#### Sample records for strongly bernoulli type

1. Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers

International Nuclear Information System (INIS)

Ônishi, Yoshihiro

2011-01-01

The three fundamental properties of the Bernoulli numbers, namely, the von Staudt-Clausen theorem, von Staudt's second theorem, and Kummer's original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients in the power series expansion of a higher-genus algebraic function with respect to a suitable variable. Our generalization differs strongly from previous works. Indeed, the order of the power of the modulus prime in our Kummer-type congruences is exactly the same as in the trigonometric function case (namely, Kummer's own congruence for the original Bernoulli numbers), and as in the elliptic function case (namely, H. Lang's extension for the Hurwitz numbers). However, in other past results on higher-genus algebraic functions, the modulus was at most half of its value in these classical cases. This contrast is clarified by investigating the analogue of the three properties above for the universal Bernoulli numbers. Bibliography: 34 titles.

2. Bernoulli's Principle

Science.gov (United States)

Hewitt, Paul G.

2004-01-01

Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

3. Generalized Bernoulli-Hurwitz numbers and the universal Bernoulli numbers

Energy Technology Data Exchange (ETDEWEB)

Onishi, Yoshihiro [Faculty of Education Human Sciences, University of Yamanashi, Takeda, Kofu (Japan)

2011-10-31

The three fundamental properties of the Bernoulli numbers, namely, the von Staudt-Clausen theorem, von Staudt's second theorem, and Kummer's original congruence, are generalized to new numbers that we call generalized Bernoulli-Hurwitz numbers. These are coefficients in the power series expansion of a higher-genus algebraic function with respect to a suitable variable. Our generalization differs strongly from previous works. Indeed, the order of the power of the modulus prime in our Kummer-type congruences is exactly the same as in the trigonometric function case (namely, Kummer's own congruence for the original Bernoulli numbers), and as in the elliptic function case (namely, H. Lang's extension for the Hurwitz numbers). However, in other past results on higher-genus algebraic functions, the modulus was at most half of its value in these classical cases. This contrast is clarified by investigating the analogue of the three properties above for the universal Bernoulli numbers. Bibliography: 34 titles.

4. Bernoulli's Equation

regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

5. Bernoulli and Euler Numbers

Directory of Open Access Journals (Sweden)

Dae San Kim

2012-01-01

Full Text Available We derive some interesting identities and arithmetic properties of Bernoulli and Euler polynomials from the orthogonality of Hermite polynomials. Let Pn={p(x∈ℚ[x]∣deg p(x≤n} be the (n+1-dimensional vector space over ℚ. Then we show that {H0(x,H1(x,…,Hn(x} is a good basis for the space Pn for our purpose of arithmetical and combinatorial applications.

6. q-Bernoulli numbers and q-Bernoulli polynomials revisited

Directory of Open Access Journals (Sweden)

Kim Taekyun

2011-01-01

Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80

7. Bernoulli Variational Problem and Beyond

KAUST Repository

Lorz, Alexander

2013-12-17

The question of \\'cutting the tail\\' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric case where a variational problem can be stated. It is known that, in both cases, the same critical scale arises for the size of the singular perturbation. More interesting is that in both cases another critical parameter (of order one) arises that decides when the limiting behaviour is non-degenerate. We study both theoretically and numerically the values of this critical parameter and, in the symmetric case, ask if the variational solution leads to the same value as for the maximal solution of the PDE. Finally we propose a weak formulation of the limiting Bernoulli problem which incorporates both Dirichlet and Neumann boundary condition. © 2013 Springer-Verlag Berlin Heidelberg.

8. Bernoulli numbers and zeta functions

CERN Document Server

Arakawa, Tsuneo; Kaneko, Masanobu

2014-01-01

Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer's congruence between Bernoulli numbers and a related theory of p-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitable integers; various formulas of ...

9. Generalization of the Bernoulli ODE

Science.gov (United States)

Azevedo, Douglas; Valentino, Michele C.

2017-01-01

In this note, we propose a generalization of the famous Bernoulli differential equation by introducing a class of nonlinear first-order ordinary differential equations (ODEs). We provide a family of solutions for this introduced class of ODEs and also we present some examples in order to illustrate the applications of our result.

10. Flawed Applications of Bernoulli's Principle

Science.gov (United States)

Koumaras, Panagiotis; Primerakis, Georgios

2018-04-01

One of the most popular demonstration experiments pertaining to Bernoulli's principle is the production of a water spray by using a vertical plastic straw immersed in a glass of water and a horizontal straw to blow air towards the top edge of the vertical one. A more general version of this phenomenon, appearing also in school physics problems, is the determination of the rise of the water level h in the straw (see Fig. 1).

11. Historia del Teorema de Bernoulli Historia del Teorema de Bernoulli

Directory of Open Access Journals (Sweden)

Josefina Ortiz Medel

2012-02-01

Full Text Available La historia comienza en 1598 cuando Benedetto Castelli refutó la forma de medir el flujo en los ríos por parte de Giovanni Fontana, afirmando tomar en cuenta la sección y la velocidad. También aclaró que en la medición en orificios, debía considerarse la carga y el tamaño del orificio. En 1625, Castelli estableció la ecuación que lleva su nombre (Q = AV. Galileo Galilei (1638, propuso que los cuerpos experimentan una aceleración uniforme alcaer en el vacío. En 1641, Evangelista Torricelli demostró que la forma de un chorro al salirde un orificio es una hipérbola de 4º orden. Isaac Newton (1686, argumentó que el agua tiene una caída efectiva en el interior de un tanque y que el orificio tiene encima una carga real del doble de la altura del tanque. Daniel Bernoulli (1738, aclaró el enigma de la doble columna y finalmente Johann Bernoulli, basado en los trabajos de su hijo Daniel, presentóuna mejor explicación del escurrimiento en un orificio y logró una clara deducción de la ecuación de una línea de corriente.History starts in 1598 when Benedetto Castelli refuted the way of measuring the flow of water in rivers done by Giovanni Fontana, saying that the section and the flow rate should be taken into account. He also stated that for measurement in orifices, the head and the size of the orifice should be consider. In 1625, Castelli introduced the equation that carrieshis name (Q = AV. Galileo Galilei (1638 proposed that objects under free fall motion descend at the same rate. In 1641, Evangelista Torricelli demonstrated that the form of a stream flowing through an orifice is a fourth-order hyperbola. Isaac Newton (1686 said that water has an effective fall inside a tank and that the orifice has a real head of twice the tank’s height. Daniel Bernoulli (1738 explained the puzzle of the double column. Finally Johann Bernoulli, based on the works of his son Daniel, presented a better explanation of the water flow through an

12. Group colorings and Bernoulli subflows

CERN Document Server

Gao, Su; Seward, Brandon

2016-01-01

In this paper the authors study the dynamics of Bernoulli flows and their subflows over general countable groups. One of the main themes of this paper is to establish the correspondence between the topological and the symbolic perspectives. From the topological perspective, the authors are particularly interested in free subflows (subflows in which every point has trivial stabilizer), minimal subflows, disjointness of subflows, and the problem of classifying subflows up to topological conjugacy. Their main tool to study free subflows will be the notion of hyper aperiodic points; a point is hyper aperiodic if the closure of its orbit is a free subflow.

13. A generalization of the Bernoulli polynomials

Directory of Open Access Journals (Sweden)

Pierpaolo Natalini

2003-01-01

Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.

14. Strong typing of object-oriented languages revisited

DEFF Research Database (Denmark)

Madsen, Ole Lehrmann; Magnusson, Boris; Møller-Pedersen, Birger

1990-01-01

This paper is concerned with the relation between subtyping and subclassing and their influence on programming language design. Traditionally subclassing as introduced by Simula has also been used for defining a hierarchical type system. The type system of a language can be characterized as strong...

15. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing.

Science.gov (United States)

Satoskar, Anjali A; Efebera, Yvonne; Hasan, Ayesha; Brodsky, Sergey; Nadasdy, Gyongyi; Dogan, Ahmet; Nadasdy, Tibor

2011-11-01

Although systemic amyloidosis commonly presents with renal disease, cardiac involvement usually determines the patient's prognosis. Cardiac involvement is seen in light chain amyloid and transthyretin amyloidosis. Distinguishing between these two is critical because prognosis and treatment differ. Our study demonstrates the unreliability of transthyretin immunostaining in subtyping cardiac amyloid. Between January 2003 and August 2010, we retrieved 229 native endomyocardial biopsies, of which 24 had amyloid. Immunohistochemistry for κ, λ, transthyretin, and serum amyloid A protein was performed on formalin-fixed, paraffin-embedded sections. Staining was graded as weak (trace to 1+) or strong (2 to 3+). Mass spectrometry (MS)-based proteomic typing of microdissected amyloid material was performed on selected cases. Fifteen patients had monoclonal gammopathy/plasma cell dyscrasia with cardiac amyloid. Eight of them (53%) showed strong transthyretin staining in the cardiac amyloid deposits. MS was performed in 5 of these 8 biopsies, and all 5 biopsies revealed light chain amyloid-type amyloid. Two of these 5 light chain amyloid biopsies did not even have concomitant strong staining for the appropriate light chain. Among the 15 cases with plasma cell dyscrasia, only 7 biopsies showed strong staining for the corresponding monoclonal light chain. Strong, false-positive immunostaining for transthyretin in cardiac amyloid is a potential pitfall, augmented by the frequent lack of staining for immunoglobulin light chains. Therefore, the presence of amyloid in the cardiac biopsy should prompt a search for plasma cell dyscrasia irrespective of transthyretin staining. Confirmation with MS should be sought, particularly if there is any discrepancy between κ/λ staining and serum immunofixation results.

16. Testing Bernoulli's Law

Science.gov (United States)

Ivanov, Dragia; Nikolov, Stefan; Petrova, Hristina

2014-01-01

In this paper we present three different methods for testing Bernoulli's law that are different from the standard "tube with varying cross-section." They are all applicable to high-school level physics education, with varying levels of theoretical and experimental complexity, depending on students' skills, and may even be…

17. Bernoulli Polynomials, Fourier Series and Zeta Numbers

DEFF Research Database (Denmark)

Scheufens, Ernst E

2013-01-01

Fourier series for Bernoulli polynomials are used to obtain information about values of the Riemann zeta function for integer arguments greater than one. If the argument is even we recover the well-known exact values, if the argument is odd we find integral representations and rapidly convergent...

18. Bernoulli Variational Problem and Beyond

KAUST Repository

Lorz, Alexander; Markowich, Peter A.; Perthame, Benoî t

2013-01-01

The question of 'cutting the tail' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric

19. Bernoulli Suction Effect on Soap Bubble Blowing?

Science.gov (United States)

Davidson, John; Ryu, Sangjin

2015-11-01

As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

20. Dynamic behaviour of non-uniform Bernoulli-Euler beams subjected ...

African Journals Online (AJOL)

This paper investigates the dynamics behaviour of non-uniform Bernoulli-Euler beams subjected to concentrated loads ravelling at variable velocities. The solution technique is based on the Generalized Galerkin Method and the use of the generating function of the Bessel function type. The results show that, for all the ...

1. Bernoulli Numbers: from Ada Lovelace to the Debye Functions

OpenAIRE

Sparavigna , Amelia Carolina

2016-01-01

Jacob Bernoulli owes his fame for the numerous contributions to calculus and for his discoveries in the field of probability. Here we will discuss one of his contributions to the theory of numbers, the Bernoulli numbers. They were proposed as a case study by Ada Lovelace in her analysis of Menabrea's report on Babbage Analytical Engine. It is probable that it was this Lovelace's work, that inspired Hans Thirring in using the Bernoulli numbers in the calculus of the Debye functions.

2. Chaotic dynamics of flexible Euler-Bernoulli beams

Energy Technology Data Exchange (ETDEWEB)

Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl [Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland and Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524 Warsaw (Poland); Krysko, A. V., E-mail: anton.krysko@gmail.com [Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation); Kutepov, I. E., E-mail: iekutepov@gmail.com; Zagniboroda, N. A., E-mail: tssrat@mail.ru; Dobriyan, V., E-mail: Dobriy88@yandex.ru; Krysko, V. A., E-mail: tak@san.ru [Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054 Saratov (Russian Federation)

2013-12-15

Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.

3. Whole analogy between Daniel Bernoulli solution and direct kinematics solution

Directory of Open Access Journals (Sweden)

Filipović Mirjana

2010-01-01

Full Text Available In this paper, the relationship between the original Euler-Bernoulli's rod equation and contemporary knowledge is established. The solution which Daniel Bernoulli defined for the simplest conditions is essentially the solution of 'direct kinematics'. For this reason, special attention is devoted to dynamics and kinematics of elastic mechanisms configuration. The Euler-Bernoulli equation and its solution (used in literature for a long time should be expanded according to the requirements of the mechanisms motion complexity. The elastic deformation is a dynamic value that depends on the total mechanism movements dynamics. Mathematical model of the actuators comprises also elasticity forces.

4. A nonlinear free boundary problem with a self-driven Bernoulli condition

OpenAIRE

Dipierro, Serena; Karakhanyan, Aram; Valdinoci, Enrico

2017-01-01

We study a Bernoulli type free boundary problem with two phases J[u]=∫Ω|∇u(x)|2dx+Φ(M−(u),M+(u)),u−u¯∈W1,20(Ω), where u¯∈W1,2(Ω) is a given boundary datum. Here, M1 and M2 are weighted volumes of {u≤0}∩Ω and {u>0}∩Ω, respectively, and Φ is a nonnegative function of two real variables. We show that, for this problem, the Bernoulli constant, which determines the gradient jump condition across the free boundary, is of global type and it is indeed determined by the weighted volumes of the phas...

5. A fully connected network of Bernoulli units with correlation learning

Science.gov (United States)

Dente, J. A.; Vilela Mendes, R.

1996-02-01

Biological evidence suggests that pattern recognition and associative memory in the mammalian nervous system operates through the establishment of spatio-temporal patterns of activity and not by the evolution towards an equilibrium point as in attractor neural networks. Information is carried by the space-time correlation of the activity intensities rather than by the details of individual neuron signals. Furthermore the fast recognition times that are achieved with relatively slow biological neurons seem to be associated to the chaotic nature of the basal nervous activity. To copy the biology hardware may not be technologically sound, but to look for inspiration in the efficient biological information processing methods is an idea that deserves consideration. Inspired by the mechanisms at work in the mammalian olfactory system we study a network where, in the absence of external inputs, the units have a dynamics of the Bernoulli shift type. When an external signal is presented, the pattern of excitation bursts depends on the learning history of the network. Association and pattern identification in the network operates by the selection, by the external stimulus, of distinct invariant measures in the chaotic system. The simplicity of the node dynamics, that is chosen, allows a reasonable analytical control of the network behavior.

6. Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions

Directory of Open Access Journals (Sweden)

R. Naz

2015-01-01

Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.

7. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

Science.gov (United States)

Sun, Wen-Yih

2018-06-01

A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

8. Geometrical study of phyllotactic patterns by Bernoulli spiral lattices.

Science.gov (United States)

Sushida, Takamichi; Yamagishi, Yoshikazu

2017-06-01

Geometrical studies of phyllotactic patterns deal with the centric or cylindrical models produced by ideal lattices. van Iterson (Mathematische und mikroskopisch - anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer, Jena, 1907) suggested a centric model representing ideal phyllotactic patterns as disk packings of Bernoulli spiral lattices and presented a phase diagram now called Van Iterson's diagram explaining the bifurcation processes of their combinatorial structures. Geometrical properties on disk packings were shown by Rothen & Koch (J. Phys France, 50(13), 1603-1621, 1989). In contrast, as another centric model, we organized a mathematical framework of Voronoi tilings of Bernoulli spiral lattices and showed mathematically that the phase diagram of a Voronoi tiling is graph-theoretically dual to Van Iterson's diagram. This paper gives a review of two centric models for disk packings and Voronoi tilings of Bernoulli spiral lattices. © 2017 Japanese Society of Developmental Biologists.

9. Spacings and pair correlations for finite Bernoulli convolutions

International Nuclear Information System (INIS)

Benjamini, Itai; Solomyak, Boris

2009-01-01

We consider finite Bernoulli convolutions with a parameter 1/2 N . These sequences are uniformly distributed with respect to the infinite Bernoulli convolution measure ν λ , as N → ∞. Numerical evidence suggests that for a generic λ, the distribution of spacings between appropriately rescaled points is Poissonian. We obtain some partial results in this direction; for instance, we show that, on average, the pair correlations do not exhibit attraction or repulsion in the limit. On the other hand, for certain algebraic λ the behaviour is totally different

10. Flawed Applications of Bernoulli's Principle

Science.gov (United States)

Koumaras, Panagiotis; Primerakis, Georgios

2018-01-01

One of the most popular demonstration experiments pertaining to Bernoulli's principle is the production of a water spray by using a vertical plastic straw immersed in a glass of water and a horizontal straw to blow air towards the top edge of the vertical one. A more general version of this phenomenon, appearing also in school physics problems, is…

11. Colonic transit time and pressure based on Bernoulli's principle.

Science.gov (United States)

Uno, Yoshiharu

2018-01-01

Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli's principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli's principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli's principle. A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. The CTT and HAPC can be explained by Bernoulli's principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics.

12. Strong normalization by type-directed partial evaluation and run-time code generation

DEFF Research Database (Denmark)

Balat, Vincent; Danvy, Olivier

1998-01-01

We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

13. Strong Normalization by Type-Directed Partial Evaluation and Run-Time Code Generation

DEFF Research Database (Denmark)

Balat, Vincent; Danvy, Olivier

1997-01-01

We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

14. On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations

Science.gov (United States)

Cima, A.; Gasull, A.; Mañosas, F.

2017-12-01

In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.

15. Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem.

Science.gov (United States)

Zhao, Ying; Shi, Luoyi

2017-01-01

This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.

16. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.

Science.gov (United States)

Zhang, Lucy T; Yang, Jubiao

2016-12-01

In this work we explore the aerodynamics flow characteristics of a coupled fluid-structure interaction system using a generalized Bernoulli equation derived directly from the Cauchy momentum equations. Unlike the conventional Bernoulli equation where incompressible, inviscid, and steady flow conditions are assumed, this generalized Bernoulli equation includes the contributions from compressibility, viscous, and unsteadiness, which could be essential in defining aerodynamic characteristics. The application of the derived Bernoulli's principle is on a fully-coupled fluid-structure interaction simulation of the vocal folds vibration. The coupled system is simulated using the immersed finite element method where compressible Navier-Stokes equations are used to describe the air and an elastic pliable structure to describe the vocal fold. The vibration of the vocal fold works to open and close the glottal flow. The aerodynamics flow characteristics are evaluated using the derived Bernoulli's principles for a vibration cycle in a carefully partitioned control volume based on the moving structure. The results agree very well to experimental observations, which validate the strategy and its use in other types of flow characteristics that involve coupled fluid-structure interactions.

17. Theoretical and Computational Analyses of Bernoulli Levitation Flows

Energy Technology Data Exchange (ETDEWEB)

Nam, Jong Soon; Kim, Gyu Wan; Kim, Jin Hyeon; Kim, Heuy Dong [Andong Nat' l Univ., Andong (Korea, Republic of)

2013-07-15

Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-{omega} turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, work piece diameter,and clearance gap between the work piece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

18. Theoretical and Computational Analyses of Bernoulli Levitation Flows

International Nuclear Information System (INIS)

Nam, Jong Soon; Kim, Gyu Wan; Kim, Jin Hyeon; Kim, Heuy Dong

2013-01-01

Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-ω turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, work piece diameter,and clearance gap between the work piece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force

19. Quantum Walk in Terms of Quantum Bernoulli Noise and Quantum Central Limit Theorem for Quantum Bernoulli Noise

Directory of Open Access Journals (Sweden)

Caishi Wang

2018-01-01

Full Text Available As a unitary quantum walk with infinitely many internal degrees of freedom, the quantum walk in terms of quantum Bernoulli noise (recently introduced by Wang and Ye shows a rather classical asymptotic behavior, which is quite different from the case of the usual quantum walks with a finite number of internal degrees of freedom. In this paper, we further examine the structure of the walk. By using the Fourier transform on the state space of the walk, we obtain a formula that links the moments of the walk’s probability distributions directly with annihilation and creation operators on Bernoulli functionals. We also prove some other results on the structure of the walk. Finally, as an application of these results, we establish a quantum central limit theorem for the annihilation and creation operators themselves.

20. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

International Nuclear Information System (INIS)

Monaco, R; Bianchi, M Pandolfi; Soares, A J

2005-01-01

A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

1. Vortex dynamics in type-II superconductors under strong pinning conditions

Science.gov (United States)

Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

2017-10-01

We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

2. Inequality for the infinite-cluster density in Bernoulli percolation

International Nuclear Information System (INIS)

Chayes, J.T.; Chayes, L.

1986-01-01

Under a certain assumption (which is satisfied whenever there is a dense infinite cluster in the half-space), we prove a differential inequality for the infinite-cluster density, P/sub infinity/(p), in Bernoulli percolation. The principal implication of this result is that if P/sub infinity/(p) vanishes with critical exponent β, then β obeys the mean-field bound β< or =1. As a corollary, we also derive an inequality relating the backbone density, the truncated susceptibility, and the infinite-cluster density

3. Geometry of the free-sliding Bernoulli beam

Directory of Open Access Journals (Sweden)

Moreno Giovanni

2016-12-01

Full Text Available If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam.

4. A family of isospectral Euler–Bernoulli beams

International Nuclear Information System (INIS)

Gladwell, Graham M L; Morassi, Antonino

2010-01-01

In this paper we consider the class of Euler–Bernoulli beams such that the product between the bending stiffness and the linear mass density is constant. Under the assumption that the end conditions are any combination of pinned and sliding, we obtain closed-form expressions for beams isospectral to a given one. The analysis is based on the fact that this special class of beams is, in a certain sense, equivalent to a string, and uses a Darboux lemma after reduction of the string equation to Sturm–Liouville canonical form

5. Lean buffering in serial production lines with Bernoulli machines

Directory of Open Access Journals (Sweden)

A. B. Hu

2006-01-01

Full Text Available Lean buffering is the smallest buffer capacity necessary to ensure the desired production rate of a manufacturing system. In this paper, analytical methods for selecting lean buffering in serial production lines are developed under the assumption that the machines obey the Bernoulli reliability model. Both closed-form expressions and recursive approaches are investigated. The cases of identical and nonidentical machines are analyzed. Results obtained can be useful for production line designers and production managers to maintain the required production rate with the smallest possible inventories.

6. Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors

Energy Technology Data Exchange (ETDEWEB)

Willa, R.; Koshelev, A. E.; Sadovskyy, I. A.; Glatz, A.

2017-11-27

The current-carrying capacity of type-II superconductors is decisively determined by how well material defect structures can immobilize vortex lines. In order to gain deeper insights into intrinsic pinning mechanisms, we have explored the case of vortex trapping by randomly distributed spherical inclusions using large-scale simulations of the time-dependent Ginzburg-Landau equations. We find that for a small density of particles having diameters of two coherence lengths, the vortex lattice preserves its structure and the critical current jc decays with the magnetic field following a power-law B-a with a ~ 0:66, which is consistent with predictions of strong pinning theory. For higher density of particles and/or larger inclusions, the lattice becomes progressively more disordered and the exponent smoothly decreases down to a ~ 0:3. At high magnetic fields, all inclusions capture a vortex and the critical current decays faster than B-1 as would be expected by theory. In the case of larger inclusions with diameter of four coherence length, the magnetic-field dependence of the critical current is strongly affected by the ability of inclusions to capture multiple vortex lines. We found that at small densities, the fraction of inclusions trapping two vortex lines rapidly grows within narrow field range leading to a shallow peak in jc(B)-dependence within this range. With increasing inclusion density, this peak transforms into a plateau, which then smooths out. Using the insights gained from simulations, we determine the limits of applicability of strong pinning theory and provide different routes to describe vortex pinning beyond those bounds.

7. Spatial modification of laser beam under the influence of Λ-type strong pump

International Nuclear Information System (INIS)

Lee, Won Kyu; Noh, Young Chul; Jeon, Jin Ho; Lee, Jai Hyung; Chang, Joon Sung

1999-01-01

The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium (Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f 6 6s 27 F 0 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (561.601 nm) and the pump laser is tuned around 4f 6 6s 27 F 1 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (572.019 nm). The probe and the pump beams are Λ-type configuration. The transmission of the probe beam is changed as the intensity and the detuning of the pump beam are varied. The degree of self-focusing is also modified. (author)

8. The Impact of Microlensing on the Standardisation of Strongly Lensed Type Ia Supernovae

Science.gov (United States)

Foxley-Marrable, Max; Collett, Thomas E.; Vernardos, Georgios; Goldstein, Daniel A.; Bacon, David

2018-05-01

We investigate the effect of microlensing on the standardisation of strongly lensed Type Ia supernovae (GLSNe Ia). We present predictions for the amount of scatter induced by microlensing across a range of plausible strong lens macromodels. We find that lensed images in regions of low convergence, shear and stellar density are standardisable, where the microlensing scatter is ≲ 0.15 magnitudes, comparable to the intrinsic dispersion of for a typical SN Ia. These standardisable configurations correspond to asymmetric lenses with an image located far outside the Einstein radius of the lens. Symmetric and small Einstein radius lenses (≲ 0.5 arcsec) are not standardisable. We apply our model to the recently discovered GLSN Ia iPTF16geu and find that the large discrepancy between the observed flux and the macromodel predictions from More et al. (2017) cannot be explained by microlensing alone. Using the mock GLSNe Ia catalogue of Goldstein et al. (2017), we predict that ˜ 22% of GLSNe Ia discovered by LSST will be standardisable, with a median Einstein radius of 0.9 arcseconds and a median time-delay of 41 days. By breaking the mass-sheet degeneracy the full LSST GLSNe Ia sample will be able to detect systematics in H0 at the 0.5% level.

9. Who Solved the Bernoulli Differential Equation and How Did They Do It?

Science.gov (United States)

2013-01-01

The Bernoulli brothers, Jacob and Johann, and Leibniz: Any of these might have been first to solve what is called the Bernoulli differential equation. We explore their ideas and the chronology of their work, finding out, among other things, that variation of parameters was used in 1697, 78 years before 1775, when Lagrange introduced it in general.

