WorldWideScience

Sample records for strongly acidic auxin

  1. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    Energy Technology Data Exchange (ETDEWEB)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: (1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive {sup 36}Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. (2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. (3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.).

  2. The chloroindole auxins of pea, strong plant growth hormones or endogenous herbicides

    International Nuclear Information System (INIS)

    Engvild, K.C.

    1994-02-01

    In this work the three theses below are discussed: 1) Identification and quantitative determination of the very strong plant hormone, the auxin 4-chloroindole-3-acetic acid methyl ester, in immature seeds of Pisum, Vicia, Lathyrus, and Lens spp. by incorporation of radioactive 36 Cl, thin layer chromatography, autoradiography, colour reactions, and gas chromatography/mass spectrometry. 2) The strong biological activity of 4-chloroindole-3-acetic acid and its analogues and its ability to induce strong, almost irreversible, ethylene evolution. 3) The possible role of chloroindole auxin in plants, particularly if it might be the hypothetical death hormone, secreted from developing seeds, which induces senescence and kills the mother plant at maturity; if plants generally have several auxin types, growth promoters and endogenous herbicides; and if other chlorine-containing plant hormones occur in developing seeds of other crop species. (au) (7 tabs., 8 ills., 144 refs.)

  3. Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity.

    Science.gov (United States)

    Yu, Hong; Moss, Britney L; Jang, Seunghee S; Prigge, Michael; Klavins, Eric; Nemhauser, Jennifer L; Estelle, Mark

    2013-05-01

    The phytohormone auxin regulates virtually every aspect of plant development. The hormone directly mediates the interaction between the two members of the auxin coreceptor complex, a TRANSPORT INHIBITOR RESPONSE (TIR1)/AUXIN SIGNALING F-BOX protein and an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressor. To learn more about the interaction between these proteins, a mutant screen was performed using the yeast (Saccharomyces cerevisiae) two-hybrid system in Arabidopsis (Arabidopsis thaliana). Two tir1 mutations were identified that increased interaction with Aux/IAAs. The D170E and M473L mutations increase affinity between TIR1 and the degron motif of Aux/IAAs and enhance the activity of the SCF(TIR1) complex. This resulted in faster degradation of Aux/IAAs and increased transcription of auxin-responsive genes in the plant. Plants carrying the pTIR1:tir1 D170E/M473L-Myc transgene exhibit diverse developmental defects during plant growth and display an auxin-hypersensitive phenotype. This work demonstrates that changes in the leucine-rich repeat domain of the TIR1 auxin coreceptor can alter the properties of SCF(TIR1).

  4. Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity.

    Science.gov (United States)

    Carranco, Raúl; Espinosa, José Manuel; Prieto-Dapena, Pilar; Almoguera, Concepción; Jordano, Juan

    2010-12-14

    The plant hormone auxin regulates growth and development by modulating the stability of auxin/indole acetic acid (Aux/IAA) proteins, which in turn repress auxin response factors (ARFs) transcriptional regulators. In transient assays performed in immature sunflower embryos, we observed that the Aux/IAA protein HaIAA27 represses transcriptional activation by HaHSFA9, a heat shock transcription factor (HSF). We also found that HaIAA27 is stabilized in immature sunflower embryos, where we could show bimolecular fluorescence complementation interaction between native forms of HaIAA27 and HaHSFA9. An auxin-resistant form of HaIAA27 was overexpressed in transgenic tobacco seeds, leading to effects consistent with down-regulation of the ortholog HSFA9 gene, effects not seen with the native HaIAA27 form. Repression of HSFs by HaIAA27 is thus likely alleviated by auxin in maturing seeds. We show that HSFs such as HaHSFA9 are targets of Aux/IAA protein repression. Because HaHSFA9 controls a genetic program involved in seed longevity and embryonic desiccation tolerance, our findings would suggest a mechanism by which these processes can be auxin regulated. Aux/IAA-mediated repression involves transcription factors distinct from ARFs. This finding widens interpretation of auxin responses.

  5. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    Science.gov (United States)

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  6. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis.

    Science.gov (United States)

    Peat, Thomas S; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-11-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.

  7. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  8. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...

  9. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    International Nuclear Information System (INIS)

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-01-01

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L −1 . 13 C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS 13 CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R 2 = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  10. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    Energy Technology Data Exchange (ETDEWEB)

    Scaglia, Barbara, E-mail: barbara.scaglia@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira [Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos (Brazil); Tambone, Fulvia [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Adani, Fabrizio, E-mail: fabrizio.adani@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy)

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L{sup −1}. {sup 13}C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS {sup 13}CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R{sup 2} = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  11. Auxin biosynthesis and storage forms

    Science.gov (United States)

    Strader, Lucia C.

    2013-01-01

    The plant hormone auxin drives plant growth and morphogenesis. The levels and distribution of the active auxin indole-3-acetic acid (IAA) are tightly controlled through synthesis, inactivation, and transport. Many auxin precursors and modified auxin forms, used to regulate auxin homeostasis, have been identified; however, very little is known about the integration of multiple auxin biosynthesis and inactivation pathways. This review discusses the many ways auxin levels are regulated through biosynthesis, storage forms, and inactivation, and the potential roles modified auxins play in regulating the bioactive pool of auxin to affect plant growth and development. PMID:23580748

  12. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

    Science.gov (United States)

    Mutka, Andrew M; Fawley, Stephen; Tsao, Tiffany; Kunkel, Barbara N

    2013-06-01

    Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. Transport of the Two Natural Auxins, Indole-3-Butyric Acid and Indole-3-Acetic Acid, in Arabidopsis1

    Science.gov (United States)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins. PMID:14526119

  14. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    Science.gov (United States)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  15. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    OpenAIRE

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenyl...

  16. Endogenous cytokinins, auxins, and abscisic acid in red algae from Brazil

    Czech Academy of Sciences Publication Activity Database

    Yokoya, N. S.; Stirk, W. A.; van Staden, J.; Novák, Ondřej; Turečková, Veronika; Pěnčík, Aleš; Strnad, Miroslav

    2010-01-01

    Roč. 46, č. 6 (2010), s. 1198-1205 ISSN 0022-3646 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : ENDOGENOUS * CYTOKININS * AUXINS * ABSCISIC ACID * RED * ALGAE * BRAZIL Subject RIV: EF - Botanics Impact factor: 2.239, year: 2010

  17. Diurnal variation of cytokinin, auxin and abscisic acid levels in tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marie; Motyka, Václav; Dobrev, Petre; Malbeck, Jiří; Gaudinová, Alena

    2005-01-01

    Roč. 56, č. 421 (2005), s. 2877-2883 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * auxin * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.336, year: 2005

  18. Kinetic Basis for the Conjugation of Auxin by a GH3 Family Indole-acetic Acid-Amido Synthetase*

    OpenAIRE

    Chen, Qingfeng; Westfall, Corey S.; Hicks, Leslie M.; Wang, Shiping; Jez, Joseph M.

    2010-01-01

    The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemi...

  19. The effect of auxin (indole-3-acetic acid) on the growth rate and tropism of the sporangiophore of Phycomyces blakesleeanus and identification of auxin-related genes.

    Science.gov (United States)

    Živanović, Branka D; Ullrich, Kristian K; Steffens, Bianka; Spasić, Sladjana Z; Galland, Paul

    2018-03-09

    The roles of fungal auxins in the regulation of elongation growth, photo-, and gravitropism are completely unknown. We analyzed the effects of exogenous IAA (indole-3-acetic acid), various synthetic auxins including 1-NAA (1-naphthaleneacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), and the auxin transport inhibitor NPA (N-1-naphtylphtalamic acid) on the growth rate and bending of the unicellular sporangiophore of the zygomycete fungus, Phycomyces blakesleeanus. Sporangiophores that were submerged in an aqueous buffer responded to IAA with a sustained enhancement of the growth rate, while 1-NAA, 2,4-D, and NPA elicited an inhibition. In contrast, sporangiophores kept in air responded to IAA with a 20 to 40% decrease of the growth rate, while 1-NAA and NPA elicited an enhancement. The unilateral and local application of IAA in the growing zone of the sporangiophore elicited in 30 min a moderate negative tropic bending in wild type C2 and mutant C148madC, which was, however, partially masked by a concomitant avoidance response caused by the aqueous buffer. Auxin transport-related genes ubiquitous in plants were found in a BLAST search of the Phycomyces genome. They included members of the AUX1 (auxin influx carrier protein 1), PILS (PIN-LIKES, auxin transport facilitator protein), and ABCB (plant ATP-binding cassette transporter B) families while members of the PIN family were absent. Our observations imply that IAA represents an intrinsic element of the sensory transduction of Phycomyces and that its mode of action must very likely differ in several respects from that operating in plants.

  20. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    Science.gov (United States)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  1. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis.

    Science.gov (United States)

    Walsh, Terence A; Neal, Roben; Merlo, Ann Owens; Honma, Mary; Hicks, Glenn R; Wolff, Karen; Matsumura, Wendy; Davies, John P

    2006-10-01

    Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components.

  2. Mutations in an Auxin Receptor Homolog AFB5 and in SGT1b Confer Resistance to Synthetic Picolinate Auxins and Not to 2,4-Dichlorophenoxyacetic Acid or Indole-3-Acetic Acid in Arabidopsis[W

    Science.gov (United States)

    Walsh, Terence A.; Neal, Roben; Merlo, Ann Owens; Honma, Mary; Hicks, Glenn R.; Wolff, Karen; Matsumura, Wendy; Davies, John P.

    2006-01-01

    Although a wide range of structurally diverse small molecules can act as auxins, it is unclear whether all of these compounds act via the same mechanisms that have been characterized for 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). To address this question, we used a novel member of the picolinate class of synthetic auxins that is structurally distinct from 2,4-D to screen for Arabidopsis (Arabidopsis thaliana) mutants that show chemically selective auxin resistance. We identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins such as picloram, yet had minimal cross-resistance to 2,4-D or IAA. Double mutants had the same level and selectivity of resistance as single mutants. The sites of the mutations were identified by positional mapping as At4g11260 and At5g49980. At5g49980 is previously uncharacterized and encodes auxin signaling F-box protein 5, one of five homologs of TIR1 in the Arabidopsis genome. TIR1 is the recognition component of the Skp1-cullin-F-box complex associated with the ubiquitin-proteasome pathway involved in auxin signaling and has recently been shown to be a receptor for IAA and 2,4-D. At4g11260 encodes the tetratricopeptide protein SGT1b that has also been associated with Skp1-cullin-F-box-mediated ubiquitination in auxin signaling and other pathways. Complementation of mutant lines with their corresponding wild-type genes restored picolinate auxin sensitivity. These results show that chemical specificity in auxin signaling can be conferred by upstream components of the auxin response pathway. They also demonstrate the utility of genetic screens using structurally diverse chemistries to uncover novel pathway components. PMID:16920877

  3. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...... velocity or the uptake. No effect on acropetal transport was observed. The data have been used to discuss the similarities in effects of abscisic acid and visible radiation and a hypothesis is proposed to explain the phenomena of phototropism....

  4. Rapid Degradation of Auxin/Indoleacetic Acid Proteins Requires Conserved Amino Acids of Domain II and Is Proteasome Dependent

    Science.gov (United States)

    Ramos, Jason A.; Zenser, Nathan; Leyser, Ottoline; Callis, Judy

    2001-01-01

    Auxin rapidly induces auxin/indoleacetic acid (Aux/IAA) transcription. The proteins encoded are short-lived nucleus-localized transcriptional regulators that share four conserved domains. In a transient assay measuring protein accumulation, an Aux/IAA 13–amino acid domain II consensus sequence was sufficient to target firefly luciferase (LUC) for low protein accumulation equivalent to that observed previously for full-length PSIAA6. Single amino acid substitutions in these 13 amino acids, corresponding to known auxin response mutants, resulted in a sixfold to 20-fold increase in protein accumulation. Naturally occurring variant amino acids had no effect. Residues identified as essential by single alanine substitutions were not sufficient when all flanking amino acids were alanine, indicating the importance of flanking regions. Using direct protein degradation measurements in transgenic Arabidopsis seedlings, full-length IAA1, PSIAA6, and the N-terminal 73 PSIAA6 amino acids targeted LUC for rapid degradation with 8-min half-lives. The C-terminal 109 amino acids did not affect LUC half-life. Smaller regions containing domain II also targeted LUC for rapid degradation, but the rates were not equivalent to those of the full-length protein. A single domain II substitution in the context of full-length PSIAA6 increased half-life 30-fold. Proteasome inhibitors affected Aux/IAA::LUC fusion protein accumulation, demonstrating the involvement of the proteasome. PMID:11595806

  5. Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis[W

    Science.gov (United States)

    Peat, Thomas S.; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-01-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins. PMID:23136372

  6. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis.

    Science.gov (United States)

    Westfall, Corey S; Sherp, Ashley M; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M

    2016-11-29

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A thaliana This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants.

  7. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects

    Science.gov (United States)

    Ruegger, M.; Dewey, E.; Hobbie, L.; Brown, D.; Bernasconi, P.; Turner, J.; Muday, G.; Estelle, M.

    1997-01-01

    Polar auxin transport plays a key role in the regulation of plant growth and development. To identify genes involved in this process, we have developed a genetic procedure to screen for mutants of Arabidopsis that are altered in their response to auxin transport inhibitors. We recovered a total of 16 independent mutants that defined seven genes, called TRANSPORT INHIBITOR RESPONSE (TIR) genes. Recessive mutations in one of these genes, TIR3, result in altered responses to transport inhibitors, a reduction in polar auxin transport, and a variety of morphological defects that can be ascribed to changes in indole-3-acetic acid distribution. Most dramatically, tir3 seedlings are strongly deficient in lateral root production, a process that is known to depend on polar auxin transport from the shoot into the root. In addition, tir3 plants display a reduction in apical dominance as well as decreased elongation of siliques, pedicels, roots, and the inflorescence. Biochemical studies indicate that tir3 plants have a reduced number of N-1-naphthylphthalamic (NPA) binding sites, suggesting that the TIR3 gene is required for expression, localization, or stabilization of the NPA binding protein (NBP). Alternatively, the TIR3 gene may encode the NBP. Because the tir3 mutants have a substantial defect in NPA binding, their phenotype provides genetic evidence for a role for the NBP in plant growth and development.

  8. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  9. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    Science.gov (United States)

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  10. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.

    Science.gov (United States)

    Gilkerson, Jonathan; Kelley, Dior R; Tam, Raymond; Estelle, Mark; Callis, Judy

    2015-06-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data

  11. Uptake of auxins into membrane vesicles isolated from pea stems: an in vitro auxin transport system

    International Nuclear Information System (INIS)

    Slone, J.H.

    1985-01-01

    The objective of this research was to test the applicability of the chemiosmotic theory of auxin transport to a subcellular system. Membrane vesicles were isolated from the basal portion of the third internode of etiolated pea plants (Pisum sativum L. var. Alaska) by differential centrifugation. Uptake of auxin was determined by adding 14 C-labeled indoleacetic acid (IAA) to vesicles. Nigericin, a monovalent cation ionophore, and the electrogenic protonophore, carbonyl-cyanide m-chlorophenylhydrazone (CCCP), at micromolar concentrations abolished saturable uptake. Bursting vesicles by sonication, osmotic shock and freeze/thawing also eliminated saturable uptake. As the temperature increased from 0 to 30 0 C, saturable uptake decreased markedly. Nonsaturable auxin uptake was less affected by these treatments. The pH gradient-dependent uptake of auxin appeared to be a transmembrane uptake of auxin into the vesicles rather than surface binding. Unlabeled IAA, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-naphthaleneacetic acid (NAA) at low concentrations reduced the saturable accumulation of [ 14 C]IAA in vesicles, while phenylacetic acid, benzoic acid, and 1-NAA were effective only at high concentrations. Kinetic analysis revealed two types of sites: a high affinity site with an uptake capacity of 25 to 40 pmoles/g tissue, and a low affinity site with an uptake capacity of 260 to 600 pmole/g tissue, fresh wt. In conclusion, several principal elements of an auxin transport system, as specific by the chemiosmotic theory of polar auxin transport, were present in membrane vesicles isolated from relatively mature pea stem tissue. However, one important aspect of the theory was not demonstrated in this in vitro system - a TIBA/NPA-sensitive auxin efflux. The kinetics and specificity of auxin uptake strongly suggested that this system was physiologically significant

  12. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.

    Science.gov (United States)

    Zhang, Zhongqin; Li, Qun; Li, Zhimiao; Staswick, Paul E; Wang, Muyang; Zhu, Ying; He, Zuhua

    2007-10-01

    Salicylic acid (SA) plays a central role in plant disease resistance, and emerging evidence indicates that auxin, an essential plant hormone in regulating plant growth and development, is involved in plant disease susceptibility. GH3.5, a member of the GH3 family of early auxin-responsive genes in Arabidopsis (Arabidopsis thaliana), encodes a protein possessing in vitro adenylation activity on both indole-3-acetic acid (IAA) and SA. Here, we show that GH3.5 acts as a bifunctional modulator in both SA and auxin signaling during pathogen infection. Overexpression of the GH3.5 gene in an activation-tagged mutant gh3.5-1D led to elevated accumulation of SA and increased expression of PR-1 in local and systemic tissues in response to avirulent pathogens. In contrast, two T-DNA insertional mutations of GH3.5 partially compromised the systemic acquired resistance associated with diminished PR-1 expression in systemic tissues. The gh3.5-1D mutant also accumulated high levels of free IAA after pathogen infection and impaired different resistance-gene-mediated resistance, which was also observed in the GH3.6 activation-tagged mutant dfl1-D that impacted the auxin pathway, indicating an important role of GH3.5/GH3.6 in disease susceptibility. Furthermore, microarray analysis showed that the SA and auxin pathways were simultaneously augmented in gh3.5-1D after infection with an avirulent pathogen. The SA pathway was amplified by GH3.5 through inducing SA-responsive genes and basal defense components, whereas the auxin pathway was derepressed through up-regulating IAA biosynthesis and down-regulating auxin repressor genes. Taken together, our data reveal novel regulatory functions of GH3.5 in the plant-pathogen interaction.

  13. Zinc finger of Arabidopsis thaliana 6 is involved in melatonin-mediated auxin signaling through interacting INDETERMINATE DOMAIN15 and INDOLE-3-ACETIC ACID 17.

    Science.gov (United States)

    Shi, Haitao; Zhang, Shengmin; Lin, Daozhe; Wei, Yunxie; Yan, Yu; Liu, Guoyin; Reiter, Russel J; Chan, Zhulong

    2018-04-01

    Although accumulating evidence demonstrates the crosstalk between melatonin and auxin as derivatives of tryptophan, the underlying signaling events remain unclear. In this study, we found that melatonin and auxin mediated the transcriptional levels of zinc finger of Arabidopsis thaliana (ZAT6) in a mutually antagonistic manner. ZAT6 negatively modulated the endogenous auxin level, and ZAT6 knockdown plants were less sensitive to melatonin-regulated auxin biosynthesis, indicating its involvement in melatonin-mediated auxin accumulation. Additionally, the identification of INDETERMINATE DOMAIN15 (IDD15) and INDOLE-3-ACETIC ACID 17 (IAA17) in Arabidopsis that interacted with ZAT6 in vivo provided new insight of ZAT6-mediated auxin signaling. Further investigation showed that ZAT6 repressed the transcription activation of IDD15 on the YUC2 promoter, while ZAT6 inhibited the interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and IAA17 through competitively binding to IAA17. Thus, both auxin synthesis and the auxin response were negatively modulated by ZAT6. Taken together, ZAT6 is involved in melatonin-mediated auxin signaling through forming an interacting complex of auxin signaling pathway in Arabidopsis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Endogenous cytokinins, auxins and abscisic acid in Ulva fasciata (Chlorophyta) and Dictyota humifusa (Phaeophyta): towards understanding their biosynthesis and homoeostasis

    Czech Academy of Sciences Publication Activity Database

    Stirk, W.A.; Novák, Ondřej; Hradecká, Veronika; Pěnčík, Aleš; Rolčík, Jakub; Strnad, Miroslav; van Staden, J.

