WorldWideScience

Sample records for strongly anharmonic crystals

  1. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals

    Science.gov (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2018-04-01

    We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.

  2. Jacobian elliptic wave solutions in an anharmonic molecular crystal model

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Lee, B.S.; Koo, W.K.

    1997-07-01

    Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig

  3. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  4. Femtosecond wavevector overtone spectroscopy of anharmonic lattice dynamics in ferroelectric crystals

    Science.gov (United States)

    Brennan, Ciaran Joseph

    Impulse Stimulated Raman Scattering (ISRS) is a useful technique for characterizing the soft optic modes that are responsible for the polar distortion in ferroelectric crystals. ISRS provides an impulse force to the selected mode at a specific wavevector, and the subsequent oscillations and damping of the mode can be observed. Previous researchers have used this technique to measure the wavevector-dependent frequency and damping of optic phonons and phonon-polaritons in a variety of ferroelectric crystals. The recent development of powerful amplified Ti:sapphire femtosecond lasers opens the possibility that the impulse force applied to the ferroelectric soft mode is so large that the resultant ionic excursions will sample the anharmonic portions of the potential energy surface for the soft mode. This would, in principle, allow the experimental measurement of the potential energy surface by carefully characterizing the anharmonic content of the ISRS signals. This information would give insight into the causal mechanism for the phenomenon of ferroelectricity. Measurements of anharmonic phonon-polaritons in ferroelectric crystals have been performed using Wavevector Overtone Spectroscopy (WOS), a refinement of the impulsive stimulated Raman scattering (ISRS) technique. Numerical simulations suggest that harmonics of the polariton wavevector, rather than harmonics of the polariton frequency, are the key signatures of lattice anharmonicity in a time resolved grating experiment. The predicted signals at the wavevector overtones were observed up to the 5th order in LiTaO3, providing strong evidence of anharmonicity of the phonon-polariton response. Further evidence for anharmonicity comes from ISRS measurements at the fundamental wavevector and measurements of diffraction efficiency. The ISRS data shows non-sinusoidal response with a rich overtone spectrum, while the diffraction efficiency measurements reveal ionic displacements of about 1% of the ferroelectric distortion

  5. Lattice anharmonicity and thermal properties of strongly correlated Fe1- x Co x Si alloys

    Science.gov (United States)

    Povzner, A. A.; Nogovitsyna, T. A.; Filanovich, A. N.

    2015-10-01

    The temperature dependences of the thermal and elastic properties of strongly correlated metal alloys Fe1- x Co x Si ( x = 0.1, 0.3, 0.5) with different atomic chiralities have been calculated in the framework of the self-consistent thermodynamic model taking into account the influence of lattice anharmonicity. The lattice contributions to the heat capacity and thermal expansion coefficient of the alloys have been determined using the experimental data. It has been demonstrated that the invar effect in the thermal expansion of the lattice observed in the magnetically ordered region of Fe0.7Co0.3Si and Fe0.5Co0.5Si is not related to the lattice anharmonicity, even though its appearance correlates with variations in the atomic chirality.

  6. Crystal anharmonicity in Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Haque, E.; Azad, A.S.

    1993-05-01

    The reliability of our recently developed potential model is tested by extending the study to various anharmonic properties, e.g., third order elastic constants, fourth order elastic constants, Grueneisen parameters, and the pressure derivatives of second order elastic constants of hydrides and deuterides of lithium and sodium. A comparison of the calculated properties with the available experimental results and other theoretical estimates shows the validity and reliability of the derived potential in the study of crystal anharmonicities also. (author). 43 refs, 2 figs, 4 tabs

  7. Investigation of the vibrational spectrum of SbSeI crystals in harmonic and in the anharmonic approximations

    International Nuclear Information System (INIS)

    Audzijonis, A.; Klingshirn, C.; Zigas, L.; Goppert, M.; Pauliukas, A.; Zaltauskas, R.; Cerskus, A.; Kvedaravicius, A.

    2007-01-01

    The reflectivity spectrum R(ω) of SbSeI crystals was experimentally studied in the spectral range of 10-300cm -1 over a wide range of temperatures (10-297K) with light polarization E-c and E-c . The spectra of optical constants and optical functions were calculated using the Kramers-Kronig and optical parameter fitting methods. The dependence of the frequencies ω T and ω L of the low-frequency B 1u mode (for E-c) on temperature was obtained from the experiment. From spectra ll (ω) and Im( -1 )(ω) the frequencies ω L and ω T of B 1u normal modes were found at temperatures 10-297K. The frequencies of normal modes and amplitudes of normal coordinates were calculated by diagonalization of the dynamical matrix in harmonic approximation. The properties of the low-frequency B 1u mode are explained in anharmonic approximation by employing the average potential energy function V(z). The latter is strongly anharmonic and thus causes the frequency of this mode to show a quite strong temperature dependence. The interaction between phonons creates the anharmonicity of low-frequency B 1u vibrational mode

  8. Investigation of the vibration spectrum of SbSI crystals in harmonic and in anharmonic approximations

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zigas, L.; Vinokurova, I.V.; Farberovic, O.V.; Zaltauskas, R.; Cijauskas, E.; Pauliukas, A.; Kvedaravicius, A.

    2006-01-01

    The force constants of SbSI crystal have been calculated by the pseudo-potential method. The frequencies and normal coordinates of SbSI vibration modes along the c (z) direction have been determined in harmonic approximation. The potential energies of SbSI normal modes dependence on normal coordinates along the c (z) direction V(z) have been determined in anharmonic approximation, taking into account the interaction between the phonons. It has been found, that in the range of 30-120 cm -1 , the vibrational spectrum is determined by a V(z) double-well normal mode, but in the range of 120-350 cm -1 , it is determined by a V(z) single-well normal mode

  9. Advances in theoretical and experimental XAFS studies of thermodynamic properties, anharmonic effects and structural determination of fcc crystals

    Science.gov (United States)

    Hung, Nguyen Van; Thang, Cu Sy; Duc, Nguyen Ba; Vuong, Dinh Quoc; Tien, Tong Sy

    2017-12-01

    Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye-Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.

  10. Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity

    International Nuclear Information System (INIS)

    Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco

    2012-01-01

    We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)

  11. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    Science.gov (United States)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric

  12. Renormalized Phonon Microstructures at High Temperatures from First-Principles Calculations: Methodologies and Applications in Studying Strong Anharmonic Vibrations of Solids

    Directory of Open Access Journals (Sweden)

    Tian Lan

    2016-01-01

    Full Text Available While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation, at high temperatures, this understanding must accommodate how phonons interact with other phonons or with other excitations. To date the anharmonic lattice dynamics is poorly understood despite its great importance, and most studies still rely on the quasiharmonic approximations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems and essentially modify the equilibrium and nonequilibrium properties of materials, for example, thermal expansion, thermodynamic stability, heat capacity, optical properties, thermal transport, and other nonlinear properties of materials. The review aims to introduce some recent developements of computational methodologies that are able to efficiently model the strong phonon anharmonicity based on quantum perturbation theory of many-body interactions and first-principles molecular dynamics simulations. The effective potential energy surface of renormalized phonons and structures of the phonon-phonon interaction channels can be derived from these interdependent methods, which provide both macroscopic and microscopic perspectives in analyzing the strong anharmonic phenomena while the traditional harmonic models fail dramatically. These models have been successfully performed in the studies on the temperature-dependent broadenings of Raman and neutron scattering spectra, high temperature phase stability, and negative thermal expansion of rutile and cuprite structures, for example.

  13. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  14. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...... plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  15. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    Science.gov (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  16. Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems

    Science.gov (United States)

    Sun, Kai

    2009-01-01

    This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…

  17. Modulated anharmonic ADPs are intrinsic to aperiodic crystals: a case study on incommensurate Rb2ZnCl4

    International Nuclear Information System (INIS)

    Li, Liang; Wölfel, Alexander; Schönleber, Andreas; Mondal, Swastik; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Smaalen, Sander van

    2011-01-01

    The superspace maximum entropy method (MEM) density in combination with structure refinements has been used to uncover the modulation in incommensurate Rb 2 ZnCl 4 close to the lock-in transition. Modulated atomic displacement parameters (ADPs) and modulated anharmonic ADPs are found to form an intrinsic part of the modulation. Refined values for the displacement modulation function depend on the presence or absence of modulated ADPs in the model. A combination of structure refinements, analysis of the superspace MEM density and interpretation of difference-Fourier maps has been used to characterize the incommensurate modulation of rubidium tetrachlorozincate, Rb 2 ZnCl 4 , at a temperature of T = 196 K, close to the lock-in transition at T lock-in = 192 K. The modulation is found to consist of a combination of displacement modulation functions, modulated atomic displacement parameters (ADPs) and modulated third-order anharmonic ADPs. Up to fifth-order Fourier coefficients could be refined against diffraction data containing up to fifth-order satellite reflections. The center-of-charge of the atomic basins of the MEM density and the displacive modulation functions of the structure model provide equivalent descriptions of the displacive modulation. Modulations of the ADPs and anharmonic ADPs are visible in the MEM density, but extracting quantitative information about these modulations appears to be difficult. In the structure refinements the modulation parameters of the ADPs form a dependent set, and ad hoc restrictions had to be introduced in the refinements. It is suggested that modulated harmonic ADPs and modulated third-order anharmonic ADPs form an intrinsic part, however small, of incommensurately modulated structures in general. Refinements of alternate models with and without parameters for modulated ADPs lead to significant differences between the parameters of the displacement modulation in these two types of models, thus showing the modulation of ADPs to

  18. Kinematic anharmonicity of internal rotation of molecules

    International Nuclear Information System (INIS)

    Bataev, V.A.; Pupyshev, V.I.; Godunov, I.A.

    2017-01-01

    The methods of analysis the strongly coupled vibrations are proposed for a number of molecules of aromatic and heterocyclic carbonyl (and some others) compounds. The qualitative principles are formulated for molecular systems with a significant kinematic anharmonicity.

  19. Harmonic and Anharmonic Properties of Diamond Structure Crystals with Application to the Calculation of the Thermal Expansion of Silicon. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Wanser, K. H.

    1981-01-01

    Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.

  20. Anharmonic contributions in ZnS powder diagrams

    International Nuclear Information System (INIS)

    Boysen, H.; Steger, G.; Hewat, A.W.; Buevoz, J.L.

    1982-01-01

    In ZnS contributions from third order anharmonic thermal vibrations are important at high temperatures being proportional to T 2 . Neutron powder measurements at different temperatures confirm this behavior. The magnitude of the temperature independent anharmonicity parameter is similar to that from a single crystal determination at room temperature

  1. Quartic Anharmonicity of Rattlers and Its Effect on Lattice Thermal Conductivity of Clathrates from First Principles

    Science.gov (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2018-03-01

    We investigate the role of the quartic anharmonicity in the lattice dynamics and thermal transport of the type-I clathrate Ba8 Ga16 Ge30 based on ab initio self-consistent phonon calculations. We show that the strong quartic anharmonicity of rattling guest atoms causes the hardening of vibrational frequencies of low-lying optical modes and thereby affects calculated lattice thermal conductivities κL significantly, resulting in an improved agreement with experimental results including the deviation from κL∝T-1 at high temperature. Moreover, our static simulations with various different cell volumes shows a transition from crystal-like to glasslike κL around 20 K. Our analyses suggest that the resonance dip of κL observed in clathrates with large guest free spaces is attributed mainly to the strong three-phonon scattering of acoustic modes along with the presence of higher-frequency dispersive optical modes.

  2. Quantum stabilization in anharmonic crystals.

    Science.gov (United States)

    Albeverio, Sergio; Kondratiev, Yuri; Kozitsky, Yuri; Röckner, Michael

    2003-05-02

    For a model of interacting quantum particles of mass m oscillating in a double-well crystalline field, a mechanism of its stabilization by quantum effects is described. In particular, a stability condition involving m, the interaction intensity, and the parameters of the crystalline field is given. It is independent of the temperature and is satisfied if m is small enough and/or the tunneling frequency is big enough. It is shown that under this condition the infinite-volume free energy density is an analytic function of the external field and the displacement-displacement correlation function decays exponentially; hence, no phase transitions can arise at all temperatures. This gives a complete and rigorous answer to the question about the influence of quantum effects on structural phase transitions, the discussion of which was initiated in [T. Schneider, H. Beck, and E. Stoll, Phys. Rev. B 13, 1123 (1976)

  3. Low-temperature anharmonicity in cesium chloride (CsCl)

    Energy Technology Data Exchange (ETDEWEB)

    Sist, Mattia; Faerch Fischer, Karl Frederik; Brummerstedt Iversen, Bo [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Kasai, Hidetaka [Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University (Denmark); Faculty of Pure and Applied Sciences, TIMS and CiRfSE, University of Tsukuba (Japan)

    2017-03-20

    Anharmonic lattice vibrations govern heat transfer in materials, and anharmonicity is commonly assumed to be dominant at high temperature. The textbook cubic ionic defect-free crystal CsCl is shown to have an unexplained low thermal conductivity at room temperature (ca. 1 W/(m K)), which increases to around 13 W/(m K) at 25 K. Through high-resolution X-ray diffraction it is unexpectedly shown that the Cs atomic displacement parameter becomes anharmonic at 20 K. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Strongly coupled dusty plasmas: crystals, liquids, clusters and waves

    International Nuclear Information System (INIS)

    Jeng-Mei Liu; Wen-Tau Juan; Ju-Wang Hsu; Zen-Hong Huang; Lin I

    1999-01-01

    The dusty plasma is a system that consists of many strongly-charged fine dust particles suspended in a plasma background. The slow dynamics and strong coupling due to the large mass and charges lead to the formation of highly-ordered dust crystal structures suspended in the plasma background, which can be directly observed. The dusty plasma forms a link to the area of condensed matter physics for the study of many interesting microscopic phenomena from order to disorder. In this paper, we introduce the special properties of this system from the viewpoint of conventional plasma physics, then we briefly review past works on the structure and dynamical behaviour from the highly-ordered state, through the melting and liquid states with associated vortex-type excitation and anomalous diffusion, to the state with self-organized macroscopic dust waves after losing microscopic order. The first observation of strongly-coupled dust Coulomb clusters with small numbers of particles from a few to a few hundred, which resemble classical atoms, is also demonstrated. (author)

  5. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    International Nuclear Information System (INIS)

    Cavaignac, A.L.O.; Lima, R.J.C.; Façanha Filho, P.F.; Moreno, A.J.D.; Freire, P.T.C.

    2016-01-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  6. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Science.gov (United States)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  7. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  8. Pressure measurements of TO-phonon anharmonicity in isotopic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Tallman, R.E.; Weinstein, B.A. [SUNY at Buffalo, Department of Physics, Buffalo, NY 14260 (United States); Ritter, T.M. [Dept. of Chemistry and Physics, UNC Pembroke, NC 28372 (United States); Cantarero, A. [Dept. of Physics and Institute of Materials Science, University of Valencia (Spain); Serrano, J.; Lauck, R.; Cardona, M. [Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)

    2004-03-01

    We have measured the dependence on pressure of the line-widths of the TO and LO Raman phonons of {beta}-ZnS. In order to enhance the phenomena observed, and to eliminate possible effects of isotopic disorder, we have measured a nearly isotopically pure crystal, {sup 68}Zn{sup 32}S. The strongly structured pressure effects observed are interpreted on the basis of anharmonic decay and the corresponding two-phonon density of states. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  10. Quantum versus semiclassical description of selftrapping: anharmonic effects

    International Nuclear Information System (INIS)

    Raghavan, S.; Bishop, A.R.; Kenkre, V.M.

    1998-09-01

    Selftrapping has been traditionally studied on the assumption that quasiparticles interact with harmonic phonons and that this interaction is linear in the displacement of the phonon. To complement recent semiclassical studies of anharmonicity and nonlinearity in this context, we present below a fully quantum mechanical analysis of a two-site system, where the oscillator is described by a tunably anharmonic potential, with a square well with infinite walls and the harmonic potential as its extreme limits, and wherein the interaction is nonlinear in the oscillator displacement. We find that even highly anharmonic polarons behave similar to their harmonic counterparts in that selftrapping is preserved for long times in the limit of strong coupling, and that the polaronic tunneling time scale depends exponentially on the polaron binding energy. Further, in agreement with earlier results related to harmonic polarons, the semiclassical approximation agrees with the full quantum result in the massive oscillator limit of small oscillator frequency and strong quasiparticle-oscillator coupling. (author)

  11. Anharmonic effects in the coherent scattering of neutrons by crystals : A formal treatment of shift and width of the peaks in the scattering spectrum

    NARCIS (Netherlands)

    Kokkedee, J.J.J.

    As predicted by harmonic theory the outgoing inelastic spectrum of neutrons, scattered coherently by a single crystal, for a particular angle of scattering consists of a number of delta-function peaks superposed on a continuous background. The peaks correspond to one-phonon processes in which one

  12. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  13. Detecting anharmonicity at a glance

    International Nuclear Information System (INIS)

    Giliberti, M; Stellato, M; Barbieri, S; Cavinato, M; Rigon, E; Tamborini, M

    2014-01-01

    Harmonic motion is generally presented in such a way that most of the students believe that the small oscillations of a body are all harmonic. Since the situation is not actually so simple, and since the comprehension of harmonic motion is essential in many physical contexts, we present here some suggestions, addressed to undergraduate students and pre-service teachers, that allow one to find out at a glance the anharmonicity of a motion. Starting from a didactically motivated definition of harmonic motion, and stressing the importance of the interplay between mathematics and experiments, we give a four-point criterion for anharmonicity together with some emblematic examples. The role of linear damping is also analysed in relation to the gradual changing of harmonicity into anharmonicity when the ratio between the damping coefficient and the zero-friction angular frequency increases. (paper)

  14. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals.

    Science.gov (United States)

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M

    2016-06-29

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  15. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nielson, Weston [Univ. of California, Los Angeles, CA (United States); Xia, Yi [Univ. of California, Los Angeles, CA (United States); Ozoliņš, Vidvuds [Univ. of California, Los Angeles, CA (United States)

    2014-10-01

    First-principles prediction of lattice thermal conductivity κL of strongly anharmonic crystals is a long-standing challenge in solid-state physics. Making use of recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics. Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Nonintuitively, high accuracy is achieved when the model is trained on first-principles forces in quasirandom atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phonon-phonon interactions that limit the room-temperature κL to values near the amorphous limit.

  16. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    Science.gov (United States)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  17. Intermolecular and very strong intramolecular C-SeO/N chalcogen bonds in nitrophenyl selenocyanate crystals.

    Science.gov (United States)

    Wang, Hui; Liu, Ju; Wang, Weizhou

    2018-02-14

    Single-crystal X-ray diffraction reveals that polymorphic ortho-nitrophenyl selenocyanate (o-NSC, crystals 1a and 1b) and monomorphic para-nitrophenyl selenocyanate (p-NSC, crystal 2) crystals are all stabilized mainly by intermolecular and very strong intramolecular C-SeO/N chalcogen bonds, as well as by other different interactions. Thermogravimetric (TG) and differential scanning calorimetry thermogram (DSC) analyses show that the starting decomposition temperatures and melting points of the three crystals are different, following the order 1b > 1a > 2, which is consistent with the structural characteristics of the crystals. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses indicate that the total strengths of the C-SeO and C-SeN chalcogen bonds decrease in the order 1b > 1a > 2. This study could be significant for engineering functional crystals based on robust C-SeO and C-SeN chalcogen bonds, and for designing drugs containing selenium as well as understanding their interaction in biosystems.

  18. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  19. Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field

    Science.gov (United States)

    Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke

    2018-01-01

    We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.

  20. arXiv Strong reduction of the effective radiation length in an oriented PWO scintillator crystal

    CERN Document Server

    Bandiera, L.; Romagnoni, M.; Argiolas, N.; Bagli, E.; Ballerini, G.; Berra, A.; Brizzolani, C.; Camattari, R.; De Salvador, D.; Haurylavets, V.; Mascagna, V.; Mazzolari, A.; Prest, M.; Soldani, M.; Sytov, A.; Vallazza, E.

    We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline field. The data collected at the external lines of CERN SPS were critically compared to Monte Carlo simulations based on the Baier Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of five in case of beam alignment with the [001] crystal axes. As a consequence, oriented scintillator crystals may be profitably exploited to reduce the amount of material in electromagnetic calorimeters/detectors for fixed-target experiments in high-energy physics, as well as for satellite-borne gamma-telescopes in astrophysics.

  1. The influence of strong crystalline fields on QED-processes investigated using diamond crystals to crystals in $\\gamma, \\gamma$ colliders

    CERN Document Server

    Uggerhøj, Erik

    2002-01-01

    The very recent indications of Higgs-candidates at CERN have led to a strong interest in new types of facilities like high-energy photon colliders. This again leads to a search for strong high-energy gamma sources. In the present paper it is shown that single crystals are unique radiators due to the strong crystalline fields of 10/sup 12/ V /cm or more, in which incident particles move over very large distances (~100 mu m). Along axes, radiation emission and energy loss is enhanced more than two orders of magnitude. This dramatic effect loads to radiation cooling followed by capture to high-lying channeling states. The radiation is emitted in the forward angular cone of 40 mu rad or less. In the planar cases certain incident directions give hard photons with an intensity ~10 times the normal coherent bremsstrahlung. Therefore, in general, crystals turn out to be very interesting gamma -sources for photo production and coming gamma , gamma colliders. (10 refs).

  2. Anharmonic phonons and magnons in BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Delaire, Olivier A [ORNL; Ma, Jie [ORNL; Stone, Matthew B [ORNL; Huq, Ashfia [ORNL; Gout, Delphine J [ORNL; Brown, Craig [National Institute of Standards and Technology (NIST); Wang, Kefeng [Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing; Ren, Zhifeng [Boston College, Chestnut Hill

    2012-01-01

    The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.

  3. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    Science.gov (United States)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  4. Observation of strong leakage reduction in crystal assisted collimation of the SPS beam

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2015-09-01

    Full Text Available In ideal two-stage collimation systems, the secondary collimator–absorber should have its length sufficient to exclude practically the exit of halo particles with large impact parameters. In the UA9 experiments on the crystal assisted collimation of the SPS beam a 60 cm long tungsten bar is used as a secondary collimator–absorber which is insufficient for the full absorption of the halo protons. Multi-turn simulation studies of the collimation allowed to select the position for the beam loss monitor downstream the collimation area where the contribution of particles deflected by the crystal in channeling regime but emerging from the secondary collimator–absorber is considerably reduced. This allowed observation of a strong leakage reduction of halo protons from the SPS beam collimation area, thereby approaching the case with an ideal absorber.

  5. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity.

    Science.gov (United States)

    Gan, Xuetao; Mak, Kin Fai; Gao, Yuanda; You, Yumeng; Hatami, Fariba; Hone, James; Heinz, Tony F; Englund, Dirk

    2012-11-14

    We demonstrate a large enhancement in the interaction of light with graphene through coupling with localized modes in a photonic crystal nanocavity. Spectroscopic studies show that a single atomic layer of graphene reduces the cavity reflection by more than a factor of one hundred, while also sharply reducing the cavity quality factor. The strong interaction allows for cavity-enhanced Raman spectroscopy on subwavelength regions of a graphene sample. A coupled-mode theory model matches experimental observations and indicates significantly increased light absorption in the graphene layer. The coupled graphene-cavity system also enables precise measurements of graphene's complex refractive index.

  6. Voltage-Controlled Switching of Strong Light-Matter Interactions using Liquid Crystals.

    Science.gov (United States)

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A; George, Jino; Ebbesen, Thomas W; Börjesson, Karl

    2017-12-22

    We experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C-N str vibration on the liquid crystal molecule is coupled to a cavity mode, and FT-IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Orientational anharmonicity of interatomic interaction in cubic monocrystals

    International Nuclear Information System (INIS)

    Belomestnykh, Vladimir N.; Tesleva, Elena P.

    2010-01-01

    Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound

  8. Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.

    Science.gov (United States)

    Panek, Paweł T; Jacob, Christoph R

    2016-08-18

    Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra.

  9. Anharmonic model for high-Tc superconductors

    International Nuclear Information System (INIS)

    Plakida, N.M.; Aksenov, V.L.; Drechsler, S.L.

    1987-01-01

    A considerable enhancement of the superconducting transition temperature T c in perovskite oxide compounds is explained in the framework of the anharmonic model for superconductors with structurally unstable lattices. It is shown that anharmonic local excitations with fluctuation amplitudes much greater than harmonic vibrations amplitudes lead to a considerable enhancement of the coupling constant λ. The obtained estimations for T c are in agreement with experimental data for La(Y)BaCuO systems

  10. Transformations of griseofulvin in strong acidic conditions--crystal structures of 2'-demethylgriseofulvin and dimerized griseofulvin.

    Science.gov (United States)

    Leśniewska, Barbara; Jebors, Said; Coleman, Anthony W; Suwińska, Kinga

    2012-03-01

    The structure of griseofulvic acid, C16H15ClO6, at 100 K has orthorhombic (P2(1)2(1)2) symmetry. It is of interest with respect to biological activity. The structure displays intermolecular O-H...O, C-H...O hydrogen bonding as well as week C-H...pi and pi...pi interactions. In strong acidic conditions the griseofulvin undergoes dimerization. The structure of dimerized griseofulvin, C34H32C12O12 x C2H6O x H2O, at 100 K has monoclinic (P2(1)) symmetry. The molecule crystallized as a solvate with one ethanol and one water molecule. The dimeric molecules form intermolecular O-H...O hydrogen bonds to solvents molecules only but they interact via week C-H...O, C-H...pi, C-Cl...pi and pi...pi interactions with other dimerized molecules.

  11. An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library

    Science.gov (United States)

    Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Carrete, Jesús; Toher, Cormac; de Jong, Maarten; Asta, Mark; Fornari, Marco; Nardelli, Marco Buongiorno; Curtarolo, Stefano

    2017-10-01

    One of the most accurate approaches for calculating lattice thermal conductivity, , is solving the Boltzmann transport equation starting from third-order anharmonic force constants. In addition to the underlying approximations of ab-initio parameterization, two main challenges are associated with this path: high computational costs and lack of automation in the frameworks using this methodology, which affect the discovery rate of novel materials with ad-hoc properties. Here, the Automatic Anharmonic Phonon Library (AAPL) is presented. It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis, it solves the Boltzmann transport equation to obtain , and allows a fully integrated operation with minimum user intervention, a rational addition to the current high-throughput accelerated materials development framework AFLOW. An "experiment vs. theory" study of the approach is shown, comparing accuracy and speed with respect to other available packages, and for materials characterized by strong electron localization and correlation. Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements.

  12. Quantum theory of anharmonic oscillators

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kyoto Univ.

    1983-01-01

    This in investigation of an anharmonic oscillator characterized by the potential ωsub(o) 2 /2 g 2 + lambda'q 4 . By using the equations of motion and the relations obtained by evaluating where O is an arbitrary operator, H is our total Hamiltonian and |i> and |j> are exact eigenstates of H, we derive an exact recurrence formula. This formula allows us to express tau-functions with a higher power of the variables through tau-functions with a lower power of the variables and energy eigenvalues. In this way we derive several exact relations, which are, in a sense, generalizations of the virial theorem and sum rules. These exact relations are the central equations of this paper. On the basis of these exact relations we propose our 'nearest neighbour level' (N.N.L.) approximation, which seems to provide a good approximation scheme. We can also use our exact relations to test the validity of various approximation methods, and as an example, we discuss the 'New-Tamm-Dancoff' (N.T.D)-type of approximation in detail. (Author)

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Self-pumped passive ring mirror in crystals with strong fanning

    Science.gov (United States)

    Bogodaev, N. V.; Zozulya, A. A.; Ivleva, Lyudmila I.; Korshunov, A. S.; Mamaev, A. V.; Polozkov, N. M.

    1992-05-01

    Most photorefractive crystals suitable for four-wave systems of phase self-conjugation and mutual conjugation have a fairly high level of light-induced scattering (fanning). This may imply that the nonlinearity of a crystal is too strong for optimal operation and a reduction in this nonlinearity would improve the characteristics. This statement is illustrated theoretically and experimentally using the geometry of a loop parametric oscillator as an example.

  14. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  15. Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator

    International Nuclear Information System (INIS)

    Kibler, M.; Negadi, T.

    1984-01-01

    This work establishes, by means of the Kustaanheimo-Stiefel transformation, a connection between two branches of theoretical physics which are, in present times, the object of numerous studies: the quantum mechanics of anharmonic oscillators and of the hydrogen atom in a (strong) homogeneous and constant electromagnetic field

  16. Anharmonic, dynamic and functional level effects in far-infrared spectroscopy: Phenol derivatives

    Science.gov (United States)

    Bakker, Daniël J.; Ong, Qin; Dey, Arghya; Mahé, Jérôme; Gaigeot, Marie-Pierre; Rijs, Anouk M.