10. Measurement of carotid bifurcation pressure gradients using the Bernoulli principle.

Science.gov (United States)

Illig, K A; Ouriel, K; DeWeese, J A; Holen, J; Green, R M

1996-04-01

Current randomized prospective studies suggest that the degree of carotid stenosis is a critical element in deciding whether surgical or medical treatment is appropriate. Of potential interest is the actual pressure drop caused by the blockage, but no direct non-invasive means of quantifying the hemodynamic consequences of carotid artery stenoses currently exists. The present prospective study examined whether preoperative pulsed-Doppler duplex ultrasonographic velocity (v) measurements could be used to predict pressure gradients (delta P) caused by carotid artery stenoses, and whether such measurements could be used to predict angiographic percent diameter reduction. Preoperative Doppler velocity and intraoperative direct pressure measurements were obtained, and per cent diameter angiographic stenosis measured in 76 consecutive patients who underwent 77 elective carotid endarterectomies. Using the Bernoulli principle (delta P = 4v(2), pressure gradients across the stenoses were calculated. The predicted delta P, as well as absolute velocities and internal carotid artery/common carotid velocity ratios were compared with the actual delta P measured intraoperatively and with preoperative angiography and oculopneumoplethysmography (OPG) results. An end-diastolic velocity of > or = 1 m/s and an end-diastolic internal carotid artery/common carotid artery velocity ratio of > or = 10 predicted a 50% diameter angiographic stenosis with 100% specificity. Although statistical significance was reached, preoperative pressure gradients derived from the Bernoulli equation could not predict actual individual intraoperative pressure gradients with enough accuracy to allow decision making on an individual basis. Velocity measurements were as specific and more sensitive than OPG results. Delta P as predicted by the Bernoulli equation is not sufficiently accurate at the carotid bifurcation to be useful for clinical decision making on an individual basis. However, end

11. Spectral Properties of Chaotic Signals Generated by the Bernoulli Map

Directory of Open Access Journals (Sweden)

Rafael A. da Costa

2014-11-01

Full Text Available In the last decades, the use of chaotic signals as broadband carriers has been considered in Telecommunications. Despite the relevance of the frequency domain analysis in this field, there are few studies that are concerned with spectral properties of chaotic signals. Bearing this in mind, this paper aims the characterization of the power spectral density (PSD of chaotic orbits generated by Bernoulli maps. We obtain analytic expressions for autocorrelation sequence, PSD and essential bandwidth for chaotic orbits generated by this map as function of the family parameter and Lyapunov exponent. Moreover, we verify that analytical expressions match numerical results. We conclude that the power of the generated orbits is concentrated in low frequencies for all parameters values. Besides, it is possible to obtain chaotic narrowband signals.

12. Phase separation in strongly correlated electron systems with two types of charge carriers

International Nuclear Information System (INIS)

Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

2007-01-01

Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

13. CENTRAL DARK MATTER TRENDS IN EARLY-TYPE GALAXIES FROM STRONG LENSING, DYNAMICS, AND STELLAR POPULATIONS

International Nuclear Information System (INIS)

Tortora, C.; Jetzer, P.; Napolitano, N. R.; Romanowsky, A. J.

2010-01-01

We analyze the correlations between central dark matter (DM) content of early-type galaxies and their sizes and ages, using a sample of intermediate-redshift (z ∼ 0.2) gravitational lenses from the SLACS survey, and by comparing them to a larger sample of z ∼ 0 galaxies. We decompose the deprojected galaxy masses into DM and stellar components using combinations of strong lensing, stellar dynamics, and stellar populations modeling. For a given stellar mass, we find that for galaxies with larger sizes, the DM fraction increases and the mean DM density decreases, consistently with the cuspy halos expected in cosmological formation scenarios. The DM fraction also decreases with stellar age, which can be partially explained by the inverse correlation between size and age. The residual trend may point to systematic dependencies on formation epoch of halo contraction or stellar initial mass functions. These results are in agreement with recent findings based on local galaxies by Napolitano et al. and suggest negligible evidence of galaxy evolution over the last ∼2.5 Gyr other than passive stellar aging.

14. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

Science.gov (United States)

Zhu, Wuming; Trickey, S B

2017-12-28

In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

15. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

Science.gov (United States)

Zhu, Wuming; Trickey, S. B.

2017-12-01

In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

16. Strong gravitational lensing and the stellar IMF of early-type galaxies

Science.gov (United States)

Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

2016-07-01

Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

17. Bernoulli-Carlitz and Cauchy-Carlitz numbers with Stirling-Carlitz numbers

OpenAIRE

Kaneko, Hajime; Komatsu, Takao

2017-01-01

Recently, the Cauchy-Carlitz number was defined as the counterpart of the Bernoulli-Carlitz number. Both numbers can be expressed explicitly in terms of so-called Stirling-Carlitz numbers. In this paper, we study the second analogue of Stirling-Carlitz numbers and give some general formulae, including Bernoulli and Cauchy numbers in formal power series with complex coefficients, and Bernoulli-Carlitz and Cauchy-Carlitz numbers in function fields. We also give some applications of Hasse-Teichm...

18. Dark matter distributions in early-type galaxies from strong gravitational lensing

International Nuclear Information System (INIS)

Eichner, Thomas Martin

2013-01-01

Dark matter constitutes a large fraction of the mass of early-type galaxies. However, the exact amount and spatial distribution of the dark matter, especially in the galaxies' center is still unclear. Furthermore, galaxies in dense environments such as the centers of galaxy clusters shrink in size, since parts of their outer dark matter halo is stripped away. The aim of this thesis is to measure the dark matter content in the centers and outskirts of elliptical galaxies by analyzing the strong gravitational lensing effect they produce. Gravitational lensing is well-suited for investigating dark matter, since it is sensitive to all forms of matter, regardless of its dynamical or evolutionary state. We present gravitational lensing studies of the exceptional strong lensing systems SDSS J1538+5817 and SDSS J1430+4105, identified by the Sloan Lens ACS survey. The lenses are elliptical galaxies at z l =0.143 and z l =0.285, respectively. For SDSS J1538+5817 we show that both multiple imaged sources are located at the same redshift z s =0.531. Its multiple images span a range from 1 to 4 kpc in the plane of the lens. For SDSS J1430+4105, the source at redshift z s =0.575 is imaged into a broad Einstein ring, covering radii from 4 kpc to 10 kpc in the plane of the lens. In both cases, the lensed images can be accurately and consistently reproduced with different modeling approaches. We get projected total masses of 8.11 +0.27 -0.59 x 10 10 M s un within the Einstein radius of 2.5 kpc for SDSS J1538+5817 and 5.37±0.06 x 10 11 M s un within 6.5 kpc for SDSS J1430+4105. The luminous and dark matter were traced separately, resulting in dark matter fractions within the Einstein radius of 0.1 +0.2 -0.1 and 0.40 +0.14 -0.10 for SDSS J1538+5817 and SDSS J1430+4105, respectively. We assume a de Vaucouleurs profile to trace the light distribution of both galaxies. From the stellar mass associated with this light, we can explicitly derive a stellar mass-to-light ratio of (M de

19. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood

KAUST Repository

Lee, Seokho; Huang, Jianhua Z.

2013-01-01

We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a

20. Fourier transform and mean quadratic variation of Bernoulli convolution on homogeneous Cantor set

Energy Technology Data Exchange (ETDEWEB)

Yu Zuguo E-mail: yuzg@hotmail.comz.yu

2004-07-01

For the Bernoulli convolution on homogeneous Cantor set, under some condition, it is proved that the mean quadratic variation and the average of Fourier transform of this measure are bounded above and below.

1. Multiple zeta values and application to the Lacunary recurrence formulas of Bernoulli numbers

International Nuclear Information System (INIS)

Chen, Y-H

2008-01-01

This paper obtains a recurrence related to multiple zeta function, which generalizes the Newton recurrence for multiple zeta values for period 1. Moreover, we obtain some new Lacunary recurrence formulas of Bernoulli numbers

2. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

Energy Technology Data Exchange (ETDEWEB)

Marchewka, M., E-mail: marmi@ur.edu.pl; Woźny, M.; Polit, J.; Sheregii, E. M. [Faculty of Mathematics and Natural Sciences, Centre for Microelectronics and Nanotechnology, University of Rzeszów, Pigonia 1, 35-959 Rzeszów (Poland); Kisiel, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków 30-059 (Poland); Robouch, B. V.; Marcelli, A. [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy)

2014-03-21

To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

3. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

International Nuclear Information System (INIS)

Marchewka, M.; Woźny, M.; Polit, J.; Sheregii, E. M.; Kisiel, A.; Robouch, B. V.; Marcelli, A.

2014-01-01

To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra

4. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

Science.gov (United States)

Marchewka, M.; Woźny, M.; Polit, J.; Kisiel, A.; Robouch, B. V.; Marcelli, A.; Sheregii, E. M.

2014-03-01

To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III-V and II-VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

5. Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations

International Nuclear Information System (INIS)

Shin, Young Jae; Yun, Jong Hak; Seong, Kyeong Youn; Kim, Jae Ho; Kang, Sung Hwang

2006-01-01

A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on Paster nak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated

6. A new class of generalized polynomials associated with Hermite and Bernoulli polynomials

Directory of Open Access Journals (Sweden)

M. A. Pathan

2015-05-01

Full Text Available In this paper, we introduce a new class of generalized  polynomials associated with  the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by  Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials  B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials  B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials  {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan  are generalized to the one   {_HB}_n^{(α}(x,y,a,b,c which is called  the generalized  polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c  are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials

7. Departures from predicted type II behavior in dirty strong-coupling superconductors

International Nuclear Information System (INIS)

Park, J.C.; Neighbor, J.E.; Shiffman, C.A.

1976-01-01

Calorimetric measurements of the Ginsburg-Landau parameters for Pb-Sn and Pb-Bi alloys show good agreement with the calculations of Rainer and Bergmann for kappa 1 (t)/kappa 1 (1). However, the calculations of Rainer and Usadel for kappa 2 (t)/kappa 2 (1) substantially underestimate the enhancements due to strong-coupling. (Auth.)

8. A Smoothing-Type Algorithm for Solving Linear Complementarity Problems with Strong Convergence Properties

International Nuclear Information System (INIS)

Huang Zhenghai; Gu Weizhe

2008-01-01

In this paper, we construct an augmented system of the standard monotone linear complementarity problem (LCP), and establish the relations between the augmented system and the LCP. We present a smoothing-type algorithm for solving the augmented system. The algorithm is shown to be globally convergent without assuming any prior knowledge of feasibility/infeasibility of the problem. In particular, if the LCP has a solution, then the algorithm either generates a maximal complementary solution of the LCP or detects correctly solvability of the LCP, and in the latter case, an existing smoothing-type algorithm can be directly applied to solve the LCP without any additional assumption and it generates a maximal complementary solution of the LCP; and that if the LCP is infeasible, then the algorithm detect correctly infeasibility of the LCP. To the best of our knowledge, such properties have not appeared in the existing literature for smoothing-type algorithms

9. SULF2 strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus

NARCIS (Netherlands)

Hassing, H. Carlijne; Surendran, R. Preethi; Derudas, Bruno; Verrijken, An; Francque, Sven M.; Mooij, Hans L.; Bernelot Moens, Sophie J.; Hart, Leen M. 't; Nijpels, Giel; Dekker, Jacqueline M.; Williams, Kevin Jon; Stroes, Erik S. G.; van Gaal, Luc F.; Staels, Bart; Nieuwdorp, Max; Dallinga-Thie, Geesje M.

2014-01-01

Hepatic overexpression of sulfatase-2 (SULF2), a heparan sulfate remodeling enzyme, strongly contributes to high triglyceride (TG) levels in obese, type 2 diabetic (T2DM) db/db mice. Nevertheless, data in humans are lacking. Here, the association of human hepatic SULF2 expression and SULF2 gene

10. SULF2 Strongly Prediposes to Fasting and Postprandial Triglycerides in Patients with Obesity and Type 2 Diabetes Mellitus

NARCIS (Netherlands)

Hassing, H.C.; Surendran, R.P.; Derudas, B.; Verrijken, A.; Francque, S.M.; Mooij, H.L.; Moens, S.J.B.; 't Hart, L.M.; Nijpels, G.; Dekker, J.M.; Williams, K.J.; Stroes, E.S.G.; van Gaal, L.F.; Staels, B.; Nieuwdorp, M.; Dallinga-Thie, G.M.

2014-01-01

Objective Hepatic overexpression of sulfatase-2 (SULF2), a heparan sulfate remodeling enzyme, strongly contributes to high triglyceride (TG) levels in obese, type 2 diabetic (T2DM) db/db mice. Nevertheless, data in humans are lacking. Here, the association of human hepatic SULF2 expression and SULF2

11. Management of colon stents based on Bernoulli's principle.

Science.gov (United States)

Uno, Yoshiharu

2017-03-01

The colonic self-expanding metal stent (SEMS) has been widely used for "bridge to surgery" and palliative therapy. However, if the spread of SEMS is insufficient, not only can a decompression effect not be obtained but also perforation and obstructive colitis can occur. The mechanism of occurrence of obstructive colitis and perforation was investigated by flow dynamics. Bernoulli's principle was applied, assuming that the cause of inflammation and perforation represented the pressure difference in the proximal lumen and stent. The variables considered were proximal lumen diameter, stent lumen diameter, flow rate into the proximal lumen, and fluid density. To model the right colon, the proximal lumen diameter was set at 50 mm. To model the left-side colon, the proximal lumen diameter was set at 30 mm. For both the right colon model and the left-side colon model, the difference in pressure between the proximal lumen and the stent was less than 20 mmHg, when the diameter of the stent lumen was 14 mm or more. Both the right colon model and the left-side colon model were 30 mmHg or more at 200 mL s -1 when the stent lumen was 10 mm or less. Even with an inflow rate of 90-110 mL s -1 , the pressure was 140 mmHg when the stent lumen diameter was 5 mm. In theory, in order to maintain the effectiveness of SEMS, it is necessary to keep the diameter of the stent lumen at 14 mm or more.

12. Strongly increasing solutions of cyclic systems of second order differential equations with power-type nonlinearities

Directory of Open Access Journals (Sweden)

Jaroslav Jaroš

2015-01-01

Full Text Available We consider \\(n\\-dimensional cyclic systems of second order differential equations \$(p_i(t|x_{i}'|^{\\alpha_i -1}x_{i}'' = q_{i}(t|x_{i+1}|^{\\beta_i-1}x_{i+1},\$ \$\\quad i = 1,\\ldots,n, \\quad (x_{n+1} = x_1 \\tag{\\(\\ast\\}\$ under the assumption that the positive constants \\(\\alpha_i\\ and \\(\\beta_i\\ satisfy \\(\\alpha_1{\\ldots}\\alpha_n \\gt \\beta_1{\\ldots}\\beta_n\\ and \\(p_i(t\\ and \\(q_i(t\\ are regularly varying functions, and analyze positive strongly increasing solutions of system (\\(\\ast\\ in the framework of regular variation. We show that the situation for the existence of regularly varying solutions of positive indices for (\\(\\ast\\ can be characterized completely, and moreover that the asymptotic behavior of such solutions is governed by the unique formula describing their order of growth precisely. We give examples demonstrating that the main results for (\\(\\ast\\ can be applied to some classes of partial differential equations with radial symmetry to acquire accurate information about the existence and the asymptotic behavior of their radial positive strongly increasing solutions.

13. Mutations in serine protease inhibitor Kazal type 1 are strongly associated with chronic pancreatitis

OpenAIRE

Drenth, J P H; te Morsche, R; Jansen, J B M J

2002-01-01

Background: Although chronic pancreatitis is associated with risk factors such as alcoholism, hyperparathyroidism, and hypertriglyceridaemia, little is known of the actual aetiology of the disease. It is thought that inappropriate activation of trypsinogen causes pancreatitis, and indeed in cases of hereditary pancreatitis mutations of cationic trypsinogen (PRSS1) have been described. As serine protease inhibitor Kazal type 1 (SPINK1) is a potent natural inhibitor of pancreatic trypsin activi...

14. Strong violations of Bell-type inequalities for path-entangled number states

International Nuclear Information System (INIS)

Wildfeuer, Christoph F.; Dowling, Jonathan P.; Lund, Austin P.

2007-01-01

We show that nonlocal correlation experiments on the two spatially separated modes of a maximally path-entangled number state may be performed. They lead to a violation of a Clauser-Horne Bell inequality for any finite photon number N. We also present an analytical expression for the two-mode Wigner function of a maximally path-entangled number state and investigate a Clauser-Horne-Shimony-Holt Bell inequality for such a state. We test other Bell-type inequalities. Some are violated by a constant amount for any N

15. New type low loss, strong field, RF coils for commercial nuclear fusion

International Nuclear Information System (INIS)

Ikegami, Shigetaka

1990-01-01

New RF coils of L-C-R connection loops type are proposed. One of the coils is only a bundle of μ order diameter isolated conductor, facing the both sides of the bundle ends each other for a capacity. The next characters were found by experiments. (1) This type coils show a sharp first resonance mode and few other modes are measured. (2) The complete proportional relation between the number of the conductors and the conductance of the bundle. (3) The ratio of the RF current resistance to the direct current resistance can be 1. Variational principle for eigenvalue problem was considered for it. The loss due to the vortex current in the conductor itself when exposed in the magnetic field was calculated accurately. And it was found that when the diameter of the conductor is 1/3 of the high frequency skin depth δ, the vortex current is very small. The litz wire can be used below 10 kHz. But this coil can be used above 100 MHz(δ≅7μ), because this coil need not to be stranded. For example, the turbulent heating at the axis of a tokamak plasma in μs order is possible, when a large amplitude stationary magnetosonic wave is excited by the magnetic piston of these coils array around the plasma. And the distance between the plasma and the coils can be large. The commercial nuclear fusion is thought to be possible. (author)

16. A generalized form of the Bernoulli Trial collision scheme in DSMC: Derivation and evaluation

Science.gov (United States)

Roohi, Ehsan; Stefanov, Stefan; Shoja-Sani, Ahmad; Ejraei, Hossein

2018-02-01

The impetus of this research is to present a generalized Bernoulli Trial collision scheme in the context of the direct simulation Monte Carlo (DSMC) method. Previously, a subsequent of several collision schemes have been put forward, which were mathematically based on the Kac stochastic model. These include Bernoulli Trial (BT), Ballot Box (BB), Simplified Bernoulli Trial (SBT) and Intelligent Simplified Bernoulli Trial (ISBT) schemes. The number of considered pairs for a possible collision in the above-mentioned schemes varies between N (l) (N (l) - 1) / 2 in BT, 1 in BB, and (N (l) - 1) in SBT or ISBT, where N (l) is the instantaneous number of particles in the lth cell. Here, we derive a generalized form of the Bernoulli Trial collision scheme (GBT) where the number of selected pairs is any desired value smaller than (N (l) - 1), i.e., Nsel < (N (l) - 1), keeping the same the collision frequency and accuracy of the solution as the original SBT and BT models. We derive two distinct formulas for the GBT scheme, where both formula recover BB and SBT limits if Nsel is set as 1 and N (l) - 1, respectively, and provide accurate solutions for a wide set of test cases. The present generalization further improves the computational efficiency of the BT-based collision models compared to the standard no time counter (NTC) and nearest neighbor (NN) collision models.

17. A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems

Energy Technology Data Exchange (ETDEWEB)

Weerakkody, Sean [Carnegie Mellon Univ., Pittsburgh, PA (United States); Ozel, Omur [Carnegie Mellon Univ., Pittsburgh, PA (United States); Sinopoli, Bruno [Carnegie Mellon Univ., Pittsburgh, PA (United States)

2017-11-02

We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the other hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.

18. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

Science.gov (United States)

Shore, S. N.; Sanduleak, N.

1984-01-01

The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

19. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

Science.gov (United States)

Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

2014-01-01

The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

20. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures

Science.gov (United States)

McFarland, Karen N.; Liu, Jilin; Landrian, Ivette; Zeng, Desmond; Raskin, Salmo; Moscovich, Mariana; Gatto, Emilia M.; Ochoa, Adriana; Teive, Hélio A. G.; Rasmussen, Astrid; Ashizawa, Tetsuo

2014-01-01

Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant neurodegenerative disorder, is the result of a non-coding, pentanucleotide repeat expansion within intron 9 of the Ataxin 10 gene. SCA10 patients present with pure cerebellar ataxia; yet, some families also have a high incidence of epilepsy. SCA10 expansions containing penta- and heptanucleotide interruption motifs, termed “ATCCT interruptions,” experience large contractions during germline transmission, particularly in paternal lineages. At the same time, these alleles confer an earlier age at onset which contradicts traditional rules of genetic anticipation in repeat expansions. Previously, ATCCT interruptions have been associated with a higher prevalence of epileptic seizures in one Mexican-American SCA10 family. In a large cohort of SCA10 families, we analyzed whether ATCCT interruptions confers a greater risk for developing seizures in these families. Notably, we find that the presence of repeat interruptions within the SCA10 expansion confers a 6.3-fold increase in the risk of an SCA10 patient developing epilepsy (6.2-fold when considering patients of Mexican ancestry only) and a 13.7-fold increase in having a positive family history of epilepsy (10.5-fold when considering patients of Mexican ancestry only). We conclude that the presence of repeat interruptions in SCA10 repeat expansion indicates a significant risk for the epilepsy phenotype and should be considered during genetic counseling. PMID:24318420

1. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.

Science.gov (United States)

Zhang, Mingji; Or, Siu Wing

2018-02-14

A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.

2. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression

Science.gov (United States)

2018-01-01

A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920

3. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

Energy Technology Data Exchange (ETDEWEB)

Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Chevalier, Roger A.; Irwin, Christopher M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Chugai, Nikolai [Institute of Astronomy of Russian Academy of Sciences, Pyatnitskaya Street 48, 109017 Moscow (Russian Federation); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Soderberg, Alicia M. [Smithsonian Astrophysical Observatory, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Chakraborti, Sayan [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India); Immler, Stefan, E-mail: Poonam.Chandra@rmc.ca [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-08-20

We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

4. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

Directory of Open Access Journals (Sweden)

Anthony Hoak

2017-03-01

Full Text Available We develop an interactive likelihood (ILH for sequential Monte Carlo (SMC methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL and TUD-Stadtmitte using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA and classification of events, activities and relationships for multi-object trackers (CLEAR MOT. In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

5. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

Science.gov (United States)

Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

2017-03-03

We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

6. James Bernoulli与《推测术》%James Bernoulli and Stochastics

Institute of Scientific and Technical Information of China (English)

于忠义

2003-01-01

Two hundred and eighty-nine years ago, "Arts of conjecturing", the posthumous work of the great mathematician James Bernoulli, was finally produced in the eager wait of mathematicians, Ian Hacking, a famous historian of statistics, commented that the publication of the book signaled the beginning of the mathematical theory of probability and terminated man's long process in the forming of the probability concept By introducing James Bernoulli and his "Arts of conjecturing", this paper aims at providing the reader with the 18th century story of Bemoulli's work, and at making the reader know that even today Bemoulli's idea is very helpful and instructive in the research of modern statistics.

7. Bernoulli numbers and polynomials from a more general point of view

Energy Technology Data Exchange (ETDEWEB)

Dattoli, G. [ENEA, Centro Ricerche Frascati, Frascati, RM(Italy). Div. Fisica Applicata; Cesarano, C. [Ulm Univ., Ulm (Germany). Dept. of Mathematics; Lonzellutta, S. [ENEA, Centro Ricerche E. Clementel, Bologna (Italy). Div. Fisica Applicata

2000-07-01

In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials. [Italian] Si applica il metodo della funzione generatrice per introdurre nuove forme di numeri e polinomi di Bernoulli che vengono utilizzati per sviluppare e per calcolare somme parziali che coinvolgono polinomi a piu' indici ed a piu' variabili. Si sviluppano considerazioni analoghe per i polinomi ed i numeri di Eulero.

8. Performance analysis of preemptive priority retrial queue with immediate Bernoulli feedback under working vacations and vacation interruption

Directory of Open Access Journals (Sweden)

2016-10-01

Full Text Available The present investigation deals with performance analysis of single server preemptive priority retrial queue with immediate Bernoulli feedback. There are two types of customers are considered, which are priority customers and ordinary customers. The priority customers do not form any queue and have an exclusive preemptive priority to receive their services over ordinary customers. After completion of regular service for ordinary customer, the customer is allowed to make an immediate feedback with probability r. When the orbit becomes empty at service completion instant for a priority customer or ordinary customer; the server goes for multiple working vacations. By using the supplementary variable technique, we obtained the steady state probability generating functions for the system/orbit. Some important system performance measures, the mean busy period and the mean busy cycle are discussed. Finally, some numerical examples are presented.

9. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

Science.gov (United States)

Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

2013-05-10

A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

10. Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions

NARCIS (Netherlands)

J.L. López; N.M. Temme (Nico)

1998-01-01

textabstractBernoulli and Euler polynomials are considered for large values of the order. Convergent expansions are obtained for $B_n(nz+1/2)$ and $E_n(nz+1/2)$ in powers of $n^{-1$, with coefficients being rational functions of $z$ and hyperbolic functions of argument $1/2z$. These expansions are

11. Heuristic analogy in Ars Conjectandi: From Archimedes' De Circuli Dimensione to Bernoulli's theorem.

Science.gov (United States)

Campos, Daniel G

2018-02-01

This article investigates the way in which Jacob Bernoulli proved the main mathematical theorem that undergirds his art of conjecturing-the theorem that founded, historically, the field of mathematical probability. It aims to contribute a perspective into the question of problem-solving methods in mathematics while also contributing to the comprehension of the historical development of mathematical probability. It argues that Bernoulli proved his theorem by a process of mathematical experimentation in which the central heuristic strategy was analogy. In this context, the analogy functioned as an experimental hypothesis. The article expounds, first, Bernoulli's reasoning for proving his theorem, describing it as a process of experimentation in which hypothesis-making is crucial. Next, it investigates the analogy between his reasoning and Archimedes' approximation of the value of π, by clarifying both Archimedes' own experimental approach to the said approximation and its heuristic influence on Bernoulli's problem-solving strategy. The discussion includes some general considerations about analogy as a heuristic technique to make experimental hypotheses in mathematics. Copyright © 2018 Elsevier Ltd. All rights reserved.

12. Bernoulli numbers and polynomials from a more general point of view

International Nuclear Information System (INIS)

Dattoli, G.; Cesarano, C.; Lorenzutta, S.

2000-01-01

In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials [it

13. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

Science.gov (United States)

Tisdell, C. C.

2017-01-01

Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

14. Bernoulli's Principle: The Effects of Instruction on Young Children's Understanding of Flight.

Science.gov (United States)

Fleege, Pamela O.; And Others

This study examined the effects of hands-on instruction on young children's understanding of an aspect of flight, specifically Bernoulli's principle. First, 137 public school children, ages 5 through 8 years, were interviewed about their understanding of how an airplane flies. Two weeks later, the subjects participated in two hands-on…

15. Inverse sampled Bernoulli (ISB) procedure for estimating a population proportion, with nuclear material applications

International Nuclear Information System (INIS)

Wright, T.

1982-01-01

A new sampling procedure is introduced for estimating a population proportion. The procedure combines the ideas of inverse binomial sampling and Bernoulli sampling. An unbiased estimator is given with its variance. The procedure can be viewed as a generalization of inverse binomial sampling

16. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

Science.gov (United States)

Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

2016-01-01

In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

17. A study on the use of Gumbel approximation with the Bernoulli spatial scan statistic.

Science.gov (United States)

Read, S; Bath, P A; Willett, P; Maheswaran, R

2013-08-30

The Bernoulli version of the spatial scan statistic is a well established method of detecting localised spatial clusters in binary labelled point data, a typical application being the epidemiological case-control study. A recent study suggests the inferential accuracy of several versions of the spatial scan statistic (principally the Poisson version) can be improved, at little computational cost, by using the Gumbel distribution, a method now available in SaTScan(TM) (www.satscan.org). We study in detail the effect of this technique when applied to the Bernoulli version and demonstrate that it is highly effective, albeit with some increase in false alarm rates at certain significance thresholds. We explain how this increase is due to the discrete nature of the Bernoulli spatial scan statistic and demonstrate that it can affect even small p-values. Despite this, we argue that the Gumbel method is actually preferable for very small p-values. Furthermore, we extend previous research by running benchmark trials on 12 000 synthetic datasets, thus demonstrating that the overall detection capability of the Bernoulli version (i.e. ratio of power to false alarm rate) is not noticeably affected by the use of the Gumbel method. We also provide an example application of the Gumbel method using data on hospital admissions for chronic obstructive pulmonary disease. Copyright © 2013 John Wiley & Sons, Ltd.