    2009-01-01

    Roč. 44, č. 2 (2009), s. 231-240 ISSN 0967-0262 R&D Projects: GA ČR GA206/05/0894 Institutional research plan: CEZ:AV0Z50380511 Keywords : abscisic acid * auxins * cytokinins Subject RIV: BO - Biophysics Impact factor: 1.556, year: 2009 www.informaworld.com/smpp/content~content=a911046981

  15. Manipulation of intracellular auxin in a single cell by light with esterase-resistant caged auxins.

    Science.gov (United States)

    Kusaka, Naoyuki; Maisch, Jan; Nick, Peter; Hayashi, Ken-ichiro; Nozaki, Hiroshi

    2009-09-04

    Auxin, a plant hormone, is polar transported from its site of production. This auxin polar transport system establishes an auxin gradient in plant tissue that is necessary for proper plant development. Therefore, the spatial effect of the auxin gradient on plant development is highly important for the understanding of plant auxin responses. Herein we report the design, syntheses and biological properties of esterase-resistant caged auxins. The conventional caging group, 2-nitrobenzyl ester, was found to be enzymatically hydrolyzed in plant cells and released original auxin without photolysis. The esterase-resistant caging group, (2,5-dimethoxyphenyl)(2-nitrobenzyl) ester, (DMPNB) was designed to improve the stability of caged auxins. Three auxins, indole 3-acetic acid, naphthalene 1-acetic acid and 2,4-dichlorophenoxy acetic acid were caged with the DMPNB caging group. DMPNB-caged auxins were inactive within a plant cell until photolysis, but they release auxins with photoirradiation to activate auxin-responsive gene expression. We demonstrated spatial and temporal control of intracellular auxin levels with photoirradiation by using this caged auxin system and were able to photocontrol the physiological auxin response in Arabidopsis plants. Additionally, the photoirradiation of DMPNB-caged auxin within a single cell can manipulate the intracellular auxin level and triggers auxin response.

  16. Growth of Avena Coleoptiles and pH Drop of Protoplast Suspensions Induced by Chlorinated Indoleacetic Acids

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Doll, Hans; Böttger, M.

    1978-01-01

    acid, 2,4-dichlorphenoxyacetic acid and naphthaleneacetic acid. 5-Chloro- and 6-chloroindoleacetic acids are very strong auxins as well. Other derivatives tested have a lower activity. 5,7-Dichloro- and 5-hydroxyindoleacetic acids have very low auxin activity at 10-4 mol l-1 and may be anti-auxins...

  17. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    Science.gov (United States)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  18. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex.

    Science.gov (United States)

    Hayashi, Ken-ichiro; Neve, Joshua; Hirose, Masakazu; Kuboki, Atsuhito; Shimada, Yukihisa; Kepinski, Stefan; Nozaki, Hiroshi

    2012-03-16

    The plant hormone auxin is a master regulator of plant growth and development. By regulating rates of cell division and elongation and triggering specific patterning events, indole 3-acetic acid (IAA) regulates almost every aspect of plant development. The perception of auxin involves the formation of a ternary complex consisting of an F-box protein of the TIR1/AFB family of auxin receptors, the auxin molecule, and a member the Aux/IAA family of co-repressor proteins. In this study, we identified a potent auxin antagonist, α-(phenylethyl-2-oxo)-IAA, as a lead compound for TIR1/AFB receptors by in silico virtual screening. This molecule was used as the basis for the development of a more potent TIR1 antagonist, auxinole (α-[2,4-dimethylphenylethyl-2-oxo]-IAA), using a structure-based drug design approach. Auxinole binds TIR1 to block the formation of the TIR1-IAA-Aux/IAA complex and so inhibits auxin-responsive gene expression. Molecular docking analysis indicates that the phenyl ring in auxinole would strongly interact with Phe82 of TIR1, a residue that is crucial for Aux/IAA recognition. Consistent with this predicted mode of action, auxinole competitively inhibits various auxin responses in planta. Additionally, auxinole blocks auxin responses of the moss Physcomitrella patens, suggesting activity over a broad range of species. Our works not only substantiates the utility of chemical tools for plant biology but also demonstrates a new class of small molecule inhibitor of protein-protein interactions common to mechanisms of perception of other plant hormones, such as jasmonate, gibberellin, and abscisic acid.

  19. Cytokinin, auxin, and abscisic acid dynamics during flower development in white and red currants infected with Blackcurrant reversion virus

    Czech Academy of Sciences Publication Activity Database

    Gaudinová, Alena; Malbeck, Jiří; Dobrev, Petre; Kubelková, Darina; Špak, Josef; Vaňková, Radomíra

    2009-01-01

    Roč. 73, č. 6 (2009), s. 119-125 ISSN 0885-5765 R&D Projects: GA MŠk 1P05OC052; GA MŠk OC09084 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50510513 Keywords : Full blossom disease * Cytokinin * Auxin * Abscisic acid Subject RIV: ED - Physiology Impact factor: 1.407, year: 2009

  20. Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase.

    Science.gov (United States)

    Chen, Qingfeng; Westfall, Corey S; Hicks, Leslie M; Wang, Shiping; Jez, Joseph M

    2010-09-24

    The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg(2+) or Mn(2+) for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4-9-fold reductions in k(cat)/K(m) relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.

  1. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes

    OpenAIRE

    Holalu, Srinidhi V.; Finlayson, Scott A.

    2017-01-01

    Abstract Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling w...

  2. Recapitulation of the forward nuclear auxin response pathway in yeast.

    Science.gov (United States)

    Pierre-Jerome, Edith; Jang, Seunghee S; Havens, Kyle A; Nemhauser, Jennifer L; Klavins, Eric

    2014-07-01

    Auxin influences nearly every aspect of plant biology through a simple signaling pathway; however, it remains unclear how much of the diversity in auxin effects is explained by variation in the core signaling components and which properties of these components may contribute to diversification in response dynamics. Here, we recapitulated the entire Arabidopsis thaliana forward nuclear auxin signal transduction pathway in Saccharomyces cerevisiae to test whether signaling module composition enables tuning of the dynamic response. Sensitivity analysis guided by a small mathematical model revealed the centrality of auxin/indole-3-acetic acid (Aux/IAA) transcriptional corepressors in controlling response dynamics and highlighted the strong influence of natural variation in Aux/IAA degradation rates on circuit performance. When the basic auxin response circuit was expanded to include multiple Aux/IAAs, we found that dominance relationships between coexpressed Aux/IAAs were sufficient to generate distinct response modules similar to those seen during plant development. Our work provides a new method for dissecting auxin signaling and demonstrates the key role of Aux/IAAs in tuning auxin response dynamics.

  3. Microscopic and Biochemical Visualization of Auxins in Plant Tissues.

    Science.gov (United States)

    Blakeslee, Joshua J; Murphy, Angus S

    2016-01-01

    Auxins are a particularly notable class of phytohormones in that they regulate plant growth and development at sites of synthesis, and via a regulated polar transport system comprising PIN, ABCB, and AUX/LAX transport proteins. In order to fully understand auxin-regulated physiological processes, it is therefore essential to be able to determine where indole-3-acetic acid and related compounds are being synthesized, where they are transported to, and how much IAA is accumulating in any given tissue. Auxin may be visualized either indirectly, through the use of auxin responsive promoters; directly, through the use of radiolabelled auxin or fluorescent auxin analogs; or biochemically through extraction and mass-spectrometric quantification of auxin and auxin metabolites from target cells or tissues. Here we focus on the use of the DR5::GUS synthetic auxin promoter reporter construct, fluorescent auxin analogs, and confirmatory biochemical (high-pressure liquid chromatography tandem mass-spectrometry) visualization of auxin and auxin metabolites.

  4. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue.

    Science.gov (United States)

    Barkawi, Lana S; Tam, Yuen-Yee; Tillman, Julie A; Pederson, Ben; Calio, Jessica; Al-Amier, Hussein; Emerick, Michael; Normanly, Jennifer; Cohen, Jerry D

    2008-01-15

    To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an automated liquid handler and involves purification solely by solid-phase extraction in a 96-well format, allowing the analysis of up to 96 samples per day. In preparation for quantitative analysis by selected ion monitoring-gas chromatography-mass spectrometry, the carboxylic acid moiety of IAA is derivatized by methylation. The derivatization of the IAA described here was also done in a 96-well format in which up to 96 samples can be methylated at once, minimizing the handling of the toxic reagent, diazomethane. To this end, we have designed a custom diazomethane generator that can safely withstand high flow and accommodate larger volumes. The method for IAA analysis is robust and accurate over a range of plant tissue weights and can be used to screen for and quantify other indolic auxins and compounds including indole-3-butyric acid, 4-chloro-indole-3-acetic acid, and indole-3-propionic acid.

  5. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco

    Czech Academy of Sciences Publication Activity Database

    Polanská, Lenka; Vičánková, Anna; Nováková, Marie; Malbeck, Jiří; Dobrev, Petre; Brzobohatý, Břetislav; Vaňková, Radomíra; Macháčková, Ivana

    2007-01-01

    Roč. 58, č. 3 (2007), s. 637-649 ISSN 0022-0957 R&D Projects: GA ČR GA206/03/0369; GA ČR GA206/06/1306; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040507 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : abscisic acid * auxin * chloroplast ultrastructure Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  6. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development.

    Science.gov (United States)

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-10-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development. 

  7. Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the TARGET OF RAPAMYCIN signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Ayala-Rodríguez, Juan Ángel; Barrera-Ortiz, Salvador; Ruiz-Herrera, León Francisco; López-Bucio, José

    2017-11-01

    Folic acid is a precursor of tetrahydrofolate (vitamin B9), which is an essential cofactor in most organisms, acting as a carrier for one-carbon units in enzymatic reactions. In this work, we employed pharmacological, genetic and confocal imaging strategies to unravel the signaling mechanism by which folic acid modulates root growth and development. Folic acid supplementation inhibits primary root elongation and induces lateral root formation in a concentration-dependent manner. An analysis of the expression of cell cycle genes pCycD6;1:GFP and CycB1:uidA, and cell expansion Exp7:uidA showed that folic acid promotes cell division but prevented cell elongation, and this correlated with altered expression of auxin-responsive DR5:GFP gene, and PIN1:PIN1:GFP, PIN3:PIN3:GFP, and PIN7:PIN7:GFP auxin transporters at the columella and vasculature of primary roots, whereas mutants defective in auxin signaling (tir1/afb1/afb2 [receptors], slr1 [repressor] and arf7/arf19 [transcription factors]) were less sensitive to folic acid induced primary root shortening and lateral root proliferation. Comparison of growth of WT and TARGET OF RAPAMYCIN (TOR) antisense lines indicates that folic acid acts by an alternative mechanism to this central regulator. Thus, folic acid modulation of root architecture involves auxin and acts independently of the TOR kinase to influence basic cellular programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA11[OPEN

    Science.gov (United States)

    Gilkerson, Jonathan; Estelle, Mark

    2015-01-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCFTIR1/AFB (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS6x-HA3x) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS6x-HA3x-IAA1 and Lys-less HIS6x-HA3x-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS6x-HA3x-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data indicate that Aux

  9. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Science.gov (United States)

    Jin, Shang-Hui; Ma, Xin-Mei; Han, Ping; Wang, Bo; Sun, Yan-Guo; Zhang, Gui-Zhi; Li, Yan-Jie; Hou, Bing-Kai

    2013-01-01

    Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  10. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shang-Hui Jin

    Full Text Available Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.

  11. Alkoxy-auxins are selective inhibitors of auxin transport mediated by PIN, ABCB, and AUX1 transporters.

    Science.gov (United States)

    Tsuda, Etsuko; Yang, Haibing; Nishimura, Takeshi; Uehara, Yukiko; Sakai, Tatsuya; Furutani, Masahiko; Koshiba, Tomokazu; Hirose, Masakazu; Nozaki, Hiroshi; Murphy, Angus S; Hayashi, Ken-ichiro

    2011-01-21

    Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.

  12. Alkoxy-auxins Are Selective Inhibitors of Auxin Transport Mediated by PIN, ABCB, and AUX1 Transporters*

    Science.gov (United States)

    Tsuda, Etsuko; Yang, Haibing; Nishimura, Takeshi; Uehara, Yukiko; Sakai, Tatsuya; Furutani, Masahiko; Koshiba, Tomokazu; Hirose, Masakazu; Nozaki, Hiroshi; Murphy, Angus S.; Hayashi, Ken-ichiro

    2011-01-01

    Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCFTIR1 auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development. PMID:21084292

  13. Roles of abscisic acid and auxin in shoot-supplied ammonium inhibition of root system development

    OpenAIRE

    Li, Baohai; Li, Qing; Kronzucker, Herbert J; Shi, Weiming

    2011-01-01

    A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stre...

  14. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Science.gov (United States)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  15. Lactic acid polymers: strong, degradable thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrenberg, R.H.

    1981-01-01

    Copolymers of lactic and glycolic acids are being developed by researchers at Battelle and elsewhere as renewable-resource plastics. Other uses include matrices for controlled release of drugs and pesticides as well as in prosthetic devices. In contrast to conventional plastics, lactic acid polymers are biodegradable, and after several months exposure to moisture, these materials convert back to natural harmless products. The properties of lactic acid polymers are examined.

  16. Opening of Iris flowers is regulated by endogenous auxins.

    Science.gov (United States)

    van Doorn, Wouter G; Dole, Isabelle; Celikel, Fisun G; Harkema, Harmannus

    2013-01-15

    Flower opening in Iris (Iris×hollandica) requires elongation of the pedicel and ovary. This moves the floral bud upwards, thereby allowing the tepals to move laterally. Flower opening is requires with elongation of the pedicel and ovary. In cv. Blue Magic, we investigated the possible role of hormones other than ethylene in pedicel and ovary elongation and flower opening. Exogenous salicylic acid (SA) and the cytokinins benzyladenine (N6-benzyladenine, BA) and zeatin did not affect opening. Jasmonic acid (JA) and abscisic acid (ABA) were slightly inhibitory, but an inhibitor of ABA synthesis (norflurazon) was without effect. Flower opening was promoted by gibberellic acid (GA(3)), but two inhibitors of gibberellin synthesis (4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate, AMO-1618; ancymidol) did not change opening. The auxins indoleacetic acid (IAA) and naphthaleneacetic acid (NAA) strongly promoted elongation and opening. An inhibitor of auxin transport (2,3,5-triodobenzoic acid, TIBA) and an inhibitor of auxin effects [α-(p-chlorophenoxy)-isobutyric acid; PCIB] inhibited elongation and opening. The data suggest that endogenous auxins are among the regulators of the pedicel and ovary elongation and thus of flower opening in Iris. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Changes in Growth, Auxin- and Ribonucleic Acid Metabolism in Wheat Coleoptile Sections Following Pulse Treatment with Indole-3-Acetic Acid

    DEFF Research Database (Denmark)

    Truelsen, T.A.; Galston, A.W.

    1966-01-01

    after the pretreatment showed that the attered growth patterns could be ascribed to declining auxin content with time, but not to thc actual concentration in the sections. The results indicate that the metabolic activation brought about by IAA leads to its own disappearance. Such a phenomenon...

  18. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis.

    Science.gov (United States)

    Nacry, Philippe; Canivenc, Geneviève; Muller, Bertrand; Azmi, Abdelkrim; Van Onckelen, Harry; Rossignol, Michel; Doumas, Patrick

    2005-08-01

    The changes in root system architecture (RSA) triggered by phosphate (P) deprivation were studied in Arabidopsis (Arabidopsis thaliana) plants grown for 14 d on 1 mM or 3 microM P. Two different temporal phases were observed in the response of RSA to low P. First, lateral root (LR) development was promoted between days 7 and 11 after germination, but, after day 11, all root growth parameters were negatively affected, leading to a general reduction of primary root (PR) and LR lengths and of LR density. Low P availability had contrasting effects on various stages of LR development, with a marked inhibition of primordia initiation but a strong stimulation of activation of the initiated primordia. The involvement of auxin signaling in these morphological changes was investigated in wild-type plants treated with indole-3-acetic acid or 2,3,5-triiodobenzoic acid and in axr4-1, aux1-7, and eir1-1 mutants. Most effects of low P on RSA were dramatically modified in the mutants or hormone-treated wild-type plants. This shows that auxin plays a major role in the P starvation-induced changes of root development. From these data, we hypothesize that several aspects of the RSA response to low P are triggered by local modifications of auxin concentration. A model is proposed that postulates that P starvation results in (1) an overaccumulation of auxin in the apex of the PR and in young LRs, (2) an overaccumulation of auxin or a change in sensitivity to auxin in the lateral primordia, and (3) a decrease in auxin concentration in the lateral primordia initiation zone of the PR and in old laterals. Measurements of local changes in auxin concentrations induced by low P, either by direct quantification or by biosensor expression pattern (DR5::beta-glucuronidase reporter gene), are in line with these hypotheses. Furthermore, the observation that low P availability mimicked the action of auxin in promoting LR development in the alf3 mutant confirmed that P starvation stimulates

  19. Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading.

    Science.gov (United States)

    Collum, Tamara D; Padmanabhan, Meenu S; Hsieh, Yi-Cheng; Culver, James N

    2016-05-10

    Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. In this study, an interaction between the replication protein of tobacco mosaic virus (TMV) and phloem-specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading in an age-dependent manner. Promoter expression studies show that in mature tissues TMV 126/183-kDa-interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CCs). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus. In situ analysis of virus spread shows that the inability to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at moving out of older plant tissues than a noninteracting virus. Similarly, CC expression and overaccumulation of a degradation-resistant Aux/IAA-interacting protein was found to inhibit TMV accumulation and phloem loading selectively in flowering plants. Transcriptional expression studies demonstrate a role for Aux/IAA-interacting proteins in the regulation of salicylic and jasmonic acid host defense responses as well as virus-specific movement factors, including pectin methylesterase, that are involved in regulating plasmodesmata size-exclusion limits and promoting virus cell-to-cell movement. Combined, these findings indicate that TMV directs the reprogramming of auxin-regulated gene expression within the vascular phloem of mature tissues as a means to enhance phloem loading and systemic spread.

  20. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl

    Science.gov (United States)

    Jones, A. M.; Cochran, D. S.; Lamerson, P. M.; Evans, M. L.; Cohen, J. D.

    1991-01-01

    We examined the changes in the levels of indoleacetic acid (IAA), IAA esters, and a 22-kilodalton subunit auxin-binding protein (ABP1) in apical mesocotyl tissue of maize (Zea mays L.) during continuous red light (R) irradiation. These changes were compared with the kinetics of R-induced growth inhibition in the same tissue. Upon the onset of continuous irradiation, growth decreased in a continuous manner following a brief lag period. The decrease in growth continued for 5 hours, then remained constant at 25% of the dark rate. The abundance of ABP1 and the level of free IAA both decreased in the mesocotyl. Only the kinetics of the decrease in IAA within the apical mesocotyl correlated with the initial change in growth, although growth continued to decrease even after IAA content reached its final level, 50% of the dark control. This decrease in IAA within the mesocotyl probably occurs primarily by a change in its transport within the shoot since auxin applied as a pulse move basipetally in R-irradiated tissue at the same rate but with half the area as dark control tissue. In situ localization of auxin in etiolated maize shoots revealed that R-irradiated shoots contained less auxin in the epidermis than the dark controls. Irradiated mesocotyl grew 50% less than the dark controls even when incubated in an optimal level of auxin. However, irradiated and dark tissue contained essentially the same amount of radioactivity after incubation in [14C]IAA indicating that the light treatment does not affect the uptake into the tissue through the cut end, although it is possible that a small subset of cells within the mesocotyl is affected. These observations support the hypothesis that R causes a decrease in the level of auxin in epidermal cells of the mesocotyl, consequently constraining the growth of the entire mesocotyl.

  1. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna

    Science.gov (United States)

    Zhao, Hu; Hertel, Rainer; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.

  2. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  3. Auxin Chemical and Molecular Biology

    Science.gov (United States)

    Auxins function as key regulators at the intersection between developmental and environmental events and the response pathways that they trigger. Naturally occurring members of this hormone group include indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 4-chloro-indole-3-acetic acid (4-Cl...

  4. Effects of auxin transport inhibitors on gibberellins in pea

    International Nuclear Information System (INIS)

    Ross, J.J.