    2017-12-01

    The far-infrared (far-IR) spectra of phenol and four ortho-substituted phenol derivatives, including three deuterated analogs, are presented. These spectra, measured using the free electron laser FELIX, are used to compare the performance of Born-Oppenheimer Molecular Dynamics (BOMD) with several commonly used levels of static density functional theory in the far-IR region. The molecules studied here form intramolecular hydrogen bonds of different strengths (except phenol), display diverse degrees of flexibility, and the OH moieties of the molecules provide large amplitude, anharmonic OH torsional modes. Since several of the molecules contain two OH groups, strong anharmonic couplings can also be present. Moreover, the experimental far-IR spectra of phenol and saligenin show overtones and combination bands as proven by the measurements of their deuterated analogs. All these characteristics of the molecules enable us to test the performance of the applied levels of theory on different complicating factors. Briefly summarized, both the strength of the hydrogen bond and molecular rigidity do not significantly influence the agreement between theory and experiment. All applied theoretical methods have difficulties to consistently predict modes that include the anharmonic OH torsional motion, resulting in overestimated intensities and frequencies. Coupling between two OH functional groups provides an additional challenge for theories, as seen for catechol. The various employed theoretical methods are found to complement each other, showing good results for complex harmonic modes in the case of static B3LYP-D3, while improved results are observed for anharmonic modes, including the OH torsional modes and their couplings, in the case of BOMD. Additionally, BOMD calculates the relative intensities better than the other theories. VPT2 reproduces weak anharmonic modes well, but it overestimates shifts and intensities for strong anharmonic modes.

  17. Phonon density of states and anharmonicity of UO2

    Science.gov (United States)

    Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.

    2014-03-01

    Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.

  18. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar ...

  19. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    ... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.

  20. Anharmonic Bend-Stretch Coupling in Water

    NARCIS (Netherlands)

    Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2006-01-01

    Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.

  1. Effective harmonic oscillator description of anharmonic molecular ...

    Indian Academy of Sciences (India)

    Administrator

    function as a harmonic oscillator eigenfunction with the centroid and width parameter as variational para- eters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in ...

  2. Scattering of acoustic waves from a surface in the presence of an anharmonic interface

    DEFF Research Database (Denmark)

    Kulak, A.; Lodziana, Zbigniew; Srokowski, T.

    2002-01-01

    Energy transfer coefficient (analogue of LDOS) and aperiodicity index are defined to characterise the nonlinear response and the surface resonances in a thin layer separated from the underlying bulk crystal by an anharmonic interface. Regions of periodic, aperiodic and intermittent motion of the ...... of the system are found by analysing the electric circuit obeying the same delayed differential equations. (C) 2002 Elsevier Science B.V. All rights reserved....

  3. Self-pumped passive ring mirror in crystals with strong fanning

    Science.gov (United States)

    Bogodaev, Nickolai V.; Ivleva, Ludmila I.; Korshunov, A. S.; Mamaev, A. V.; Polozkov, N. N.; Zozulya, Aleksei A.

    1992-12-01

    Most photorefractive crystals, suitable for the realization of self-pumped four-wave mixing phase conjugation and mutual conjugation geometries, are characterized by the high level of fanning. In some cases it may mean that the nonlinearity of these crystals is already too large to be good and a decrease in the value of a nonlinear coupling coefficient may result in an improved performance of these geometries. This point is illustrated using geometry of a self- pumped ring mirror.

  4. Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; van Driel, A. Floris

    2007-01-01

    We observe experimentally that ensembles of quantum dots in three-dimensional 3D photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays...... parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals....

  5. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal

    Science.gov (United States)

    Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.

    2010-01-01

    An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.

  6. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... crystal 16 and an optical field. The obtained coherence times are in the millisecond range and indicate that Coulomb crystals positioned inside optical cavities are promising for realizing a variety of quantum-information devices, including quantum repeaters 12 and quantum memories for light 17, 18...... . Moreover, cavity optomechanics 19 using Coulomb crystals might enable the exploration of similar phenomena investigated using more traditional solids, such as micro-mechanical oscillators 20 ....

  7. The curious case of cuprous chloride: Giant thermal resistance and anharmonic quasiparticle spectra driven by dispersion nesting

    Science.gov (United States)

    Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas

    2017-09-01

    Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.

  8. Quantum anharmonic oscillator: The airy function approach

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia); University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); AlFaify, S. [King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413, Asseer (Saudi Arabia)

    2014-05-15

    New and simple numerical method is being reported to solve anharmonic oscillator problems. The method is setup to approach the real potential V(x) of the anharmonic oscillator system as a piecewise linear potential u(x) and to solve the Schrödinger equation of the system using the Airy function. Then, solutions continuity conditions lead to the energy quantification condition, and consequently, the energy eigenvalues. For testing purpose, the method was applied on the sextic and octic oscillators systems. The proposed method is found to be realistic, computationally simple, and having high degrees of accuracy. In addition, it can be applied to any form of potential. The results obtained by the proposed method were seen closely agreeing with results reached by other complicated methods.

  9. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector

    Science.gov (United States)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration

    2017-06-01

    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  10. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg

    2017-06-11

    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  11. Slab thickness tuning approach for solid-state strong coupling between photonic crystal slab nanocavity and a quantum dot.

    Science.gov (United States)

    Chen, Gengyan; Liu, Jing-Feng; Jiang, Haoxiang; Zhuo, Xiao-Lu; Yu, Yi-Cong; Jin, Chongjun; Wang, Xue-Hua

    2013-04-23

    The quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximatively proportional to the slab thickness. As compared with the previous structure finely optimized by introducing displacement of the air holes, via tuning the slab thickness, the quality factor can be enhanced by about 22%, and the ratio between the coupling coefficient and the nanocavity decay rate can be enhanced by about 13%. This can remarkably enhance the capability of the photonic crystal slab nanocavity for realizing the strong coupling interaction. The slab thickness tuning approach is feasible and significant for the experimental fabrication of the solid-state nanocavities.

  12. Anharmonic thermal vibrations of be metal found in the MEM nuclear density map

    International Nuclear Information System (INIS)

    Takata, Masaki; Sakata, Makoto; Larsen, F.K.; Kumazawa, Shintaro; Iversen, B.B.

    1993-01-01

    A direct observation of the thermal vibrations of Be metal was performed by the Maximum Entropy Method (MEM) using neutron single crystal data. In the previous study, the existence of the small but significant cubic anharmonicity of Be has been found by the conventional least squares refinement of the observed structure factors [Larsen, Lehmann and Merisalo (1980) Acta Cryst. A36, 159-163]. In the present study, the same data were used for the MEM analysis which are comprised of 48 reflections up to sinθ/λ = 1.41A -1 in order to obtain the high resolution nuclear density of Be without using any thermal vibrational model. It was directly visible in the MEM map that not only the cubic terms but also quartic anharmonicities exist in the thermal vibrations of Be nuclei. In order to evaluate thermal parameters of Be including anharmonic terms quantitatively, the least squares refinement of the effective one-particle potential (OPP) parameters up to quartic term was carried out by using the MEM nuclear densities around atomic sites as the data set to be fitted. It was found that the present treatment has a great advantage to decide the most appropriate model of OPP by visually comparing the model with MEM density map. As a result of the least squares refinement, the anharmonic thermal parameters are obtained as α 33 = -0.340(5)[eV/A 3 ], α 40 = 0, β 20 = 9.89(1)[eV/A 4 ] and γ 00 = 0. No other anharmonic term was significant. (author)

  13. Microwave dielectric tangent losses in KDP and DKDP crystals

    Indian Academy of Sciences (India)

    properties of KDP-type crystals. In the present work, we shall consider the third- and fourth-order phonon anharmonic interaction terms [12,13] into pseudospin lattice coupled mode (PLCM) model of KH2PO4 crystal. The phonon anharmonic interactions are found to be very important in explaining dielectric, thermal and ...

  14. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  15. Near IR overtone spectral investigations of cyclohexanol using local mode model--evidence for variation of anharmonicity with concentration due to hydrogen bonding.

    Science.gov (United States)

    John, Usha; Nair, K P R

    2005-09-01

    The near infrared vibrational overtone absorption spectrum of liquid phase cyclohexanol in carbon tetrachloride in different concentrations are examined in the region Deltav=2, 3 and 4. The free and bonded OH local mode mechanical frequency values and anharmonicity values obtained from fitting the overtones are analysed. The observation supports the conclusions drawn from earlier experimental studies on anharmonicity variation of OH-stretching vibrations of alcohols due to intermolecular hydrogen bonding. Our observation is also in agreement with the ab initio calculations on water dimer and trimer. Mechanical anharmonicity of bonded OH-stretching bands tends to increase as a consequence of strong hydrogen bonding at higher concentrations.

  16. Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.

  17. Including Torsional Anharmonicity in Canonical and Microcanonical Reaction Path Calculations.

    Science.gov (United States)

    Zheng, Jingjing; Truhlar, Donald G

    2013-07-09

    We reformulate multistructural variational transition state theory by removing the approximation of calculating torsional anharmonicity only at stationary points. The multistructural method with torsional anharmonicity is applied to calculate the reaction-path free energy of the hydrogen abstraction from the carbon-1 position in isobutanol by OH radical. The torsional potential anharmonicity along the reaction path is taken into account by a coupled torsional potential. The calculations show that it can be critical to include torsional anharmonicity in searching for canonical and microcanonical variational transition states. The harmonic-oscillator approximation fails to yield reasonable free energy curves along the reaction path.

  18. Toroidal p-branes, anharmonic oscillators and (hyper)elliptic solutions

    Science.gov (United States)

    Zheltukhin, A. A.

    2012-05-01

    Exact solvability of brane equations is studied, and a new U(1)×U(1)×⋯×U(1) invariant anzats for the solution of p-brane equations in D=(2p+1)-dimensional Minkowski space is proposed. The reduction of the p-brane Hamiltonian to the Hamiltonian of p-dimensional relativistic anharmonic oscillator with the monomial potential of the degree equal to 2 p is revealed. For the case of degenerate p-torus with equal radii it is shown that the p-brane equations are integrable and their solutions are expressed in terms of elliptic ( p=2) or hyperelliptic ( p>2) functions. The solution describes contracting p-brane with the contraction time depending on p and the brane energy density. The toroidal brane elasticity is found to break down linear Hooke law as it takes place for the anharmonic elasticity of smectic liquid crystals.

  19. Phonon driven proton transfer in crystals with short strong hydrogen bonds

    NARCIS (Netherlands)

    Fontaine-Vive, F.; Johnson, M.R.; Kearley, G.J.; Cowan, J.A.; Howard, J.A.K.; Parker, S.F.

    2006-01-01

    Recent work on understanding why protons migrate with increasing temperature in short, strong hydrogen bonds is extended here to three more organic, crystalline systems. Inelastic neutron scattering and density functional theory based simulations are used to investigate structure, vibrations, and

  20. Observation of Strong Coupling Through Transmission Modification of a Cavity-Coupled Photonic Crystal Waveguide

    Science.gov (United States)

    2011-03-14

    Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014...are shifted by 0.176a, 0.024a and 0.176a respectively, where a is the lattice constant, in order to improve the overall Q. The lattice parameter a is...spectrum in order to calculate the vacuum Rabi splitting (VRS) which is given by 0.09 nm and corresponds to a frequency splitting of Δ = 31.5 GHz

  1. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrically tunable strong light-matter coupling in a transition metal dichalcogenide monolayer embedded in a plasmonic crystal cavity

    Science.gov (United States)

    Scuri, Giovanni; Zhou, You; High, Alexander; Dibos, Alan; de Greve, Kristiaan; Polking, Mark; Juaregui, Luis; Wild, Dominik; Joe, Andrew; Pistunova, Kateryna; Lukin, Mikhail; Kim, Philip; Park, Hongkun

    Two-dimensional transition-metal dichalcogenide (TMDC) monolayers exhibit direct bandgap excitons with large binding energy. The optical response of TMDCs is electrically tunable over a broad wavelength range, making these 2D materials promising candidates for optoelectronic devices. In this work, we enhance exciton-plasmon coupling by embedding a single layer of tungsten diselenide (WSe2) into a plasmonic crystal cavity, which confines surface plasmon polaritons in an analogous manner to photonic crystal cavities. We observe strong light-matter interactions and the formation of microcavity polaritons when the cavity mode is on resonance with the exciton absorption in WSe2. Using the electrostatically controllable response of such excitons, we also demonstrate tunable vacuum Rabi splitting in such a system.

  3. Polaron dynamics in a two-dimensional anharmonic Holstein model

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Juul Rasmussen, Jens

    1998-01-01

    A generalized two-dimensional semiclassical :Holstein model with a realistic on-site potential that contains anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to have a restricting core. The core plays the role of an effective saturation...

  4. A theory of the strain-dependent critical field in Nb3Sn, based on anharmonic phonon generation

    CERN Document Server

    Valentinis, D F; Bordini, B; Rossi, L

    2014-01-01

    We propose a theory to explain the strain dependence of the critical properties in A15 superconductors. Starting from the strong-coupling formula for the critical temperature, and assuming that the strain sensitivity stems mostly from the electron-phonon alpha F-2 function, we link the strain dependence of the critical properties to a widening of alpha F-2. This widening is attributed to the nonlinear generation of phonons, which takes place in the anharmonic deformation potential induced by the strain. Based on the theory of sum- and difference-frequency wave generation in nonlinear media, we obtain an explicit connection between the widening of alpha F-2 and the anharmonic energy. The resulting model is fit to experimental datasets for Nb3Sn, and the anharmonic energy extracted from the fits is compared with first-principles calculations.

  5. Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Sawrab Chowdhury

    2017-04-01

    Full Text Available In this article, porous core porous cladding photonic crystal fiber (P-PCF has been proposed for aqueous analytes sensing applications. Guiding properties of the proposed P-PCF has been numerically investigated by utilizing the full vectorial finite element method (FEM. The relative sensitivity and confinement loss are obtained by varying distinct geometrical parameters like the diameter of air holes, a pitch of the core and cladding region over a wider range of wavelength. The proposed P-PCF is organized with five rings air hole in the cladding and two rings air hole in a core territory which maximizes the relative sensitivity expressively and minimizes confinement loss depressively compare with the prior-PCF structures. After completing all investigations, it is also visualized that the relative sensitivity is increasing with the increment of the wavelength of communication band (O + E + S + C + L + U. Higher sensitivity is gained by using higher band for all applied liquids. Finally the investigating effects of different structural parameters of the proposed P-PCF are optimized which shows the sensitivity of 60.57%, 61.45% and 61.82%; the confinement loss of 8.71 × 10−08 dB/m, 1.41 × 10−10 dB/m and 6.51 × 10−10 dB/m for Water (n = 1.33, Ethanol (n = 1.354 and Benzene (n = 1.366 respectively at 1.33 μm wavelength. The optimized P-PCF with higher sensitivity and lower confinement loss has high impact in the area of the chemical as well as gas sensing purposes. Keywords: Porous shaped PCF, Sensitivity, Optical sensing, Liquid sensor, Confinement loss

  6. Multi-photon dressing of an anharmonic superconducting many-level quantum circuit

    Energy Technology Data Exchange (ETDEWEB)

    Braumueller, Jochen; Cramer, Joel; Schloer, Steffen; Rotzinger, Hannes; Radtke, Lucas; Lukashenko, Alexander; Yang, Ping; Skacel, Sebastian; Probst, Sebastian; Weides, Martin [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); Marthaler, Michael; Guo, Lingzhen [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Festkoerperphysik, 76131 Karlsruhe (Germany); Ustinov, Alexey V. [Karlsruhe Institute of Technology (KIT), Physikalisches Institut, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation)

    2015-07-01

    We report on the investigation of a superconducting anharmonic multi-level circuit that is coupled to a harmonic readout resonator. We observe multi-photon transitions via virtual energy levels of our system up to the fifth excited state. The back-action of these higher-order excitations on our readout device is analyzed quantitatively and demonstrated to be in accordance with theoretical expectation. By applying a strong microwave drive we achieve multi-photon dressing of our system which is dynamically coupled by a weak probe tone. The emerging higher-order Rabi sidebands and associated Autler-Townes splittings involving up to five levels of the investigated anharmonic circuit are observed. Experimental results are in good agreement with master equation simulations.

  7. Anharmonic potential in the oscillator representation

    International Nuclear Information System (INIS)

    Dineykhan, M.; Efimov, G.V.

    1994-01-01

    In the non relativistic and relativized Schroedinger equation the Wick ordering method called the oscillator representation is proposed to calculate the energy spectrum for a wide class of potentials allowing the existence of a bound state. The oscillator representation method gives a unique regular way to describe and calculate the energy levels of ground as well as orbital and radial excitation states for a wide class of potentials. The results of the zeroth approximation oscillator representation are in good agreement with the exact values for the anharmonic potentials. The oscillator representation method was applied to the relativized Schroedinger equation too. The perturbation series converges fairly fast, i.e., the highest perturbation corrections over the interaction Hamiltonian are small enough. 29 refs.; 4 tabs. (author)

  8. Dynamic of cold-atom tips in anharmonic potentials

    Science.gov (United States)

    Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József

    2016-01-01

    Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505

  9. Time evolution of gibbs states for an anharmonic lattice

    International Nuclear Information System (INIS)

    Marchioro, C.; Pellegrinotti, A.; Suhov, Y.; Pulvirenti, M.; Rome Univ.

    1979-01-01

    In this paper we study the time evolution of a regular class of states of an infinite classical system of anharmonic oscillators. The conditional probabilities are investigated and an explicit form for these is given. (orig.) [de

  10. Generalized theory of spin fluctuations in itinerant electron magnets: Crucial role of spin anharmonicity

    International Nuclear Information System (INIS)

    Solontsov, A.

    2015-01-01

    The paper critically overviews the recent developments of the theory of spatially dispersive spin fluctuations (SF) in itinerant electron magnetism with particular emphasis on spin-fluctuation coupling or spin anharmonicity. It is argued that the conventional self-consistent renormalized (SCR) theory of spin fluctuations is usually used aside of the range of its applicability actually defined by the constraint of weak spin anharmonicity based on the random phase approximation (RPA) arguments. An essential step in understanding SF in itinerant magnets beyond RPA-like arguments was made recently within the soft-mode theory of SF accounting for strong spin anharmonicity caused by zero-point SF. In the present paper we generalize it to apply for a wider range of temperatures and regimes of SF and show it to lead to qualitatively new results caused by zero-point effects. - Highlights: • We review the spin-fluctuation theory of itinerant electron magnets with account of zero-point effects. • We generalize the existing theory to account for different regimes of spin fluctuations. • We show that zero-point spin fluctuations play a crucial role in both low- and high-temperature properties of metallic magnets. • We argue that a new scheme of calculation of ground state properties of magnets is needed including zero-point effects

  11. Effects of hypersonic field and anharmonic interactions on channelling radiation

    International Nuclear Information System (INIS)

    George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G

    2007-01-01

    The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably

  12. Ground state energy values and moments of the anharmonic oscillator

    International Nuclear Information System (INIS)

    Seetharaman, M.; Raghavan, Sekhar; Subba Rao, G.

    1981-01-01

    It is shown that a very satisfactory estimate of the energy values (for all values of the anharmonicity) and moments of the ground state of the quartic anharmonic oscillator can be obtained in the variational method, by considering trial wavefunctions which have the correct asymptotic properties. The results derived with a single variational parameter are a considerable improvement over the recent results of C.A. Ginsburg and E.W. Montroll (1978). (author)

  13. Solution of the anharmonic quartic potential oscillator problem

    Science.gov (United States)

    Sánchez, A. Martín; Bejarano, J. Díaz; Marzal, D. Caceres

    1993-02-01

    The problem of the one-dimensional generalized anharmonic quartic potential oscillator is studied in full. Solutions of the classical equations of motion for the different types of potential are given in terms of the Jacobi elliptic functions, in both classically allowed and forbidden regions of each potential for physically interesting initial conditions. The solutions and some of their properties are also given by means of bilinear transformations of the corresponding anharmonic symmetric oscillator solutions for similar regions or initial conditions.

  14. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  15. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  16. High Pressure, Anharmonic Thermoelasticity of Tantalum

    Science.gov (United States)

    Orlikowski, Daniel; Soderlind, Per; Moriarty, John A.

    2003-03-01

    The elastic moduli for bcc tantalum have been investigated over broad ranges of pressure (10 Mbar) and temperature (12,000 K), using first-principles methods that account for the cold, electron- and ion-thermal contributions. In this approach, the full potential linear muffin-tin orbital (FP-LMTO) method for the cold and electron-thermal contributions is combined with closely coupled atomistic simulations for the ion-thermal contribution, using quantum-based interatomic potentials derived from model generalized pseudopotential theory (MGPT) for the latter. While the harmonic part of the ion-thermal contribution can be readily obtained from strain derivatives of quasi-harmonic phonons, we have developed a more general Monte Carlo (MC) simulation method for the corresponding anharmonic part. The MC method directly calculates the elastic moduli through a fluctuation formula comprised of averages in the canonical distribution. Available results will be compared with ultrasonic measurements and diamond-anvil-cell compression experiments as functions of temperature and pressure. Also, the importance of these results in context to larger-scale constitutive models like the Steinberg-Guinan strength model will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

  17. Electron spin resonance and nuclear magnetic resonance of sodium macrostructures in strongly irradiated NaCl-K crystals: Manifestation of quasi-one-dimensional behavior of electrons

    NARCIS (Netherlands)

    Cherkasov, FG; Mustafin, RG; L'vov, SG; Denisenko, GA; den Hartog, HW; Vainshtein, D. I.

    1998-01-01

    Data from an investigation of electron spin resonance and nuclear magnetic resonance of NaCl-K (similar to 1 mole%) crystals strongly irradiated with electrons imply the observation of a metal-insulator transition with decreasing temperature and the manifestation of quasi-one-dimensional electron

  18. Anharmonic effects in the quantum cluster equilibrium method

    Science.gov (United States)

    von Domaros, Michael; Perlt, Eva

    2017-03-01

    The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.

  19. Center deviation of localized modes in a one-dimension anharmonic single impurity chain

    Science.gov (United States)

    Chen, Xuan-Lin; Zhu, Gang-Bei; Jiang, Ze-Hui; Yang, Yan-Qiang

    2018-04-01

    A 1D anharmonic chain with a single impurity particle is used to study the center deviation and stability of the localized modes. The displacement patterns of the localized modes for a variable impurity mass and anharmonic parameter are studied. The pattern center is shifted away from the impurity with decreasing anharmonic parameter for both symmetric and asymmetric anharmonic impurity modes. In the limit of a heavy-mass impurity, the energy localization is constrained to the three particles nearest to the impurity.

  20. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  1. Anharmonic asymmetric oscillator: A classical and quantum treatment

    Science.gov (United States)

    Bejarano, J. Díaz; Sánchez, A. Martin; Rodríguez, C. Miró

    1986-11-01

    The nonrelativistic anharmonic-asymmetrical-oscillator (AAO) is studied in full. The classical equation of motion is solved using Jacobi elliptic functions which have both real and imaginary periods. The imaginary period is connected with the imaginary part of the energy in quantum mechanics. The resonances (Siegert states) are calculated in the JWKB approximation.

  2. Methyl group dynamics and the onset of anharmonicity in myoglobin.

    Science.gov (United States)

    Krishnan, M; Kurkal-Siebert, V; Smith, Jeremy C

    2008-05-01

    The role of methyl groups in the onset of low-temperature anharmonic dynamics in a crystalline protein at low temperature is investigated using atomistic molecular dynamics (MD) simulation. Anharmonicity appears at approximately 150 K, far below the much-studied solvent-activated dynamical transition at approximately 220 K. A significant fraction of methyl groups exhibit nanosecond time scale rotational jump diffusion at 150 K. The splitting and shift in peak position of both the librational band (around 100 cm(-1)) and the torsional band (around 270-300 cm(-1)) also differ significantly among methyl groups, depending on the local environment. The simulation results provide no evidence for a correlation between methyl dynamics and solvent exposure, consistent with the hydration-independence of the low-temperature anharmonic dynamics observed in neutron scattering experiments. The calculated proton mean-square fluctuation and methyl NMR order parameters show a systematic nonlinear dependence on the rotational barrier which can be described using model functions. The methyl groups that exhibit many rotational excitations are located near xenon cavities, suggesting that cavities in proteins act as activation centers of anharmonic dynamics. The dynamic heterogeneity and the environmental sensitivity of motional parameters and low-frequency spectral bands of CH(3) groups found here suggest that methyl dynamics may be used as a probe to investigate the relation between low-energy structural fluctuations and packing defects in proteins.

  3. The Rocker (An Easy Anharmonic Oscillator for Classroom Demonstration)

    Science.gov (United States)

    Lieberherr, Martin

    2013-01-01

    Every instructor should know some easy examples of anharmonic oscillations. The rocking of an empty wine bottle or a slender beer glass is one of those: The angle is not a sinusoidal function of time and the period is not independent of the amplitude, not even for small amplitudes. But care has to be taken that the glass does not slip or rotate…

  4. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    Science.gov (United States)

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  5. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    Science.gov (United States)

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  6. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    International Nuclear Information System (INIS)

    Lewins, C. J.; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E.; Edwards, P. R.; Martin, R. W.

    2014-01-01

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  7. Fluctuations and Anharmonicity in Lead Iodide Perovskites from Molecular Dynamics Supercell Simulationss

    KAUST Repository

    Carignano, Marcelo Andrés

    2017-09-05

    We present a systematic study based on first principles molecular dynamics simulations of lead iodide perovskites with three different cations, including methylammonium (MA), formamidinium (FA) and cesium. Using the high temperature perovskite structure as a reference, we investigate the instabilities that develop as the material is cooled down to 370 K. All three perovskites display anharmonicity in the motion of the iodine atoms, with the stronger effect observed for the MAPbI$_3$ and CsPbI$_3$. At high temperature, this behavior can be traced back to the reduced effective size of the Cs$^+$ and MA$^+$ cations. MAPbI$_3$ undergoes a spontaneous phase transition within our simulation model driven by the dipolar interaction between neighboring MA cations as the temperature is decreased from 450 K. The reverse transformation from tetragonal to cubic is also monitored through the large distribution of the octahedral tilting angles accompanied by an increase in the anharmonicity of the iodine atoms motion. Both MA and FA hybrid perovskites show a strong coupling between the molecular orientations and the local lattice deformations, suggesting mixed order-disorder/displacive characters of the high temperature phase transitions.

  8. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  9. Wave-dispersive x-ray spectrometer for simultaneous acquisition of several characteristic lines based on strongly and accurately shaped Ge crystal

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Nakajima, Kazuo; Fujiwara, Kozo; Nishikata, Susumu

    2008-01-01

    Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers

  10. Dirac bound states of anharmonic oscillator in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)

    2014-02-15

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.

  11. Dirac bound states of anharmonic oscillator in external fields

    International Nuclear Information System (INIS)

    Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.

    2014-01-01

    We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method

  12. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flakus, Henryk T., E-mail: flakus@ich.us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland); Tyl, Aleksandra; Jablonska, Magdalena [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland)

    2009-10-16

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d{sub 2}, d{sub 8} and d{sub 10} deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the {nu}{sub O-H} and the {nu}{sub O-D} bands. The two-branch fine structure pattern of the {nu}{sub O-H} and {nu}{sub O-D} bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic 'self-organization' effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  13. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Science.gov (United States)

    Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena

    2009-10-01

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  14. The dynamics of a thermal non-equilibrium anharmonic oscillator

    OpenAIRE

    Nachbagauer, Herbert

    1995-01-01

    We propose an non-standard method to calculate non-equilibrium physical observables. Considering the generic example of an anharmonic quantum oscillator, we take advantage of the fact that the commutator algebra of second order polynomials in creation/annihilation operators closes. We solve the von~Neumann equation for the density-operator exactly in the mean field approximation and study the time evolution of the particle number and the expectation value .