18. Analysis of A Uniform Bernoulli – Euler Beam on Winkler Foundation ...

African Journals Online (AJOL)

2018-03-09

Mar 9, 2018 ... method to analyze Winkler foundation subjected to a harmonic moving load on a uniform Bernoulli – Euler Beam. MATLAB software was used to implement the Newmark time integration method to ... A lot of engineering structures under moving loads .... Because numerical procedure produce stability issue,.

19. New form of the Euler-Bernoulli rod equation applied to robotic systems

Directory of Open Access Journals (Sweden)

Filipović Mirjana

2008-01-01

Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .

20. [Work, momentum and fatigue in the work of Daniel Bernoulli: toward the optimization of biological fact].

Science.gov (United States)

Fonteneau, Yannick; Viard, Jérôme

The concept of mechanical work is inherited from the concepts of potentia absoluta and men's work, both implemented in the section IX of Daniel Bernoulli's Hydrodynamica in 1738. Nonetheless, Bernoulli did not confuse these two entities: he defined a link from gender to species between the former, which is general, and the latter, which is organic. In addition, Bernoulli clearly distinguished between vis viva and potentia absoluta (or work). Their reciprocal conversions are rarely mentioned explicitly in this book, except once, in the section X of his work, from vis viva to work, and subordinated to the mediation of a machine, in a driving forces substitution problem. His attitude evolved significantly in a text in 1753, in which work and vis viva were unambiguously connected, while the concept of potentia absoluta was reduced to that of human work, and the expression itself was abandoned. It was then accepted that work can be converted into vis viva, but the opposite is true in only one case, the intra-organic one. It is the concept of fatigue, seen as an expenditure of animal spirits themselves conceived of as little tensed springs releasing vis viva, that allowed the conversion, never quantified and listed simply as a model, from vis viva to work. Thus, work may have ultimately appeared as a transitional state between two kinds of vis viva, of which the first is non-quantifiable. At the same time, the natural elements were discredited from any hint of profitable production. Only men and animals were able to work in the strict sense of the word. Nature, left to itself, does not work, according to Bernoulli. In spite of his wish to bring together rational mechanics and practical mechanics, one perceived in the work of Bernoulli the subsistence of a rarely crossed disjunction between practical and theoretical fields.

1. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

Energy Technology Data Exchange (ETDEWEB)

Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cox, Nick L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D bus 2401, 3001 Leuven (Belgium); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Karakas, Amanda I. [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Patat, F. [European Southern Observatory (ESO), Karl Schwarschild Strasse 2, D-85748, Garching bei München (Germany); Sternberg, A. [Max Planck Institute for Astrophysics, Karl Schwarzschild Strasse 1, D-85741 Garching bei München (Germany); Williams, R. E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gal-Yam, A. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, D. C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Folatelli, Gastón, E-mail: mmp@lco.cl [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583 (Japan); and others

2013-12-10

High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

2. Analysis of MAP/PH(1, PH(2/2 Queue with Bernoulli Vacations

Directory of Open Access Journals (Sweden)

V. Thangaraj

2008-12-01

Full Text Available We consider a two-heterogeneous-server queueing system with Bernoulli vacation in which customers arrive according to a Markovian arrival process (MAP. Servers returning from vacation immediately take another vacation if no customer is waiting. Using matrix-geometric method, the steady-state probability of the number of customers in the system is investigated. Some important performance measures are obtained. The waiting time distribution and the mean waiting time are also discussed. Finally, some numerical illustrations are provided.

3. Pseudorandom number generation using chaotic true orbits of the Bernoulli map

Energy Technology Data Exchange (ETDEWEB)

Saito, Asaki, E-mail: saito@fun.ac.jp [Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655 (Japan); Yamaguchi, Akihiro [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan)

2016-06-15

We devise a pseudorandom number generator that exactly computes chaotic true orbits of the Bernoulli map on quadratic algebraic integers. Moreover, we describe a way to select the initial points (seeds) for generating multiple pseudorandom binary sequences. This selection method distributes the initial points almost uniformly (equidistantly) in the unit interval, and latter parts of the generated sequences are guaranteed not to coincide. We also demonstrate through statistical testing that the generated sequences possess good randomness properties.

4. Discrete-time retrial queue with Bernoulli vacation, preemptive resume and feedback customers

Directory of Open Access Journals (Sweden)

Peishu Chen

2015-09-01

Full Text Available Purpose: We consider a discrete-time Geo/G/1 retrial queue where the retrial time follows a general distribution, the server subject to Bernoulli vacation policy and the customer has preemptive resume priority, Bernoulli feedback strategy. The main purpose of this paper is to derive the generating functions of the stationary distribution of the system state, the orbit size and some important performance measures. Design/methodology: Using probability generating function technique, some valuable and interesting performance measures of the system are obtained. We also investigate two stochastic decomposition laws and present some numerical results. Findings: We obtain the probability generating functions of the system state distribution as well as those of the orbit size and the system size distributions. We also obtain some analytical expressions for various performance measures such as idle and busy probabilities, mean orbit and system sizes. Originality/value: The analysis of discrete-time retrial queues with Bernoulli vacation, preemptive resume and feedback customers is interesting and to the best of our knowledge, no other scientific journal paper has dealt with this question. This fact gives the reason why efforts should be taken to plug this gap.

5. Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes

Science.gov (United States)

2014-12-01

6. Improved implementation of the risk-adjusted Bernoulli CUSUM chart to monitor surgical outcome quality.

Science.gov (United States)

Keefe, Matthew J; Loda, Justin B; Elhabashy, Ahmad E; Woodall, William H

2017-06-01

7. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance

Directory of Open Access Journals (Sweden)

Pengcheng HAN

2017-12-01

Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

8. Erectile dysfunction is a strong predictor of poor quality of life in men with Type 2 diabetes mellitus.

Science.gov (United States)

Malavige, L S; Jayaratne, S D; Kathriarachchi, S T; Sivayogan, S; Ranasinghe, P; Levy, J C

2014-06-01

To identify predictors of poor quality of life among men with diabetes from a comprehensive set of sexual, clinical, socio-economic and lifestyle variables. This was a cross-sectional observational-study of 253 men with Type 2 diabetes, randomly selected from a clinic in Colombo, Sri Lanka. Erectile dysfunction was assessed using the five-item International Index of Erectile Function and quality of life was assessed using the Sri Lankan version of the 36-item short form health survey questionnaire and the disease-specific Psychological Impact of Erectile Dysfunction scale. The presence of premature ejaculation, reduced libido, socio-demographic and lifestyle data was obtained using an interviewer-administered questionnaire. Significant predictors of quality of life were identified by stepwise multivariate linear regression models for short form-36 subscales, summary scales and two scales of Psychological Impact of Erectile Dysfunction. Significant predictors on the physical summary scale of the 36-item short form were erectile dysfunction (β = 7.93, 95% CI 3.70-12.17, P 27.5 kg/m(2) (β = 9.12, 95% CI 1.38-17.44, P strong predictor of poor generic and disease-specific quality of life among other sexual and clinical variables in men with diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

9. SULF2 strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus.

Science.gov (United States)

Hassing, H Carlijne; Surendran, R Preethi; Derudas, Bruno; Verrijken, An; Francque, Sven M; Mooij, Hans L; Bernelot Moens, Sophie J; Hart, Leen M 't; Nijpels, Giel; Dekker, Jacqueline M; Williams, Kevin Jon; Stroes, Erik S G; Van Gaal, Luc F; Staels, Bart; Nieuwdorp, Max; Dallinga-Thie, Geesje M

2014-05-01

Hepatic overexpression of sulfatase-2 (SULF2), a heparan sulfate remodeling enzyme, strongly contributes to high triglyceride (TG) levels in obese, type 2 diabetic (T2DM) db/db mice. Nevertheless, data in humans are lacking. Here, the association of human hepatic SULF2 expression and SULF2 gene variants with TG metabolism in patients with obesity and/or T2DM was investigated. Liver biopsies from 121 obese subjects were analyzed for relations between hepatic SULF2 mRNA levels and plasma TG. Associations between seven SULF2 tagSNPs and TG levels were assessed in 210 obese T2DM subjects with dyslipidemia. Replication of positive findings was performed in 1,316 independent obese T2DM patients. Postprandial TRL clearance was evaluated in 29 obese T2DM subjects stratified by SULF2 genotype. Liver SULF2 expression was significantly associated with fasting plasma TG (r = 0.271; P = 0.003) in obese subjects. The SULF2 rs2281279(A>G) SNP was reproducibly associated with lower fasting plasma TG levels in obese T2DM subjects (P obesity and T2DM. Copyright © 2013 The Obesity Society.

10. SULF2 Strongly Prediposes to Fasting and Postprandial Triglycerides in Patients with Obesity and Type 2 Diabetes Mellitus

Science.gov (United States)

Hassing, H. Carlijne; Surendran, R. Preethi; Derudas, Bruno; Verrijken, An; Francque, Sven M.; Mooij, Hans L.; Bernelot Moens, Sophie J.; ’t Hart, Leen M.; Nijpels, Giel; Dekker, Jacqueline M.; Williams, Kevin Jon; Stroes, Erik S. G.; Van Gaal, Luc F.; Staels, Bart; Nieuwdorp, Max; Dallinga-Thie, Geesje M.

2014-01-01

Objective Hepatic overexpression of sulfatase-2 (SULF2), a heparan sulfate remodelling enzyme, strongly contributes to high triglyceride (TG) levels in obese, type 2 diabetic (T2DM) db/db mice. Nevertheless, data in humans are lacking. Here we sought to investigate the association of human hepatic SULF2 expression and SULF2 gene variants with TG metabolism in patients with obesity and/or T2DM. Design and Methods Liver biopsies from 121 obese subjects were analyzed for relations between hepatic SULF2 mRNA levels and plasma TG. Associations between seven SULF2 tagSNPs and TG levels were assessed in 210 obese T2DM subjects with dyslipidemia. Replication of positive findings was performed in 1316 independent obese T2DM patients. Postprandial TRL clearance was evaluated in 29 obese T2DM subjects stratified by SULF2 genotype. Results Liver SULF2 expression was significantly associated with fasting plasma TG (r = 0.271; p=0.003) in obese subjects. The SULF2 rs2281279(A>G) SNP was reproducibly associated with lower fasting plasma TG levels in obese T2DM subjects (p<0.05). Carriership of the minor G allele was associated with lower levels of postprandial plasma TG (P<0.05) and retinyl esters (RE) levels (P<0.001). Conclusions These findings implicate SULF2 as potential therapeutic target in the atherogenic dyslipidemia of obesity and T2DM. PMID:24339435

11. Wind energy: an application of Bernoulli's theorem generalized to isentropic flow of ideal gases

International Nuclear Information System (INIS)

De Luca, R; Desideri, P

2013-01-01

By considering the extension of Bernoulli's theorem to the case of the isentropic flow of ideal gases we conceive a small-scale wind–energy system able to work in the presence of low wind velocities in any direction. The flow of air inside a hyperbolically shaped pipe is studied using elementary physics concepts. The results obtained show that wind velocity in the system increases for decreasing cross-sectional areas, allowing a lower cut-in wind speed and an increase in the annual energy production of the device. (paper)

12. Box-Particle Cardinality Balanced Multi-Target Multi-Bernoulli Filter

OpenAIRE

L. Song; X. Zhao

2014-01-01

As a generalized particle filtering, the box-particle filter (Box-PF) has a potential to process the measurements affected by bounded error of unknown distributions and biases. Inspired by the Box-PF, a novel implementation for multi-target tracking, called box-particle cardinality balanced multi-target multi-Bernoulli (Box-CBMeMBer) filter is presented in this paper. More important, to eliminate the negative effect of clutters in the estimation of the numbers of targets, an improved generali...

13. On the discrete Frobenius-Perron operator of the Bernoulli map

International Nuclear Information System (INIS)

Bai Zaiqiao

2006-01-01

We study the spectra of a finite-dimensional Frobenius-Perron operator (matrix) of the Bernoulli map derived from phase space discretization. The eigenvalues and (right and left) eigenvectors are analytically calculated, which are closely related to periodic orbits on the partition points. In the degenerate case, Jordan decomposition of the matrix is explicitly constructed. Except for the isolated eigenvalue 1, there is no definite limit with respect to eigenvalues when n → ∞. The behaviour of the eigenvectors is discussed in the limit of large n

14. Sign reversals of the output autocorrelation function for the stochastic Bernoulli-Verhulst equation

Energy Technology Data Exchange (ETDEWEB)

Lumi, N., E-mail: Neeme.Lumi@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee [Institute of Mathematics and Natural Sciences, Tallinn University, 29 Narva Road, 10120 Tallinn (Estonia)

2015-10-28

We consider a stochastic Bernoulli-Verhulst equation as a model for population growth processes. The effect of fluctuating environment on the carrying capacity of a population is modeled as colored dichotomous noise. Relying on the composite master equation an explicit expression for the stationary autocorrelation function (ACF) of population sizes is found. On the basis of this expression a nonmonotonic decay of the ACF by increasing lag-time is shown. Moreover, in a certain regime of the noise parameters the ACF demonstrates anticorrelation as well as related sign reversals at some values of the lag-time. The conditions for the appearance of this highly unexpected effect are also discussed.

15. Bernoulli Brothers

In the long, glorious history of mathematics, we come across ... family flourished in business, but afterwards, its descendants .... teaching calculus to contemporary renowned mathematicians including Guillaume FrancoiseAntoiRe de.

16. Daniel Bernoulli

Unknown

evolutionary biology and behavioural ecology. Between. 1983 and 1999 it was cited 36 times (according to the. Web of Science database) by people writing on decision theory, risk management, mathematical probability, ex- pected utility, cognition and choice, ecology, evolutionary ecology, marketing, preference structures ...

17. Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics

Directory of Open Access Journals (Sweden)

Qiu Hao

2016-10-01

Full Text Available It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated.

18. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

Science.gov (United States)

Huang, B.

2016-07-01

We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

19. Free Vibration and Stability of Axially Functionally Graded Tapered Euler-Bernoulli Beams

Directory of Open Access Journals (Sweden)

2011-01-01

Full Text Available Structural analysis of axially functionally graded tapered Euler-Bernoulli beams is studied using finite element method. A beam element is proposed which takes advantage of the shape functions of homogeneous uniform beam elements. The effects of varying cross-sectional dimensions and mechanical properties of the functionally graded material are included in the evaluation of structural matrices. This method could be used for beam elements with any distributions of mass density and modulus of elasticity with arbitrarily varying cross-sectional area. Assuming polynomial distributions of modulus of elasticity and mass density, the competency of the element is examined in stability analysis, free longitudinal vibration and free transverse vibration of double tapered beams with different boundary conditions and the convergence rate of the element is then investigated.

20. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood

KAUST Repository

Lee, Seokho

2013-01-31

We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a simple bicluster structure and the combination of multiple layers is able to reveal complicated, multiple biclusters. The method allows for non-pure biclusters, and can simultaneously identify the 1-prevalent blocks and 0-prevalent blocks. A computationally efficient algorithm is developed and guidelines are provided for specifying the tuning parameters, including initial values of model parameters, the number of layers, and the penalty parameters. Missing-data imputation can be handled in the EM framework. The method is tested using synthetic and real datasets and shows good performance. © 2013 Springer Science+Business Media New York.

1. Applications of Fuss-Catalan Numbers to Success Runs of Bernoulli Trials

Directory of Open Access Journals (Sweden)

S. J. Dilworth

2016-01-01

Full Text Available In a recent paper, the authors derived the exact solution for the probability mass function of the geometric distribution of order k, expressing the roots of the associated auxiliary equation in terms of generating functions for Fuss-Catalan numbers. This paper applies the above formalism for the Fuss-Catalan numbers to treat additional problems pertaining to occurrences of success runs. New exact analytical expressions for the probability mass function and probability generating function and so forth are derived. First, we treat sequences of Bernoulli trials with r≥1 occurrences of success runs of length k with l-overlapping. The case l<0, where there must be a gap of at least l trials between success runs, is also studied. Next we treat the distribution of the waiting time for the rth nonoverlapping appearance of a pair of successes separated by at most k-2 failures (k≥2.

2. H∞ control for uncertain linear system over networks with Bernoulli data dropout and actuator saturation.

Science.gov (United States)

Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping

2018-03-01

This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

3. Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas

Science.gov (United States)

Kaya, Ismet I.

2013-02-01

Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.

4. Numerical solutions of incompressible Navier-Stokes equations using modified Bernoulli's law

Science.gov (United States)

Shatalov, A.; Hafez, M.

2003-11-01

Simulations of incompressible flows are important for many practical applications in aeronautics and beyond, particularly in the high Reynolds number regime. The present formulation is based on Helmholtz velocity decomposition where the velocity is presented as the gradient of a potential plus a rotational component. Substituting in the continuity equation yields a Poisson equation for the potential which is solved with a zero normal derivative at solid surfaces. The momentum equation is used to update the rotational component with no slip/no penetration surface boundary conditions. The pressure is related to the potential function through a special relation which is a generalization of Bernoulli's law, with a viscous term included. Results of calculations for two- and three-dimensional problems prove that the present formulation is a valid approach, with some possible benefits compared to existing methods.

5. Dynamic modelling and control of a rotating Euler-Bernoulli beam

Science.gov (United States)

Yang, J. B.; Jiang, L. J.; Chen, D. CH.

2004-07-01

Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.

6. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

Science.gov (United States)

Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

2008-12-01

Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

7. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

International Nuclear Information System (INIS)

Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David

2013-01-01

The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R 0 ≲ 0.25 R ☉ , consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M B = –18.72 ± 0.03 mag ∼17.7 days after first light

8. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

Energy Technology Data Exchange (ETDEWEB)

Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M.; Howie Marion, G. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Kasen, Daniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wang, Xiaofeng [Department of Physics, Tsinghua University, Beijing 100084 (China); Valenti, Stefano; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Ciabattari, Fabrizio [Monte Agliale Observatory, Borgo a Mozzano, Lucca, I-55023 Italy (Italy); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Balam, Dave [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hsiao, Eric [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Sand, David, E-mail: zwk@astro.berkeley.edu [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); and others

2013-11-20

The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

9. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams

Science.gov (United States)

Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun

2017-11-01

The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

10. Continuum mechanics through the eighteenth and nineteenth centuries historical perspectives from John Bernoulli (1727) to Ernst Hellinger (1914)

CERN Document Server

Maugin, Gérard A

2014-01-01

Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the “Age of reason” and next the “Birth of the modern world”. The emphasis is rightly placed on the original contributions from the “Continental” scientists (the Bernoulli family, Euler, d’Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in...

11. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type

Science.gov (United States)

Kashiwabara, Takahito

Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.

12. Los valores del juego de parada óptima para medias aritméticas de variables de Bernoulli

OpenAIRE

Jaime Lobo Segura; Santiago Cambronero

2009-01-01

We study optimal stopping problems for generalized averages of identically distributed Bernoulli variables, taking values in the set D = {d0, d1}. We obtain a recurrent formula in the finite horizon case, which gives the value of the game in terms of associated problems of smaller horizon. This allows us to create algorithms for computing the value of the game, as well as the optimal stopping time in these cases. Moreover, we present a series of aplicattions to the study of pro...

13. An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element

Directory of Open Access Journals (Sweden)

Litesh N. Sulbhewar

Full Text Available The convergence characteristic of the conventional two-noded Euler-Bernoulli piezoelectric beam finite element depends on the configuration of the beam cross-section. The element shows slower convergence for the asymmetric material distribution in the beam cross-section due to 'material-locking' caused by extension-bending coupling. Hence, the use of conventional Euler-Bernoulli beam finite element to analyze piezoelectric beams which are generally made of the host layer with asymmetrically surface bonded piezoelectric layers/patches, leads to increased computational effort to yield converged results. Here, an efficient coupled polynomial interpolation scheme is proposed to improve the convergence of the Euler-Bernoulli piezoelectric beam finite elements, by eliminating ill-effects of material-locking. The equilibrium equations, derived using a variational formulation, are used to establish relationships between field variables. These relations are used to find a coupled quadratic polynomial for axial displacement, having contributions from an assumed cubic polynomial for transverse displacement and assumed linear polynomials for layerwise electric potentials. A set of coupled shape functions derived using these polynomials efficiently handles extension-bending and electromechanical couplings at the field interpolation level itself in a variationally consistent manner, without increasing the number of nodal degrees of freedom. The comparison of results obtained from numerical simulation of test problems shows that the convergence characteristic of the proposed element is insensitive to the material configuration of the beam cross-section.

14. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams

Science.gov (United States)

Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.

2018-04-01

We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.

15. L’Hôpital's Analyse des infiniments petits an annotated translation with source material by Johann Bernoulli

CERN Document Server

Bradley, Robert E; Sandifer, C Edward

2015-01-01

This monograph is an annotated translation of what is considered to be the world’s first calculus textbook, originally published in French in 1696. That anonymously published textbook on differential calculus was based on lectures given to the Marquis de l’Hôpital in 1691-2 by the great Swiss mathematician, Johann Bernoulli. In the 1920s, a copy of Bernoulli’s lecture notes was discovered in a library in Basel, which presented the opportunity to compare Bernoulli’s notes, in Latin, to l’Hôpital’s text in French. The similarities are remarkable, but there is also much in l’Hôpital’s book that is original and innovative. This book offers the first English translation of Bernoulli's notes, along with the first faithful English translation of l’Hôpital’s text, complete with annotations and commentary. Additionally, a significant portion of the correspondence between l’Hôpital and Bernoulli has been included, also for the fi rst time in English translation. This translation will provide ...

16. State dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations and threshold

Science.gov (United States)

Niranjan, S. P.; Chandrasekaran, V. M.; Indhira, K.

2017-11-01

The objective of this paper is to analyse state dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations, threshold and constant retrial policy. Primary customers are arriving into the system in bulk with different arrival rates λ a and λ b . If arriving customers find the server is busy then the entire batch will join to orbit. Customer from orbit request service one by one with constant retrial rate γ. On the other hand if an arrival of customers finds the server is idle then customers will be served in batches according to general bulk service rule. After service completion, customers may request service again with probability δ as feedback or leave from the system with probability 1 - δ. In the service completion epoch, if the orbit size is zero then the server leaves for multiple vacations. The server continues the vacation until the orbit size reaches the value ‘N’ (N > b). At the vacation completion, if the orbit size is ‘N’ then the server becomes ready to provide service for customers from the main pool or from the orbit. For the designed queueing model, probability generating function of the queue size at an arbitrary time will be obtained by using supplementary variable technique. Various performance measures will be derived with suitable numerical illustrations.

17. Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

Directory of Open Access Journals (Sweden)

Zozulya V.V.

2017-01-01

Full Text Available New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.

18. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

Science.gov (United States)

Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

2017-07-01

An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

19. Vibrations of an Euler-Bernoulli beam with hysteretic damping arising from dispersed frictional microcracks

Science.gov (United States)

Maiti, Soumyabrata; Bandyopadhyay, Ritwik; Chatterjee, Anindya

2018-01-01

We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for materials with randomly dispersed frictional microcracks. The virtual work of distributed dissipative moments is approximated using Gaussian quadrature, yielding a few discrete internal hysteretic states. Lagrange's equations are obtained for the modal coordinates. Differential equations for the modal coordinates and internal states are integrated together. Free vibrations decay exponentially when a single mode dominates. With multiple modes active, higher modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower modes show their own characteristic modal damping, while small amplitude higher modes show more erratic decay. Large dissipation, for the adopted model, leads mathematically to fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, harmonically forced, lightly damped responses of the beam are studied using both a slow frequency sweep and a shooting-method based search for periodic solutions along with numerical continuation. Shooting method and frequency sweep results match for large ranges of frequency. The shooting method struggles near resonances, where internal states collapse into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary resonances, simple numerically-aided harmonic balance gives excellent results. Insights are also obtained into the harmonic content of secondary resonances.

20. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

Science.gov (United States)

Decker, Gifford Z; Thomson, Scott L

2007-05-01

The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

1. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators

Energy Technology Data Exchange (ETDEWEB)

Wang, Ting, E-mail: WT323@mail.nwpu.edu.cn [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia); Sheng, Mei-Ping [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); Qin, Qing-Hua [College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia)

2016-02-05

Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is studied theoretically and numerically. Hamilton's principle and Bloch's theorem are employed to derive the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite element analysis via commercial software of ANSYS shows large flexural wave attenuation within the band gaps and the effect of damping from the LLR substructures which helps smooth and lower the response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can be exploited for the design of flexural vibration control of beams. - Highlights: • A metamaterial beam with lateral local resonance is proposed. • The metamaterial beam can generate multi-band gaps for flexural wave suppression. • The substructure can transform the flexural wave into longitudinal wave and absorb the waves. • Damping from different part has different influence on the band gaps. • The design of the metamaterial beam can be used for multi-flexural vibration control.

2. Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation

International Nuclear Information System (INIS)

Bokhari, Ashfaque H.; Zaman, F. D.; Mahomed, F. M.

2010-01-01

The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.

3. δ-Generalized Labeled Multi-Bernoulli Filter Using Amplitude Information of Neighboring Cells

Directory of Open Access Journals (Sweden)

Chao Liu

2018-04-01

Full Text Available The amplitude information (AI of echoed signals plays an important role in radar target detection and tracking. A lot of research shows that the introduction of AI enables the tracking algorithm to distinguish targets from clutter better and then improves the performance of data association. The current AI-aided tracking algorithms only consider the signal amplitude in the range-azimuth cell where measurement exists. However, since radar echoes always contain backscattered signals from multiple cells, the useful information of neighboring cells would be lost if directly applying those existing methods. In order to solve this issue, a new δ-generalized labeled multi-Bernoulli (δ-GLMB filter is proposed. It exploits the AI of radar echoes from neighboring cells to construct a united amplitude likelihood ratio, and then plugs it into the update process and the measurement-track assignment cost matrix of the δ-GLMB filter. Simulation results show that the proposed approach has better performance in target’s state and number estimation than that of the δ-GLMB only using single-cell AI in low signal-to-clutter-ratio (SCR environment.

4. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

Science.gov (United States)

Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

2018-04-01

Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

5. <strong>Mini-project>

DEFF Research Database (Denmark)

Katajainen, Jyrki

2008-01-01

In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

6. Strong interactions

International Nuclear Information System (INIS)

Froissart, Marcel

1976-01-01

Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

7. Sufficient Condition for Monotonicity in Constructing the Distribution Function With Bernoulli Scheme

Directory of Open Access Journals (Sweden)

Vedenyapin Aleksandr Dmitrievich

2015-11-01

Full Text Available This paper is the construction of the distribution function using the Bernoulli scheme, and is also designed to correct some of the mistakes that were made in the article [2]. Namely, a function built in [2] need not be monotonous, and some formulas need to be adjusted. The idea of building as well as in [2], is based on the model of Cox-Ross-Rubinstein "binary market". The essence of the model was to divide time into N steps, and assuming that the price of an asset at each step can move either up to a certain value with probability p, or down also by some certain value with probability q = 1 - p. Prices in step N can take only a finite number of values. "Success" or "failure" was the changing price for some fixed value in the model of Cox-Ross-Rubinstein. Here as a "success" or "failure" at every step we consider the affiliation of changing the index value to the section [r, S] either to the interval [I, r. Further a function P(r was introduced, which at any step gives us the probability of "success". The maximum index value increase for the all period of time [T, 2T] will be equal nS, and the maximum possible reduction will be equal nI. Then let x ∈ [nI, nS]. This segment will reflect every possible total variation that we can get at the end of a period of time [T, 2T]. The further introduced inequality k ≥ (x - nI/(S - I gives us the minimum number of successes that needed for total changing could be in the section [x, nS] if was n - k reductions with the index value to I. Then was introduced the function r(x, kmin which is defined on the interval (nI, nS] and provided us some assurance that the total index changing could be in the section [x, nS] if successful interval is [r(x, kmin, S] and the amount of success is satisfying to our inequality. The probability of k "successes" and n - k "failures" is calculated according to the formula of Bernoulli, where the probability of "success" is determined by the function P(r, and r is determined

8. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

Science.gov (United States)

Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.

2018-01-01

Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

9. Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal-Organic Frameworks.

Science.gov (United States)

Piñeiro-López, Lucı A; Valverde-Muñoz, Francisco Javier; Seredyuk, Maksym; Muñoz, M Carmen; Haukka, Matti; Real, José Antonio

2017-06-19

The synthesis, crystal structure, magnetic, calorimetric, and Mössbauer studies of a series of new Hofmann-type spin crossover (SCO) metal-organic frameworks (MOFs) is reported. The new SCO-MOFs arise from self-assembly of Fe II , bis(4-pyridyl)butadiyne (bpb), and [Ag(CN) 2 ] - or [M II (CN) 4 ] 2- (M II = Ni, Pd). Interpenetration of four identical 3D networks with α-Po topology are obtained for {Fe(bpb)[Ag I (CN) 2 ] 2 } due to the length of the rod-like bismonodentate bpb and [Ag(CN) 2 ] - ligands. The four networks are tightly packed and organized in two subsets orthogonally interpenetrated, while the networks in each subset display parallel interpenetration. This nonporous material undergoes a very incomplete SCO, which is rationalized from its intricate structure. In contrast, the single network Hofmann-type MOFs {Fe(bpb)[M II (CN) 4 ]}·nGuest (M II = Ni, Pd) feature enhanced porosity and display complete one-step or two-step cooperative SCO behaviors when the pores are filled with two molecules of nitrobenzene or naphthalene that interact strongly with the pyridyl and cyano moieties of the bpb ligands via π-π stacking. The lack of these guest molecules favors stabilization of the high-spin state in the whole range of temperatures. However, application of hydrostatic pressure induces one- and two-step SCO.

10. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model

Energy Technology Data Exchange (ETDEWEB)

Wang, Y. B. [Department of Mathematics, ShaoXing University, No.900, ChengNan Avenue 312000, ShaoXing, Zhejiang (China); Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn [School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073 (China); Dai, H. H. [Department of Mathematics, City University of HongKong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China)

2016-08-15

Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.

11. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model

International Nuclear Information System (INIS)

Wang, Y. B.; Zhu, X. W.; Dai, H. H.

2016-01-01

Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.

12. Strong association between a splice mutation (IVS12+5G{r_arrow}A) and haplotype 6 in hereditary tyrosinemia type I

Energy Technology Data Exchange (ETDEWEB)

Tanguay, R.M.; St-Louis, M.; Gibson, K. [Universite Laval, Ste-Foy (Canada)] [and others

1994-09-01

Hereditary tyrosinemia type I (HT I; McKusick 276700) is a severe inborn error of tyrosine catabolism pathway caused by a deficiency of fumarylacetoacetate hydrolase (FAH). The highest frequency reported is the one in Saguenay-Lac St-Jean (Quebec, Canada) where 1:1,846 births are affected. The FAH gene has been cloned and several mutations have been described. Allele specific oligonucleotide (ASO) hybridization was used to examine the frequency of a splice (IVS12-5G{r_arrow}A) mutation recently reported and RFLP analysis was done to identify haplotypes related to HT I. The splice mutation was found on 45/50 alleles (90%) in patients from SLSJ and 12/66 (18%) alleles from patients world-wide. All 25 patients from the SLSJ region were positive with 20 being homozygous, indicating that this mutation is the major cause of HT I in French Canada. Of these 25 patients, 96% were positive for one haplotype called no 6 which is these 25 patients, 96% were positive for one haplotype called no 6 which is identified by TaqI, RsaI, BglII, MspI and KpnI digestions. These data show a really strong association between the mutation (IVS12+5G{r_arrow}A) and haplotype 6. Among our patients from around the world, {approximately}52% were positive for haplotype 6 indicating its strong relation with HT I. These results provide the rationale for DNA-based carrier testing for HT I in the F-C population at risk as well as in HT I patients in general.

13. Psychological trauma symptoms and Type 2 diabetes prevalence, glucose control, and treatment modality among American Indians in the Strong Heart Family Study.

Science.gov (United States)

Jacob, Michelle M; Gonzales, Kelly L; Calhoun, Darren; Beals, Janette; Muller, Clemma Jacobsen; Goldberg, Jack; Nelson, Lonnie; Welty, Thomas K; Howard, Barbara V

2013-01-01

The aims of this paper are to examine the relationship between psychological trauma symptoms and Type 2 diabetes prevalence, glucose control, and treatment modality among 3776 American Indians in Phase V of the Strong Heart Family Study. This cross-sectional analysis measured psychological trauma symptoms using the National Anxiety Disorder Screening Day instrument, diabetes by American Diabetes Association criteria, and treatment modality by four categories: no medication, oral medication only, insulin only, or both oral medication and insulin. We used binary logistic regression to evaluate the association between psychological trauma symptoms and diabetes prevalence. We used ordinary least squares regression to evaluate the association between psychological trauma symptoms and glucose control. We used binary logistic regression to model the association of psychological trauma symptoms with treatment modality. Neither diabetes prevalence (22%-31%; p=0.19) nor control (8.0-8.6; p=0.25) varied significantly by psychological trauma symptoms categories. However, diabetes treatment modality was associated with psychological trauma symptoms categories, as people with greater burden used either no medication, or both oral and insulin medications (odds ratio=3.1, ppsychological trauma symptoms suggests future research investigate patient and provider treatment decision making. © 2013.

14. Serum aspirin esterase is strongly associated with glucose and lipids in healthy subjects: different association patterns in subjects with type 2 diabetes mellitus

Directory of Open Access Journals (Sweden)

Kotani Kazuhiko

2010-07-01

Full Text Available Abstract Background Aspirin esterase (AE activity can account for part of aspirin pharmacokinetics in the circulation, possibly being associated with the impairment of aspirin effectiveness as an inhibitor of platelet aggregation. Aims The study was aimed at investigating the correlations of serum AE activity with cholinesterase (ChE and metabolic variables in healthy subjects in comparison to subjects with type 2 diabetes mellitus (T2DM. Methods In cardiovascular disease-free T2DM subjects and healthy controls, the AE activity levels and/or the correlation patterns between AE and the other variables were analyzed. Results Neither AE nor ChE activities were higher in the subjects with T2DM. Serum AE activity strongly correlated with ChE as well as glucose/lipids variables such as total cholesterol and triglyceride in healthy subjects, while the correlations between AE and glucose/lipids variables were not present in T2DM subjects. Conclusions These data may reflect the pathophysiological changes between healthy and T2DM subjects. Our data may thus provide the basis for future studies to unravel the mechanisms.

15. Type 2 diabetes mellitus susceptibility gene TCF7L2 is strongly associated with hyperglycemia in the Saudi Arabia Population of the eastern province of Saudi Arabia.

Science.gov (United States)

Acharya, S; Al-Elq, A; Al-Nafaie, A; Muzaheed, M; Al-Ali, A

2015-08-01

We studied the association of single nucleotide polymorphisms (SNPs) rs7903146, rs12255372 and rs4506565 in type 2 diabetes mellitus (T2DM) susceptibility gene, transcription factor 7 like 2 (TCF7L2) with T2DM among the population of the Eastern Province of Saudi Arabia. In a case-control study, blood samples were collected from 359 T2DM patients and 351 age and sex-matched normoglycemic controls. Genotyping was done by allele specific PCR assay. Our results revealed a strong association between risk T alleles in variants rs12255372 (OR: G/T=1.4233; T/T=2.0395) and rs4506565 (OR: A/T=1.6066; T/T=3.1301) and T2DM among the Saudi population of the Eastern Province of Saudi Arabia. This is the first time that this association has been identified in a Saudi population. However, a common variant, rs7903146, often found to be associated with T2DM in other populations failed to demonstrate any association to T2DM with the present population. These data further strengthens the hypothesis that Saudi populations might carry a distinct risk allele in T2DM susceptibility gene TCF7L2. The present results confirm that rs12255372 and rs4506565 variants of TCF7L2 show an association, but not rs7903146, with T2DM for the Saudi population of the Eastern Province of Saudi Arabia.

16. Strong intrinsic motivation

OpenAIRE

Dessi, Roberta; Rustichini, Aldo

2015-01-01

A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

17. Normal-Gamma-Bernoulli Peak Detection for Analysis of Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry Data.

Science.gov (United States)

Kim, Seongho; Jang, Hyejeong; Koo, Imhoi; Lee, Joohyoung; Zhang, Xiang

2017-01-01

Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GC×GC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the normal-gamma-Bernoulli (NGB) model is developed. Unlike the NEB model, the NGB model has no closed-form analytical solution, hampering its practical use in peak detection. To circumvent this difficulty, three numerical approaches, which are fast Fourier transform (FFT), the first-order and the second-order delta methods (D1 and D2), are introduced. The applications to simulated data and two real GC×GC-MS data sets show that the NGB-D1 method performs the best in terms of both computational expense and peak detection performance.

18. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

Science.gov (United States)

Karaton, Muhammet

2014-01-01

A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

19. Short proofs of strong normalization

OpenAIRE

Wojdyga, Aleksander

2008-01-01

This paper presents simple, syntactic strong normalization proofs for the simply-typed lambda-calculus and the polymorphic lambda-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types to systems, for which strong normalization property is known.

20. Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts.

Science.gov (United States)

Alyass, Akram; Almgren, Peter; Akerlund, Mikael; Dushoff, Jonathan; Isomaa, Bo; Nilsson, Peter; Tuomi, Tiinamaija; Lyssenko, Valeriya; Groop, Leif; Meyre, David

2015-01-01

The relevance of the OGTT in predicting type 2 diabetes is unclear. We assessed the performance of 14 OGTT glucose traits in type 2 diabetes prediction. We studied 2,603 and 2,386 Europeans from the Botnia study and Malmö Prevention Project (MPP) cohorts with baseline OGTT data. Over a follow-up period of 4.94 years and 23.5 years, 155 (5.95%) and 467 (19.57%) participants, respectively, developed type 2 diabetes. The main outcome was incident type 2 diabetes. One-hour plasma glucose (1h-PG) was a fair/good predictor of incident type 2 diabetes in the Botnia study and MPP (AUC for receiver operating characteristic [AUCROC] 0.80 [0.77, 0.84] and 0.70 [0.68, 0.73]). 1h-PG alone outperformed the prediction model of multiple clinical risk factors (age, sex, BMI, family history of type 2 diabetes) in the Botnia study and MPP (AUCROC 0.75 [0.72, 0.79] and 0.67 [0.64, 0.70]). The same clinical risk factors added to 1h-PG modestly increased prediction for incident type 2 diabetes (Botnia, AUCROC 0.83 [0.80, 0.86]; MPP, AUCROC 0.74 [0.72, 0.77]). 1h-PG also outperformed HbA1c in predicting type 2 diabetes in the Botnia cohort. A 1h-PG value of 8.9 mmol/l and 8.4 mmol/l was the optimal cut-point for initial screening and selection of high-risk individuals in the Botnia study and MPP, respectively, and represented 30% and 37% of all participants in these cohorts. High-risk individuals had a substantially increased risk of incident type 2 diabetes (OR 8.0 [5.5, 11.6] and 3.8 [3.1, 4.7]) and captured 75% and 62% of all incident type 2 diabetes in the Botnia study and MPP. 1h-PG is a valuable prediction tool for identifying adults at risk for future type 2 diabetes.

1. Financial difficulties but not other types of recent negative life events show strong interactions with 5-HTTLPR genotype in the development of depressive symptoms.

Science.gov (United States)

Gonda, X; Eszlari, N; Kovacs, D; Anderson, I M; Deakin, J F W; Juhasz, G; Bagdy, G

2016-05-03

Several studies indicate that 5-HTTLPR mediates the effect of childhood adversity in the development of depression, while results are contradictory for recent negative life events. For childhood adversity the interaction with genotype is strongest for sexual abuse, but not for other types of childhood maltreatment; however, possible interactions with specific recent life events have not been investigated separately. The aim of our study was to investigate the effect of four distinct types of recent life events in the development of depressive symptoms in a large community sample. Interaction between different types of recent life events measured by the List of Threatening Experiences and the 5-HTTLPR genotype on current depression measured by the depression subscale and additional items of the Brief Symptom Inventory was investigated in 2588 subjects in Manchester and Budapest. Only a nominal interaction was found between life events overall and 5-HTTLPR on depression, which failed to survive correction for multiple testing. However, subcategorising life events into four categories showed a robust interaction between financial difficulties and the 5-HTTLPR genotype, and a weaker interaction in the case of illness/injury. No interaction effect for the other two life event categories was present. We investigated a general non-representative sample in a cross-sectional approach. Depressive symptoms and life event evaluations were self-reported. The 5-HTTLPR polymorphism showed a differential interaction pattern with different types of recent life events, with the strongest interaction effects of financial difficulties on depressive symptoms. This specificity of interaction with only particular types of life events may help to explain previous contradictory findings.

2. Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1, 1)

Science.gov (United States)

Chen, Chun-I.; Chen, Hong Long; Chen, Shuo-Pei

2008-08-01

The traditional Grey Model is easy to understand and simple to calculate, with satisfactory accuracy, but it is also lack of flexibility to adjust the model to acquire higher forecasting precision. This research studies feasibility and effectiveness of a novel Grey model together with the concept of the Bernoulli differential equation in ordinary differential equation. In this research, the author names this newly proposed model as Nonlinear Grey Bernoulli Model (NGBM). The NGBM is nonlinear differential equation with power index n. By controlling n, the curvature of the solution curve could be adjusted to fit the result of one time accumulated generating operation (1-AGO) of raw data. One extreme case from Grey system textbook is studied by NGBM, and two published articles are chosen for practical tests of NGBM. The results prove the novel NGBM is feasible and efficient. Finally, NGBM is used to forecast 2005 foreign exchange rates of twelve Taiwan major trading partners, including Taiwan.

3. An optimized Nash nonlinear grey Bernoulli model based on particle swarm optimization and its application in prediction for the incidence of Hepatitis B in Xinjiang, China.

Science.gov (United States)

Zhang, Liping; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian

2014-06-01

In this paper, by using a particle swarm optimization algorithm to solve the optimal parameter estimation problem, an improved Nash nonlinear grey Bernoulli model termed PSO-NNGBM(1,1) is proposed. To test the forecasting performance, the optimized model is applied for forecasting the incidence of hepatitis B in Xinjiang, China. Four models, traditional GM(1,1), grey Verhulst model (GVM), original nonlinear grey Bernoulli model (NGBM(1,1)) and Holt-Winters exponential smoothing method, are also established for comparison with the proposed model under the criteria of mean absolute percentage error and root mean square percent error. The prediction results show that the optimized NNGBM(1,1) model is more accurate and performs better than the traditional GM(1,1), GVM, NGBM(1,1) and Holt-Winters exponential smoothing method. Copyright © 2014. Published by Elsevier Ltd.

4. Multidimensional Models of Type Ia Supernova Nebular Spectra: Strong Emission Lines from Stripped Companion Gas Rule Out Classic Single-degenerate Systems

Science.gov (United States)

Botyánszki, János; Kasen, Daniel; Plewa, Tomasz

2018-01-01

The classic single-degenerate model for the progenitors of Type Ia supernova (SN Ia) predicts that the supernova ejecta should be enriched with solar-like abundance material stripped from the companion star. Spectroscopic observations of normal SNe Ia at late times, however, have not resulted in definite detection of hydrogen. In this Letter, we study line formation in SNe Ia at nebular times using non-LTE spectral modeling. We present, for the first time, multidimensional radiative transfer calculations of SNe Ia with stripped material mixed in the ejecta core, based on hydrodynamical simulations of ejecta–companion interaction. We find that interaction models with main-sequence companions produce significant Hα emission at late times, ruling out these types of binaries being viable progenitors of SNe Ia. We also predict significant He I line emission at optical and near-infrared wavelengths for both hydrogen-rich or helium-rich material, providing an additional observational probe of stripped ejecta. We produce models with reduced stripped masses and find a more stringent mass limit of M st ≲ 1 × 10‑4 M ⊙ of stripped companion material for SN 2011fe.

5. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2.

Science.gov (United States)

Churqui, Marianela Patzi; Lind, Liza; Thörn, Karolina; Svensson, Alexandra; Savolainen, Otto; Aranda, Katty Terrazas; Eriksson, Kristina

2018-01-10

Equisetum giganteum L and Copaifera reticulate Ducke have been traditionally used by women of the Tacana tribe in the Bolivian Amazonas for genital hygiene and for treatment of genital infection/inflammation. To assess the ability of extracts from Equisetum giganteum L and Copaifera reticulate Ducke to block genital viral infection by herpes simplex virus type 2. Equisetum giganteum L and Copaifera reticulate Ducke were collected from the Amazon region of La Paz, Bolivia. Extracts were prepared and screened for anti-viral activity against herpes simplex virus type 2 (HSV-2) using both in vitro and in in vivo models of infection. Equisetum giganteum L and Copaifera reticulate Ducke efficiently blocked HSV-2 infection of cell cultures without major cell cytotoxic effects. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke could prevent HSV-2 disease development when administered together with virus in a mouse model of genital HSV-2 infection. In vitro analyses revealed that both plant extracts exerted their anti-HSV-2 effects by interfering with viral cell attachment and entry, but could not block viral replication post entry. These studies show that extracts of Equisetum giganteum L and Copaifera reticulate Ducke have potent antiviral activities against HSV-2 comparable to those two previously identified plants, Croton lechleri Müll. Arg. and Uncaria tomentosa (Willd. ex Schult.) DC. These studies confirm that plants used by the Tacana tribe could be explored further for the development of novel topical antiviral microbicides. Copyright © 2017. Published by Elsevier B.V.

6. Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

Directory of Open Access Journals (Sweden)

Zozulya V.V.

2017-01-01

Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

7. Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

Directory of Open Access Journals (Sweden)

Zozulya V.V.

2017-09-01

Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.

8. On partial stabilization of a system of the Euler-Bernoulli beam equations

International Nuclear Information System (INIS)

Zuyev, Alexander

2003-11-01

The paper is focused on the stabilization problem for the following system of differential equations ∂ 2 (t) = v, t ≥ 0, (∂ 2 ω i (x,t))/∂t 2 + c 2 (∂ 4 ω i (x,t))/∂x 4 = ∂ 2 (t)ω i (x,t) - (x+d)v, x is an element of [0,l], i = 1,2,...,k, where v is an element of R is the control parameter. The above system describes a rotating rigid body endowed with a number of elastic beams. To solve the stabilization problem, we prove a sufficient condition for partial strong asymptotic stability which is valid for general nonlinear dynamical systems in a Banach space. This result is applied to deriving a feedback control explicitly. In addition, we prove strong (non-asymptotic) stability in the sense of Lyapunov as well as precompacness of the trajectories for the corresponding nonlinear semigroup. Some simulation results are given in conclusion. (author)

9. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

Energy Technology Data Exchange (ETDEWEB)

Kong, Zwe-Ling, E-mail: kongzl@mail.ntou.edu.tw; Chang, Jenq-Sheng; Chang, Ke Liang B. [National Taiwan Ocean University, Department of Food Science (China)

2013-09-15

Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

10. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

Science.gov (United States)

Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

2013-09-01

Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

11. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan–silica nanoparticles strongly depends on the metabolic activity type of the cell line

International Nuclear Information System (INIS)

Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

2013-01-01

Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica–chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica–chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica–chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan–silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line

12. Nephrotic range proteinuria as a strong risk factor for rapid renal function decline during pre-dialysis phase in type 2 diabetic patients with severely impaired renal function.

Science.gov (United States)

Kitai, Yuichiro; Doi, Yohei; Osaki, Keisuke; Sugioka, Sayaka; Koshikawa, Masao; Sugawara, Akira

2015-12-01

Proteinuria is an established risk factor for progression of renal disease, including diabetic nephropathy. The predictive power of proteinuria, especially nephrotic range proteinuria, for progressive renal deterioration has been well demonstrated in diabetic patients with normal to relatively preserved renal function. However, little is known about the relationship between severity of proteinuria and renal outcome in pre-dialysis diabetic patients with severely impaired renal function. 125 incident dialysis patients with type 2 diabetes were identified. This study was aimed at retrospectively evaluating the impact of nephrotic range proteinuria (urinary protein-creatinine ratio above 3.5 g/gCr) on renal function decline during the 3 months just prior to dialysis initiation. In total, 103 patients (82.4 %) had nephrotic range proteinuria. The median rate of decline in estimated glomerular filtration rate (eGFR) in this study population was 0.98 (interquartile range 0.51-1.46) ml/min/1.73 m(2) per month. Compared to patients without nephrotic range proteinuria, patients with nephrotic range proteinuria showed significantly faster renal function decline (0.46 [0.24-1.25] versus 1.07 [0.64-1.54] ml/min/1.73 m(2) per month; p = 0.007). After adjusting for gender, age, systolic blood pressure, serum albumin, calcium-phosphorus product, hemoglobin A1c, and use of an angiotensin-converting enzyme inhibitor or an angiotensin II receptor blocker, patients with nephrotic range proteinuria showed a 3.89-fold (95 % CI 1.08-14.5) increased risk for rapid renal function decline defined as a decline in eGFR ≥0.5 ml/min/1.73 m(2) per month. Nephrotic range proteinuria is the predominant renal risk factor in type 2 diabetic patients with severely impaired renal function receiving pre-dialysis care.

13. Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning.

Science.gov (United States)

Pizzio, Gaston A; Paez-Valencia, Julio; Khadilkar, Aswad S; Regmi, Kamesh; Patron-Soberano, Araceli; Zhang, Shangji; Sanchez-Lares, Jonathan; Furstenau, Tara; Li, Jisheng; Sanchez-Gomez, Concepcion; Valencia-Mayoral, Pedro; Yadav, Umesh P; Ayre, Brian G; Gaxiola, Roberto A

2015-04-01

Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function. © 2015 American Society of Plant Biologists. All Rights Reserved.

14. Design and Analyze a New Measuring Lift Device for Fin Stabilizers Using Stiffness Matrix of Euler-Bernoulli Beam.

Directory of Open Access Journals (Sweden)

Lihua Liang

Full Text Available Fin-angle feedback control is usually used in conventional fin stabilizers, and its actual anti-rolling effect is difficult to reach theoretical design requirements. Primarily, lift of control torque is a theoretical value calculated by static hydrodynamic characteristics of fin. However, hydrodynamic characteristics of fin are dynamic while fin is moving in waves. As a result, there is a large deviation between actual value and theoretical value of lift. Firstly, the reasons of deviation are analyzed theoretically, which could avoid a variety of interference factors and complex theoretical derivations. Secondly, a new device is designed for direct measurement of actual lift, which is composed of fin-shaft combined mechanism and sensors. This new device can make fin-shaft not only be the basic function of rotating fin, but also detect actual lift. Through analysis using stiffness matrix of Euler-Bernoulli beam, displacement of shaft-core end is measured instead of lift which is difficult to measure. Then quantitative relationship between lift and displacement is defined. Three main factors are analyzed with quantitative relationship. What is more, two installation modes of sensors and a removable shaft-end cover are proposed according to hydrodynamic characteristics of fin. Thus the new device contributes to maintenance and measurement. Lastly, the effectiveness and accuracy of device are verified by contrasting calculation and simulation on the basis of actual design parameters. And the new measuring lift method can be proved to be effective through experiments. The new device is achieved from conventional fin stabilizers. Accordingly, the reliability of original equipment is inherited. The alteration of fin stabilizers is minor, which is suitable for engineering application. In addition, the flexural properties of fin-shaft are digitized with analysis of stiffness matrix. This method provides theoretical support for engineering application by

15. Vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundations using differential transformation method and generalized differential quadrature method

International Nuclear Information System (INIS)

Shin, Young Jae; Hwang, Ki Sup; Yun, Jong Hak

2006-01-01

The main purpose of this paper is to apply Differential Transformation Method(DTM) and Generalized Differential Quadrature Method(GDQM) to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. In this paper the concepts of DTM and GDQM were briefly introduced. The governing equation of motion of the beam with open cracks on elastic foundation is derived. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated. Numerical calculations are carried out and compared with previous published results

16. Ertel Potential Vorticity versus Bernoulli Streamfunction in Earth's Southern Ocean: Comparison with the Atmospheres of Earth, Mars, Jupiter and Saturn

Science.gov (United States)

Dowling, Timothy E.; Stanley, Geoff; Bradley, Mary Elizabeth; Marshall, David P.

2017-10-01

We are working to expand the comparative planetology of vorticity-streamfunction correlations established for the atmospheres of Earth, Mars, Jupiter and Saturn to include Earth’s Antarctic Circumpolar Current (ACC), which is the only oceanic jet that encircles the planet. Interestingly, the ACC and its eddies scale like atmospheric jets and eddies on Jupiter and Saturn---the Southern Ocean is a “giant planet” with a zonal jet stream. Our input is the Southern Ocean State Estimate (SOSE; Mazloff et al 2010, J. Phys. Ocean. 40, 880-899), an optimal combination of observations and primitive-equation model that spans 2005-2010. Two hurdles not encountered in atmospheric work arise from the nonlinear equation of state of ocean water: non-zero helicity, which prevents the existence of truly neutral (analogous to adiabatic) surfaces, and the lack of a geostrophic streamfunction in general. We follow de Szoeke et al (2000, J. Phys. Ocean. 30, 2830-2852) to overcome these hurdles, regionally, by using orthobaric density as the vertical coordinate. In agreement with results for all atmospheres analyzed to date, scatter plots of Ertel potential vorticity, Q, versus Bernoulli streamfunction, B, on orthobaric density surfaces in the Southern Ocean are well correlated. The general shape of the correlation is like a hockey stick, with the “blade” corresponding to a broad horizontal region that spans the ACC, and the “handle” corresponding to shallow water. The same linear-regression Q versus B model employed for Mars is applied to the ACC (“blade”) signal. Results include that the deeper water on the equatorward side of the ACC is most prone to shear instability, and elsewhere the ACC is “supersonic” such that the net propagation of vorticity waves is eastward, not the usual westward. During the 6-year span of the SOSE data, there is a steady drift of the correlation to larger values at the top of the vertical profile, and to smaller values in the middle of

17. Testing strong interaction theories

International Nuclear Information System (INIS)

Ellis, J.