    1998-01-01

    The effects of the auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA), 9-hydroxyfluorene-9-carboxylic acid (HFCA), and 1-N-naphthylphthalamic acid (NPA) on gibberellins (GAs) in the garden pea (Pisum sativum L.) were studied. Application of these compounds to elongating internodes of intact wild type plants reduced markedly the endogenous level of the bioactive gibberellin A1. (GA1) below the application site. Indole-3-acetic acid (IAA) levels were also reduced, as was internode elongation. The auxin transport inhibitors did not affect the level of endogenous GA1 above the application site markedly, nor that of GA1 precursors above or below it. When plants were treated with [13C,3H]GA20, TIBA reduced dramatically the level of [13C,3H]GA1 recovered below the TIBA application site. The internodes treated with auxin transport inhibitors appeared to be still in the phase where endogenous GA1 affects elongation, as indicated by the strong response to applied GA1 by internodes of a GA1-deficient line at the same stage of expansion. On the basis of the present results it is suggested that caution be exercised when attributing the developmental effects of auxin transport inhibitors to changes in IAA level alone

  5. Induction, selection and isolation of auxin heterotrophic and auxin-resistant mutants from cultured crown gall cells irradiated with gamma rays

    International Nuclear Information System (INIS)

    Atsumi, Shigeaki

    1980-01-01

    Cultured crown gall cells were irradiated with gamma rays to induce mutation in indoleacetic acid biosynthesis. The irradiated cells were plated on a selection medium which contained auxin. Mutant cells adapted to selection media were characterized as auxin-heterotrophic and auxin-resistant cell lines. The auxin-heterotrophic mutants contained little auxin, whereas the auxin-resistant and -autotrophic mutants contained large amounts of auxin even when cultured with 0.3 ppm of 2,4-dichlorophenoxyacetic acid. Each mutant cell line contained as much octopine as its parental cells. The mutation rate was calculated as in the order of 10 -8 . (author)

  6. Development of 4-methoxy-7-nitroindolinyl (MNI)-caged auxins which are extremely stable in planta.

    Science.gov (United States)

    Hayashi, Ken-Ichiro; Kusaka, Naoyuki; Yamasaki, Soma; Zhao, Yunde; Nozaki, Hiroshi

    2015-10-15

    Phytohormone auxin is a master regulator in plant growth and development. Regulation of cellular auxin level plays a central role in plant development. Auxin polar transport system modulates an auxin gradient that determines plant developmental process in response to environmental conditions and developmental programs. Photolabile caged auxins allow optical control of artificial auxin gradients at cellular resolution. Especially, two-photon uncaging system achieves high spatiotemporal control of photolysis reaction at two-photon cross-section. However, the development of caged versions of auxin has been limited by the instability of the caged auxins to higher plant metabolic activities. Here, we describe the synthesis and application of highly stable caged auxins, 4-methoxy-7-nitroindolinyl (MNI)-caged auxins. Natural auxin, indole 3-acetic acid, and two synthetic auxins, 1-NAA and 2,4-D were caged by MNI caging group. MNI-caged auxins showed a high stability in planta and a rapid release the original auxin when photolyzed. We demonstrated that optical control of auxin-responsive gene expression and auxin-related physiological responses by using MNI-caged auxins. We anticipate that MNI-caged auxins will be an effective tool for high-resolution control of endogenous auxin level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. New tangles in the auxin signaling web

    Science.gov (United States)

    Wright, R. Clay

    2015-01-01

    Plants use auxin to relay critical information that shapes their growth and development. Auxin perception and transcriptional activation are mediated by the degradation of Aux/IAA repressor proteins. Degradation of Aux/IAAs relieves repression on Auxin Response Factors (ARFs), which bind DNA sequences called Auxin Response Elements (AuxREs). In most higher plant genomes, multiple paralogs exist for each part of the auxin nuclear signaling pathway. This potential combinatorial diversity in signaling pathways likely contributes to the myriad of context-specific responses to auxin. Recent structures of several domains from ARF proteins have exposed new modes of ARF dimerization, new models for ARF-AuxRE specificity, and the strong likelihood of larger order complexes formed by ARF and Aux/IAA homo- and heteromultimerization. Preliminary experiments support a role for these novel interactions in planta, further increasing the potential architectural complexity of this seemingly simple pathway. PMID:25750737

  8. Age and sex-related changes in cytokinins, auxins and abscisic acid in a centenarian relict herbaceous perennial.

    Science.gov (United States)

    Oñate, Marta; García, Maria B; Munné-Bosch, Sergi

    2012-02-01

    It is still an unsolved question of fundamental biology if, and how, perennial plants senesce. Here, age- and sex-related changes in phytohormones were tested in Borderea pyrenaica, a small dioecious geophyte relict of the Tertiary with one of the longest lifespan ever recorded for any non-clonal herb (more than 300 years). Biomass allocation, together with levels of cytokinins, auxins and absicisic acid, and other indicators of leaf physiology (chlorophylls, lipid peroxidation and F (v)/F (m) ratio) were measured in juvenile and mature plants, including both males and females of three age classes (up to 50 years, 50-100 years, and over 100 years). Plants maintained intact capacity of their vegetative growth and reproductive potential. Cytokinin levels decreased with age, but only in females. Such sex-related differences, however, were not associated with symptoms of physiological deterioration in leaves, but with an increased reproductive effort in females. It is concluded that B. pyrenaica does not show clear signs of senescence at the organism level. Altered cytokinin levels in females were associated with their reproductive effort, rather than to a degenerative process. The alternate use of five meristematic points in the tuber could explain the extraordinary longevity of this species.

  9. Release of UV-absorbing substances from maize coleoptiles during auxin-, fusicoccin- and acid-mediated elongation growth

    International Nuclear Information System (INIS)

    Miyamoto, K.; Schopfer, P.

    1997-01-01

    Isolated cell walls from maize coleoptiles prepared under conditions that preserve the ability for enzymatic hemicellulose autolysis release UV-absorbing substances into the incubation medium in a time-dependent reaction with an optimal rate at pH 6–7. The reaction can be inhibited by low temperature and protein-denaturing treatments, indicating an enzymatic process. Spectroscopic and chromatographic analyses showed that the liberated substances represent a complex mixture of free and bound (alkali-hydrolyzable) phenolic compounds with similar absorption spectra restricted to the range below 300 nm and thus excluding hydroxycinnamic acids from cell-wall esters. A spectroscopically and chromatographically similar mixture of soluble UV-absorbing substances is released if living (abraded) maize coleoptiles or coleoptile segments are incubated in water or buffer, suggesting that insoluble phenolic materials in the cell wall are metabolized also in vivo. This reaction can be promoted by anaerobic conditions and application of fusicoccin whereas auxin had a slightly inhibitory effect. No clear relationship to elongation growth could be demonstrated. We conclude from these results that polymeric phenolic constituents of the cell wall are subject to enzymatic degradation in muro similar to polysaccharide autolysis and that this process is under metabolic control

  10. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Xu, Yanxia; Zhang, Saina; Guo, Haipeng; Wang, Suikang; Xu, Ligen; Li, Chuanyou; Qian, Qian; Chen, Fan; Geisler, Markus; Qi, Yanhua; Jiang, De An

    2014-07-01

    Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (-Fe). Their Fe concentration is higher and upregulation of Fe deficiency-responsive genes is lower in osabcb14 mutants than in wild-type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Defining Binding Efficiency and Specificity of Auxins for SCFTIR1/AFB-Aux/IAA Co-receptor Complex Formation

    Science.gov (United States)

    2013-01-01

    Structure–activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure–activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding. PMID:24313839

  12. Induction of coiling in tendrils by auxin and carbon dioxide.

    Science.gov (United States)

    Reinhold, L

    1967-11-10

    Symmetric application of indole-3-acetic acid, CO(2), or, to a lesser extent, ethylene can substitute for the contact stimulus in inducing coiling in the tendrils of Marah fabaceus. In the case of auxin, treatment of the apical few millimeters results in strong, permanent coiling throughout the length of the tendril. The speed of the response to CO(2) is comparable to that to tactile stimuli. A possible mechanism for thigmotropism is outlined.

  13. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R; Pěnčík, Aleš; Novák, Ondřej; Rashed, Afaf; Holman, Tara; Wilson, Michael H; Voß, Ute; Bishopp, Anthony; King, John R; Ljung, Karin; Bennett, Malcolm J; Owen, Markus R

    2016-09-27

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.

  14. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding.

    Science.gov (United States)

    Basu, Manojit M; González-Carranza, Zinnia H; Azam-Ali, Sayed; Tang, Shouya; Shahid, Ahmad Ali; Roberts, Jeremy A

    2013-05-01

    A number of novel strategies were employed to examine the role of indoleacetic acid (IAA) in regulating floral organ abscission in Arabidopsis (Arabidopsis thaliana). Analysis of auxin influx facilitator expression in β-glucuronidase reporter plants revealed that AUXIN RESISTANT1, LIKE AUX1, and LAX3 were specifically up-regulated at the site of floral organ shedding. Flowers from mutants where individual family members were down-regulated exhibited a reduction in the force necessary to bring about petal separation; however, the effect was not additive in double or quadruple mutants. Using the promoter of a polygalacturonase (At2g41850), active primarily in cells undergoing separation, to drive expression of the bacterial genes iaaL and iaaM, we have shown that it is possible to manipulate auxin activity specifically within the floral organ abscission zone (AZ). Analysis of petal breakstrength reveals that if IAA AZ levels are reduced, shedding takes place prematurely, while if they are enhanced, organ loss is delayed. The At2g41850 promoter was also used to transactivate the gain-of-function AXR3-1 gene in order to disrupt auxin signaling specifically within the floral organ AZ cells. Flowers from transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and maturity, and these organs frequently remained attached to the plant even after silique desiccation and dehiscence had taken place. These observations support a key role for IAA in the regulation of abscission in planta and reveal, to our knowledge for the first time, a requirement for a functional IAA signaling pathway in AZ cells for organ shedding to take place.

  15. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rachid Lahlali

    Full Text Available An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc, suppressed clubroot (Plasmodiophora brassicae -Pb on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r = 0.92, P<0.001 with the severity of clubroot at 5 weeks after treatment at a low (2×10(5 spores pot(-1 but not high (2×10(5 spores pot(-1 dose of pathogen inoculum. Transcript levels of nine B. napus (Bn genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL. These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2, ethylene (BnACO, auxin (BnAAO1, and PR-2 protein (BnPR-2 biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte.

  16. Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families in Brassica Rapa Shed Light on Their Evolution Patterns in Plants.

    Science.gov (United States)

    Huang, Zhinan; Duan, Weike; Song, Xiaoming; Tang, Jun; Wu, Peng; Zhang, Bei; Hou, Xilin

    2015-12-31

    Auxin/indole acetic acids (Aux/IAAs) and auxin response factors (ARFs), major components of the Aux signaling network, are involved in many developmental processes in plants. Investigating their evolution will provide new sight on the relationship between the molecular evolution of these genes and the increasing morphotypes of plants. We constructed comparative analyses of the retention, structure, expansion, and expression patterns of Aux/IAAs and ARFs in Brassica rapa and their evolution in eight other plant species, including algae, bryophytes, lycophytes, and angiosperms. All 33 of the ARFs, including 1 ARF-like (AL) (a type of ARF-like protein) and 53 Aux/IAAs, were identified in the B. rapa genome. The genes mainly diverged approximately 13 Ma. After the split, no Aux/IAA was completely lost, and they were more preferentially retained than ARFs. In land plants, compared with ARFs, which increased in stability, Aux/IAAs expanded more rapidly and were under more relaxed selective pressure. Moreover, BraIAAs were expressed in a more tissue-specific fashion than BraARFs and demonstrated functional diversification during gene duplication under different treatments, which enhanced the cooperative interaction of homologs to help plants adapt to complex environments. In addition, ALs existed widely and had a closer relationship with ARFs, suggesting that ALs might be the initial structure of ARFs. Our results suggest that the rapid expansion and preferential retention of Aux/IAAs are likely paralleled by the increasingly complex morphotypes in Brassicas and even in land plants. Meanwhile, the data support the hypothesis that the PB1 domain plays a key role in the origin of both Aux/IAAs and ARFs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis.

    Science.gov (United States)

    Li, Li; Xu, Jian; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-10-01

    Brassinosteroids (BRs) are important plant growth regulators in multiple developmental processes. Previous studies have indicated that BR treatment enhanced auxin-related responses, but the underlying mechanisms remain unknown. Using (14)C-labeled indole-3-acetic acid and Arabidopsis thaliana plants harboring an auxin-responsive reporter construct, we show that the BR brassinolide (BL) stimulates polar auxin transport capacities and modifies the distribution of endogenous auxin. In plants treated with BL or defective in BR biosynthesis or signaling, the transcription of PIN genes, which facilitate functional auxin transport in plants, was differentially regulated. In addition, BL enhanced plant tropistic responses by promoting the accumulation of the PIN2 protein from the root tip to the elongation zone and stimulating the expression and dispersed localization of ROP2 during tropistic responses. Constitutive overexpression of ROP2 results in enhanced polar accumulation of PIN2 protein in the root elongation region and increased gravitropism, which is significantly affected by latrunculin B, an inhibitor of F-actin assembly. The ROP2 dominant negative mutants (35S-ROP2-DA/DN) show delayed tropistic responses, and this delay cannot be reversed by BL addition, strongly supporting the idea that ROP2 modulates the functional localization of PIN2 through regulation of the assembly/reassembly of F-actins, thereby mediating the BR effects on polar auxin transport and tropistic responses.

  18. Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves.

    Science.gov (United States)

    Kilaru, Aruna; Bailey, Bryan A; Hasenstein, Karl H

    2007-09-01

    Moniliophthora perniciosa is the causative agent of witches' broom disease in Theobroma cacao. Exogenously provided abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA) promoted mycelial growth, suggesting the ability of the pathogen to metabolize plant hormones. ABA, IAA, JA, and SA were found endogenously in the mycelium and in the fruiting body of the pathogen. The pathogen contained high amounts of SA in the mycelium (0.5+/-0.04 microg g(-1) DW) and IAA (2+/-0.6 microg g(-1) DW) in the basidiocarps. Growth of the mycelium in the presence of host leaves for 10 days did not affect ABA or JA content of the leaves but IAA and SA increased 2.5- and 11-fold, respectively. The amounts of IAA and SA in infected leaves increased beyond the levels of the uninfected leaves and suggest a synergistic response to host-pathogen interaction. The ability of M. perniciosa to produce and sustain growth in the presence of elevated endogenous IAA and SA levels during colonization indicates that these phytohormones contribute to its pathogenicity.

  19. Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis

    Czech Academy of Sciences Publication Activity Database

    Gutierrez, L.; Mongelard, G.; Floková, Kristýna; Päcurar, D. I.; Novák, Ondřej; Staswick, P.; Kowalczyk, M.; Pacurar, M.; Demailly, H.; Geiss, G.; Bellini, C.

    2012-01-01

    Roč. 24, č. 6 (2012), s. 2515-2527 ISSN 1040-4651 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511 Keywords : CONJUGATES AMINO-ACIDS * MALE-STERILE MUTANT * RESPONSE FACTORS Subject RIV: EC - Immunology Impact factor: 9.251, year: 2012

  20. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Dobrev, Petre; Havlíček, Libor; Vágner, Martin; Malbeck, Jiří; Kamínek, Miroslav

    2005-01-01

    Roč. 1075, 1-2 (2005), s. 159-166 ISSN 0021-9673 R&D Projects: GA ČR GP522/02/D058; GA ČR GA206/02/0967; GA MŠk LN00A081; GA ČR GA522/04/0549; GA MZe QF4176 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin * Abscisic acid * Solid phase extraction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.096, year: 2005

  1. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  2. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis.

    Science.gov (United States)

    Simon, Sibu; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre I; Orellana, Ariel; Zažímalová, Eva; Friml, Jiří

    2016-07-01

    Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Altered growth response to exogenous auxin and gibberellic acid by gravistimulation in pulvini of Avena sativa

    Science.gov (United States)

    Brock, T. G.; Kaufman, P. B.

    1988-01-01

    Pulvini of excised segments from oats (Avena sativa L. cv Victory) were treated unilaterally with indoleacetic acid (IAA) or gibberellic acid (GA3) with or without gravistimulation to assess the effect of gravistimulation on hormone action. Optimum pulvinus elongation growth (millimeters) and segment curvature (degrees) over 24 hours were produced by 100 micromolar IAA in vertical segments. The curvature response to IAA at levels greater than 100 micromolar, applied to the lower sides of gravistimulated (90 degrees) pulvini, was significantly less than the response to identical levels in vertical segments. Furthermore, the bending response of pulvini to 100 micromolar IAA did not vary significantly over a range of presentation angles between 0 and 90 degrees. In contrast, the response to IAA at levels less than 10 micromolar, with gravistimulation, was approximately the sum of the responses to gravistimulation alone and to IAA without gravistimulation. This was observed over a range of presentation angles. Also, GA3 (0.3-30 micromolar) applied to the lower sides of horizontal segments significantly enhanced pulvinus growth and segment curvature, although exogenous GA3 over a range of concentrations had no effect on pulvinus elongation growth or segment curvature in vertical segments. The response to GA3 (10 micromolar) plus IAA (1.0 or 100 micromolar) was additive for either vertical or horizontal segments. These results indicate that gravistimulation produces changes in pulvinus responsiveness to both IAA and GA3 and that the changes are unique for each growth regulator. It is suggested that the changes in responsiveness may result from processes at the cellular level other than changes in hormonal sensitivity.

  4. How strong are strong poly(sulfonic acids)? An example of the poly(2-acrylamido-2-methyl-1-propanesulfonic acid)

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Omelchenko, Olga

    2016-01-01

    Roč. 74, January (2016), s. 130-135 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-14791S Institutional support: RVO:61389013 Keywords : polyelectrolytes * strong poly(acids) * proton conductors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.531, year: 2016

  5. Auxins and tropisms

    Science.gov (United States)

    Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Differential growth of plants in response to the changes in the light and gravity vectors requires a complex signal transduction cascade. Although many of the details of the mechanisms by which these differential growth responses are induced are as yet unknown, auxin has been implicated in both gravitropism and phototropism. Specifically, the redistribution of auxin across gravity or light-stimulated tissues has been detected and shown to be required for this process. The approaches by which auxin has been implicated in tropisms include isolation of mutants altered in auxin transport or response with altered gravitropic or phototropic response, identification of auxin gradients with radiolabeled auxin and auxin-inducible gene reporter systems, and by use of inhibitors of auxin transport that block gravitropism and phototropism. Proteins that transport auxin have been identified and the mechanisms which determine auxin transport polarity have been explored. In addition, recent evidence that reversible protein phosphorylation controls this process is summarized. Finally, the data in support of several hypotheses for mechanisms by which auxin transport could be differentially regulated during gravitropism are examined. Although many details of the mechanisms by which plants respond to gravity and light are not yet clear, numerous recent studies demonstrate the role of auxin in these processes.

  6. Dielectric loss property of strong acids doped polyaniline (PANi)

    Science.gov (United States)

    Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar

    2018-04-01

    In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.

  7. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function.

    Science.gov (United States)

    Kakei, Yusuke; Yamazaki, Chiaki; Suzuki, Masashi; Nakamura, Ayako; Sato, Akiko; Ishida, Yosuke; Kikuchi, Rie; Higashi, Shouichi; Kokudo, Yumiko; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-11-01

    Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole-3-acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin-containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4-biphenylboronic acid (BBo) and 4-phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild-type Arabidopsis seedlings. Co-treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki ) of BBo and PPBo were 67 and 56 nm, respectively. In addition, PPBo did not interfere with the auxin response of auxin-marker genes when it was co-treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.

    Science.gov (United States)

    Lee, Sarah; Sundaram, Shanthy; Armitage, Lynne; Evans, John P; Hawkes, Tim; Kepinski, Stefan; Ferro, Noel; Napier, Richard M

    2014-03-21

    Structure-activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure-activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding.

  9. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue.

    Directory of Open Access Journals (Sweden)

    Christine Böttcher

    Full Text Available An important process for the regulation of auxin levels in plants is the inactivation of indole-3-acetic acid (IAA by conjugation to amino acids. The conjugation reaction is catalysed by IAA-amido synthetases belonging to the family of GH3 proteins. Genetic approaches to study the biological significance of these enzymes have been hampered by large gene numbers and a high degree of functional redundancy. To overcome these difficulties a chemical approach based on the reaction mechanism of GH3 proteins was employed to design a small molecule inhibitor of IAA-amido synthetase activity. Adenosine-5'-[2-(1H-indol-3-ylethyl]phosphate (AIEP mimics the adenylated intermediate of the IAA-conjugation reaction and was therefore proposed to compete with the binding of MgATP and IAA in the initial stages of catalysis. Two grapevine IAA-amido synthetases with different catalytic properties were chosen to test the inhibitory effects of AIEP in vitro. GH3-1 has previously been implicated in the grape berry ripening process and is restricted to two amino acid substrates, whereas GH3-6 conjugated IAA to 13 amino acids. AIEP is the most potent inhibitor of GH3 enzymes so far described and was shown to be competitive against MgATP and IAA binding to both enzymes with K(i-values 17-68-fold lower than the respective K(m-values. AIEP also exhibited in vivo activity in an ex planta test system using young grape berries. Exposure to 5-20 µM of the inhibitor led to decreased levels of the common conjugate IAA-Asp and reduced the accumulation of the corresponding Asp-conjugate upon treatment with a synthetic auxin. AIEP therefore represents a novel chemical probe with which to study IAA-amido synthetase function.