  15. Fragility, anharmonicity and anelasticity of silver borate glasses

    International Nuclear Information System (INIS)

    Carini, Giovanni; Carini, Giuseppe; D'Angelo, Giovanna; Tripodo, Gaspare; Bartolotta, Antonio; Marco, Gaetano Di

    2006-01-01

    The fragility and the anharmonicity of (Ag 2 O) x (B 2 O 3 ) 1-x borate glasses have been quantified by measuring the change in the specific heat capacity at the glass transition temperature T g and the room-temperature thermodynamic Grueneisen parameter. Increasing the silver oxide content above X = 0.10 leads to an increase of both the parameters, showing that a growing fragility of a glass-forming liquid is predictive of an increasing overall anharmonicity of its glassy state. The attenuation and velocity of ultrasonic waves of frequencies in the range of 10-70 MHz have also been measured in silver borate glasses as a function of temperature between 1.5 and 300 K. The experimental data reveal anelastic behaviours which are governed by (i) quantum-mechanical tunnelling below 20 K (ii) thermally activated relaxations between 20 and 200 K and (iii) vibrational anharmonicity at even higher temperatures. Evaluation of tunnelling (C) and relaxation (C * ) strengths shows that C is independent of the structural changes affecting the borate network with increasing metal oxide content and is at least one order of magnitude smaller than C * . The latter observation implies that only a small fraction of the locally mobile defects are subjected to tunnelling motions

  16. From crystal to glass-like thermal conductivity in crystalline minerals.

    Science.gov (United States)

    Bouyrie, Y; Candolfi, C; Pailhès, S; Koza, M M; Malaman, B; Dauscher, A; Tobola, J; Boisron, O; Saviot, L; Lenoir, B

    2015-08-14

    The ability of some materials with a perfectly ordered crystal structure to mimic the heat conduction of amorphous solids is a remarkable physical property that finds applications in numerous areas of materials science, for example, in the search for more efficient thermoelectric materials that enable to directly convert heat into electricity. Here, we unveil the mechanism in which glass-like thermal conductivity emerges in tetrahedrites, a family of natural minerals extensively studied in geology and, more recently, in thermoelectricity. By investigating the lattice dynamics of two tetrahedrites of very close compositions (Cu12Sb2Te2S13 and Cu10Te4S13) but with opposite glasslike and crystal thermal transport by means of powder and single-crystal inelastic neutron scattering, we demonstrate that the former originates from the peculiar chemical environment of the copper atoms giving rise to a strongly anharmonic excess of vibrational states.

  17. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime...

  18. Systematic Studies on Anharmonicity of Rattling Phonons in Type I Clathrates by Low Temperature Heat Capacity Measurements

    Science.gov (United States)

    Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration

    2014-03-01

    Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.

  19. Polaronic Nonmetal-Correlated Metal Crossover System β'-CuxV2O5 with Anharmonic Copper Oscillation and Thermoelectric Conversion Performance

    Science.gov (United States)

    Onoda, Masashige; Sato, Takuma

    2017-12-01

    The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.

  20. Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V2O3

    Science.gov (United States)

    Poteryaev, Alexander I.; Tomczak, Jan M.; Biermann, Silke; Georges, Antoine; Lichtenstein, Alexander I.; Rubtsov, Alexey N.; Saha-Dasgupta, Tanusri; Andersen, Ole K.

    2007-08-01

    We present a study of the paramagnetic metallic and insulating phases of vanadium sesquioxide by means of the Nth order muffin-tin orbital implementation of density functional theory combined with dynamical mean-field theory. The transition is shown to be driven by a correlation-induced enhancement of the crystal-field splitting within the t2g manifold, which results in a suppression of the hybridization between the a1g and egπ bands. We discuss the changes in the effective quasiparticle band structure caused by the correlations and the corresponding self-energies. At temperatures of about 400K , we find the a1g orbital displays coherent quasiparticle behavior, while a large imaginary part of the self-energy and broad features in the spectral function indicate that the egπ orbitals are still far above their coherence temperature. The local spectral functions are in excellent agreement with recent bulk sensitive photoemission data. Finally, we also make a prediction for angle-resolved photoemission experiments by calculating momentum-resolved spectral functions.

  1. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  2. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  3. Anharmonicity effects in the frictionlike mode of graphite

    Science.gov (United States)

    Menéndez, C.; Lobato, A.; Abbasi-Pérez, D.; Fernández-Núñez, J.; Baonza, V. G.; Recio, J. M.

    2016-04-01

    Graphite is a prototypical solid lubricant demanding a thorough understanding of its low-friction behavior. The E2 g(1) Raman active vibrational mode of graphite is associated with the rigid-layer relative movement of its graphene sheets. Thus, this mode can provide a good means of exploring the low resistance of graphene layers to slip with respect to each other. To take advantage of this fact, the anharmonicity of the E2 g(1) mode has to be carefully characterized and evaluated since the atomic arrangement of carbon atoms in the ambient condition ABA stacking of graphite evidences potential asymmetry. The calculated one-dimensional energetic profile of the E2 g(1) mode reveals this local anisotropy around the energy minima and can be microscopically interpreted in terms of electron density interactions. Morse-type potentials accurately fit the energetic profiles at different interlayer separations, and provide simple analytical expressions for evaluating harmonic and anharmonic contributions to the Γ -point E2 g(1) frequency ωE2g(1 ) under a perturbative algebraic treatment. We quantify how the anharmonic contribution increases with the available energy (E ) at zero pressure, and how this contribution decreases as hydrostatic pressure (p ) or uniaxial stress is applied for a given available energy. The calculated ωE2g(1 )-p and ωE2g(1 )-E trends indicate an increasing (decreasing) of frictional forces in graphite with pressure (temperature). Our conclusions are supported by the good agreement of the calculated frequencies with existing Raman experiments under hydrostatic pressure conditions.

  4. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.

  5. The harmonic and anharmonic oscillator in classical stochastic electrodynamics

    International Nuclear Information System (INIS)

    Moore, S.M.; Ramirez, J.A.

    1981-01-01

    The sensitivity of the spectral density and the correlation of the harmonic oscillator to the charge distribution is examined in the context of classical stochastic electrodynamics. While the first exhibits some degree of sensitivity, the second exhibits none in the limit of zero charge. Thus, a comparison can be made with nonrelativistic quantum mechanics independent of the charge distribution. In the same spirit, the anharmonic oscillator is examined. In the limit of zero charge, it is shown that classical stochastic electrodynamics qualitatively agrees with quantum mechanics, but ambiguities make a quantitative comparison difficult. In an appendix, the oscillator approximation to the hydrogen atom is briefly discussed. (author)

  6. Random electrodynamics of nonlinear system: Part I -- Quartic anharmonic oscillator

    International Nuclear Information System (INIS)

    Sachidanandam, S.; Raghavacharyulu, I.V.V.

    1983-01-01

    A successful extension of the classical techniques of Random Electrodynamics to nonlinear microsystems is still not obtained in the literature. A beginning is made in this direction in this paper. The quartic anharmonic oscillator is studied as an illustrative example. By extending one of the approximation methods employed in the study of deterministic nonlinear systems to stochastic nonlinear systems, properties quite close to those given by the quantum mechanical description are obtained. The results partly dispel the doubts raised by Claverie and others in the validity of Random Electrodynamics in the description of nonlinear microsystems. (author)

  7. Nonlinear Absorptions in Liquids Studied by Laser - Anharmonic Thermal Gratings.

    Science.gov (United States)

    Zhu, Xiao-Rong

    In an absorbing medium, nonlinear absorption at a crossed-beam interference pattern creates, through absorptive heating, a temperature modulation containing harmonics of the spatial frequency of the excitation interference pattern, and the temperature dependence of the refractive index then results in an anharmonic volume index grating. A probe beam incident at the Bragg angle for a given spatial harmonic grating will produce a single diffraction order. By measuring the excitation intensity dependence of diffraction efficiencies at several Bragg angles, one can distinguish between various mechanisms of nonlinear absorption. In this dissertation, nonlinear absorption by organic molecules in liquids, with a focus on the sequential two-step absorption, has been studied by a laser-induced anharmonic thermal grating techniques. The nonlinear absorption of all-trans- beta-carotene, a biologically important natural product, in liquids is first investigated, and the results indicate that nonlinear absorption of beta -carotene in hexane is caused by the excited-state absorption, and while the saturation observed in chloroform is due to formation of a long-lived photoisomer. The effect of photoisomerization on saturated absorption of the cyanine laser dye DODCI in alcohols is then examined. It is found that the weaker absorption by the photoisomer and reverse -photoisomerization have made saturation of optical absorption of DODCI difficult. A general numerical method is developed for the first time to treat rigorously the problem of diffraction from anharmonic Gaussian volume gratings. It shows that the previously developed quasi-plane wave approximation (QPWA) theory is valid only at the weak saturation limit for a saturation absorption model. Finally, anomalous dependence of diffraction intensities on the excitation intensity for two tricarbocyanine dyes is observed. A careful analysis shows that it is caused by diffraction from multiple thermal gratings with a 180^ circ

  8. Concerning the use of the variational method in statistical mechanics of anharmonic sytems

    International Nuclear Information System (INIS)

    Tsallis, C.; Valle, J.W.F.

    1977-09-01

    The use of the variational method to discuss quantum statistical mechanics of anharmonic system requires, in order to be able to obtain the correct classical limit, the allowance for renormalization of every operator whose definition depends on the harmonic coefficients. The point is exhibited for a single anharmonic oscillator. In this particular case there is no need for mass renormalization [pt

  9. Low-lying spectra in anharmonic three-body oscillators with a strong short-range

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2003-01-01

    Roč. 36, č. 38 (2003), s. 9929-9941 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : three-body Schrodinger equation * limit * large repulsion Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003

  10. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: matrix infrared spectra and anharmonic frequency calculations.

    Science.gov (United States)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-28

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm(-1) region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  11. Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential

    Science.gov (United States)

    Hilou, Elaa; Du, Di; Kuei, Steve; Biswal, Sibani Lisa

    2018-02-01

    Interfacial characteristics are critical to various properties of two-dimensional (2D) materials such as band alignment at a heterojunction and nucleation kinetics in a 2D crystal. Despite the desire to harness these enhanced interfacial properties for engineering new materials, unexpected phase transitions and defects, unique to the 2D morphology, have left a number of open questions. In particular, the effects of configurational anisotropy, which are difficult to isolate experimentally, and their influence on interfacial properties are not well understood. In this work, we begin to probe this structure-thermodynamic relationship, using a rotating magnetic field to generate an anharmonic interaction potential in a 2D system of paramagnetic particles. At low magnetic field strengths, weakly interacting colloidal particles form non-close-packed, fluidlike droplets, whereas, at higher field strengths, crystallites with hexagonal ordering are observed. We examine spatial and interfacial properties of these 2D colloidal clusters by measuring the local bond orientation order parameter and interfacial stiffness as a function of the interaction strength. To our knowledge, this is the first study to measure the tunable interfacial stiffness of a 2D colloidal cluster by controlling particle interactions using external fields.

  12. Sound attenuation and anharmonic damping in solids with correlated disorder

    Directory of Open Access Journals (Sweden)

    W. Schirmacher

    2010-01-01

    Full Text Available We study via self-consistent Born approximation a model for sound waves in a disordered environment, in which the local fluctuations of the shear modulus G are spatially correlated with a certain correlation length ξ. The theory predicts an enhancement of the density of states over Debye's ω2 law (boson peak whose intensity increases for increasing correlation length, and whose frequency position is shifted downwards as 1/ξ. Moreover, the predicted disorder-induced sound attenuation coefficient Γ(k obeys a universal scaling law ξ Γ(k = f(kξ for a given variance of G. Finally, the inclusion of the lowest-order contribution to the anharmonic sound damping into the theory allows us to reconcile apparently contradictory recent experimental data in amorphous SiO2.

  13. Anharmonic Materials and Thermoelasticity at High Temperatures and Pressures

    Science.gov (United States)

    Orlikowski, Daniel

    2005-03-01

    For large-scale constitutive strength models, the shear modulus is typically assumed to be linearly dependent on temperature. However, for materials compressed along or beyond the Hugoniot into high pressure and temperature regimes where there is no experimental measurement or very little, accurate and validated models must be used. To this end, we have investigated and compared, as a function of temperature (Steinberg-Guinan strength model. These results give an indication that anharmonic effects are negligible in tantalum but not in molybdenum for high pressures and temperatures up to melt. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

  14. A quantum anharmonic oscillator model for the stock market

    Science.gov (United States)

    Gao, Tingting; Chen, Yu

    2017-02-01

    A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

  15. Approximation methods for the partition functions of anharmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations.

  16. Partial dynamical symmetry and anharmonicity in γ-soft nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    2009-01-01

    The concept of dynamical symmetry (DS) is now widely accepted to be of central importance in our understanding of many-body systems, such as nuclei. Its hallmarks are the solvability of the complete spectrum, and the existence of exact quantum numbers for all eigenstates. However, in most applications to realistic systems, the predictions of an exact DS are rarely fulfilled and one is compelled to break it. More often one finds that the assumed symmetry is not obeyed uniformly, i.e., is fulfilled by only some states but not by others. The need to address such situations has led to the introduction of partial dynamical symmetries (PDSs). The essential idea is to relax the stringent conditions of complete solvability, so that the DS is broken, but part of the eigen spectrum remains solvable with good symmetry. Various types of bosonic and fermionic PDS, have been shown to be relevant to nuclear spectroscopy [1-7] and to quantum phase transitions [8]. In the present contribution we extend the notion of PDS to encompass Hamiltonians with higher-order terms. We present a systematic procedure for constructing such PDS Hamiltonians and demonstrate their relevance to the anharmonicity of excited bands in the -soft nucleus 1 96P t. The work, to be reported, was done in collaboration with J.E. Garcfa-Ramos (Huelva) and P. Van backer (GANIL) [9]. The SO(6)-DS limit of the interacting boson model (IBM) [10], provides a good description of the rotational spectrum and E2 rates for states in the ground band of 1 96P t [11]. However, the resulting fit to energies of excited bands is quite poor. The empirical anharmonicity of excited vibrational bands is large and negative. On the other hand, in the SO(6)-DS limit, the calculated anharmonicity is fixed by the number of valence nucleons, and is found to be in marked disagreement with the empirical value. A detailed study of double-phonon excitations within the IBM, has concluded that large anharmonicities can be incorporated only by

  17. Anharmonic effective pair potentials of gold under high pressure and high temperature

    CERN Document Server

    Okube, M; Ohtaka, O; Fukui, H; Katayama, Y; Utsumi, W

    2002-01-01

    In order to examine the effect of pressure on the anharmonicity of Au, extended x-ray absorption fine-structure spectra near the Au L sub 3 edge were measured in the temperature range from 300 to 1100 K under pressures up to 14 GPa using large-volume high-pressure devices and synchrotron radiation. The anharmonic effective pair potentials of Au, V (u) = au sup 2 + bu sup 3 , at 0.1 MPa, 6 and 14 GPa have been calculated. The pressure dependence of the thermal expansion coefficients has also been evaluated. The reliability of the anharmonic correction proposed on the basis of the Anderson scale has been discussed.

  18. Ab initio calculations of anharmonic vibrational circular dichroism intensities of trans-2,3-dideuteriooxirane

    DEFF Research Database (Denmark)

    Bak, KL; Bludsky, O.; Jorgensen, P

    1995-01-01

    A priori theory is derived for anharmonic calculations of vibrational circular dichroism (VCD). The anharmonic VCD expression is gauge origin independent and reduce to the magnetic field perturbation theory expression in the double-harmonic approximation. The theory has been implemented using...... for the atomic axial tensors and using second-order Moller-Plesset theory for the atomic polar tensors and the force fields, The changes of the vibrational rotatory strengths from anharmonicities are small, and do not explain the previously observed large discrepancies between the double-harmonic results...

  19. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  20. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering

    2018-02-03

    Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.

  1. Insight into the strong aggregation-induced emission of low-conjugated racemic C6-unsubstituted tetrahydropyrimidines through crystal-structure-property relationship of polymorphs.

    Science.gov (United States)

    Zhu, Qiuhua; Zhang, Yilin; Nie, Han; Zhao, Zujin; Liu, Shuwen; Wong, Kam Sing; Tang, Ben Zhong

    2015-08-01

    Racemic C6-unsubstituted tetrahydropyrimidines (THPs) are a series of fluorophores with a strong aggregation-induced emission (AIE) effect. However, they do not possess the structural features of conventional AIE compounds. In order to understand their AIE mechanism, here, the influences of the molecular packing mode and the conformation on the optical properties of THPs were investigated using seven crystalline polymorphs of three THPs ( 1-3 ). The racemic THPs 1-3 have low-conjugated and highly flexible molecular structures, and hence show practically no emission in different organic solvents. However, the fluorescence quantum yields of their polymorphs are up to 93%, and the maximum excitation ( λ ex ) and emission ( λ em ) wavelengths of the polymorphs are long at 409 and 484 nm, respectively. Single-crystal structures and theoretical calculation of the HOMOs and LUMOs based on the molecular conformations of these polymorphs indicate that the polymorphs with the shortest λ ex and λ em values possess a RS -packing mode ( R - and S -enantiomers self-assemble as paired anti-parallel lines) and a more twisted conformation without through-space conjugation between the dicarboxylates, but the polymorphs with longer λ ex and λ em values adopt a RR / SS -packing mode ( R - and S -enantiomers self-assemble as unpaired zigzag lines) and a less twisted conformation with through-space conjugation between the dicarboxylates. The molecular conformations of 1-3 in all these polymorphs are stereo and more twisted than those in solution. Although 1-3 are poorly conjugated, the radiative rate constants ( k r ) of their polymorphs are as large as conventional fluorophores (0.41-1.03 × 10 8 s -1 ) because of improved electronic conjugation by both through-bond and through-space interactions. Based on the obtained results, it can be deduced that the strong AIE arises not only from the restriction of intramolecular motion but also from enhanced electronic coupling and

  2. Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress

    OpenAIRE

    Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.

    2013-01-01

    A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...

  3. E x circle epsilon Jahn-Teller anharmonic coupling for an octahedral system

    CERN Document Server

    Avram, N M; Kibler, M R

    2001-01-01

    The coupling between doubly degenerate electronic states and doubly degenerate vibrations is analyzed for an octahedral system on the basis of the introduction of an anharmonic Morse potential for the vibronic part. The vibrations are described by anharmonic coherent states and their linear coupling with the electronic states is considered. The matrix elements of the vibronic interaction are built and the energy levels corresponding to the interaction Hamiltonian are derived.

  4. Vibrational spectroscopy of the G...C base pair: Experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings

    Czech Academy of Sciences Publication Activity Database

    Brauer, B.; Gerber, R. B.; Kabeláč, Martin; Hobza, Pavel; Bakker, J. M.; Abo-Riziq, A.; Vries de, M. S.

    2005-01-01

    Roč. 109, - (2005), s. 6974-6984 ISSN 1089-5639 Grant - others:NSF(US) CHE-0244341 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids bases * vibrational spectrum * frequencies anharmonicity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005

  5. Investigations of the coherent hard photon yields from (50-300) GeV/c electrons/positrons in the strong crystalline fields of diamond, Si, and Ge crystals

    CERN Multimedia

    The aim of this experiment is to measure the influence of strong fields on QED-processes like: Emission of coherent radiation and pair-production when multi-hundred GeV electrons/positrons and photons penetrate single crystals near axial/planar directions. The targets will be diamond, Si, Ge and W crystals.\\\\\\\\ QED is a highly developed theory and has been investigated experimentally in great detail. In recent years it has become technically possible to investigate QED-processes in very strong electromagnetic fields around the characteristic strong field E$_{0}$ = m$^{2}$c$^{3}$/eh = 1.32.10$^{16}$ V/cm. The work of such a field over the Compton length equals the electron mass. The theoretical description of QED in such fields is beyond the framework of perturbation theory. Such fields are only obtained in laboratories for a) heavy ion collisions b) interactions of multi-GeV electrons with extremely intense laser fields and in oriented crystals. In fact it turns out that crystals are unique for this type of e...

  6. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    Science.gov (United States)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  7. Diffusion mobility of the hydrogen atom with allowance for the anharmonic attenuation of migrating atom state

    Energy Technology Data Exchange (ETDEWEB)

    Kashlev, Y.A., E-mail: yakashlev@yandex.ru

    2017-04-15

    Evolution of vibration relaxation of hydrogen atoms in metals with the close-packed lattice at high and medium temperatures is investigated based on non-equilibrium statistical thermodynamics, in that number on using the retarded two-time Green function method. In accordance with main kinetic equation – the generalized Fokker- Plank- Kolmogorov equation, anharmonism of hydrogen atoms vibration in potential wells does not make any contribution to collision effects. It influences the relaxation processes at the expense of interference of fourth order anharmonism with single-phonon scattering on impurity hydrogen atoms. Therefore, the total relaxation time of vibration energy of system metal-hydrogen is written as a product of two factors: relaxation time of system in harmonic approximation and dimensionless anharmonic attenuation of quantum hydrogen state.

  8. Vibrational spectroscopy of triacetone triperoxide (TATP): Anharmonic fundamentals, overtones and combination bands

    Science.gov (United States)

    Brauer, Brina; Dubnikova, Faina; Zeiri, Yehuda; Kosloff, Ronnie; Gerber, R. Benny

    2008-12-01

    The vibrational spectrum of triacetone triperoxide (TATP) is studied by the correlation-corrected vibrational self-consistent field (CC-VSCF) method which incorporates anharmonic effects. Fundamental, overtone, and combination band frequencies are obtained by using a potential based on the PM3 method and yielding the same harmonic frequencies as DFT/cc-pVDZ calculations. Fundamentals and overtones are also studied with anharmonic single-mode (without coupling) DFT/cc-pVDZ calculations. Average deviations from experiment are similar for all methods: 2.1-2.5%. Groups of degenerate vibrations form regions of numerous combination bands with low intensity: the 5600-5800 cm -1 region contains ca. 70 overtones and combinations of CH stretches. Anharmonic interactions are analyzed.

  9. Anharmonicity and Quantum Effects in Thermal Expansion of an Invar Alloy

    Science.gov (United States)

    Yokoyama, Toshihiko; Eguchi, Keitaro

    2011-08-01

    We have investigated the anharmonicity and quantum effects in the Invar alloy Fe64.6Ni35.4 that shows anomalously small thermal expansion. We have performed Fe and Ni K-edge extended x-ray-absorption fine-structure spectroscopic measurements and the computational simulations based on the path-integral effective-classical-potential theory. The first nearest-neighbor (NN) shells around Fe show almost no thermal expansion, while those around Ni exhibit meaningful but smaller expansion than that of fcc Ni. At low temperature, the quantum effect is found to play an essentially important role, which is confirmed by comparing the quantum-mechanical simulations to the classical ones. The anharmonicity (asymmetric distribution) clearly exists for all the first NN shells as in normal thermal expansion systems, implying the breakdown of the direct correspondence between thermal expansion and anharmonicity.

  10. Equation of state, nonlinear elastic response, and anharmonic properties of diamond-cubic silicon and germanium. First-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenju [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Gu, Jianbing [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics; Sichuan Univ., Chengdu (China). College of Physical Science and Technology; Kuang, Xiaoyu [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Xiang, Shikai [Institute of Fluid Physics, Sichuan (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-10-01

    Nonlinear elastic properties of diamond-cubic silicon and germanium have not been investigated sufficiently to date. Knowledge of these properties not only can help us to understand nonlinear mechanical effects but also can assist us to have an insight into the related anharmonic properties, so we investigate the nonlinear elastic behaviour of single silicon and germanium by calculating their second- and third-order elastic constants. All the results of the elastic constants show good agreement with the available experimental data and other theoretical calculations. Such a phenomenon indicates that the present values of the elastic constants are accurate and can be used to further study the related anharmonic properties. Subsequently, the anharmonic properties such as the pressure derivatives of the second-order elastic constants, Grueneisen constants of long-wavelength acoustic modes, and ultrasonic nonlinear parameters are explored. All the anharmonic properties of silicon calculated in the present work also show good agreement with the existing experimental results; this consistency not only reveals that the calculation method of the anharmonic properties is feasible but also illuminates that the anharmonic properties obtained in the present work are reliable. For the anharmonic properties of germanium, since there are no experimental result and other theoretical data till now, we hope that the anharmonic properties of germanium first offered in this work would serve as a reference for future studies.

  11. Analytic approximate eigenvalues by a new technique. Application to sextic anharmonic potentials

    Science.gov (United States)

    Diaz Almeida, D.; Martin, P.

    2018-03-01

    A new technique to obtain analytic approximant for eigenvalues is presented here by a simultaneous use of power series and asymptotic expansions is presented. The analytic approximation here obtained is like a bridge to both expansions: rational functions, as Padé, are used, combined with elementary functions are used. Improvement to previous methods as multipoint quasirational approximation, MPQA, are also developed. The application of the method is done in detail for the 1-D Schrödinger equation with anharmonic sextic potential of the form V (x) =x2 + λx6 and both ground state and the first excited state of the anharmonic oscillator.

  12. Anharmonic properties of solids from measurements of the stress acoustic constant

    Science.gov (United States)

    Cantrell, J. H., Jr.

    1982-01-01

    The equations of elastic motion and their solutions are generalized in order to include nonzero homogeneous initial stresses and redefine the stress acoustic constants to include the effect of initial stress. In deriving the relationship between the stress acoustic constants and the strain-generalized Gruneisen parameters, implications in material anharmonicity and nonlinear thermoelasticity are discovered. It is found that the linear change in velocity obtained from these measurements is a nonlinear process resulting from anharmonicity in the interatomic potential. In addition, the thermal expansion coefficient can also be expressed in terms of linear combinations.

  13. Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; Bise, R. T.; Kaňka, Jiří; Peterka, Pavel; Du, H.

    Vol. 281, No. 1 (2008), s. 55-60 ISSN 0030-4018 R&D Projects: GA ČR GA102/05/0995 Grant - others:US National Science Foundation(US) ECS-0404002 Institutional research plan: CEZ:AV0Z20670512 Keywords : photonic crystals * fibre optic sensors * optic al fibres Subject RIV: BH - Optic s, Masers, Lasers Impact factor: 1.552, year: 2008

  14. High pressure behavior of complex phosphate K2Ce[PO4]2: Grüneisen parameter and anharmonicity properties

    Science.gov (United States)

    Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.

    2018-02-01

    Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.

  15. Neutron TAS spin-echo - a handle to anharmonic effects in lattice dynamics

    Czech Academy of Sciences Publication Activity Database

    Kulda, Jiří; Farhi, E.; Zeyen, CME.

    2002-01-01

    Roč. 316, - (2002), s. 383-388 ISSN 0921-4526 R&D Projects: GA AV ČR KSK1048102 Keywords : anharmonicity * neutron-echo * three-axis spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.609, year: 2002

  16. Cubic and quartic anharmonic potential energy functions for octahedral XY6 molecules

    International Nuclear Information System (INIS)

    Fox, K.; Krohn, B.J.; Shaffer, W.H.

    1979-01-01

    We give the cubic and quartic anharmonic potential energy functions for XY 6 molecules of O/sub h/ symmetry in terms of normal coordinates. The numbers of independent cubic and quartic potential constants are 22 and 92, respectively. A standard form, introduced here, is related to the tensor formalism developed for the potential energy of tetrahedral XY 4 molecules by Hecht

  17. Anharmonic solution of Schrödinger time-independent equation

    Indian Academy of Sciences (India)

    Keywords. Anharmonic solutions; Yukawa potential. Abstract. We present here a mathematical explanation of how the Schrödinger equation for a class of harmonic oscillators possesses exact solutions. Some of the extended potentials used here are not present in the literature.

  18. Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator

    Science.gov (United States)

    Thomchick, John; McKelvey, J. P.

    1978-01-01

    Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)

  19. Dye concentration dependence of spectral triplet in one-dimensional photonic crystal with cyanine dye J-aggregate in strong coupling regime

    Science.gov (United States)

    Suzuki, Makoto; Sakata, Tomohiro; Takenobu, Ryouya; Uemura, Shinobu; Miyagawa, Hayato; Nakanishi, Shunsuke; Tsurumachi, Noriaki

    2017-10-01

    We report on the dye concentration dependence of nonlinear transmission properties of one-dimensional photonic crystal microcavities containing cyanine dye J-aggregates. Using femtosecond nonlinear transmission spectroscopy, we observed a transition from a polariton doublet state to a spectral triplet state over the whole tested concentration range, even at room temperature. In these samples, changes in the dye concentration affected the Rabi splitting energy in the linear transmission measurements; however, we found that changes in the concentration did not greatly affect the triplet formation.

  20. The role of London dispersion interactions in strong and moderate intermolecular hydrogen bonds in the crystal and in the gas phase

    Science.gov (United States)

    Katsyuba, Sergey A.; Vener, Mikhail V.; Zvereva, Elena E.; Brandenburg, J. Gerit

    2017-03-01

    Two variants of density functional theory computations have been applied to characterization of hydrogen bonds of the 1-(2-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]), i.e. with and without inclusion of dispersion interactions. A comparison of the results demonstrates that London dispersion interactions have very little impact on the energetical, geometrical, infrared spectroscopic and electron density parameters of charge-assisted intermolecular hydrogen bonds functioning both in the crystal of the [C2OHmim][OAc] and in the isolated [C2OHmim]+ [OAc]- ion pairs.

