)

    Ma Q

    2012-04-01

    concentration (500 ng/mL of FGF2 immobilization exhibited improved HGF functions such as cellular attachment, proliferation, and extracellular matrix-related gene expression. Moreover, significant bidirectional as well as concentration- and time-dependent bioactivity was observed.Conclusion: Synergism of the FGF2-impregnated titanium dioxide nanotubular surface revealed good gingival-implant integration, indicating that these materials might have promising applications in dentistry and other biomedical devices.Keywords: dental implants, titanium dioxide nanotube, fibroblast growth factor 2, extracellular matrix, real-time polymerase chain reaction

  17. Cytotoxicity of β-D-glucose/sucrose-coated silver nanoparticles depends on cell type, nanoparticles concentration and time of incubation

    Science.gov (United States)

    Vergallo, Cristian; Panzarini, Elisa; Carata, Elisabetta; Ahmadi, Meysam; Mariano, Stefania; Tenuzzo, Bernardetta Anna; Dini, Luciana

    2016-06-01

    The use of silver NanoParticles (AgNPs) in several consumer commercialized products, like food contact materials, medical devices and cosmetics has increased significantly, owing to their antibacterial and antifungal properties. Even though the NPs are widely diffused, due to the great variety in size, coating or shape, controversial data on their possible detrimental health effects still exist. Herein, by performing an easy and fast green method synthesis, we used β-D-glucose/sucrose to stabilize AgNPs and avoid the release of cytotoxic soluble silver ions Ag+ in the culture medium. The cytotoxic effects of these β-D-Glucose/Sucrose-Coated AgNPs (AgNPs-GS) was assessed on two cell culture models, which are human liver HepG2 and human Peripheral Blood Lymphocytes (PBLs) cells. AgNPs-GS, as determined by Transmission Electron Microscopy (TEM) analyses, had an average diameter of 30±5 nm, a spherical shape and were well-dispersed in the freshly-prepared solution. In addition, they were found spectrophotometrically stable throughout the experiment. Cytotoxicity, determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, was evaluated by using two AgNPs-GS amounts, indicated as highest (10×103 of NPs/cell) and lowest (2×103 NPs/cell) concentration for 6, 12 and 24 h. The highest concentration of AgNPs-GS was significantly cytotoxic for both HepG2 and PBLs cells at all times, when compared with the negative control; conversely, the lowest amount of AgNPs-GS was toxic only for HepG2 cells. A significant increase of Reactive Oxygen Species (ROS) levels, determined by Nitro Blue Tetrazolium (NBT) reduction assay, was observed only in PBLs after treatment with NPs, by reaching maximum levels after the incubation with the lowest amount of NPs for 24 h. Significant morphological changes, depending on NPs/cell amount, characteristic of cell toxicity, like shape, cytoplasm, and nucleus alterations, were observed in lymphocytes and Hep

  18. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    Science.gov (United States)

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  19. The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits

    Science.gov (United States)

    Mele, Daniela; Dioguardi, Fabio

    2018-03-01

    Acknowledging the grain size dependency of shape is important in volcanology, in particular when dealing with tephra produced and emplaced during and after explosive volcanic eruptions. A systematic measurement of the tridimensional shape of vesicular pyroclasts of Campi Flegrei fallout deposits (Agnano-Monte Spina, Astroni 6 and Averno 2 eruptions) varying in size from 8.00 to 0.016 mm has been carried out by means of X-Ray Microtomography. Data show that particle shape changes with size, especially for juvenile vesicular clasts, since it is dependent on the distribution and size of vesicles that contour the external clast outline. Two drag laws that include sphericity in the formula were used for estimating the dependency of settling velocity on shape. Results demonstrate that it is not appropriate to assume a size-independent shape for vesicular particles, in contrast with the approach commonly employed when simulating the ash dispersion in the atmosphere.

  20. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    Science.gov (United States)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  1. Outcome of Treatment of Human HeLa Cervical Cancer Cells With Roscovitine Strongly Depends on the Dosage and Cell Cycle Status Prior to the Treatment

    Czech Academy of Sciences Publication Activity Database

    Wesierska-Gadek, J.; Borza, A.; Walzi, E.; Kryštof, Vladimír; Maurer, M.; Komina, O.; Wandl, S.

    2009-01-01

    Roč. 106, č. 5 (2009), s. 937-955 ISSN 0730-2312 Institutional research plan: CEZ:AV0Z50380511 Keywords : APOPTOSIS * CELL CYCLE ARREST * CYCLIN-DEPENDENT KINASES Subject RIV: ED - Physiology Impact factor: 2.935, year: 2009

  2. Does mortality risk of cigarette smoking depend on serum concentrations of persistent organic pollutants? Prospective investigation of the vasculature in Uppsala seniors (PIVUS study.

    Directory of Open Access Journals (Sweden)

    Duk-Hee Lee

    Full Text Available Cigarette smoking is an important cause of preventable death globally, but associations between smoking and mortality vary substantially across country and calendar time. Although methodological biases have been discussed, it is biologically plausible that persistent organic pollutants (POPs like polychlorinated biphenyls (PCBs and organochlorine (OC pesticides can affect this association. This study was performed to evaluate if associations of cigarette smoking with mortality were modified by serum concentrations of PCBs and OC pesticides. We evaluated cigarette smoking in 111 total deaths among 986 men and women aged 70 years in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS with mean follow-up for 7.7 years. The association between cigarette smoking and total mortality depended on serum concentration of PCBs and OC pesticides (P value for interaction = 0.02. Among participants in the highest tertile of the serum POPs summary score, former and current smokers had 3.7 (95% CI, 1.5-9.3 and 6.4 (95% CI, 2.3-17.7 times higher mortality hazard, respectively, than never smokers. In contrast, the association between cigarette smoking and total mortality among participants in the lowest tertile of the serum POPs summary score was much weaker and statistically non-significant. The strong smoking-mortality association observed among elderly people with high POPs was mainly driven by low risk of mortality among never smokers with high POPs. As smoking is increasing in many low-income and middle-income countries and POPs contamination is a continuing problem in these areas, the interactions between these two important health-related issues should be considered in future research.

  3. Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys

    International Nuclear Information System (INIS)

    Levesque, Maximilien; Martinez, Enrique; Fu, Chu-Chun; Nastar, Maylise; Soisson, Frederic

    2011-01-01

    This work is motivated by the need for large-scale simulations to extract physical information on the iron-chromium system that is a binary model alloy for ferritic steels used or proposed in many nuclear applications. From first-principles calculations and the experimental critical temperature we build a new energetic rigid lattice model based on pair interactions with concentration and temperature dependence. Density functional theory calculations in both norm-conserving and projector augmented-wave approaches have been performed. A thorough comparison of these two different ab initio techniques leads to a robust parametrization of the Fe-Cr Hamiltonian. Mean-field approximations and Monte Carlo calculations are then used to account for temperature effects. The predictions of the model are in agreement with the most recent phase diagram at all temperatures and compositions. The solubility of Cr in Fe below 700 K remains in the range of about 6 to 12%. It reproduces the transition between the ordering and demixing tendency and the spinodal decomposition limits are also in agreement with the values given in the literature.

  4. Dependence of the concentrations of "1"3"7Cs and potassium in extracted soil solutions on soil humidity before centrifugation

    International Nuclear Information System (INIS)

    Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.

    2017-01-01

    Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions

  5. Diameter-dependent photoluminescence properties of strong phase-separated dual-wavelength InGaN/GaN nanopillar LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: qwang365@163.com [School of Science, Qilu University of Technology, Jinan, 250353 (China); School of Microelectronics, Shandong University, Jinan, 250100 (China); Ji, Ziwu, E-mail: jiziwu@sdu.edu.cn [School of Microelectronics, Shandong University, Jinan, 250100 (China); Zhou, Yufan; Wang, Xuelin [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Baoli [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Xu, Xiangang [Key Laboratory of Functional Crystal Materials and Device (Ministry of Education), Shandong University, Jinan, 250100 (China); Gao, Xingguo; Leng, Jiancai [School of Science, Qilu University of Technology, Jinan, 250353 (China)

    2017-07-15

    Highlights: • Nanopillar LED with smaller diameter shows a larger strain relaxation in the MQWs. • Nanopillar induced blue shift of green peak is smaller than that of blue peak. • Nanopillar induced blue shift of green/blue peak at 300 K is smaller than at 4 K. • PL intensity decreases with reducing nanopillar diameter with same pillar density. - Abstract: In this paper, strong phase-separated blue/green dual-wavelength InGaN/GaN nanopillar (NP) light emitting diodes (LEDs) with the same NP density and various NP diameters were fabricated using focused ion beam etching. Micro-Raman spectroscopy was used to show the effect of NP diameter on the strain relaxation in the multi-quantum-wells (MQWs). The effect of NP diameter on optical behaviors of the strong phase-separated dual-wavelength InGaN/GaN NP LEDs was investigated for the first time by using micro-photoluminescence (PL) spectroscopy. The blue shifts of PL peak energies of the NP LEDs showed that the NP LED with a smaller diameter exhibited a larger strain relaxation in the MQWs, as confirmed by micro-Raman results. And the blue shift of green emission was smaller than that of blue emission. The total integrated PL intensities from the NP arrays were enhanced compared to the as-grown sample due to the increased recombination rate and light extraction efficiency. The enhancement factor decreased with decreasing the NP diameter in our experiments, which indicated that the loss of active volume was gradually dominant for the luminous efficiency of NP LEDs compared to the increased recombination rate and light extraction efficiency.

  6. Vacuolar ATPases, like F1,F0-ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme

    International Nuclear Information System (INIS)

    Kasho, V.N.; Boyer, P.D.

    1989-01-01

    Recent studies with vacuolar ATPases have shown that multiple copies catalytic subunits are present and that these have definite sequence homology with catalytic subunits of the F 1 , F 0 -ATPases. Experiments are reported that assess whether the vacuolar ATPases may have the unusual catalytic cooperativity with sequential catalytic site participation as in the binding change mechanism for the F 1 ,F 0 -ATPases. The extent of reversal of bound ATP hydrolysis to bound ADP and P i as medium ATP concentration was lowered was determined by 18 O-exchange measurements for yeast and neurospora vacuolar ATPases. The results show a pronounced increase in the extent of water oxygen incorporation into the P i formed as ATP concentration is decreased to the micromolar range. The F 1 ,F 0 -ATPase from neurospora mitochondria showed an event more pronounced modulation, similar to that of other F 1 -type ATPases. The vacuolar ATPases thus appear to have a catalytic mechanism quite analogous to that of the F 1 ,F 0 -ATPases

  7. Strong composition dependence of resistive switching in Ba1-xSrxTiO3 thin films on semiconducting substrates and its thermodynamic analysis

    OpenAIRE

    Mohammad Moradi, Omid; Şen, Canhan; Sen, Canhan; Boni, A. G.; Pintilie, L.; Mısırlıoğlu, Burç; Misirlioglu, Burc

    2018-01-01

    In this work, we report on the variability of the Schottky effect in solution processed Ba1-xSrxTiO3 films (BST, x = 0, 0.5) grown on 0.5% Nb doped SrTiO3 substrates with top Pt electrodes (NSTO/BST/Pt). The films display leakage currents accompanied by varying degrees of hystereses in the current-voltage measurements. The magnitude of the leakage and hystereses depend on the Sr content. We focus on the current-voltage (I-V) behavior of our samples in the light of thermodynamic theory of ferr...

  8. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    Science.gov (United States)

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  9. Modeling steady state SO2-dependent changes in capillary ATP concentration using novel O2 micro-delivery methods

    Science.gov (United States)

    Ghonaim, Nour W.; Fraser, Graham M.; Ellis, Christopher G.; Yang, Jun; Goldman, Daniel

    2013-01-01

    Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance to the electrically coupled endothelium. We have developed a computational model to investigate the effect of delivering or removing O2 to limited areas at the surface of a tissue with an idealized parallel capillary array on total ATP concentration. Simulations were conducted when exposing full surface to perturbations in tissue O2 tension (PO2) or locally using a circular micro-outlet (~100 μm in diameter), a square micro-slit (200 × 200 μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations (SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This suggests a threshold for the minimum number of capillaries that need to be stimulated in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter) that replaces 4 surface capillaries in the idealized network geometry. Based on the results, the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular network is minimal although they would participate as O2 sources thus influencing the O2 distribution. The modeling data presented here provide important insights into designing a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries in vivo. PMID:24069001

  10. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    Science.gov (United States)

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  11. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    Science.gov (United States)

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Relationship between cobalamin-dependent metabolites and both serum albumin and alpha1 -proteinase inhibitor concentrations in hypocobalaminemic dogs of 7 different breeds.

    Science.gov (United States)

    Grützner, Niels; Suchodolski, Jan S; Steiner, Jörg M

    2014-12-01

    Increased serum concentrations of homocysteine (HCY) and methylmalonic acid (MMA), the 2 main cobalamin-dependent metabolites, as well as decreased serum albumin and canine alpha1 -proteinase inhibitor (cα1 -PI) concentrations have previously been described in hypocobalaminemic dogs with gastrointestinal disease. However, no studies have been conducted to evaluate potential relationships between these serum biomarkers. The aim of this study was to evaluate the relationship between HCY and MMA, 2 cobalamin-dependent metabolites, and both serum albumin and cα1 -PI concentrations in hypocobalaminemic dogs. Serum samples from 285 dogs including 7 different breeds (Beagle, Boxer, Cocker Spaniel, German Shepherd, Labrador Retriever, Chinese Shar-Pei, and Yorkshire Terrier) with hypocobalaminemia were used. Serum HCY, MMA, albumin, and cα1 -PI concentrations were determined. There was a significant correlation between serum HCY and albumin concentrations, as well as serum HCY and cα1 -PI concentrations (ρ = 0.62 and ρ = 0.37, respectively; P  .05). In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, and serum HCY and MMA concentrations in Chinese Shar-Peis with hypocobalaminemia. This study shows a correlation between serum albumin and cα1 -PI and HCY concentrations, but not with serum MMA concentration in dogs with hypocobalaminemia. In addition, significant breed-specific correlations were observed between serum MMA and albumin concentrations in German Shepherds, as well as serum HCY and MMA concentrations in Chinese Shar-Peis, emphasizing the unique metabolic interactions in those dog breeds affected by hypocobalaminemia. © 2014 American Society for Veterinary Clinical Pathology.

  13. Radiation-induced strand-breaks and DNA-protein crosslinks depend predominantly on the dose, oxygen concentration and repair time

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Miyagi, Y.; Zhang, H.