  10. Big, strong, neutral, twisted, and chiral π acids.

    Science.gov (United States)

    Zhao, Yingjie; Huang, Guangxi; Besnard, Celine; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2015-04-13

    General synthetic access to expanded π-acidic surfaces of variable size, topology, chirality, and π acidity is reported. The availability of π surfaces with these characteristics is essential to develop the functional relevance of anion-π interactions with regard to molecular recognition, translocation, and transformation. The problem is that, with expanded π surfaces, the impact of electron-withdrawing substituents decreases and the high π acidity needed for strong anion-π interactions can be more difficult to obtain. To overcome this problem, it is herein proposed to build large surfaces from smaller fragments and connect these fragments with bridges that are composed only of single atoms. Two central surfaces for powerful anion-π interactions, namely, perfluoroarenes and naphthalenediimides (NDIs), were selected as fragments and coupled with through sulfide bridges. Their oxidation to sulfoxides and sulfones, as well as fluorine substitution in the peripheral rings, provides access to the full chemical space of relevant π acidities. According to cyclic voltammetry, LUMO levels range from -3.96 to -4.72 eV. With sulfoxide bridges, stereogenic centers are introduced to further enrich the intrinsic planar chirality of the expanded surfaces. The stereoisomers were separated by chiral HPLC and characterized by X-ray crystallography. Their topologies range from chairs to π boats, and the latter are reminiscent of the cation-π boxes in operational neuronal receptors. With pentafluorophenyl acceptors, the π acidity of NDIs with two sulfoxide groups in the core reaches -4.45 eV, whereas two sulfone moieties give a value of -4.72 eV, which is as low as with four ethyl sulfone groups, that is, a π superacid near the limit of existence. Beyond anion-π interactions, these conceptually innovative π-acidic surfaces are also of interest as electron transporters in conductive materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Auxin homeostasis: the DAO of catabolism.

    Science.gov (United States)

    Zhang, Jun; Peer, Wendy Ann

    2017-06-01

    Nearly all programmed and plastic plant growth responses are at least partially regulated by auxins, such as indole-3-acetic acid (IAA). Although vectorial, long distance auxin transport is essential to its regulatory function, all auxin responses are ultimately localized in individual target cells. As a consequence, cellular auxin concentrations are tightly regulated via coordinated biosynthesis, transport, conjugation, and oxidation. The primary auxin oxidative product across species is 2-oxindole-3-acetic acid (oxIAA), followed by glucose and amino acid conjugation to oxIAA. Recently, the enzymes catalyzing the oxidative reaction were characterized in Arabidopsis thaliana. DIOXYGENASE OF AUXIN OXIDATION (DAO) comprises a small subfamily of the 2-oxoglutarate and Fe(II) [2-OG Fe(II)] dependent dioxygenase superfamily. Biochemical and genetic studies have revealed critical physiological functions of DAO during plant growth and development. Thus far, DAO has been identified in three species by homology. Here, we review historical and recent studies and discuss future perspectives regarding DAO and IAA oxidation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Development of a rapid LC-DAD/FLD method for the simultaneous determination of auxins and abscisic acid in plant extracts.

    Science.gov (United States)

    Bosco, Renato; Caser, Matteo; Vanara, Francesca; Scariot, Valentina

    2013-11-20

    Plant hormones play a crucial role in controlling plant growth and development. These groups of naturally occurring substances trigger physiological processes at very low concentrations, which mandate sensitive techniques for their quantitation. This paper describes a method to quantify endogenous (±)-2-cis-4-trans-abscisic acid, indole-3-acetic acid, indole-3-propionic acid, and indole-3-butyric acid. The method combines high-performance liquid chromatography (HPLC) with diode array and fluorescence detection in a single run. Hybrid tea rose 'Monferrato' matrices (leaves, petals, roots, seeds, androecium, gynoecium, and pollen) were used as references. Rose samples were separated and suspended in extracting methanol, after which (±)-2-cis-4-trans-abscisic acid and auxins were extracted by solvent extraction. Sample solutions were added first to cation solid phase extraction (SPE) cartridges and the eluates to anion SPE cartridges. The acidic hormones were bound to the last column and eluted with 5% phosphoric acid in methanol. Experimental results showed that this approach can be successfully applied to real samples and that sample preparation and total time for routine analysis can be greatly reduced.

  13. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits.

    Science.gov (United States)

    Medina-Puche, Laura; Blanco-Portales, Rosario; Molina-Hidalgo, Francisco Javier; Cumplido-Laso, Guadalupe; García-Caparrós, Nicolás; Moyano-Cañete, Enriqueta; Caballero-Repullo, José Luis; Muñoz-Blanco, Juan; Rodríguez-Franco, Antonio

    2016-11-01

    Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date. The role for ethylene and gibberellins as regulatory hormones during the development and ripening of the strawberry fruit remain still elusive. By using a custom-made and high-quality oligo microarray platform done with over 32,000 probes including all of the genes actually described in the strawberry genome, we have analysed the expression of genes during the development and ripening in the receptacles of these fruits. We classify these genes into two major groups depending upon their temporal and developmental expression. First group are genes induced during the initial development stages. The second group encompasses genes induced during the final maturation and ripening processes. Each of these two groups has been also divided into four sub-groups according their pattern of hormonal regulation. By analyzing gene expression, we clearly show that auxins and ABA are the main and key hormones that combined or independently are responsible of the development and ripening process. Auxins are responsible for the receptacle fruit development and, at the same time¸ prevent ripening by repressing crucial genes. ABA regulates the expression of the vast majority of genes involved in the ripening. The main genes expressed under the control of these hormones are presented and their physiological rule discussed. We also conclude that ethylene and gibberellins do not seem to play a prominent role during these processes.

  14. The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.

    Science.gov (United States)

    Kong, Que; Ma, Wei; Yang, Haibing; Ma, Guojie; Mantyla, Jenny J; Benning, Christoph

    2017-07-20

    WRINKLED1 (WRI1) is a key transcriptional regulator of fatty acid biosynthesis genes in diverse oil-containing tissues. Loss of function of Arabidopsis WRI1 leads to a reduction in the expression of genes for fatty acid biosynthesis and glycolysis, and concomitant strong reduction of seed oil content. The wri1-1 loss-of-function mutant shows reduced primary root growth and decreased acidification of the growth medium. The content of a conjugated form of the plant growth hormone auxin, indole-3-acetic acid (IAA)-Asp, was higher in wri1-1 plants compared with the wild-type. GH3.3, a gene encoding an enzyme involved in auxin degradation, displayed higher expression in the wri1-1 mutant. EMSAs demonstrated that AtWRI1 bound to the promoter of GH3.3. Specific AtWRI1-binding motifs were identified in the promoter of GH3.3. In addition, wri1-1 displayed decreased auxin transport. Expression of some PIN genes, which encode IAA carrier proteins, was reduced in wri1-1 plants as well. Correspondingly, AtWRI1 bound to the promoter regions of some PIN genes. It is well known that auxin exerts its maximum effects at a specific, optimal concentration in roots requiring a finely balanced auxin homeostasis. This process appears to be disrupted when the expression of WRI1 and in turn a subset of its target genes are misregulated, highlighting a role for WRI1 in root auxin homeostasis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Phyllotaxis involves auxin drainage through leaf primordia

    DEFF Research Database (Denmark)

    Deb, Yamini; Marti, Dominik; Frenz, Martin

    2015-01-01

    The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport...... of the phytohormone auxin by cellular influx and efflux carriers, such as AUX1 and PIN1. Their important role in phyllotaxis is evident from mutant phenotypes, but their exact roles in space and time are difficult to address due to the strong pleiotropic phenotypes of most mutants in phyllotaxis. Models...... of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis...

  16. Use of membrane vesicles as a simplified system for studying auxin transport of auxin: Progress report

    International Nuclear Information System (INIS)

    Goldsmith, M.H.M.

    1986-01-01

    Indoleacetic acid (IAA), the auxin regulating growth, is transported polarly in plants. IAA stimulates a rapid increase in the rate of electrogenic proton secretion by the plasma membrane. This not only increases the magnitude of the pH and electrical gradients providing the driving force for polar auxin transport and uptake of sugars, amino acids and inorganic ions, but, by acidifying the cell wall, also leads to growth. We find that auxin uptake by membrane vesicles isolated from actively growing plant tissues exhibits some of the same properties as by cells: the accumulation depends on the pH gradient, is saturable and specific for auxin, and enhanced by herbicides that inhibit polar auxin transport. We are using accumulation of a radioactive weak acid to quantify the pH gradient and distribution of fluorescent cyanine dyes to monitor the membrane potential. The magnitude of IAA accumulation exceeds that predicted from the pH gradient, and in the absence of a pH gradient, a membrane potential fails to support any auxin accumulation, leading to the conclusion that the transmembrane potential is not a significant driving force for auxin accumulation in this system. Since increasing the external ionic strength decreases saturable auxin accumulation, we are investigating how modifying the surface potential of the vesicles affects the interaction of the amphipathic IAA molecules with the membranes and whether protein modifying reagents affect the saturability and stimulation by NPA. These studies should provide information on the location and function of the auxin binding site and may enable us to identify the solubilized protein. 5 refs

  17. Facile preparation of acid-resistant magnetite particles for removal of Sb(?) from strong acidic solution

    OpenAIRE

    Wang, Dong; Guan, Kaiwen; Bai, Zhiping; Liu, Fuqiang

    2016-01-01

    Abstract A new facile coating strategy based on the hydrophobicity of methyl groups was developed to prevent nano-sized magnetite particles from strong acid corrosion. In this method, three steps of hydrolysis led to three layers of protection shell coating Fe3O4 nanoparticles. Filled with hydrophobic methyl groups, the middle layer mainly prevented the magnetic core from strong acid corrosion. These magnetite particles managed to resist 1 M HCl solution and 2.5 M H2SO4 solution. The acid res...

  18. 40 CFR 180.1158 - Auxins; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Auxins; exemption from the requirement... From Tolerances § 180.1158 Auxins; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of auxins (specifically: indole-3-acetic acid and...

  19. Classification of auxin plant hormones by interaction property similarity indices

    Science.gov (United States)

    Tomić, Sanja; Gabdoulline, Razif R.; Kojić-Prodić, Biserka; Wade, Rebecca C.

    1998-01-01

    Although auxins were the first type of plant hormone to be identified, little is known about the molecular mechanism of this important class of plant hormones. We present a classification of a set of about 50 compounds with measured auxin activities, according to their interaction properties. Four classes of compounds were defined: strongly active, weakly active with weak antiauxin behaviour, inactive and inhibitory. All compounds were modeled in two low-energy conformations, `P' and `T', so as to obtain the best match to the `planar' and `tilted' conformations, respectively, of indole 3-acetic acid. Each set of conformers was superimposed separately using several different alignment schemes. Molecular interaction energy fields were computed for each molecule with five different chemical probes and then compared by computing similarity indices. Similarity analysis showed that the classes are on average distinguishable, with better differentiation achieved for the T conformers than the P conformers. This indicates that the T conformation might be the active one. Further, a screening was developed which could distinguish compounds with auxin activity from inactive compounds and most antiauxins using the T conformers. The classifications rationalize ambiguities in activity data found in the literature and should be of value in predicting the activities of new plant growth substances and herbicides.

  20. Auxin Response Factors

    NARCIS (Netherlands)

    Roosjen, Mark; Paque, Sébastien; Weijers, Dolf

    2018-01-01

    The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding

  1. The acropetal effects of indole-3-acetic acid in isolated shoot segments of Acer pseudoplatanus L. II. Possible regulation by a vectorial fieid of auxin waves

    Directory of Open Access Journals (Sweden)

    Jacek A. Adamczyk

    2014-01-01

    Full Text Available The acropetal effects of auxin on elongation of axillary buds and on modulation of the wave-like pattern of basipetal efflux of natural auxin to agar from Acer pseudoplatanus L. shoots were studied. When synthetic IAA was applied to cut surfaces of one of two branches the elongation growth of buds situated on the opposite branch was retarded, suggesting regulation independent of the direct action of the molecules of the applied IAA. Oscillations in basipetal transport of natural auxin along the stem segments were observed corroborating the results of other authors using different tree species. Apical application of synthetic IAA for 1 hour to the lateral branch caused a phase shift of the wave-like pattern of basipetal efflux of natural auxin, when the stem segment above the treated branch was sectioned. The same effect was observed evoked by the laterally growing branch which is interpreted as an effect of natural auxin produced by the actively growing shoot. These modulations could be propagated acropetally at a rate excluding direct action of auxin molecules at the sites of measurement. The results seem to corroborate the hypothesis suggesting that auxin is involved in acropetal regulation of shoot apex growth through its effect upon modulation of the vectorial field which arises when the auxin-waves translocate in cambium.

  2. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips.

    Science.gov (United States)

    Tamás, Ladislav; Mistrík, Igor; Alemayehu, Aster; Zelinová, Veronika; Bočová, Beáta; Huttová, Jana

    2015-01-15

    Auxin is a master regulator of root growth by modulating its development under the constantly changing environment. Recently, an antagonistic interaction was suggested between SA and IAA signaling. Therefore, the purpose of this work was to analyze and compare the effect of the indole-3-acetic acid (IAA) signaling inhibitor p-chlorophenoxyisobutyric acid (PCIB) and salicylic acid (SA) as a potential IAA signaling inhibitor on the root growth, enzyme activity and reactive oxygen species (ROS) production in Cd- and IAA-treated barley root tips. Exposure of plants to Cd resulted in a more than threefold increase of IAA content in the root apex even 3h after the treatment. In addition, exogenously applied IAA evoked root responses such as root growth inhibition and swelling, ROS generation and activation of lipoxygenase or glutathione peroxidase identical to those induced by Cd. Furthermore, both Cd- and IAA-induced stress responses were markedly reversed by PCIB or SA post-treatment. Similarly to PCIB, SA did not affect the IAA content of root tips, suggesting the action of SA on the IAA signaling pathway in barley roots. SA probably does not alleviate the Cd toxicity in roots, but rather prevents or partially inhibits the root defense response to the presence of Cd through the inhibition of Cd-induced IAA-mediated ROS generation in roots. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Forward genetic screen for auxin-deficient mutants by cytokinin.

    Science.gov (United States)

    Wu, Lei; Luo, Pan; Di, Dong-Wei; Wang, Li; Wang, Ming; Lu, Cheng-Kai; Wei, Shao-Dong; Zhang, Li; Zhang, Tian-Zi; Amakorová, Petra; Strnad, Miroslav; Novák, Ondřej; Guo, Guang-Qin

    2015-07-06

    Identification of mutants with impairments in auxin biosynthesis and dynamics by forward genetic screening is hindered by the complexity, redundancy and necessity of the pathways involved. Furthermore, although a few auxin-deficient mutants have been recently identified by screening for altered responses to shade, ethylene, N-1-naphthylphthalamic acid (NPA) or cytokinin (CK), there is still a lack of robust markers for systematically isolating such mutants. We hypothesized that a potentially suitable phenotypic marker is root curling induced by CK, as observed in the auxin biosynthesis mutant CK-induced root curling 1 / tryptophan aminotransferase of Arabidopsis 1 (ckrc1/taa1). Phenotypic observations, genetic analyses and biochemical complementation tests of Arabidopsis seedlings displaying the trait in large-scale genetic screens showed that it can facilitate isolation of mutants with perturbations in auxin biosynthesis, transport and signaling. However, unlike transport/signaling mutants, the curled (or wavy) root phenotypes of auxin-deficient mutants were significantly induced by CKs and could be rescued by exogenous auxins. Mutants allelic to several known auxin biosynthesis mutants were re-isolated, but several new classes of auxin-deficient mutants were also isolated. The findings show that CK-induced root curling provides an effective marker for discovering genes involved in auxin biosynthesis or homeostasis.

  4. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Strigolactone Inhibition of Branching Independent of Polar Auxin Transport1[OPEN

    Science.gov (United States)

    Mason, Michael G.; Beveridge, Christine A.

    2015-01-01

    The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from axillary buds into the main stem and is enhanced by a low sink for auxin in the stem. In this theory, the relative ability of the buds and stem to transport auxin controls bud outgrowth. Here, we evaluate whether auxin transport is required or regulated during bud outgrowth in pea (Pisum sativum). The profound, systemic, and long-term effects of the auxin transport inhibitor N-1-naphthylphthalamic acid had very little inhibitory effect on bud outgrowth in strigolactone-deficient mutants. Strigolactones can also inhibit bud outgrowth in N-1-naphthylphthalamic acid-treated shoots that have greatly diminished auxin transport. Moreover, strigolactones can inhibit bud outgrowth despite a much diminished auxin supply in in vitro or decapitated plants. These findings demonstrate that auxin sink strength in the stem is not important for bud outgrowth in pea. Consistent with alternative mechanisms of auxin regulation of systemic signals, enhanced auxin biosynthesis in Arabidopsis (Arabidopsis thaliana) can suppress branching in yucca1D plants compared with wild-type plants, but has no effect on bud outgrowth in a strigolactone-deficient mutant background. PMID:26111543

  6. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  7. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  8. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  9. Synthesis of novel carbon/silica composites based strong acid ...

    Indian Academy of Sciences (India)

    hydrophobic acid-catalyzed reactions proceed in poor or with no catalytic activity (Nakajima et al 2009). The novel car- bon/silica composites based solid acid was synthesized for the purpose. However, the new method added the step of impregnating sucrose to the channels of SBA-15, which fur- ther added to the cost for ...

  10. Leaf expansion in Phaseolus: transient auxin-induced growth increase

    Science.gov (United States)

    Keller, Christopher P.

    2017-01-01

    Control of leaf expansion by auxin is not well understood. Evidence from short term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggests that, long-term, auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean (Phaseolus vulgaris) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 μM NAA responded with an initial surge of elongation growth complete within 10 hours followed by insensitivity. A range of NAA concentrations from 0.1 μM to 300 μM induced increased strip elongation after 24 hours and 48 hours. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin α-naphthalene acetic acid (NAA) at 1.0 mM showed both an initial surge in growth lasting 4–6 hours followed by growth inhibition sustained at least as long as 24 hours post treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together the results suggest increasing leaf auxin first increases growth then slows growth through inhibition of cell expansion. Excised leaf strips, retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or of isolation from the plant. PMID:29200506

  11. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression.

    Science.gov (United States)

    Daminato, Margherita; Guzzo, Flavia; Casadoro, Giorgio

    2013-09-01

    Strawberries (Fragaria×ananassa) are false fruits the ripening of which follows the non-climacteric pathway. The role played by a C-type MADS-box gene [SHATTERPROOF-like (FaSHP)] in the ripening of strawberries has been studied by transiently modifying gene expression through either over-expression or RNA-interference-mediated down-regulation. The altered expression of the FaSHP gene caused a change in the time taken by the over-expressing and the down- regulated fruits to attain the pink stage, which was slightly shorter and much longer, respectively, compared to controls. In parallel with the modified ripening times, the metabolome components and the expression of ripening-related genes also appeared different in the transiently modified fruits. Differences in the response time of the analysed genes suggest that FaSHP can control the expression of ripening genes either directly or indirectly through other transcription factor-encoding genes. Because fleshy strawberries are false fruits these results indicate that C-type MADS-box genes like SHATTERPROOF may act as modulators of ripening in fleshy fruit-like structures independently of their anatomical origin. Treatment of strawberries with either auxin or abscisic acid had antagonistic impacts on both the expression of FaSHP and the expression of ripening-related genes and metabolome components.

  12. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    Directory of Open Access Journals (Sweden)

    Supriya V Bhat

    Full Text Available There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D, as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  13. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with “Auxin-Like” Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways

    Science.gov (United States)

    Bhat, Supriya V.; Booth, Sean C.; McGrath, Seamus G. K.; Dahms, Tanya E. S.

    2015-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria. PMID:25919284

  14. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    Science.gov (United States)

    Bhat, Supriya V; Booth, Sean C; McGrath, Seamus G K; Dahms, Tanya E S

    2014-01-01

    There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv) as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  15. (photoautotrophic, photomixotrophic) and the auxin indole-butyric ...

    African Journals Online (AJOL)

    Effects of different culture conditions (photoautotrophic, photomixotrophic) and the auxin indole-butyric acid on the in vitro acclimatization of papaya ( Carica papaya L. var. Red Maradol) plants using zeolite as support.

  16. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  17. Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots.

    Science.gov (United States)

    Kaneyasu, Tomoko; Kobayashi, Akie; Nakayama, Mayumi; Fujii, Nobuharu; Takahashi, Hideyuki; Miyazawa, Yutaka

    2007-01-01

    Plants are sessile in nature, and need to detect and respond to many environmental cues in order to regulate their growth and orientation. Indeed, plants sense numerous environmental cues and respond via appropriate tropisms, and it is widely accepted that auxin plays an important role in these responses. Recent analyses using Arabidopsis have emphasized the importance of polar auxin transport and differential auxin responses to gravitropism. Even so, the involvement of auxin in hydrotropism remains unclear. To clarify whether or not auxin is involved in the hydrotropic response, Arabidopsis seedlings were treated with inhibitors of auxin influx (3-chloro-4-hydroxyphenylacetic acid), efflux (1-naphthylphthalemic acid and 2,3,5-triiodobenzoic acid), and response (p-chlorophenoxyisobutylacetic acid), and their effects were examined on both hydrotropic and gravitropic responses. In agreement with previous reports, gravitropism was inhibited by all the chemicals tested. By contrast, only an inhibitor of the auxin response (p-chlorophenoxyisobutylacetic acid) reduced hydrotropism, whereas inhibitors for influx or efflux of auxin had no effect. These results suggest that auxin response, apart from its polar transport, plays a definite role in hydrotropic response, and will evoke a new concept for the auxin-mediated regulation of tropisms.