  1. Anharmonic vibrational analysis of s-trans and s-cis conformers of acryloyl fluoride using numerical-analytic Van Vleck operator perturbation theory

    Science.gov (United States)

    Krasnoshchekov, Sergey V.; Craig, Norman C.; Koroleva, Lidiya A.; Stepanov, Nikolay F.

    2018-01-01

    A new gas-phase infrared (IR) spectrum of acryloyl fluoride (ACRF, CH2dbnd CHsbnd CFdbnd O) with a resolution of 0.1 cm- 1 in the range 4000-450 cm- 1 was measured. Theoretical ab initio molecular structures, full quartic potential energy surfaces (PES), and cubic surfaces of dipole moments and polarizability tensor components (electro-optical properties, EOP) of the s-trans and s-cis conformers of the ACRF were calculated by the second-order Møller-Plesset electronic perturbation theory with a correlation consistent Dunning triple-ζ basis set. The numerical-analytic implementation of the second-order operator canonical Van Vleck perturbation theory was employed for predicting anharmonic IR and Raman scattering (RS) spectra of ACRF. To improve the anharmonic predictions, harmonic frequencies were replaced by their counterparts evaluated with the higher-level CCSD(T)/cc-pVTZ model, to form a ;hybrid; PES. The original operator representation of the Hamiltonian is analytically reduced to a quasi-diagonal form, integrated in the harmonic oscillator basis and diagonalized to account for strong resonance couplings. Double canonical transformations of EOP expansions enabled prediction of integral intensities of both fundamental and multi-quanta transitions in IR/RS spectra. Enhanced band shape analysis reinforced the assignments. A thorough interpretation of the new IR experimental spectra and existing matrix-isolation literature data for the mixture of two conformers of ACRF was accomplished, and a number of assignments clarified.

  2. Energy eigenvalues and squeezing properties of general systems of coupled quantum anharmonic oscillators

    International Nuclear Information System (INIS)

    Chung, N. N.; Chew, L. Y.

    2007-01-01

    We have generalized the two-step approach to the solution of systems of N coupled quantum anharmonic oscillators. By using the squeezed vacuum state of each individual oscillator, we construct the tensor product state, and obtain the optimal squeezed vacuum product state through energy minimization. We then employ this optimal state and its associated bosonic operators to define a basis set to construct the Heisenberg matrix. The diagonalization of the matrix enables us to obtain the energy eigenvalues of the coupled oscillators. In particular, we have applied our formalism to determine the eigenenergies of systems of two coupled quantum anharmonic oscillators perturbed by a general polynomial potential, as well as three and four coupled systems. Furthermore, by performing a first-order perturbation analysis about the optimal squeezed vacuum product state, we have also examined into the squeezing properties of two coupled oscillator systems

  3. Raman scattering study of the anharmonic effects in CeO2-y nanocrystals

    Science.gov (United States)

    Popović, Z. V.; Dohčević-Mitrović, Z.; Cros, A.; Cantarero, A.

    2007-12-01

    We have studied the temperature dependence of the F2g Raman mode phonon frequency and broadening in CeO2-y nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO2 powders than in the bulk counterpart.

  4. Raman scattering study of the anharmonic effects in CeO2-y nanocrystals

    International Nuclear Information System (INIS)

    Popovic, Z V; Dohcevic-Mitrovic, Z; Cros, A; Cantarero, A

    2007-01-01

    We have studied the temperature dependence of the F 2g Raman mode phonon frequency and broadening in CeO 2-y nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO 2 powders than in the bulk counterpart

  5. Raman scattering study of the anharmonic effects in CeO{sub 2-y} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Z V [Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Dohcevic-Mitrovic, Z [Center for Solid State Physics and New Materials, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Cros, A [Materials Science Institute, University of Valencia, P O Box 22085, E-46071, Valencia (Spain); Cantarero, A [Materials Science Institute, University of Valencia, P O Box 22085, E-46071, Valencia (Spain)

    2007-12-12

    We have studied the temperature dependence of the F{sub 2g} Raman mode phonon frequency and broadening in CeO{sub 2-y} nanocrystals. The phonon softening and phonon linewidth are calculated using a model which takes into account the three-and four-phonon anharmonic processes. A detailed comparison of the experimental data with theoretical calculations revealed the predominance of four-phonon anharmonic processes in the temperature dependence of the phonon energy and broadening of the nanocrystals. On the other hand, three-phonon processes dominate the temperature behavior of phonons in polycrystalline samples. The anti-Stokes/Stokes peak intensity ratio was also investigated and found to be smaller for nanosized CeO{sub 2} powders than in the bulk counterpart.

  6. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  7. Catalytic mechanism of LENR in quasicrystals based on localized anharmonic vibrations and phasons

    OpenAIRE

    Dubinko, Volodymyr; Laptev, Denis; Irwin, Klee

    2016-01-01

    Quasicrystals (QCs) are a novel form of matter, which are neither crystalline nor amorphous. Among many surprising properties of QCs is their high catalytic activity. We propose a mechanism explaining this peculiarity based on unusual dynamics of atoms at special sites in QCs, namely, localized anharmonic vibrations (LAVs) and phasons. In the former case, one deals with a large amplitude (~ fractions of an angstrom) time-periodic oscillations of a small group of atoms around their stable posi...

  8. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF$_4$) and tetrafluorosilane (SiF$_4$)

    OpenAIRE

    Wang, Xiao-Gang; Sibert III, Edwin L.; Martin, Jan M. L.

    1999-01-01

    Accurate quartic anharmonic force fields for CF$_4$ and SiF$_4$ have been calculated using the CCSD(T) method and basis sets of $spdf$ quality. Based on the {\\it ab initio} force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory(CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadrat...

  9. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes.

    Science.gov (United States)

    Kim, H; Lipscomb, W N

    1990-06-12

    O-[[(1R)-[[N-(Phenylmethoxycarbonyl)-L-alanyl]amino]ethyl] hydroxyphosphinyl]-L-3-phenyllacetate [ZAAP(O)F], an analogue of (benzyloxycarbonyl)-Ala-Ala-Phe or (benzyloxycarbonyl)-Ala-Ala-phenyllactate, binds to carboxypeptidase A with great affinity (Ki = 3 pM). Similar phosphonates have been shown to be transition-state analogues of the CPA-catalyzed hydrolysis [Hanson, J. E., Kaplan, A. P., & Bartlett, P. A. (1989) Biochemistry 28, 6294-6305]. In the present study, the structure of the complex of this phosphonate with carboxypeptidase A has been determined by X-ray crystallography to a resolution of 2.0 A. The complex crystallizes in the space group P2(1)2(1)2(1) with cell dimensions a = 61.9 A, b = 67.2 A, and c = 76.2 A. The structure of the complex was solved by molecular replacement. Refinement of the structure against 20,776 unique reflections between 10.0 and 2.0 A yields a crystallographic residual of 0.193, including 140 water molecules. The two phosphinyl oxygens of the inhibitor bind to the active-site zinc at 2.2 A on the electrophilic (Arg-127) side and 3.1 A on the nucleophilic (Glu-270) side. Various features of the binding mode of this phosphonate inhibitor are consistent with the hypothesis that carboxypeptidase A catalyzed hydrolysis proceeds through a general-base mechanism in which the carbonyl carbon of the substrate is attacked by Zn-hydroxyl (or Zn-water). An unexpected feature of the bound inhibitor, the cis carbamoyl ester bond at the benzyloxycarbonyl linkage to alanine, allows the benzyloxycarbonyl phenyl ring of the inhibitor to interact favorably with Tyr-198. This complex structure is compared with previous structures of carboxypeptidase A, including the complexes with the potato inhibitor, a hydrated keto methylene substrate analogue, and a phosphonamidate inhibitor. Comparisons are also made with the complexes of thermolysin with some phosphonamidate inhibitors.

  10. Anharmonic behavior and structural phase transition in Yb2O3

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2013-12-01

    Full Text Available The investigation of structural phase transition and anharmonic behavior of Yb2O3 has been carried out by high-pressure and temperature dependent Raman scattering studies respectively. In situ Raman studies under high pressure were carried out in a diamond anvil cell at room temperature which indicate a structural transition from cubic to hexagonal phase at and above 20.6 GPa. In the decompression cycle, Yb2O3 retained its high pressure phase. We have observed a Stark line in the Raman spectra at 337.5 cm−1 which arises from the electronic transition between 2F5/2 and 2F7/2 multiplates of Yb3+ (4f13 levels. These were followed by temperature dependent Raman studies in the range of 80–440 K, which show an unusual mode hardening with increasing temperature. The hardening of the most dominant mode (Tg + Ag was analyzed in light of the theory of anharmonic phonon-phonon interaction and thermal expansion of the lattice. Using the mode Grüneisen parameter obtained from high pressure Raman measurements; we have calculated total anharmonicity of the Tg + Ag mode from the temperature dependent Raman data.

  11. Superior magnetic and mechanical property of MnFe3N driven by electron correlation and lattice anharmonicity

    Science.gov (United States)

    Wu, Hao; Sun, Hong; Chen, Changfeng

    2015-02-01

    Manganese-substitution-doped iron nitride MnFe3N holds great promise for applications in high-density magnetic recording and spintronic devices. However, existing theory contradicts experimental results on the structural and magnetic stability of MnFe3N , and the underlying mechanisms remain elusive. Here we demonstrate by first-principles calculations that the ferromagnetic state with enhanced magnetization in MnFe3N is driven by the electron correlation effect not previously considered. We further reveal a large nonlinear shear plasticity, which produces an unexpectedly high shear strength in MnFe3N despite its initial ductile nature near the equilibrium structure. Moreover, we identify strong lattice anharmonicity that plays a pivotal role in stabilizing MnFe3N under high pressures at room temperature. These remarkable properties stem from the intriguing bonding nature of the parent compound Fe4N . Our results explain experimental results and offer insights into the fundamental mechanisms for the superior magnetic and mechanical properties of MnFe3N .

  12. Growth and PhysioChemical Properties of Second-Order Nonlinear Optical L-Threonine Single Crystals

    Directory of Open Access Journals (Sweden)

    G. Ramesh Kumar

    2009-01-01

    Full Text Available The present aim of the paper is to grow and to study the various properties of L-threonine amino acid single crystal in various aspects. Crystal growth of L-threonine single crystals has been carried out with the help of crystallization kinetics. pH and deuteration effects on the properties of the grown crystals have been studied and the results presented in a lucid manner. The various second-order NLO parameters were evaluated using anharmonic oscillator model. Particle and ion irradiation effects on structural, optical, and surface properties of the crystals have also been studied in detail.

  13. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei

    International Nuclear Information System (INIS)

    Volpe, M.C.

    1997-01-01

    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for 208 Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author)

  14. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Science.gov (United States)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  15. First-principles calculations on anharmonic vibrational frequencies of polyethylene and polyacetylene in the Gamma approximation.

    Science.gov (United States)

    Keçeli, Murat; Hirata, So; Yagi, Kiyoshi

    2010-07-21

    The frequencies of the infrared- and/or Raman-active (k=0) vibrations of polyethylene and polyacetylene are computed by taking account of the anharmonicity in the potential energy surfaces (PESs) and the resulting phonon-phonon couplings explicitly. The electronic part of the calculations is based on Gaussian-basis-set crystalline orbital theory at the Hartree-Fock and second-order Møller-Plesset (MP2) perturbation levels, providing one-, two-, and/or three-dimensional slices of the PES (namely, using the so-called n-mode coupling approximation with n=3), which are in turn expanded in the fourth-order Taylor series with respect to the normal coordinates. The vibrational part uses the vibrational self-consistent field, vibrational MP2, and vibrational truncated configuration-interaction (VCI) methods within the Gamma approximation, which amounts to including only k=0 phonons. It is shown that accounting for both electron correlation and anharmonicity is essential in achieving good agreement (the mean and maximum absolute deviations less than 50 and 90 cm(-1), respectively, for polyethylene and polyacetylene) between computed and observed frequencies. The corresponding values for the calculations including only one of such effects are in excess of 120 and 300 cm(-1), respectively. The VCI calculations also reproduce semiquantitatively the frequency separation and intensity ratio of the Fermi doublet involving the nu(2)(0) fundamental and nu(8)(pi) first overtone in polyethylene.

  16. Parametrization of an anharmonic Kirkwood–Keating potential for AlxGa1?xAs alloys

    NARCIS (Netherlands)

    Sim, E.; Beckers, J.; De Leeuw, S.; Thorpe, M.; Ratner, M.A.

    2005-01-01

    We introduce a simple semiempirical anharmonic Kirkwood–Keating potential to model AxB1?xC-type semiconductors. The potential consists of the Morse strain energy and Coulomb interaction terms. The optical constants of pure components, AB and BC, were employed to fit the potential parameters such as

  17. Anharmonic Computations Meet Experiments (IR, Raman, Neutron Diffraction) for Explaining the Behavior of 1,3,5-Tribromo-2,4,6-trimethylbenzene.

    Science.gov (United States)

    Meinnel, Jean; Latouche, Camille; Ghanemi, Soumia; Boucekkine, Abdou; Barone, Vincenzo; Moréac, Alain; Boudjada, Ali

    2016-02-25

    In the present paper we first show the experimental Raman, infrared, and neutron INS spectra of tribromomesitylene (TBM) measured in the range 50-3200 cm(-1) using crystalline powders at 6 or 4 K. Then, the bond lengths and angles determined by neutron diffraction using a TBM single crystal at 14 K are compared to the computed ones at different levels of theory. Anharmonic computations were then performed on the relaxed structure using the VPT2 approach, and for the lowest normal modes, the HRAO model has led to a remarkable agreement for the assignment of the experimental signatures. A particularity appears for frequencies below 150 cm(-1), and in particular for those concerning the energy levels of "hindered rotation" of the three methyl groups, they must be calculated for one-dimensional symmetrical tops independent of the frame vibrations. This fact is consistent with the structure established by neutron diffraction: the protons of the methyl groups undergoing huge "libration" motions are widely spread in space. The values of the transitions between the librational levels determined by inelastic neutron scattering indicate that the hindering potentials are mainly due to intermolecular interactions different for each methyl group in the triclinic cell.

  18. Anharmonic properties of Raman modes in double wall carbon nano tubes

    Energy Technology Data Exchange (ETDEWEB)

    Marquina, J. [Universidad de los Andes, Facultad de Ciencias, Centro de Estudios Avanzados en Optica, 5101 Merida (Venezuela, Bolivarian Republic of); Power, Ch.; Gonzalez, J. [Universidad de los Andes, Facultad de Ciencias, Centro de Estudios en Semiconductores, 5101 Merida (Venezuela, Bolivarian Republic of); Broto, J. M. [Universite de Toulouse, Laboratoire National des Champs Magnetiques Intenses, CNRS UPR 3228, 31400 Toulouse (France); Flahaut, E., E-mail: castella@ula.v [Universite Paul Sabatier, Laboratoire de Chimie des Materiaux Inorganiques, UMR CNRS 5085, 31062 Toulouse (France)

    2011-07-01

    The temperature dependence of the radial breathing modes (RB Ms) and the zone-center tangential optical phonons (G-bands) of double-walled carbon nano tubes has been investigated between 300 and 700 K using Raman scattering. As expected, with increasing temperature, the frequencies of the Raman peaks, including the RB Ms and G-bands downshift simultaneously. We show here that the temperature dependence of the RB Ms can be fitted by a simple linear dependence and different RB Ms have different frequency shifts. We observe a noticeable nonlinearity in the temperature dependence of the G-band associated with the outer semiconducting tube G+ext (s). The deviation from the linear trend is due to the contribution of the third-order anharmonic term in the lattice potential energy with a pure temperature effect. An estimated value of 1.5 for the Grueneisen parameter of the G+ext (s) band was found. (Author)

  19. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    Science.gov (United States)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  20. Anharmonicity, mechanical instability, and thermodynamic properties of the Cr-Re σ-phase

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Mauro, E-mail: mauro.palumbo@rub.de; Fries, Suzana G. [ICAMS, Ruhr University Bochum, Universität Str. 150, D-44801 Bochum (Germany); Pasturel, Alain [SIMAP, UMR CNRS-INPG-UJF 5266, BP 75, F-38402 Saint Martin d’Hères (France); Alfè, Dario [Department of Earth Sciences, Department of Physics and Astronomy, London Centre for Nanotechnology and Thomas Young Centre-UCL, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2014-04-14

    Using density-functional theory in combination with the direct force method and molecular dynamics we investigate the vibrational properties of a binary Cr-Re σ-phase. In the harmonic approximation, we have computed phonon dispersion curves and density of states, evidencing structural and chemical effects. We found that the σ-phase is mechanically unstable in some configurations, for example, when all crystallographic sites are occupied by Re atoms. By using a molecular-dynamics-based method, we have analysed the anharmonicity in the system and found negligible effects (∼0.5 kJ/mol) on the Helmholtz energy of the binary Cr-Re σ-phase up to 2000 K (∼0.8T{sub m}). Finally, we show that the vibrational contribution has significant consequences on the disordering of the σ-phase at high temperature.

  1. Anharmonic force field and vibrational frequencies of tetrafluoromethane (CF4) and tetrafluorosilane (SiF4)

    Science.gov (United States)

    Wang, Xiao-Gang; Sibert, Edwin L.; Martin, Jan M. L.

    2000-01-01

    Accurate quartic anharmonic force fields for CF4 and SiF4 have been calculated using the CCSD(T) method and basis sets of spdf quality. Based on the ab initio force field with a minor empirical adjustment, the vibrational energy levels of these two molecules and their isotopomers are calculated by means of high order Canonical Van Vleck Perturbation Theory (CVPT) based on curvilinear coordinates. The calculated energies agree very well with the experimental data. The full quadratic force field of CF4 is further refined to the experimental data. The symmetrization of the Cartesian basis for arbitrary combination bands of Td group molecules is discussed using the circular promotion operator for the doubly degenerate modes, together with tabulated vector coupling coefficients. The extraction of the spectroscopic constants from our second order transformed Hamiltonian in curvilinear coordinates is discussed, and compared to a similar procedure in rectilinear coordinates.

  2. Numerical solutions of anharmonic vibration of BaO and SrO molecules

    Science.gov (United States)

    Pramudito, Sidikrubadi; Sanjaya, Nugraha Wanda; Sumaryada, Tony

    2016-03-01

    The Morse potential is a potential model that is used to describe the anharmonic behavior of molecular vibration between atoms. The BaO and SrO molecules, which are two almost similar diatomic molecules, were investigated in this research. Some of their properties like the value of the dissociation energy, the energy eigenvalues of each energy level, and the profile of the wavefunctions in their correspondence vibrational states were presented in this paper. Calculation of the energy eigenvalues and plotting the wave function's profiles were performed using Numerov method combined with the shooting method. In general we concluded that the Morse potential solved with numerical methods could accurately produce the vibrational properties and the wavefunction behavior of BaO and SrO molecules from the ground state to the higher states close to the dissociation level.

  3. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules.

    Science.gov (United States)

    Krasnoshchekov, Sergey V; Stepanov, Nikolay F

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.

  4. Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee Intermediate Isomerization: Multistructural Anharmonicity and Atmospheric Implications

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-29

    We performed a theoretical study on the double hydrogen shift isomerization reaction of a six carbon atom Criegee intermediate (C6-CI), catalyzed by formic acid (HCOOH), to produce vinylhydroperoxide (VHP), C6-CI+HCOOH→VHP+HCOOH. This Criegee intermediate can serve as a surrogate for larger CIs derived from important volatile organic compounds like monoterpenes, whose reactivity is not well understood and are difficult to handle computationally. The reactant HCOOH exerts a pronounced catalytic effect on the studied reaction by lowering the barrier height, but the kinetic enhancement is hindered by the multistructural anharmonicity. First, the rigid ring-structure adopted by the saddle point to facilitate simultaneous transfer of two atoms does not allow formation of as many conformers as those formed by the reactant C6-CI. And second, the flexible carbon chain of C6-CI facilitates the formation of stabilizing intramolecular C–H···O hydrogen bonds; this stabilizing effect is less pronounced in the saddle point structure due to its tightness and steric effects. Thus, the contribution of the reactant C6-CI conformers to the multistructural partition function is larger than that of the saddle point conformers. The resulting low multistructural anharmonicity factor partially cancels out the catalytic effect of the carboxylic acid, yielding in a moderately large rate coefficient, k(298 K) = 4.9·10-13 cm3 molecule-1 s-1. We show that carboxylic acids may promote the conversion of stabilized Criegee intermediates into vinylhydroperoxides in the atmosphere, which generates OH radicals and leads to secondary organic aerosol, thereby affecting the oxidative capacity of the atmosphere and ultimately the climate.

  5. Anharmonicity of lattice vibrations induced by charged nickel additions in A sup 2 B sup 6 semiconductors

    CERN Document Server

    Sokolov, V I; Shirokov, E A; Kislov, A N

    2002-01-01

    Paper presents the results of investigations into lattice vibrations induced by nickel impurities charged negatively as to the lattice in ZnSe:Ni, ZnO:Ni, ZnS:Ni, CdS:Ni semiconductors. To investigate into vibrations one applies a sensitive technique of field exciton-oscillation spectroscopy. One observes experimentally oscillating reiterations of the impurity exciton head line including the intensive peaks of combined repetitions up to the 8-th order. The experimental results are discussed on the basis of the model estimations of oscillations of a lattice with a charged impurity centre, as well as, on the ground of calculations for oscillations of monoatomic chain with high anharmonicity. Charged impurity centres are shown to induce new oscillations of lattice - impurity anharmonic modes

  6. Parametrization of an anharmonic Kirkwood-Keating potential for AlxGa1-xAs alloys.

    Science.gov (United States)

    Sim, Eunji; Beckers, Joost; de Leeuw, Simon; Thorpe, Michael; Ratner, Mark A

    2005-05-01

    We introduce a simple semiempirical anharmonic Kirkwood-Keating potential to model A(x)B(1-x)C-type semiconductors. The potential consists of the Morse strain energy and Coulomb interaction terms. The optical constants of pure components, AB and BC, were employed to fit the potential parameters such as bond-stretching and -bending force constants, dimensionless anharmonicity parameter, and charges. We applied the potential to finite temperature molecular-dynamics simulations on Al(x)Ga(1-x)As for which there is no lattice mismatch. The results were compared with experimental data and those of harmonic Kirkwood-Keating model and of equation-of-motion molecular-dynamics technique. Since the Morse strain potential effectively describes finite temperature damping, we have been able to numerically reproduce experimentally obtained optical properties such as dielectric functions and reflectance. This potential model can be readily generalized for strained alloys.

  7. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues

    Science.gov (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-01

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  8. DFT calculations for anharmonic force field and spectroscopic constants of YC2and its13C isotopologues.

    Science.gov (United States)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-15

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜ 2 A 1 ) for yttrium dicarbide (YC 2 ) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC 2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n=D, T, Q) and cc-pVnZ-PP (n=D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC 2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of YC 2 or CC are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC 2 are calculated. Comparing with the spectroscopic constants of YC 2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC 2 . The Coriolis coupling constants, cubic and quartic force constants of YC 2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y 13 C 2 (X˜ 2 A 1 ) and Y 13 CC (X˜ 2 A ' ) are calculated for the first time, which are expected to guide the high resolution experimental work for YC 2 and its 13 C isotopologues. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    Science.gov (United States)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  10. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  11. Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N2-H+-N2, N2-D+-N2, and15N2-H+-15N2in solid para-hydrogen.

    Science.gov (United States)

    Liao, Hsin-Yi; Tsuge, Masashi; Tan, Jake A; Kuo, Jer-Lai; Lee, Yuan-Pern

    2017-08-09

    The proton-bound nitrogen dimer, N 2 -H + -N 2 , and its isotopologues were investigated by means of vibrational spectroscopy. These species were produced upon electron bombardment of mixtures of N 2 (or 15 N 2 ) and para-hydrogen (p-H 2 ) or normal-D 2 (n-D 2 ) during deposition at 3.2 K. Reduced-dimension anharmonic vibrational Schrödinger equations were constructed to account for the strong anharmonic effects in these protonated species. The fundamental lines of proton motions in N 2 -H + -N 2 were observed at 715.0 (NH + N antisymmetric stretch, ν 4 ), 1129.6 (NH + N bend, ν 6 ), and 2352.7 (antisymmetric NN/NN stretch, ν 3 ) cm -1 , in agreement with values of 763, 1144, and 2423 cm -1 predicted with anharmonic calculations using the discrete-variable representation (DVR) method at the CCSD/aug-cc-pVDZ level. The lines at 1030.2 and 1395.5 cm -1 were assigned to combination bands involving nν 2 + ν 4 (n = 1 and 2) according to theoretical calculations; ν 2 is the N 2 N 2 stretching mode. For 15 N 2 -H + - 15 N 2 in solid p-H 2 , the corresponding major lines were observed at 710.0 (ν 4 ), 1016.7 (ν 2 + ν 4 ), 1124.3 (ν 6 ), 1384.8 (2ν 2 + ν 4 ), and 2274.9 (ν 3 ) cm -1 . For N 2 -D + -N 2 in solid n-D 2 , the corresponding major lines were observed at 494.0 (ν 4 ), 840.7 (ν 2 + ν 4 ), 825.5 (ν 6 ), and 2356.2 (ν 3 ) cm -1 . In addition, two lines at 762.0 (weak) and 808.3 cm -1 were tentatively assigned to be some modes of N 2 -H + -N 2 perturbed or activated by a third N 2 near the proton.

  12. Spectra-structure correlations in NIR region: Spectroscopic and anharmonic DFT study of n-hexanol, cyclohexanol and phenol.

    Science.gov (United States)

    Beć, Krzysztof B; Grabska, Justyna; Czarnecki, Mirosław A

    2018-05-15

    We investigated near-infrared (7500-4000 cm -1 ) spectra of n-hexanol, cyclohexanol and phenol in CCl 4 (0.2 M) by using anharmonic quantum calculations. These molecules represent three major kinds of alcohols; linear and cyclic aliphatic, and aromatic ones. Vibrational second-order perturbation theory (VPT2) was employed to calculate the first overtones and binary combination modes and to reproduce the experimental NIR spectra. The level of conformational flexibility of these three alcohols varies from one stable conformer of phenol through four conformers of cyclohexanol to few hundreds conformers in the case of n-hexanol. To take into account the most relevant conformational population of n-hexanol, a systematic conformational search was performed. Accurate reproduction of the experimental NIR spectra was achieved and detailed spectra-structure correlations were obtained for these three alcohols. VPT2 approach provides less reliable description of highly anharmonic modes, i.e. OH stretching. In the present work this limitation was manifested in erroneous results yielded by VPT2 for 2νOH mode of cyclohexanol. To study the anharmonicity of this mode we solved the corresponding time-independent Schrödinger equation based on a dense-grid probing of the relevant vibrational potential. These results allowed for significant improvement of the agreement between the calculated and experimental 2νOH band of cyclohexanol. Various important biomolecules include similar structural units to the systems investigated here. A detailed knowledge on spectral properties of these three types of alcohols is therefore essential for advancing our understanding of NIR spectroscopy of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Response dynamics of 2-D quantum dots in the presence of time-varying fields: Anharmonicity and pulse shape effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Hazra, Ram Kuntal [Department of Physical Chemistry and Centre for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Bhattacharyya, S.P. [Department of Physical Chemistry and Centre for Atomic, Molecular and Optical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)], E-mail: pcspb@mahendra.iacs.res.in

    2008-04-03

    We explore the pattern of time evolution of different observables in a harmonically confined single carrier 2-D quantum dot when an external time-varying electric field is switched on. A static transverse magnetic field is also present. For given strengths of the confining field, cyclotron frequency, intensity and oscillation frequency of the external field, and pulse shape parameters, the system reveals a long time dynamics that leads to a kind of localization in the unperturbed state space. The presence of cubic anharmonicity in the confining field brings in new features in the dynamics. Frequency dependent linear and non-linear response properties of the dot are analyzed.

  14. Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions

    International Nuclear Information System (INIS)

    Huveneers, François

    2013-01-01

    We study the thermal conductivity, at fixed positive temperature, of a disordered lattice of harmonic oscillators, weakly coupled to each other through anharmonic potentials. The interaction is controlled by a small parameter ϵ > 0. We rigorously show, in two slightly different setups, that the conductivity has a non-perturbative origin. This means that it decays to zero faster than any polynomial in ϵ as ϵ → 0. It is then argued that this result extends to a disordered chain studied by Dhar and Lebowitz (2008 Phys. Rev. Lett. 100 134301), and to a classic spin chain recently investigated by Oganesyan, Pal and Huse (2009 Phys. Rev. B 80 115104). (paper)

  15. Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1993-01-01

    Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the Γ → ∞ limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example

  16. Frequency-dependent linear and non-linear response properties of single carrier quantum dots: Role of effective mass and anharmonicity in the confinement potential

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Parikshit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)], E-mail: pcmg77@rediffmail.com

    2008-09-01

    We explore the pattern of frequency-dependent linear and non-linear optical (NLO) response of one electron quantum dots harmonically confined in two dimensions. For some fixed values of transverse magnetic field strength ({omega}{sub c}), and harmonic confinement potential ({omega}{sub 0}), the influence of effective mass (m*) of the system and the symmetry breaking anharmonic interaction on the frequency-dependent linear ({alpha}), and the first ({beta}), and second ({gamma}) NLO responses of the dot is computed through linear variational route. The investigation reveals interesting roles played by the anharmonic interaction and effective mass in modulating the response properties.