    1995-01-01

    It has been known for many years that the DNA damage produced by ionizing radiation depends upon the oxygen concentration around the DNA. For example, the number of DNA strand-breaks (SBs) formed per unit dose decreases at low oxygen concentrations, and the number of DNA-protein crosslinks formed per unit dose increases at low oxygen concentrations. If radiation-induced SBs and DPCs are to be useful for detecting and/or quantifying hypoxic cells in solid tumors, the formation of these lesions must depend predominantly on the oxygen concentration around the DNA. All other physical, biological, and physiological factors must either be controllable or have little influence on the assay used to measure these lesions. This paper is a summary of the authors' recent experiments to determine if the radiation-induced SBs and DPCs measured by alkaline elution may be used to estimate the hypoxic fraction or fractional hypoxic volume of solid tumors

  14. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  15. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  16. The dependence of Raman scattering on Mg concentration in Mg-doped GaN grown by MBE

    International Nuclear Information System (INIS)

    Flynn, Chris; Lee, William

    2014-01-01

    Magnesium-doped GaN (GaN:Mg) films having Mg concentrations in the range 5 × 10 18 –5 × 10 20 cm −3 were fabricated by molecular beam epitaxy. Raman spectroscopy was employed to study the effects of Mg incorporation on the positions of the E 2 and A 1 (LO) lines identifiable in the Raman spectra. For Mg concentrations in excess of 2 × 10 19 cm −3 , increases in the Mg concentration shift both lines to higher wave numbers. The shifts of the Raman lines reveal a trend towards compressive stress induced by incorporation of Mg into the GaN films. The observed correlation between the Mg concentration and the Raman line positions establish Raman spectroscopy as a useful tool for optimizing growth of Mg-doped GaN. (papers)

  17. Inflammatory markers in dependence on the plasma concentration of 37 fatty acids after the coronary stent implantation.

    Science.gov (United States)

    Handl, Jiří; Meloun, Milan; Mužáková, Vladimíra

    2018-02-05

    Using the regression model building the relationships between the concentration of 37 fatty acids of blood plasma phospholipids of 41 patients with coronary artery disease after coronary stent implantation, the inflammatory response and oxidative stress markers were estimated. The dynamics of the inflammatory response and the oxidative stress was indicated by measuring plasma concentrations of highly sensitive C-reactive protein, interleukin-6, serum amyloid A and malondialdehyde before, 24h after stent implantation. The multiple linear regression analysis was preceded by an exploratory data analysis, principal component analysis, factor analysis and cluster analysis, which proved a hidden internal relation of 37 fatty acids. The concentration of cerotic acid (C26:0) has been positively associated with an increase of malondialdehyde concentration after stent implantation, while the concentrations of tetracosatetraenoic (C24:4 N6) and nonadecanoic (C19:0) acids were associated with decrease of lipoperoxidation. The increase of interleukin-6 during the 24h after implantation was associated with higher levels of pentadecanoic acid (C15:0) and lower levels of α-linolenic acid (C18:3 N3). Regression models found several significant fatty acids at which the strength of the parameter β for each fatty acid on selected markers of C-reactive protein, malondialdehyde, interleukin-6 and serum amyloid A was estimated. Parameter β testifies to the power of the positive or negative relationship of the fatty acid concentration on the concentration of selected markers. The influencing effect of the cerotic acid (C26:0) concentration in plasma phospholipids exhibiting parameter β=140.4 is, for example, 3.5 times higher than this effect of n-3 tetracosapentaenoic acid (C24:5 N3) with β=40.0. Composition of fatty acids in plasma phospholipids shows spectrum of fatty acids available for intercellular communication in systemic inflammatory response of organism and should affect

  18. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  19. Experimental evidence of the dependence of spin tunnelling on the concentration of dislocations in Mn12 crystals

    OpenAIRE

    Torres, F.; Hernandez, J. M.; Molins, E.; Garcia-Santiago, A.; Tejada, J.

    2001-01-01

    We present experimental results on resonant spin tunnelling in a single crystal of Mn$_{12}$-2Cl benzoate with different concentration of dislocations. The time evolution of the magnetisation follows the stretched exponential over a few time decades. The values of parameters of stretched exponential deduced from experiment have been used to determine the concentration of dislocations before and after the cooling-annealing process, using the algorithm recently suggested by Garanin and Chudnovsky.

  20. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  1. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    Science.gov (United States)

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  2. CTX-M-1 β-lactamase expression in Escherichia coli is dependent on cefotaxime concentration, growth phase and gene location

    DEFF Research Database (Denmark)

    Kjeldsen, Thea S. B.; Overgaard, Martin; Nielsen, Søren S.

    2015-01-01

    blaCTX-M-1 mRNA expression and CTX-M-1 protein levels were dependent on cefotaxime concentration, growth phase and gene location. These results provide insight into the expression of cephalosporin resistance in CTX-M-1-producing E. coli, improving our understanding of the relationship between ant...

  3. Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr3 Nanowires and Nanoplatelets.

    Science.gov (United States)

    Di Stasio, Francesco; Imran, Muhammad; Akkerman, Quinten A; Prato, Mirko; Manna, Liberato; Krahne, Roman

    2017-06-15

    We discuss the photoluminescence (PL) of quantum-confined CsPbBr 3 colloidal nanocrystals of two different shapes (nanowires and nanoplatelets) at different concentrations in solution and in solid-state films. Upon increasing the nanocrystal concentration in solution, a constant drop in photoluminescence quantum yield is observed, accompanied by a significant PL red shift. This effect is reversible, and the original PL can be restored by diluting to the original concentration. We show that this effect can be in part attributed to self-absorption and partly to aggregation. In particular, for nanoplatelets, where the aggregation is mostly irreversible, while the self-absorption effect is reversible, the two contributions can be well separated. Finally, when dry solid-state films are prepared, the emission band is shifted into the green spectral region, close to the bulk CsPbBr 3 band gap, thus preventing blue emission from such films.

  4. Temperature dependence of the short-range order parameter and the concentration dependence of the order disorder temperature for Ni-Pt and Ni-Fe systems in the improved statistical pseudopotential approximation

    International Nuclear Information System (INIS)

    Khwaja, F.A.

    1980-08-01

    The calculations for the temperature dependence of the first shell short-range order (SRO) parameter for Ni 3 Fe using the cubic approximation of Tahir Kheli, and the concentration dependence of order-disorder temperature Tsub(c) for Ni-Fe and Ni-Pt systems using the linear approximation, have been carried out in the framework of pseudopotential theory. It is shown that the cubic approximation yields a good agreement between the theoretical prediction of the α 1 and the experimental data. Results for the concentration dependence of the Tsub(c) show that improvements in the statistical pseudo-potential approach are essential to achieve a good agreement with experiment. (author)

  5. Phase I/II safety study of transfusion of prion-filtered red cell concentrates in transfusion-dependent patients.

    LENUS (Irish Health Repository)

    Cahill, M R

    2010-08-01

    Variant Creutzfeldt-Jakob (vCJD) is a fatal transfusion transmissible prion infection. No test for vCJD in the donor population is currently available. Therefore, prion removal by filtration of red cell concentrate (RCC) is an attractive option for prevention.

  6. Time dependent changes in myocardial norepinephrine concentration and adrenergic receptor density following X-irradiation of the rat heart

    NARCIS (Netherlands)

    Franken, N. A.; van der Laarse, A.; Bosker, F. J.; Reynart, I. W.; van Ravels, F. J.; Strootman, E.; Wondergem, J.

    1992-01-01

    The hearts of 9 to 12-weeks-old Sprague-Dawley rats were locally irradiated with a single dose of 20 Gy. The effects on myocardial norepinephrine concentrations and on alpha-adrenergic and beta-adrenergic receptor densities was examined up to 16 months post-treatment. Myocardial norepinephrine

  7. DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration.

    Science.gov (United States)

    Kaselis, Andrius; Treinys, Rimantas; Vosyliūtė, Rūta; Šatkauskas, Saulius

    2014-03-01

    Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.

  8. SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction

    International Nuclear Information System (INIS)

    Pasquier, Jennifer; Abu-Kaoud, Nadine; Abdesselem, Houari; Madani, Aisha; Hoarau-Véchot, Jessica; Thawadi, Hamda Al.; Vidal, Fabien; Couderc, Bettina; Favre, Gilles; Rafii, Arash

    2015-01-01

    The interaction of SDF-1alpha with its receptor CXCR4 plays a role in the occurrence of distant metastasis in many solid tumors. This interaction increases migration from primary sites as well as homing at distant sites. Here we investigated how SDF-1α could modulate both migration and adhesion of cancer cells through the modulation of RhoGTPases. We show that different concentrations of SDF-1α modulate the balance of adhesion and migration in cancer cells. Increased migration was obtained at 50 and 100 ng/ml of SDF-1α; however migration was reduced at 200 ng/ml. The adhesion between breast cancer cells and BMHC was significantly increased by SDF-1α treatment at 200 ng/ml and reduced using a blocking monoclonal antibody against CXCR4. We showed that at low SDF-1α concentration, RhoA was activated and overexpressed, while at high concentration Rac1 was promoting SDF-1α mediating-cell adhesion. We conclude that SDF-1α concentration modulates migration and adhesion of breast cancer cells, by controlling expression and activation of RhoGTPases. The online version of this article (doi:10.1186/s12885-015-1556-7) contains supplementary material, which is available to authorized users

  9. Concentration-dependent ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline scandia-stabilized zirconia

    DEFF Research Database (Denmark)

    Sillassen, M.; Eklund, P.; Pryds, Nini

    2010-01-01

    grain size, yielding a grain size of 6 nm and a microstrain of 2.5% at -200 V and -250 V with additional incorporation of argon. Temperature-dependent impedance spectroscopy of the SSZ films showed that the in-plane ionic conductivity had a maximum close to 10.7 mol% and decreased almost an order...... of magnitude as the scandia - content was increased to 15.9 mol%. The activation energy for oxygen ion migration was determined to be between 1.30 - 1.43 eV. In addition, no dependence on grain size was observed. The above observations suggest a bulk mechanism for ionic conduction....

  10. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers.

    Science.gov (United States)

    Lozeau, Lindsay D; Rolle, Marsha W; Camesano, Terri A

    2018-07-01

    The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM). Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  12. Raman spectroscopic analysis of the carotenoid concentration in egg yolks depending on the feeding and housing conditions of the laying hens.

    Science.gov (United States)

    Hesterberg, Karoline; Schanzer, Sabine; Patzelt, Alexa; Sterry, Wolfram; Fluhr, Joachim W; Meinke, Martina C; Lademann, Jürgen; Darvin, Maxim E

    2012-01-01

    Resonance Raman spectroscopic measurements are suited to analyze the concentration of carotenoid antioxidants in biological samples. Previously, it has been shown that the carotenoid concentration of nutritional egg yolks has a direct influence on the carotenoid content of human skin in vivo. In the present study, resonance Raman spectroscopy was used to analyze the carotenoid concentration in the yolks of hen eggs, which were housed in battery cages or alternatively on free-range grassland. The egg yolks of hens, which had access to grassland, contained approximately double the amount of carotenoid concentration than the egg yolks of hens housed in battery cages (p egg yolks, depending on fodder, housing and weather conditions, were investigated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    International Nuclear Information System (INIS)

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-01-01

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  14. Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Sandvik

    2015-11-01

    Full Text Available Staphylococcus aureus is a notorious pathogen with a propensity to cause chronic, non-healing wounds. Bacterial persisters have been implicated in the recalcitrance of S. aureus infections, and this motivated us to examine the persistence of S. aureus to ciprofloxacin, a quinolone antibiotic. Upon treatment of exponential phase S. aureus with ciprofloxacin, we observed that survival was a non-monotonic function of ciprofloxacin concentration. Maximal killing occurred at 1 µg/mL ciprofloxacin, which corresponded to survival that was up to ~40-fold lower than that obtained with concentrations ≥ 5 µg/mL. Investigation of this phenomenon revealed that the non-monotonic response was associated with prophage induction, which facilitated killing of S. aureus persisters. Elimination of prophage induction with tetracycline was found to prevent cell lysis and persister killing. We anticipate that these findings may be useful for the design of quinolone treatments.

  15. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  16. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    Science.gov (United States)

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  17. Time-Dependent Decline in Serum Phenytoin Concentration with Heightened Convulsive Seizure Risk by Prolonged Administration of Fosphenytoin in Japanese: A Retrospective Study.

    Science.gov (United States)

    Ohno, Yuta; Niwa, Takashi; Hirai, Keita; Suzuki, Keiko; Yamada, Yuto; Hayashi, Yuichi; Hayashi, Hideki; Suzuki, Akio; Itoh, Yoshinori

    2018-04-20

    Because clinical data to confirm the safety and effectiveness of fosphenytoin, a prodrug of phenytoin, are insufficient, the length of administration of fosphenytoin is restricted. Nevertheless, some cases require fosphenytoin administration for more than a few days. The aim of this study was to retrospectively investigate the serum concentration of phenytoin in adult Japanese patients who received intravenous fosphenytoin therapy for more than 3 days. Patients injected with intravenous fosphenytoin for more than 3 days at Gifu University Hospital between January 2012 and September 2014 were enrolled. Individual pharmacokinetic parameters were predicted by Bayesian estimation using NONMEM software, and the maintenance dose of fosphenytoin required to maintain the therapeutic trough concentration (10-20 μg/mL) was calculated from the parameters. Among a total of 8 patients, the serum trough concentration of phenytoin decreased with each day after repeated injection of fosphenytoin. The incidence rate of significant convulsive seizures was increased time-dependently (0% on day 1, 12.5% on day 2, 25% on day 3, and 66.7% on day 4 and after). Phenytoin clearance showed a time-dependent increase. The maintenance dose of fosphenytoin required to maintain the therapeutic trough concentration was simulated to be 779.8 ± 316.8 mg/day, a dose that was markedly higher than the actual maintenance dose (414.1 ± 55.7 mg/day). Prolonged use of fosphenytoin for such patients as those with autoimmune-mediated encephalopathy accompanied with reflux disease and/or ileus time-dependently decreased the serum concentration of phenytoin and increased the risk of convulsion. Therefore, the maintenance dose should be increased to maintain the therapeutic serum concentration.

  18. Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach

    International Nuclear Information System (INIS)

    Telnov, Dmitry A.; Chu, S.-I

    2009-01-01

    We present a time-dependent density-functional theory approach with proper long-range potential for an ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) and high-order harmonic generation (HHG) of diatomic molecules N 2 and F 2 in intense short laser pulse fields with arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.

  19. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice

    OpenAIRE

    Poole, Rachel L.; Braak, David; Gould, Thomas J.

    2015-01-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterize...

  20. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  1. Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration.