1979-01-01

The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

18. Calculation of upper confidence bounds on not-sampled vegetation types using a systematic grid sample: An application to map unit definition for existing vegetation maps

Science.gov (United States)

Paul L. Patterson; Mark Finco

2009-01-01

This paper explores the information FIA data can produce regarding forest types that were not sampled and develops the equations necessary to define the upper confidence bounds on not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows the upper confidence bounds to be calculated based on Cochran (1977). Examples are...

19. A randomized controlled study on the efficacy of a novel combination vaccine against enzootic pneumonia (Mycoplasma hyopneumoniae) and porcine Circovirus type 2 (PCV2) in the presence of strong maternally derived PCV2 immunity in pigs.

Science.gov (United States)

Tassis, Panagiotis D; Tsakmakidis, Ioannis; Papatsiros, Vassileios G; Koulialis, Dimitrios; Nell, Tom; Brellou, Georgia; Tzika, Eleni D

2017-04-07

Mycoplasma hyopneumoniae (M. hyo) and Porcine Circovirus Type 2 (PCV2) are major pathogens that cause significant health problems in swine worldwide. Maternal derived immunity (MDI) has been suggested as a significant immediate defence factor for newborn piglets and may interfere with piglet's vaccination-induced immunity. The study aimed to assess the efficacy of a novel combination vaccine (consisting of PCV2 subunits and inactivated M. hyo strain J), against PCV2 and M. hyo natural infection [Porcilis ® PCV M Hyo (MSD Animal Health, Boxmeer, the Netherlands)], in the presence of strong maternally derived PCV2 immunity (antibody titre averaged 11.08 log 2 ), under field conditions. The study was performed according to a controlled, randomized and blinded design in a Greek swine unit with Enzootic Pneumonia (EP) and subclinical PCV2 infection. In total, 600 healthy three-week-old suckling piglets were allocated randomly, either to treatment (vaccinated with the test product) or control group (injected with sterile buffered saline). Vaccination significantly reduced the severity of lung lesions at slaughter (lesions of cranio-ventral pulmonary consolidation) (P pigs. Furthermore, 25 g higher average daily weight gain (ADWG) was observed during the finishing phase (P < 0.001) and 18 g greater ADWG overall (P < 0.001). Results of LLS, PCV2 viremia and ADWG support the test product's efficacy in the face of strong maternally derived PCV2 immunity.

20. Abortion: Strong's counterexamples fail

DEFF Research Database (Denmark)

Di Nucci, Ezio

2009-01-01

This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

1. Strong Langmuir turbulence

International Nuclear Information System (INIS)

Goldman, M.V.

1984-01-01

After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

2. Strong cosmic censorship and the strong curvature singularities

International Nuclear Information System (INIS)

Krolak, A.

1987-01-01

Conditions are given under which any asymptotically simple and empty space-time that has a partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown that this result suggests that the Cauchy horizons of the type occurring in Reissner--Nordstroem and Kerr space-times are unstable. This in turn gives support for the validity of the strong cosmic censorship hypothesis

3. Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study.

Science.gov (United States)

Morimoto, Akiko; Tatsumi, Yukako; Soyano, Fumie; Miyamatsu, Naomi; Sonoda, Nao; Godai, Kayo; Ohno, Yuko; Noda, Mitsuhiko; Deura, Kijyo

2014-01-01

Our aim was to assess the impact of increase in homeostasis model assessment of insulin resistance (HOMA-IR) on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion (IIS). This study included 2,209 participants aged 30-69 without diabetes at baseline who underwent comprehensive medical check-ups between April 2006 and March 2007 at Saku Central Hospital. Participants were classified into eight groups according to the combination of baseline IIS status (non-IIS and IIS) and category of HOMA-IR change between the baseline and follow-up examinations (decrease, no change/small increase, moderate increase, and large increase). Type 2 diabetes was determined from fasting and 2 h post-load plasma glucose concentrations at the follow-up examination between April 2009 and March 2011. At baseline, 669 individuals (30.3%) were classified as having IIS. At follow-up, 74 individuals developed type 2 diabetes. After adjusting for confounding factors including baseline HOMA-IR values, the multivariable-adjusted odds ratios (95% confidence intervals) for type 2 diabetes in the non-IIS with a decrease (mean change in HOMA-IR: -0.47), non-IIS with a moderate increase (mean change in HOMA-IR: 0.28), non-IIS with a large increase (mean change in HOMA-IR: 0.83), IIS with a decrease (mean change in HOMA-IR: -0.36), IIS with no change/small increase (mean change in HOMA-IR: 0.08), IIS with a moderate increase (mean change in HOMA-IR: 0.27), and IIS with a large increase (mean change in HOMA-IR: 0.73) groups, relative to the non-IIS with no change/small increase (mean change in HOMA-IR: 0.08) group were 0.23 (0.04, 1.11), 1.22 (0.26, 5.72), 2.01 (0.70, 6.46), 1.37 (0.32, 4.28), 3.60 (0.83, 15.57), 5.24 (1.34, 20.52), and 7.01 (1.75, 24.18), respectively. Moderate and large increases in HOMA-IR had a strong impact on the development of type 2 diabetes among individuals with IIS in this Japanese population.

4. Triply coupled vibrational band gap in a periodic and nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam including the warping effect

International Nuclear Information System (INIS)

Yu Dianlong; Fang Jianyu; Cai Li; Han Xiaoyun; Wen Jihong

2009-01-01

The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli-Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.

5. Bitcoin Meets Strong Consistency

OpenAIRE

Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

2014-01-01

The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

6. Strong gravity and supersymmetry

International Nuclear Information System (INIS)

Chamseddine, Ali H.; Salam, A.; Strathdee, J.

1977-11-01

A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

7. Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler–Bernoulli and Timoshenko beam analysis

Science.gov (United States)

Spoon, Corrie; Grant, Wally

2011-01-01

Vestibular hair cell bundles in the inner ear contain a single kinocilium composed of a 9+2 microtubule structure. Kinocilia play a crucial role in transmitting movement of the overlying mass, otoconial membrane or cupula to the mechanotransducing portion of the hair cell bundle. Little is known regarding the mechanical deformation properties of the kinocilium. Using a force-deflection technique, we measured two important mechanical properties of kinocilia in the utricle of a turtle, Trachemys (Pseudemys) scripta elegans. First, we measured the stiffness of kinocilia with different heights. These kinocilia were assumed to be homogenous cylindrical rods and were modeled as both isotropic Euler–Bernoulli beams and transversely isotropic Timoshenko beams. Two mechanical properties of the kinocilia were derived from the beam analysis: flexural rigidity (EI) and shear rigidity (kGA). The Timoshenko model produced a better fit to the experimental data, predicting EI=10,400 pN μm2 and kGA=247 pN. Assuming a homogenous rod, the shear modulus (G=1.9 kPa) was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. When analyzed as an Euler–Bernoulli beam, which neglects translational shear, EI increased linearly with kinocilium height, giving underestimates of EI for shorter kinocilia. Second, we measured the rotational stiffness of the kinocilium insertion (κ) into the hair cell's apical surface. Following BAPTA treatment to break the kinocilial links, the kinocilia remained upright, and κ was measured as 177±47 pN μm rad–1. The mechanical parameters we quantified are important for understanding how forces arising from head movement are transduced and encoded by hair cells. PMID:21307074

8. Strongly interacting Fermi gases

Directory of Open Access Journals (Sweden)

Bakr W.

2013-08-01

Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

9. A strong comeback

International Nuclear Information System (INIS)

Marier, D.

1992-01-01

This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

10. Strong Electroweak Symmetry Breaking

CERN Document Server

Grinstein, Benjamin

2011-01-01

Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

11. Plasmons in strong superconductors

International Nuclear Information System (INIS)

Baldo, M.; Ducoin, C.

2011-01-01

We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

12. Elementos finitos con acciones repartidas equivalentes de cualquier orden. Aplicación a los modelos de vigas de Timoshenko y Bernoulli-Euler

Directory of Open Access Journals (Sweden)

Romero, J. L.

2014-09-01

Full Text Available In the context of the Finite Element Method, two possible alternatives dealing with the concept of equivalent distributed load are presented in the paper. The first consist in using few finite elements, by slightly increasing the order of the load, while the second applies the use of a greater number of elements leaving the load in the lowest possible order. Both situations are sampled with application to the Timoshenko and Bernoulli-Euler beam models, with different orders of load are used. These equivalent distributed loads are the result of applying Legendre orthogonal polynomial approximations, to the original load, in each element. The most noteworthy conclusion is that when the least possible number of finite elements is used (i.e., one also for considering low level of regularity load cases only equivalent distributed loads of slightly higher than minimum order (four were needed to obtain an excellent approximation when computing the deflections, rotations, bending moments and shear forces inside the elements.En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro, para obtener una excelente aproximaci

13. Strongly intensive quantities

International Nuclear Information System (INIS)

Gorenstein, M. I.; Gazdzicki, M.

2011-01-01

Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

14. Strong-coupling approximations

International Nuclear Information System (INIS)

Abbott, R.B.

1984-03-01

Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

15. Strongly disordered superconductors

International Nuclear Information System (INIS)

Muttalib, K.A.

1982-01-01

We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

16. Strong Coupling Holography

CERN Document Server

Dvali, Gia

2009-01-01

We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

17. String dynamics at strong coupling

International Nuclear Information System (INIS)

Hull, C.M.

1996-01-01

The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

18. LIGO: The strong belief

CERN Multimedia

Antonella Del Rosso

2016-01-01

Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

19. Strongly interacting Higgs bosons

International Nuclear Information System (INIS)

Appelquist, T.; Bernard, C.

1980-01-01

The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

20. Evaluation of the Factors of Russian Regions’ Convergence / Divergence in the Level of Budget Provision Based on the Decomposition of the Theil - Bernoulli Index

Directory of Open Access Journals (Sweden)

Marina Yuryevna Malkina

2016-09-01

Full Text Available The study focuses on the Russian regions’ disparities in the level of budget expenditures per capita and their dynamics. The paper assesses contribution of main factors and their correlation, as well as the stages of budget process, to the regional imbalances in the public sector. The author also presents regions’ budget expenditures per capita in a form of five-factor multiplicative model which at the same time demonstrates the sequence of the stages of budget process. To estimate regions’ inequality in budget expenditures and other related variables the researcher employs the Theil - Bernoulli index which is sensitive to excessive poverty. Its decomposition, made on the basis of the Duro and Esteban technique, allows evaluating the structure of inter- regional disparities in the public sector. The results include following: 1 static assessments of the factors contribution to the regions’ convergence in budget expenditure per capita at the stages of GRP production, receipt and distribution of taxes among levels of budget system, the stages of attraction of inter-budgetary support and budget deficit financing; 2 dynamic assessments of the factors contribution to regions’ convergence / divergence in the level of budgetary expenditure per capita for 9 years. The findings may be useful in optimizing the policy of inter-budgetary equalization in Russia

1. Endoscopic evaluation of therapeutic effects of “Anuloma-Viloma Pranayama” in Pratishyaya w.s.r. to mucociliary clearance mechanism and Bernoulli's principle

Science.gov (United States)

Bhardwaj, Atul; Sharma, Mahendra Kumar; Gupta, Manoj

2013-01-01

The current endeavor intended to evaluate the effectiveness and mode of action of Anuloma-Viloma Pranayama (AVP), i.e., alternate nasal breathing exercise, in resolving clinical features of Pratishyaya, i.e., rhinosinusitis. The present study was directed to validate the use of classical “saccharin test” in measuring the nasal health by measuring mucociliary clearance time. This study also highlights the effects of AVP by application of Bernoulli principle in ventilation of paranasal sinuses and surface oxygenation of nasal and paranasal sinuses ciliary epithelium. Clinically, endoscopically and radiologically diagnosed patients of Pratishyaya, i.e., rhinosinusitis, satisfying the inclusion criteria were selected to perform AVP as a breathing exercise regularly for 30 min every day in order to evaluate the effectiveness of AVP in resolving features of rhinosinusitis. Saccharin test was performed before and after completion of 40 days trial to assess the nasal ciliary activity, which has been proved to be directly related to the health of ciliary epithelium and nasal health overall as well. AVP may be regarded as a catalyst to conspicuously enhance ventilation and oxygenation of the paranasal sinuses and the positively effect the nasal respiratory epithelium by increasing better surface availability of oxygen and negative pressure in the nasal cavity itself. PMID:24696572

2. Strong-interaction nonuniversality

International Nuclear Information System (INIS)

Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

1989-01-01

The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

3. John Strong (1941 - 2006)

CERN Multimedia

Wickens, F

Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

4. Stirring Strongly Coupled Plasma

CERN Document Server

Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

2009-01-01

We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

5. Metal Catalysis with Nanostructured Metals Supported Inside Strongly Acidic Cross-linked Polymer Frameworks: Influence of Reduction Conditions of AuIII-containing Resins on Metal Nanoclusters Formation in Macroreticular and Gel-Type Materials

Czech Academy of Sciences Publication Activity Database

Calore, L.; Cavinato, g.; Canton, P.; Peruzzo, L.; Banavali, R.; Jeřábek, Karel; Corain, B.

2012-01-01

Roč. 391, AUG 30 (2012), s. 114-120 ISSN 0020-1693 Institutional support: RVO:67985858 Keywords : strongly acidic cross-linked polymer * frameworks * gold(0) nanoclusters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.687, year: 2012

6. Three Types of Social Integration Status among Children of Migrant Workers in China: Scenes of Superiority of City Residents, Co-Existence of Urban Culture and Rural Hometown Culture, and Weak Social Capital under Strong Policy Discourse

Science.gov (United States)

Qian, Liu

2017-01-01

Based on surveys and field work conducted in District C of Beijing City, the author identifies migrant children's social assimilation obstacles according to distinct school types: each school type offers different quality educational resources and is composed of migrant students at different socioeconomic levels. The survey data show that migrant…

7. Strong moduli stabilization and phenomenology

CERN Document Server

Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A

2013-01-01

We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).

8. Generating Electricity by Harnessing Air That Flows Around a Skyscraper by Using Bernoulli's Principle And The Venturi Effect w/Special Emphasis on Biomimicry

Science.gov (United States)

Pizzolato, R.

2017-12-01

Can skyscrapers become carbon neutral using wind that flows around them to power wind turbines? I say YES! To test this idea, I constructed a venturi to capture wind flowing around a skyscraper by applying Bernoulli's Principle and the Venturi Effect to power vertical axis wind turbines (VAWT) to generate electricity. The model was constructed from polycarbonate. Turbine blades (45°&60°) carved from balsa wood with square edges, airfoils, and trailing edge tubercles (Humpback whales-biomimicry) were tested in a wind tunnel. Output was measured using Vernier's Logger Pro 3.12 software, energy and wind sensors. Voltage (mV), current (mA), power (mW) and total energy (mJ) produced at winds speeds of 3.9, 5, 7.5 and 10 m/s were recorded. 10 trials were performed for each blade angle and each blade design for a total of 240 trials. Trials were 100 seconds long and recorded at a rate of 10 measurements/second. The blades that showed the largest %Δ in total average energy output (mJ) were the 60° airfoil blades w/ tubercles on the trailing edge (20,490 mJ) when compared to 60° square edged blades (7,021 mJ). The trend of the data showed that the airfoils w/tubercles (45° & 60°) outperformed all the other blade designs at wind speeds of 7.5 m/s and 10 m/s. Also, the 45° airfoil w/tubercles produced the highest output of 25,136 mJ! This was possibly due to the improved aerodynamics of the tubercle blades which led to improvements in lift and a reduction in drag. The data shows that turbine blades that incorporate biomimicry in their design result in more efficient power output. Through biomimicry, it is possible to efficiently generate electricity with a skyscraper and reduce our dependence upon fossil fuels!

9. Electrophoresis in strong electric fields.

Science.gov (United States)

Barany, Sandor

2009-01-01

Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

10. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

Science.gov (United States)

Saxena, Siddharth S.; Littlewood, P. B.

2012-07-01

make use of 'small' electrons packed to the highest possible density. These are by definition 'strongly correlated'. For example: good photovoltaics must be efficient optical absorbers, which means that photons will generate tightly bound electron-hole pairs (excitons) that must then be ionised at a heterointerface and transported to contacts; efficient solid state refrigeration depends on substantial entropy changes in a unit cell, with large local electrical or magnetic moments; efficient lighting is in a real sense the inverse of photovoltaics; the limit of an efficient battery is a supercapacitor employing mixed valent ions; fuel cells and solar to fuel conversion require us to understand electrochemistry on the scale of a single atom; and we already know that the only prospect for effective high temperature superconductivity involves strongly correlated materials. Even novel IT technologies are now seen to have value not just for novel function but also for efficiency. While strongly correlated electron systems continue to excite researchers and the public alike due to the fundamental science issues involved, it seems increasingly likely that support for the science will be leveraged by its impact on energy and sustainability. Strongly correlated electron systems contents Strongly correlated electron systemsSiddharth S Saxena and P B Littlewood Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metalsF Steglich, J Arndt, O Stockert, S Friedemann, M Brando, C Klingner, C Krellner, C Geibel, S Wirth, S Kirchner and Q Si High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopyN L Wang, W Z Hu, Z G Chen, R H Yuan, G Li, G F Chen and T Xiang Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scaleS Wirth, S Ernst, R Cardoso-Gil, H Borrmann, S Seiro, C Krellner, C Geibel, S Kirchner, U Burkhardt, Y Grin and F Steglich Confinement of chiral magnetic

11. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

Energy Technology Data Exchange (ETDEWEB)

Tremblay, Grant R.; Davis, Timothy A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Gladders, Michael D.; Florian, Michael [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Baum, Stefi A.; O' Dea, Christopher P.; Cooke, Kevin C. [Chester F. Carlson Center for Imaging Science and School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Bayliss, Matthew B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Dahle, Håkon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Rigby, Jane R. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Sharon, Keren [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Soto, Emmaris [Department of Physics, The Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States); Wuyts, Eva, E-mail: grant.tremblay@eso.org [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, Giessenbachstr., D-85741 Garching bei München (Germany)

2014-08-01

New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

12. Morning pulse pressure is associated more strongly with elevated albuminuria than systolic blood pressure in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study.

Science.gov (United States)

Ushigome, Emi; Fukui, Michiaki; Hamaguchi, Masahide; Matsumoto, Shinobu; Mineoka, Yusuke; Nakanishi, Naoko; Senmaru, Takafumi; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto

2013-09-01

Recently, focus has been directed toward pulse pressure as a potentially independent risk factor for micro- and macrovascular disease. This study was designed to examine the relationship between pulse pressure taken at home and elevated albuminuria in patients with type 2 diabetes. This study is a post hoc analysis of a cross-sectional multicenter study. Home blood pressure measurements were performed for 14 consecutive days in 858 patients with type 2 diabetes. We investigated the relationship between systolic blood pressure or pulse pressure in the morning or in the evening and urinary albumin excretion using univariate and multivariate analyses. Furthermore, we measured area under the receiver-operating characteristic curve (AUC) to compare the ability to identify elevated albuminuria, defined as urinary albumin excretion equal to or more than 30 mg/g creatinine, of systolic blood pressure or pulse pressure. Morning systolic blood pressure (β=0.339, Ppressure (β=0.378, PAUC for elevated albuminuria in morning systolic blood pressure and morning pulse pressure were 0.668 (0.632-0.705; PAUC of morning pulse pressure was significantly greater than that of morning systolic blood pressure (P=0.040). Our findings implicate that morning pulse pressure is associated with elevated albuminuria in patients with type 2 diabetes, which suggests that lowering morning pulse pressure could prevent the development and progression of diabetic nephropathy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

13. John Strong - 1941-2006

CERN Multimedia

2006-01-01

Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...

14. Bernoulli cluster field: Voronoi tessellations

Czech Academy of Sciences Publication Activity Database

Saxl, Ivan; Ponížil, P.

2002-01-01

Roč. 47, č. 2 (2002), s. 157-167 ISSN 0862-7940. [Programs and Algorithms of Numerical Mathematics (PANMď00). Lázně Libverda, 12.06.2000-16.06.2000] R&D Projects: GA ČR GA201/99/0269; GA MŠk PG96108 Keywords : cluster point process%Voronoi tessellation%induced tessellation Subject RIV: BE - Theoretical Physics

15. Quantum electrodynamics of strong fields

International Nuclear Information System (INIS)

Greiner, W.

1983-01-01

Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

16. Instabilities in strongly coupled plasmas

CERN Document Server

Kalman, G J

2003-01-01

The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

17. Strong-back safety latch

International Nuclear Information System (INIS)

DeSantis, G.N.

1995-01-01

The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

18. Strong beam production for some elements

International Nuclear Information System (INIS)

Camplan, J.; Chaumont, J.; Meunier, R.

1974-01-01

Three electromagnetic isotope separators are installed in Rene Bernas Laboratory, one being especially adapted to ion implantation. The three apparatus use the same type of ion source and system of beam extraction. The special ion source is distinguishable from the others only by its smaller dimensions. These sources allow strong currents to be obtained for almost every element. The source and its extraction system are briefly described, examples of beams obtained are given [fr

19. Strong coupling phase in QED

International Nuclear Information System (INIS)

Aoki, Ken-ichi

1988-01-01

Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

20. Strong interactions at high energy

International Nuclear Information System (INIS)

Anselmino, M.

1995-01-01

Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

1. Strong-field dissociation dynamics

International Nuclear Information System (INIS)

DiMauro, L.F.; Yang, Baorui.

1993-01-01

The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs

2. Strong Decomposition of Random Variables

DEFF Research Database (Denmark)

Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

2007-01-01

A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

3. Strong coupling electroweak symmetry breaking

International Nuclear Information System (INIS)

Barklow, T.L.; Burdman, G.; Chivukula, R.S.

1997-04-01

The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

4. Strong coupling electroweak symmetry breaking

Energy Technology Data Exchange (ETDEWEB)

Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

1997-04-01

The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

5. The colours of strong interaction

International Nuclear Information System (INIS)

1995-01-01

The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

6. Strongly Correlated Systems Theoretical Methods

CERN Document Server

2012-01-01

The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

7. Strongly correlated systems numerical methods

CERN Document Server

Mancini, Ferdinando

2013-01-01

This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

8. Strongly correlated systems experimental techniques

CERN Document Server

Mancini, Ferdinando

2015-01-01

The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

9. Flavour Democracy in Strong Unification

CERN Document Server

Abel, S A; Abel, Steven; King, Steven

1998-01-01

We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

10. The Dark Side of Strongly Coupled Theories

DEFF Research Database (Denmark)

Kouvaris, Christoforos

2008-01-01

We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...

11. Strong coupling transmutation of Yukawa theory

International Nuclear Information System (INIS)

Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.

1981-01-01

In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)

12. Categorization of States Beyond Strong and Weak

Directory of Open Access Journals (Sweden)

Peter Tikuisis

2017-09-01

Full Text Available The discourse on poor state performers has suffered from widely varying definitions on what distinguishes certain weak states from others. Indices that rank states from strong to weak conceal important distinctions that can adversely affect intervention policy. This deficiency is addressed by grouping states according to their performance on three dimensions of statehood: authority, legitimacy, and capacity. The resultant categorization identifies brittle states that are susceptible to regime change, impoverished states often considered as aid darlings, and fragile states that experience disproportionately high levels of violent internal conflict. It also provides a quantifiable means to analyze transitions from one state type to another for more insightful intervention policy.

13. Images and visuality in ICT educational design<strong> strong>

DEFF Research Database (Denmark)

Buhl, Mie

2010-01-01

The concept of educational design emphasises the educational dimension in the development of ICT-based learning tools and environments, and in the form of models for the use of existing applications in learning cultures. The intrinsic breadth of various types of images creates new possibilities a...

14. Simulation of weak and strong Langmuir collapse regimes

International Nuclear Information System (INIS)

Hadzievski, L.R.; Skoric, M.M.; Kono, M.; Sato, T.

1998-01-01

In order to check the validity of the self-similar solutions and the existence of weak and strong collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton instability is performed. Simulation is based on the Zakharov model of strong Langmuir turbulence in a weakly magnetized plasma accounting for the full ion dynamics. For parameters considered, agreement with self-similar dynamics of the weak collapse type is found with no evidence of the strong Langmuir collapse. (author)

15. Strong factor in the SO(2,3) S matrix

International Nuclear Information System (INIS)

1986-01-01

The group theoretic S matrix of Alhassid, Iachello, and Wu is factorable into a product of Coulomb and strong factors. The strong factor is examined with a view to relating it to more fa- miliar potential and phase shift descriptions. We find simple approximate expressions for the phase shifts which are very accurate for heavy-ion-type applications. For peripheral scattering it is possible to obtain simple expressions relating the strong factor to an effective potential

16. A STRONG OPTIMIZATION THEOREM IN LOCALLY CONVEX SPACES

Institute of Scientific and Technical Information of China (English)

程立新; 腾岩梅

2003-01-01

This paper presents a geometric characterization of convex sets in locally convex spaces onwhich a strong optimization theorem of the Stegall-type holds, and gives Collier's theorem ofw* Asplund spaces a localized setting.

17. Atoms in strong laser fields

International Nuclear Information System (INIS)

L'Huillier, A.

2002-01-01

When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

18. Rydberg atoms in strong fields

International Nuclear Information System (INIS)

Kleppner, D.; Tsimmerman, M.

1985-01-01

Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

19. Strong versions of Bell's theorem

International Nuclear Information System (INIS)

Stapp, H.P.

1994-01-01

Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

20. Strongly interacting light dark matter

International Nuclear Information System (INIS)

Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

2016-07-01

In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

1. Weak consistency and strong paraconsistency

Directory of Open Access Journals (Sweden)

Gemma Robles

2009-11-01

Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.

2. On the strong CP problem

Energy Technology Data Exchange (ETDEWEB)

Dowrick, N.J. (Dept. of Physics, Oxford (United Kingdom)); McDougall, N.A. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

1992-07-09

We show that two well-known solutions to the strong CP problem, the axion and a massless quark, may be understood in terms of the mechanism recently proposed by Samuel where long-range interactions between topological charges may be responsible for the removal of CP violation. We explain how the axion and a QCD meson (identified as the {eta}' if all quarks are massless) suppress fluctuations in global topological charge by almost identical dynamical although the masses, couplings and relevant length scales are very different. Furthermore, we elucidate the precise origin of the {eta}' mass. (orig.).

3. Scalar strong interaction hadron theory

CERN Document Server

Hoh, Fang Chao

2015-01-01

The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

4. Estimation of strong ground motion

International Nuclear Information System (INIS)

Watabe, Makoto

1993-01-01

Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event

5. Strong Mechanoluminescence from Oxynitridosilicate Phosphors

Energy Technology Data Exchange (ETDEWEB)

Zhang Lin; Xu Chaonan; Yamada, Hiroshi, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku, Tosu, Saga 841-0052 (Japan)

2011-10-29

We successfully developed a novel Mechanoluminescence (ML) material with water resistance, oxynitridosilicate; BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+}. The crystal structure, photoluminescence (PL) and ML properties were characterized. The ML of BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is so strong that the blue-green emission can be observed by the naked eyes clearly. In addition, it shows superior water resistance property. No changes were found in the ML intensities during the total water treatment test.

6. Designing asymmetric multiferroics with strong magnetoelectric coupling

Science.gov (United States)

Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team

2015-03-01

Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.

7. Effective lagrangian for strong interactions

International Nuclear Information System (INIS)

Jain, P.