  17. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x = Ax2α + Bx2

    Directory of Open Access Journals (Sweden)

    N. Al Sdran

    2016-06-01

    Full Text Available The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x = Ax2α + Bx2, (A>0, B<0, with (α = 2 for quadratic, (α =3 for sextic and (α =4 for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x by a piecewise-linear potential v(x, while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  18. Anhamonic finite temperature effects on the Raman and Infrared spectra to determine the crystal structure phase III of solid molecular hydrogen

    OpenAIRE

    Singh, Ranber; Azadi, Sam; Kühne, Thomas D.

    2013-01-01

    We present theoretical calculations of the Raman and IR spectra, as well as electronic properties at zero and finite temperature to elucidate the crystal structure of phase III of solid molecular hydrogen. We find that anharmonic finite temperature are particularly important and qualitatively influences the main conclusions. While P6$_3$/m is the most likely candidate for phase III at the nuclear ground state, at finite temperature the C2/c structure appears to be more suitable.

  19. R-free factor and experimental charge-density analysis of 1-(2'-aminophenyl)-2-methyl-4-nitroimidazole: a crystal structure with Z' = 2.

    Science.gov (United States)

    Paul, Agnieszka; Kubicki, Maciej; Jelsch, Christian; Durand, Pierrick; Lecomte, Claude

    2011-08-01

    The experimental charge-density distribution was determined for 1-(2'-aminophenyl)-2-methyl-4-nitro-1H-imidazole crystals. An anharmonic model was applied to the N atoms of both amino groups and to one nitro group in order to account for high residual peaks after harmonic multipole refinement and to obtain a better charge-density model. Free R-factor calculations [Brünger (1992). Nature, 355, 472-475] with restrained models implemented in MoPro were used to determine the degree of similarity of the two symmetry-independent molecules in the unit cell. The results are compared with 1-phenyl-4-nitroimidazole in order to analyze the influence of the amine and methyl functional groups. The asymmetric unit contains two symmetry-independent molecules giving rise to a dimer connected via strong N-H···N hydrogen bonds; these dimers are the building blocks of the crystal. In the crystal structure there are also weaker interactions and many short directional contacts (C-H···O, C-H···N and C-H···π), for which the Koch-Popelier topological criteria were applied. This analysis revealed that the C-H···π interactions lie at the border between weak hydrogen bonds and van der Waals interactions. Special attention was also paid to stabilizing H···H interactions. It turned out that the electron density, Laplacian and density energies at the critical points show an exponential dependence on the contact distance, similar to the relation found for other interactions.

  20. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  1. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  2. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  3. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  4. Dynamics of 2-D one electron quantum dots in periodically fluctuating confinement potential: Influence of size and anharmonicity

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Parikshit [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.co [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2009-11-15

    We explore the dynamics of harmonically confined single electron quantum dots as a function of dot size under periodically fluctuating confinement potential. The system of interest is a 2-D system in the presence of a perpendicular magnetic field. We show that for given strengths of the magnetic field and effective mass, a periodic variation in the strength of the confinement potential could invite interesting features in the dynamics of the system. Also, the pattern of time evolution of eigenstates of the unperturbed system reveals significant size-dependence. The fluctuation in the confinement potential from its initial value is found to modulate the dynamical aspects in a prominent way. The presence of cubic anharmonicity in the confining field brings in new features in the dot dynamics.

  5. Anomalous phase behavior and apparent anharmonicity of the pump-probe signal in a two-dimensional harmonic potential system

    International Nuclear Information System (INIS)

    Taneichi, T.; Kobayashi, T.

    2007-01-01

    Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal

  6. Anharmonic onsets in polypeptides revealed by neutron scattering: experimental evidences and quantitative description of energy resolution dependence.

    Science.gov (United States)

    Schiró, Giorgio

    2013-01-01

    Neutron scattering measurements on protein powders reveal two deviations from harmonic dynamics at low temperature, whose molecular origin, physical nature and biological relevance are still matter of discussion. In this study we present a new experimental and theoretical approach to evidence the resolution dependence of anharmonic onsets: the use of strategically selected homomeric polypeptides allows revealing the exact resolution dependence; a two-site energy landscape model, where resolution effects are explicitly taken into account, is able to interpret quantitatively the experimental data in terms of energy landscape parameters. The energetic description provided by this analysis, together with recent experimental evidences obtained on chemically and structurally different peptide systems, allows us to connect the protein/water energy landscape structure with the two-wells water interaction potential proposed to explain the low-density→high-density liquid-liquid transition observed in supercooled water. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    Science.gov (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  8. Quantum effects and anharmonicity in the H2-Li(+)-benzene complex: a model for hydrogen storage materials.

    Science.gov (United States)

    Kolmann, Stephen J; D'Arcy, Jordan H; Jordan, Meredith J T

    2013-12-21

    Quantum and anharmonic effects are investigated in H2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔH(bind) (0 K), being 16.5 kJ mol(-1) and 12.4 kJ mol(-1), respectively: 0.1 and 0.6 kJ mol(-1) higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH(bind) (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol(-1). Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li(+)-benzene system at 0 K.

  9. Quantum effects and anharmonicity in the H2-Li+-benzene complex: A model for hydrogen storage materials

    Science.gov (United States)

    Kolmann, Stephen J.; D'Arcy, Jordan H.; Jordan, Meredith J. T.

    2013-12-01

    Quantum and anharmonic effects are investigated in H2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔHbind (0 K), being 16.5 kJ mol-1 and 12.4 kJ mol-1, respectively: 0.1 and 0.6 kJ mol-1 higher than harmonic values. Zero-point energy effects are 35% of the value of ΔHbind (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol-1. Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li+-benzene system at 0 K.

  10. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  11. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  12. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  13. Two-phonon bound states in imperfect crystals

    International Nuclear Information System (INIS)

    Behera, S.N.; Samsur, Sk.

    1980-01-01

    The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)

  14. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L. M.; Barnik, M. I.; Lazarev, V. V.; Umanskii, B. A.; Shtykov, N. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  15. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  16. Time crystals: a review

    Science.gov (United States)

    Sacha, Krzysztof; Zakrzewski, Jakub

    2018-01-01

    Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals—the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek’s idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.

  17. Squeezing and other non-classical features in k-photon anharmonic oscillator in binomial and negative binomial states of the field

    International Nuclear Information System (INIS)

    Joshi, A.; Lawande, S.V.

    1990-01-01

    A systematic study of squeezing obtained from k-photon anharmonic oscillator (with interaction hamiltonian of the form (a † ) k , k ≥ 2) interacting with light whose statistics can be varied from sub-Poissonian to poissonian via binomial state of field and super-Poissonian to poissonian via negative binomial state of field is presented. The authors predict that for all values of k there is a tendency increase in squeezing with increased sub-Poissonian character of the field while the reverse is true with super-Poissonian field. They also present non-classical behavior of the first order coherence function explicitly for k = 2 case (i.e., for two-photon anharmonic oscillator model used for a Kerr-like medium) with variation in the statistics of the input light

  18. Infrared and Raman Spectroscopy of Eugenol, Isoeugenol, and Methyl Eugenol: Conformational Analysis and Vibrational Assignments from Density Functional Theory Calculations of the Anharmonic Fundamentals.

    Science.gov (United States)

    Chowdhry, Babur Z; Ryall, John P; Dines, Trevor J; Mendham, Andrew P

    2015-11-19

    IR and Raman spectra of eugenol, isoeugenol and methyl eugenol have been obtained in the liquid phase. Vibrational spectroscopic results are discussed in relation to computed structures and spectra of the low energy conformations of these molecules obtained from DFT calculations at the B3LYP/cc-pVTZ level. Although computed differences in vibrational spectra for the different conformers were generally small, close examination, in conjunction with the experimental spectra, enabled conformational analysis of all three molecules. Anharmonic contributions to computed vibrational spectra were obtained from calculations of cubic and quartic force constants at the B3LYP/DZ level. This permitted the determination of the anharmonic fundamentals for comparison with the experimental IR and Raman band positions, leading to an excellent fit between calculated and experimental spectra. Band assignments were obtained in terms of potential energy distributions (ped's).

  19. Effect of anharmonicity and Debye-Waller factor on the superconductivity of PdHsub(x) and PdDsub(x)

    International Nuclear Information System (INIS)

    Griessen, R.; Groot, D.G. de

    1983-01-01

    On the basis of existing superconducting tunnelling, neutron scattering, electrical resistivity and Raman scattering data and new thermal expansion, elastic moduli and point-contact spectroscopy data it is concluded that the anharmonicity of the proton (deuteron)-palladium potential is such that Msub(H)#betta#sub(H) 2 /(Msub(D)#betta#sub(D) 2 ) = 1.12 +- 0.05 Msub(H(D)) is the mass and #betta#sub(H(D)) the frequency of the vibration of hydrogen (deuterium). This anharmonicity is approximately 2 times too weak to reproduce the observed inverse isotope effect in the superconducting transition temperature of concentrated PdHsub(x) and PdDsub(x) alloys. Within a pseudopotential formalism it is shown that the Debye-Waller factor arising from the large zero-point amplitude of the interstitial hydrogen (deuterium) leads to a contribution to the inverse isotope effect in Tsub(c) which is as large as that of anharmonicity alone. (Auth.)

  20. Accounting for conformational flexibility and torsional anharmonicity in the H + CH3CH2OH hydrogen abstraction reactions: a multi-path variational transition state theory study.

    Science.gov (United States)

    Meana-Pañeda, Rubén; Fernández-Ramos, Antonio

    2014-05-07

    This work reports a detailed theoretical study of the hydrogen abstraction reactions from ethanol by atomic hydrogen. The calculated thermal rate constants take into account torsional anharmonicity and conformational flexibility, in addition to the variational and tunneling effects. Specifically, the kinetics calculations were performed by using multi-path canonical variational transition state theory with least-action path tunneling corrections, to which we have added the two-dimensional non-separable method to take into account torsional anharmonicity. The multi-path thermal rate constant is expressed as a sum over conformational reaction channels. Each of these channels includes all the transition states that can be reached by internal rotations. The results show that, in the interval of temperatures between 250 and 2500 K, the account for multiple paths leads to higher thermal rate constants with respect to the single path approach, mainly at low and at high temperatures. In addition, torsional anharmonicity enhances the slope of the Arrhenius plot in this range of temperatures. Finally, we show that the incorporation of tunneling into the hydrogen abstraction reactions substantially changes the contribution of each of the transition states to the conformational reaction channel.

  1. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  2. Crystal Data

    Science.gov (United States)

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  3. The experimental and theoretical investigation of vibration spectra in ferroelectric semiconductor SbSBrxI1-x crystals

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zigas, L.; Kvedaravicius, A.; Zaltauskas, R.

    2009-01-01

    The vapor grown SbSBr x I 1-x (x=0.1; 0.5; 0.9) crystals with clear mirror surfaces have been used for infrared reflection measurements with Fourier spectrometer. The vibration frequencies along c(z)-axis have been derived from Kramers-Kroning and optical parameters fitting analysis of the experimental reflectivity spectra at T=300 K. The theoretical vibration spectra of SbSBr x S 1-x (x=0.1; 0.5; 0.9) crystals in paraelectric phase (T=300 K) along c(z)-axis have been determined in quasiharmonic approximation by diagonalization of dynamical matrix. The theoretical vibration spectra of these crystals in a-b(x-y) plane have been determined in harmonic approximation. In this work we discuss the nature of anharmonism in SbSBr x I 1-x crystals along the c(z)-axis.

  4. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  5. Bidimensional distortion in ferroelectric liquid crystals with strong ...

    Indian Academy of Sciences (India)

    1Dipartimento di Fisica del Politecnico di Torino and Istituto Nazionale di Fisica della Materia. (INFM), C.so Duca degli Abruzzi 24, I-10129 Torino, Italy. 2Joint Laboratory of Orientationally Ordered Media (OOM-Lab), C. Duca degli Abruzzi 24,. I-10129 Torino, Italy. 3FSUE, “NIOPIK”, Organic Intermediates and Dyes Institute, ...

  6. Bidimensional distortion in ferroelectric liquid crystals with strong ...

    Indian Academy of Sciences (India)

    Dipartimento di Fisica del Politecnico di Torino and Istituto Nazionale di Fisica della Materia (INFM), C.so Duca degli Abruzzi 24, I-10129 Torino, Italy; Joint Laboratory of Orientationally Ordered Media (OOM-Lab), C. Duca degli Abruzzi 24, I-10129 Torino, Italy; FSUE, “NIOPIK”, Organic Intermediates and Dyes Institute, ...

  7. Experimental investigation of strong field trident production

    CERN Document Server

    Esberg, J; Knudsen, H; Thomsen, H D; Uggerhøj, E; Uggerhøj, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Dalton, M M; Ballestrero, S; Connell, S H

    2010-01-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single crystals. For the amorphous material our data are in good agreement with theory, whereas a discrepancy with theory on the magnitude of the trident enhancement is found in the precisely aligned case where the strong electric field acts.

  8. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    Science.gov (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-06

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  10. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  11. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    Science.gov (United States)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.

  12. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  13. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  14. Monochiral helimagnetism in homochiral crystals of CsCuCl3

    Science.gov (United States)

    Kousaka, Y.; Koyama, T.; Ohishi, K.; Kakurai, K.; Hutanu, V.; Ohsumi, H.; Arima, T.; Tokuda, A.; Suzuki, M.; Kawamura, N.; Nakao, A.; Hanashima, T.; Suzuki, J.; Campo, J.; Miyamoto, Y.; Sera, A.; Inoue, K.; Akimitsu, J.

    2017-12-01

    We report a crystal growth method to obtain homochiral single crystals of CsCuCl3 and polarized neutron diffraction studies to examine the chiral helimagnetism of this compound. The homochiral crystals were grown by two-step crystallization. First, millimeter-sized seed crystals were synthesized by spontaneous crystallization with stirring. The handedness of the seed crystals was determined by x-ray diffraction. Then, centimeter-sized homochiral crystals were obtained from the selected homochiral seed crystals. The large homochiral crystals made it possible to perform polarized neutron diffraction. We clarified a strong correlation between the crystal and magnetic chiralities, which governs the nature of antisymmetric Dzyaloshinskii-Moriya interactions.

  15. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  16. Tunable Meta-Liquid Crystals.

    Science.gov (United States)

    Liu, Mingkai; Fan, Kebin; Padilla, Willie; Powell, David A; Zhang, Xin; Shadrivov, Ilya V

    2016-02-24

    Meta-liquid crystals, a novel form of tunable 3D metamaterials, are proposed and experimentally demonstrated in the terahertz frequency regime. A morphology change under a bias electric field and a strong modulation of the transmission are observed. In comparison to conventional liquid crystals, there is considerable freedom to prescribe the electromagnetic properties through the judicious design of the meta-atom geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The vibrational spectrum of alpha-AlOOH diaspore: an ab initio study with the CRYSTAL code.

    Science.gov (United States)

    Demichelis, R; Noel, Y; Civalleri, B; Roetti, C; Ferrero, M; Dovesi, R

    2007-08-09

    The vibrational spectrum of alpha-AlOOH diaspore has been calculated at the B3LYP level of theory with a double-zeta quality Gaussian-type basis set by using the periodic ab initio CRYSTAL code. Harmonic frequencies at the Gamma point and the corresponding 48 normal modes are analyzed and classified in terms of simple models (octahedra modes, hydrogen stretching, bending, rotations) by direct inspection of eigenvectors, graphical representation, and isotopic substitution. Hydrogen modes are fully separated from the octahedra modes appearing under 800 cm(-1); bending modes are located in the range of 1040-1290 cm(-1), whereas stretching modes appear at 3130-3170 cm(-1). The available experimental IR and Raman spectra are characterized by broad bands, in some cases as large as 800 cm(-1), and individual peaks are obtained by decomposing these bands in terms of Lorentz-Gauss product functions; such a fitting procedure is affected by a relatively large degree of arbitrariness. The comparison of our calculated data with the most complete sets of experimental data shows, nevertheless, a relatively good agreement for all but the H modes; the mean absolute differences for modes not involving H are 10.9 and 7.2 cm(-1) for the IR and the Raman spectra, respectively, the maximum differences being 15.5 and 18.2 cm(-1). For the H bending modes, differences increase to 30 and 37 cm(-1), and for the stretching modes, the calculated frequencies are about 200 cm(-1) higher than the experimental ones; this is not surprising, as anharmonicity is expected to red shift the OH stretching by about 150 cm(-1) in isolated OH groups and even more when the latter is involved in strong hydrogen bonds, as is the case here.

  18. Hybrid colloidal plasmonic-photonic crystals.

    Science.gov (United States)

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  20. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  1. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)

    2007-07-15

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and

  2. Effects of anharmonic strain on the phase stability of epitaxial films and superlattices: Applications to noble metals

    International Nuclear Information System (INIS)

    Ozolins, V.; Wolverton, C.; Zunger, A.

    1998-01-01

    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total-energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%), and Ni/Au (15%). We find that left-angle 001 right-angle is the elastically soft direction for biaxial expansion of Cu and Ni, but it is left-angle 201 right-angle for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along left-angle 111 right-angle and left-angle 001 right-angle behave like phase separating systems, while for left-angle 110 right-angle they behave like ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents. copyright 1998 The American Physical Society

  3. Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ludovic; Vaeck, Nathalie [Laboratoire de Chimie Quantique et Photophysique, CP 160/09 Université Libre de Bruxelles, B-1050 Brussels (Belgium); Justum, Yves [Laboratoire de Chimie Physique, UMR 8000 and CNRS, Université Paris-Sud, F-91405 Orsay (France); Desouter-Lecomte, M. [Laboratoire de Chimie Physique, UMR 8000 and CNRS, Université Paris-Sud, F-91405 Orsay (France); Département de Chimie, Université de Liège, Bât B6c, Sart Tilman B-4000, Liège (Belgium)

    2015-04-07

    Following a recent proposal of L. Wang and D. Babikov [J. Chem. Phys. 137, 064301 (2012)], we theoretically illustrate the possibility of using the motional states of a Cd{sup +} ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödinger equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field which is able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state, and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.

  4. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  5. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  6. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  7. A study of anharmonic al and nonlinear behaviours of vibrations of atomic nuclei; Etude des comportements anharmonioques et non lineaires des vibrations des noyaux atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, M.C. [Caen Univ., 14 (France)

    1997-12-31

    Double Giant Resonances, vibrational states in which a Giant Resonance is excited on top of another Giant Resonance, have been in the last years the object of many theories and studies. Whereas the measured energies and widths of these states agree with a theoretical predictions, the measured excitation cross sections on the other hand are almost always larger than the calculated ones. The standard theoretical approaches are based both on a harmonic approximation for the collective motion on the nucleus and on its linear response to an external field. In this work the influence of anharmonicities and non-linearities in the external field on the excitation of Double Giant Resonances are studied. First, an oscillator model and an extension of the Lipkin-Meshkow-Glick model are used to study the effects of anharmonicities and non-linearities on the excitation probabilities. The results show that these terms can influence the excitation probability of the second excited state in a significant way. Secondly, these exactly soluble schematic models are used to study some of the approximations made in microscopic calculations based on boson expansion methods and also some aspects on the time-dependent mean field approach. Finally, a microscopic calculation of the Coulomb excitation cross sections of Double Giant Resonances is presented for several nuclei. It is found that, for {sup 208} Pb, the inclusion of anharmonicities and non-linearities and the consideration of many states that play a role in the excitation process give a satisfactory agreement between calculated and observed cross sections. (author). 113 refs.

  8. Nucleation and crystal growth in batch crystallizers

    NARCIS (Netherlands)

    Janse, A.H.

    1977-01-01

    The aim of the present work is to gain knowledge of the mechanism of formation of the crystal size distribution in batch crystallizers in order to give directives for design and operation of batch crystallizers. The crystal size distribution is important for the separation of crystals and mother

  9. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  10. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  11. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  12. Therapeutic Crystals

    Science.gov (United States)

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  13. Ribbon Crystals

    DEFF Research Database (Denmark)

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons...

  14. Hydrostatic pressure and temperature effect on the Raman spectra of the molecular crystal 2-amine-1,3,4-thiadiazole

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.

    2018-03-01

    The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.

  15. Liquid crystal dimers

    CERN Document Server

    Kumar Pal, Santanu

    2017-01-01

    This book covers in-depth discussion of design principles, synthesis and thermal behavior of all types of liquid crystal (LC) dimers. The text presents recent advances in the field of LC dimers consisting of different mesogenic units such as calamitic, discotic and bent-core molecules. It starts with a chapter on the introduction of liquid crystal dimers, including their odd-even behavior, basic classification of dimers and common mesophases in dimers. The text shows how the molecular architectures are being used to develop new materials to study a range of interesting phenomena such as the biaxial nematic phase containing rod-like and disc-like mesogenic units. Finally, the text presents perspectives related to technological relevance of these dimers such as dopants in LC display mixtures exhibiting faster relaxation time, strong flexoelectric coupling and others to effect control over the properties of these materials.

  16. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  17. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  18. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  19. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  20. Anharmonicity of Coupled Torsions: The Extended Two-Dimensional Torsion Method and Its Use To Assess More Approximate Methods.

    Science.gov (United States)

    Simón-Carballido, Luis; Bao, Junwei Lucas; Alves, Tiago Vinicius; Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2017-08-08

    In this work we present the extended two-dimensional torsion (E2DT) method and use it to analyze the performance of several methods that incorporate torsional anharmonicity more approximately for calculating rotational-vibrational partition functions. Twenty molecules having two hindered rotors were studied for temperatures between 100 and 2500 K. These molecules present several kinds of situations; they include molecules with nearly separable rotors, molecules in which the reduced moments of inertia change substantially with the internal rotation, and molecules presenting compound rotation. Partition functions obtained by the rigid-rotor harmonic oscillator approximation, a method involving global separability of torsions and the multistructural methods without explicit potential coupling [MS-T(U)] and with explicit potential coupling [MS-T(C)] of torsions, are compared to those obtained with a quantized version - called the extended two-dimensional torsion (E2DT) method - of the extended hindered rotor approximation of Vansteenkiste et al. ( Vansteenkiste et al. J. Chem. Phys. 2006 , 124 , 044314 ). In the E2DT method, quantum effects due to the torsional modes were incorporated by the two-dimensional nonseparable method, which is a method that is based on the solution of the torsional Schrödinger equation and that includes full coupling in both the kinetic and potential energy. By comparing other methods to the E2DT method and to experimental thermochemical data, this study concludes that the harmonic approximation yields very poor results at high temperatures; the global separation of torsions from the rest of the degrees of freedom is not justified even when an accurate method to treat the torsions is employed; it is confirmed that methods based on less complete potential energy coupling of torsions, such as MS-T(U), are not accurate when dealing with rotors with different barrier heights, and more complete inclusion of torsional coupling to the method in MS

  1. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  2. Infrared Spectrum of Toluene: Comparison of Anharmonic Isolated-Molecule Calculations and Experiments in Liquid Phase and in a Ne Matrix.

    Science.gov (United States)

    Knaanie, Roie; Šebek, Jiří; Tsuge, Masashi; Myllys, Nanna; Khriachtchev, Leonid; Räsänen, Markku; Albee, Brian; Potma, Eric O; Gerber, R Benny

    2016-05-19

    First-principles anharmonic calculations are carried out for the CH stretching vibrations of isolated toluene and compared with the experimental infrared spectra of isotopologues of toluene in a Ne matrix at 3 K and of liquid toluene at room temperature. The calculations use the vibrational self-consistent field method and the B3LYP potential surface. In general, good agreement is found between the calculations and experiments. However, the spectrum of toluene in a Ne matrix is more complicated than that predicted theoretically. This distinction is discussed in terms of matrix-site and resonance effects. Interestingly, the strongest peak in the CH stretching spectrum has similar widths in the liquid phase and in a Ne matrix, despite the very different temperatures. Implications of this observation to the broadening mechanism are discussed. Finally, our results show that the B3LYP potential offers a good description of the anharmonic CH stretching band in toluene, but a proper description of matrix-site and resonance effects remains a challenge.

  3. Direct simulations of anharmonic infrared spectra using quantum mechanical/effective fragment potential molecular dynamics (QM/EFP-MD): methanol in water.

    Science.gov (United States)

    Ghosh, Manik Kumer; Lee, Jooyong; Choi, Cheol Ho; Cho, Minhaeng

    2012-09-13

    One of the most stringent tests for chemical accuracy of a hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation method would be to directly compare the calculated vibrational spectra with the corresponding experimental results. Here, the applicability of hybrid QM/effective fragment potential (EFP) to the simulations of methanol infrared spectra is investigated in detail. It is demonstrated that the QM/EFP simulations in combination with time correlation function theory yield not only the fundamental transition bands but also the major overtone and combination bands of methanol dissolved in water in both mid- and near-IR regions. This clearly indicates that the QM/EFP-molecular dynamics can be a viable way of obtaining an anharmonic infrared spectrum that provides information on solvatochromic frequency shifts and fluctuations, solute-solvent interaction-induced dephasing, and anharmonic coupling effects on vibrational spectra of aqueous solutions. We anticipate that the computational protocol developed here can be effectively used to simulate both one- and two-dimensional vibrational spectra of biomolecules and chemically reactive systems in condensed phases.

  4. Airy function approach and Numerov method to study the anharmonic oscillator potentials V(x) = Ax{sup 2α} + Bx{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Al Sdran, N. [King Khalid University, Faculty of Science, Physics Department P.O. Box 9004 Abha (Saudi Arabia); Najran University, Faculty of Sciences and Arts, Najran (Saudi Arabia); Maiz, F., E-mail: fethimaiz@gmail.com [King Khalid University, Faculty of Science, Physics Department P.O. Box 9004 Abha (Saudi Arabia); Thermal Process Laboratory Research and Technologies Centre of Energy, BP 95, 2050 Hammam-lif (Tunisia)

    2016-06-15

    The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.

  5. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  6. MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity

    Science.gov (United States)

    Zheng, Jingjing; Mielke, Steven L.; Clarkson, Kenneth L.; Truhlar, Donald G.

    2012-08-01

    processors) Operating system: Linux/Unix/Mac OS RAM: 2 Mbytes Classification: 16.3, 16.12, 23 Nature of problem: Calculation of the partition functions and thermodynamic functions (standard-state energy, enthalpy, entropy, and free energy as functions of temperatures) of complex molecules involving multiple torsional motions. Solution method: The multi-structural approximation with torsional anharmonicity (MS-T). The program also provides results for the multi-structural local harmonic approximation [1]. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multi-torsional problems for which one can afford to calculate all the conformations and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes and six utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomain defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 24 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 seconds. J. Zheng, T. Yu, E. Papajak, I.M. Alecu, S.L. Mielke, D.G. Truhlar, Practical methods for including torsional anharmonicity in thermochemical calculations of complex molecules: The internal-coordinate multi

  7. Local polar fluctuations in lead halide perovskite crystals

    International Nuclear Information System (INIS)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor

    2017-01-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH 3 NH 3 PbBr 3 ) and all-inorganic (CsPbBr 3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr 3 .

  8. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  9. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  10. Crystal Deflectors for High Energy Ion Beams

    CERN Document Server

    Scandale, W

    2013-01-01

    The motion of charged particles entering a crystal at small angles with respect to a crystalline plane is strongly influenced by the average electric field of the ordered nuclei. For sufficiently small angles the particles can be captured in channeling states, thus performing quasi-harmonic oscillations in the potential well between the crystal planes. Channeled particles in a bent crystal are deflected along the bent planes of the crystal. This provides a powerful method to steer and control particle trajectories that has been investigated and occasionally exploited for some decades already.

  11. Protein Crystal Growth in Gels and Stationary Magnetic Fields

    International Nuclear Information System (INIS)

    Moreno, A.; Quiroz-Garcia, B.; Yokaichiya, F.; Stojanoff, V.; Rudolph, P.

    2007-01-01

    Thaumatin, lysozyme, and ferritin single crystals were grown in solutions and gels without and with surrounding strong stationary magnetic fields. The crystal size, number and alignment in dependence on the induction force were analyzed. The crystal quality, like mosaicity, as function of the magnetic force is discussed by using synchrotron X-ray diffraction analysis

  12. Understanding of Enhanced Oxygen Storage Capacity in Ce0.5Zr0.5O2 : The Presence of an Anharmonic Pair Distribution Function in the Zr-O2 Subshell as Analyzed by XAFS Spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Lemaux, S.; Bensaddik, A.; Eerden, A.M.J. van der; Bitter, J.H.