    Science.gov (United States)

    Lewalle, Alexandre; Niederer, Steven A; Smith, Nicolas P

    2014-12-15

    The Na(+)/K(+) ATPase (NKA) plays a critical role in maintaining ionic homeostasis and dynamic function in cardiac myocytes, within both the in vivo cell and in silico models. Physiological conditions differ significantly between mammalian species. However, most existing formulations of NKA used to simulate cardiac function in computational models are derived from a broad range of experimental sources spanning many animal species. The resultant inability of these models to discern species-specific features is a significant obstacle to achieving a detailed quantitative and comparative understanding of physiological behaviour in different biological contexts. Here we present a framework for characterising the steady-state NKA current using a biophysical mechanistic model specifically designed to provide a mechanistic explanation of the NKA flux supported by self-consistent species-specific data. We thus compared NKA kinetics specific to guinea- pig and rat ventricular myocytes. We observe that the apparent binding affinity for sodium in the rat is significantly lower, whereas the overall pump cycle rate is doubled, in comparison to the guinea pig. This sensitivity of NKA to its regulatory substrates compensates for the differences in Na(+) concentrations between the cell types. NKA is thereby maintained within its dynamic range over a wide range of pacing frequencies in these two species, despite significant disparities in sodium concentration. Hence, by replacing a conventional generic NKA model with our rat-specific NKA formula into a whole-cell simulation, we have, for the first time, been able to accurately reproduce the action potential duration and the steady-state sodium concentration as functions of pacing frequency. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  2. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: the pathway and concentration dependence.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2008-04-01

    The aim of the present study was to estimate the relative contribution of rat P450 isoforms to the metabolism of caffeine and to assess the usefulness of caffeine as a marker substance for estimating the activity of P450 in rat liver and its potential for pharmacokinetic interactions in pharmacological experiments. The results obtained using rat cDNA-expressed P450s indicated that 8-hydroxylation was the main oxidation pathway of caffeine (70%) in the rat. CYP1A2 was found to be a key enzyme catalyzing 8-hydroxylation (72%) and substantially contributing to 3-N-demethylation (47%) and 1-N-demethylation (37.5%) at a caffeine concentration of 0.1mM (relevant to "the maximum therapeutic concentration in humans"). Furthermore, CYP2C11 considerably contributed to 3-N-demethylation (31%). The CYP2C subfamily (66%) - mainly CYP2C6 (27%) and CYP2C11 (29%) - played a major role in catalyzing 7-N-demethylation. At higher substrate concentrations, the contribution of CYP1A2 to the metabolism of caffeine decreased in favor of CYP2C11 (N-demethylations) and CYP3A2 (mainly 8-hydroxylation). The obtained results were confirmed with liver microsomes (inhibition and correlation studies). Therefore, caffeine may be used as a marker substance for assessing the activity of CYP1A2 in rats, using 8-hydroxylation (but not 3-N-demethylation-like in humans); moreover, caffeine may also be used to simultaneously, preliminarily estimate the activity of CYP2C using 7-N-demethylation as a marker reaction. Hence caffeine pharmacokinetics in rats may be changed by drugs affecting the activity of CYP1A2 and/or CYP2C, e.g. by some antidepressants.

  3. Time-dependence of 137Cs activity concentration in wild game meat in Knyszyn Primeval Forest (Poland)

    International Nuclear Information System (INIS)

    Kapała, Jacek; Mnich, Krystian; Mnich, Stanisław; Karpińska, Maria; Bielawska, Agnieszka

    2015-01-01

    Wild game meat samples were analysed from the region of the Podlasie province (Knyszyn Primeval Forest). 137 Cs content in meat was determined by gamma spectrometry in 2003 (33 samples), 2009 (22 samples) and 2012 (26 samples). The samples were collected in the autumn of 2003, 2009 and 2012 and were compared with data from 1996. Mean concentrations of 137 Cs in the respective years were as follow: 42.2 Bq kg −1 , 33.7 Bq kg −1 and 30.5 Bq kg −1 , respectively. On the basis of mean values of 137 Cs in the meat samples of red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boars (Sus scrofa) between 1996/2012, the effective half-life of 137 Cs was determined for specific species. For red deer equaled 8.9 years, for roe deer 11.6 years while for wild boar it exceeded the physical half-life and equaled 38.5 years. Mean value CR obtained for all three species equaled 1.7 ± 1.5 out of 102 measurements in animals muscles. - Highlights: • 137 Cs activity concentrations in wild game meat from North-east Poland are presented. • The determined T 1/2eff for 137 Cs for red deer, wild boar and roe deer. • The results of 16 years of observation are presented. • Significant scattering of results for wild boars was observed. • Concentration ratio (CR) values were calculated out of the results for three species

  4. From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave.

    Science.gov (United States)

    Sanlı, Ceyda; Lohse, Detlef; van der Meer, Devaraj

    2014-05-01

    A hydrophilic floating sphere that is denser than water drifts to an amplitude maximum (antinode) of a surface standing wave. A few identical floaters therefore organize into antinode clusters. However, beyond a transitional value of the floater concentration ϕ, we observe that the same spheres spontaneously accumulate at the nodal lines, completely inverting the self-organized particle pattern on the wave. From a potential energy estimate we show (i) that at low ϕ antinode clusters are energetically favorable over nodal ones and (ii) how this situation reverses at high ϕ, in agreement with the experiment.

  5. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  6. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  7. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration.

    Science.gov (United States)

    Wolff, G; Pereira, G C; Castro, E M; Louzada, J; Coelho, F F

    2012-02-01

    This study shows, in a multiple-level approach, the responses of Salvinia auriculata to Cd pollution in aquatic ecosystems. S. auriculata ramets were cultivated in nutrient solution and subjected to five treatments with Cd for ten days. At the end of the experiment, the number of new ramets and the dry biomass were determined. For ultrastructural observations, the leaves of S. auriculata were analyzed using a scanning electron microscope and transmission electron microscope. At the end of the experiment, the plants exposed to Cd showed damage in the leaves including necrosis and chlorosis, stomate deformations and damaged trichomes. We observed a decrease in the number of new ramets and dry biomass of S. auriculata following the increase in Cd concentration in the solution. At the ultrastructural level, leaves exposed to Cd presented chloroplast deformations and deterioration in the cell wall. All the symptoms of toxicity were directly proportionate to the concentration of Cd in the solution. The results suggests that S. auriculata shows good potential for use as a bioindicator and it can be used in the biomonitoring of aquatic ecosystems contaminated by Cd.

  8. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration

    Directory of Open Access Journals (Sweden)

    G. Wolff

    Full Text Available This study shows, in a multiple-level approach, the responses of Salvinia auriculata to Cd pollution in aquatic ecosystems. S. auriculata ramets were cultivated in nutrient solution and subjected to five treatments with Cd for ten days. At the end of the experiment, the number of new ramets and the dry biomass were determined. For ultrastructural observations, the leaves of S. auriculata were analyzed using a scanning electron microscope and transmission electron microscope. At the end of the experiment, the plants exposed to Cd showed damage in the leaves including necrosis and chlorosis, stomate deformations and damaged trichomes. We observed a decrease in the number of new ramets and dry biomass of S. auriculata following the increase in Cd concentration in the solution. At the ultrastructural level, leaves exposed to Cd presented chloroplast deformations and deterioration in the cell wall. All the symptoms of toxicity were directly proportionate to the concentration of Cd in the solution. The results suggests that S. auriculata shows good potential for use as a bioindicator and it can be used in the biomonitoring of aquatic ecosystems contaminated by Cd.

  9. Dopant concentration dependence of radiation-induced positive hysteresis of Ce:GSO and Ce:GSOZ

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi

    2014-01-01

    Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 0.5, 1, and 1.5%-doped Gd 2 SiO 5 (GSO) and for Zr co-doped GSO with the same Ce concentrations (GSOZ). When they were irradiated by 200–800 Gy 60 Co in 200 Gy steps, all Ce-doped GSO samples exhibited light yield enhancement (positive hysteresis). On the other hand, the light yield of GSOZ decreased greatly. Ce 0.5%-doped GSO showed the highest positive hysteresis, with ∼20% light yield enhancement. When the Ce concentration was increased, the positive hysteresis became weaker. - Highlights: • Positive hysteresis Ce 0.5, 1, and 1.5% doped GSO and GSOZ are studied. • Ce 0.5, 1, and 1.5% doped GSO show the positive hysteresis by 2–8 M rad 60 Co irradiation. • Ce 0.5, 1, and 1.5% doped GSOZ do not show the positive hysteresis. • By Zn co-doping, radiation tolerance of GSO becomes weaker. • By dense Ce doping, radiation tolerance of GSO and GSOZ are improved

  10. Dependences of the Tunnel Magnetoresistance and Spin Transfer Torque on the Sizes and Concentration of Nanoparticles in Magnetic Tunnel Junctions

    Science.gov (United States)

    Esmaeili, A. M.; Useinov, A. N.; Useinov, N. Kh.

    2018-01-01

    Dependences of the tunnel magnetoresistance and in-plane component of the spin transfer torque on the applied voltage in a magnetic tunnel junction have been calculated in the approximation of ballistic transport of conduction electrons through an insulating layer with embedded magnetic or nonmagnetic nanoparticles. A single-barrier magnetic tunnel junction with a nanoparticle embedded in an insulator forms a double-barrier magnetic tunnel junction. It has been shown that the in-plane component of the spin transfer torque in the double-barrier magnetic tunnel junction can be higher than that in the single-barrier one at the same thickness of the insulating layer. The calculations show that nanoparticles embedded in the tunnel junction increase the probability of tunneling of electrons, create resonance conditions, and ensure the quantization of the conductance in contrast to the tunnel junction without nanoparticles. The calculated dependences of the tunnel magnetoresistance correspond to experimental data demonstrating peak anomalies and suppression of the maximum magnetoresistances at low voltages.

  11. Kinetics of growth of semi-spheric pittings in the vicinity repassivation potential depending on bulk concentration of activator anions

    International Nuclear Information System (INIS)

    Frejman, L.I.

    1985-01-01

    A general case of semi-spheric pittings development in aqueous solutions of electrolyte of NaCl or LiCl type at different values of C 0 , usually studied in the range approximately equal to 10 -5 -10 -3 g-ionxcm -3 (approximately equal to 10 -2 -10 0 g-ionxl -1 ), has been analyzed. On the basis of experimental data on participation of anion-activators and water molecules in the process of metal dissolution in pitting, and using the previously obtained equations, kinetics of open and closed semi-spheric pittings during galvanostatic anode polarization in neutral chloride solutions with different volumetric concentration of Cl - -ions (C 0 ) has been considered. In a general case the process kinetics is described by a complex equation, the boundary, more simple forms of which, correspond to the initial (A) and subsequent (B) stages of open pitting development, or to certain stable conditions of closed pitting development

  12. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Zhong Haiyang; Sun Jiashi; Wan Jing; Tian Yue; Chen Baojiu

    2010-01-01

    Yttrium molybdate phosphors with fixed Er 3+ and various Yb 3+ concentrations were synthesized via a co-precipitation method. The crystal structure and the morphology of the phosphor were characterized by means of x-ray diffraction and field-emission scanning electron microscopy. Under 980 nm excitation, red and green upconversion emissions centred at 660, 553 and 530 nm were observed. Quantitative analyses on the dependence of upconversion emission intensity on the working current of a laser diode (LD) indicated that two-photon processes are responsible for both red and green upconversion emissions in both cases of low and high Yb 3+ concentrations. The relationship between the emission intensity ratio of 2 H 11/2 → 4 I 15/2 to 4 S 3/2 → 4 I 15/2 and the working current of the LD was studied for the samples doped with low and high Yb 3+ concentrations. Finally, a set of rate equations was established based on the possible upconversion mechanism, and an empirical formula was proposed to describe the Yb 3+ concentration dependence of upconversion emission intensity; the empirical formula fits well with the experimental data.

  13. Anomalous spreading of a density front from an infinite continuous source in a concentration-dependent lattice gas automaton diffusion model

    CERN Document Server

    Kuentz, M

    2003-01-01

    A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...

  14. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    Science.gov (United States)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  15. The progestin norethisterone affects thyroid hormone-dependent metamorphosis of Xenopus laevis tadpoles at environmentally relevant concentrations.

    Science.gov (United States)

    Lorenz, Claudia; Krüger, Angela; Schöning, Viola; Lutz, Ilka

    2018-04-15

    Previously, levonorgestrel (LNG) has been shown to be an endocrine disruptor of the amphibian thyroid system. In the present study, we investigated whether anti-thyroidal effects are a common property of progestins other than LNG. Premetamorphic Xenopus laevis tadpoles were exposed to norethisterone (NET) and dienogest DIE (each at 0.1-10nM) and LNG (10nM) until completion of metamorphosis. LNG and NET at all concentrations caused a significant developmental retardation whereas DIE did not impair time to metamorphosis. In LNG and 10nM NET exposed animals, tsh mRNA levels increased considerably later than the developmental delay occurred and thyroid histopathology showed no signs of TSH-hyperstimulation. Instead, thyroid glands from these treatments appeared inactive in producing thyroid hormones. Thyroidal transcript levels of dio2 and dio3 were increased by treatments with LNG and NET at 1nM and 10nM, whereas iyd mRNA was reduced by LNG and 10nM NET. Expression of slc5α5 was not changed by any treatment. Effects of DIE differed from those induced by LNG and NET. No developmental delay was measurable; however, tshβ and dio2 mRNAs were increased in pituitary glands of tadpoles exposed to 1.0nM and 10nM DIE. Thyroid histopathology displayed no abnormalities and thyroidal mRNA expression of the genes analyzed (slc5α5, iyd, dio2, dio3) was not changed by DIE. Overall, our results provide evidence that the anti-thyroidal effects already known from LNG are also present in another progestin, namely NET, even at environmentally relevant concentrations. In conclusion we suggest that progestins do not only pose an environmental risk in terms of their impact on reproductive success of aquatic vertebrates, but also with respect to their anti-thyroidal properties affecting amphibian metamorphosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC{sub 50}) test using WST-1 assay

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  17. Raman D-band in the irradiated graphene: Origin of the non-monotonous dependence of its intensity with defect concentration

    International Nuclear Information System (INIS)

    Codorniu Pujals, Daniel

    2013-01-01

    Raman spectroscopy is one of the most used experimental techniques in studying irradiated carbon nanostructures, in particular graphene, due to its high sensibility to the presence of defects in the crystalline lattice. Special attention has been given to the variation of the intensity of the Raman D-band of graphene with the concentration of defects produced by irradiation. Nowadays, there are enough experimental evidences about the non-monotonous character of that dependence, but the explanation of this behavior is still controversial. In the present work we developed a simplified mathematical model to obtain a functional relationship between these two magnitudes and showed that the non-monotonous dependence is intrinsic to the nature of the D-band and that it is not necessarily linked to amorphization processes. The obtained functional dependence was used to fit experimental data taken from other authors. The determination coefficient of the fitting was 0.96.