  18. Auxin and physical constraint exerted by the perianth promote androgynophore bending in Passiflora mucronata L. (Passifloraceae).

    Science.gov (United States)

    Rocha, D I; Monte Bello, C C; Sobol, S; Samach, A; Dornelas, M C

    2015-05-01

    The androgynophore column, a distinctive floral feature in passion flowers, is strongly crooked or bent in many Passiflora species pollinated by bats. This is a floral feature that facilitates the adaptation to bat pollination. Crooking or bending of plant organs are generally caused by environmental stimulus (e.g. mechanical barriers) and might involve the differential distribution of auxin. Our aim was to study the role of the perianth organs and the effect of auxin in bending of the androgynophore of the bat-pollinated species Passiflora mucronata. Morpho-anatomical characterisation of the androgynophore, including measurements of curvature angles and cell sizes both at the dorsal (convex) and ventral (concave) sides of the androgynophore, was performed on control flowers, flowers from which perianth organs were partially removed and flowers treated either with auxin (2,4-dichlorophenoxyacetic acid; 2,4-D) or with an inhibitor of auxin polar transport (naphthylphthalamic acid; NPA). Asymmetric growth of the androgynophore column, leading to bending, occurs at a late stage of flower development. Removing the physical constraint exerted by perianth organs or treatment with NPA significantly reduced androgynophore bending. Additionally, the androgynophores of plants treated with 2,4-D were more curved when compared to controls. There was a larger cellular expansion at the dorsal side of the androgynophores of plants treated with 2,4-D and in both sides of the androgynophores of plants treated with NPA. This study suggests that the physical constraint exerted by perianth and auxin redistribution promotes androgynophore bending in P. mucronata and might be related to the evolution of chiropterophily in the genus Passiflora. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid

    Science.gov (United States)

    Prabhuram, J.; Manoharan, R.

    Porous unsupported electrodes are made from platinum powder prepared by a room-temperature NaBH 4 reduction method. Cyclic voltammograms (CVs) are recorded in different electrolytes of high and low pH in the presence and the absence of different concentrations of methanol. Various electrochemical processes occurring in different potential regions of the CVs are discussed. Steady-state galvanostatic polarisation measurements for the methanol oxidation reaction (MOR) on these electrodes in different electrolyte/methanol mixtures are also carried out. The MOR performance increases from a highly acidic range to a highly alkaline range. On increasing the KOH concentration above 6 M, however, the activity declines. Also, the MOR performance changes on changing the methanol concentration in a solution of a given pH. The highest MOR activity is obtained in a 6 M KOH+6 M CH 3OH mixture. It is concluded that by choosing the proper ratio of OH - ions and CH 3OH in solution, it is possible to remove completely the intermediate organic species and/or poisonous species that retard the MOR rate on the electrode surface.

  20. Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, Aleš; Turečková, Veronika; Paulisić, S.; Rolčík, Jakub; Strnad, Miroslav; Mihaljević, S.

    2015-01-01

    Roč. 122, č. 1 (2015), s. 89-100 ISSN 0167-6857 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : Abscisic acid * Ammonium * Indole-3-acetic acid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.390, year: 2015

  1. Early embryo development in Fucus distichus is auxin sensitive

    Science.gov (United States)

    Basu, Swati; Sun, Haiguo; Brian, Leigh; Quatrano, Ralph L.; Muday, Gloria K.

    2002-01-01

    Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.

  2. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression

    Science.gov (United States)

    Hentrich, Mathias; Böttcher, Christine; Düchting, Petra; Cheng, Youfa; Zhao, Yunde; Berkowitz, Oliver; Masle, Josette; Medina, Joaquín; Pollmann, Stephan

    2013-01-01

    SUMMARY Interactions between phytohormones play important roles in the regulation of plant growth and development, but knowledge of the networks controlling hormonal relationships, such as between oxylipins and auxins, is just emerging. Here, we report the transcriptional regulation of two Arabidopsis YUCCA genes, YUC8 and YUC9, by oxylipins. Similarly to previously characterized YUCCA family members, we show that both YUC8 and YUC9 are involved in auxin biosynthesis, as demonstrated by the increased auxin contents and auxin-dependent phenotypes displayed by gain-of-function mutants as well as the significantly decreased IAA levels in yuc8 and yuc8/9 knockout lines. Gene expression data obtained by qPCR analysis and microscopic examination of promoter-reporter lines reveal an oxylipin-mediated regulation of YUC9 expression that is dependent on the COI1 signal transduction pathway. In support of these findings, the roots of the analyzed yuc knockout mutants displayed a reduced response to methyl jasmonate (MeJA). The similar response of the yuc8 and yuc9 mutants to MeJA in cotyledons and hypocotyls suggests functional overlap of YUC8 and YUC9 in aerial tissues, while their function in roots show some specificity, likely in part related to different spatio-temporal expression patterns of the two genes. These results provide evidence for an intimate functional relationship between oxylipin signaling and auxin homeostasis. PMID:23425284

  3. The diageotropica mutation and synthetic auxins differentially affect the expression of auxin-regulated genes in tomato.

    Science.gov (United States)

    Mito, N; Bennett, A B

    1995-01-01

    The effect of a tomato (Lycopersicon esculentum) mutation, diageotropica (dgt), on the accumulation of mRNA corresponding to tomato homologs of three auxin-regulated genes, LeAux, LeSAUR, and Lepar, was examined. The dgt mutation inhibited the induction of LeAux and LeSAUR mRNA accumulation by naphthalene acetic acid (NAA) but had no effect on NAA-induced Lepar mRNA accumulation. The effect of two synthetic auxins, NAA and 3,7-dichloro-8-quinoline carboxylic acid (quinclorac), on the accumulation of LeAux, LeSAUR, and Lepar mRNA was also examined. Quinclorac induced the expression of each of the auxin-regulated genes, confirming its proposed mode of herbicidal action as an auxin-type herbicide. Concentrations of quinclorac at least 100-fold higher than NAA were required to induce LeAux and LeSAUR mRNA accumulation to similar levels, whereas Lepar mRNA accumulation was induced by similar concentrations of NAA and quinclorac. Collectively, these data suggest the presence of two auxin-dependent signal transduction pathways: one that regulates LeSAUR and LeAux mRNA accumulation and is interrupted by the dgt mutation and a second that regulates Lepar mRNA accumulation and is not defective in dgt tomato hypocotyls. These two auxin-regulated signal transduction pathways can be further discriminated by the action of two synthetic auxins, NAA and quinclorac. PMID:7480327

  4. A novel nucleic acid analogue shows strong angiogenic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Ikuko, E-mail: tukamoto@med.kagawa-u.ac.jp [Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793 (Japan); Sakakibara, Norikazu; Maruyama, Tokumi [Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193 (Japan); Igarashi, Junsuke; Kosaka, Hiroaki [Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793 (Japan); Kubota, Yasuo [Department of Dermatology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793 (Japan); Tokuda, Masaaki [Department of Cell Physiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793 (Japan); Ashino, Hiromi [The Tokyo Metropolitan Institute of Medical Science, 1-6 Kamikitazawa2-chome, Setagaya-ku, Tokyo 156-8506 (Japan); Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro [Teikoku Seiyaku Co., Ltd., Sanbonmatsu, Higashikagawa, Kagawa 769-2695 (Japan); Konishi, Ryoji [Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793 (Japan)

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  5. Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Liu, Wen; Wei, Yunxie; Ye, Tiantian

    2017-02-01

    Plants have developed complex mechanisms to respond to salt stress, depending on secondary messenger-mediated stress perception and signal transduction. Nitric oxide (NO) is widely known as a 'jack-of-all-trades' in stress responses. However, NO-mediated crosstalk between plant hormones remains unclear. In this study, we found that salt stabilized both AUXIN/INDOLE-3-ACETIC ACID 17 (Aux/IAA17) and RGA-LIKE3 (RGL3) proteins due to salt-induced NO production. Salt-induced NO overaccumulation and IAA17 overexpression decreased the transcripts of GA3ox genes, resulting in lower bioactive GA4. Further investigation showed that IAA17 directly interacted with RGL3 and increased its protein stability. Consistently, RGL3 stabilized IAA17 protein through inhibiting the interaction of TIR1 and IAA17 by competitively binding to IAA17. Moreover, both IAA17 and RGL3 conferred salt stress resistance. Overexpression of IAA17 and RGL3 partially alleviated the inhibitory effect of NO deficiency on salt resistance, whereas the iaa17 and rgl3 mutants displayed reduced responsiveness to NO-promoted salt resistance. Thus, the associations between IAA17 and gibberellin (GA) synthesis and signal transduction, and between the IAA17-interacting complex and the NO-mediated salt stress response were revealed based on physiological and genetic approaches. We conclude that integration of IAA17 and RGL3 is an essential component of NO-mediated salt stress response. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Effects of Auxins on PIN-FORMED2 (PIN2) Dynamics Are Not Mediated by Inhibiting PIN2 Endocytosis1

    Science.gov (United States)

    Jásik, Ján; Bokor, Boris; Stuchlík, Stanislav; Mičieta, Karol; Turňa, Ján; Schmelzer, Elmon

    2016-01-01

    By using the photoconvertible fluorescence protein Dendra2 as a tag we demonstrated that neither the naturally occurring auxins indole-3-acetic acid and indole-3-butyric acid, nor the synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid nor compounds inhibiting polar auxin transport such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid, were able to inhibit endocytosis of the putative auxin transporter PIN-FORMED2 (PIN2) in Arabidopsis (Arabidopsis thaliana) root epidermis cells. All compounds, except Indole-3-butyric acid, repressed the recovery of the PIN2-Dendra2 plasma membrane pool after photoconversion when they were used in high concentrations. The synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid showed the strongest inhibition. Auxins and auxin transport inhibitors suppressed also the accumulation of both newly synthesized and endocytotic PIN2 pools in Brefeldin A compartments (BFACs). Furthermore, we demonstrated that all compounds are also interfering with BFAC formation. The synthetic auxin analogs caused the highest reduction in the number and size of BFACs. We concluded that auxins and inhibitors of auxin transport do affect PIN2 turnover in the cells, but it is through the synthetic rather than the endocytotic pathway. The study also confirmed inappropriateness of the BFA-based approach to study PIN2 endocytosis because the majority of PIN2 accumulating in BFACs is newly synthesized and not derived from the plasma membrane. PMID:27506239

  7. Effects of Auxins on PIN-FORMED2 (PIN2) Dynamics Are Not Mediated by Inhibiting PIN2 Endocytosis.

    Science.gov (United States)

    Jásik, Ján; Bokor, Boris; Stuchlík, Stanislav; Mičieta, Karol; Turňa, Ján; Schmelzer, Elmon

    2016-10-01

    By using the photoconvertible fluorescence protein Dendra2 as a tag we demonstrated that neither the naturally occurring auxins indole-3-acetic acid and indole-3-butyric acid, nor the synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid nor compounds inhibiting polar auxin transport such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid, were able to inhibit endocytosis of the putative auxin transporter PIN-FORMED2 (PIN2) in Arabidopsis (Arabidopsis thaliana) root epidermis cells. All compounds, except Indole-3-butyric acid, repressed the recovery of the PIN2-Dendra2 plasma membrane pool after photoconversion when they were used in high concentrations. The synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid showed the strongest inhibition. Auxins and auxin transport inhibitors suppressed also the accumulation of both newly synthesized and endocytotic PIN2 pools in Brefeldin A compartments (BFACs). Furthermore, we demonstrated that all compounds are also interfering with BFAC formation. The synthetic auxin analogs caused the highest reduction in the number and size of BFACs. We concluded that auxins and inhibitors of auxin transport do affect PIN2 turnover in the cells, but it is through the synthetic rather than the endocytotic pathway. The study also confirmed inappropriateness of the BFA-based approach to study PIN2 endocytosis because the majority of PIN2 accumulating in BFACs is newly synthesized and not derived from the plasma membrane. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Sites and regulation of auxin biosynthesis in Arabidopsis roots.

    Science.gov (United States)

    Ljung, Karin; Hull, Anna K; Celenza, John; Yamada, Masashi; Estelle, Mark; Normanly, Jennifer; Sandberg, Göran

    2005-04-01

    Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.

  9. Characteristics of the influence of auxins on physicochemical properties of membrane phospholipids in monolayers at the air/aqueous solution interface.

    Science.gov (United States)

    Flasiński, Michał; Bartosik, Magdalena; Kowal, Sara; Broniatowski, Marcin; Wydro, Paweł

    2015-12-01

    Interactions between representatives of plant hormones and selected membrane lipids have been studied in monolayers at the air/aqueous solutions interface with π-A isotherm analysis, microscopic visualization and grazing incidence X-ray diffraction technique (GIXD). Four phytohormones: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2-naphthoxyacetic acid (BNOA) and 2,4-dichlorophenoxyacetic acid (2,4-D), belonging to the class of auxins differ as regards the chemical structure of the aromatic molecular fragment. The studied phospholipids have been chosen since they are omnipresent in the biological membranes of plant and animal kingdom. Our results revealed that both natural (IAA and IBA) and synthetic (2,4-D and BNOA) phytohormones modify the physicochemical characteristics of the investigated lipid monolayers. Auxins caused strong diminishing of the monolayer condensation, especially for DPPC and SOPE, which may be attributed to the phase transition in these monolayers. In the performed experiments the key step of auxins action occurs when the molecules interact with monolayers in the expanded state-when the space in the lipid head-group region is large enough to accommodate the molecules of water soluble auxins. The application of GIXD technique confirmed that auxin molecules are also present at the interface at higher surface pressure (30 mN/m). The obtained results showed that among the investigated auxins, the largest influence on the lipid monolayers occurred in the case of BNOA, which molecule possesses the largest aromatic fragment. In contrast, 2,4-D, having the smallest aryl group affects the studied lipid systems to the smallest extent. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice.

    Science.gov (United States)

    Sakamoto, Tomoaki; Morinaka, Yoichi; Inukai, Yoshiaki; Kitano, Hidemi; Fujioka, Shozo

    2013-02-01

    The phytohormones auxins and brassinosteroids are both essential regulators of physiological and developmental processes, and it has been suggested that they act inter-dependently and synergistically. In rice (Oryza sativa), auxin co-application improves the brassinosteroid response in the rice lamina inclination bioassay. Here, we showed that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor. Auxin treatment increased expression of the rice brassinosteroid receptor gene OsBRI1. The promoter of OsBRI1 contains an auxin-response element (AuxRE) that is targeted by auxin-response factor (ARF) transcription factors. An AuxRE mutation abolished the induction of OsBRI1 expression by auxins, and OsBRI1 expression was down-regulated in an arf mutant. The AuxRE motif in the OsBRI1 promoter, and thus the transient up-regulation of OsBRI1 expression caused by treatment with indole-3-acetic acid, is essential for the indole-3-acetic acid-induced increase in sensitivity to brassinosteroids. These findings demonstrate that some ARFs control the degree of brassinosteroid perception required for normal growth and development in rice. Although multi-level interactions between auxins and brassinosteroids have previously been reported, our findings suggest a mechanism by which auxins control cellular sensitivity to brassinosteroids, and further support the notion that interactions between auxins and brassinosteroids are extensive and complex. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  11. Auxins in defense strategies

    Czech Academy of Sciences Publication Activity Database

    Čarná, Mária; Repka, V.; Skůpa, Petr; Šturdík, E.

    2014-01-01

    Roč. 69, č. 10 (2014), s. 1255-1263 ISSN 0006-3088 R&D Projects: GA TA ČR TA01011802 Institutional support: RVO:61389030 Keywords : auxin * defense responses * JA Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.827, year: 2014

  12. Auxin transport sites are visualized in planta using fluorescent auxin analogs

    Science.gov (United States)

    Hayashi, Ken-ichiro; Nakamura, Shouichi; Fukunaga, Shiho; Nishimura, Takeshi; Jenness, Mark K.; Murphy, Angus S.; Motose, Hiroyasu; Nozaki, Hiroshi; Furutani, Masahiko; Aoyama, Takashi

    2014-01-01

    The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones. PMID:25049419

  13. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis

    DEFF Research Database (Denmark)

    Fei, Qionghui; Wei, Shaodong; Zhou, Zhaoyang

    2017-01-01

    Key message: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). Abstract: The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change......-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved...... in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant...

  14. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin.

    Science.gov (United States)

    Belz, Regina G

    2016-01-01

    Parthenin is a metabolite of Parthenium hysterophorus and is believed to contribute to the weed's invasiveness via allelopathy. Despite the potential of parthenin to suppress competitors, low doses stimulate plant growth. This biphasic action was hypothesized to be auxin-like and, therefore, an auxin-related mode of parthenin action was investigated using two approaches: joint action experiments with Lactuca sativa, and dose-response experiments with auxin/antiauxin-resistant Arabidopsis thaliana genotypes. The joint action approach comprised binary mixtures of subinhibitory doses of the auxin 3-indoleacetic acid (IAA) mixed with parthenin or one of three reference compounds [indole-3-butyric acid (IBA), 2,3,5-triiodobenzoic acid (TIBA), 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB)]. The reference compounds significantly interacted with IAA at all doses, but parthenin interacted only at low doses indicating that parthenin hormesis may be auxin-related, in contrast to its inhibitory action. The genetic approach investigated the response of four auxin/antiauxin-resistant mutants and a wildtype to parthenin or two reference compounds (IAA, PCIB). The responses of mutant plants to the reference compounds confirmed previous reports, but differed from the responses observed for parthenin. Parthenin stimulated and inhibited all mutants independent of resistance. This provided no indication for an auxin-related action of parthenin. Therefore, the hypothesis of an auxin-related inhibitory action of parthenin was rejected in two independent experimental approaches, while the hypothesis of an auxin-related stimulatory effect could not be rejected.

  15. Altered Growth Response to Exogenous Auxin and Gibberellic Acid by Gravistimulation in Pulvini of Avena sativa1

    Science.gov (United States)

    Brock, Thomas G.; Kaufman, Peter B.

    1988-01-01

    Pulvini of excised segments from oats (Avena sativa L. cv Victory) were treated unilaterally with indoleacetic acid (IAA) or gibberellic acid (GA3) with or without gravistimulation to assess the effect of gravistimulation on hormone action. Optimum pulvinus elongation growth (millimeters) and segment curvature (degrees) over 24 hours were produced by 100 micromolar IAA in vertical segments. The curvature response to IAA at levels greater than 100 micromolar, applied to the lower sides of gravistimulated (90°) pulvini, was significantly less than the response to identical levels in vertical segments. Furthermore, the bending response of pulvini to 100 micromolar IAA did not vary significantly over a range of presentation angles between 0 and 90°. In contrast, the response to IAA at levels less than 10 micromolar, with gravistimulation, was approximately the sum of the responses to gravistimulation alone and to IAA without gravistimulation. This was observed over a range of presentation angles. Also, GA3 (0.3-30 micromolar) applied to the lower sides of horizontal segments significantly enhanced pulvinus growth and segment curvature, although exogenous GA3 over a range of concentrations had no effect on pulvinus elongation growth or segment curvature in vertical segments. The response to GA3 (10 micromolar) plus IAA (1.0 or 100 micromolar) was additive for either vertical or horizontal segments. These results indicate that gravistimulation produces changes in pulvinus responsiveness to both IAA and GA3 and that the changes are unique for each growth regulator. It is suggested that the changes in responsiveness may result from processes at the cellular level other than changes in hormonal sensitivity. PMID:11537872

  16. Impact of Auxins on Vegetative Propagation through Stem Cuttings of Couroupita guianensis Aubl.: A Conservation Approach

    OpenAIRE

    Mahipal S. Shekhawat; M. Manokari

    2016-01-01

    The present study explores the potential of exogenous auxins in the development of adventitious shoots and roots from shoot cuttings of Couroupita guianensis (Nagalingam), a threatened tree. Experiments were conducted to assess the effect of various concentrations of auxins on shoot and root morphological traits of stem cuttings in the greenhouse. Amongst the auxins tested, significant effects on number of shoot buds’ induction and their growth were observed with α-Naphthalene Acetic Acid (NA...

  17. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2014-07-01

    Full Text Available Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA, 1-N-naphthylphthalamic acid (NPA and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456, as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.