    2001-01-01

    Standard EXAFS analysis on CexZr1-xO2 mixed oxides leads to incorrect structural parameters. A comparison of XRD Rietveld analysis with an EXAFS study of a Y-doped reference compound and a Ce0.5Zr0.5O2 catalyst showed that in order to obtain reliable structural parameters with EXAFS an anharmonic

  13. Synthesis and characterization of CuO nanoparticles using strong ...

    Indian Academy of Sciences (India)

    In the present study, cupric oxide (CuO) nanoparticles were synthesized by electrochemical discharge process using strong base electrolytes. The experiments were carried out separately using NaOH and KOH electrolytes.The mass output rate and the crystal size were obtained with variation of the rotation speed of ...

  14. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  15. A single crystal neutron diffraction study on mixed crystal (K) 0. 25 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 41; Issue 1. A single crystal neutron diffraction study on mixed crystal (K) 0.25 ( N H _4 ) _{0.75}H 2 PO 4 : tuning of short strong hydrogen bonds by ionic interactions. RAJUL RANJAN CHOUDHURY R CHITRA. Volume 41 Issue 1 February 2018 Article ID 8 ...

  16. Structural transformations in silicon under exposure by femtosecond laser pulse: role of electron-hole plasma and phonon-phonon anharmonism

    CERN Document Server

    Kudryashov, S I

    2002-01-01

    It is experimentally shown for the first time that by the effect of the feed-up laser pulse of 100 fs duration on the silicon target the consecutive structural transitions of the substance into the new crystalline and liquid metallic phase occur both during the laser pulse feed-up and after 0.1-10 sup 3 ps, depending on the material excitation conditions. The thresholds of the observed structural transitions are determined and the phonon nodes, responsible for therefore, are identified. The structural transitions dynamics in the silicon by the 01.-10 sup 3 ps times is described within the frames of the model of the phonon modes instability, originating due to the plasma electron-hole effect and also due to the intra- and intermode phonon-phonon anharmonic interactions

  17. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  18. Quantum instanton calculation of rate constant for CH4 + OH → CH3 + H2O reaction: torsional anharmonicity and kinetic isotope effect.

    Science.gov (United States)

    Wang, Wenji; Zhao, Yi

    2012-12-07

    Thermal rate constants for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The results reveal that the quantum effect is remarkable for the reaction at both low and high temperatures, and the obtained rates are in good agreement with experimental measurements at high temperatures. Compared to the harmonic approximation, the torsional anharmonic effect of the internal rotation has a little influence on the rates at low temperatures, however, it enhances the rate by about 20% at 1000 K. In addition, the free energy barriers for the isotopic reactions and the temperature dependence of kinetic isotope effects are also investigated. Generally speaking, for the title reaction, the replacement of OH with OD will reduce the free energy barrier, while substituting D for H (connected to C) will increase the free energy barrier.

  19. Quantum effects and anharmonicity in the H{sub 2}-Li{sup +}-benzene complex: A model for hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Kolmann, Stephen J.; D' Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2013-12-21

    Quantum and anharmonic effects are investigated in H{sub 2}-Li{sup +}-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H{sub 2} binding enthalpy estimates, ΔH{sub bind} (0 K), being 16.5 kJ mol{sup −1} and 12.4 kJ mol{sup −1}, respectively: 0.1 and 0.6 kJ mol{sup −1} higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH{sub bind} (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔH{sub bind} (0 K) by at least 6 kJ mol{sup −1}. Harmonic intermolecular binding enthalpies can be corrected by treating the H{sub 2} “helicopter” and “ferris wheel” rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H{sub 2} molecule is delocalized above the Li{sup +}-benzene system at 0 K.

  20. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  2. Liquid Crystal Devices.

    Science.gov (United States)

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  3. Liquid Crystal Inquiries.

    Science.gov (United States)

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  4. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  5. X-ray diffraction analysis of some single crystals with special properties

    Energy Technology Data Exchange (ETDEWEB)

    Antipin, M.Yu. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Organoelement Compounds

    1996-12-31

    New possibilities of the X-ray diffraction method for studies of some single crystals with special physical properties are analyzed. It is demonstrated that wide range temperature diffraction data, special single crystals experiments under strong electric fields, and charge density analysis in crystals might enrich the knowledge on the nature of the crystal properties.

  6. Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method

    International Nuclear Information System (INIS)

    Budenkova, O. N.; Vasiliev, M. G.; Yuferev, V. S.; Ivanov, I. A.; Bul'kanov, A. M.; Kalaev, V. V.

    2008-01-01

    Numerical investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium garnet crystals in the same thermal zone and comparison of the obtained results with the experimental data have been performed. It is shown that the difference in the behavior of the crystallization front during growth of the crystals is related to their different transparency in the IR region. In gadolinium gallium garnet crystals, which are transparent to thermal radiation, a crystallization front, strongly convex toward the melt, is formed in the growth stage, which extremely rapidly melts under forced convection. Numerical analysis of this process has been performed within the quasistationary and nonstationary models. At the same time, in terbium gallium garnet crystals, which are characterized by strong absorption of thermal radiation, the phase boundary shape changes fairly smoothly and with a small amplitude. In this case, as the crystal is pulled, the crystallization front tends to become convex toward the crystal bulk.

  7. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N.; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M.; Soares, Alexei S.

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.

  8. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    Science.gov (United States)

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  9. Isotope effects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations.

    Science.gov (United States)

    Dammak, Hichem; Antoshchenkova, Ekaterina; Hayoun, Marc; Finocchi, Fabio

    2012-10-31

    Molecular dynamics (MD) simulations have been carried out to study isotope effects in lithium hydride and lithium deuteride crystals. Quantum effects on nuclear motion have been included through a quantum thermal bath (QTB). The interatomic forces were described either within the density functional theory (DFT) in the generalized gradient approximation (GGA) or by the phenomenological approach using the shell model. For both models, the isotopic shift in the lattice parameter can be successfully predicted by QTB-MD simulations. The slope of the experimental isotopic shift in pressure is satisfactorily reproduced by QTB-MD within DFT-GGA, in contrast to both density functional perturbation theory and QTB-MD with the shell model. We have analyzed the reasons for these discrepancies through the vibrational densities of states and the isotopic shifts in bulk modulus. The results illustrate the importance of anharmonic contributions to vibrations and to the isotopic pressure shift between LiH and LiD.

  10. Optical properties of liquid crystals

    International Nuclear Information System (INIS)

    Durand, G.

    1977-01-01

    Liquid crystals are strongly anisotropic liquids. Their textures are stabilized by a usually weak culvature elasticity. External fields act coherently through induced torques to align the liquid crystal textures. Low fields can have large optical effects. These properties explain the interest of liquid crystals for electrooptical applications. The optical properties of liquid crystals are those of positive uniaxial or biaxial solid crystals. An important parameter is the existence of a possible regular twist, spontaneous or not, on an optical wavelength scale or larger. This results in Bragg scattering of light, a very large associated rotatory power or possibly a wave-guide regime for polarized light. Light scattering is an important source of noise close to the transmitted beam, and it is difficult to filter because of the large associated correlation time. A highly distorted texture which contains all kinds of defects can scatter light like a ground glass. All these properties are used in optical devices. Optical devices using liquid crystal displays are now commercially available. Most of them use nematic materials, in the twisted geometry, in the variable tilt mode or in the dynamic scattering mode. These passive displays are interesting for field application because of their very low power consumption. Their relatively large response time (typically in the millisecond range) is used for a multiplex-type addressing. Smectic materials are potentially interesting for optical applications. Their advantage would be a much larger resolution which is not limited to the thickness of the liquid crystal cell. The response times are also much shorter than in nematics and could soon become compatible with a standard television rate of imaging. Smectics (and cholesterics) present also a memory effect. The ferroelectric chiral smectic C opens up a new field for future investigations. (author)

  11. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  12. Crystal structure of Earth's inner core: A first-principles study

    Science.gov (United States)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  13. Liquid crystal on subwavelength metal gratings

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation)

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  14. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  15. Natural photonic crystals

    Science.gov (United States)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  16. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  17. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  18. Suppressing of γ-crystal formation in metallocene-based isotactic polypropylene during isothermal crystallization under shear flow.

    Science.gov (United States)

    Wang, Yan; Chen, Chen; Xu, Jia-Zhuang; Lei, Jun; Mao, Yimin; Li, Zhong-Ming; Hsiao, Benjamin S

    2012-04-26

    The effect of shear flow on isothermal crystallization behavior of γ-crystals in metallocene-based isotactic polypropylene melt was investigated by in situ synchrotron wide-angle X-ray diffraction (WAXD). In the sample under weak shear (at strain of 300% for 30 s duration), simultaneous evolution of α- and γ-crystals occurred, and the final fraction of γ-crystals (fγ) was 0.66, which was identical to the undeformed sample (PP-Static). In this scenario, α-crystals probably served as effective seeds for nucleation of γ-crystals. In the samples under strong shear (at strain of 500% for 30 s duration or long-time continuous shear at strains of 100% and 500%), the sequential emergence of α- and γ-crystals was observed. In this case, molten polymer chains were probably constrained by the surrounding crystals after intense short-time shear and/or maintained their extended chain conformation after long-time shear. These oriented chains had little chance to form the γ-crystals directly, behaving very differently from the relaxed chains. Under strong shear fields, the emergence of γ-crystals was delayed or inhibited, whereas the fγ value was also decreased rapidly. A simple model for the possible pathway of γ-crystal formation in the strong shear environment was proposed.

  19. Crystal nucleation of colloidal hard dumbbells.

    Science.gov (United States)

    Ni, Ran; Dijkstra, Marjolein

    2011-01-21

    Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.

  20. Gold Liquid Crystals in the XXI Century

    Directory of Open Access Journals (Sweden)

    Manuel Bardají

    2014-08-01

    Full Text Available Since the first gold liquid crystal was described in 1986, much effort has been done to prepare new compounds bearing this property. The review deals with the last results obtained in this new century. Gold(I has a strong affinity to give linear co-ordination and metal-metal interactions, which produce a rich supramolecular chemistry, and can promote the behavior as liquid crystal. Therefore, most liquid crystals are based on rod-like gold(I compounds, while gold(III liquid crystals are scarce. Calamitic and discotic mesogens have been reported, as well as chiral liquid crystals. Weak interactions such as H-bonds have also been used to obtain gold mesogens. Some of them exhibit additional properties, such as color, luminescence, and chirality. Luminescence has been reported, not only in the solid state or in solution, but also in the mesophase. This is relevant for applications in LEDs (Light Emitting Diodes, information storage, and sensors.

  1. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal

  2. Tailoring quantum structures for active photonic crystals

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda

    This work is dedicated to the tailoring of quantum structures, with particular attention to the integration of selective area grown (SAG) active material into photonic crystal (PhC) slabs. The platform based on active PhC is vital to the realization of highly efficient elements with low energy......; in particular, the emission control of SAG QW matched the operating wavelength of photonic crystals. A strong photoluminescence signal in the slow light regime with the group index of 18 was demonstrated....

  3. Identifying anterior segment crystals.

    OpenAIRE

    Hurley, I W; Brooks, A M; Reinehr, D P; Grant, G B; Gillies, W E

    1991-01-01

    A series of 22 patients with crystals in the anterior segment of the eye was examined by specular microscopy. Of 10 patients with hypermature cataract and hyperrefringent bodies in the anterior chamber cholesterol crystals were identified in four patients and in six of the 10 in whom aspirate was obtained cholesterol crystals were demonstrated in three, two of these having shown crystals on specular microscopy. In 10 patients with intracorneal crystalline deposits, cholesterol crystals were f...

  4. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  5. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Clabo, D.A. Jr.

    1987-04-01

    Inclusion of the anharmonicity normal mode vibrations (i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface) is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules.

  6. Systematic studies of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher derivative methods: Applications to asymmetric and symmetric top and linear polyatomic molecules

    International Nuclear Information System (INIS)

    Clabo, D.A. Jr.

    1987-04-01

    Inclusion of the anharmonicity normal mode vibrations [i.e., the third and fourth (and higher) derivatives of a molecular Born-Oppenheimer potential energy surface] is necessary in order to theoretically reproduce experimental fundamental vibrational frequencies of a molecule. Although ab initio determinations of harmonic vibrational frequencies may give errors of only a few percent by the inclusion of electron correlation within a large basis set for small molecules, in general, molecular fundamental vibrational frequencies are more often available from high resolution vibration-rotation spectra. Recently developed analytic third derivatives methods for self-consistent-field (SCF) wavefunctions have made it possible to examine with previously unavailable accuracy and computational efficiency the anharmonic force fields of small molecules

  7. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  8. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  9. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  10. Channeling and related crystal effects

    International Nuclear Information System (INIS)

    Uggerhoj, Erik

    1995-01-01

    Channeling, the interaction of particles with oriented crystals, has been applied in a wide variety of scientific and technological areas. A workshop at Aarhus, Denmark, this summer highlighted progress and future directions. Radiation emission has been explored and linked to coherent bremsstrahlung and other oriented crystal radiations. Dramatic effects have been found for ultra-relativistic electrons with Lorentz factors of 105 6. Single crystals are unique for investigations of quantum electrodynamics in strong external fields because probabilities for processes in axial/ planar fields are determined by the magnitude of these fields in the particle rest frame. Erik Uggerhoj of Aarhus reported on an extensive series of experiments concerning radiation emission, pair production, and shower formation carried out at CERN by the NA43 collaboration. As Vladimir Baier of Novosibirsk and Yuri Kononets of Kurchatov noted, theoretical treatment of these interconnected radiation distributions is challenging and much work needs to be done. In general, the agreement with the CERN experiments is good, but many areas like polarization phenomena and particle production need investigation. Prominent among high energy applications is extraction from accelerators. At the workshop, Alexei Asseev reported on beam extraction using a bent crystal at Serpukhov. Konrad Elsener and Jukka Klem reviewed recent CERN SPS studies driven by the possibility of using crystals for extraction of LHC beams. Thornton Murphy of Fermilab announced a step in that direction, with a demonstration this summer of extraction from the Tevatron at 900 GeV. Bent crystal channeling is also used for handling extracted high energy beams. Niels Doble presented a beautiful example of a beam for the CERN NA48 CP-violation experiment. Yuri Chesnokov reported that beams had been deflected through angles up to 150 milliradians at Serpukhov

  11. Geochemical modelization of differentiation processes by crystallization

    International Nuclear Information System (INIS)

    Cebria, J.M.; Lopez Ruiz, J.

    1994-01-01

    During crystallization processes, major and trace elements and stable isotopes fractionate, whereas radiogenic isotopes do not change. The different equations proposed allow us to reproduce the variation in major and trace elements during these differentiation processes. In the case of simple fractional crystallization, the residual liquid is impoverished in compatible elements faster than it is enriched in incompatible elements as crystallization proceeds. During in situ crystallization the incompatible elements evolve in a similar way to the case of simple fractional crystallization but the enrichment rate of the moderately incompatible elements is slower and the compatible elements do not suffer a depletion as strong as the one observed during simple fractional crystallization, even for higher f values. In a periodically replenished magma chamber if all the liquid present is removed at the end of each cycle, the magma follows patterns similar to those generated by simple fractional crystallization. On the contrary, if the liquid fraction that crystallizes during each cycle and the one that is extruded at the end of the cycle are small, the residual liquid shows compositions similar to those that would be obtained by equilibrium crystallization. Crystallization processes modelling is in general less difficult than for partial melting. If a rock series is the result of simple fractional crystallization, a C''i L -C''i L plot in which i is a compatible element and j is highly incompatible, allows us to obtain a good approximation to the initial liquid composition. Additionally, long C''i L -log C''i L diagrams in which i is a highly incompatible element, allow us to identify steps in the process and to calculate the bulk distribution coefficients of the trace elements during each step

  12. Strongly nonlinear waves in a chain of Teflon beads

    OpenAIRE

    Daraio, C.; Nesterenko, V. F.; Herbold, E. B.; Jin, S.

    2005-01-01

    One-dimensional “sonic vacuum” type phononic crystals were assembled from a chain of polytetrafluoroethylene (PTFE,Teflon) spheres with different diameters in a Teflon holder. It was demonstrated that this polymer-based sonic vacuum, with exceptionally low elastic modulus of particles, supports propagation of strongly nonlinear solitary waves with a very low speed. These solitary waves can be described using the classical nonlinear Hertz law despite the viscoelastic nature of the polymer and ...

  13. Neutron Scattering and Its Application to Strongly Correlated Systems

    OpenAIRE

    Zaliznyak, Igor A.; Tranquada, John M.

    2013-01-01

    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an ...

  14. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  15. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  16. Driven transverse shear waves in a strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2008-01-01

    The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied in a DC discharge device by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 c ) where Γ is the Coulomb coupling parameter and Γ c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results

  17. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  18. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  19. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  20. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  1. Anharmonic Oxygen Displacements in La2-x (Sr, Ba)xCuO4 Planes and in YBa2Cu3O7 Chains

    International Nuclear Information System (INIS)

    Pickett, W. E.

    1995-01-01

    An earlier calculation of the energy surface for X-point tilts if the CuO6 octahedra in La 2-x (Sr, Ba) x CuO 4 revealed an eight well potential surface. This surface indicated an extremely anharmonic situation and seemed to provide an explanation of a number of observed phenomena in this system, especially the coincidence of a drop in Tc with the occurrence of the low temperature tetragonal phase. We review experimental developments since that time, which indicate new complications. We also reconsider the zone boundary chain-buckling mode of the chain oxygen atoms in YBa 2 Cu 3 O 7 , for which our earlier calculation indicated a very flat (slightly double well) energy surface that would provide very little restoring force to this motion. We have studied the coupling of the chain buckling motion to the carriers by evaluating the shifts of bands near the Fermi energy. These deformation potentials themselves are not large (∼ 0.1-0.2 eV/A) and non-linear coupling is minor out to displacements of 0.25 A. (author)

  2. The molecular dynamic study of anharmonic effects at Cu(111) and Ag(111) surfaces in the presence of Cu- and Ag-trimer island

    International Nuclear Information System (INIS)

    Shah, Zulfiqar Ali; Hayat, Sardar Sikandar; Rehman, Z.; Bouafia, Farida

    2014-01-01

    The molecular dynamics (MD) technique based on semi-empirical potentials, is used to carry out the diffusion of Cu- and Ag-trimer on Cu- and Ag(111) surface at 300, 500 and 700 K temperatures. The constant energy MD simulation elaborates the anharmonic effects at the surface such as fissures, dislocations and vacancy creation, in the presence of island. The fissures and dislocations formed are in the range of 1.5–4 Å and 1–7 Å, respectively, from the island's position. The Cu and Ag islands both diffuse easily on Cu(111) surface, manipulate that the trend of diffusion is faster on Cu surface as compared to Ag surface. The process of breaking and opening of the island has also been observed. Moreover, a surface atom popped-up at 700 K by creating a vacancy near the Cu island on Ag surface. The rate of diffusion increases with the increase in temperature, both for homo- and hetero-cases.

  3. Dynamical focusing by bent, asymmetrically cut perfect crystals in Laue geometry.

    Science.gov (United States)

    Guigay, J P; Ferrero, C

    2016-07-01

    A semi-analytical approach based on the influence functions of a point source located on the crystal surface has been adopted to show that the focusing ability of cylindrically bent Laue crystals may be strongly enhanced by replacing symmetrically cut crystals with asymmetrically cut crystals. This approach is generally applicable to any distance between the X-ray source and the focusing bent crystal. A mathematically straightforward method to simplify the derivation of the already known expression of the influence functions in the case of deformed crystals with a constant strain gradient (e.g. cylindrically bent crystals) is also presented.

  4. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  5. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  6. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  7. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  8. Crystal structure and prediction.

    Science.gov (United States)

    Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

    2015-04-01

    The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

  9. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  10. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  11. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  12. Physico-mechanical and dissolution behaviours of ibuprofen crystals crystallized in the presence of various additives

    Directory of Open Access Journals (Sweden)

    A Nokhodchi

    2010-06-01

    Full Text Available "n  "n Background and the purpose of the study: The success of any direct-tableting procedure is strongly affected by the quality of the crystals used in the process. Ibuprofen is a poorly compactible drug with a high tendency for capping. In order to use ibuprofen in direct compression formulations, physico-mechanical properties of ibuprofen should be improved considerably. The aim of the present investigation was to employ crystallization techniques in order to improve the physico-mechanical properties of ibuprofen for direct compression. "nMethods:The experimental methods involved the preparation of ibuprofen crystals by solvent change technique. Ibuprofen was dissolved in ethanol and crystallized out with water in the absence or presence of various hydrophilic additives (PEG 6000, 8000, Brij 98P and polyvinyl alcohol 22000, PVA 22000 with different concentrations. The physico-mechanical properties of the ibuprofen crystals were studied in terms of flow, density, tensile strength and dissolution behaviour. Morphology of ibuprofen crystals was studied by scanning electron microscopic (SEM. Solid state of the recrystallized particles was also investigated using differential scanning calorimeter (DSC and FT-IR. "nResults:Ibuprofen samples crystallized in the presence of PEG 6000 and 8000 and PVA showed remarkable increase in the tensile strengths of the directly compressed tablets, while some other additives, i.e. Brij 98P did not produce improved ibuprofen crystals. Ibuprofen powders made from particles obtained in the presence of PVA and Brij 98P showed similar dissolution profiles to the commercial ibuprofen particles. DSC and FT-IR results ruled out any significant interaction between ibuprofen and additives except for the samples crystallized in the presence of PEG 8000. Conclusion:The crystal habit of ibuprofen can be altered successfully by the crystallization technique which was developed in this study. The crystals developed in the

  13. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  14. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  15. Understanding the role of vibrations, exact exchange, and many-body van der Waals interactions in the cohesive properties of molecular crystals

    Science.gov (United States)

    Reilly, Anthony M.; Tkatchenko, Alexandre

    2013-07-01

    The development and application of computational methods for studying molecular crystals, particularly density-functional theory (DFT), is a large and ever-growing field, driven by their numerous applications. Here we expand on our recent study of the importance of many-body van der Waals interactions in molecular crystals [A. M. Reilly and A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028 (2013), 10.1021/jz400226x], with a larger database of 23 molecular crystals. Particular attention has been paid to the role of the vibrational contributions that are required to compare experiment sublimation enthalpies with calculated lattice energies, employing both phonon calculations and experimental heat-capacity data to provide harmonic and anharmonic estimates of the vibrational contributions. Exact exchange, which is rarely considered in DFT studies of molecular crystals, is shown to have a significant contribution to lattice energies, systematically improving agreement between theory and experiment. When the vibrational and exact-exchange contributions are coupled with a many-body approach to dispersion, DFT yields a mean absolute error (3.92 kJ/mol) within the coveted "chemical accuracy" target (4.2 kJ/mol). The role of many-body dispersion for structures has also been investigated for a subset of the database, showing good performance compared to X-ray and neutron diffraction crystal structures. The results show that the approach employed here can reach the demanding accuracy of crystal-structure prediction and organic material design with minimal empiricism.

  16. Analysis of liquid crystal properties for photonic crystal fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2009-01-01

    We analyze the bandgap structure of Liquid Crystal infiltrated Photonic Crystal Fibers depending on the parameters of the Liquid Crystals by means of finite element simulations. For a biased Liquid Crystal Photonic Crystal Fiber, we show how the tunability of the bandgap position depends...... on the Liquid Crystal parameters....

  17. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A. E-mail: antonio@ubxlab.comtoni@ubxlab.com

    2004-05-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field.

  18. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    International Nuclear Information System (INIS)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A.

    2004-01-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

  19. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy

    DEFF Research Database (Denmark)

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas

    2015-01-01

    of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization...

  20. Nucleation and structural growth of cluster crystals

    International Nuclear Information System (INIS)

    Leitold, Christian; Dellago, Christoph

    2016-01-01

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds.

  1. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  2. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  3. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  4. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  5. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  6. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  7. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  8. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann

    2012-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  9. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  10. Macromolecular Crystallization in Microgravity

    Science.gov (United States)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  11. MSTor version 2013: A new version of the computer code for the multi-structural torsional anharmonicity, now with a coupled torsional potential

    Science.gov (United States)

    Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G.

    2013-08-01

    partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 26 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 s. References: [1] MS-T(C) method: Quantum Thermochemistry: Multi-Structural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential, J. Zheng and D.G. Truhlar, Journal of Chemical Theory and Computation 9 (2013) 1356-1367, DOI: http://dx.doi.org/10.1021/ct3010722. [2] MS-T(U) method: Practical Methods for Including Torsional Anharmonicity in Thermochemical Calculations of Complex Molecules: The Internal-Coordinate Multi-Structural Approximation, J. Zheng, T. Yu, E. Papajak, I, M. Alecu, S.L. Mielke, and D.G. Truhlar, Physical Chemistry Chemical Physics 13 (2011) 10885-10907.

  12. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  13. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  14. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  15. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  16. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  17. Strong Plate, Weak Slab Dichotomy

    Science.gov (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.

    2015-12-01

    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  18. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  19. Crystallization and crystal properties of squid rhodopsin

    International Nuclear Information System (INIS)

    Murakami, Midori; Kitahara, Rei; Gotoh, Toshiaki; Kouyama, Tsutomu

    2007-01-01

    Truncated rhodopsin from the retina of the squid Todarodes pacificus was extracted and crystallized by the sitting-drop vapour-diffusion method. Hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. Rhodopsin, a photoreceptor membrane protein in the retina, is a prototypical member of the G-protein-coupled receptor family. In this study, rhodopsin from the retina of the squid Todarodes pacificus was treated with V8 protease to remove the C-terminal extension. Truncated rhodopsin was selectively extracted from the microvillar membranes using alkyl glucoside in the presence of zinc ions and was then crystallized by the sitting-drop vapour-diffusion method. Of the various crystals obtained, hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. The diffraction data suggested that the crystal belongs to space group P6 2 , with unit-cell parameters a = b = 122.1, c = 158.6 Å. Preliminary crystallographic analysis, together with linear dichroism results, suggested that the rhodopsin dimers are packed in such a manner that their transmembrane helices are aligned nearly parallel to the c axis

  20. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  1. Magnetic Control of Convection during Protein Crystallization

    Science.gov (United States)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  2. Crystal growth of various ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Kunkemoeller, Stefan; Braden, Markus [II. Physikalisches Institut, Universitaet zu Koeln (Germany); Nugroho, Agung [Institut Teknologi Bandung (Indonesia)

    2013-07-01

    Ruthenates of the Ruddlesdon-Popper series exhibit a variety of interesting phenomena ranging from unconventional superconductivity to orbitally polarized Mott insulators. Unfortunately the crystal growth of most of these ruthenates is extremely difficult partially due to the high evaporation of ruthenium; this strongly limits the research on these fascinating materials. We have started to grow single crystals of layered and perovskite ruthenates by the travelling floating-zone method using a Canon SC1-MDH mirror furnace. For the layered Ca{sub 2-x}Sr{sub x}RuO{sub 4} series we focused first on the range of concentration where recent My-SR experiments reveal spin-density wave ordering to occur at relatively high temperature and with a sizeable ordered moment. Good quality crystals of Ca{sub 1.5}Sr{sub 0.5}RuO{sub 4} can be obtained, when an excess of 15 percent of ruthenium is added to the initial preparation of the rod and when a high growth speed up to 40mm/h is used. Even slight modifications of the growing conditions result in large amounts of (Sr/Ca)RuO{sub 3} and (Sr/Ca){sub 3}Ru{sub 2}O{sub 7} intergrowth phases. First attempts to grow perovskite and double-layered ruthenates are discussed as well.