  18. Photoluminescence and spectroscopic dependence of fluorophosphate glasses on samarium ions concentration and the induced defects by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, M.A., E-mail: marzouk_nrc@yahoo.com [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); ElBatal, H.A. [Glass Research Department, National Research Centre, 33 El Bohouth Street (former EL Tahrir), P.O. 12622, Dokki, Giza (Egypt); Ezz ElDin, F.M. [National Institute for Radiation Research & Technology, Nasr City, Cairo (Egypt)

    2015-10-15

    Combined optical, FTIR and photoluminescence spectra of varying Sm{sup 3+} ions in NaF–AlF{sub 3}–phosphate glasses were investigated before and after successive gamma irradiation. Optical (UV–visible) absorption of the base undoped glass reveals UV absorption which becomes broadened and strong with progressive gamma irradiation. The UV absorption of the undoped glass is related to unavoidable trace iron impurity (Fe{sup 3+}) contaminated within the chemicals used for its preparation. Upon gamma irradiation, ferrous ions present in noticeable percent within the impurity due to the reducing nature of phosphate glass interact with positive holes during the irradiation process and are transformed to ferric ions through photochemical reactions and the additionally formed Fe{sup 3+} ions impart their characteristic strong absorption in the UV region. Sm{sup 3+} containing glasses show characteristic small peaks arranged into two regions from about 350 to 900 nm and from about 1000 to 1600 nm. Such absorption peaks are more distinct with the increase of Sm{sub 2}O{sub 3} content. Most of the limited number of absorption peaks are due to transitions from the {sup 6}H{sub 5/2} level to the various excited {sup 2s+1}L{sub J} levels. The majority of the transitions in the spectra are assumed to originate from induced electric dipole (ED) interactions with the selection rule ∆J≤6. The intense band {sup 6}P{sub 3/2}←{sup 6}H{sub 5/2} around 25,000 cm{sup −1} (~400 nm) is spin-allowed. The emission spectra of Sm{sup 2+} ions were recorded under the excitation wavelength of 402 nm for all prepared Sm{sub 2}O{sub 3}-containing glasses. The photoluminescence spectra show four emission lines, of which three consist of strong bands while the last line is a weak band. The wavelengths of the four luminescence peaks occur at about 560, 596, 642 and 702 nm and they are assigned to transitions from {sup 4}G{sub 5/2} to {sup 6}H{sub 5/2}, {sup 6}H{sub 7/2}, {sup 6}H{sub 9

  19. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression.

    Science.gov (United States)

    Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L

    2016-01-06

    Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. © 2016 Authors.

  20. Fe concentration dependence of tunneling magnetoresistance in magnetic tunnel junctions using group-IV ferromagnetic semiconductor GeFe

    Directory of Open Access Journals (Sweden)

    Kosuke Takiguchi

    2017-10-01

    Full Text Available Group-IV-based ferromagnetic semiconductor Ge1−xFex (GeFe is one of the most promising materials for spin injection/detection in Si and Ge. In this paper, we demonstrate a systematic study of tunneling magnetoresistance (TMR in magnetic tunnel junctions (MTJs composed of Fe/MgO/Ge1−xFex with various Fe concentrations (x = 0.065, 0.105, 0.140, and 0.175. With increasing x, the TMR ratio increases up to 1.5% when x≤ 0.105, and it decreases when x> 0.105. This is the first observation of the TMR ratio over 1% in MTJs containing a group-IV ferromagnetic semiconductor. With increasing x, while the Curie temperature of GeFe increases, the MgO surface becomes rougher, which is thought to be the cause of the upper limit of the TMR ratio. The quality of the MgO layer on GeFe is an important factor for further improvement of TMR in Fe/MgO/GeFe MTJs.

  1. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  2. Time-dependence of ¹³⁷Cs activity concentration in wild game meat in Knyszyn Primeval Forest (Poland).

    Science.gov (United States)

    Kapała, Jacek; Mnich, Krystian; Mnich, Stanisław; Karpińska, Maria; Bielawska, Agnieszka

    2015-03-01

    Wild game meat samples were analysed from the region of the Podlasie province (Knyszyn Primeval Forest). (137)Cs content in meat was determined by gamma spectrometry in 2003 (33 samples), 2009 (22 samples) and 2012 (26 samples). The samples were collected in the autumn of 2003, 2009 and 2012 and were compared with data from 1996. Mean concentrations of (137)Cs in the respective years were as follow: 42.2 Bq kg(-1), 33.7 Bq kg(-1) and 30.5 Bq kg(-1), respectively. On the basis of mean values of (137)Cs in the meat samples of red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boars (Sus scrofa) between 1996/2012, the effective half-life of (137)Cs was determined for specific species. For red deer equaled 8.9 years, for roe deer 11.6 years while for wild boar it exceeded the physical half-life and equaled 38.5 years. Mean value CR obtained for all three species equaled 1.7 ± 1.5 out of 102 measurements in animals muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  4. Concentration dependence of physical properties of liquid NaF–LiF–NdF{sub 3} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bulavin, L. [Kyiv National Taras Shevchenko University, Faculty of Physics, 2 Glushkova Ave., 03022 Kyiv (Ukraine); Plevachuk, Yu., E-mail: plevachuk@mail.lviv.ua [Ivan Franko National University, Department of Metal Physics, 8 Kyrylo and Mephodiy Street, 79005 Lviv (Ukraine); Sklyarchuk, V. [Ivan Franko National University, Department of Metal Physics, 8 Kyrylo and Mephodiy Street, 79005 Lviv (Ukraine); Omelchuk, A.; Faidiuk, N.; Savchuk, R. [V.I. Vernadsky Institute of General and Inorganic Chemistry, 32/34 prosp. Akad. Palladina, 03680 Kyiv (Ukraine); Shtablavyy, I.; Vus, V. [Ivan Franko National University, Department of Metal Physics, 8 Kyrylo and Mephodiy Street, 79005 Lviv (Ukraine); Yakymovych, A. [Department of Inorganic Chemistry (Materials Chemistry), University of Vienna, Währinger Str. 42, A-1090 Vienna (Austria)

    2014-04-01

    Highlights: • Molten NaF–LiF–NdF{sub 3} eutectic and peritectic alloys can be used in liquid salt reactors. • A stepped dissociation exists well above melting in the both alloys. • Anomalous properties behaviour proves that a short-range order persists after melting. • Transformation of structure spread to a wide temperature range in the liquid phase. - Abstract: Experimental studies of viscosity, thermoelectric power and electrical conductivity of the ionic liquid alloys NaF–LiF–NdF{sub 3} were carried out in the wide temperature intervals above the melting points. Similar temperature dependences of these properties for different melt compositions have been revealed. The alloy composition has a significant influence on the interval of melt homogeneity and behaviour of the thermoelectric power temperature coefficient. It was found that a small shift from the peritectic to eutectic composition increases considerable the viscosity. A correlation between the structure and thermophysical properties has been analyzed. The results can be used in modelling a blanket for the liquid salt reactor.

  5. Age-dependent changes in diastolic Ca2+ and Na+ concentrations in dystrophic cardiomyopathy: Role of Ca2+ entry and IP3

    International Nuclear Information System (INIS)

    Mijares, Alfredo; Altamirano, Francisco; Kolster, Juan; Adams, José A.; López, José R.

    2014-01-01

    Highlights: • Age-dependent increase in [Ca 2+ ] d and [Na + ] d in mdx cardiomyocytes. • Gadolinium significantly reduced both [Ca 2+ ] d and [Na + ] d at all ages. • IP 3 -pathway inhibition reduced cations concentrations in dystrophic cardiomyocytes. - Abstract: Duchenne muscular dystrophy (DMD) is a lethal X-inherited disease caused by dystrophin deficiency. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with a dilated cardiomyopathy that leads to progressive heart failure at the end of the second decade. The aim of the present study was to characterize the diastolic Ca 2+ concentration ([Ca 2+ ] d ) and diastolic Na + concentration ([Na + ] d ) abnormalities in cardiomyocytes isolated from 3-, 6-, 9-, and 12-month old mdx mice using ion-selective microelectrodes. In addition, the contributions of gadolinium (Gd 3+ )-sensitive Ca 2+ entry and inositol triphosphate (IP 3 ) signaling pathways in abnormal [Ca 2+ ] d and [Na + ] d were investigated. Our results showed an age-dependent increase in both [Ca 2+ ] d and [Na + ] d in dystrophic cardiomyocytes compared to those isolated from age-matched wt mice. Gd 3+ treatment significantly reduced both [Ca 2+ ] d and [Na + ] d at all ages. In addition, blockade of the IP 3 -pathway with either U-73122 or xestospongin C significantly reduced ion concentrations in dystrophic cardiomyocytes. Co-treatment with U-73122 and Gd 3+ normalized both [Ca 2+ ] d and [Na + ] d at all ages in dystrophic cardiomyocytes. These data showed that loss of dystrophin in mdx cardiomyocytes produced an age-dependent intracellular Ca 2+ and Na + overload mediated at least in part by enhanced Ca 2+ entry through Gd 3+ sensitive transient receptor potential channels (TRPC), and by IP 3 receptors

  6. Concentration-Dependent Synergy and Antagonism of Linezolid and Moxifloxacin in the Treatment of Childhood Tuberculosis: The Dynamic Duo.

    Science.gov (United States)

    Deshpande, Devyani; Srivastava, Shashikant; Nuermberger, Eric; Pasipanodya, Jotam G; Swaminathan, Soumya; Gumbo, Tawanda

    2016-11-01

     No treatment regimens have been specifically designed for children, in whom tuberculosis is predominantly intracellular. Given their activity as monotherapy and their ability to penetrate many diseased anatomic sites that characterize disseminated tuberculosis, linezolid and moxifloxacin could be combined to form a regimen for this need.  We examined microbial kill of intracellular Mycobacterium tuberculosis (Mtb) by the combination of linezolid and moxifloxacin multiple exposures in a 7-by-7 mathematical matrix. We then used the hollow fiber system (HFS) model of intracellular tuberculosis to identify optimal dose schedules and exposures of moxifloxacin and linezolid in combination. We mimicked pediatric half-lives and concentrations achieved by each drug. We sampled the peripheral compartment on days 0, 7, 14, 21, and 28 for Mtb quantification, and compared the slope of microbial kill of Mtb by these regimens to the standard regimen of isoniazid, rifampin, and pyrazinamide, based on exponential decline regression.  The full exposure-response surface identified linezolid-moxifloxacin zones of synergy, antagonism, and additivity. A regimen based on each of these zones was then used in the HFS model, with observed half-lives of 4.08 ± 0.66 for linezolid and 3.80 ± 1.34 hours for moxifloxacin. The kill rate constant was 0.060 ± 0.012 per day with the moxifloxacin-linezolid regimen in the additivity zone vs 0.083 ± 0.011 per day with standard therapy, translating to a bacterial burden half-life of 11.52 days vs 8.53 days, respectively.  We identified doses and dose schedules of a linezolid and moxifloxacin backbone regimen that could be highly efficacious in disseminated tuberculosis in children. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  8. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    International Nuclear Information System (INIS)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert; Rozengurt, Enrique

    2013-01-01

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser 79 and Raptor at Ser 792 , was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α 1 and α 2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  9. Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration

    International Nuclear Information System (INIS)

    Meza-Rocha, A.N.; Huerta, E.F.; Caldiño, U.; Carmona-Téllez, S.; Bettinelli, M.; Speghini, A.; Pelli, S.; Righini, G.C.

    2015-01-01

    The effect of dopant concentration on the up-conversion emission, and in particular on the Er 3+ related green and red emissions of spray pyrolysis deposited films of Y 2 O 3 :Er 3+ co-doped with Li + , is reported. Er 3+ concentrations in the films in the range of 1.1–5.6 at% (1.5–14 at% Er 3+ in the spraying solution) were studied, as well as the effect of co-doping them with Li + . Large concentrations of Er 3+ favor the red emission, especially for contents higher than 10 at% in the spraying solution. Li + co-doping improves the green and red emissions up to 365 and 171 times, respectively, depending on the Er 3+ and Li + concentrations. - Highlights: Up-converting Y 2 O 3 :Er 3+ and Y 2 O 3 :Er 3+ , Li + films were deposited by spray pyrolysis. The effect of Li + co-doping on the green and red UC Er 3+ emission is reported. Li + co-doping improves the green and red emission up to 365 and 171 times

  10. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu

    2016-09-15

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards. - Highlights: • Investigation of activity coefficient, apparent potential and diffusion coefficient at different concentrations. • MD simulation was studied for the calculation of thermodynamic properties of rare earth elements in molten salt. • The present study is a pioneering work focusing on the concentration dependence of thermodynamic properties.

  11. Hyperosmotic stress strongly potentiates serum response factor (SRF)-dependent transcriptional activity in ehrlich lettré ascites cells through a mechanism involving p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Gorbatenko, Andrej; Wiwel, Maria; Klingberg, Henrik

    2011-01-01

    Long-term osmotic stress results in altered gene transcription, however, with the exception of the TonE/TonEBP system, the underlying mechanisms are poorly understood. We previously showed that upon osmotic shrinkage of Ehrlich Lettré Ascites (ELA) fibroblasts, the MEK1-ERK1/2 pathway is transien......Long-term osmotic stress results in altered gene transcription, however, with the exception of the TonE/TonEBP system, the underlying mechanisms are poorly understood. We previously showed that upon osmotic shrinkage of Ehrlich Lettré Ascites (ELA) fibroblasts, the MEK1-ERK1/2 pathway......) and cAMP response element-binding protein (CREB) are differentially regulated in ELA cells. SRF Ser103 phosphorylation and SRF-dependent transcriptional activity were strongly augmented 5–30¿min and 24¿h, respectively, after hyperosmotic stress (50% increase in extracellular ionic strength), in a p38...... dephosphorylated within 5¿min of shrinkage. MSK1 phosphorylation recovered within 30¿min in a p38-MAPK-dependent manner. CREB was transiently dephosphorylated after shrinkage in a manner exacerbated by p38 MAPK inhibition or MSK1 knockdown, but unaffected by inhibition of RSK. In conclusion, in ELA cells...

  12. Phenol Removal by a Novel Non-Photo-Dependent Semiconductor Catalyst in a Pilot-Scaled Study: Effects of Initial Phenol Concentration, Light, and Catalyst Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-01-01

    Full Text Available A novel non-photo-dependent semiconductor catalyst (CT was employed to degrade phenol in the present pilot-scaled study. Effect of operational parameters such as phenol initial concentration, light area, and catalyst loading on phenol degradation, was compared between CT catalyst and the conventional photocatalyst titanium dioxide. CT catalyst excelled titanium dioxide in treating and mineralizing low-level phenol, under both mild UV radiation and thunder conditions of nonphoton. The result suggested that CT catalyst could be applied in circumstances when light is not easily accessible in pollutant-carrying media (e.g., particles, cloudy water, and colored water.

  13. Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold [v2; ref status: indexed, http://f1000r.es/2h5

    Directory of Open Access Journals (Sweden)

    Anand Vasudevan

    2013-12-01

    Full Text Available Odors of predators are often co-opted by prey species to serve as warning signals. Perceptual properties of such kairomonal communication are under studied despite their common use in many mammals. We demonstrate that the kairomonal response in mice to rat odors varies monotonically with the volume of rat odor. Moreover, the ability of mice to differentiate between two strengths of rat odors is dependent on the ratio of the two concentrations. These results show that mice can compare kairomonal strength over a large range of values, and that kairomonal communication follows Weber’s law.