  18. Oxidative activation of indole-3-acetic acids to cytotoxic species- a potential new role for plant auxins in cancer therapy.

    Science.gov (United States)

    Folkes, L K; Wardman, P

    2001-01-15

    Indole-3-acetic acid (IAA) and some derivatives can be oxidised by horseradish peroxidase (HRP) to cytotoxic species. Upon treatment with IAA/HRP, liposomes undergo lipid peroxidation, strand breaks and adducts are formed in supercoiled plasmid DNA, and mammalian cells in culture lose colony-forming ability. IAA is only toxic after oxidative decarboxylation; no effects are seen when IAA or HRP is incubated independently in these systems at equivalent concentrations. Toxicity is similar in both hamster fibroblasts and some human tumour cells. The effect of IAA/HRP is thought to be due in part to the formation of 3-methylene-2-oxindole, which may conjugate with DNA bases and protein thiols. Our hypothesis is that IAA/HRP could be used as the basis for targeted cancer therapy involving antibody-, polymer-, or gene-directed approaches. HRP can thus be targeted to a tumour allowing non-toxic IAA delivered systemically to be activated only in the tumour. Exposure to newly synthesised analogues of IAA shows a range of four orders of magnitude difference in cellular toxicity but no structure-activity relationships are apparent, in contrast to well-defined redox dependencies of oxidation by HRP intermediates or rates of decarboxylation of radical-cation intermediates.

  19. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    Science.gov (United States)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  20. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues.

    Science.gov (United States)

    Zhang, Yi; Li, Yuanwen; Hu, Yuling; Li, Gongke; Chen, Yueqin

    2010-11-19

    Auxin is a crucial phytohormone for precise control of growth and development of plants. Due to its low concentration in plant tissues which are rich in interfering substances, the accurate determination of auxins remains a challenge. In this paper, a new strategy for isolation and enrichment of auxins from plant tissues was obtained by the magnetic molecularly imprinted polymer (mag-MIP) beads, which were prepared by microwave heating initiated suspension polymerization using indole-3-acetic acid (IAA) as template. In order to obtain higher selective recognition cavities, an enhanced imprinting method based on binary functional monomers, 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was adopted for IAA imprinting. The morphological and magnetic characteristics of the mag-MIP beads were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy and vibrating sample magnetometry. A majority of resultant beads were within the size range of 80-150μm. Porous surface morphology and good magnetic property were observed. Furthermore, the mag-MIP beads fabricated with 4-VP and β-CD as binary functional monomers exhibited improved recognition ability to IAA, as compared with the mag-MIP beads prepared with the individual monomer separately. Competitive rebinding experiment results revealed that the mag-MIP beads exhibited a higher specific recognition for the template than the non-imprinted polymer (mag-NIP) beads. An extraction method by mag-MIP beads coupled with high performance liquid chromatography (HPLC) was developed for determination of IAA and indole-3-butyric acid (IBA) in plant tissues. Linear ranges for IAA and IBA were in the range of 7.00-100.0μgL(-1) and 10.0-100.0μgL(-1), and the detection limits were 3.9 and 7.4μgL(-1), respectively. The analytical performance was also estimated by seedlings or immature embryos samples from three different plant tissues, pea, rice and wheat. Recoveries were in the range of 70

  1. Acropetal Auxin Transport Inhibition Is Involved in Indeterminate But Not Determinate Nodule Formation

    Directory of Open Access Journals (Sweden)

    Jason L. P. Ng

    2018-02-01

    Full Text Available Legumes enter into a symbiotic relationship with nitrogen-fixing rhizobia, leading to nodule development. Two main types of nodules have been widely studied, indeterminate and determinate, which differ in the location of the first cell division in the root cortex, and persistency of the nodule meristem. Here, we compared the control of auxin transport, content, and response during the early stages of indeterminate and determinate nodule development in the model legumes Medicago truncatula and Lotus japonicus, respectively, to investigate whether differences in auxin transport control could explain the differences in the location of cortical cell divisions. While auxin responses were activated in dividing cortical cells during nodulation of both nodule types, auxin (indole-3-acetic acid content at the nodule initiation site was transiently increased in M. truncatula, but transiently reduced in L. japonicus. Root acropetal auxin transport was reduced in M. truncatula at the very start of nodule initiation, in contrast to a prolonged increase in acropetal auxin transport in L. japonicus. The auxin transport inhibitors 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid (NPA only induced pseudonodules in legume species forming indeterminate nodules, but failed to elicit such structures in a range of species forming determinate nodules. The development of these pseudonodules in M. truncatula exhibited increased auxin responses in a small primordium formed from the pericycle, endodermis, and inner cortex, similar to rhizobia-induced nodule primordia. In contrast, a diffuse cortical auxin response and no associated cortical cell divisions were found in L. japonicus. Collectively, we hypothesize that a step of acropetal auxin transport inhibition is unique to the process of indeterminate nodule development, leading to auxin responses in pericycle, endodermis, and inner cortex cells, while increased auxin responses in outer cortex cells likely

  2. Titration of strong and weak acids by sequential injection analysis technique.

    Science.gov (United States)

    Maskula, S; Nyman, J; Ivaska, A

    2000-05-31

    A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol.

  3. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    Science.gov (United States)

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Directory of Open Access Journals (Sweden)

    Pedro Jacob Christoffoleti

    2015-08-01

    Full Text Available Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1 alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF activation. As a result mRNA related with Abscisic Acid (ABA and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS, leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A. It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance.

  5. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Science.gov (United States)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  6. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  7. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    Science.gov (United States)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  8. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    Science.gov (United States)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  9. Auxin Transporters - Why So Many?

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Murphy, A. S.; Yang, H.; Hoyerová, Klára; Hošek, Petr

    2010-01-01

    Roč. 2, č. 3 (2010), s. 1-14 ISSN 1943-0264 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin transporters * auxin carriers * plant development Subject RIV: ED - Physiology Impact factor: 5.371, year: 2010

  10. Irrepressible, truncated Auxin Response Factors

    Science.gov (United States)

    Ckurshumova, Wenzislava; Krogan, Naden T.; Marcos, Danielle; Caragea, Adriana E.; Berleth, Thomas

    2012-01-01

    The molecularly well-characterized auxin signal transduction pathway involves two evolutionarily conserved families interacting through their C-terminal domains III and IV: the Auxin Response Factors (ARFs) and their repressors the Aux/IAAs, to control auxin-responsive genes, among them genes involved in auxin transport.1,2 We have developed a new genetic tool to study ARF function. Using MONOPTEROS (MP)/ARF5, we have generated a truncated version of MP (MPΔ),3 which has lost the target domains for repression by Aux/IAA proteins. Besides exploring genetic interactions between MP and Aux/IAAs, we used this construct to trace MP’s role in vascular patterning, a previously characterized auxin dependent process.4,5 Here we summarize examples of naturally occurring truncated ARFs and summarize potential applications of truncated ARFs as analytical tools. PMID:22827953

  11. Synthesis of some useful tritium labelled auxins

    International Nuclear Information System (INIS)

    Buchman, O.; Pri-Bar, I.; Shimoni, M.; Azran, J.

    1992-01-01

    The synthesis of six useful auxins labelled with tritium is described. The following compounds were prepared: 3-indoleacetic acid-5- 3 H (28.9 Ci-1.07 TBq/mmol), 3-indolebutyric acid-5- 3 H (7.3 Ci-270 GBq/mmol), 1-naphthylacetic acid-4- 3 H (27.6 Ci-1.02 TBq/mmol), 2,4-dichloropheno-xyacetic acid-5- 3 H (18.5 Ci-685 GBq/mmol), 2(2,4-dichlorophenoxy-5- 3 H) -propionic acid (20.7 Ci-766 GBq/mmol), 2(2,4-dichlorophenoxy)-propionic acid-3- 3 H (0.39 Ci-14.4 GMq/mmol), and 4-chlorophenoxyacetic acid-2- 3 H (13.3 Ci-492 GBq/mmol). (author)

  12. Synthesis of some useful tritium labelled auxins

    Energy Technology Data Exchange (ETDEWEB)

    Buchman, O.; Pri-Bar, I.; Shimoni, M.; Azran, J. (Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev)

    1992-06-01

    The synthesis of six useful auxins labelled with tritium is described. The following compounds were prepared: 3-indoleacetic acid-5-[sup 3]H (28.9 Ci-1.07 TBq/mmol), 3-indolebutyric acid-5-[sup 3]H (7.3 Ci-270 GBq/mmol), 1-naphthylacetic acid-4-[sup 3]H (27.6 Ci-1.02 TBq/mmol), 2,4-dichloropheno-xyacetic acid-5-[sup 3]H (18.5 Ci-685 GBq/mmol), 2(2,4-dichlorophenoxy-5-[sup 3]H) -propionic acid (20.7 Ci-766 GBq/mmol), 2(2,4-dichlorophenoxy)-propionic acid-3-[sup 3]H (0.39 Ci-14.4 GMq/mmol), and 4-chlorophenoxyacetic acid-2-[sup 3]H (13.3 Ci-492 GBq/mmol). (author).

  13. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    Science.gov (United States)

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  14. Carborane acids. New "strong yet gentle" acids for organic and inorganic chemistry.

    Science.gov (United States)

    Reed, Christopher A

    2005-04-07

    Icosahedral carborane anions such as CHB11Cl11- are amongst the least coordinating, most chemically inert anions known. They are also amongst the least basic, so their conjugate acids, H(carborane), are superacids (i.e. stronger than 100% H2SO4). Acidity scale measurements indicate that H(CHB11Cl11) is the strongest pure Brønsted acid presently known, surpassing triflic and fluorosulfuric acid. Nevertheless, it is also an extremely gentle acid--because its conjugate base engages in so little chemistry. Carborane acids separate protic acidity from anion nucleophilicity and destructive oxidative capacity in the conjugate base, to a degree not previously achieved. As a result, many long-sought, highly acidic, reactive cations such as protonated benzene (C6H7+), protonated C60(HC60+), tertiary carbocations (R3C+), vinyl cations (R2C=C(+)-R), silylium ions (R3Si+) and discrete hydronium ions (H3O+, H5O2+ etc.) can be readily isolated as carborane salts and characterized at room temperature by X-ray crystallography.

  15. Stress resistance of Escherichia coli and Bacillus subtilis is modulated by auxins.

    Science.gov (United States)

    Repar, J; Šućurović, S; Zahradka, K; Zahradka, D; Ćurković-Perica, M

    2013-11-01

    Two bacterial species, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis, were exposed to different auxins to examine possible effects of these substances on bacterial stress tolerance. Bacterial resistance to UV irradiation, heat shock, and streptomycin was assessed with and without previous exposure to the following auxins: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthalene acetic acid (NAA). Escherichia coli and B. subtilis cultures pretreated with any of the 3 auxins survived UV irradiation better than the untreated cultures. Also, B. subtilis cultures pretreated with IBA or NAA survived prolonged heat exposure better than the untreated cultures, while IAA pretreatment had no effect on heat shock survival. In contrast, auxin pretreatment rendered E. coli more sensitive to heat shock. Escherichia coli cultures pretreated with auxins were also more sensitive to streptomycin, while auxin pretreatment had no effect on sensitivity of B. subtilis to streptomycin. These results show that auxins may either enhance or reduce bacterial tolerance to different stressors, depending on the bacterial species and the type and level of the stress. Auxins usually had similar effects on the same bacterial species in cases when the same type and level of stress were applied.

  16. Reduction of trace quantities of chromium(VI by strong acids

    Directory of Open Access Journals (Sweden)

    Pezzin Sérgio H

    2004-01-01

    Full Text Available The chemical behavior of Cr(VI at low concentrations (10-4 to 10-7 mol L-1 in several strong acids was studied using high specific activity 51Cr(VI as a tracer. The speciation of the products from these systems was carried out by ion exchange chromatography with stepwise elution. The results show that trace quantities of Cr(VI, monitored by means of radiochromium (51Cr, are reduced in the presence of mineral acids such as perchloric, hydrochloric, hydrofluoric, sulfuric, nitric and trifluoromethanesulfonic acids, even in the absence of conventional reducing agents, producing different measureable Cr(III species, depending on the acid anion. Detailed studies of the reduction of low concentrations of Cr(VI with nitric acid have shown that the relative rate of reduction increases as the concentration of the acid increases or as the concentration of the Cr(VI decreases.

  17. Regulation of Auxin Homeostasis and Gradients in Arabidopsis Roots through the Formation of the Indole-3-Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, A.; Simonovik, B.; Petersson, S.V.; Hényková, Eva; Simon, Sibu; Greenham, K.; Zhang, Y.; Kowalczyk, M.; Estelle, M.; Zažímalová, Eva; Novák, Ondřej; Sandberg, G.; Ljung, K.

    2013-01-01

    Roč. 25, č. 10 (2013), s. 3858-3870 ISSN 1040-4651 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : BOX PROTEIN TIR1 * PLANT DEVELOPMENT * OXINDOLE-3-ACETIC ACID Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.575, year: 2013

  18. Auxin transport at cellular level: new insights supported by mathematical modelling

    Science.gov (United States)

    Hošek, Petr; Kubeš, Martin; Laňková, Martina; Dobrev, Petre I.; Klíma, Petr; Kohoutová, Milada; Petrášek, Jan; Hoyerová, Klára; Jiřina, Marcel; Zažímalová, Eva

    2012-01-01

    The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport. PMID:22438304

  19. Auxin transport at cellular level: new insights supported by mathematical modelling.

    Science.gov (United States)

    Hosek, Petr; Kubes, Martin; Lanková, Martina; Dobrev, Petre I; Klíma, Petr; Kohoutová, Milada; Petrásek, Jan; Hoyerová, Klára; Jirina, Marcel; Zazímalová, Eva

    2012-06-01

    The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.

  20. The roles of auxin in seed dormancy and germination.

    Science.gov (United States)

    Shuai, Hai-wei; Meng, Yong-jie; Luo, Xiao-feng; Chen, Feng; Qi, Ying; Yang, Wen-yu; Shu, Kai

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions.

  1. Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Elčkner, Miroslav; Morris, David; Zažímalová, Eva

    2002-01-01

    Roč. 216, - (2002), s. 302-308 ISSN 0032-0935 R&D Projects: GA ČR GA206/98/1510 Grant - others:INCO Copernicus(BE) IC15-CT98-0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : Auxin carrier * 1,N,Naphthylphthalamic acid * Nicotiana ( cell culture) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  2. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1

    Science.gov (United States)

    Ng, Jason Liang Pin; Hassan, Samira; Truong, Thy T.; Hocart, Charles H.; Laffont, Carole; Frugier, Florian; Mathesius, Ulrike

    2015-01-01

    Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation. PMID:26253705

  3. The Role of Auxin-Ethylene Crosstalk in Orchestrating Primary Root Elongation in Sugar Beet

    Science.gov (United States)

    Abts, Willem; Vandenbussche, Bert; De Proft, Maurice P.; Van de Poel, Bram

    2017-01-01

    It is well-established in Arabidopsis and other species that ethylene inhibits root elongation through the action of auxin. In sugar beet (Beta vulgaris L.) ethylene promotes root elongation in a concentration dependent manner. However, the crosstalk between ethylene and auxin remains unknown during sugar beet seedling development. Our experiments have shown that exogenously applied auxin (indole-3-acetic acid; IAA) also stimulates root elongation. We also show that auxin promotes ethylene biosynthesis leading to longer roots. We have further demonstrated that the auxin treatment stimulates ethylene production by redirecting the pool of available 1-aminocyclopropane-1-carboxylic acid (ACC) toward ethylene instead of malonyl-ACC (MACC) resulting in a prolonged period of high rates of ethylene production and subsequently a longer root. On the other hand we have also shown that endogenous IAA levels were not affected by an ACC treatment during germination. All together our findings suggest that the general model for auxin-ethylene crosstalk during early root development, where ethylene controls auxin biosynthesis and transport, does not occur in sugar beet. On the contrary, we have shown that the opposite, where auxin stimulates ethylene biosynthesis, is true for sugar beet root development. PMID:28424722

  4. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  5. Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in Apc(Min/+) mice.

    Science.gov (United States)

    Fini, Lucia; Piazzi, Giulia; Ceccarelli, Claudio; Daoud, Yahya; Belluzzi, Andrea; Munarini, Alessandra; Graziani, Giulia; Fogliano, Vincenzo; Selgrad, Michael; Garcia, Melissa; Gasbarrini, Antonio; Genta, Robert M; Boland, C Richard; Ricciardiello, Luigi

    2010-12-01

    Although cyclooxygenase (COX)-2 inhibitors could represent the most effective chemopreventive tool against colorectal cancer (CRC), their use in clinical practice is hampered by cardiovascular side effects. Consumption of ω-3-polyunsaturated fatty acids (ω-3-PUFAs) is associated with a reduced risk of CRC. Therefore, in this study, we assessed the efficacy of a novel 99% pure preparation of ω-3-PUFA eicosapentaenoic acid as free fatty acids (EPA-FFA) on polyps in Apc(Min/+) mice. Apc(Min/+) and corresponding wild-type mice were fed control diet (Ctrl) or diets containing either EPA-FFA 2.5% or 5%, for 12 weeks while monitoring food intake and body weight. We found that both EPA-FFA diets protected from the cachexia observed among Apc(Min/+) animals fed Ctrl diet (P acid was replaced by EPA (P < 0.0001), leading to a significant reduction in COX-2 expression and β-catenin nuclear translocation. Moreover, in the EPA-FFA arms, we found a significant decrease in proliferation throughout the intestine together with an increase in apoptosis. Our data make 99% pure EPA-FFA an excellent candidate for CRC chemoprevention. ©2010 AACR.

  6. Tested Demonstrations: Comparison of Strong Acid and Weak Acid Titration Curves.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1979-01-01

    A lecture demonstration is presented for comparing titration curves. A plot of pH vs volume of strong base is produced by connecting the external output of a pH meter to a strip recorder. Thus, pH is recorded as a function of time. (BB)

  7. Auxin and Cellular Elongation1

    Science.gov (United States)

    Velasquez, Silvia Melina; Barbez, Elke

    2016-01-01

    Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion. PMID:26787325

  8. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    International Nuclear Information System (INIS)

    Vesper, M.J.; Cross, J.W.

    1990-01-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 μM) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 μM. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of [ 3 H]IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of [ 3 H]IAA. Similarly, the inhibitor does not appear to alter auxin-induced H + secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth

  9. Identification and expression analysis of primary auxin-responsive ...

    Indian Academy of Sciences (India)

    2013-12-09

    Dec 9, 2013 ... sion of VvAux/IAA4 in Vitis vinifera was rapidly induced in response to NAA treatment, but was decreased by salt, drought and salicylic acid (SA) treatments which provide evidence of crosstalk between phytohormone and abiotic stresses, and support a role for auxin in stress responses. (Cakir et al. 2013).

  10. Identification of auxins by a chemical genomics approach.

    Science.gov (United States)

    Christian, May; Hannah, William B; Lüthen, Hartwig; Jones, Alan M

    2008-01-01

    Thirteen auxenic compounds were discovered in a screen of 10 000 compounds for auxin-like activity in Arabidopsis roots. One of the most potent substances was 2-(4-chloro-2-methylphenoxy)-N-(4-H-1,2,4-triazol-3-yl)acetamide (WH7) which shares similar structure to the known auxenic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). A selected set of 20 analogues of WH7 was used to provide detailed information about the structure-activity relationship based on their efficacy at inhibiting and stimulating root and shoot growth, respectively, and at induction of gene expression. It was shown that WH7 acts in a genetically defined auxin pathway. These small molecules will extend the arsenal of substances that can be used to define auxin perception site(s) and to dissect subsequent signalling events.

  11. Identification and quantitation of auxins in plants by liquid chromatography/electrospray ionization ion trap mass spectrometry.

    Science.gov (United States)

    Lu, Qiaomei; Zhang, Lan; Chen, Tianwen; Lu, Minghua; Ping, Tong; Chen, Guonan

    2008-08-01

    Auxin is an important phylohormone, which regulates specific physiological responses such as division, elongation and differentiation of cells. A new method using liquid chromatography/electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS) has been developed for identification and quantitation of four auxins. Under the optimum conditions, four auxins (indole-3-acetic acid, indole-3-propionic acid, indole-3-butyric acid and 1-naphthylacetic acid) were completely separated and quantitated within 7 min with a minimum detection limit of 8.0 ng mL(-1) with relative standard deviations lower than 5.0%. This method also has been applied to analysis of auxins in Chinese cabbage where, even with a complicated serious background perturbation due to the natural biological matrix, the mean recoveries ranged from 77.5% to 99.8%. Finally, we discuss the MS-relevant properties of the identified auxins in detail. Copyright (c) 2008 John Wiley & Sons, Ltd.