1988-01-01

We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model

8. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

Science.gov (United States)

Ronning, Filip; Batista, Cristian

2011-03-01

Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

9. Strong Selective Adsorption of Polymers.

Science.gov (United States)

Ge, Ting; Rubinstein, Michael

2015-06-09

10. Strongly nonlinear parabolic variational inequalities.

Science.gov (United States)

Browder, F E; Brézis, H

1980-02-01

An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

11. Strong growth for Queensland mining

Energy Technology Data Exchange (ETDEWEB)

1990-10-01

The Queensland mining industry experienced strong growth during 1989-90 as shown in the latest statistics released by the Department of Resource Industries. The total value of Queensland mineral and energy production rose to a new record of $5.1 billion, an increase of 16.5% on 1988-89 production. A major contributing factor was a 20.9 percent increase in the value of coal production. While the quantity of coal produced rose only 1.1 percent, the substantial increase in the value of coal production is attributable to higher coal prices negotiated for export contracts. In Australian dollar terms coal, gold, lead, zinc and crude oil on average experienced higher international prices than in the previous year. Only copper and silver prices declined. 3 tabs. 12. Strongly interacting W's and Z's International Nuclear Information System (INIS) Gaillard, M.K. 1984-01-01 The study focussed primarily on the dynamics of a strongly interacting W, Z(SIW) sector, with the aim of sharpening predictions for total W, Z yield and W, Z multiplicities expected from WW fusion for various scenarios. Specific issues raised in the context of the general problem of modeling SIW included the specificity of the technicolor (or, equivalently, QCD) model, whether or not a composite scalar model can be evaded, and whether the standard model necessarily implies an I = J = O state (≅ Higgs particle) that is relatively ''light'' (M ≤ hundreds of TeV). The consensus on the last issue was that existing arguments are inconclusive. While the author shall briefly address compositeness and alternatives to the technicolor model, quantitative estimates will be of necessity based on technicolor or an extrapolation of pion data 13. Uniquely Strongly Clean Group Rings Institute of Scientific and Technical Information of China (English) WANG XIU-LAN 2012-01-01 A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring. 14. Strong Ideal Convergence in Probabilistic Metric Spaces Indian Academy of Sciences (India) In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ... 15. Strong Statistical Convergence in Probabilistic Metric Spaces OpenAIRE Şençimen, Celaleddin; Pehlivan, Serpil 2008-01-01 In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts. 16. Remnants of strong tidal interactions International Nuclear Information System (INIS) Mcglynn, T.A. 1990-01-01 This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs 17. Strongly correlated perovskite fuel cells Science.gov (United States) Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram 2016-06-01 Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations. 18. Strong seismic ground motion propagation International Nuclear Information System (INIS) Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B. 1988-10-01 At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials 19. Strongly interacting photons and atoms International Nuclear Information System (INIS) Alge, W. 1999-05-01 This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author) 20. Topics in strong Langmuir turbulence International Nuclear Information System (INIS) Skoric, M.M. 1981-01-01 This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.) 1. Promoting Strong Written Communication Skills Science.gov (United States) Narayanan, M. 2015-12-01 The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987 2. Investigation of strong motion processing procedures International Nuclear Information System (INIS) Rinaldi, D.; Goula, X.; Menu, J.M. 1988-03-01 The work which is described here presents preliminary results of an on-going research relating to the accurate recording and quality processing of earthquake strong ground motions. The work is the product of a tripartite co-operation between three European Centres (ENEA, PAS-ISP Laboratorio Ingengneria dei Siti, Rome/CEA, IPSN, Fontenay-aux-Roses, ICST, Department of Civil Engineering, London), which have carried out independently similar research in the recent past. Other European Institutes joined the three mentioned organizations for discussions during a Workshop (June 1985) held in Casaccia (ENEA Research Centre of Rome). The aim of the research is a thorough analysis of various factors affecting the recovery of true ground accelerations recorded with analogue instruments. The separate and cumulative effects of the type of recording accelerometer, the digitization equipment and the correction routines have been analysed. Global comparisons have been achieved to obtain a general insight into various standard processing procedures 3. Neutrino oscillations in strong magnetic fields International Nuclear Information System (INIS) Likhachev, G.G.; Studenikin, A.I. 1994-07-01 Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs 4. Can strong gravitational lensing constrain dark energy? International Nuclear Information System (INIS) Lee, Seokcheon; Ng, K.-W. 2007-01-01 We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy 5. Russia needs a strong counterpart International Nuclear Information System (INIS) Slovak, K.; Marcan, P. 2008-01-01 In this paper an interview with the head of OMV, Wolfgang Ruttenstorfer is published. There is extract from this interview: Q: There have been attempts to take over MOL for a quite long time. Do you think you can still succeed? Since the beginning we kept saying that this would not happen from one day to another. But it may take two to three years. But we are positive that it is justified. Q: Resistance from MOL and the Hungarian government is strong. We have tried to persuade the Hungarian government. We offered them a split company management. A part of the management would be in Budapest. We would locate the management of the largest division - the refinery, there. And of course only the best could be part of the management. We would not nominate people according to their nationality, it would not matter whether the person was Austrian, Hungarian or Slovak. We want a Central European company, not Hungarian, Romanian or Slovak company. Q: Would the transaction still be attractive if, because of pressure exercised by Brussels, you had to sell Slovnaft or your refinery in Szazhalobatta? We do not intend to sell any refineries. Q: Rumours are spreading that the Commission may ask you to sell a refinery? We do not want to speculate. Let us wait and see what happens. We do not want to sell refineries. Q: It is said that OMV is coordinating or at least consulting its attempts to acquire MOL with Gazprom. There are many rumours in Central Europe. But I can tell you this is not true. We are interested in this merger because we feel the increasing pressure exercised by Kazakhstan and Russia. We, of course, have a good relationship with Gazprom which we have had enjoyed for over forty years. As indeed Slovakia has. Q: A few weeks ago Austrian daily Wirtschaftsblatt published an article about Gazprom's interest in OMV shares. That is gossip that is more than ten years' old. Similarly to the rumours that Gazprom is a shareholder of MOL. There are no negotiations with Gazprom 6. John Strong 1941-2006 CERN Multimedia 2006-01-01 John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon Cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such has been the lasting impact of these measurements that the paper on the pion form-factor had been cited 323 times up to the time of J... 7. Strongly coupled models at the LHC International Nuclear Information System (INIS) Vries, Maikel de 2014-10-01 In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision 8. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields CERN Document Server Avetissian, Hamlet 2006-01-01 This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems. 9. Endangerment of cultural heritage sites by strong rain Science.gov (United States) Krauß, Thomas; Fischer, Peter 2017-09-01 Due to climate change extreme weather conditions become more and more frequent in the last years. Especially in Germany nearly every year a large flood event happens. Most of these events are caused by strong rain. There are at most two causes for these floodings: The first is locally strong rain in the area of damage, the second happens at damage sites located near confluxes and strong rain in the upper stream areas of the joining rivers. The amount of damage is often strongly correlated with unreasonable designation of new construction in such endangered regions. Our presented study is based on an earlier project together with a German insurance company. In this project we analyzed correlations of geographical settings with the insurance data of flood damages over ten years. The result of this study was a strong relation of the terrain with the amount and the probability of damages. Further investigations allow us to derive a system for estimating potential endangerment due to strong rain just from suitable digital terrain models (DTMs). In the presented study we apply this method to different types of cultural heritage (CH) sites in Germany and other parts of the world to detect which type of CH sites were build with potential endangerment of strong rain events in mind and which ones are prone to such events. 10. Noise Spectroscopy in Strongly Correlated Oxides Science.gov (United States) Alsaqqa, Ali M. Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the 11. Is It Possible to Predict Strong Earthquakes? Science.gov (United States) Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F. 2015-07-01 The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses. 12. Phase structure of strongly correlated Fermi gases International Nuclear Information System (INIS) Roscher, Dietrich 2015-01-01 Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation. 13. Thermal infrared anomalies of several strong earthquakes. Science.gov (United States) Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying 2013-01-01 In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. 14. Quasinormal Modes and Strong Cosmic Censorship Science.gov (United States) Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron 2018-01-01 The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime. 15. Strong Bisimilarity of Simple Process Algebras DEFF Research Database (Denmark) Srba, Jirí 2003-01-01 We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used... 16. Identification of zones of strong wind events in South Africa CSIR Research Space (South Africa) Goliger, Adam M 2002-11-01 Full Text Available This paper summarises the initial stage of development of a wind damage/disaster risk model for South Africa. The aim is to identify the generic zones of various types of strong wind events. The extent of these zones will form the basis... 17. Application of strong phosphoric acid to radiochemistry International Nuclear Information System (INIS) Terada, Kikuo 1977-01-01 Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.) 18. Strong Stationary Duality for Diffusion Processes OpenAIRE Fill, James Allen; Lyzinski, Vince 2014-01-01 We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch... 19. Strongly correlating liquids and their isomorphs OpenAIRE Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C. 2010-01-01 This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that... 20. Atom collisions in a strong electromagnetic field International Nuclear Information System (INIS) Smirnov, V.S.; Chaplik, A.V. 1976-01-01 It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed 1. Strong economic growth driving increased electricity consumption International Nuclear Information System (INIS) Tiusanen, P. 2000-01-01 The Finnish economy is growing faster today than anyone dared hope only a few years ago. Growth estimates for 2000 have already had to be raised. This strong level of economic growth has been reflected in electricity consumption, which has continued to increase, despite the exceptionally warm winter. A major part of this increased electricity usage has so far been met through imports. The continued growth in electricity imports has largely been a result of the fact that the good water level situation in Sweden and Norway, together with the mild winter, has kept electricity prices exceptionally low on the Nordic electricity exchange. The short period of low temperatures seen at the end of January showed, however, that this type of temperature fluctuation, combined with the restrictions that exist in regard to transfer capacity, can serve to push Nordic exchange electricity prices to record levels. This increase in price also highlights the fact that we are approaching a situation in which capacity will be insufficient to meet demand. A truly tough winter has not been seen since the Nordic region's electricity markets were deregulated. The lesson that needs to be learnt is that Finland needs sufficient capacity of her own to meet demand even during particularly cold winters. Finland used 77.9 billion kWh of electricity last year, up 1.6% or 1.3 billion kWh on 1998. This growth was relatively evenly distributed among different user groups. This year, electricity consumption is forecast to grow by 2-3% 2. Bubble, weak and strong hyperinflation: Theory and empirical evidence Directory of Open Access Journals (Sweden) Fernando de Holanda Barbosa 2015-05-01 Full Text Available This paper presents a theoretical framework that allows a taxonomy of hyperinflation, namely: (i bubble, (ii weak and (iii strong hyperinflation. The inflation tax revenue curve is used to characterize each type of hyperinflation and we use this curve to test them. The bubble and strong hyperinflation hypotheses are rejected using Brazilian data. The weak hyperinflation hypothesis is not rejected and the economy could have been on the ‘wrong’ side of the Laffer curve during hyperinflation. This outcome, contrary to conventional wisdom, is predicted by this hypothesis, which presents a solution to an old puzzle of the hyperinflation literature. 3. On the Strong Direct Summand Conjecture Science.gov (United States) McCullough, Jason 2009-01-01 In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in… 4. Physics challenges in the strong interactions International Nuclear Information System (INIS) Ellis, S.D. 1992-01-01 The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders 5. Physics challenges in the strong interactions Energy Technology Data Exchange (ETDEWEB) Ellis, S.D. [Univ. of Washington, Seattle (United States) 1992-12-31 The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders. 6. Theoretical studies of strongly correlated fermions Energy Technology Data Exchange (ETDEWEB) Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France) 1997-04-01 Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author). 7. The strong reflecting property and Harrington's Principle OpenAIRE Cheng, Yong 2015-01-01 In this paper we characterize the strong reflecting property for$L$-cardinals for all$\\omega_n$, characterize Harrington's Principle$HP(L)$and its generalization and discuss the relationship between the strong reflecting property for$L$-cardinals and Harrington's Principle$HP(L)$. 8. Strong Nash Equilibria and the Potential Maimizer NARCIS (Netherlands) van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H. 1996-01-01 A class of non cooperative games characterized by a congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class 9. Large N baryons, strong coupling theory, quarks International Nuclear Information System (INIS) Sakita, B. 1984-01-01 It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author) 10. The lambda sigma calculus and strong normalization DEFF Research Database (Denmark) Schack-Nielsen, Anders; Schürmann, Carsten Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus, ... 11. Optimization of strong and weak coordinates NARCIS (Netherlands) Swart, M.; Bickelhaupt, F.M. 2006-01-01 We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation 12. 78 FR 15710 - Strong Sensitizer Guidance Science.gov (United States) 2013-03-12 ... the supplemental definition of strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of strong sensitizer'' due to advancements in the science...'' definition, assist manufacturers in understanding how CPSC staff would assess whether a substance and/or... 13. Seismic switch for strong motion measurement Science.gov (United States) Harben, P.E.; Rodgers, P.W.; Ewert, D.W. 1995-05-30 A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs. 14. Bernoulli was ahead of modern epidemiology NARCIS (Netherlands) Dietz, K.; Heesterbeek, J.A.P. 2000-01-01 The 300th anniversary year of Swiss mathematician Daniel Bernoulli’s birth is an appropriate time to reveal that he was, by a long way, the first to express the proportion of susceptible individuals of an endemic infection in terms of the force of infection and life expectancy. 15. Dynamic polarizability of a complex atom in strong laser fields International Nuclear Information System (INIS) Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V. 1997-01-01 An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field 16. Dual field theory of strong interactions International Nuclear Information System (INIS) Akers, D. 1987-01-01 A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137 17. Strong and superstrong pulsed magnetic fields generation CERN Document Server Shneerson, German A; Krivosheev, Sergey I 2014-01-01 Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume. 18. Semi-strong split domination in graphs Directory of Open Access Journals (Sweden) Anwar Alwardi 2014-06-01 Full Text Available Given a graph$G = (V,E$, a dominating set$D subseteq V$is called a semi-strong split dominating set of$G$if$|V setminus D| geq 1$and the maximum degree of the subgraph induced by$V setminus D$is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted$gamma_{sss}(G. In this work, we introduce the concept and prove several results regarding it. 19. Finite-time stability of neutral-type neural networks with random time-varying delays Science.gov (United States) Ali, M. Syed; Saravanan, S.; Zhu, Quanxin 2017-11-01 This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques. 20. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks Science.gov (United States) Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack 2013-11-01 In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method. 1. Strong-force theorists scoop Noble Prize CERN Multimedia Durrani, Matin 2004-01-01 Three US theorists have shared the 2004 Nobel Prize in Physics "for the discovery of asymptotic freedom in the theory of the strong interaction". Their theoretical work explains why quarks behave almost as free particles at high energies (½ page) 2. Strong-coupling theory of superconductivity International Nuclear Information System (INIS) Rainer, D.; Sauls, J.A. 1995-01-01 The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author) 3. Nuclear physics from strong coupling QCD CERN Document Server Fromm, Michael 2009-01-01 The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect. 4. Modeling and synthesis of strong ground motion Indian Academy of Sciences (India) There have been many developments in modeling techniques, and ... damage life and property in a city or region. How- ... quake of 26 January 2001 as a case study. 2. ...... quake derived from a dense strong-motion network; Bull. Seismol. 5. Physics challenges in the strong interactions Energy Technology Data Exchange (ETDEWEB) Ellis, S.D. 1991-01-01 An overview of the challenges to be faced in the area of the strong interactions during the 1990s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders. 6. Physics challenges in the strong interactions International Nuclear Information System (INIS) Ellis, S.D. 1991-01-01 An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders 7. Strong interaction effects in hadronic atoms International Nuclear Information System (INIS) Kaufmann, W.B. 1977-01-01 The WKB method is applied to the calculation of strong interaction-induced level widths and shifts of hadronic atoms. The calculation, while elementary enough for undergraduate quantum mechanics students, gives a good account of kaonic and antiprotonic atom data 8. Perturbation of an exact strong gravity solution International Nuclear Information System (INIS) Baran, S.A. 1982-10-01 Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author) 9. Calculating hadronic properties in strong QCD International Nuclear Information System (INIS) Pennington, M.R. 1996-01-01 This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author) 10. Strong Coupling Corrections in Quantum Thermodynamics Science.gov (United States) Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J. 2018-03-01 Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion. 11. The Charm and Beauty of Strong Interactions Science.gov (United States) El-Bennich, Bruno 2018-01-01 We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models. 12. Interaction of strong electromagnetic fields with atoms International Nuclear Information System (INIS) Brandi, H.S.; Davidovich, L.; Zagury, N. 1982-06-01 Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt 13. Building strong brands – does it matter? OpenAIRE Aure, Kristin Gaaseide; Nervik, Kristine Dybvik 2014-01-01 Brand equity has proven, through several decades of research, to be a primary source of competitive advantage and future earnings (Yoo & Donthu, 2001). Building strong brands has therefore become a priority for many organizations, with the presumption that building strong brands yields these advantages (Yasin et al., 2007). A quantitative survey was conducted at Sunnmøre in Norway in order to answer the two developed research questions. - Does the brand equity dimensions; brand... 14. Algebra of strong and electroweak interactions International Nuclear Information System (INIS) Bolokhov, S.V.; Vladimirov, Yu.S. 2004-01-01 The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru 15. Induced photoassociation in the field of a strong electomagnetic wave International Nuclear Information System (INIS) Zaretskij, D.F.; Lomonosov, V.V.; Lyul'ka, V.A. 1979-01-01 The quantum-mechanical problem of the stimulated transition of a system in the field of a strong electromagnetic wave from the continuous spectrum to a bound state possessing a finite lifetime is considered. The expressions obtained are employed to calculate stimulated production of mesic atoms and mesic molecules (ddμ). It is demonstrated that in an external electromagnetic field the probability for production of this type may considerably increase 16. Synthesis and stability of strongly acidic benzamide derivatives DEFF Research Database (Denmark) Diness, Frederik; Bjerrum, Niels J.; Begtrup, Mikael 2018-01-01 Reactivity studies of strong organic acids based on the replacement of one or both of the oxygens in benzoic acids with the trifluoromethanesulfonamide group are reported. Novel derivatives of these types of acids were synthesized in good yields. The generated N-triflylbenzamides were further...... functionalized through cross-coupling and nucleophilic aromatic substitution reactions. All compounds were stable in dilute aqueous solutions. Studies of stability under acidic and basic conditions are also reported.... 17. Strongly trapped points and the cosmic censorship hypothesis International Nuclear Information System (INIS) Krolak, A. 1987-01-01 It is shown that singularities predicted by one of the theorems of Hawking cannot be naked. This result supports the validity of the cosmic censorship hypothesis put forward by Penrose. The condition that only singularities predicted by Hawking's singularity theorem occur in space-time is shown to be related to the condition that all singularities in space-time should be of Tipler's strong-curvature type 18. New results on strong-interaction effects in antiprotonic hydrogen CERN Document Server Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M 1999-01-01 Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs). 19. New results on strong-interaction effects in antiprotonic hydrogen International Nuclear Information System (INIS) Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M. 1999-01-01 Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction 20. Manipulating light with strongly modulated photonic crystals International Nuclear Information System (INIS) Notomi, Masaya 2010-01-01 Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning. 1. Nonlinear wave collapse and strong turbulence International Nuclear Information System (INIS) Robinson, P.A. 1997-01-01 The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society 2. Why does the martensitic transformation temperature strongly depend on composition? International Nuclear Information System (INIS) Ren, X.; Otsuka, K. 2000-01-01 The reason for the strong composition and heat-treatment dependence of the martensitic transformation temperature was investigated by a simple Landau-type model. Assuming the anharmonic and coupling coefficients are insensitive to composition, we obtained an important result martensitic transformation occurs at a critical elastic constant c' and a critical TA 2 phonon energy ω η 2 , which are independent of alloy composition. This result gained support from a large body of experimental data of Cu-based alloys. Since c' and phonon energy are strongly dependent on composition, the constancy of c' at Ms demands that the (transformation) temperature must exhibit an opposite effect to compensate the composition effect. Therefore, the lower the c', the higher the Ms is. Because the temperature dependence of c' is weak (due to the 1 st order nature of the transformation), the big c' change by a slight composition change must be compensated by a large change in temperature. Thus Ms has strong composition dependence. The effect of quench is to increase point defects, being equivalent to a composition change, thus has a strong effect on Ms. From the present study, we can conclude that the strong composition dependence of Ms is mainly a harmonic effect. (orig.) 3. Age and the experience of strong self-conscious emotion. Science.gov (United States) Henry, Julie D; von Hippel, William; Nangle, Matthew R; Waters, Michele 2018-04-01 It remains unclear whether there are age-related changes in the experience of strong self-conscious emotion, such as shame, guilt, pride and embarrassment. Because shame and guilt figure prominently in the aetiology of depressive symptoms and other mental health problems, a better understanding of how age affects the strong experience of these two negative self-conscious emotions is of particular importance. Thirty younger, 30 middle-aged and 30 older adults were compared on standardised cognitive assessments, in addition to an interview-based measure that assessed whether there are age differences in the likelihood of strongly experiencing four different types of self-conscious emotion within the past five years (shame, guilt, embarrassment and pride). The three groups did not differ in their likelihood of reporting an event that strongly elicited the positive self-conscious emotion of pride. However, older adults were more likely to report sources of pride that were other (as opposed to self) focused. Older adults were also less likely to report experiencing events that elicited all three negative self-conscious emotions, in particular, shame. Strong negative self-conscious emotion, and in particular shame, appears to be experienced less by older than younger adults. 4. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994 Data.gov (United States) National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from... 5. The extended reciprocity: Strong belief outperforms persistence. Science.gov (United States) Kurokawa, Shun 2017-05-21 The existence of cooperation is a mysterious phenomenon and demands explanation, and direct reciprocity is one key potential explanation for the evolution of cooperation. Direct reciprocity allows cooperation to evolve for cooperators who switch their behavior on the basis of information about the opponent's behavior. Here, relevant to direct reciprocity is information deficiency. When the opponent's last move is unknown, how should players behave? One possibility is to choose cooperation with some default probability without using any further information. In fact, our previous paper (Kurokawa, 2016a) examined this strategy. However, there might be beneficial information other than the opponent's last move. A subsequent study of ours (Kurokawa, 2017) examined the strategy which uses the own last move when the opponent's last move is unknown, and revealed that referring to the own move and trying to imitate it when information is absent is beneficial. Is there any other beneficial information else? How about strong belief (i.e., have infinite memory and believe that the opponent's behavior is unchanged)? Here, we examine the evolution of strategies with strong belief. Analyzing the repeated prisoner's dilemma game and using evolutionarily stable strategy (ESS) analysis against an invasion by unconditional defectors, we find the strategy with strong belief is more likely to evolve than the strategy which does not use information other than the opponent player's last move and more likely to evolve than the strategy which uses not only the opponent player's last move but also the own last move. Strong belief produces the extended reciprocity and facilitates the evolution of cooperation. Additionally, we consider the two strategies game between strategies with strong belief and any strategy, and we consider the four strategies game in which unconditional cooperators, unconditional defectors, pessimistic reciprocators with strong belief, and optimistic reciprocators with 6. Stream function method for computing steady rotational transonic flows with application to solar wind-type problems International Nuclear Information System (INIS) Kopriva, D.A. 1982-01-01 A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equation for the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points 7. SEISMIC BEHAVIOR OF STEEL MONORAIL BRIDGES UNDER TRAIN LOAD DURING STRONG EARTHQUAKES OpenAIRE KIM, C. W.; KAWATANI, M.; KANBARA, T.; NISHIMURA, N. 2013-01-01 This paper investigated dynamic responses of steel monorail bridges incorporating train-bridge interaction under strong earthquakes. Two types of steel monorail bridges were considered in the study: a conventional type with steel track-girder; an advanced type with composite track-girder and simplified lateral bracing system. During strong earthquakes, monorail train was assumed standing on the track-girder of monorail bridges. Observations through the analytical study showed that considering... 8. Electromagnetic processes in strong crystalline fields CERN Multimedia 2007-01-01 We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation. 9. Coherent Vortices in Strongly Coupled Liquids International Nuclear Information System (INIS) Ashwin, J.; Ganesh, R. 2011-01-01 Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal. 10. Coherent Vortices in Strongly Coupled Liquids Science.gov (United States) Ashwin, J.; Ganesh, R. 2011-04-01 Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal. 11. Strong Coupling between Plasmons and Organic Semiconductors Directory of Open Access Journals (Sweden) Joel Bellessa 2014-05-01 Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed. 12. Institutionalizing Strong Sustainability: A Rawlsian Perspective Directory of Open Access Journals (Sweden) Konrad Ott 2014-02-01 Full Text Available The article aims to provide some ethical orientation on how sustainability might be actualized by institutions. Since institutionalization is about rules and organization, it presupposes ideas and concepts by which institutions can be substantiated. After outlining terminology, the article deals with underlying ethical and conceptual problems which are highly relevant for any suggestions concerning institutionalization. These problems are: (a the ethical scope of the sustainability perspective (natural capital, poverty, sentient animals, (b the theory of justice on which ideas about sustainability are built (capability approach, Rawlsianism, and (c the favored concept of sustainability (weak, intermediate, and strong sustainability. These problems are analyzed in turn. As a result, a Rawlsian concept of rule-based strong sustainability is proposed. The specific problems of institutionalization are addressed by applying Rawls’s concept of branches. The article concludes with arguments in favor of three transnational duties which hold for states that have adopted Rawlsian strong sustainability. 13. A theory of the strong interactions International Nuclear Information System (INIS) Gross, D.J. 1979-01-01 The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.) 14. Electronic Structure of Strongly Correlated Materials CERN Document Server Anisimov, Vladimir 2010-01-01 Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics. 15. Strongly interacting matter in magnetic fields CERN Document Server Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung 2013-01-01 The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne... 16. Aperture averaging in strong oceanic turbulence Science.gov (United States) Gökçe, Muhsin Caner; Baykal, Yahya 2018-04-01 Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence. 17. Frictional Coulomb drag in strong magnetic fields DEFF Research Database (Denmark) Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang 1997-01-01 A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21... 18. Analytical solution of strongly nonlinear Duffing oscillators OpenAIRE El-Naggar, A.M.; Ismail, G.M. 2016-01-01 In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m... 19. Strong WW scattering at photon linear colliders International Nuclear Information System (INIS) Berger, M.S. 1994-06-01 We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson 20. Nonlinear Electron Waves in Strongly Magnetized Plasmas DEFF Research Database (Denmark) Pécseli, Hans; Juul Rasmussen, Jens 1980-01-01 Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.... 1. Universal behavior of strongly correlated Fermi systems Energy Technology Data Exchange (ETDEWEB) Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation) 2007-06-30 This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems) 2. Universal behavior of strongly correlated Fermi systems International Nuclear Information System (INIS) Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G 2007-01-01 This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems) 3. De Sitter vacua of strongly interacting QFT Energy Technology Data Exchange (ETDEWEB) Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada) 2017-03-22 We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT. 4. Optical spectral weight anomalies and strong correlation International Nuclear Information System (INIS) Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C. 2007-01-01 The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value 5. Strong cosmic censorship in de Sitter space Science.gov (United States) Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E. 2018-05-01 Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations. 