  14. Dependence of the expression of the radiation-induced gene conversion to arginine independence in diploid yeast on the amino acid concentration: effect on allelic mapping

    International Nuclear Information System (INIS)

    Murthy, M.S.S.; Rao, B.S.; Deorukhakar, V.V.

    1976-01-01

    The yield of radiation-induced gene conversion to arginine independence in diploid yeast depended on the concentration of the amino acid both in the plating medium and in the intracellular pool. By depletion of the level of arginine in the intracellular pool of amino acid or by provision of arginine at 0.4 mg/l of the plating medium, the yield was varied by a factor as high as 20. This may be important in studies of the genetic mapping of alleles based on the slope of conversion frequency versus dose line

  15. Concentration- and time-dependent genotoxicity profiles of isoprene monoepoxides and diepoxide, and the cross-linking potential of isoprene diepoxide in cells

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-01-01

    Full Text Available Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O and 2-(1-methylethenyloxirane (IP-3,4-O, both of which can be further metabolized to 2-methyl-2,2′-bioxirane (MBO. MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2 and human leukemia (HL60 cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM, although at low concentrations (≤200 μM IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5–4 h in L02 cells were different from each other: IP-1,2-O and MBO (200 μM exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.

  16. Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Kwong, Kei-Man; Domenichiello, Anthony F; Chen, Chuck T; Bazinet, Richard P; Burnham, W M

    2015-09-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that has been shown to raise seizure thresholds in the maximal pentylenetetrazole model following acute subcutaneous (s.c.) administration in rats. Following s.c. administration, however, the dose-response relationship for DHA has shown an inverted U-pattern. The purposes of the present experiment were as follows: (1) to determine the pattern of serum unesterified concentrations resulting from the intravenous (i.v.) infusions of various doses of DHA, (2) to determine the time course of these concentrations following the discontinuation of the infusions, and (3) to determine whether seizure protection in the maximal PTZ model would correlate with serum unesterified DHA levels. Animals received 5-minute i.v. infusions of saline or 25, 50, 100, or 200mg/kg of DHA via a cannula inserted into one of the tail veins. Blood was collected during and after the infusions by means of a second cannula inserted into the other tail vein (Experiment 1). A separate group of animals received saline or 12.5-, 25-, 50-, 100-, or 200 mg/kg DHA i.v. via a cannula inserted into one of the tail veins and were then seizure-tested in the maximal PTZ model either during infusion or after the discontinuation of the infusions. Slow infusions of DHA increased serum unesterified DHA concentrations in a dose-dependent manner, with the 200-mg/kg dose increasing the concentration approximately 260-fold compared with saline-infused animals. Following discontinuation of the infusions, serum concentrations rapidly dropped toward baseline, with half-lives of approximately 40 and 11s for the 25-mg/kg dose and 100-mg/kg dose, respectively. In the seizure-tested animals, DHA significantly increased latency to seizure onset in a dose-dependent manner. Following the discontinuation of infusion, seizure latency rapidly decreased toward baseline. Overall, our study suggests that i.v. infusion of unesterified DHA results in

  17. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media.

    Science.gov (United States)

    Kaiser, Jean-Pierre; Roesslein, Matthias; Diener, Liliane; Wichser, Adrian; Nowack, Bernd; Wick, Peter

    2017-01-06

    Nanosilver shows great promise for use in industrial, consumer or medical products because of its antimicrobial properties. However, the underlying mechanisms of the effects of silver nanoparticles on human cells are still controversial. Therefore, in the present study the influence of the chloride concentration and different serum content of culture media on the cytotoxic effects of nanosilver was systematically evaluated. Our results show that nanosilver toxicity was strongly affected by the composition of the culture media. The chloride concentration, as well as the carbon content affected the silver agglomeration and the complex formation. But also the dissolution of nanosilver and the availability of free silver ions (Ag + ) were severely affected by the compositions of the culture media. Cells, only exposed to silver particles in suspension and dissolved silver complexes, did not show any effects under all conditions. Nanosilver agglomerates and silver complexes were not very soluble. Thus, cells growing on the bottom of the culture dishes were exposed to sedimented nanosilver agglomerates and precipitated silver complexes. Locally, the concentration of silver on the cell surface was very high, much higher compared the silver concentration in the bulk solution. The cytotoxic effects of nanosilver are therefore a combination of precipitated silver complexes and organic silver compounds rather than free silver ions. Silver coatings are used in health care products due to their bacteriostatic or antibacterial properties. The assessment of the toxicity of a certain compound is mostly done using in vitro assays. Therefore, cytotoxicity studies of nanosilver using human cell cultures have to be undertaken under well controlled and understood cultivations conditions in order to improve the compatibility of different studies. Especially when eukaryotic versus prokaryotic systems are compared for the evaluation of the use of nanosilver as antibacterial coatings for

  18. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Siddiqui, Maqsood A; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Ahamed, Maqusood

    2015-02-01

    Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 μg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health. © 2013 Wiley Periodicals, Inc.

  19. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  20. The major/minor concept: dependence of the selectivity of homogeneously catalyzed reactions on reactivity ratio and concentration ratio of the intermediates.

    Science.gov (United States)

    Schmidt, Thomas; Dai, Zhenya; Drexler, Hans-Joachim; Hapke, Marko; Preetz, Angelika; Heller, Detlef

    2008-07-07

    The homogeneously catalyzed asymmetric hydrogenation of prochiral olefins with cationic Rh(I) complexes is one of the best-understood selection processes. For some of the catalyst/substrate complexes, experimental proof points out the validation of the major/minor principle; the concentration-deficient minor substrate complex, which has very high reactivity, yields the excess enantiomer. As exemplified by the reaction system of [Rh(dipamp)(MeOH)2]+/methyl (Z)-alpha-acetamidocinnamate (dipamp=1,2-bis((o-methoxyphenyl)phenylphosphino)ethane), all six of the characteristic reaction rate constants have been previously identified. Recently, it was found that the major substrate complex can also yield the major enantiomer (lock-and-key principle). The differential equation system that results from the reaction sequence can be solved numerically for different hydrogen partial pressures by including the known equilibrium constants. The result displays the concentration-time dependence of all species that exist in the catalytic cycle. On the basis of the known constants as well as further experimental evidence, this work focuses on the examination of all principal possibilities resulting from the reaction sequence and leading to different results for the stereochemical outcome. From the simulation, the following conclusions can be drawn: 1) When an intermediate has extreme reactivity, its stationary concentration can become so small that it can no longer be the source of product selectivity; 2) in principle, the major/minor and lock-and-key principles can coexist depending on the applied pressure; 3) thermodynamically determined intermediate ratios can be completely converted under reaction conditions for a selection process; and 4) the increase in enantioselectivity with increasing hydrogen partial pressure, a phenomenon that is experimentally proven but theoretically far from being well-understood, can be explained by applying both the lock-and-key as well as the major

  1. Artocarpin Induces Apoptosis in Human Cutaneous Squamous Cell Carcinoma HSC-1 Cells and Its Cytotoxic Activity Is Dependent on Protein-Nutrient Concentration

    Directory of Open Access Journals (Sweden)

    Stephen Chu-Sung Hu

    2015-01-01

    Full Text Available Artocarpin, a natural prenylated flavonoid, has been shown to have various biological properties. However, its effects on human cutaneous squamous cell carcinoma (SCC have not been previously investigated. We set out to determine whether artocarpin has cytotoxic effects on SCC cells and whether its pharmacological activity is dependent on protein-nutrient concentration. Our results showed that treatment of HSC-1 cells (a human cutaneous SCC cell line with artocarpin decreased cell viability and induced cell apoptosis by increasing caspase 3/7 activity. These effects were more pronounced at low fetal bovine serum (FBS concentrations. Artocarpin induced an increase in the level of phospho-p38 and a decrease in the levels of phospho-ERK, phospho-JNK, phospho-Akt, phospho-mTOR, and phospho-S6K. High FBS concentrations in the culture media inhibited and delayed the uptake of artocarpin from the extracellular compartment (culture media into the intracellular compartment, as determined by high performance liquid chromatography (HPLC analysis. In conclusion, artocarpin induces apoptosis in HSC-1 cells through modulation of MAPK and Akt/mTOR pathways. Binding of artocarpin to proteins in the FBS may inhibit cellular uptake and reduce the cytotoxic activity of artocarpin on HSC-1 cells. Therefore, artocarpin may have potential use in the future as a form of treatment for cutaneous SCC.

  2. Directional growth of Ag nanorod from polymeric silver cyanide: A potential substrate for concentration dependent SERS signal enhancement leading to melamine detection

    Science.gov (United States)

    Roy, Anindita; Sahoo, Ramkrishna; Chowdhury, Joydeep; Bhattacharya, Tara Shankar; Agarwal, Ratnesh; Pal, Tarasankar

    2017-08-01

    Attention has been directed to prepare exclusive one-dimensional silver nanostructure from the linear inorganic polymer AgCN. Successive color change from yellow to orange, to red and finally to green reflects the evolution of high yielding Ag nanorods (NRs) from well-known -[Ag-CN]- chains of polymeric AgCN at room temperature. The parental 1D morphology of AgCN is retained within the as-synthesized Ag NRs. So we could successfully exploit the Ag NR for surface-enhanced Raman scattering (SERS) studies for sensing a popular milk adulterant melamine down to picomolar level. We observed interesting concentration dependent selective SERS band enhancement of melamine. The enhanced 1327 cm- 1 SERS signal intensity at lower concentration (10- 9 and 10- 12 M) of melamine speaks for the preferential participation of -C-N of melamine molecule with Ag surface. On the other hand, '-NH2' group together with ring 'N' participation of melamine molecule onto Ag surface suggested an adsorptive stance at higher (10- 3-10- 7 M) concentration range. Thus the binding modes of the molecule at the Ag surface justify its fluxional behavior.

  3. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte-Endothelial Cell Adhesion.

    Science.gov (United States)

    Poussin, Carine; Laurent, Alexandra; Peitsch, Manuel C; Hoeng, Julia; De Leon, Hector

    2015-10-01

    Cigarette smoke (CS) affects the adhesion of monocytes to endothelial cells, a critical step in atherogenesis. Using an in vitro adhesion assay together with innovative computational systems biology approaches to analyze omics data, our study aimed at investigating CS-induced mechanisms by which monocyte-endothelial cell adhesion is promoted. Primary human coronary artery endothelial cells (HCAECs) were treated for 4 h with (1) conditioned media of human monocytic Mono Mac-6 (MM6) cells preincubated with low or high concentrations of aqueous CS extract (sbPBS) from reference cigarette 3R4F for 2 h (indirect treatment, I), (2) unconditioned media similarly prepared without MM6 cells (direct treatment, D), or (3) freshly generated sbPBS (fresh direct treatment, FD). sbPBS promoted MM6 cells-HCAECs adhesion following I and FD, but not D. In I, the effect was mediated at a low concentration through activation of vascular inflammation processes promoted in HCAECs by a paracrine effect of the soluble mediators secreted by sbPBS-treated MM6 cells. Tumor necrosis factor α (TNFα), a major inducer, was actually shed by unstable CS compound-activated TNFα-converting enzyme. In FD, the effect was triggered at a high concentration that also induced some toxicity. This effect was mediated through an yet unknown mechanism associated with a stress damage response promoted in HCAECs by unstable CS compounds present in freshly generated sbPBS, which had decayed in D unconditioned media. Aqueous CS extract directly and indirectly promotes monocytic cell-endothelial cell adhesion in vitro via distinct concentration-dependent mechanisms. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Concentration/time-dependent dissipation, partitioning and plant accumulation of hazardous current-used pesticides and 2-hydroxyatrazine in sand and soil.

    Science.gov (United States)

    Neuwirthová, Natália; Bílková, Zuzana; Vašíčková, Jana; Hofman, Jakub; Bielská, Lucie

    2018-07-01

    The dissipation, partitioning dynamics and biouptake was measured for selected hazardous current-used pesticides (conazole fungicides: epoxiconazole, flusilazole, tebuconazole; prochloraz, chlorpyrifos, pendimethalin) and for a transformation product (2-hydroxyatrazine) in agricultural soil and quartz sand as representatives of a real and a worst-case scenario. Dissipation, uptake to Lactuca sativa and the freely dissolved concentration along with the organic carbon-normalized sorption coefficients (K oc ) were determined on days 12, 40, and 90 following the application of compounds at three fortification levels (0.1-1.0-10 mg/kg). Conazole fungicides showed similar dissipation patterns and were more persistent in soil than prochloraz, chlorpyrifos and pendimethalin. 2-Hydroxyatrazine showed a concentration-depended decrease in persistency in soil. Lettuce roots were shown to accumulate higher amounts than shoots where the extent of root uptake was driven by compound partitioning. This was evidenced by the ability of freely dissolved concentration (C free ) to reliably (r 2  = 0.94) predict root uptake. Concentration in leaves did not exceed the maximum residue levels (MRLs) for lettuce, which was likely given by the low root-to-shoot translocation factors (TFs) of the tested compounds varying between 0.007 and 0.14. K oc values were in the range of literature values. Sorption to soil was higher than to sand for all compounds, yet following the K oc dynamics compounds did not appear to be sequestered in soil with increasing residence time. From these results, it follows that the tested compounds may persist in soil but since they did not accumulate in lettuce above MRLs, contamination of the food web is unlikely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Studies on the concentration dependence of specific rotation of Alpha lactose monohydrate (α-LM) aqueous solutions and growth of α-LM single crystals

    Science.gov (United States)

    Vinodhini, K.; Divya Bharathi, R.; Srinivasan, K.

    2018-02-01

    Lactose is an optically active substance. As it is one of the reducing sugars, exhibits mutarotation in solution when it dissolves in any solvent. In solution, lactose exists in two isomeric forms, alpha-Lactose (α-L) and beta-lactose (β-L) through the mutarotation reaction. Mutarotation produces a dynamic equilibrium between two isomers in a solution and kinetics of this process determines the growth rate of alpha lactose monohydrate (α-LM) crystals. Since no data were available on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C, the initial experiments were carried out on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C. The specific rotations of the solutions were decreased with increasing time through the mutarotation reaction. The initial and final (equilibrium) specific rotations of the solutions were determined by using automatic digital polarimeter. The compositions of α and β-L in all prepared solutions were calculated from initial and final optical rotations by the method of Sharp and Doob. The composition of α-L decreased whereas, the composition of β-L increased in solutions with increasing concentration of α-LM at 33 °C. Experimental results revealed that this method could be easily and safely employed to study the dependence of specific rotation of solutions on their concentration. The effect of β-lactose on the morphology of nucleated α-LM single crystals has been studied at different experimental conditions.