  3. Tunneling states in quasi crystals and in large lattice crystals

    International Nuclear Information System (INIS)

    Bert, Fabrice

    2001-01-01

    Amorphous materials possess specific low-energy excitations which are not found in simple crystals. Hence they show peculiar and, most remarkably, nearly universal low-temperature properties. In the phenomenological tunneling state model, these excitations arise from a tunneling effect of groups of atoms between nearly degenerate configurations. In order to improve our understanding of the microscopic nature of these tunneling states and their relation with structural disorder, we have studied various materials with an intermediate degree of order between crystalline and amorphous matter. Thus, using the propagation of acoustic waves, we have measured the acoustic properties, sound velocity and attenuation, in several quasicrystals and crystals with large unit cells between 15 mK and 40 K. A first experiment in a single-grain quasicrystal i-AlCuFe with a very high structural quality revealed the existence of tunneling states with a density of states similar to that of amorphous solids. Besides, measurements in the approximant phase R-AlLiCu and in two imperfect quasicrystals i-AlLiCu, one of them after annealing to improve its structural quality, showed that the density of states of the tunneling states increases with the quality of the quasicrystalline order. Therefore, tunneling states are not related to structural defects such as phasons but are intrinsic to quasicrystals. This is confirmed by the observation of a strong anisotropy of the tunneling state-phonons coupling in a two-dimension decagonal quasicrystal d-AlNiCo. We have also studied materials with a stronger long-range order, i.e. crystals with large unit cells. Single crystals of olivine and cordierite (28 and 116 atoms per cell respectively) showed tunneling states with a small density of states which seems to increase with the size of the unit cell. (author)

  4. Crystallization of bismuth borate glasses

    International Nuclear Information System (INIS)

    Bajaj, Anu; Khanna, Atul

    2009-01-01

    Bismuth borate glasses with Bi 2 O 3 concentration of 20-66 mol% were prepared by melt quenching and devitrified by heat treatment above their glass transition temperatures. All glasses show a strong tendency towards crystallization on annealing that increases with Bi 2 O 3 concentration. The crystalline phases formed on devitrification were characterized by FTIR absorption spectroscopy and DSC measurements. Our studies reveal that phases produced in glasses are strongly determined by initial glass composition and the two most stable crystalline phases are: Bi 3 B 5 O 12 and Bi 4 B 2 O 9 . The metastable BiBO 3 phase can also be formed by devitrification of glass with 50 mol% of Bi 2 O 3 . This phase is, however, unstable and decomposes into Bi 3 B 5 O 12 and Bi 4 B 2 O 9 on prolonged heat treatment.

  5. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  6. Strongly coupled dust coulomb clusters

    International Nuclear Information System (INIS)

    Juan Wentau; Lai Yingju; Chen Mingheng; I Lin

    1999-01-01

    The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing

  7. Probability densities in strong turbulence

    Science.gov (United States)

    Yakhot, Victor

    2006-03-01

    In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.

  8. CMS lead tungstate crystals

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    These crystals are made from lead tungstate, a crystal that is as clear as glass yet with nearly four times the density. They have been produced in Russia to be used as scintillators in the electromagnetic calorimeter on the CMS experiment, part of the LHC project at CERN. When an electron, positron or photon passes through the calorimeter it will cause a cascade of particles that will then be absorbed by these scintillating crystals, allowing the particle's energy to be measured.

  9. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  10. Second harmonic generation from the `centrosymmetric' crystals

    Directory of Open Access Journals (Sweden)

    Venkatram Nalla

    2015-05-01

    Full Text Available Second harmonic generation (SHG is a well known non-linear optical phenomena which can be observed only in non-centrosymmetric crystals due to non-zero hyperpolarizability. In the current work we observed SHG from a Zn(II complex which was originally thought to have crystallized in the centrosymmetric space group C2/c. This has been attributed to the unequal antiparallel packing of the metal complexes in the non-symmetric space group Cc or residual non-centrosymmetry in C2/c giving rise to polarizability leading to strong SHG. The enhancement of SHG by UV light has been attributed to the increase in non-centrosymmetry and hence polarity of packing due to strain induced in the crystals. The SHG signals measured from these crystals were as large as potassium dihydrogen phosphate crystals, KH2PO4 (KDP, and showed temperature dependence. The highest SHG efficiency was observed at 50 K. The SHG phenomenon was observed at broad wavelengths ranging from visible to below-red in these crystals.

  11. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  12. Modified dynamical equation for dye doped nematic liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)

    2010-04-15

    Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.

  13. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  14. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  15. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  16. Theory and simulation of strong correlations in quantum Coulomb systems

    Science.gov (United States)

    Bonitz, M.; Semkat, D.; Filinov, A.; Golubnychyi, V.; Kremp, D.; Gericke, D. O.; Murillo, M. S.; Filinov, V.; Fortov, V.; Hoyer, W.; Koch, S. W.

    2003-06-01

    Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.

  17. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders

    2011-01-01

    Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...

  18. Strong pressure-energy correlations in van der Waals liquids

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Bailey, Nicholas; Schrøder, Thomas

    2008-01-01

    in the crystal and glass phases reflect an effective inverse power-law repulsive potential dominating fluctuations, even at zero and slightly negative pressure. In experimental data for supercritical argon, the correlations are found to be approximately 96%. Consequences for viscous liquid dynamics are discussed.......Strong correlations between equilibrium fluctuations of the configurational parts of pressure and energy are found in computer simulations of the Lennard-Jones liquid and other simple liquids, but not for hydrogen-bonding liquids such as methanol and water. The correlations that are present also...

  19. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  20. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  1. Effect of particle size on kinetics crystallization of an iron-rich glass

    OpenAIRE

    Romero, Maximina; Kovacova, Milota; Rincón López, Jesús María

    2008-01-01

    The effect of glass particle size on the crystallization kinetics of an iron-rich glass from a nickel leaching waste has been investigated by means of differential thermal analysis (DTA). The results show that the crystallization of a pyroxene phase occurs by bulk nucleation from a constant number of nuclei. The crystallization mode and the dimensionality of crystals are strongly dependent of the glass particle size, being 100µm the critical size. Glass fractions with particle size >100µm sho...

  2. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  3. John Strong - 1941-2006

    CERN Document Server

    2006-01-01

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...

  4. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  5. Channeling through Bent Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  6. Kinetics of supersaturation decay in the crystallization of lysozyme

    Science.gov (United States)

    Kim, Y. W.; Barlow, D. A.; Caraballo, K. G.; Baird, J. K.

    The molecular architecture of proteins can be determined by analysing the X-ray diffraction patterns of their crystals. The technology of X-ray crystallography has reached the point, however, where the determination of the structure of a given crystal is controlled by the limited availability of the crystals themselves. Proteins can often be crystallized from pH buffered aqueous solutions of strong electrolytes. When dissolved protein in solution is more stable than crystalline protein, the appearance of crystals can be said to be under thermodynamic control. If, on the other hand, the crystals are more stable than the dissolved protein, and still crystals are slow to appear, the crystallization can be said to be under kinetic control. Using dilatometry, we have followed the rate of decay of the protein supersaturation in crystallizing solutions of chicken egg-white lysozyme under conditions of kinetic control. We have found that the rate of decay of the supersaturation is first order in the supersaturation and that the rate constant is independent of the initial protein concentration, but increases with increasing pH, decreasing temperature, and with increasing concentrations of sodium chloride and buffer salt. We correlate these observed trends in the rate constant with related trends in the solubility and surface charge density of the crystals. We conclude that the rate constant for supersaturation decay is inversely proportional to the protein solubility.

  7. On the influence of crystal structure on the electromagnetic shower development in the lead tungstate crystals

    Science.gov (United States)

    Baryshevsky, V. G.; Haurylavets, V. V.; Korjik, M. V.; Lobko, A. S.; Mechinsky, V. A.; Sytov, A. I.; Tikhomirov, V. V.; Uglov, V. V.

    2017-07-01

    The development of high-energy electromagnetic showers in long oriented lead tungstate crystals, accelerated by the effects induced by the strong field of atomic strings, is simulated for the first time. For that the characteristics of pair production and gamma-radiation by electrons or positrons were first simulated by the direct application of Baier-Katkov formulae in a thin PWO crystal to derive the scaling coefficients of the corresponding Bethe-Heitler cross sections to be incorporated into GEANT4 for the simulation of the electromagnetic shower development in a long crystal. Simulation results demonstrate the significant influence of the crystal structure on the e± and gamma-quanta registration processes in the existing homogeneous electromagnetic calorimeters and gamma-telescopes as well as wide possibilities of improving their performance in future developments.

  8. Preparation of Three-Dimensional Photonic Crystals of Zirconia by Electrodeposition in a Colloidal Crystals Template

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-07-01

    Full Text Available Three-dimensional photonic crystals of zirconia were prepared by electrodeposition in a colloidal crystals template following calcination at 500 °C. Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and reflectance spectroscopy were employed to characterize the photonic crystals of zirconia. It was found that hydrated zirconium ions could penetrate the colloidal crystals template and reach the substrate easily by electrodeposition, which resulted in stronger bonding between the substrate and the as-deposited membrane. Moreover, the electrodeposited membrane had low water content, leading to a low amount of shrinkage during calcination. Both these properties could suppress detachment from the substrate upon removal of the colloidal crystals template. Therefore, the three-dimensional photonic crystals of zirconia synthesized in this study exhibited very good preservation of the ordered structures of the colloidal crystals template with a high density. A peak of reflection higher than 70% was formed in the reflectance spectrum because of the strong diffraction of the ordered structures.

  9. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  10. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.

    1981-01-01

    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  11. Promoting Strong Written Communication Skills

    Science.gov (United States)

    Narayanan, M.

    2015-12-01

    The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987

  12. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  13. Walkout in Crystal City

    Science.gov (United States)

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  14. Demonstration of Crystal Structure.

    Science.gov (United States)

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  15. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  16. Crystal growth and crystallography

    Science.gov (United States)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  17. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  18. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  19. Crystals in the LHC

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Bent crystals can be used to deflect charged particle beams. Their use in high-energy accelerators has been investigated for almost 40 years. Recently, a bent crystal was irradiated for the first time in the HiRadMat facility with an extreme particle flux, which crystals would have to withstand in the LHC. The results were very encouraging and confirmed that this technology could play a major role in increasing the beam collimation performance in future upgrades of the machine.   UA9 bent crystal tested with a laser. Charged particles interacting with a bent crystal can be trapped in channelling states and deflected by the atomic planes of the crystal lattice (see box). The use of bent crystals for beam manipulation in particle accelerators is a concept that has been well-assessed. Over the last three decades, a large number of experimental findings have contributed to furthering our knowledge and improving our ability to control crystal-particle interactions. In modern hadron colliders, su...

  20. SYMMETRY OF COMPOSITE CRYSTALS

    NARCIS (Netherlands)

    VANSMAALEN, S

    1991-01-01

    Composite crystals are crystals that consist of two or more subsystems, in first approximation each one having its own three-dimensional periodicity. The symmetry of these subsystems is then characterized by an ordinary space group. Due to their mutual interaction the true structure consists of a

  1. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  2. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  3. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  4. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  5. Bioengineered magnetic crystals

    International Nuclear Information System (INIS)

    Kasyutich, O; Sarua, A; Schwarzacher, W

    2008-01-01

    In this paper we report on the successful application of a protein crystallization technique to fabricate a three-dimensionally ordered array of magnetic nanoparticles, i.e. a novel type of metamaterial with unique magnetic properties. We utilize ferritin protein cages for the template-constrained growth of superparamagnetic nanoparticles of magnetite/maghemite Fe 3 O 4 -γ-Fe 2 O 3 (magnetoferritin), followed by thorough nanoparticle bioprocessing and purification, and finally by protein crystallization. Protein crystallization is driven by the natural response of proteins to the supersaturation of the electrolyte, which leads to spontaneous nucleation and 3D crystal growth. Within a short period of time (hours to days) we were able to grow functional crystals on the meso-scale, with sizes of the order of tens, up to a few hundred micrometres. We present initial magnetic and Raman spectroscopy characterization results for the obtained 3D arrays of magnetic nanoparticles

  6. Crystallization phenomena of isotactic polystyrene

    NARCIS (Netherlands)

    Lemstra, Peter Jan

    1975-01-01

    In this thesis the crystallization behavior of isotactic polystyrene has been described. The kinetics of the crystallization process and the crystalline structure were studied both for crystallization in the bulk and from dilute solutions. ... Zie Summary

  7. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  8. Liquid crystals for holographic optical data storage

    DEFF Research Database (Denmark)

    Matharu, Avtar; Jeeva, S.; Ramanujam, P.S.

    2007-01-01

    , is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo- reversion between trans- and cis- states. Although the final polymer may not be liquid......A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution...... causing cis - trans-isomerisation can be used to control helix pitch. A brief mention of liquid crystals is also made since these materials may be of future interest since they are optically transparent and amenable to photo- induced anisotropy....

  9. Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador).

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Cimarelli, Corrado; deBiasi, Lea; Hanson, Jonathan B; Lavallée, Yan; Arzilli, Fabio; Dingwell, Donald B

    2015-03-01

    Viscosity has been determined during isothermal crystallization of an andesite from Tungurahua volcano (Ecuador). Viscosity was continuously recorded using the concentric cylinder method and employing a Pt-sheathed alumina spindle at 1 bar and from 1400°C to subliquidus temperatures to track rheological changes during crystallization. The disposable spindle was not extracted from the sample but rather left in the sample during quenching thus preserving an undisturbed textural configuration of the crystals. The inspection of products quenched during the crystallization process reveals evidence for heterogeneous crystal nucleation at the spindle and near the crucible wall, as well as crystal alignment in the flow field. At the end of the crystallization, defined when viscosity is constant, plagioclase is homogeneously distributed throughout the crucible (with the single exception of experiment performed at the lowest temperature). In this experiments, the crystallization kinetics appear to be strongly affected by the stirring conditions of the viscosity determinations. A TTT (Time-Temperature-Transformation) diagram illustrating the crystallization "nose" for this andesite under stirring conditions and at ambient pressure has been constructed. We further note that at a given crystal content and distribution, the high aspect ratio of the acicular plagioclase yields a shear-thinning rheology at crystal contents as low as 13 vol %, and that the relative viscosity is higher than predicted from existing viscosity models. These viscosity experiments hold the potential for delivering insights into the relative influences of the cooling path, undercooling, and deformation on crystallization kinetics and resultant crystal morphologies, as well as their impact on magmatic viscosity.

  10. Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador)

    Science.gov (United States)

    Cimarelli, Corrado; deBiasi, Lea; Hanson, Jonathan B.; Lavallée, Yan; Arzilli, Fabio; Dingwell, Donald B.

    2015-01-01

    Abstract Viscosity has been determined during isothermal crystallization of an andesite from Tungurahua volcano (Ecuador). Viscosity was continuously recorded using the concentric cylinder method and employing a Pt‐sheathed alumina spindle at 1 bar and from 1400°C to subliquidus temperatures to track rheological changes during crystallization. The disposable spindle was not extracted from the sample but rather left in the sample during quenching thus preserving an undisturbed textural configuration of the crystals. The inspection of products quenched during the crystallization process reveals evidence for heterogeneous crystal nucleation at the spindle and near the crucible wall, as well as crystal alignment in the flow field. At the end of the crystallization, defined when viscosity is constant, plagioclase is homogeneously distributed throughout the crucible (with the single exception of experiment performed at the lowest temperature). In this experiments, the crystallization kinetics appear to be strongly affected by the stirring conditions of the viscosity determinations. A TTT (Time‐Temperature‐Transformation) diagram illustrating the crystallization “nose” for this andesite under stirring conditions and at ambient pressure has been constructed. We further note that at a given crystal content and distribution, the high aspect ratio of the acicular plagioclase yields a shear‐thinning rheology at crystal contents as low as 13 vol %, and that the relative viscosity is higher than predicted from existing viscosity models. These viscosity experiments hold the potential for delivering insights into the relative influences of the cooling path, undercooling, and deformation on crystallization kinetics and resultant crystal morphologies, as well as their impact on magmatic viscosity. PMID:27656114

  11. Crystals, inflammation, and osteoarthritis.

    Science.gov (United States)

    Rosenthal, Ann K

    2011-03-01

    Calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals are common components of osteoarthritic joint fluids and tissues. Why these crystals form and how they contribute to joint damage in osteoarthritis remain unclear. With renewed interest in inflammation as a key component of osteoarthritis the role of calcium-containing crystals in this common disease warrants re-examination. There is ample evidence supporting a pathogenic role for inflammation in osteoarthritis, and the innate immune system likely participates in this inflammatory process. Recent work reinforces the almost universal existence of calcium-containing crystals in tissues from patients with end-stage osteoarthritis. Calcium-containing crystals may contribute to inflammation in osteoarthritis tissues through their direct interactions with components of the innate immune system, as well as by inducing or amplifying other inflammatory signals. There is increasing evidence that calcium-containing crystals contribute to osteoarthritis and their inflammatory properties may mediate detrimental effects through innate immunity signals. Calcium-containing crystals may thus represent important therapeutic targets in osteoarthritis.

  12. Quartz crystal growth

    Science.gov (United States)

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  13. Disorder in Ag{sub 7}GeSe{sub 5}I, a superionic conductor: temperature-dependent anharmonic structural study

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.; Pradel, A.; Ribes, M. [CNRS Montpellier Univ., 34 (France). Inst. Charles Gerhardt Montpellier; Pillet, S.; Lecomte, C. [CNRS Nancy Univ., 54 - Vandoeuvre-les-Nancy (France). Lab. de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques

    2008-02-15

    A temperature-dependent structural investigation of the substituted argyrodite Ag{sub 7}GeSe{sub 5}I has been carried out on a single crystal from 15 to 475 K, in steps of 50 K, and correlated to its conductivity properties. The argyrodite crystallizes in a cubic cell with the F anti 43m space group. The crystal structure exhibits high static and dynamic disorder which has been efficiently accounted for using a combination of (i) Gram- Charlier development of the Debye-Waller factors for iodine and silver, and (ii) a split-atom model for Ag{sup +} ions. An increased delocalization of the mobile d{sup 10} Ag{sup +} cations with temperature has been clearly shown by the inspection of the joint probability-density functions; the corresponding diffusion pathways have been determined. (orig.)

  14. Effect of crucible and crystal rotations on the convexity and the thermal stress in large size sapphire crystals during Czochralski growth

    Science.gov (United States)

    Nguyen, Tran Phu; Hsieh, Yao-Te; Chen, Jyh-Chen; Hu, Chieh; Nguyen, Huy Bich

    2017-06-01

    In this study, the effect of the temperature and flow fields generated by the rotation of the crucible and the crystal on the convexity of a c-axis, large-diameter sapphire crystal during the Czochralski growth process is investigated numerically. The thermal stress distributions in different sizes of crystal are also considered. The computational results show that the convexity and the thermal stress of the crystal are strongly dependent on the crucible and crystal rotation rates. The counter rotation between the crucible and the crystal results in a flatter crystal-melt interface, compared to the case of no crucible rotation or crystal rotation. Maximum thermal stress occurs at the highest curvature of the crystal-melt interface which appears near the center of the growing crystal, and the value is directly proportional to the crystal's size. Moreover, there is a significant decrease in the von Mises stress for the crystal-melt interface with lower convexity due to a reduction in the temperature gradient in the radial direction along the interface. As the crystal length gets larger, the maximum von Mises stress rapidly reduces.

  15. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  16. Magnetic ions in crystals

    CERN Document Server

    Stevens, K W

    2014-01-01

    There have been many demonstrations, particularly for magnetic impurity ions in crystals, that spin-Hamiltonians are able to account for a wide range of experimental results in terms of much smaller numbers of parameters. Yet they were originally derived from crystal field theory, which contains a logical flaw; electrons on the magnetic ions are distinguished from those on the ligands. Thus there is a challenge: to replace crystal field theory with one of equal or greater predictive power that is based on a surer footing. The theory developed in this book begins with a generic Hamiltonian, on

  17. Hydrodynamics of superfluid crystals

    International Nuclear Information System (INIS)

    Vardanyan, G.A.; Papoyan, K.V.; Sedrakyan, D.M.

    1984-01-01

    It is shown that three-velocity hydrodynamics equations describing the properties of a two-condensate crystal determine the low-frequency spectrum with allowance for superfluid drag. The drag on one superfluid component of density rho/sup( s/) 12 from another component of density rho/sup( s/) 22 , gives rise to two branches of vibrations of frequencies ω 1 and ω 2 , unlike the case of a one-condensate crystal. The absorption coefficient for transverse sound in a one-condensate crystal is expressed in terms of the quantum-mechanical characteristic quantity that describes the tunneling of atoms

  18. Protein crystallization on polymeric film surfaces

    Science.gov (United States)

    Fermani, Simona; Falini, Giuseppe; Minnucci, Massimiliano; Ripamonti, Alberto

    2001-04-01

    Polymeric films containing ionizable groups, such as sulfonated polystyrene, cross-linked gelatin films with adsorbed poly- L-lysine or entrapped poly- L-aspartate and silk fibroin with entrapped poly- L-lysine or poly- L-aspartate, have been tested as heterogeneous nucleant surfaces for proteins. Concanavalin A from jack bean and chicken egg-white lysozyme were used as models. It was found that the crystallization of concanavalin A by the vapor diffusion technique, is strongly influenced by the presence of ionizable groups on the film surface. Both the induction time and protein concentration necessary for the crystal nucleation decrease whereas the nucleation density increases on going from the reference siliconized cover slip to the uncharged polymeric surfaces and even more to the charged ones. Non-specific attractive and local interactions between the protein and the film surface might promote molecular collisions and the clustering with the due symmetry for the formation of the crystal nuclei. The results suggest that the studied polymeric film surfaces could be particularly useful for the crystallization of proteins from solutions at low starting concentration, thus using small quantities of protein, and for proteins with very long crystallization time.

  19. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  20. Strongly nonlinear wave dynamics in a chain of polymer coated beads

    OpenAIRE

    Daraio, C.; Nesterenko, V. F.

    2006-01-01

    Strongly nonlinear phononic crystals were assembled from a chain of Parylene-C coated steel spheres in a polytetrafluoroethylene (PTFE) holder. This system exhibits strongly nonlinear properties and extends the range of materials supporting "sonic vacuum" type behavior. The combination of a high density core and a soft (low elastic modulus) coating ensures a relatively low velocity of wave propagation. The beads contact interaction caused by the deformation of the Parylene coating can be desc...

  1. Adaptive Liquid Crystal Windows

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of

  2. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead...... of doping, use a microstructure of air and glass to obtain a refractive index difference between the core and the cladding. This air/glass microstructure lends the photonic crystal fibers a range of unique and highly usable properties, which are very different from those found in solid standard fibers......, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...

  3. Crystal-Clear Technology.

    Science.gov (United States)

    Ondris-Crawford, Renate J.; And Others

    1993-01-01

    Provides diagrams to aid in discussing polymer dispersed liquid crystal (PDLC) technology. Equipped with a knowledge of PDLC, teachers can provide students with insight on how the gap between basic science and technology is bridged. (ZWH)

  4. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  5. Crystal engineering: structure, property and beyond

    OpenAIRE

    Desiraju, Gautam R.

    2017-01-01

    Crystal engineering, which was considered to be crystal structure engineering, is now transforming into crystal property engineering. The same or similar crystal structures could have different properties while different crystal structures could have similar properties.

  6. A strongly coupled open system with a non-linear bath: fluctuation-dissipation and Langevin dynamics

    Science.gov (United States)

    Bhadra, Chitrak

    2018-03-01

    The study of Langevin dynamics and fluctuation-dissipation relation (FDR) for a generic probe system (represented by a mass M ), bilinearly coupled to a bath of harmonic oscillators, has been a standard paradigm for the microscopic theory of stochastic processes for several decades. The question that we probe in this paper is, how robust the structure of the classical FDR is, when one replaces the harmonic bath by an anharmonic one in the limit of strong system-bath coupling? Such a picture carries the signature of the probe system in the zeroth order through a nonlocal time kernel. We observe that the two-time noise correlations hold a rich structure from which the usual FDR emerges only in the leading order of perturbation. Beyond this order, multiple time scales and nontrivial dependence on the temperature starts to manifest. These new aspects conspire to break the time-translational invariance of the noise-correlations. Several other interesting features show up and we discuss them methodically through rigorous calculations order-by-order in perturbation. This formalistic derivation along with a specific example of non-linearity can be easily applied to a huge range of processes and statistical observables that fall under the purview of a system-reservoir theory.

  7. Theory of Vortex Crystal Formation in Two-Dimensional Turbulence

    Science.gov (United States)

    Jin, D. Z.

    1999-11-01

    The free relaxation of inviscid, incompressible 2D turbulence is often dominated by strong vortices (coherent patches of intense vorticity) that move chaotically and merge. However, recent experiments(K.S. Fine et al., Phys. Rev. Lett. 75), 3277 (1995). with pure electron plasmas have found that freely relaxing turbulent flows with a single sign of vorticity can spontaneously form ``vortex crystals'' -- symmetric, stable arrays of strong vortices that are immersed in a low vorticity background. In this talk we discuss how these complex equilibria can form from 2D turbulence. First, we formulate a statistical theory of the vortex crystals. We show that vortex crystals are well described as ``regional'' maximum fluid entropy (RMFE) states, which are equilibrium states reached through ergodic mixing of the background by the strong vortices.(D.Z. Jin and D.H.E. Dubin, Phys. Rev. Lett. 80), 4434 (1998). Given the dynamically conserved quantities as well as the number and the vorticity distributions of the strong vortices, the theory predicts the positions of the strong vortices and the coarse-grained vorticity distribution of the background. These predictions agree well with the observed vortex crystals. Second, we examine the formation process of the vortex crystals in more detail. In the RMFE theory, the vortex crystal equilibrium can only be predicted if the number Nc of the strong vortices in the final state is given. Here, we estimate Nc from the characteristics of the early turbulent flow. The estimate relies on the idea that vortex crystals form because the chaotic motions of the strong vortices are ``cooled'' due to mixing of the background by the vortices. When the rate of cooling is faster than the rate of pairwise mergers, the vortices fall into a crystal pattern before they can merge. We estimate the merger rate from the observed power law decay of the number of strong vortices in the early stages of the flow, and the cooling rate from the rate of mixing of

  8. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  9. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  10. Macromolecular Crystal Quality

    Science.gov (United States)

    Snell, Edward H.; Borgstahl, Gloria E. O.; Bellamy, Henry D.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    There are many ways of judging a good crystal. Which we use depends on the qualities we seek. For gemstones size, clarity and impurity levels (color) are paramount. For the semiconductor industry purity is probably the most important quality. For the structural crystallographer the primary desideratum is the somewhat more subtle concept of internal order. In this chapter we discuss the effect of internal order (or the lack of it) on the crystal's diffraction properties.

  11. Graphene chiral liquid crystals and macroscopic assembled fibres.

    Science.gov (United States)

    Xu, Zhen; Gao, Chao

    2011-12-06

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles.

  12. Strong and weak hydrogen bonds in drug–DNA complexes: A ...

    Indian Academy of Sciences (India)

    ... in the list of 70 complexes mentioned above, and 19 inhibitors for which the drug–DNA complex crystal structures are unknown. The virtual geometries so generated correlate well with published activities for these 26 inhibitors, justifying our assumption that strong and weak hydrogen bonds are optimized in the active site.

  13. Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

    DEFF Research Database (Denmark)

    Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.

    2009-01-01

    We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...

  14. Strong suppression of radiation states in a slab waveguide sandwiched between omnidirectional mirrors

    NARCIS (Netherlands)

    Hoekstra, Hugo; Yudistira, D.; Stoffer, Remco

    2005-01-01

    Structures in channel or slab waveguides, applied deliberately or due to imperfections, may lead to strong modal losses, corresponding to the excitation of radiation modes. As an example, losses are generally very large in slab photonic crystal (PhC) impurity waveguides (WGs) due to the combined

  15. Building a crystal palace

    CERN Multimedia

    2007-01-01

    The end-caps of the CMS electromagnetic calorimeter (ECAL) take shape as the first quadrant was completed on Wednesday 3 October. 1831 crystals, organised into five by five blocks named ‘supercrystals’, make up the first quadrant of Dee 1.With the 61,200-crystal barrel of its electromagnetic calorimeter (ECAL) complete, CMS is now building the endcaps, on the tenth anniversary of their initial design. Crystals for the endcaps were the last to be made, so the race is now on to have them all in place and ready for the turn-on of the LHC next year. Assembly of the first of eight quadrants began in June and crystal mounting was completed on Wednesday 3 October. Each crystal is transparent, has a volume just larger than a CERN coffee cup yet weighs a huge 1.5kg. 1831 of these lead tungstate crystals went into the first quadrant from a total 14,648 in the endcaps. The lead and tungsten account for 86% of each crystal’s weight, but as project leader Dave Cockerill expl...

  16. Direction-specific interactions control crystal growth by oriented attachment

    DEFF Research Database (Denmark)

    Li, Dongsheng; Nielsen, Michael H; Lee, Jonathan R.I.

    2012-01-01

    The oriented attachment of molecular clusters and nanoparticles in solution is now recognized as an important mechanism of crystal growth in many materials, yet the alignment process and attachment mechanism have not been established. We performed high-resolution transmission electron microscopy...... initiated at the contact point. Interface elimination proceeds at a rate consistent with the curvature dependence of the Gibbs free energy. Measured translational and rotational accelerations show that strong, highly direction-specific interactions drive crystal growth via oriented attachment....