6. Perceptual Sensitivity and Response to Strong Stimuli Are Related Directory of Open Access Journals (Sweden) Anna C. Bolders 2017-09-01 Full Text Available To shed new light on the long-standing debate about the (independence of sensitivity to weak stimuli and overreactivity to strong stimuli, we examined the relation between these tendencies within the neurobehavioral framework of the Predictive and Reactive Control Systems (PARCS theory (Tops et al., 2010, 2014. Whereas previous studies only considered overreactivity in terms of the individual tendency to experience unpleasant affect (punishment reactivity resulting from strong sensory stimulation, we also took the individual tendency to experience pleasant affect (reward reactivity resulting from strong sensory stimulation into account. According to PARCS theory, these temperamental tendencies overlap in terms of high reactivity toward stimulation, but oppose each other in terms of the response orientation (approach or avoid. PARCS theory predicts that both types of reactivity to strong stimuli relate to sensitivity to weak stimuli, but that these relationships are suppressed due to the opposing relationship between reward and punishment reactivity. We measured punishment and reward reactivity to strong stimuli and sensitivity to weak stimuli using scales from the Adult Temperament Questionnaire (Evans and Rothbart, 2007. Sensitivity was also measured more objectively using the masked auditory threshold. We found that sensitivity to weak stimuli (both self-reported and objectively assessed was positively associated with self-reported punishment and reward reactivity to strong stimuli, but only when these reactivity measures were controlled for each other, implicating a mutual suppression effect. These results are in line with PARCS theory and suggest that sensitivity to weak stimuli and overreactivity are dependent, but this dependency is likely to be obscured if punishment and reward reactivity are not both taken into account. 7. Natural strong CP conservation in flipped physics Energy Technology Data Exchange (ETDEWEB) Frampton, P.H. (Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC (USA)); Kephart, T.W. (Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (USA)) 1990-08-13 A natural axion-free solution of the strong {ital CP} problem {ital at} {ital tree} {ital level} is noted within an E(6) grand unified theory. Using this as a springboard, it is shown that several flipped SU(5) theories which occur in superstring phenomenology contain within them a mechanism which enforces {bar {theta}}=0 at high accuracy. 8. Riesz basis for strongly continuous groups. NARCIS (Netherlands) Zwart, Heiko J. Given a Hilbert space and the generator of a strongly continuous group on this Hilbert space. If the eigenvalues of the generator have a uniform gap, and if the span of the corresponding eigenvectors is dense, then these eigenvectors form a Riesz basis (or unconditional basis) of the Hilbert space. 9. Earthquake source model using strong motion displacement Indian Academy of Sciences (India) The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ... 10. Cosmological applications of strong gravitational lensing DEFF Research Database (Denmark) Paraficz, Danuta value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown... 11. Discrete symmetries, strong CP problem and gravity International Nuclear Information System (INIS) Senjanovic, G. 1993-05-01 Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs 12. Phase transition from strong-coupling expansion International Nuclear Information System (INIS) Polonyi, J.; Szlachanyi, K. 1982-01-01 Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.) 13. The stability of the strong gravity solution International Nuclear Information System (INIS) Baran, S.A. 1978-01-01 The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted 14. Chaos desynchronization in strongly coupled systems International Nuclear Information System (INIS) Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng 2007-01-01 The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed 15. Strong motion duration and earthquake magnitude relationships International Nuclear Information System (INIS) Salmon, M.W.; Short, S.A.; Kennedy, R.P. 1992-06-01 Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions 16. Strong imploding shock, the representative curve International Nuclear Information System (INIS) Mishkin, E.A.; Alejaldre, C. 1981-01-01 The representative curve of the ideal gas behind the front of a spherically, or cylindrically, symmetric strong imploding shock is shown to pass through the point where the reduced pressure is maximum, P(xisub(m)) = Psub(m)sub(a)sub(x). (orig.) 17. Reducing Weak to Strong Bisimilarity in CCP Directory of Open Access Journals (Sweden) Andrés Aristizábal 2012-12-01 Full Text Available Concurrent constraint programming (ccp is a well-established model for concurrency that singles out the fundamental aspects of asynchronous systems whose agents (or processes evolve by posting and querying (partial information in a global medium. Bisimilarity is a standard behavioural equivalence in concurrency theory. However, only recently a well-behaved notion of bisimilarity for ccp, and a ccp partition refinement algorithm for deciding the strong version of this equivalence have been proposed. Weak bisimiliarity is a central behavioural equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this paper we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm for deciding this equivalence. 18. Physics challenges in the strong interactions Energy Technology Data Exchange (ETDEWEB) Ellis, S.D. 1991-01-01 An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders. 19. Strongly \\'etale difference algebras and Babbitt's decomposition OpenAIRE Tomašić, Ivan; Wibmer, Michael 2015-01-01 We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem. 20. Strong-coupling diffusion in relativistic systems Indian Academy of Sciences (India) hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS. 1. Strongly coupled semidirect mediation of supersymmetry breaking International Nuclear Information System (INIS) Ibe, M.; Izawa, K.-I.; Nakai, Y. 2009-01-01 Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries. 2. Strong Turbulence in Low-beta Plasmas DEFF Research Database (Denmark) Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling 1980-01-01 An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence.... 3. Strong industrial base vital for economic revival CERN Multimedia 2001-01-01 At the inauguration of a 2-day conference on nuclear technology in Islamabad, the chairman of PAEC said that Pakistan needs to develop a strong industrial base and capability to export equipment to improve the economic condition of the country. He descibed how Pakistan has already had a breakthrough with the export of equipment to CERN, Geneva (1 page). 4. Strong field control of predissociation dynamics. Science.gov (United States) Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis 2013-01-01 Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio. 5. Bottomonia: open bottom strong decays and spectrum Directory of Open Access Journals (Sweden) Santopinto E. 2014-05-01 Full Text Available We present our results for the bottomonium spectrum with self energy corrections. The bare masses used in the calculation are computed within Godfrey and Isgur’s relativized quark model. We also discuss our results for the open bottom strong decay widths of higher bottomonia in the 3P0 pair-creation model. 6. Strong and Reversible Monovalent Supramolecular Protein Immobilization NARCIS (Netherlands) Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc 2010-01-01 Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The 7. Steering neutral atoms in strong laser fields International Nuclear Information System (INIS) Eilzer, S; Eichmann, U 2014-01-01 The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper) 8. Rotating compressible fluids under strong stratification Czech Academy of Sciences Publication Activity Database Feireisl, Eduard; Lu, Y.; Novotný, A. 2014-01-01 Roč. 19, October (2014), s. 11-18 ISSN 1468-1218 Keywords : rotating fluid * compressible Navier-Stokes * strong stratification Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121814000212# 9. Spin Wave Theory of Strongly Anisotropic Magnets DEFF Research Database (Denmark) Lindgård, Per-Anker 1977-01-01 A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments... 10. Black holes and the strong cosmic censorship International Nuclear Information System (INIS) Krolak, A. 1984-01-01 The theory of black holes developed by Hawking in asymptotically flat space-times is generalized so that black holes in the cosmological situations are included. It is assumed that the strong version of the Penrose cosmic censorship hypothesis holds. (author) 11. Patterns of strong coupling for LHC searches Energy Technology Data Exchange (ETDEWEB) Liu, Da [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, People’s Republic of (China); Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Pomarol, Alex [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland); Dept. de Física and IFAE-BIST,Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Rattazzi, Riccardo [Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Riva, Francesco [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland) 2016-11-23 Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or WW scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators. 12. Strong drifts effects on neoclassical transport International Nuclear Information System (INIS) Tessarotto, M.; Gregoratto, D.; White, R.B. 1996-01-01 It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature 13. Super symmetry in strong and weak interactions International Nuclear Information System (INIS) Seshavatharam, U.V.S.; Lakshminarayana, S. 2010-01-01 For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author) 14. Spin polarization in high density quark matter under a strong external magnetic field DEFF Research Database (Denmark) Tsue, Yasuhiko; Da Providência, João; Providência, Constança 2016-01-01 In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact... 15. Strong dynamics and lattice gauge theory Science.gov (United States) Schaich, David In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses 16. Some Design Considerations on the Electrostatically Actuated Fixed-Fixed End Type MEMS Switches International Nuclear Information System (INIS) Sadeghian, Hamed; Rezazadeh, Ghader; Sani, Ebrahim Abbaspour 2006-01-01 The nonlinear electrostatic pull-in behaviour of MEMS Switches in micro-electromechanical systems (MEMS) is investigated in this article. We used the distributed model when the electrostatic pressure didn't apply at the whole of the beam and applied only in the mid-part of the beam. In this part the electrostatic area is different from two other parts. The model uses Euler-Bernoulli beam theory for fixed-fixed end type beams. The finite difference method was used to solve the nonlinear equation. The proposed model includes the fringing effects of the electrical field, residual stress and varying electrostatic area effects. The numerical results reveal that the profile deflection of the MEMS Switch may not only influence the distribution of the electrostatic force but also considerably change the nonlinear pull-in voltage 17. Waves in strong centrifugal fields: dissipationless gas Science.gov (United States) Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V. 2015-04-01 Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest. 18. Hydrogen atoms in a strong magnetic field International Nuclear Information System (INIS) Santos, R.R. dos. 1975-07-01 The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt 19. Strongly not relatives Kähler manifolds Directory of Open Access Journals (Sweden) Zedda Michela 2017-02-01 Full Text Available In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter families of Bergman-Hartogs and Fock-Bargmann-Hartogs domains are strongly not relative to projective Kähler manifolds. 20. Strong ground motion prediction using virtual earthquakes. Science.gov (United States) Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C 2014-01-24 Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion. 1. Analytical solution of strongly nonlinear Duffing oscillators Directory of Open Access Journals (Sweden) A.M. El-Naggar 2016-06-01 Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε. 2. Cosmogenic photons strongly constrain UHECR source models Directory of Open Access Journals (Sweden) van Vliet Arjen 2017-01-01 Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times. 3. New strong interactions above the electroweak scale International Nuclear Information System (INIS) White, A.R. 1994-01-01 Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed 4. Quantum strongly secure ramp secret sharing DEFF Research Database (Denmark) Zhang, Paul; Matsumoto, Rytaro Yamashita 2015-01-01 Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together...... however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced....... This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can... 5. Quantum Transport in Strongly Correlated Systems DEFF Research Database (Denmark) Bohr, Dan 2007-01-01 the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using... 6. Equilibrium and stability in strongly inhomogeneous plasmas International Nuclear Information System (INIS) Mynick, H.E. 1978-10-01 The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability 7. Orbits in weak and strong bars CERN Document Server Contopoulos, George 1980-01-01 The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs). 8. Marital Expectations in Strong African American Marriages. Science.gov (United States) Vaterlaus, J Mitchell; Skogrand, Linda; Chaney, Cassandra; Gahagan, Kassandra 2017-12-01 The current exploratory study utilized a family strengths framework to identify marital expectations in 39 strong African American heterosexual marriages. Couples reflected on their marital expectations over their 10 or more years of marriage. Three themes emerged through qualitative analysis and the participants' own words were used in the presentation of the themes. African Americans indicated that there was growth in marital expectations over time, with marital expectations often beginning with unrealistic expectations that grew into more realistic expectations as their marriages progressed. Participants also indicated that core expectations in strong African American marriages included open communication, congruent values, and positive treatment of spouse. Finally, participants explained there is an "I" in marriage as they discussed the importance of autonomy within their marital relationships. Results are discussed in association with existing research and theory. © 2016 Family Process Institute. 9. Strong spin-photon coupling in silicon Science.gov (United States) Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K. 2018-03-01 Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers. 10. Electrons in a strong magnetic field International Nuclear Information System (INIS) Itzykson, C. 1985-05-01 We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited 11. Magnetic properties of strongly asymmetric nuclear matter International Nuclear Information System (INIS) Kutschera, M.; Wojcik, W. 1988-01-01 We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author) 12. Strong coupling analogue of the Born series International Nuclear Information System (INIS) Dolinszky, T. 1989-10-01 In a given partial wave, the strength of the centrifugal term to be incorporated into the WKBA solutions in different spatial regions can be adjusted so as to make the first order wave functions everywhere smooth and, in strong coupling, exactly reproduce Quantum Mechanics throughout the space. The relevant higher order approximations supply an absolute convergent series expansion of the exact scattering state. (author) 4 refs.; 2 figs.; 2 tabs 13. Strong disorder RG approach of random systems International Nuclear Information System (INIS) Igloi, Ferenc; Monthus, Cecile 2005-01-01 There is a large variety of quantum and classical systems in which the quenched disorder plays a dominant ro-circumflex le over quantum, thermal, or stochastic fluctuations: these systems display strong spatial heterogeneities, and many averaged observables are actually governed by rare regions. A unifying approach to treat the dynamical and/or static singularities of these systems has emerged recently, following the pioneering RG idea by Ma and Dasgupta and the detailed analysis by Fisher who showed that the Ma-Dasgupta RG rules yield asymptotic exact results if the broadness of the disorder grows indefinitely at large scales. Here we report these new developments by starting with an introduction of the main ingredients of the strong disorder RG method. We describe the basic properties of infinite disorder fixed points, which are realized at critical points, and of strong disorder fixed points, which control the singular behaviors in the Griffiths-phases. We then review in detail applications of the RG method to various disordered models, either (i) quantum models, such as random spin chains, ladders and higher dimensional spin systems, or (ii) classical models, such as diffusion in a random potential, equilibrium at low temperature and coarsening dynamics of classical random spin chains, trap models, delocalization transition of a random polymer from an interface, driven lattice gases and reaction diffusion models in the presence of quenched disorder. For several one-dimensional systems, the Ma-Dasgupta RG rules yields very detailed analytical results, whereas for other, mainly higher dimensional problems, the RG rules have to be implemented numerically. If available, the strong disorder RG results are compared with another, exact or numerical calculations 14. Strong, Ductile Rotor For Cryogenic Flowmeters Science.gov (United States) Royals, W. T. 1993-01-01 Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected. 15. Hemingway's Scar and His Strong Will Institute of Scientific and Technical Information of China (English) 许颖 2009-01-01 Hemingway's inner world is not balanced He had a strong will,and on the other hand,he is hurt severely.Based on the analysis of Hemingway's experience and his works,the paper aims to study Hemingway's life attitude:Men,all sooner or later,go down to defeat:it is how they face the ordeal that determines their status. 16. Strongly stable real infinitesimally symplectic mappings NARCIS (Netherlands) Cushman, R.; Kelley, A. We prove that a mapA εsp(σ,R), the set of infinitesimally symplectic maps, is strongly stable if and only if its centralizerC(A) insp(σ,R) contains only semisimple elements. Using the theorem that everyB insp(σ,R) close toA is conjugate by a real symplectic map to an element ofC(A), we give a new 17. Electromotive force in strongly compressible magnetohydrodynamic turbulence Science.gov (United States) Yokoi, N. 2017-12-01 Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow 18. Simulation of turbulent flows containing strong shocks International Nuclear Information System (INIS) Fryxell, Bruce; Menon, Suresh 2008-01-01 Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented. 19. Transport phenomena in strongly correlated Fermi liquids International Nuclear Information System (INIS) Kontani, Hiroshi 2013-01-01 Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals. 20. Strong CP, flavor, and twisted split fermions International Nuclear Information System (INIS) Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri 2005-01-01 We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author) 1. Prevention of strong earthquakes: Goal or utopia? Science.gov (United States) Mukhamediev, Sh. A. 2010-11-01 In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic 2. The INGV Real Time Strong Motion Database Science.gov (United States) Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo 2017-04-01 The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121 3. 77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities Science.gov (United States) 2012-03-20 ... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... enable them to develop and implement economic strategies to become more competitive, sustainable, and... resources to develop and implement their economic vision and strategies. Sec. 2. White House Council on... 4. Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction International Nuclear Information System (INIS) Sobol, A.; Ellison, J.A. 2003-01-01 We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique 5. Engaging Military Fathers in a Reflective Parenting Program: Lessons from Strong Families Strong Forces Science.gov (United States) DeVoe, Ellen R.; Paris, Ruth 2015-01-01 Through Strong Families Strong Forces, a reflective parenting program for military families with young children, we were privileged to work with contemporary military fathers who served in the post-9/11 conflicts in Afghanistan and Iraq. Due to this work, the authors gained valuable insight into the complexity of fathering during wartime, the… 6. Basicities of Strong Bases in Water: A Computational Study OpenAIRE Kaupmees, Karl; Trummal, Aleksander; Leito, Ivo 2014-01-01 Aqueous pKa values of strong organic bases – DBU, TBD, MTBD, different phosphazene bases, etc – were computed with CPCM, SMD and COSMO-RS approaches. Explicit solvent molecules were not used. Direct computations and computations with reference pKa values were used. The latter were of two types: (1) reliable experimental aqueous pKa value of a reference base with structure similar to the investigated base or (2) reliable experimental pKa value in acetonitrile of the investigated base itself. ... 7. A strong-topological-metal material with multiple Dirac cones OpenAIRE Ji, Huiwen; Pletikosić, I; Gibson, Q. D.; Sahasrabudhe, Girija; Valla, T.; Cava, R. J. 2015-01-01 We report a new, cleavable, strong-topological-metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone... 8. Nonlinear Principal Component Analysis Using Strong Tracking Filter Institute of Scientific and Technical Information of China (English) 2007-01-01 The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm. 9. Quantum simulation of strongly correlated condensed matter systems Science.gov (United States) Hofstetter, W.; Qin, T. 2018-04-01 We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields. 10. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms International Nuclear Information System (INIS) Kurazhkovskaya, N.A.; Klajn, B.I. 1995-01-01 Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs 11. Renormalization in theories with strong vector forces International Nuclear Information System (INIS) Kocic, A. 1991-01-01 There are not many field theories in four dimensions that have sensible ultraviolet and interesting (non-trivial) infrared behavior. At present, asymptotically free theories seem to have deserved their legitimacy and there is a strong prejudice that they might be the only ones to have such a distinction. This belief stems mostly from the fact that most of the knowledge of field theory in four dimensions comes from perturbation theory. However, nonperturbative studies of the lower dimensional theories reveal a host of interesting phenomena that are perturbative studies of the lower dimensional theories reveal a host of interesting phenomena that perturbatively inaccessible. The lack of asymptotic freedom implies that the coupling constant grows at short distances and perturbation theory breaks down. Thus, in such theories, ultraviolet behavior requires nonperturbative treatment. Recently, the interest in strongly coupled gauge theories has been revived. In particularly, four dimensional quantum electrodynamics has received considerable attention. This was motivated by the discovery of an ultraviolet stable fixed point at strong couplings. If this fixed point would turn out to be non-gaussian, then QED would be the first nontrivial nonasymptotically free theory in four dimensions. The importance of such a result would be twofold. First, the old question of the existence of QED could be settled. Of course, this would be the case provided that the low energy limit of the theory actually describes photons and electrons; apriori, there is no reason to assume this. Second, the discovery of a nontrivial nonasymptotically free theory would be of great paradigmatic value. The theories which quenched QED resembles the most are nonabelian gauge theories with many flavors with beta-function positive or vanishing at weak couplings. These theories are at present considered as viable candidates for technicolor unification schemes 12. Many Body Structure of Strongly Interacting Systems CERN Document Server Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI 2006-01-01 This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons. 13. Hawking radiation and strong gravity black holes International Nuclear Information System (INIS) Qadir, A.; Sayed, W.A. 1979-01-01 It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.) 14. Strong piezoelectricity in bioinspired peptide nanotubes. Science.gov (United States) Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil 2010-02-23 We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue. 15. Phase diagram of strongly correlated Fermi systems International Nuclear Information System (INIS) Zverev, M.V.; Khodel', V.A.; Baldo, M. 2000-01-01 Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru 16. Strong Interaction Studies with PANDA at FAIR Science.gov (United States) Schönning, Karin 2016-10-01 The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme. 17. Strong Interaction Studies with PANDA at FAIR International Nuclear Information System (INIS) Schönning, Karin 2016-01-01 The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme 18. Development of a strong electromagnet wiggler International Nuclear Information System (INIS) Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K. 1987-01-01 The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs 19. Calorimetric measurement of strong γ emitting sources International Nuclear Information System (INIS) Brangier, B.; Herczeg, C.; Henry, R. 1968-01-01 This publication gives the principle and a description of an adiabatic calorimeter for measuring the real activity of strong gamma-emitting sources by absorbing the emitted energy in a mass of copper. Because of the difficulty of evaluating the amount self- absorption, we have built a calorimeter for measuring the self- absorption, and a description of it is given.The results of these three measurements are fairly satisfactory. The calibration and the actual measurements obtained are given with a few corrections made necessary by the design of the apparatus. The correlation of the various results is discussed. (author) [fr 20. Unification of electromagnetic, strong and weak interaction International Nuclear Information System (INIS) Duong Van Phi; Duong Anh Duc 1993-09-01 The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs 1. Gravitational leptogenesis, C, CP and strong equivalence International Nuclear Information System (INIS) McDonald, Jamie I.; Shore, Graham M. 2015-01-01 The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework. 2. Strongly interacting Higgs sector without technicolor International Nuclear Information System (INIS) Liu Chuan; Kuti, J. 1994-12-01 Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.) 3. Strong signatures of right-handed compositeness Energy Technology Data Exchange (ETDEWEB) Redi, Michele [INFN, Sesto Fiorentino, Firenze (Italy); Sanz, Veronica [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Vries, Maikel de; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany) 2013-05-15 Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multi-jet signals. 4. Bright branes for strongly coupled plasmas International Nuclear Information System (INIS) Mateos, David; Patino, Leonardo 2007-01-01 We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments 5. Quantum electrodynamics in strong external fields International Nuclear Information System (INIS) Mueller, B.; Rafelski, J.; Kirsch, J. 1981-05-01 We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.) 6. Strong Interactions Physics at BaBar Energy Technology Data Exchange (ETDEWEB) Pioppi, M. 2005-03-14 Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%. 7. Gravitational leptogenesis, C, CP and strong equivalence Energy Technology Data Exchange (ETDEWEB) McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom) 2015-02-12 The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework. 8. Strongly correlated electron materials. I. Theory of the quasiparticle structure International Nuclear Information System (INIS) Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. 1993-01-01 In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity 9. Iterative solutions of nonlinear equations with strongly accretive or strongly pseudocontractive maps International Nuclear Information System (INIS) Chidume, C.E. 1994-03-01 Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs 10. A strongly interacting polaritonic quantum dot Science.gov (United States) Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan 2018-06-01 Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6. 11. Between strong continuity and almost continuity Directory of Open Access Journals (Sweden) J.K. Kohli 2010-04-01 Full Text Available As embodied in the title of the paper strong and weak variants of continuity that lie strictly between strong continuity of Levine and almost continuity due to Singal and Singal are considered. Basic properties of almost completely continuous functions (≡ R-maps and δ-continuous functions are studied. Direct and inverse transfer of topological properties under almost completely continuous functions and δ-continuous functions are investigated and their place in the hier- archy of variants of continuity that already exist in the literature is out- lined. The class of almost completely continuous functions lies strictly between the class of completely continuous functions studied by Arya and Gupta (Kyungpook Math. J. 14 (1974, 131-143 and δ-continuous functions defined by Noiri (J. Korean Math. Soc. 16, (1980, 161-166. The class of almost completely continuous functions properly contains each of the classes of (1 completely continuous functions, and (2 al- most perfectly continuous (≡ regular set connected functions defined by Dontchev, Ganster and Reilly (Indian J. Math. 41 (1999, 139-146 and further studied by Singh (Quaestiones Mathematicae 33(2(2010, 1–11 which in turn include all δ-perfectly continuous functions initi- ated by Kohli and Singh (Demonstratio Math. 42(1, (2009, 221-231 and so include all perfectly continuous functions introduced by Noiri (Indian J. Pure Appl. Math. 15(3 (1984, 241-250. 12. Strong white photoluminescence from annealed zeolites International Nuclear Information System (INIS) Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji 2014-01-01 The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies 13. Caviton dynamics in strong Langmuir turbulence Science.gov (United States) DuBois, Don; Rose, Harvey A.; Russell, David 1990-01-01 Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 14. Caviton dynamics in strong Langmuir turbulence International Nuclear Information System (INIS) DuBois, D.; Rose, H.A.; Russell, D. 1990-01-01 Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. (orig.) 15. Fractional Transport in Strongly Turbulent Plasmas Science.gov (United States) Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana 2017-07-01 We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate. 16. Caviton dynamics in strong Langmuir turbulence International Nuclear Information System (INIS) DuBois, D.; Rose, H.A.; Russell, D. 1989-01-01 Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs 17. Hypernuclear matter in strong magnetic field Energy Technology Data Exchange (ETDEWEB) Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany) 2013-01-17 Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}. 18. Radiative properties of strongly magnetized plasmas International Nuclear Information System (INIS) Weisheit, J.C. 1993-11-01 The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal 19. Strong correlations in few-fermion systems Energy Technology Data Exchange (ETDEWEB) Bergschneider, Andrea 2017-07-26 In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials. 20. Towards TDDFT for Strongly Correlated Materials Directory of Open Access Journals (Sweden) Shree Ram Acharya 2016-09-01 Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response. 1. Holographic gauge mediation via strongly coupled messengers International Nuclear Information System (INIS) McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske 2010-01-01 We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography. 2. Finite temperature system of strongly interacting baryons International Nuclear Information System (INIS) Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W. 1976-07-01 A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light 3. Strong eukaryotic IRESs have weak secondary structure. Directory of Open Access Journals (Sweden) Xuhua Xia Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment. 4. Qubit absorption refrigerator at strong coupling Science.gov (United States) Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira 2017-12-01 We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption. 5. Finite temperature system of strongly interacting baryons Energy Technology Data Exchange (ETDEWEB) Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W. 1976-07-01 A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light. 6. The evolution of strong reciprocity: cooperation in heterogeneous populations. Science.gov (United States) Bowles, Samuel; Gintis, Herbert 2004-02-01 How do human groups maintain a high level of cooperation despite a low level of genetic relatedness among group members? We suggest that many humans have a predisposition to punish those who violate group-beneficial norms, even when this imposes a fitness cost on the punisher. Such altruistic punishment is widely observed to sustain high levels of cooperation in behavioral experiments and in natural settings. We offer a model of cooperation and punishment that we call STRONG RECIPROCITY: where members of a group benefit from mutual adherence to a social norm, strong reciprocators obey the norm and punish its violators, even though as a result they receive lower payoffs than other group members, such as selfish agents who violate the norm and do not punish, and pure cooperators who adhere to the norm but free-ride by never punishing. Our agent-based simulations show that, under assumptions approximating likely human environments over the 100000 years prior to the domestication of animals and plants, the proliferation of strong reciprocators when initially rare is highly likely, and that substantial frequencies of all three behavioral types can be sustained in a population. As a result, high levels of cooperation are sustained. Our results do not require that group members be related or that group extinctions occur. 