  6. Intrinsic carrier concentrations in long wavelength HgCdTe based on the new, nonlinear temperature dependence of Eg(x,T)

    International Nuclear Information System (INIS)

    Seiler, D.G.; Lowney, J.R.; Littler, C.L.; Yoon, I.T.

    1991-01-01

    This paper reports on intrinsic carrier concentrations of narrow-gap Hg 1-x Cd x Te alloys (0.17 ≤ x ≤ 0.30) calculated as a function of temperature between 0 and 300 K by using the new nonlinear temperature dependence of the energy gap obtained previously by two-photon magneto-absorption measurements for samples with 0.24 ≤ x ≤ 0.26. We report here experimental values for E g (x,T) for samples with x = 0.20 and 0.23 obtained by one-photon magneto-absorption measurements. These data confirm the validity of the new E g (x,T) relationship for these x values. In this range of composition and temperature, the energy gap of mercury cadmium telluride is small, and very accurate values are needed for the gap to obtain reliable values of the intrinsic carrier density

  7. Protective Effects of Maillard Reaction Products of Whey Protein Concentrate against Oxidative Stress through an Nrf2-Dependent Pathway in HepG2 Cells.

    Science.gov (United States)

    Pyo, Min Cheol; Yang, Sung-Yong; Chun, Su-Hyun; Oh, Nam Su; Lee, Kwang-Won

    2016-09-01

    Whey protein concentrate (WPC), which contains α-lactalbumin and β-lactoglobulin, is utilized widely in the food industry. The Maillard reaction is a complex reaction that produces Maillard reaction products (MRPs), which are associated with the formation of antioxidant compounds. In this study, the hepatoprotection activity of MRPs of WPC against oxidative stress through the nuclear factor-E2-related factor 2 (Nrf2)-dependent antioxidant pathway in HepG2 cells was examined. Glucose-whey protein concentrate conjugate (Glc-WPC) was obtained from Maillard reaction between WPC and glucose. The fluorescence intensity of Glc-WPC increased after 7 d compared to native WPC, and resulted in loss of 48% of the free amino groups of WPC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns of Glc-WPC showed the presence of a high-molecular-weight portion. Treatment of HepG2 cells with Glc-WPC increased cell viability in the presence of oxidative stress, inhibited the generation of intracellular reactive oxygen species by tert-butyl hydroperoxide (t-BHP), and increased the glutathione level. Nrf2 translocation and Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H)-quinone oxidoreductase 1 (NOQ1), heme oxygenase-1 (HO-1), glutamate-L-cysteine ligase (GCL)M and GCLC mRNA levels were increased by Glc-WPC. Also, Glc-WPC increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK). The results of this study demonstrate that Glc-WPC activates the Nrf2-dependent pathway through the phosphorylation of ERK1/2 and JNK in HepG2 cells, and induces production of antioxidant enzymes and phase II enzymes.

  8. Effects of glycerol upon the biological actions of near-ultraviolet light: spectra and concentration dependence for transforming DNA and for Escherichia coli B/r

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Foote, C.S.

    1982-01-01

    The concentration dependence for the protection of isolated transforming DNA and Escherichia coli by glycerol against 365-nm monochromatic near-ultraviolet light (UV) was measured. Glycerol protection saturates at a concentration of about 0.1 M for DNA and 1.0 M for E. coli. Action spectra for glycerol protection of transforming DNA (tryptophan and histidine markers) are similar to those obtained previously for diazobicyclo[2.2.2.]octane (DABCO) protection, with protection reaching a maximum near 350-nm UV and decreasing rapidly at wavelengths above and below 350 nm. However, glycerol protects against near-UV about twice as efficiently as DABCO. The action spectrum for protection of E. coli by glycerol against the lethal effects of near-UV was not the same as the spectrum for DNA since glycerol sensitized the cells, but not the DNA, at wavelengths longer than about 380 nm. A possible role of hydroxyl or other radicals was supported by the observation that benzoate also protected DNA against inactivation by 334-nm UV. (author)

  9. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87 Cell Line

    Directory of Open Access Journals (Sweden)

    Allison A. Atnip

    2017-02-01

    Full Text Available Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87 has been used to study the behavior of anthocyanins at a pH range of 3.0–7.4. This work examines the effects of time (0–3 h, concentration (50–1500 µM, and pH (3.0, 5.0, 7.4 on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  10. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.

    Science.gov (United States)

    Inoue, Tohru; Yamakawa, Haruka

    2011-04-15

    Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    Science.gov (United States)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  12. Evaluation of serum insulin-like growth factor-1 and 26S proteasome concentrations in healthy dogs and dogs with chronic diseases depending on body condition score.

    Science.gov (United States)

    Gerke, Ingrid; Kaup, Franz-Josef; Neumann, Stephan

    2018-06-01

    In patients suffering from chronic diseases, the objective assessment of metabolic states could be of interest for disease prognosis and therapeutic options. Therefore, the aim of this study was to assess insulin-like growth factor-1 (IGF-1) and 26S proteasome (26SP) in healthy dogs and dogs suffering from chronic diseases depending on their body condition score (BCS) and to examine their potential for objective assessment of anabolic and catabolic states. Serum concentrations of IGF-1, an anabolic hormone, and 26SP, a multiprotein complex which is part of the ubiquitin-proteasome pathway, by which the majority of endogenous proteins including the muscle proteins are degraded, were measured in 21 healthy dogs and 20 dogs with chronic diseases by canine ELISA. The concentrations of IGF-1, 26SP and their ratio (IGF-1/26SP) were set in relationship to the BCS of the dogs. When examining healthy and chronically diseased dogs separately, a positive correlation between IGF-1 and the BCS was observed in the healthy group and a negative correlation between 26SP and the BCS was noted in dogs with chronic diseases. Further, dogs suffering from chronic diseases showed higher 26SP concentrations and lower values for IGF-1/26SP than the healthy dogs. Overall, we detected a negative correlation between 26SP and the BCS and a positive correlation between IGF-1/26SP and the BCS. The results of our study indicate usability of IGF-1 for description of anabolic states, while 26SP could be useful for detection and description of catabolic states. Finally, the ratio IGF-1/26SP seems to be promising for assessment of metabolic states. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Induction of cell cycle arrest at G1 and S phases and cAMP-dependent differentiation in C6 glioma by low concentration of cycloheximide

    Directory of Open Access Journals (Sweden)

    Zhang Samuel S

    2010-12-01

    Full Text Available Abstract Background Differentiation therapy has been shown effective in treatment of several types of cancer cells and may prove to be effective in treatment of glioblastoma multiforme, the most common and most aggressive primary brain tumor. Although extensively used as a reagent to inhibit protein synthesis in mammalian cells, whether cycloheximide treatment leads to glioma cell differentiation has not been reported. Methods C6 glioma cell was treated with or without cycloheximide at low concentrations (0.5-1 μg/ml for 1, 2 and 3 days. Cell proliferation rate was assessed by direct cell counting and colony formation assays. Apoptosis was assessed by Hoechst 33258 staining and FACS analysis. Changes in several cell cycle regulators such as Cyclins D1 and E, PCNA and Ki67, and several apoptosis-related regulators such as p53, p-JNK, p-AKT, and PARP were determined by Western blot analysis. C6 glioma differentiation was determined by morphological characterization, immunostaining and Western blot analysis on upregulation of GFAP and o p-STAT3 expression, and upregulation of intracellular cAMP. Results Treatment of C6 cell with low concentration of cycloheximide inhibited cell proliferation and depleted cells at both G2 and M phases, suggesting blockade at G1 and S phases. While no cell death was observed, cells underwent profound morphological transformation that indicated cell differentiation. Western blotting and immunostaining analyses further indicated that changes in expression of several cell cycle regulators and the differentiation marker GFAP were accompanied with cycloheximide-induced cell cycle arrest and cell differentiation. Increase in intracellular cAMP, a known promoter for C6 cell differentiation, was found to be elevated and required for cycloheximide-promoted C6 cell differentiation. Conclusion Our results suggest that partial inhibition of protein synthesis in C6 glioma by low concentration of cycloheximide induces cell cycle

  14. Oxidative stress mediated toxicity of TiO2 nanoparticles after a concentration and time dependent exposure of the aquatic macrophyte Hydrilla verticillata.

    Science.gov (United States)

    Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan

    2017-09-01

    The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Age-dependent decline in acyl-ghrelin concentrations and reduced association of acyl-ghrelin and growth hormone in healthy older adults.

    Science.gov (United States)

    Nass, Ralf; Farhy, Leon S; Liu, Jianhua; Pezzoli, Suzan S; Johnson, Michael L; Gaylinn, Bruce D; Thorner, Michael O

    2014-02-01

    Acyl-ghrelin is thought to have both orexigenic effects and to stimulate GH release. A possible cause of the anorexia of aging is an age-dependent decrease in circulating acyl-ghrelin levels. The purpose of the study was to compare acyl-ghrelin and GH concentrations between healthy old and young adults and to examine the relationship of acyl-ghrelin and GH secretion in both age groups. Six healthy older adults (age 62-74 y, body mass index range 20.9-29 kg/m(2)) and eight healthy young men (aged 18-28 y, body mass index range 20.6-26.2 kg/m(2)) had frequent blood samples drawn for hormone measurements every 10 minutes for 24 hours. Ghrelin was measured in an in-house, two-site sandwich ELISA specific for full-length acyl-ghrelin. GH was measured in a sensitive assay (Immulite 2000), and GH peaks were determined by deconvolution analysis. The acyl-ghrelin/GH association was estimated from correlations between amplitudes of individual GH secretory events and the average acyl-ghrelin concentration in the 60-minute interval preceding each GH burst. Twenty-four-hour mean (±SEM) GH (0.48 ± 0.14 vs 2.2 ± 0.3 μg/L, P adults compared with young adults. Twenty-four-hour cortisol concentrations were higher in the old than the young adults (15.1 ± 1.0 vs 10.6 ± 0.9 μg/dL, respectively, P young adults (0.16 ± 0.12 vs 0.69 ± 0.04, P age-dependent decline in circulating acyl-ghrelin levels, which might play a role both in the decline of GH and in the anorexia of aging. Our data also suggest that with normal aging, endogenous acyl-ghrelin levels are less tightly linked to GH regulation.

  16. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration.

    Science.gov (United States)

    Rusinga, Farai I; Weis, David D

    2017-08-01

    The effects of macromolecular crowding on the transient structure of intrinsically disordered proteins is not well-understood. Crowding by biological molecules inside cells could modulate transient structure and alter IDP function. Volume exclusion theory and observations of structured proteins suggest that IDP transient structure would be stabilized by macromolecular crowding. Amide hydrogen exchange (HX) of IDPs in highly concentrated polymer solutions would provide valuable insights into IDP transient structure under crowded conditions. Here, we have used mass spectrometry to measure HX by a transiently helical random coil domain of the activator of thyroid and retinoid receptor (ACTR) in solutions containing 300 g L -1 and 400 g L -1 of Ficoll, a synthetic polysaccharide, using a recently-developed strong cation exchange-based cleanup method [Rusinga, et al., Anal Chem 2017;89:1275-1282]. Transiently helical regions of ACTR exchanged faster in 300 g L -1 Ficoll than in dilute buffer. In contrast, one transient helix exchanged more slowly in 400 g L -1 Ficoll. Nonspecific interactions destabilize ACTR helicity in 300 g L -1 Ficoll because ACTR engages with the Ficoll polymer mesh. In contrast, 400 g L -1 Ficoll is a semi-dilute solution where ACTR cannot engage the Ficoll mesh. At this higher concentration, volume exclusion stabilizes ACTR helicity because ACTR is compacted in interstitial spaces between Ficoll molecules. Our results suggest that the interplay between nonspecific interactions and volume exclusion in different cellular compartments could modulate IDP function by altering the stability of IDP transient structures. Proteins 2017; 85:1468-1479. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  18. Endolithic algae in living stony corals: algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L.) and Meandrina meandrites (L.) (Scleractinia, Anthozoa)

    NARCIS (Netherlands)

    Delvoye, Laurent

    1992-01-01

    DELVOYE, L., 1992. Endolithic algae in living stony corals: Algal concentrations under influence of depth-dependent light conditions and coral tissue fluorescence in Agaricia agaricites (L) and Meandrina meandrites (L.) (Sclereactinia, Anthozoa). Studies Nat. Hist. Caribbean Region 71, Amsterdam

  19. A new general method for simultaneous fitting of temperature and concentration dependence of reaction rates yields kinetic and thermodynamic parameters for HIV reverse transcriptase specificity.

    Science.gov (United States)

    Li, An; Ziehr, Jessica L; Johnson, Kenneth A

    2017-04-21

    Recent studies have demonstrated the dominant role of induced fit in enzyme specificity of HIV reverse transcriptase and many other enzymes. However, relevant thermodynamic parameters are lacking, and equilibrium thermodynamic methods are of no avail because the key parameters can only be determined by kinetic measurement. By modifying KinTek Explorer software, we present a new general method for globally fitting data collected over a range of substrate concentrations and temperatures and apply it to HIV reverse transcriptase. Fluorescence stopped-flow methods were used to record the kinetics of enzyme conformational changes that monitor nucleotide binding and incorporation. The nucleotide concentration dependence was measured at temperatures ranging from 5 to 37 °C, and the raw data were fit globally to derive a single set of rate constants at 37 °C and a set of activation enthalpy terms to account for the kinetics at all other temperatures. This comprehensive analysis afforded thermodynamic parameters for nucleotide binding ( K d , Δ G , Δ H , and Δ S at 37 °C) and kinetic parameters for enzyme conformational changes and chemistry (rate constants and activation enthalpy). Comparisons between wild-type enzyme and a mutant resistant to nucleoside analogs used to treat HIV infections reveal that the ground state binding is weaker and the activation enthalpy for the conformational change step is significantly larger for the mutant. Further studies to explore the structural underpinnings of the observed thermodynamics and kinetics of the conformational change step may help to design better analogs to treat HIV infections and other diseases. Our new method is generally applicable to enzyme and chemical kinetics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    Science.gov (United States)

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  1. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  2. Strong-field dissociation dynamics

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, Baorui.

    1993-01-01

    The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs

  3. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (Prelated AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05) than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05). There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in

  4. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  5. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    International Nuclear Information System (INIS)

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  6. Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor

    International Nuclear Information System (INIS)

    Tian Yue; Chen Baojiu; Tian Bining; Hua Ruinian; Sun Jiashi; Cheng Lihong; Zhong Haiyang; Li Xiangping; Zhang Jinsu; Zheng Yanfeng; Yu Tingting; Huang Libo; Meng Qingyu

    2011-01-01

    Highlights: → Flower-shaped Y 2 (MoO 4 ) 3 phosphors were prepared by a co-precipitation method. → The structure and morphology of the prepared phosphors were characterized. → Energy transfer between Dy 3+ was studied by Huang's theory, IH and Uitert's models. - Abstract: Flower-like Y 2 (MoO 4 ) 3 :Dy 3+ phosphors have been synthesized via a co-precipitation approach with the aid of β-cyclodextrin. The crystal structure and morphology of the phosphors were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy), respectively. The excitation and emission properties of the phosphors were examined by fluorescence spectroscopy. The dependence of color coordinates on the Dy 3+ doping concentration was analyzed. The energy transfer mechanism between Dy 3+ ions was studied based on the Huang's theory, I-H and Van Uitert's models. It was concluded simultaneously from these three routes that the electric dipole-dipole interaction between Dy 3+ ions is the main physical mechanism for the energy transfers between Dy 3+ .