  12. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    Science.gov (United States)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  13. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    Science.gov (United States)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  14. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics

    Science.gov (United States)

    Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland

    2016-01-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  15. The auxin signalling network translates dynamic input into robust patterning at the shoot apex

    Science.gov (United States)

    Vernoux, Teva; Brunoud, Géraldine; Farcot, Etienne; Morin, Valérie; Van den Daele, Hilde; Legrand, Jonathan; Oliva, Marina; Das, Pradeep; Larrieu, Antoine; Wells, Darren; Guédon, Yann; Armitage, Lynne; Picard, Franck; Guyomarc'h, Soazig; Cellier, Coralie; Parry, Geraint; Koumproglou, Rachil; Doonan, John H; Estelle, Mark; Godin, Christophe; Kepinski, Stefan; Bennett, Malcolm; De Veylder, Lieven; Traas, Jan

    2011-01-01

    The plant hormone auxin is thought to provide positional information for patterning during development. It is still unclear, however, precisely how auxin is distributed across tissues and how the hormone is sensed in space and time. The control of gene expression in response to auxin involves a complex network of over 50 potentially interacting transcriptional activators and repressors, the auxin response factors (ARFs) and Aux/IAAs. Here, we perform a large-scale analysis of the Aux/IAA-ARF pathway in the shoot apex of Arabidopsis, where dynamic auxin-based patterning controls organogenesis. A comprehensive expression map and full interactome uncovered an unexpectedly simple distribution and structure of this pathway in the shoot apex. A mathematical model of the Aux/IAA-ARF network predicted a strong buffering capacity along with spatial differences in auxin sensitivity. We then tested and confirmed these predictions using a novel auxin signalling sensor that reports input into the signalling pathway, in conjunction with the published DR5 transcriptional output reporter. Our results provide evidence that the auxin signalling network is essential to create robust patterns at the shoot apex. PMID:21734647

  16. Strong ion difference in urine: new perspectives in acid-base assessment.

    OpenAIRE

    Gattinoni, L.; Carlesso, E.; Cadringher, P.; Caironi, P.

    2006-01-01

    The plasmatic strong ion difference (SID) is the difference between positively and negatively charged strong ions. At pH 7.4, temperature 37°C and partial carbon dioxide tension 40 mmHg, the ideal value of SID is 42 mEq/l. The buffer base is the sum of negatively charged weak acids ([HCO3 -], [A-], [H2PO4 -]) and its normal value is 42 mEq/l. According to the law of electroneutrality, the amount of positive and negative charges must be equal, and therefore the SID value is equal to the buffer...

  17. Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin.

    Science.gov (United States)

    Hutchison, K W; Singer, P B; McInnis, S; Diaz-Sala, C; Greenwood, M S

    1999-07-01

    Differential display reverse transcription-polymerase chain reaction was used to detect the induction of gene expression during adventitious root formation in loblolly pine (Pinus taeda) after treatment with the exogenous auxin indole-3-butyric acid. A BLAST search of the GenBank database using one of the clones obtained revealed very strong similarity to the alpha-expansin gene family in angiosperms. A near-full-length loblolly pine alpha-expansin sequence was obtained using 5'- and 3'-rapid amplification of cDNA end cloning, and the deduced amino acid sequence was highly conserved relative to those of angiosperm expansins. Northern analysis indicates that alpha-expansin mRNA expression increases 50- to 100-fold in the base of hypocotyl stem cuttings from loblolly pine seedlings in response to indole-3-butyric acid, with peak expression occurring 24 to 48 h after induction.

  18. Expansins Are Conserved in Conifers and Expressed in Hypocotyls in Response to Exogenous Auxin1

    Science.gov (United States)

    Hutchison, Keith W.; Singer, Patricia B.; McInnis, Stephanie; Diaz-Sala, Carmen; Greenwood, Michael S.

    1999-01-01

    Differential display reverse transcription-polymerase chain reaction was used to detect the induction of gene expression during adventitious root formation in loblolly pine (Pinus taeda) after treatment with the exogenous auxin indole-3-butyric acid. A BLAST search of the GenBank database using one of the clones obtained revealed very strong similarity to the α-expansin gene family in angiosperms. A near-full-length loblolly pine α-expansin sequence was obtained using 5′- and 3′-rapid amplification of cDNA end cloning, and the deduced amino acid sequence was highly conserved relative to those of angiosperm expansins. Northern analysis indicates that α-expansin mRNA expression increases 50- to 100-fold in the base of hypocotyl stem cuttings from loblolly pine seedlings in response to indole-3-butyric acid, with peak expression occurring 24 to 48 h after induction. PMID:10398718

  19. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.

    Science.gov (United States)

    Li, Zhenhua; Zhang, Jie; Liu, Yiling; Zhao, Jiehong; Fu, Junjie; Ren, Xueliang; Wang, Guoying; Wang, Jianhua

    2016-02-09

    Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH2O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH2O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in β-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH2O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and

  20. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  1. Purification of di-nonyl phenyl phosphoric acid (DNPPA) for synergistic extraction of uranium from strong phosphoric acid

    International Nuclear Information System (INIS)

    Singh, D.K.; Vijayalakshmi, R.; Singh, H.; Sharma, J.N.; Ruhela, R.

    2009-01-01

    Di-nonyl phenyl phosphoric acid (DNPPA) obtained from various synthesis methods is always associated with impurities such as mono-nonyl phenyl phosphoric acid and nonyl phenol which need to be separated for its effective use in the extraction of uranium from strong phosphoric acid. Two methods of purification namely liquid-solid separation method using neodymium salt and liquid-liquid separation method using methylene glycol have been described. In the liquid solid separation method the purity of DNPPA obtained was about 95% with less than 1.0% monoester, however it heavily suffers in the recovery aspect which is of the order of 50-60%. The methylene glycol treatment method, results in high purity and recovery of the product. Purity obtained was about 95.0% diester and less than 0.5% monoester and recovery was more than 90%. Analysis of DNPPA was done by potentiometric titration method using autotitrator. (author)

  2. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis.

    Science.gov (United States)

    Ding, Zhaojun; Wang, Bangjun; Moreno, Ignacio; Dupláková, Nikoleta; Simon, Sibu; Carraro, Nicola; Reemmer, Jesica; Pěnčík, Aleš; Chen, Xu; Tejos, Ricardo; Skůpa, Petr; Pollmann, Stephan; Mravec, Jozef; Petrášek, Jan; Zažímalová, Eva; Honys, David; Rolčík, Jakub; Murphy, Angus; Orellana, Ariel; Geisler, Markus; Friml, Jiří

    2012-07-03

    Auxin is a key coordinative signal required for many aspects of plant development and its levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis thaliana and has a crucial role in pollen development and functionality. Ectopic expression in sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. Our results reveal a role of the auxin transport in male gametophyte development in which the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and maintain the auxin levels optimal for pollen development and pollen tube growth.

  3. British strong-acid leach process targeted at refractory uranium ores

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The UKAEA-patented strong-acid leach process for refractory U ores is briefly outlined with emphasis on its variations from the conventional dilute-acid process and the projected economics for a processing plant using this process. The process uses 6N H 2 SO 4 with a sharply reduced leaching time over conventional processes. The solubilized U is removed by percolation and the use of only about 10 percent liquid produces less effluent. Conventional processing plant equipment can be used except at the feed preparation, acid mixing, curing, and washing stages. Ore can be processed at larger grain sizes and the milling is done in a dry rod mill. Alternatives to the percolation removal of U are listed. Other work being done by UKAEA on U recovery from ores is briefly indicated. (U.S.)

  4. Control of cytokinin and auxin homeostasis in cyanobacteria and algae.

    Science.gov (United States)

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre I; Přibyl, Pavel; Šimura, Jan; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [ 3 H]trans-zeatin (transZ) and auxin ([ 3 H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [ 3 H]transZ and [ 3 H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [ 3 H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both

  5. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes.

    Science.gov (United States)

    Dhonukshe, Pankaj; Grigoriev, Ilya; Fischer, Rainer; Tominaga, Motoki; Robinson, David G; Hasek, Jirí; Paciorek, Tomasz; Petrásek, Jan; Seifertová, Daniela; Tejos, Ricardo; Meisel, Lee A; Zazímalová, Eva; Gadella, Theodorus W J; Stierhof, York-Dieter; Ueda, Takashi; Oiwa, Kazuhiro; Akhmanova, Anna; Brock, Roland; Spang, Anne; Friml, Jirí

    2008-03-18

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this concept. However, despite the use of ATIs in plant research for many decades, the mechanism of ATI action has remained largely elusive. Using real-time live-cell microscopy, we show here that prominent ATIs such as 2,3,5-triiodobenzoic acid (TIBA) and 2-(1-pyrenoyl) benzoic acid (PBA) inhibit vesicle trafficking in plant, yeast, and mammalian cells. Effects on micropinocytosis, rab5-labeled endosomal motility at the periphery of HeLa cells and on fibroblast mobility indicate that ATIs influence actin cytoskeleton. Visualization of actin cytoskeleton dynamics in plants, yeast, and mammalian cells show that ATIs stabilize actin. Conversely, stabilizing actin by chemical or genetic means interferes with endocytosis, vesicle motility, auxin transport, and plant development, including auxin transport-dependent processes. Our results show that a class of ATIs act as actin stabilizers and advocate that actin-dependent trafficking of auxin transport components participates in the mechanism of auxin transport. These studies also provide an example of how the common eukaryotic process of actin-based vesicle motility can fulfill a plant-specific physiological role.

  6. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    Science.gov (United States)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  7. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  8. Inhibition of auxin-induced ethylene production by lycoricidinol

    International Nuclear Information System (INIS)

    Kang, Bin-G.; Lee, June-S.; Oh, Seung-Eun; Horiuchi, Yuko; Imaseki, Hidemasa.

    1984-01-01

    Lycoricidinol, a natural growth inhibitor isolated from bulbs of Lycoris radiata Herb. strongly suppressed auxin-induced ethylene production from the hypocotyl segments of etiolated mung bean (Vigna radiata Wilczek) seedlings. The inhibitor did not significantly inhibit ethylene formation from its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), during short-term (up to 4h) incubation. The ACC content in tissue treated with IAA was reduced by lycoricidinol in close parallel with the inhibition of ethylene production. Examination of radioactive metabolites in tissues labeled with 3,4- 14 C-methionine indicated that reduction of the ACC content was not due to any possible promotive effect of lycoricidinol on conjugation of ACC with malonate. Lycoricidinol showed no inhibitory effect on the activity of ACC synthase if applied in vitro, but it almost completely abolished the increase in the enzyme activity when applied in vivo during incubation of the tissue with IAA. Lycoricidinol also strongly inhibited incorporation of 14 C-leucine into protein in the tissue. The suppression of the enzyme induction and, in turn, that of ethylene production by lycoricidinol were interpreted as being due to the inhibition of protein synthesis. (author)

  9. Regulation of auxin transport during gravitropism

    Science.gov (United States)

    Rashotte, A.; Brady, S.; Kirpalani, N.; Buer, C.; Muday, G.

    Plants respond to changes in the gravity vector by differential growth across the gravity-stimulated organ. The plant hormone auxin, which is normally basipetally transported, changes in direction and auxin redistribution has been suggested to drive this differential growth or gravitropism. The mechanisms by which auxin transport directionality changes in response to a change in gravity vector are largely unknown. Using the model plant, Arabidopsis thaliana, we have been exploring several regulatory mechanisms that may control auxin transport. Mutations that alter protein phosphorylation suggest that auxin transport in arabidopsis roots may be controlled via phosphorylation and this signal may facilitate gravitropic bending. The protein kinase mutant pinoid (pid9) has reduced auxin transport; whereas the protein phosphatase mutant, rcn1, has elevated transport, suggesting reciprocal regulation of auxin transport by reversible protein phosphorylation. In both of these mutants, the auxin transport defects are accompanied by gravitropic defects, linking phosphorylation signaling to gravity-induced changes in auxin transport. Additionally, auxin transport may be regulated during gravity response by changes in an endogenous auxin efflux inhibitor. Flavonoids, such as quercetin and kaempferol, have been implicated in regulation of auxin transport in vivo and in vitro. Mutants that make no flavonoids have reduced root gravitropic bending. Furthermore, changes in auxin-induced gene expression and flavonoid accumulation patterns have been observed during gravity stimulation. Current studies are examining whether there are spatial and temporal changes in flavonoid accumulation that precede gravitropic bending and whether the absence of these changes are the cause of the altered gravity response in plants with mutations that block flavonoid synthesis. These results support the idea that auxin transport may be regulated during gravity response by several mechanisms including

  10. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    Science.gov (United States)

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  11. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway

    Science.gov (United States)

    2014-01-01

    Background Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. Results Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 − Cullin − F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root

  12. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  13. Extraction of uranium: comparison of stripping with ammonia vs. strong acid

    International Nuclear Information System (INIS)

    Moldovan, B.; Grinbaum, B.; Efraim, A.

    2008-01-01

    Following extraction of uranium in the first stage of solvent extraction using a tertiary amine, typically Alamine 336, the stripping of the extracted uranium is accomplished either by use of an aqueous solution of (NH 4 ) 2 SO 4 /NH 4 OH or by strong-acid stripping using 400-500 g/L H 2 SO 4 . Both processes have their merits and determine the downstream processing. The classical stripping with ammonia is followed by addition of strong base, to precipitate ammonium uranyl sulfate (NH 4 ) 2 UO 2 (SO 4 ) 2 , which yields finally the yellow cake. Conversely, stripping with H 2 SO 4 , followed by oxidation with hydrogen peroxide yields uranyl oxide as product. At the Cameco Key Lake operation, both processes were tested on a pilot scale, using a Bateman Pulsed Column (BPC). The BPC proved to be applicable to both processes. It met the process criteria both for extraction and stripping, leaving less than 1 mg/L of U 3 O 8 in the raffinate, and product solution had the required concentration of U 3 O 8 at high flux and reasonable height of transfer unit. In the Key Lake mill, each operation can be carried out in a single column. The main advantages of the strong-acid stripping over ammonia stripping are: (1) 60% higher flux in the extraction, (2) tenfold higher concentration of the uranium in the product solution, and (3) far more robust process, with no need of pH control in the stripping and no need to add acid to the extraction in order to keep the pH above the point of precipitation of iron compounds. The advantages of the ammoniacal process are easier stripping, that is, less stages needed to reach equilibrium and lower concentration of modifier needed to prevent the creation of a third phase. (authors)

  14. Fucus as a Model System to Study the Role of Auxin Transport and the Actin Cytoskeleton in Gravity Response

    Science.gov (United States)

    Muday, Gloria K.

    2003-01-01

    The overarching goal of this proposal was to examine the mechanisms for the cellular asymmetry in auxin transport proteins. As auxin transport polarity changes in response to reorientation of algal and plant cells relative to the gravity vector, it was critical to ask how auxin transport polarity is established and how this transport polarity may change in response to gravity stimulation. The experiments conducted with this NASA grant fell into two categories. The first area of experimentation was to explore the biochemical interactions between an auxin transport protein and the actin cytoskeleton. These experiments used biochemical techniques, including actin affinity chromatography, to demonstrate that one auxin transport protein interacts with the actin cytoskeleton. The second line of experiments examined whether in the initially symmetrical single celled embryos of Fucus distichus, whether auxin regulates development and whether gravity is a cue to control the morphogenesis of these embryos and whether gravi-morphogenesis is auxin dependent. Results in these two areas are summarized separately below. As a result of this funding, in combination with results from other investigators, we have strong evidence for an important role for the actin cytoskeleton in both establishing and change auxin transport polarity. It is also clear that Fucus distichus embryos are auxin responsive and gravity controls their morphogenesis.

  15. Transformations of griseofulvin in strong acidic conditions--crystal structures of 2'-demethylgriseofulvin and dimerized griseofulvin.

    Science.gov (United States)

    Leśniewska, Barbara; Jebors, Said; Coleman, Anthony W; Suwińska, Kinga

    2012-03-01

    The structure of griseofulvic acid, C16H15ClO6, at 100 K has orthorhombic (P2(1)2(1)2) symmetry. It is of interest with respect to biological activity. The structure displays intermolecular O-H...O, C-H...O hydrogen bonding as well as week C-H...pi and pi...pi interactions. In strong acidic conditions the griseofulvin undergoes dimerization. The structure of dimerized griseofulvin, C34H32C12O12 x C2H6O x H2O, at 100 K has monoclinic (P2(1)) symmetry. The molecule crystallized as a solvate with one ethanol and one water molecule. The dimeric molecules form intermolecular O-H...O hydrogen bonds to solvents molecules only but they interact via week C-H...O, C-H...pi, C-Cl...pi and pi...pi interactions with other dimerized molecules.

  16. Identification of the cells involved in auxin transport in maize mesocotyl

    International Nuclear Information System (INIS)

    Jones, A.M.

    1989-01-01

    A study was undertaken to identify by a direct method the cells involved in auxin transport through maize mesocotyl tissue. The auxin photoaffinity labeling agent, 7-[ 3 H], 5-azidoindole 3-acetic acid (N 3 IAA), was loaded into excised stem tissue from a cut end. Polar transport of this analog was demonstrated over 4 hours by comparing uptake into tissue loaded with N 3 IAA from the apical vs. the basal end. Triiodobenzoic acid, an auxin transport inhibitor, inhibited N 3 IAA uptake into tissue. Tissue which had taken up the photoaffinity labeling agent was photolyzed to covalently fix the radioisotope within cells. This tissue was sectioned and subjected to in situ autoradiography. The outermost cell of epidermal tissue and certain files of cells in vascular tissue were densely labeled indicating that on a per cell basis these two cell types are most actively transporting auxin

  17. The epidermis of the pea epicotyl is not a unique target tissue for auxin-induced growth

    Science.gov (United States)

    Rayle, D. L.; Nowbar, S.; Cleland, R. E.

    1991-01-01

    Previous research has suggested that the epidermis of dicotyledonous stems is the primary site of auxin action in elongation growth. We show for pea (Pisum sativum L.) epicotyl sections that this hypothesis is incorrect. In buffer (pH 6.5), sections from which the outer cell layers were removed (peeled) elongated slowly and to the same extent as intact sections. Addition of 10 micromolar indoleacetic acid to this incubation medium caused peeled sections to grow to the same extent and with the same kinetics as auxin-treated nonpeeled sections. This indicates that both epidermis and cortical tissues have the ability to respond rapidly to auxin and that the epidermis is not the sole site of auxin action in dicotyledonous stems. Previous reports that peeled pea sections respond poorly to auxin may have resulted from an acid extension of these sections due to the use of distilled water as the incubation medium.

  18. Dynamics of auxin movement in the gravistimulated leaf-sheath pulvinus of oat (Avena sativa)

    Science.gov (United States)

    Brock, Thomas C.; Kapen, E. H.; Ghosheh, Najati S.; Kaufman, Peter B.

    1991-01-01

    The role of auxin redistribution in the graviresponse of the leaf-sheath pulvinus of oat was evaluated using H-3-indole-3-acetic acid (H-3-IAA) preloaded into isolated pulvini. Results obtained reveal that, while lateral transport of auxin occurs following gravistimulation, it is not necessary for a graviresponse. Localized changes in tissue responsiveness or the conversion of conjugated hormone to free hormone may suffice to drive the graviresponse.

  19. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.

    Science.gov (United States)

    Shimizu-Mitao, Yasushi; Kakimoto, Tatsuo

    2014-08-01

    Auxin plays a key role in regulation of almost all processes of plant growth and development. Different physiological processes are regulated by different ranges of auxin concentrations; however, the underlying mechanisms creating these differences are largely unknown. The first step of auxin signaling is auxin-dependent interaction of an auxin receptor with transcriptional co-repressors (Aux/IAA), which leads to Aux/IAA degradation. Arabidopsis has six homologous auxin receptors (TIR1 and five AFBs), 29 Aux/IAA proteins and two types of active auxins, IAA and phenylacetic acid (PAA). Therefore, a large number of possible combinations between these three factors may contribute to the creation of complex auxin responses. Using a yeast heterologous reconstitution system, we investigated auxin-dependent degradation of all Arabidopsis Aux/IAAs in combination with every TIR or AFB receptor component. We found that TIR1 and AFB2 were effective in mediating Aux/IAA degradation. We confirmed that the Aux/IAA domain II, which binds TIR1, is essential for degradation. IAA and other natural auxins, 4-chloroindole-3-acetic acid (4-Cl-IAA) and PAA, induced Aux/IAA degradation; and IAA and 4-Cl-IAA had higher activity than PAA. Effective auxin concentrations for Aux/IAA degradation depended on both Aux/IAAs and TIR1 or AFB2 receptors, which is consistent with the Aux/IAA-TIR1/AFB co-receptor concept. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  1. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots

    Science.gov (United States)

    Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.