7. Strong, corrosion-resistant aluminum tubing Science.gov (United States) Reed, M. W.; Adams, F. F. 1980-01-01 When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment. 8. Strongly Correlated Electron Systems: An Operatorial Perspective Science.gov (United States) Di Ciolo, Andrea; Avella, Adolfo 2018-05-01 We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding. 9. Characterization of strong (241)Am sources. Science.gov (United States) Vesterlund, Anna; Chernikova, Dina; Cartemo, Petty; Axell, Kåre; Nordlund, Anders; Skarnemark, Gunnar; Ekberg, Christian; Ramebäck, Henrik 2015-05-01 Gamma ray spectra of strong (241)Am sources may reveal information about the source composition as there may be other radioactive nuclides such as progeny and radioactive impurities present. In this work the possibility to use gamma spectrometry to identify inherent signatures in (241)Am sources in order to differentiate sources from each other, is investigated. The studied signatures are age, i.e. time passed since last chemical separation, and presence of impurities. The spectra of some sources show a number of Doppler broadened peaks in the spectrum which indicate the presence of nuclear reactions on light elements within the sources. The results show that the investigated sources can be differentiated between by age and/or presence of impurities. These spectral features would be useful information in a national nuclear forensics library (NNFL) in cases when the visual information on the source, e.g. the source number, is unavailable. Copyright © 2015 Elsevier Ltd. All rights reserved. 10. Strongly coupled band in 140Gd International Nuclear Information System (INIS) Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N. 2005-01-01 Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, Kπ = 8 - isomers, with lifetimes ranging from ns to ms, are known in 128 Xe, 130 Ba, 132 Ce, 134 Nd, 136 Sm, and 138 Gd[. In 140 Gd, we have observed for the first time a band also based on an Iπ = 8 - state. This could be the first case of a Kπ = 8 - state observed in an N=76 even-even isotope. The systematics of the Kπ = 8 - isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The 140 Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in 140 Gd 11. Electromagnetic radiation from strong Langmuir turbulence International Nuclear Information System (INIS) Akimoto, K.; Rowland, H.L.; Papadopoulos, K. 1988-01-01 A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons 12. Diffraction scattering of strongly bound system International Nuclear Information System (INIS) Kuzmichev, V.E. 1982-04-01 The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.) 13. Strong Interactions, (De)coherence and Quarkonia CERN Document Server Bellucci, Stefano; Tiwari, Bhupendra Nath 2011-01-01 Quarkonia are the central objects to explore the non-perturbative nature of non-abelian gauge theories. We describe the confinement-deconfinement phases for heavy quarkonia in a hot QCD medium and thereby the statistical nature of the inter-quark forces. In the sense of one-loop quantum effects, we propose that the "quantum" nature of quark matters follows directly from the thermodynamic consideration of Richardson potential. Thereby we gain an understanding of the formation of hot and dense states of quark gluon plasma matter in heavy ion collisions and the early universe. In the case of the non-abelian theory, the consideration of the Sudhakov form factor turns out to be an efficient tool for soft gluons. In the limit of the Block-Nordsieck resummation, the strong coupling obtained from the Sudhakov form factor yields the statistical nature of hadronic bound states, e.g. kaons and Ds particles. 14. Circuit electromechanics with single photon strong coupling Energy Technology Data Exchange (ETDEWEB) Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China) 2015-07-13 In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics. 15. Quantization rules for strongly chaotic systems International Nuclear Information System (INIS) Aurich, R.; Bolte, J. 1992-09-01 We discuss the quantization of strongly chaotic systems and apply several quantization rules to a model system given by the unconstrained motion of a particle on a compact surface of constant negative Gaussian curvature. We study the periodic-orbit theory for distinct symmetry classes corresponding to a parity operation which is always present when such a surface has genus two. Recently, several quantization rules based on periodic orbit theory have been introduced. We compare quantizations using the dynamical zeta function Z(s) with the quantization condition cos(π N(E)) = 0, where a periodix-orbit expression for the spectral staircase N(E) is used. A general discussion of the efficiency of periodic-orbit quantization then allows us to compare the different methods. The system dependence of the efficiency, which is determined by the topological entropy τ and the mean level density anti d(E), is emphasized. (orig.) 16. Transport phenomena in strongly correlated Fermi liquids CERN Document Server Kontani, Hiroshi 2013-01-01 In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi... 17. Towards Integrated Marmara Strong Motion Network Science.gov (United States) Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A. 2009-04-01 Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy 18. Machine Learning Phases of Strongly Correlated Fermions Directory of Open Access Journals (Sweden) Kelvin Ch’ng 2017-08-01 Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems. 19. Strong and electromagnetic interactions in hadron systems International Nuclear Information System (INIS) Aissat, N.; Amghar, A.; Cano, F.; Gonzalez, F.; Noguera, S.; Carbonell, J.; Desplanques, B.; Silvestre-Brac, B.; Karmanov, V.; Mathiot, J.F. 1997-01-01 The pionic strong decay amplitudes of baryon resonances are studied in a constituent quark model. Particular attention is given to the operator describing the transition. The nucleon form factors are calculated in a non-relativistic approach, with emphasis on the highest momentum transfers. The aim is to determine the ingredients that are essential in getting correct results and are likely to be required for a more realistic estimate in a fully relativistic approach. The deuteron form factors have been calculated in the light-front approach using wave functions determined in a perturbative way. The derivation of the neutron charge form factor from the deuteron structure function, A(q 2 ), is reanalyzed including further mesonic exchange contributions. (authors) 20. Combinatorial description of space and strong interactions International Nuclear Information System (INIS) Zenczykowski, P. 1988-01-01 A reinterpretation is given of a successful phenomenological approach to hadron self-energy effects known as the unitarized quark model. General arguments are given that the proper description of strong interactions may require abandoning the assignment of a primary role to continuous concepts such as position and momentum in favor of discrete ones such as spin or W-spin. The reinterpretation exploits an analogy between the W-spin diagrams occurring in the calculations of hadronic loop effects and the spin network idea of Penrose. A connection between the S-matrix approach to hadron masses and the purely algebraic approach characteristic of the quark model is indicated. Several hadron mass relations generated by a resulting SU(6)/sub w/-group-theoretic expression are presented and discussed. Results of an attempt to generalize the scheme to the description of hadron vertices are reported 1. Scaling of chaos in strongly nonlinear lattices. Science.gov (United States) Mulansky, Mario 2014-06-01 Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established. 2. Study on characteristics of vertical strong motions International Nuclear Information System (INIS) Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M. 1993-01-01 Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author) 3. Atomic physics of strongly correlated systems International Nuclear Information System (INIS) Lin, C.D. 1986-01-01 This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles 4. Strong crystal size effect on deformation twinning DEFF Research Database (Denmark) Yu, Qian; Shan, Zhi-Wei; Li, Ju 2010-01-01 plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation... 5. Strong quantum scarring by local impurities Science.gov (United States) Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa 2016-11-01 We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications. 6. Functional calculus in strong plasma turbulence International Nuclear Information System (INIS) Ahmadi, G.; Hirose, A. 1980-01-01 The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. The cross-spectral moments and the characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space. (author) 7. Strong mobility in weakly disordered systems Energy Technology Data Exchange (ETDEWEB) Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, Pavel [BOSTON UNIV 2009-01-01 We study transport of interacting particles in weakly disordered media. Our one-dimensional system includes (i) disorder, the hopping rate governing the movement of a particle between two neighboring lattice sites is inhomogeneous, and (ii) hard core interaction, the maximum occupancy at each site is one particle. We find that over a substantial regime, the root-mean-square displacement of a particle s grows superdiffusively with time t, {sigma}{approx}({epsilon}t){sup 2/3}, where {epsilon} is the disorder strength. Without disorder the particle displacement is subdiffusive, {sigma} {approx}t{sup 1/4}, and therefore disorder strongly enhances particle mobility. We explain this effect using scaling arguments, and verify the theoretical predictions through numerical simulations. Also, the simulations show that regardless of disorder strength, disorder leads to stronger mobility over an intermediate time regime. 8. Pentacene Excitons in Strong Electric Fields. Science.gov (United States) Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus 2018-02-05 Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 9. Effective Induction Heating around Strongly Magnetized Stars Science.gov (United States) Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H. 2018-05-01 Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet. 10. Cyclotron resonance cooling by strong laser field International Nuclear Information System (INIS) Tagcuhi, Toshihiro; Mima, Kunioka 1995-01-01 Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers 11. Bodrum Strong Motion Network, Mugla, Turkey Science.gov (United States) Alcik, H. A.; Tanircan, G.; Korkmaz, A. 2015-12-01 The Gulf of Gökova is located in southwestern Turkey near the Aegean Sea and surrounded by Datça Peninsula to the south, the island of Kos to the west and Bodrum Peninsula to the north. The Bodrum peninsula with a population of one million in summer season is one of the most populated touristic centers of Turkey. This region is also surrounded by numerous active seismic entities such as Ula-Ören Fault Zone, Gökova Graben etc.. and demonstrates high seismic hazard. In the past, many destructive earthquakes have occurred in southwestern Turkey. One of the destructive historical earthquakes is 1493 Kos event (Mw=6.9) caused heavy damage in Bodrum. In the instrumental period seismic activity in the Gökova region includes the Ms>6.0 earthquakes of 23 April 1933 (Ms=6.4), 23 May 1941 (Ms=6.0), 13 December 1941 (Ms=6.5) events. Intense earthquake activity (Mw5+) occurred in Gulf of Gökova in August 2004 and January 2005. Considering the high seismicity and population of this region, a strong ground motion monitoring system stationed in dense settlements in the Bodrum Peninsula: Bodrum, Turgutreis, Yalıkavak, Çiftlik and Ortakent was deployed on June 2015. The network consists of 5 strong motion recorders, has been set up with the aim of monitoring of regional earthquakes, collecting accurate and reliable data for engineering and scientific research purposes, in particular to provide input for future earthquake rapid reporting and early warning implementation projects on urban environments in the Bodrum peninsula and the surrounding areas. In this poster presentation, we briefly introduce the Bodrum Network and discuss our future plans for further developments. 12. Severe asthma with markedly increased asbestos of 2 types & TXB2, and markedly reduced acetylcholine, DHEA & drug uptake in parts of upper lungs, & similar abnormalities at respiratory & cardiac center of medulla oblongata: complete elimination of this asthma within 15 days using one optimal dose of astragalus & application of strong red light & EMF neutralizer on respiratory centers of abnormal medulla oblongata. Science.gov (United States) Omura, Yoshiaki; Henoch, Avraham; Shimotsuura, Yasuhira; Duvvi, Harsha; Kawashima, Hiroshi; Ohki, Motomu 2009-01-01 When the window of an Asbestos-contaminated room from a broken ceiling was opened wide, A 73 year-old male physician of Oriental origin, who was sitting in the next room, suddenly developed a severe asthma attack, which did not stop by the use of a hand-held Albuterol inhaler. Temporary relief was obtained only by using a Compressor-Nebulizer (Inspiration 626 with Albuterol Sulfate Inhalation Solution 0.083%). During the attack, abnormal areas were discovered at the upper lobes of both lungs, where Thromboxane B2 (TXB2) was markedly increased to 500 ng (BDORT units) (the rest of the lung had about 2.5 ng), 2 types of Asbestos (Chrysotile and Crocidolite) were abnormally increased to 0.120-0.135 mg, (BDORT units) Acetylcholine was markedly reduced to 0.5 ng (the rest of the lung was low, about 100 ng), DHEA was extremely reduced to 1 ng (the rest of the lung had about 52 ng), and telomere was less than 1 yg (= 10(-24) g). Bacterial & viral infections were also present in these abnormal areas, but no antibiotics entered the abnormal parts of the lungs. Therefore, one optimal dose of Astragalus was given once, which resulted in a rapid continuous excretion of large amounts of the above 2 types of Asbestos & TXB2 in urine & sputum, and Asthma symptoms reduced slightly in severity. Additional acupuncture & shiatsu given on all the known acupuncture points for lung disease only created slight, temporary improvement. Then, the respiratory & cardiac center of the Medulla Oblongata was found to have similar abnormalities as the lungs. Therefore, 100 mW output of Light Emitting Diode of red spectra (650 nm center spectrum) was projected on the abnormal area of the medulla oblongata on the back of the head. This resulted drug uptake of on and off and significantly reduced difficulty of breathing. Additional application of the EMF Neutralizer on the abnormal area of the Medulla Oblongata for 3 hours resulted in continuous drug uptake and complete disappearance of asthma. As a 13. Strong Motion Seismograph Based On MEMS Accelerometer Science.gov (United States) Teng, Y.; Hu, X. 2013-12-01 The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The 14. Grassy Silica Nanoribbons and Strong Blue Luminescence Science.gov (United States) Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng 2016-09-01 Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications. 15. Strongly coupled band in {sup 140}Gd Energy Technology Data Exchange (ETDEWEB) Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)] (and others) 2005-07-01 Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, K{pi} = 8{sup -} isomers, with lifetimes ranging from ns to ms, are known in {sup 128}Xe, {sup 130}Ba, {sup 132}Ce, {sup 134}Nd, {sup 136}Sm, and {sup 138}Gd[. In {sup 140}Gd, we have observed for the first time a band also based on an I{pi} = 8{sup -} state. This could be the first case of a K{pi} = 8{sup -} state observed in an N=76 even-even isotope. The systematics of the K{pi} = 8{sup -} isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The {sup 140}Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in {sup 140}Gd. 16. Strong and Electromagnetic Interactions at SPS Energies CERN Document Server Ribicki, Andrzej 2009-01-01 Particle production in peripheral Pb+Pb collisions has been measured at a beam energy of 158 GeV per nucleon, corresponding to psNN 17.3 GeV. The measurements provide full double differential coverage in a wide range of longitudinal and transverse momenta, including the central (“mid-rapidity”) area and extending far into the projectile fragmentation region. The resulting analysis shows the heavy ion reaction as a mixture of different processes. In particular, surprising phenomena, like the presence of large and strongly varying structures in the shape of the double differential cross section d2s /dxFd pT , are induced by the final state electromagnetic interaction between produced particles and the charged spectator system. This effect is largest at low transverse momenta, where it results in a deep valley in the xF -dependence of the produced p+/p− ratio. The basic characteristics of the electromagnetic phenomenon described above agree with the results of a theoretical analysis, performed by means of ... 17. Conduction properties of strongly interacting Fermions Science.gov (United States) Brantut, Jean-Philippe; Stadler, David; Krinner, Sebastian; Meineke, Jakob; Esslinger, Tilman 2013-05-01 We experimentally study the transport process of ultracold fermionic atoms through a mesoscopic, quasi two-dimensional channel connecting macroscopic reservoirs. By observing the current response to a bias applied between the reservoirs, we directly access the resistance of the channel in a manner analogous to a solid state conduction measurement. The resistance is further controlled by a gate potential reducing the atomic density in the channel, like in a field effect transistor. In this setup, we study the flow of a strongly interacting Fermi gas, and observe a striking drop of resistance with increasing density in the channel, as expected at the onset of superfluidity. We relate the transport properties to the in-situ evolution of the thermodynamic potential, providing a model independant thermodynamic scale. The resistance is compared to that of an ideal Fermi gas in the same geometry, which shows an order of magnitude larger resistance, originating from the contact resistance between the channel and the reservoirs. The extension of this study to a channel containing a tunable disorder is briefly outlined. 18. Demand for Neste's City products grows strongly International Nuclear Information System (INIS) Anon. 1994-01-01 Finland's oil, chemicals, and gas company, Neste Corporation, is well on the road to better financial performance after a very difficult year in 1992. Among the factors contributing to this optimism are Neste's pioneering low environmental impact traffic fuels. Neste Corporation's net sales in 1993 rose 9.9 % on 1992 figures to USD 11,011 million. Investments totalled USD 681 million. Profitability also improved during 1993, and the operating margin rose by 57 %, despite the recession affecting the Finnish economy and the instability of the international market. The operational loss for the year before extraordinary items, reserves, and taxes was USD 265 million, one-third less than in 1992. Neste's strategy has been to achieve a strong position in the Baltic Rim region by becoming the quality and cost leader in oil refining, and by expanding Neste's position in its key markets. A total of 3.3 million tonnes of petroleum products were exported from Finland in 1993. Neste's most important export markets were Sweden, Germany, Poland, the Baltic countries, and the St. Petersburg region. Some 20 % of exports went to customers outside Europe. In addition to Finland, Neste has concertedly developed its service station network in Poland and the Baltic countries 19. Strong gravitational lensing by Sgr A* International Nuclear Information System (INIS) Bin-Nun, Amitai Y 2011-01-01 In recent years, there has been increasing recognition of the potential to use the galactic center as a probe of general relativity in the strong field. There is almost certainly a black hole at Sgr A* in the galactic center, and this would allow us to have the opportunity to probe dynamics near the exterior of the black hole. In the last decade, there has been theoretical research into extreme gravitational lensing in the galactic center. Unlike in most applications of gravitational lensing, where the bending angle is of the order of, at most, an arc minute, very large bending angles are possible for light that closely approaches a black hole. Photons may even loop multiple times around a black hole before reaching the observer. There have been many proposals to use light's close approach to the black hole as a probe of the black hole metric. Of particular interest are the properties of images formed from the light of S stars orbiting in the galactic center. This paper will review some of the attempts made to study extreme lensing as well as extend the analysis of S star lensing. In particular, we are interested in the effect of a Reissner-Nordstrom like 1/r 2 term in the metric and how this would affect the properties of relativistic images. 20. Jets in a strongly coupled anisotropic plasma Energy Technology Data Exchange (ETDEWEB) Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa) 2018-01-15 In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.) 1. Large orders in strong-field QED Energy Technology Data Exchange (ETDEWEB) Heinzl, Thomas [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Schroeder, Oliver [Science-Computing ag, Hagellocher Weg 73, D-72070 Tuebingen (Germany) 2006-09-15 We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarization tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 82 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarization tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields. 2. Phenomenology of strongly coupled chiral gauge theories International Nuclear Information System (INIS) Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A. 2016-01-01 A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson. 3. Baryon bags in strong coupling QCD Science.gov (United States) Gattringer, Christof 2018-04-01 We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor. 4. Strongly correlated electrons on two coupled chains International Nuclear Information System (INIS) Weihong, Z.; Oitmaa, J.; Hamer, C.J. 2000-01-01 Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation 5. Quantum centipedes with strong global constraint Science.gov (United States) Grange, Pascal 2017-06-01 A centipede made of N quantum walkers on a one-dimensional lattice is considered. The distance between two consecutive legs is either one or two lattice spacings, and a global constraint is imposed: the maximal distance between the first and last leg is N + 1. This is the strongest global constraint compatible with walking. For an initial value of the wave function corresponding to a localized configuration at the origin, the probability law of the first leg of the centipede can be expressed in closed form in terms of Bessel functions. The dispersion relation and the group velocities are worked out exactly. Their maximal group velocity goes to zero when N goes to infinity, which is in contrast with the behaviour of group velocities of quantum centipedes without global constraint, which were recently shown by Krapivsky, Luck and Mallick to give rise to ballistic spreading of extremal wave-front at non-zero velocity in the large-N limit. The corresponding Hamiltonians are implemented numerically, based on a block structure of the space of configurations corresponding to compositions of the integer N. The growth of the maximal group velocity when the strong constraint is gradually relaxed is explored, and observed to be linear in the density of gaps allowed in the configurations. Heuristic arguments are presented to infer that the large-N limit of the globally constrained model can yield finite group velocities provided the allowed number of gaps is a finite fraction of N. 6. Quantum entanglement in strong-field ionization Science.gov (United States) Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila 2017-10-01 We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime. 7. Binary Polymer Brushes of Strongly Immiscible Polymers. Science.gov (United States) Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander 2015-06-17 The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding. 8. Toward a Strongly Interacting Scalar Higgs Particle International Nuclear Information System (INIS) Shalaby, Abouzeid M.; El-Houssieny, M. 2008-01-01 We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism 9. Strong dielectric liquid crystal polymer (Part 3) Energy Technology Data Exchange (ETDEWEB) Kurata, Hideaki; Shibasaki, Akira 1988-11-01 Influence of change of molecular parameters on liquid crystal condition is studied to get the correlation between molecular structure of liquid crystal and phase structure or visco-elastic properties. Eight kinds of biphenyl type liquid crystals with polyacrilate main chain and triphenyl type liquid crystals were used as samples. Followings were found by a ploarizing microscope and X-ray diffraction: Phases are transferred from isotropic phase S/sub A/ phase S/sup *//sub C/ phase S/sub 1/ phase to solid on temperature desending sequence. Degree of polymerization changes only these transfer point but spacer length affects not only transfer points and layer distance but also liquid crystal structure itself. Visco-elasticity of isotropic phase shows Newtonian viscosity and is affected by the main chain length. Macroscopic and microscopic structures influence on viscoelasticity in S/sub A/ phase and S/sup *//sub C/ phase. Two rapid rises of viscoelasticity are found in low molecular weight liquid crystal when S/sub A/ transfer and S/sub A/ to S/sup *//sub C/ transfer occur by temperature desending from the isotropic phase. Viscoelastic behavior is contributed by the properties of domain itself and interaction between domains, and the interaction is changed by polymerization. 6 references, 13 figures, 1 table. 10. Corporate Governance Against Recommendations: The Cases of the Strong Executive and the Strong Ownership Directory of Open Access Journals (Sweden) Král Pavel 2012-09-01 Full Text Available There are several basic configurations of corporate governance according to the separation of ownership and control (Jensen’s theory. Effective governance is described as a situation whenan owner (or group of owners keeps the right to ratify and monitor strategic decisions while management has the right to initiate and implement those decisions. There are two particular situations how this recommendation is partially broken and both situations are linked to CEO duality. The first case happens when an owner loses or does not exercise the right to monitor management of the organization and is termed as the strong executive. The second case is calledthe strong ownership and is distinguished by an owner taking over implementations of the decisions. The focus of the study was to explore particularly configurations of the strong executive and the strong governance. A mixed method research design was chosen to explore the differences between the basic governance configurations. The sample was chosen by purposive sampling and covered a hundred for-profit organizations of all size and from all sectors of economy.The data were collected through interviews with representatives, mainly members of top management. We revealed that both of these configurations can bear good corporate performance but also bigger risks. The strong executive is typical for organizations with dispersed ownership or a publicly owned organization and the performance of the organization is fully dependent on competencies but also personalities of managers. This configuration contains a high risk of misuse of authority. The strong ownership is effective in small organizations while in a larger organization leads to an overexertion of owners and low performance because they usually faceproblems to keep focus on the strategic issues of the organization. 11. Strong field interaction of laser radiation International Nuclear Information System (INIS) Pukhov, Alexander 2003-01-01 The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI 12. Strong ground motion spectra for layered media International Nuclear Information System (INIS) Askar, A.; Cakmak, A.S.; Engin, H. 1977-01-01 This article presents an analytic method and calculations of strong motion spectra for the energy, displacement, velocity and acceleration based on the physical and geometric ground properties at a site. Although earthquakes occur with large deformations and high stress intensities which necessarily lead to nonlinear phenomena, most analytical efforts to date have been based on linear analyses in engineering seismology and soil dynamics. There are, however, a wealth of problems such as the shifts in frequency, dispersion due to the amplitude, the generation of harmonics, removal of resonance infinities, which cannot be accounted for by a linear theory. In the study, the stress-strain law for soil is taken as tau=G 0 γ+G 1 γ 3 +etaγ where tau is the stress, γ is the strain, G 0 and G 1 are the elasticity coefficients and eta is the damping and are different in each layer. The above stress-strain law describes soils with hysterisis where the hysterisis loops for various amplitudes of the strain are no longer concentric ellipses as for linear relations but are oval shapes rotated with respect to each other similar to the materials with the Osgood-Ramberg law. It is observed that even slight nonlinearities may drastically alter the various response spectra from that given by linear analysis. In fact, primary waves cause resonance conditions such that secondary waves are generated. As a result, a weak energy transfer from the primary to the secondary waves takes place, thus altering the wave spectrum. The mathematical technique that is utilized for the solution of the nonlinear equation is a special perturbation method as an extension of Poincare's procedure. The method considers shifts in the frequencies which are determined by the boundedness of the energy 13. Transport coefficients of strongly interacting matter International Nuclear Information System (INIS) Heckmann, Klaus 2011-01-01 In this thesis, we investigate the dissipative transport phenomena of strongly interacting matter. The special interest is in the shear viscosity and its value divided by entropy density. The performed calculations are based on effective models for Quantum Chromodynamics, mostly focused on the 2-flavor Nambu-Jona-Lasinio model. This allows us to study the hadronic sector as well as the quark sector within one single model. We expand the models up to next-to-leading order in inverse numbers of colors. We present different possibilities of calculating linear transport coefficients and give an overview over qualitative properties as well as over recent ideas concerning ideal fluids. As present methods are not able to calculate the quark two-point function in Minkowski space-time in the self-consistent approximation scheme of the Nambu-Jona-Lasinio model, a new method for this purpose is developed. This self-energy parametrization method is applied to the expansion scheme, yielding the quark spectral function with meson back-coupling effects. The usage of this spectral function in the transport calculation is only one result of this work. We also test the application of different transport approaches in the NJL model, and find an interesting behavior of the shear viscosity at the critical end point of the phase diagram. We also use the NJL model to calculate the viscosity of a pion gas in the dilute regime. After an analysis of other models for pions and their interaction, we find that the NJL-result leads to an important modification of transport properties in comparison with the calculations which purely rely on pion properties in the vacuum. (orig.) 14. The Strong Lensing Time Delay Challenge (2014) Science.gov (United States) Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A. 2014-01-01 Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation. 15. Kinetic theory for strongly coupled Coulomb systems Science.gov (United States) Dufty, James; Wrighton, Jeffrey 2018-01-01 The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation. 16. Process-independent strong running coupling International Nuclear Information System (INIS) Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; Roberts, Craig D.; Rodriguez-Quintero, Jose 2017-01-01 Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, this reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge. 17. Strong Resilience of Topological Codes to Depolarization Directory of Open Access Journals (Sweden) H. Bombin 2012-04-01 Full Text Available The inevitable presence of decoherence effects in systems suitable for quantum computation necessitates effective error-correction schemes to protect information from noise. We compute the stability of the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex Ising model. By studying the stability of the related ferromagnetic phase via both large-scale Monte Carlo simulations and the duality method, we are able to demonstrate an increased error threshold of 18.9(3% when noise correlations are taken into account. Remarkably, this result agrees within error bars with the result for a different class of codes—topological color codes—where the mapping yields interesting new types of interacting eight-vertex models. 18. Weak cosmic censorship: as strong as ever. Science.gov (United States) Hod, Shahar 2008-03-28 Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments. 19. Strong effects in weak nonleptonic decays International Nuclear Information System (INIS) Wise, M.B. 1980-04-01 In this report the weak nonleptonic decays of kaons and hyperons are examined with the hope of gaining insight into a recently proposed mechanism for the ΔI = 1/2 rule. The effective Hamiltonian for ΔS = 1 weak nonleptonic decays and that for K 0 -anti K 0 mixing are calculated in the six-quark model using the leading logarithmic approximation. These are used to examine the CP violation parameters of the kaon system. It is found that if Penguin-type diagrams make important contributions to K → ππ decay amplitudes then upcoming experiments may be able to distinguish the six-quark model for CP violation from the superweak model. The weak radiative decays of hyperons are discussed with an emphasis on what they can teach us about hyperon nonleptonic decays and the ΔI = 1/2 rule 20. 77 FR 35711 - Strong Cities, Strong Communities National Resource Network Pilot Program Advance Notice and... Science.gov (United States) 2012-06-14 ... economic need, strong local leadership and collaboration, potential for economic growth, geographic...1 million that they will use to administer an X-prize style'' competition, whereby they will... founding mandate in the 1965 Department of Housing and Urban Development Act to `Exercise leadership at...