  7. Carbon dioxide assimilation in Danish crops (wheat and maize) and its dependency on increasing temperature and elevated atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Soegaard, H.; Boegh, E.

    2001-01-01

    Eddy correlation measurements of atmospheric CO 2 fluxes have been recorded over a number of crops throughout the growing season. These data have been used for validating a mechanistic photosynthesis model, which is used together with one of the most wide spread soil respiration equations. The combined model, is applied for analysing the temperature- and CO 2 -dependency of field crops. To get an idea of the potential range in the sensitivity of agricultural crops to atmospheric change, two crops with contrasting biochemical and physiological properties were selected for the present analysis: winter wheat (Triticum aestivum cv. Hereward) and maize (Zea mayz cv. Loft). While wheat, which is a C 3 -species, is the most common Danish crop (covering 25% of the Danish agricultural area), maize is interesting because it is a C 4 -plant which uses another CO 2 pathway in the dry matter production. The photosynthetic process of C 4 -plants has a higher temperature optimum compared to C 3 -plants. This could give C 4 plants more favourable conditions in the future. The model applied in this paper is utilized to evaluate whether increasing atmospheric CO 2 concentrations have contributed to the general increase in grain yield observed in Denmark since the late sixties. (LN)

  8. ANALYSIS OF DEPENDENCE OF THE FLOW TEMPERATURE OF THE PLASTICIZED POLYMER ON THE CHEMICAL STRUCTURE AND CONCENTRATION OF THE POLYMER AND THE PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Askadskiy Andrey Aleksandrovich

    2012-10-01

    Full Text Available Polymeric materials are widely used in construction. The properties of polymeric construction materials vary to a substantial extent; their durability, thermal stability, frost resistance, waterproof and dielectric properties are particularly pronounced. Their properties serve as the drivers of the high market demand for these products. These materials are applied as finishing materials, molded sanitary engineering products and effective thermal insulation and water proofing materials. The authors analyze the influence of the chemical structure and structural features of polymers on their properties. The authors consider flow and vitrification temperatures of polymers. These temperatures determine the parameters of polymeric products, including those important for the construction process. The analysis of influence of concentration of the plasticizer on the vitrification temperature is based on the two basic theories. In accordance with the first one, reduction of the vitrification temperature is proportionate to the molar fraction of the injected plasticizer. According to the second concept, reduction of the vitrification temperature is proportionate to the volume fraction of the injected solvent. Dependencies of the flow temperature on the molecular weight and the molar fraction of the plasticizer are derived for PVC. As an example, two plasticizers were considered, including dibutyl sebacate and dioctylftalatalate. The basic parameters of all mixtures were calculated through the employment of "Cascade" software programme (A.N. Nesmeyanov Institute of Organoelemental Connections, Russian Academy of Sciences.

  9. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Directory of Open Access Journals (Sweden)

    Yingying Liu

    Full Text Available Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet- or higher/NRC (National Research Council-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I and longissimus dorsi muscle (LDM, type II were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05 gradually with increasing age. Bama mini-pigs had generally higher (P<0.05 muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05 than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K, and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05. There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05 the levels for mTOR and p70S6K in Bama mini-pigs, but

  10. Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response.

    Science.gov (United States)

    Freitas, Marisa; Campos, Alexandre; Azevedo, Joana; Barreiro, Aldo; Planchon, Sébastien; Renaut, Jenny; Vasconcelos, Vitor

    2015-02-01

    The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 μg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by two-dimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 μg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 μg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In

  11. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

  12. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  13. Activity of microemulsion-based nanoparticles at the human bio-nano interface: concentration-dependent effects on thrombosis and hemolysis in whole blood

    International Nuclear Information System (INIS)

    Morey, Timothy E.; Varshney, Manoj; Flint, Jason A.; Seubert, Christoph N.; Smith, W. Brit; Bjoraker, David G.; Shah, Dinesh O.; Dennis, Donn M.

    2004-01-01

    Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood.Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaCl w/v . The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy.Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 ± 2.5 nm (0.362) and 14.0 ± 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 ± 4.2, 39.0 ± 5.6, 15.0 ± 8.7, 3.8 ± 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 ± 10.9, 30.7 ± 15.8, 20.0 ± 11.3, 2.0 ± 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 ± 11.1-6.7 ± 3.4 kdynes/cm 2 , P = 0.02, n = 5) whereas the platelet population not affected (175 ± 28-182 ± 23 10 6 /ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC 50 = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and potential associated nanotoxicity at this bio

  14. Activity of microemulsion-based nanoparticles at the human bio-nano interface: concentration-dependent effects on thrombosis and hemolysis in whole blood

    Energy Technology Data Exchange (ETDEWEB)

    Morey, Timothy E.; Varshney, Manoj; Flint, Jason A.; Seubert, Christoph N.; Smith, W. Brit; Bjoraker, David G.; Shah, Dinesh O.; Dennis, Donn M. [University of Florida, Departments of Anesthesiology, Chemical Engineering, and Pharmacology and Experimental Therapeutics, Engineering Research Center for Particle Science and Technology (United States)], E-mail: DDennis@ufl.edu

    2004-06-15

    Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood.Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaCl{sub w/v}. The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy.Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 {+-} 2.5 nm (0.362) and 14.0 {+-} 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 {+-} 4.2, 39.0 {+-} 5.6, 15.0 {+-} 8.7, 3.8 {+-} 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 {+-} 10.9, 30.7 {+-} 15.8, 20.0 {+-} 11.3, 2.0 {+-} 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 {+-} 11.1-6.7 {+-} 3.4 kdynes/cm{sup 2}, P = 0.02, n = 5) whereas the platelet population not affected (175 {+-} 28-182 {+-} 23 10{sup 6}/ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC{sub 50} = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and

  15. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics.

    Science.gov (United States)

    Ye, Yangfang; Wang, Xin; Zhang, Limin; Lu, Zhenmei; Yan, Xiaojun

    2012-07-01

    Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.

  16. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  17. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  18. Strong gravity and supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Salam, A.; Strathdee, J.

    1977-11-01

    A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

  19. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    Science.gov (United States)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  20. Changes in Oxygen Partial Pressure in the Vitreous Body and Arterial Blood of Rabbits Depending on Oxygen Concentration in Inspired Mixture.

    Science.gov (United States)

    Amkhanitskaya, L I; Nikolaeva, G V; Sokolova, N A

    2015-07-01

    We demonstrated that the vitreous body of one-month-old rabbits becomes a "reservoir" for storage and accumulation of oxygen after exposure to additional oxygenation of the organism (O2 concentrations in inspired gas mixture were 40, 60, 85, and 99%). The higher was O2 concentration in inspired mixture, the higher was oxygen saturation of the blood and vitreous body. O2 concentration of 40% was relatively safe for eye tissues. O2 concentration >60% induced oxygen accumulation in the vitreous body, which can be a provoking factor for the development of oxygen-induced pathologies.

  1. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone

    Science.gov (United States)

    Bergin, Shane D.; Nicolosi, Valeria; Giordani, Silvia; de Gromard, Antoine; Carpenter, Leslie; Blau, Werner J.; Coleman, Jonathan N.

    2007-11-01

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was CNT~0.004 mg ml-1, suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 × 10-4 mg ml-1. The number density of individual nanotubes peaks at a concentration of ~6 × 10-3 mg ml-1 where almost 10% of the nanotubes by mass are individualized.

  2. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone

    International Nuclear Information System (INIS)

    Bergin, Shane D; Nicolosi, Valeria; Giordani, Silvia; Gromard, Antoine de; Carpenter, Leslie; Blau, Werner J; Coleman, Jonathan N

    2007-01-01

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was C NT ∼0.004 mg ml -1 , suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 x 10 -4 mg ml -1 . The number density of individual nanotubes peaks at a concentration of ∼6 x 10 -3 mg ml -1 where almost 10% of the nanotubes by mass are individualized

  3. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  4. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  5. Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations

    DEFF Research Database (Denmark)

    Poidevin, L.; MacNeill, S. A.

    2006-01-01

    Background DNA ligases are required for DNA strand joining in all forms of cellular life. NAD+-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD+-dependent DNA ligases is the LigN enzyme of the halophilic...

  6. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug {gamma}-butyrolactone

    Energy Technology Data Exchange (ETDEWEB)

    Bergin, Shane D [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Nicolosi, Valeria [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Giordani, Silvia [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Gromard, Antoine de [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Carpenter, Leslie [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Blau, Werner J [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland); Coleman, Jonathan N [School of Physics, Trinity College Dublin, University of Dublin, Dublin 2 (Ireland)

    2007-11-14

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent {gamma}-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was C{sub NT}{approx}0.004 mg ml{sup -1}, suggesting that this can be considered the nanotube dispersion limit in {gamma}-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 x 10{sup -4} mg ml{sup -1}. The number density of individual nanotubes peaks at a concentration of {approx}6 x 10{sup -3} mg ml{sup -1} where almost 10% of the nanotubes by mass are individualized.

  7. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  8. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  9. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  10. The lambda sigma calculus and strong normalization

    DEFF Research Database (Denmark)

    Schack-Nielsen, Anders; Schürmann, Carsten

    Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus, ...

  11. Optimization of strong and weak coordinates

    NARCIS (Netherlands)

    Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation

  12. Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: indication for a strong dependence on photon energy of the RBE(M) for various end points.

    Science.gov (United States)

    Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M

    2002-01-01

    The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses energies of transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays.

  13. INVESTIGATION OF DEPENDENCE OF ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS FROM LEMON, MACE, FENNEL AND BLACK PEPPER ON OIL CONCENTRATION BY CAPILLARY GAS-LIQUID CHROMATOGRAPHY

    OpenAIRE

    Самусенко, Алексей Леонидович

    2014-01-01

    In recent time the biological activity of essential oils from spicy-aromatic herbs, including the antioxidant one, have been evaluated in numerous studies. Earlier we have demonstrated the high antioxidant activity of the oils contained monoterpenes, such as γ-terpinene and α-terpinolene, or sesquiterpenes (zingeberene and β-caryofillene). However the concentration value of oils in the «aldehyde – essential oil» system was too high and the investigation of various concentrations was not carri...

  14. An important role of temperature dependent scattering time in understanding the high temperature thermoelectric behavior of strongly correlated system: La0.75Ba0.25CoO3.

    Science.gov (United States)

    Singh, Saurabh; Kumar, Devendra; Pandey, Sudhir K

    2017-03-15

    In the present work, we report the temperature dependent thermopower (α) behavior of La 0.75 Ba 0.25 CoO 3 compound in the temperature range 300-600 K. Using the Heikes formula, the estimated value of α corresponding to high-spin configuration of Co 3+ and Co 4+ ions is found to be  ∼16 [Formula: see text], which is close to the experimental value, ∼13 [Formula: see text], observed at  ∼600 K. The temperature dependent TE behavior of the compound is studied by combining the WIEN2K and BoltzTrap code. The self consistency field calculations show that the compound have ferromagnetic ground state structure. The electronic structure calculations give half metallic characteristic with a small gap of  ∼50 meV for down spin channel. The large and positive value for down spin channel is obtained due to the unique band structure shown by this spin channel. The temperature dependent relaxation time for both the spin-channel charge carriers is considered to study the thermopower data in temperature range 300-600 K. For evaluation of α, almost linear values of [Formula: see text] and a non-linear values of [Formula: see text] are taken into account. By taking the temperature dependent values of relaxation time for both the spin channels, the calculated values of α using two current model are found to be in good agreement with experimental values in the temperature range 300-600 K. At 300 K, the calculated value of electrical conductivity by using the same value of relaxation time, i.e. 0.1 [Formula: see text] 10 -14 seconds for spin-up and [Formula: see text] seconds for spin-dn channel, is found to be equal to the experimentally reported value.

  15. MEH-PPV and PCBM Solution Concentration Dependence of Inverted-Type Organic Solar Cells Based on Eosin-Y-Coated ZnO Nanorod Arrays

    Directory of Open Access Journals (Sweden)

    Riski Titian Ginting

    2013-01-01

    Full Text Available The influence of polymer solution concentration on the performance of chlorobenzene- (CB- and chloroform- (CF- based inverted-type organic solar cells has been investigated. The organic photoactive layers consisted of poly(2-methoxy-5-(2-ethyl hexyloxy-1,4-phenylenevinylene (MEH-PPV and (6,6-phenyl C61 butyric acid methyl ester (PCBM were spin coated from CF with concentrations of 4, 6, and 8 mg/mL and from CB with concentrations of 6, 8, and 10 mg/mL onto Eosin-Y-coated ZnO nanorod arrays (NRAs. Fluorine doped tin oxide (FTO and silver (Ag were used as electron collecting electrode and hole collecting electrode, respectively. Experimental results showed that the short circuit current density and power conversion efficiency increased with decrease of solution concentration for both CB and CF devices, which could be attributed to reducing charge recombination in thinner photoactive layer and larger contact area between the rougher photoactive layer and Ag contact. However, the open circuit voltage decreased with decreasing solution concentration due to increase of leakage current from ZnO NRAs to Ag as the ZnO NRAs were not fully covered by the polymer blend. The highest power conversion efficiencies of 0.54 ± 0.10% and 0.87 ± 0.15% were achieved at the respective lowest solution concentrations of CB and CF.

  16. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  17. Increased Effectiveness of Microbiological Verification by Concentration-Dependent Neutralization of Sanitizers Used in Poultry Slaughter and Fabrication Allowing Salmonella enterica Survival

    Directory of Open Access Journals (Sweden)

    Zahra H. Mohammad

    2018-03-01

    Full Text Available Sanitizer neutralizers can assist foodborne pathogen detection during routine testing by counteracting sanitizer residues carried over into fluids collected and tested from food samples. This study tested sanitizer-matched neutralizers applied at increasing concentrations to facilitate Salmonella enterica survival following exposure to cetylpyridinium chloride (CPC or peracetic acid (PAA, identifying minimum required concentrations of neutralizers to facilitate pathogen survival. Salmonella isolates were individually inoculated into a non-selective medium followed immediately by CPC (0.1 to 0.8% v/v or PAA (0.0125 to 0.2% v/v application, followed by neutralizers application. CPC was neutralized by lecithin and polysorbate 80, each supplemented into buffered peptone water (BPW at 0.125 to 2.0X its respective content in Dey-Engley (D/E neutralizing buffer. PAA was neutralized in BPW supplemented with disodium phosphate, potassium monophosphate, and sodium thiosulfate, each at 0.25 to 3.0X its respective concentration in BPW (phosphates or D/E buffer (thiosulfate. Addition of neutralizers at 1X their respective concentrations in D/E buffer was required to allow Salmonella growth at the maximum CPC concentration (0.8%, while 2X neutralizer addition was required for Salmonella growth at the maximum PAA level (0.2%. Sanitizer neutralizers can assist pathogen survival and detection during routine food product testing.