  17. Direct detection of antihydrogen atoms using a BGO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Y. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, 184-8588 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Kuroda, N., E-mail: kuroda@phys.c.u-tokyo.ac.jp [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Ohtsuka, M. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Leali, M.; Lodi-Rizzini, E.; Mascagna, V. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Tajima, M.; Torii, H.A. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Zurlo, N. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Matsuda, Y. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Venturelli, L. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Yamazaki, Y. [Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan)

    2016-12-21

    The ASACUSA collaboration has developed a detector consisting of a large size BGO crystal to detect an atomic antihydrogen beam, and performed the direct detection of antihydrogen atoms. Energy spectra from antihydrogen annihilation on the BGO crystal are discussed in comparison to simulation results from the GEANT4 toolkit. Background mainly originating from cosmic rays were strongly suppressed by analyzing the energy deposited in the BGO and requiring a multiplicity of charged pions. Thus antihydrogen events were identified.

  18. Electrical anharmonicity and dampings contributions to Cl-H → stretching band in gaseous (CH3)2O…HCl complex: Quantum dynamic study and prediction of the temperature effects

    Science.gov (United States)

    Rekik, Najeh; Alshammari, Majid F.

    2017-06-01

    In a previous work (Rekik et al., 2017), we demonstrated the ability of a simple anharmonic model of the dipole moment function of the X-H stretching band to explain a set of spectroscopic features of hydrogen bonding formation. Within the context of this model, we have shown that the origins of the broadening of the X - H → stretching band is attributed to large terms in the expansion of the autocorrelation functions due to the electrical anharmonicity. However, the question remained as to the ability of this model to treat the more complex situation in which we take into account the relaxation mechanisms that look at the effect of the surroundings and thereby gives rise to signatures of the medium to the X - H → stretching band lineshapes. Thus, in the present study, we investigated this situation by envisaging that the direct relaxation mechanism is due to the coupling between the fluctuating local electric field and the dipole moment of the complex as rationalized by Rosh and Ratner and the indirect damping resulting from the interaction of the X - H → stretch with its environment via the H-bond bridge mode. Theoretical experiments show that mixing of all these effects results in a speard and complicated structure. Using an ensemble of physically sound parameters as input into this approach, we have captured the main features in the experimental Cl - H → band in gaseous (CH3)2O…HCl complex and shown that the direct relaxation entrains a broadening of the spectra and is capable of qualitatively capturing the main features in the experimental spectra and quantitatively capturing the characteristic time scale of the vibrational dynamics of the Cl - H → stretching band. Furthermore, due to the decent agreement obtained between the theoretical and experimental line shapes at 226 K, the evolution of the IR spectra with the varaiation of temperature is proposed. The findings gained herein underscore the utility of combining simultaneously the effects of

  19. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  20. Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives.

    Science.gov (United States)

    Mas-Torrent, Marta; Hadley, Peter; Bromley, Stefan T; Ribas, Xavi; Tarrés, Judit; Mas, Montserrat; Molins, Elies; Veciana, Jaume; Rovira, Concepció

    2004-07-14

    Recently, it was reported that crystals of the organic material dithiophene-tetrathiafulvalene (DT-TTF) have a high field-effect charge carrier mobility of 1.4 cm(2)/(V x s). These crystals were formed by a simple drop-casting method, making this material interesting to investigate for possible applications in low-cost electronics. Here, organic single-crystal field-effect transistors based on materials related to DT-TTF are presented and a clear correlation between the crystal structure and the electrical characteristics is observed. The observed relationship between the mobilities in the different crystal structures is strongly corroborated by calculations of both the molecular reorganization energies and the maximum intermolecular transfer integrals. The most suitable materials described here exhibit mobilities that are among the highest reported for organic field-effect transistors and that are the highest reported for solution-processed materials.

  1. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  2. Elastic and anharmonic properties of pyridinium tetrafluoroborate ([C{sub 5}NH{sub 6}]{sup +}[BF{sub 4}]{sup -{identical_to}}PyBF{sub 4}): light scattering study of the phase transitions at various pressures

    Energy Technology Data Exchange (ETDEWEB)

    Ecolivet, C.; Beaufils, S.; Girard, A. [Groupe Matiere Condensee et Materiaux - UMR CNRS 6626, Universite de Rennes 1, Rennes (France); Czarnecki, P.; Wasicki, J.; Bobrowicz-Sarga, L. [Institute of Physics, Adam Mickiewicz University, Poznan (Poland)

    2001-07-30

    The vibrational properties of pyridinium tetrafluoroborate crystals were studied by means of Brillouin scattering at atmospheric pressure, Raman scattering and neutron diffraction under high pressure. It is shown that the elastic properties strongly reflect the molecular anisotropy of the pyridinium ions. The compressibility obtained from the Brillouin scattering study is in reasonable agreement with the results from neutron crystallography under pressure. Brillouin spectra reveal a small quasielastic component at room temperature, which is described by a coupled-susceptibilities formalism applied to the longitudinal mode and a relaxation mode. The mode Grueneisen parameters for all three phases that are found are determined from the pressure and temperature dependence of the Raman spectra and from neutron experiments. (author)

  3. Modification of the x-ray diffraction efficiency of lithium fluoride crystals by surface treatment

    International Nuclear Information System (INIS)

    Sellick, B.O.

    1976-01-01

    Convex-curved crystals of lithium fluoride demonstrate good dispersion and efficiency when used in reflection for x-ray spectral analysis. The crystals are stable and reasonably unaffected by harsh environments. In addition, they are mechanically strong, easily cleavable or machinable, and plastically deformable with heat. In the present study, flat crystal wafers were left either clear as cleaved or were subjected to surface treatment by sandblasting or lapping. Some wafers were then bent in a press mold to obtain convex-curved crystals of differing radii. The diffraction efficiency data presented show how surface treatment affects the efficiency of these various crystals when used as x-ray diffracting agents

  4. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.

    2008-01-01

    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  5. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí

    2003-01-01

    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv) ...

  6. 78 FR 15710 - Strong Sensitizer Guidance

    Science.gov (United States)

    2013-03-12

    ... definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science of sensitization that have... document is intended to clarify the ``strong sensitizer'' definition, assist manufacturers in understanding...

  7. Steering a crystallization process to reduce crystal polydispersity; case study of insulin crystallization

    Science.gov (United States)

    Nanev, Christo N.; Petrov, Kostadin P.

    2017-12-01

    The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.

  8. Pressure dependence of the elastic constants and vibrational anharmonicity of Pd sub 3 sub 9 Ni sub 1 sub 0 Cu sub 3 sub 0 P sub 2 sub 1 bulk metallic glass

    CERN Document Server

    Wang Li; Sun, L L; Wang, W H; Wang, W K

    2003-01-01

    The pressure dependence of the acoustic velocities of a Pd sub 3 sub 9 Ni sub 1 sub 0 Cu sub 3 sub 0 P sub 2 sub 1 bulk metallic glass have been investigated up to 0.5 GPa at room temperature with the pulse echo overlap method. Two independent second-order elastic coefficients C sub 1 sub 1 and C sub 4 sub 4 and their pressure derivatives are yielded. The vibrational anharmonicity is shown by calculating both the acoustic mode Grueneisen parameters in the long-wavelength limit and the thermal Grueneisen parameter, and this result is compared with that for the Pd sub 4 sub 0 Ni sub 4 sub 0 P sub 2 sub 0 bulk glass.

  9. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  10. Crystallization phenomena in slags

    Science.gov (United States)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  11. Introduction to protein crystallization

    Science.gov (United States)

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  12. Crystallization in polymer nanocomposites

    Science.gov (United States)

    Chrissopoulou, Kyriakh; Perivolari, Helena; Leisch, Stefanos; Papananou, Hellen; Anastasiadis, Spiros H.

    Polymer crystallization is a very interesting topic since it is responsible for the final properties of the materials. On the other hand, addition of inorganic nanomaterials has been recently widely used to optimize polymer properties. In this work, the effect of the presence of surfaces and of the severe confinement on polymer morphology and crystallization are investigated in hydrophilic nanohybrids of poly(ethylene oxide) and silica nanoparticles of different sizes; hybrids with different ratios of the two kinds of nanoparticles were synthesized as well, to achieve the highest confinement. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) were utilized to investigate the behavior and showed that the polymer chains that were able to crystallize showed a different crystalline behavior in the hybrids with lower Tm and lower crystallinity. Under severe confinement polymer crystallization was completely suppressed. Moreover, the crystallization kinetics was investigated with Isothermal Polarized Optical Microscopy (POM) and Isothermal Differential Scanning Calorimetry (DSC) showing different characteristics in the hybrids compared to that of the neat polymer depending on the silica content. Sponsored by the Greek GSRT (AENAO research project, Action KRIPIS)

  13. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  14. How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers

    KAUST Repository

    Palacios, Jordana K.

    2017-12-05

    PEO-b-PCL-b-PLLA triblock terpolymers are fascinating triple-crystalline materials. In this work, the isothermal crystallization kinetics of these terpolymers evaluated by differential scanning calorimetry (DSC) is presented for the first time and compared to analogous PCL-b-PLLA diblock copolymers and to PLLA, PCL, and PEO homopolymers. The results are complemented by in situ SAXS/WAXS synchrotron experiments. One-, two-, and three-step crystallization protocols were employed to study the crystallization kinetics of the blocks. At PLLA block crystallization temperatures, both PCL and PEO molten chains caused a strong plasticizing effect on the PLLA block crystallization, and the overall crystallization rate of the PLLA block in the terpolymers was higher than that in the PLLA-b-PCL diblock copolymers. In the case of the PCL block, the crystallization was followed after PLLA was fully crystallized (two-step crystallization). A nucleating effect induced by the previously formed PLLA crystals was observed. However, an antiplasticizing effect on PCL crystallization was detected if the sample is quenched directly from the melt to the PCL crystallization temperature (one-step crystallization). Finally, the crystallization of the PEO block was followed after PLLA and PCL had fully crystallized (three-step crystallization). The PEO crystallization rate highly decreased due to the confinement imposed by the previously formed PLLA and PCL crystals. Complex competitive effects such as plasticization, nucleation, antiplasticization, and confinement occurred during the isothermal crystallization of tricrystalline PEO-b-PCL-b-PLLA triblock terpolymers.

  15. Precision determination of the strong interaction shift and width in pionic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D.F.; Covita, D.D.S.; Santos, J.M.F. dos; Veloso, J.F.C.A.; Fuhrmann, H.; Gruber, A.; Hirtl, A.; Ishiwatari, T.; Marton, J.; Schmid, P.; Zmeskal, J.; Gotta, D.; Hennebach, M.; Nekipelov, M.; Indelicato, P.; Jensen, T.; Bigot, E.O. Le; Trassinelli, M.; Simons, L.M.

    2005-01-01

    The new pionic hydrogen experiment at PSI aims at an improvement in the determination of the strong interaction ground state shift and width of the pionic hydrogen atom. High precision x-ray crystal spectroscopy is used to extract isospin separated scattering lengths with accuracies on the percent level. Compared to previous efforts, the energy resolution and statistics could be improved considerably and the background is much reduced. The response function of the Johann-type crystal spectrometer has been determined with a novel method with unprecedented accuracy. The inherent difficulties of the exotic atom's method result, from the fact that the formation of a sufficient amount of pionic hydrogen atoms requires a hydrogen target pressure of several bar at least. For the extraction of a strong interaction shift, an extrapolation method to vacuum conditions proved to be successful. This contribution mostly discusses the strategy to extract a result for the strong interaction width from the data.(author)

  16. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  17. Frequency doubling crystals

    Science.gov (United States)

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  18. Effect of shear on the rheology and crystallization of palm oil.

    Science.gov (United States)

    Tarabukina, E; Jego, F; Haudin, J-M; Navard, P; Peuvrel-Disdier, E

    2009-10-01

    This article reports on the impact of shear on crystallization upon cooling of palm oil. Samples were cooled down under shear from 70 to 10 degrees C, then kept at this temperature, while performing rheological measurements using a controlled shear rate rheometer and rheo-optical observations using optical microscopy and small-angle light scattering. Shear rates between 1 and 300 s(-1) were investigated. Two crystallization steps were observed, characterized by associated viscosity increases. The effect of shear on these 2 crystallization processes was investigated. Shear was shown to influence almost all of the steps of the structuring process of the crystallizing palm oil. The spherulite size and growth rate during the 1st crystallization are affected by shear. The onset time of the 2nd crystallization process strongly depends on the extent of shear. The steady state structures after the 1st and 2nd crystallization processes constituted of a suspension of aggregates of spherulites are controlled by the applied shear rate. The texture of crystallized vegetal fats and subsequent end product properties depend on the structure developed during the crystallization process. This structuring process is strongly influenced by the thermo-mechanical history applied to the product (cooling rate, degree of undercooling, annealing time, application of flow). This article shows how the shear rate as well as extent of shear affects the different steps of the crystallization and aggregation processes in the case of palm oil after the 1st crystallization.

  19. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Anwar [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044 (Japan); Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511 (Japan); Tanaka, Isao [Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511 (Japan); Tanaka, Takaho; Khan, A. Ullah [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044 (Japan); Mori, Takao, E-mail: MORI.Takao@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8671 (Japan)

    2016-01-15

    We studied thermoelectric properties of YB{sub 41}Si{sub 1.3} single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers, with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also. - Graphical abstract: The growth direction ([510]) was determined for the first time in YB{sub 41}Si{sub 1.3} single crystals and revealed an interesting layered feature of boron clusters and metal atoms, along which the electrical conductivity and thermoelectric power factor was strongly enhanced. - Highlights: • We have grown YB{sub 41}Si{sub 1.3} single crystals by the floating zone method. • Growth direction of [510] determined for first time in REB{sub 41}Si{sub 1.2}. • Electrical resistivity was strongly anisotropic with possible enhancement along metal layers. • The obtained power factor along [510] is 3.6 times higher than that along [052].

  20. Crystal fields in UO2 - revisited

    Energy Technology Data Exchange (ETDEWEB)

    Nakotte, Heinz [Los Alamos National Laboratory; Rajatram, R [NMSU/UNIV OF N.C.; Kern, S [COLORADO STATE UNIV; Mcqueeney, R J [AMES LAB; Lander, G H [EUROPEAN COMMISIONS, JRC; Robinson, R A [BRAGG INSTITUTE

    2009-01-01

    We performed inelastic neutron scattering (INS) in order to re-investigate the crystal-field ground state and the level splitting in UO{sub 2}. Previous INS studies on UO{sub 2} by Amorelli et al. [Physical Review B 15, 1989, 1856] uncovered four excitations at low temperatures in the 150-180 meV range. Considering the dipole-allowed transitions, only three of these transitions could be explained by the published crystal-field model. Our INS results on a different UO{sub 2} sample revealed that the unaccounted peak at about 180 meV is a spurious one, and thus not intrinsic to UO{sub 2}. In good agreement with Amoretti's results, we corroborated that the ground-state of UO{sub 2} is the {Lambda}{sub 5} triplet, and we computed that the fourth- and six-order crystal field parameters are V{sub 4} = -116 meV and V{sub 6} = 26 meV, respectively. We also studied the INS response of the non-magnetic U{sub 0.4}Th{sub 0.6}O{sub 2}. The splitting for this thorium-doped compound is similar to the one of UO{sub 2}, which orders antiferromagnetically at low temperatures. Therefore, we can conclude that magnetic interactions only weakly perturb the energy level splitting, which is dominated by strong crystal fields.

  1. UV LED lighting for automated crystal centring

    International Nuclear Information System (INIS)

    Chavas, Leonard M. G.; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A low-cost light-emitting diode (LED) UV source has been developed for facilitating macromolecular sample centring in the X-ray beam. A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity

  2. UV LED lighting for automated crystal centring.

    Science.gov (United States)

    Chavas, Leonard M G; Yamada, Yusuke; Hiraki, Masahiko; Igarashi, Noriyuki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2011-01-01

    A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity.

  3. Thermodynamics of Crystals

    Science.gov (United States)

    Navrotsky, Alexandra

    Thermodynamics of Crystals is a gold mine of a references bargain with more derivations of useful equations per dollar, or per page, than almost any other book I know. Useful to whom? To the solid state physicist, the solid state chemist working the geophysicist, the rock mechanic, the mineral physicist. Useful for what? For lattice dynamics, crystal potentials, band structure. For elegant, rigorous, and concise derivations of fundamental equations. For comparison of levels of approximation. For some data and physical insights, especially for metals and simple halides. This book is a reissue, with some changes and additions, of a 1970 treatise. It ages well, since the fundamentals do not change.

  4. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    International Nuclear Information System (INIS)

    HERTING DL

    2008-01-01

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions

  5. Protein Crystal Malic Enzyme

    Science.gov (United States)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  6. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  7. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  8. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  9. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Science.gov (United States)

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Liquid crystal boojum-colloids

    International Nuclear Information System (INIS)

    Tasinkevych, M; Silvestre, N M; Telo da Gama, M M

    2012-01-01

    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  11. New models for intermolecular repulsion and their application to Van Der Waals complexes and crystals of organic molecules

    International Nuclear Information System (INIS)

    Tsui, H.H.Y.

    2001-01-01

    Model intermolecular potentials are required for simulations of molecules in the gas, liquid, or solid phase. The widely used isotropic atom-atom model potentials are empirically fitted and based on the assumptions of transferability, combining rules and that atoms in molecules are spherical. This thesis develops a non-empirical method of modelling repulsion by applying the overlap model, which we show as a general non-empirical method of deriving repulsion potentials for a specific molecule. In this thesis, the repulsion parameters for an exponential atom-atom model potential are obtained from the ab initio charge density of a small organic molecule by making the assumption that the repulsion is proportional to the overlap of a pair of molecules. The proportionality constant is fixed by a limited number of intermolecular perturbation theory (IMPT) calculations. To complete the model potential, the electrostatic interaction is represented by a distributed multipole analysis, and the Slater-Kirkwood formula is used for the dispersion. These non-empirical potentials can reproduce experimental crystal structure when applied to crystal structure prediction of an oxyboryl derivative. A detailed study on further improving the overlap model was carried out for phenol-water, by including other minor intermolecular contributions of charge-transfer and penetration. High quality ab initio calculations on the complex were performed for use in comparison. To compare with experimental data, diffusion Monte Carlo simulations were performed with the potential, so that the effects of anharmonic zero-point motion on structure and energy of the system are included. When the system is too large for an IMPT calculation, the proportionality constant can be determined empirically by fitting the cell volume as shown in our study of crystal structures of chlorothalonil. This is used with an anisotropic repulsion model that has been derived for Cl and N atoms in chlorothalonil. This model

  12. Photoinduced Optical Properties Of Tl1−xIn1−xSixSe2 Single Crystals

    Directory of Open Access Journals (Sweden)

    Myronchuk G.L.

    2015-06-01

    Full Text Available The influence of temperature on electroconductivity and photoinduced changes of the absorption at 0.15 eV under influence of the second harmonic generation of CO2 laser for the two type of single crystals were investigated. The single crystals Tl1−xIn1−xSixSe2 (x=0.1 and 0.2 have been grown by the two-zone Bridgaman-Stockbarger method. The temperature studies of electroconductivity were done in cryostat with thermoregulation in the temperature 77 - 300 K, with stabilization ±0.1 K. Photoinduced treatment of the investigated single crystals were performed using the 180 ns pulses second harmonic generation of the CO2 laser operating at 5.3 μm. Experimental studies have shown that for the Tl1−xIn1−xSixSe2 single crystals with decreasing temperature from 300 up to 240 K and from 315 up to 270 K the conductivity is realized by thermally excited impurities with activation energies equal to about 0.24 eV and 0.22 eV for x= 0.1 and 0.2, respectively. Photoinduced absorption achieves its maximum at a power density below 100 mJ/cm2. Has been shown that the samples with x=0.2 demonstrated higher changes of the photoinduced absorption with respect to the x=0.1. With further decreasing temperature is observed monotonic decrease in the activation energy of conductivity. The origin of these effects is caused by the excitations of both the electronic as well as phonon subsystem. At some power densities the anharmonic excitations become dominant and as a consequence the photoinduced absorption dependence is saturated what were observed. Additionally, we were evaluated at given temperature the average jump length of R for localized states near Fermi level.

  13. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    2008-01-01

    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...... taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides....

  14. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  15. Hardness of metallic crystals

    Indian Academy of Sciences (India)

    This paper presents a new formula for calculating the hardness of metallic crystals, resulted from the research on the critical grain size with stable dislocations. The formula is = 6 /[(1 – )], where is the hardness, the coefficient, the shear modulus, the Poisson's ratio, a function of the radius of an atom () ...

  16. Thermoelectricity in liquid crystals

    Science.gov (United States)

    Mohd Said, Suhana; Nordin, Abdul Rahman; Abdullah, Norbani; Balamurugan, S.

    2015-09-01

    The thermoelectric effect, also known as the Seebeck effect, describes the conversion of a temperature gradient into electricity. A Figure of Merit (ZT) is used to describe the thermoelectric ability of a material. It is directly dependent on its Seebeck coefficient and electrical conductivity, and inversely dependent on its thermal conductivity. There is usually a compromise between these parameters, which limit the performance of thermoelectric materials. The current achievement for ZT~2.2 falls short of the expected threshold of ZT=3 to allow its viability in commercial applications. In recent times, advances in organic thermoelectrics been significant, improving by over 3 orders of magnitude over a period of about 10 years. Liquid crystals are newly investigated as candidate thermoelectric materials, given their low thermal conductivity, inherent ordering, and in some cases, reasonable electrical conductivity. In this work the thermoelectric behaviour of a discotic liquid crystal, is discussed. The DLC was filled into cells coated with a charge injector, and an alignment of the columnar axis perpendicular to the substrate was allowed to form. This thermoelectric behavior can be correlated to the order-disorder transition. A reasonable thermoelectric power in the liquid crystal temperature regime was noted. In summary, thermoelectric liquid crystals may have the potential to be utilised in flexible devices, as a standalone power source.

  17. The Crystal Set

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  18. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  19. Soap Bubbles and Crystals

    Indian Academy of Sciences (India)

    Jean Taylor is Professor. Emerita at Rutgers. University and currently a. Visitor at the Courant. Institute, NYU. She works on problems related to soap bubble froths, crystals, and how they evolve under various physical laws. Much of her recent research has been interdisciplinary, joint work with materials scientists ...

  20. Rhombohedrel Hybrid Crystal Semiconductor Device

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new high speed and high efficiency hybrid crystal structure semiconductor device based on the the recent invention of rhombohedral hybrid crystal...

  1. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  2. Liquid Crystals and Photonic Bandgap Fiber Components

    DEFF Research Database (Denmark)

    Weirich, Johannes; Wei, Lei; Scolari, Lara

    Liquid Crystal(LC)filled Photonic Crystal Fibers(PCFs) represent a promising platform for the design and the fabrication of tunable all-in fiber devices. Tunability is achieved by varying the refractive index of the LC thermally, optically or electrically. In this contribution we present important...... parts of the LC theory as well as an application of a LC infiltrated PCF subject to an external electrostatic field. The fiber is placed between two electrodes and the voltage is increased step by step leading to the reorientation of the LC in the fiber capillaries. This mechanism can be used to produce...... a swichable polarizer, and an on chip LC photonic bandgap fiber polarimeter is presented, which admits strong attenuation of one polarization direction while the other one is nearly unaffected....

  3. Electrical properties of molecular crystals

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [fr

  4. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and ... also important applications in nonlinear analysis [2]. The theory was brought to ..... for each t > 0 since each set on the right-hand side of the relation (3.1) belongs to I. Thus, by Definition 2.11 and the ...

  5. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  6. Optimization of strong and weak coordinates

    NARCIS (Netherlands)

    Swart, M.; Bickelhaupt, F.M.

    2006-01-01

    We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation

  7. Strong decays of nucleon and delta resonances

    International Nuclear Information System (INIS)

    Bijker, R.; Leviatan, A.

    1996-01-01

    We study the strong couplings of the nucleon and delta resonances in a collective model. In the ensuing algebraic treatment we derive closed expressions for decay widths which are used to analyze the experimental data for strong decays into the pion and eta channels. (Author)

  8. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  9. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  10. Surface properties of HMX crystal

    Science.gov (United States)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  11. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  12. Small Business Innovations (Crystal Components)

    Science.gov (United States)

    1991-01-01

    Scientific Materials Corporation, Bozeman, MT developed the SciMax line of improved Nd:Yag crystals under an Small Business Innovation Research (SBIR) contract with Langley Research Center. They reduced the amount of water trapped in the crystals during growth to improve the optical quality and efficiency. Applications of the crystals include fiber optics, telecommunications, welding, drilling, eye surgery and medical instrumentation.

  13. A Few Good Crystals Please

    Science.gov (United States)

    Judge, Russell A.; Snell, Edward H.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for X-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of solution conditions on the nucleation rate and final crystal size of two crystal systems; tetragonal lysozyme and glucose isomerase. Batch crystallization plates were prepared at given solution concentration and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Duplicate experiments indicate the reproducibility of the technique. Results for each system showing the effect of supersaturation, incubation temperature and solution pH on nucleation rates will be presented and discussed. In the case of lysozyme, having optimized solution conditions to produce an appropriate number of crystals of a suitable size, a batch of crystals were prepared under exactly the same conditions. Fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  14. Crystal engineering: A brief overview

    Indian Academy of Sciences (India)

    Crystal engineering demands a detailed and thorough knowledge of intermolecular interactions, which act as the supramolecular glue that binds molecules into crystals. It also requires systematic strategies for the design of a crystal, the architectural blueprint as it were. Finally, this enterprise needs to be geared towards a ...

  15. The twisting of LiNbO3 single crystals grown by the Czochralski method

    International Nuclear Information System (INIS)

    Erdei, S.; Gabrieljan, V.T.

    1989-01-01

    As a result of our experimental work of mainly practical importance we established that for LiNbO 3 single crystals the Mg and Fe dopants promote spirality whereas decreasing of the pulling velocity strongly reduces the propensity of the system to produce spiral-shaped crystals. (author)

  16. Photorefractive lithium niobate crystals for applications in photonics

    International Nuclear Information System (INIS)

    Hartwig, U.

    2006-12-01

    Lithium niobate crystals (LiNbO 3 ) generally show a photorefractive response, i.e., light-induced refractive index changes. Crystals are investigated at room temperature and at elevated temperatures. As a result 'classical' photorefractive holographic volume-phase gratings, originating from space charge fields and the electro-optic effect, and 'non-classical' photorefractive volume-phase gratings, which can be traced back to strong absorption gratings, emerge. Single domain and periodically poled crystals (PPLN) are investigated. PPLN is typically used in non-linear optics for frequency conversion. The crystals also show non-linear photorefractive response during holographic recording with isotropically polarized light beams of equal intensity and, in the case of PPLN, by mixing of domain and holographic gratings. The results are important for applications combining the photorefractive and non-linear optical properties of LiNbO 3 . (orig.)

  17. Self-force on dislocation segments in anisotropic crystals

    International Nuclear Information System (INIS)

    Fitzgerald, S P; Aubry, S

    2010-01-01

    A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.

  18. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...... waveguide, where the number of modes is equal to the number of rows building the waveguide. The strong coupling between individual waveguides leads to the proposal of an ultrashort directional coupler based on nanopillar waveguides. We present a systematic analysis of the dispersion and transmission...... efficiency of nanopillar photonic crystal waveguides and directional couplers. Plane wave expansion and finite difference time domain methods were used to characterize numerically nanopillar photonic crystal structures both in two- and three-dimensional spaces....

  19. Crystal Engineering of Hand-Twisted Helical Crystals.

    Science.gov (United States)

    Saha, Subhankar; Desiraju, Gautam R

    2017-02-08

    A strategy is outlined for the design of hand-twisted helical crystals. The starting point in the exercise is the one-dimensional (1D) plastic crystal, 1,4-dibromobenzene, which is then changed to a 1D elastic crystal, exemplified by 4-bromophenyl 4'-chlorobenzoate, by introduction of a molecular synthon -O-CO- in lieu of the supramolecular synthon Br···Br in the precursor. The 1D elastic crystals are next modified to two-dimensional (2D) elastic crystals, of the type 4-bromophenyl 4'-nitrobenzoate where the halogen bonding and C-H···O hydrogen bonding are well-matched. Finally, varying the interaction strengths in these 2D elastic crystals gives plastic crystals with two pairs of bendable faces but without slip planes. Typical examples are 4-chlorophenyl and 4-bromophenyl 4'-nitrobenzoate. This type of 2D plasticity represents a new type of bendable crystals in which plastic behavior is seen with a fair degree of isotropic character in the crystal packing. The presence of two sets of bendable faces, generally orthogonal to each other, allows for the possibility of hand-twisting of the crystals to give grossly helical morphologies. Accordingly, we propose the name hand-twisted helical crystals for these substances.

  20. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.