  18. Concentration dependence of transmission losses in UV-laser irradiated bovine α-, βH-, βL- and γ-crystallin solutions

    International Nuclear Information System (INIS)

    Hott, J.L.; Borkman, R.F.

    1993-01-01

    Experiments with calf lens protein fractions in aqueous buffer solutions at room temperature showed that β H -, β L - and γ-crystallin fractions became opaque following ultraviolet exposure at 308 nm, while the α-crystallin fraction remained transparent. Transmission loss, due to UV-irradiation, for all of the crystallin samples was studied in the concentration range of 0.1 mg/mL to 1.0 mg/mL, and for α- and γ-crystallin, in the range up to 5 mg/mL. With increased concentrations of β H -, β L -and γ-crystalline, the rate of opacification increased. However, with α-crystallin, the loss of transmission was negligible for all of the concentrations and irradiation times studied. Opacification of the crystallins was accompanied by formation of higher molecular weight insoluble proteins as detected by SDS-PAGE. (Author)

  19. Strongly intensive quantities

    International Nuclear Information System (INIS)

    Gorenstein, M. I.; Gazdzicki, M.

    2011-01-01

    Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

  20. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  1. In Vitro Neurotoxicity of PBDE-99: Immediate and Concentration-Dependent Effects on Protein Expression in Cerebral Cortex Cells

    DEFF Research Database (Denmark)

    Alm, Henrik; Scholz, Birger; Kultima, Kim

    2010-01-01

    Polybrominated diphenyl ethers (PBDEs) are commonly used flame retardants in various consumer products. Pre- and postnatal exposure to congeners of PBDEs disrupts normal brain development in rodents. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to analyze concentration...

  2. The effects of ABCG5/G8 polymorphisms on plasma HDL cholesterol concentrations depend on smoking habit in the Boston Puerto Rican Health Study

    Science.gov (United States)

    Background-Low high-density lipoprotein cholesterol (HDL-C) is associated with an increased risk for atherosclerosis and concentrations are modulated by genetic and environmental factors such as smoking. Objective- To assess whether the association of common single nucleotide polymorphisms (SNPs...

  3. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  4. Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

    NARCIS (Netherlands)

    Nicolai, H. T.; Hof, A.J.; Lu, M.; Blom, P. W. M.; de Vries, R. J.; Coehoorn, R.

    2011-01-01

    The charge transport in a polyspirobifluorene derivative with copolymerized N,N,N',N'-tetraaryldiamino biphenyl (TAD) hole transport units is investigated as a function of the TAD content. For TAD concentrations larger than 5%, guest-to-guest transport is observed. It is demonstrated that in this

  5. Quantitative analysis of the guest-concentration dependence of the mobility in a disordered fluorene-arylamine host-guest system in the guest-to-guest regime

    NARCIS (Netherlands)

    Nicolai, H.T.; Hof, A.J.; Lu, M.; Blom, P.W.M.; Vries, R.J. de; Coehoorn, R.

    2011-01-01

    The charge transport in a polyspirobifluorene derivative with copolymerized N,N,N',N'-tetraaryldiamino biphenyl (TAD) hole transport units is investigated as a function of the TAD content. For TAD concentrations larger than 5, guest-to-guest transport is observed. It is demonstrated that in this

  6. Acute 7,12-dimethylbenz[a]anthracene exposure causes differential concentration-dependent follicle depletion and gene expression in neonatal rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Devine, Patrick J. [INRS—Institut Armand-Frappier Research Centre, University of Quebec, Laval, QC H7V 1B7 (Canada); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States)

    2014-05-01

    Chronic exposure to the polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA), generated during combustion of organic matter including cigarette smoke, depletes all ovarian follicle types in the mouse and rat, and in vitro models mimic this effect. To investigate the mechanisms involved in follicular depletion during acute DMBA exposure, two concentrations of DMBA at which follicle depletion has (75 nM) and has not (12.5 nM) been observed were investigated. Postnatal day four F344 rat ovaries were maintained in culture for four days before a single exposure to vehicle control (1% DMSO; CT) or DMBA (12 nM; low-concentration or 75 nM; high-concentration). After four or eight additional days of culture, DMBA-induced follicle depletion was evaluated via follicle enumeration. Relative to control, DMBA did not affect follicle numbers after 4 days of exposure, but induced large primary follicle loss at both concentrations after 8 days; while, the low-concentration DMBA also caused secondary follicle depletion. Neither concentration affected primordial or small primary follicle number. RNA was isolated and quantitative RT-PCR performed prior to follicle loss to measure mRNA levels of genes involved in xenobiotic metabolism (Cyp2e1, Gstmu, Gstpi, Ephx1), autophagy (Atg7, Becn1), oxidative stress response (Sod1, Sod2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Kitlg, cKit, Akt1) 1, 2 and 4 days after exposure. With the exception of Atg7 and cKit, DMBA increased (P < 0.05) expression of all genes investigated. Also, BECN1 and pAKT{sup Thr308} protein levels were increased while cKIT was decreased by DMBA exposure. Taken together, these results suggest an increase in DMBA bioactivation, add to the mechanistic understanding of DMBA-induced ovotoxicity and raise concern regarding female low concentration DMBA exposures. - Highlights: • Acute DMBA exposures induce large primary and/or secondary follicle loss. • Acute DMBA exposure did not impact

  7. Acute 7,12-dimethylbenz[a]anthracene exposure causes differential concentration-dependent follicle depletion and gene expression in neonatal rat ovaries

    International Nuclear Information System (INIS)

    Madden, Jill A.; Hoyer, Patricia B.; Devine, Patrick J.; Keating, Aileen F.

    2014-01-01

    Chronic exposure to the polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA), generated during combustion of organic matter including cigarette smoke, depletes all ovarian follicle types in the mouse and rat, and in vitro models mimic this effect. To investigate the mechanisms involved in follicular depletion during acute DMBA exposure, two concentrations of DMBA at which follicle depletion has (75 nM) and has not (12.5 nM) been observed were investigated. Postnatal day four F344 rat ovaries were maintained in culture for four days before a single exposure to vehicle control (1% DMSO; CT) or DMBA (12 nM; low-concentration or 75 nM; high-concentration). After four or eight additional days of culture, DMBA-induced follicle depletion was evaluated via follicle enumeration. Relative to control, DMBA did not affect follicle numbers after 4 days of exposure, but induced large primary follicle loss at both concentrations after 8 days; while, the low-concentration DMBA also caused secondary follicle depletion. Neither concentration affected primordial or small primary follicle number. RNA was isolated and quantitative RT-PCR performed prior to follicle loss to measure mRNA levels of genes involved in xenobiotic metabolism (Cyp2e1, Gstmu, Gstpi, Ephx1), autophagy (Atg7, Becn1), oxidative stress response (Sod1, Sod2) and the phosphatidylinositol 3-kinase (PI3K) pathway (Kitlg, cKit, Akt1) 1, 2 and 4 days after exposure. With the exception of Atg7 and cKit, DMBA increased (P < 0.05) expression of all genes investigated. Also, BECN1 and pAKT Thr308 protein levels were increased while cKIT was decreased by DMBA exposure. Taken together, these results suggest an increase in DMBA bioactivation, add to the mechanistic understanding of DMBA-induced ovotoxicity and raise concern regarding female low concentration DMBA exposures. - Highlights: • Acute DMBA exposures induce large primary and/or secondary follicle loss. • Acute DMBA exposure did not impact

  8. Radiation dose-dependent risk on individuals due to ingestion of uranium and radon concentration in drinking water samples of four districts of Haryana, India

    Science.gov (United States)

    Panghal, Amanjeet; Kumar, Ajay; Kumar, Suneel; Singh, Joga; Sharma, Sumit; Singh, Parminder; Mehra, Rohit; Bajwa, B. S.

    2017-06-01

    Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25 µg L-1 with an average of 17.91 µg L-1 and 16.06 ± 0.97 to 57.35 ± 1.28 Bq L-1 with an average of 32.98 ± 2.45 Bq L-1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11 Bq L-1 (USEPA) and all the values are within the European Commission recommended limit of 100 Bq L-1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100 µSv y-1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.

  9. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  10. Alpha-tocopherol disappearance rates from plasma depend on lipid concentrations: Studies using deuterium labeled collard greens in younger and older adults

    Science.gov (United States)

    Little is known about alpha-tocopherol's bioavailability as a constituent of food or its dependence on a subject's age. To evaluate the alpha-tocopherol bioavailability from food, we used collard greens grown in deuterated water (2H collard greens) as a source of deuterium-labeled (2H) alpha-tocophe...

  11. Dependence of u.v.-induced DNA excision repair on deoxyribonucleoside triphosphate concentrations in permeable human fibroblasts: a model for the inhibition of repair by hydroxyurea

    International Nuclear Information System (INIS)

    Hunting, D.J.; Dresler, S.L.

    1985-01-01

    We have tested the hypothesis that the inhibition by hydroxyurea of repair patch ligation and chromatin rearrangement during u.v.-induced DNA excision repair results from a reduction in cellular deoxyribonucleotide concentrations and not from a direct effect of hydroxyurea on the repair process. Using permeable human fibroblasts, we have shown that hydroxyurea has no direct effect on either repair synthesis or repair patch ligation. We also have shown that by reducing the deoxyribonucleoside triphosphate concentrations in the permeable cell reaction mixture, we can mimic the inhibition of repair patch ligation and chromatin rearrangement seen when u.v.-damaged intact confluent fibroblasts are treated with hydroxyurea. Our results are consistent with the concept that hydroxyurea inhibits DNA repair in intact cells by inhibiting deoxyribonucleotide synthesis through its effect on ribonucleotide reductase and, conversely, that continued deoxyribonucleotide synthesis is required for the excision repair of u.v.-induced DNA damage even in resting cells

  12. Concentration dependences of the density, viscosity, and refraction index of Cu(NO3)2 · 3H2O solutions in DMSO at 298 K

    Science.gov (United States)

    Mamyrbekova, A. K.

    2013-03-01

    Physicochemical properties (density, dynamic viscosity, refraction index) of the DMSO-Cu(NO3)2 · 3H2O system are studied in the concentration range of 0.01-2 M at 298 K. The refraction index of a solution of copper(II) nitrate in dimethylsulfoxide (DMSO) is measured at 288-318 K. The excess and partial molar volumes of the solvent and dissolved substance are calculated analytically.

  13. Case study: in vivo stress diagnostics by spectroscopic determination of the cutaneous carotenoid antioxidant concentration in midwives depending on shift work

    International Nuclear Information System (INIS)

    Maeter, H; Briese, V; Gerber, B; Darvin, M E; Lademann, J; Olbertz, D M

    2013-01-01

    Laser spectroscopic methods, for instance resonance Raman spectroscopy and reflectance spectroscopy, permit us for the first time to investigate the antioxidative status in human skin non-invasively by measurement of carotenoid concentration. The individual antioxidant concentration of the human skin is determined by the nutritional habits, on the one hand, and by stressors, such as shift work, on the other. Due to the disturbance of the circadian rhythm and melatonin secretion, shift work is associated with, inter alia, insomnia and gastrointestinal disorders. The study at hand was the first to determine the cutaneous antioxidant concentration of midwives using reflectance spectroscopy and to relate the results to shift work. Seven midwives took part in the study. An LED-based compact scanner system was used for non-invasive measurements of carotenoids in human skin. The measuring principle is based on reflection spectroscopy. The study at hand suggests that the cutaneous antioxidative status may be adversely affected by shift work. Despite numerous international strategies of programmes available which invite people to eat more healthily, there are only a few measures aiming at stress reduction and management. In this field the use of reflectance spectroscopic investigation methods could play an essential role in the future. (letter)

  14. Phase Transitions in the Nucleus: the functional implications of concentration-dependent assembly of a Liquid-like RNA/Protein Body

    Science.gov (United States)

    Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford

    2015-03-01

    The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.

  15. Strong volume, stable prices

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This article is the September-October 1993 market report, providing trading volume and prices in the Uranium market. Activity was brisk, with 15 deals concluded. Six were in the spot concentrates market, with four of the six deals involving U.S. utilities and approximately 1.8M pounds of U3O8 equivalent. There were five conversion deals announced, with four of the five deals involving U.S. utilities. Four deals were concluded in the enrichment market, and the deals involving U.S. utilities were approximately 327k SWUs. On the horizon, there are deals for approximately 4.1M SWU

  16. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  17. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  18. Time-dependent alterations in serum NO concentration after oral administration of L-arginine, L-NAME, and allopurinol in intestinal ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Amalia E Yanni

    2008-04-01

    Full Text Available Amalia E Yanni1, Eleutherios Margaritis2, Nikolaos Liarakos2, Alkisti Pantopoulou2, Maria Poulakou2, Maria Kostakis2, Despoina Perrea2, Alkis Kostakis31Department of Science of Dietetics and Nutrition, Harokopio University of Athens, Athens, Greece, 2Laboratory of Experimental Surgery and Surgical Research, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece, 32nd Department of Propedeutic Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, GreeceObjective: To study the effect of oral administration of a nitric oxide (NO donor L-arginine (L-Arg, a NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME and an inhibitor of xanthine oxidase, allopurinol (Allo, on serum NO concentration and catalase activity after intestinal ischemia/reperfusion (I/R in rats.Methods: Male Wistar rats received per os L-Arg (800 mg/kg or L-NAME (50 mg/kg or Allo (100 mg/kg 24 hrs, 12 hrs and 1 hr before underwent 1 hr occlusion of superior mesenteric artery followed by 1 hr of reperfusion (L-Arg(IR1, L-NAME(IR1 and Allo(IR1 respectively or 1 hr occlusion followed by 8 hrs of reperfusion (L-Arg(IR8, L-NAME(IR8 and Allo(IR8 respectively. There was one group underwent 1 hr occlusion (I, a group underwent 1 hr occlusion followed by 1 hr reperfusion (IR1, a group subjected to 1 hr occlusion followed by 8 hrs of reperfusion (IR8 and a last group that served as control (C. Serum NO concentration and catalase activity were measured.Results: After 1 hr of reperfusion serum NO concentration was elevated in IR1 and L-Arg(IR1 groups compared with group C but not in L-NAME(IR1 and Allo(IR1 group. Catalase activity was enhanced in L-NAME(IR1 group. Interestingly, serum NO concentration was increased after 8 hrs of reperfusion in all groups (IR8, L-Arg(IR8, L-NAME(IR8 and Allo(IR8 compared with control wh