    1999-01-01

    The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.

  2. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    Science.gov (United States)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  3. Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; Nicolás Cruz-Bournazou, Mariano; Neubauer, Peter; Ríos-Estepa, Rigoberto

    2018-05-01

    Clavulanic acid (CA) is produced by Streptomyces clavuligerus (S. clavuligerus) as a secondary metabolite. Knowledge about the carbon flux distribution along the various routes that supply CA precursors would certainly provide insights about metabolic performance. In order to evaluate metabolic patterns and the possible accumulation of tricarboxylic acid (TCA) cycle intermediates during CA biosynthesis, batch and subsequent continuous cultures with steadily declining feed rates were performed with glycerol as the main substrate. The data were used to in silico explore the metabolic capabilities and the accumulation of metabolic intermediates in S. clavuligerus. While clavulanic acid accumulated at glycerol excess, it steadily decreased at declining dilution rates; CA synthesis stopped when glycerol became the limiting substrate. A strong association of succinate, oxaloacetate, malate, and acetate accumulation with CA production in S. clavuligerus was observed, and flux balance analysis (FBA) was used to describe the carbon flux distribution in the network. This combined experimental and numerical approach also identified bottlenecks during the synthesis of CA in a batch and subsequent continuous cultivation and demonstrated the importance of this type of methodologies for a more advanced understanding of metabolism; this potentially derives valuable insights for future successful metabolic engineering studies in S. clavuligerus.

  4. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana.

    Science.gov (United States)

    Hernández, Iker; Munné-Bosch, Sergi

    2012-12-01

    Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from oxidative stress. The present study aimed at determining the role of flavonoids in Arabidopsis thaliana (L.) seed germination, and the involvement of salicylic acid (SA) and auxin (indole-3-acetic acid), two phytohormones with the same biosynthetic origin as flavonoids, the shikimate pathway, in such a putative role. We show that naringenin, a flavanone, strongly inhibits the germination of A. thaliana seeds in a dose-dependent and SA-independent manner. Altered auxin levels do not affect seed germination in Arabidopsis, but impaired auxin transport does, although to a minor extent. Naringenin and N-1-naphthylphthalamic acid (NPA) impair auxin transport through the same mechanisms, so the inhibition of germination by naringenin might involve impaired auxin transport among other mechanisms. From the present study it is concluded that naringenin inhibits the germination of Arabidopsis seeds in a dose-dependent and SA-independent manner, and the results also suggest that such effects are exerted, at least to some extent, through impaired auxin transport, although additional mechanisms seem to operate as well. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4

    Science.gov (United States)

    Yamamoto, M.; Yamamoto, K. T.

    1999-01-01

    The partially agravitropic growth habit of roots of an auxin-resistant mutant of Arabidopsis thaliana, axr4, was restored by the addition of 30-300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole 3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axrl mutants is different from that of axr4.

  6. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    Directory of Open Access Journals (Sweden)

    Bhuwaneshwar S Mishra

    Full Text Available BACKGROUND: Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. PRINCIPAL FINDINGS: Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62% genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35% even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. CONCLUSION: Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient

  7. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  8. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    Science.gov (United States)

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  9. Rice Dwarf Virus P2 Protein Hijacks Auxin Signaling by Directly Targeting the Rice OsIAA10 Protein, Enhancing Viral Infection and Disease Development.

    Directory of Open Access Journals (Sweden)

    Lian Jin

    2016-09-01

    Full Text Available The phytohormone auxin plays critical roles in regulating myriads of plant growth and developmental processes. Microbe infection can disturb auxin signaling resulting in defects in these processes, but the underlying mechanisms are poorly understood. Auxin signaling begins with perception of auxin by a transient co-receptor complex consisting of an F-box transport inhibitor response 1/auxin signaling F-box (TIR1/AFB protein and an auxin/indole-3-acetic acid (Aux/IAA protein. Auxin binding to the co-receptor triggers ubiquitination and 26S proteasome degradation of the Aux/IAA proteins, leading to subsequent events, including expression of auxin-responsive genes. Here we report that Rice dwarf virus (RDV, a devastating pathogen of rice, causes disease symptoms including dwarfing, increased tiller number and short crown roots in infected rice as a result of reduced sensitivity to auxin signaling. The RDV capsid protein P2 binds OsIAA10, blocking the interaction between OsIAA10 and OsTIR1 and inhibiting 26S proteasome-mediated OsIAA10 degradation. Transgenic rice plants overexpressing wild-type or a dominant-negative (degradation-resistant mutant of OsIAA10 phenocopy RDV symptoms are more susceptible to RDV infection; however, knockdown of OsIAA10 enhances the resistance of rice to RDV infection. Our findings reveal a previously unknown mechanism of viral protein reprogramming of a key step in auxin signaling initiation that enhances viral infection and pathogenesis.

  10. Do Phytotropins Inhibit Auxin Efflux by Impairing Vesicle Traffic?

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Černá, A.; Schwarzerová, K.; Elčkner, Miroslav; Morris, David; Zažímalová, Eva

    2003-01-01

    Roč. 131, č. 1 (2003), s. 254-263 ISSN 0032-0889 R&D Projects: GA MŠk LN00A081 Grant - others:EU INCO COPERNICUS(XE) ERBIC15 CT98 0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : 1-N-naphthylphthalamic acid * BY-2 tobacco * auxin efflux Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.634, year: 2003

  11. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Hényková, Eva; Sairanen, I.; Kowalczyk, M.; Pospíšil, Tomáš; Ljung, K.

    2012-01-01

    Roč. 72, č. 3 (2012), s. 523-536 ISSN 0960-7412 R&D Projects: GA AV ČR KAN200380801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : indole-3-acetic acid * auxin * biosynthesis Subject RIV: EC - Immunology Impact factor: 6.582, year: 2012

  12. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues

    Czech Academy of Sciences Publication Activity Database

    Simon, Sibu; Kubeš, Martin; Baster, P.; Robert, S.; Dobrev, Petre; Friml, J.; Petrášek, Jan; Zažímalová, Eva

    2013-01-01

    Roč. 200, č. 4 (2013), s. 1034-1048 ISSN 0028-646X R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin analogues * auxin signalling * auxin transport Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.545, year: 2013

  13. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    Science.gov (United States)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  14. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  15. Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-06-01

    Full Text Available In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA. Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes.

  16. Response to auxin changes during maturation-related loss of adventitious rooting competence in loblolly pine (Pinus taeda) stem cuttings.

    Science.gov (United States)

    Greenwood, Michael S.; Cui, Xiuyu; Xu, Fuyu

    2001-03-01

    Hypocotyl cuttings (from 20- and 50-day-old Pinus taeda L. seedlings) rooted readily within 30 days in response to exogenous auxin, while epicotyl cuttings (from 50-day-old seedlings) rarely formed roots within 60 days. Responses to auxin during adventitious rooting included the induction of cell reorganization and cell division, followed by the organization of the root meristem. Explants from the bases of both epicotyl and hypocotyl cuttings readily formed callus tissue in response to a variety of auxins, but did not organize root meristems. Auxin-induced cell division was observed in the cambial region within 4 days, and later spread to the outer cortex at the same rate in both tissues. Cells at locations that would normally form roots in foliated hypocotyl cuttings did not produce callus any differently than those in other parts of the cortex. Therefore, auxin-induced root meristem organization appeared to occur independently of auxin-induced cell reorganization/division. The observation that N-(1-naphthyl)phthalamic acid (NPA) promoted cellular reorganization and callus formation but delayed rooting implies the existence of an auxin signal transduction pathway that is specific to root meristem organization. Attempts to induce root formation in callus or explants without foliage were unsuccessful. Both the cotyledon and epicotyl foliage provided a light-dependent product other than auxin that promoted root meristem formation in hypocotyl cuttings.

  17. An online computer method for the potentiometric titration of mixtures of a strong and a weak acid

    NARCIS (Netherlands)

    Bos, M.

    1977-01-01

    A PDP-11 online computer method for the titration of mixtures or a strong and a weak acid is described.The method is based on multiparametric curve-fitting. One or the parameters found from the calculations is the dissociation constant of the weak acid, hence the method can be applied even when this

  18. Bactericidal Effect of Strong Acid Electrolyzed Water against Flow Enterococcus faecalis Biofilms.

    Science.gov (United States)

    Cheng, Xiaogang; Tian, Yu; Zhao, Chunmiao; Qu, Tiejun; Ma, Chi; Liu, Xiaohua; Yu, Qing

    2016-07-01

    This study evaluated the bactericidal effect of strong acid electrolyzed water (SAEW) against flow Enterococcus faecalis biofilm and its potential application as a root canal irrigant. Flow E. faecalis biofilms were generated under a constant shear flow in a microfluidic system. For comparison, static E. faecalis biofilms were generated under a static condition on coverslip surfaces. Both the flow and static E. faecalis biofilms were treated with SAEW. Sodium hypochlorite (NaOCl, 5.25%) and normal saline (0.9%) were included as the controls. Bacterial reductions were evaluated using confocal laser scanning microscopy and the cell count method. Morphological changes of bacterial cells were observed using scanning electron microscopy. The confocal laser scanning microscopic and cell count results showed that SAEW had a bactericidal effect similar to that of 5.25% NaOCl against both the flow and static E. faecalis biofilms. The scanning electron microscopic results showed that smooth, consecutive, and bright bacteria surfaces became rough, shrunken, and even lysed after treated with SAEW, similar to those in the NaOCl group. SAEW had an effective bactericidal effect against both the flow and static E. faecalis biofilms, and it might be qualified as a root canal irrigant for effective root canal disinfection. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    Science.gov (United States)

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice.

    Science.gov (United States)

    Inahashi, Hiroki; Shelley, Israt Jahan; Yamauchi, Takaki; Nishiuchi, Shunsaku; Takahashi-Nosaka, Misuzu; Matsunami, Maya; Ogawa, Atsushi; Noda, Yusaku; Inukai, Yoshiaki

    2018-02-15

    Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport-related mutants, Ospin-formed2-1 (Ospin2-1) and Ospin2-2, which exhibited curly root phenotypes and altered lateral root-formation patterns in rice. The OsPIN2 gene encodes a member of the auxin-efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip towards the root-elongation zone. According to DR5-driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA), and Ospin2-1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2-1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice. This article is protected by copyright. All rights reserved.

  1. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin.

    Science.gov (United States)

    Ishibashi, Misaki; Yoshikawa, Hiroki; Uno, Yuichi

    2017-06-02

    Strawberry fruit contain the allergenic Fra a proteins, members of the pathogenesis-related 10 protein family that causes oral allergic syndrome symptoms. Fra a proteins are involved in the flavonoid biosynthesis pathway, which might be important for color development in fruits. Auxin is an important plant hormone in strawberry fruit that controls fruit fleshiness and ripening. In this study, we treated strawberry fruits with exogenous auxin or auxin inhibitors at pre- and post-harvest stages, and analyzed Fra a transcriptional and translational expression levels during fruit development by real-time PCR and immunoblotting. Pre-harvest treatment with 1-naphthaleneacetic acid (NAA) alone did not affect Fra a expression, but applied in conjunction with achene removal NAA promoted fruit pigmentation and Fra a protein accumulation. The response was developmental stage-specific: Fra a 1 was highly expressed in immature fruit, whereas Fra a 2 was expressed in young to ripe fruit. In post-harvest treatments, auxin did not contribute to Fra a induction. Auxin inhibitors delayed fruit ripening; as a result, they seemed to influence Fra a 1 expression. Thus, Fra a expression was not directly regulated by auxin, but might be associated with the ripening process and/or external factors in a paralog-specific manner.

  2. [AUXINS AND CYTOKININES SYNTHESIS BY BRADYRHIZOBIUM JAPONICUM UNDER FLAVONOIDS INFLUENCE].

    Science.gov (United States)

    Leonova, N O

    2015-01-01

    Research the ability of different by effectiveness symbiotic nitrogen-fixing soybean bacteria Bradyrhizobium japonicum to the synthesis of phytohormones-stimulators auxins and cytokinins for the actions of plant flavonoids genistein and naringenin. Extracellular phytohormonal compound isolated from the supernatant culture liquid of the soybean rhizobia by redistribution of phytohormones in two phases solvent immiscible with each other. Auxins and cytokinins were determined by thin layer spectra densitometry chromatography. Shown the ability of symbiotic diastrophic soybean strains to synthesize auxins (4-1067 mg/g of absolutely dry biomass) and cytokinins (141-1554 mg/g of absolutely dry biomass). Cultivation soybean rhizobia in the presence of flavonoid compounds genistein and naringenin leads to the narrowing of the range and reducing the number of phytohormones: unchecked synthesis of indole-3-carboxylic acid, indole-3-carbinol, indole-3-acetic acid hydrazide and zeatin. Depressing effect of flavonoids on the phytohormones in soybean rhizobia synthesis is probably due to changes in metabolism microsymbiotic bacteria that are not aimed at the synthesis of secondary metabolites and to launch effective nodulating mechanisms, and also the concentration of flavonoid compounds in the nutrient medium.

  3. [Production of auxins by the endophytic bacteria of winter rye].

    Science.gov (United States)

    Merzaeva, O V; Shirokikh, I G

    2010-01-01

    The ability of the actinomycetes and coryneform bacteria isolated from the root tissues of winter rye to produce auxin in a liquid culture was studied. The isolates of coryneform bacteria produced indolyl-3-acetic acid (IAA) into the medium in the amount of 9.0-95.0 microg/ml and the isolates of actinomycetes in the amount of 39.5-83.0 microg/ml. The maximal IAA accumulation in culture liquid of actinomycetes coincided, in general, with the beginning of the stationary growth phase. The dependences of IAA synthesis by actinomycetes on the composition and pH of nutrient medium, tryptophan concentration, and aeration conditions were determined. Biological activity of the bacterial IAA was assessed. Treatment of winter rye seeds with coryneform auxin-producing bacteria increased the germination capacity and enhanced an intensive seedling growth in vitro.

  4. Auxin production by the plant trypanosomatid Phytomonas serpens and auxin homoeostasis in infected tomato fruits.

    Science.gov (United States)

    Ienne, Susan; Freschi, Luciano; Vidotto, Vanessa F; De Souza, Tiago A; Purgatto, Eduardo; Zingales, Bianca

    2014-09-01

    Previously we have characterized the complete gene encoding a pyruvate decarboxylase (PDC)/indolepyruvate decarboxylase (IPDC) of Phytomonas serpens, a trypanosomatid highly abundant in tomato fruits. Phylogenetic analyses indicated that the clade that contains the trypanosomatid protein behaves as a sister group of IPDCs of γ-proteobacteria. Since IPDCs are key enzymes in the biosynthesis of the plant hormone indole-3-acetic acid (IAA), the ability for IAA production by P. serpens was investigated. Similar to many microorganisms, the production of IAA and related indolic compounds, quantified by high performance liquid chromatography, increased in P. serpens media in response to amounts of tryptophan. The auxin functionality was confirmed in the hypocotyl elongation assay. In tomato fruits inoculated with P. serpens the concentration of free IAA had no significant variation, whereas increased levels of IAA-amide and IAA-ester conjugates were observed. The data suggest that the auxin produced by the flagellate is converted to IAA conjugates, keeping unaltered the concentration of free IAA. Ethanol also accumulated in P. serpens-conditioned media, as the result of a PDC activity. In the article we discuss the hypothesis of the bifunctionality of P. serpens PDC/IPDC and provide a three-dimensional model of the enzyme.

  5. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin

    Czech Academy of Sciences Publication Activity Database

    Chen, Ch.; Letnik, I.; Hacham, Y.; Dobrev, Petre; Ben-Daniel, B.H.; Vaňková, Radomíra; Amir, R.; Miller, G.

    2014-01-01

    Roč. 166, č. 1 (2014), s. 370-383 ISSN 0032-0889 R&D Projects: GA ČR GA206/09/2062 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * abscisic acid * germinating seeds Subject RIV: ED - Physiology Impact factor: 6.841, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25049361

  6. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  7. The auxins, IAA and PAA, are synthesized by similar steps catalyzed by different enzymes.

    Science.gov (United States)

    Cook, Sam D; Ross, John J

    2016-11-01

    One of the fundamental plant growth substances, indole-3-acetic acid (IAA), belongs to a class of phytohormones known as auxins. The main IAA biosynthesis pathway involves the conversion of tryptophan to indole-3-pyruvic acid, which is in turn converted to IAA. The two enzymes responsible for these conversions, members of the TAA1 and YUCCA gene families, respectively, have recently been implicated in the synthesis of another auxin, phenylacetic acid (PAA). While there is some evidence to support this theory, there are also some concerns. Here we address the question: to what extent does the TAA1/YUCCA system contribute to the biosynthesis of PAA? In addition, we highlight the importance of measuring auxin metabolites and conjugates in addressing such questions.

  8. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2014-09-01

    Full Text Available Adventitious root (AR formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled

  9. Protein ubiquitination in auxin signaling and transport

    NARCIS (Netherlands)

    Santos Maraschin, Felipe dos

    2009-01-01

    What makes plant shoots grow towards the light, and plant roots grow down into the soil? This was a question that Charles Darwin asked himself, and his experiments more than a century ago to find the answer laid the basis for the identification of the growth hormone auxin. Auxin, or indole-3-acetic

  10. IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Fumi Arase

    Full Text Available The expression of auxin-responsive genes is regulated by the TIR1/AFB auxin receptor-dependent degradation of Aux/IAA transcriptional repressors, which interact with auxin-responsive factors (ARFs. Most of the 29 Aux/IAA genes present in Arabidopsis have not been functionally characterized to date. IAA8 appears to have a distinct function from the other Aux/IAA genes, due to its unique transcriptional response to auxin and the stability of its encoded protein. In this study, we characterized the function of Arabidopsis IAA8 in various developmental processes governed by auxin and in the transcriptional regulation of the auxin response. Transgenic plants expressing estrogen-inducible IAA8 (XVE::IAA8 exhibited significantly fewer lateral roots than the wild type, and an IAA8 loss-of-function mutant exhibited significantly more. Ectopic overexpression of IAA8 resulted in abnormal gravitropism. The strong induction of early auxin-responsive marker genes by auxin treatment was delayed by IAA8 overexpression. GFP-fusion analysis revealed that IAA8 localized not only to the nucleus, but, in contrast to other Aux/IAAs, also to the cytosol. Furthermore, we demonstrated that IAA8 interacts with TIR1, in an auxin-dependent fashion, and with ARF proteins, both in yeast and in planta. Taken together, our results show that IAA8 is involved in lateral root formation, and that this process is regulated through the interaction with the TIR1 auxin receptor and ARF transcription factors in the nucleus.

  11. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots.

    Directory of Open Access Journals (Sweden)

    David Pacheco-Villalobos

    2013-06-01

    Full Text Available Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis, auxin biosynthesis via indole-3-pyruvic acid (IPA is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1 and TAA1-RELATED (TAR genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium TAR2-LIKE gene (BdTAR2L severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2l(hypo . Counterintuitive however, Bdtar2l(hypo mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2l(hypo root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC, BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub

  12. A contribution to the problem of strong acid determination in air

    Science.gov (United States)

    Dieter Klockow; Helmut Denzinger; Gerhard R& #246; nicke; Gerhard nicke

    1976-01-01

    The main indicator for acidic substances in the atmosphere is, now as before, the pH of rainwater. Factors influencing the acidity of precipitation are discussed, using results of air monitoring stations in Germany.

  13. Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant - Jatropha curcas

    Energy Technology Data Exchange (ETDEWEB)

    Kochhar, Sunita; Singh, S.P.; Kochhar, V.K. [National Botanical Research Institute, Lucknow 226001 (India)

    2008-12-15

    Rooting and sprouting behaviour of stem cuttings of biofuel plant Jatropha curcas and their performance under field conditions have been studied in relation to auxin application. Pretreatment with indole-3-butyric acid (IBA) and 1-naphthalene acetic acid (NAA) increased both the rooting and sprouting. Sprouting of buds on the cuttings preceded rooting. The rooting and sprouting in J. curcas was more with IBA than NAA. The endogenous auxin contents were found to increase almost 15 days prior to rooting, indicating that mobilization of auxin rather than the absolute contents of auxin may be involved in root initiation. Indole acetic acid oxidase (IAA-oxidase) seems to be involved for triggering and initiating the roots/root primordia, whereas peroxidase is involved in both root initiation and the elongation processes as supported by the peroxidase and IAA-oxidase isoenzyme analysis in the cuttings. The clonally propagated plants (cutting-raised plants) performed better in the field as compared to those raised from the seeds. The plants produced from auxin-treated cuttings produced fruits and seeds in the same year as compared to the plants raised from seeds or from untreated or control cuttings that did not produce any seeds in 1 year of this study. Jatropha plants in general produce seeds after 2-3 years. (author)

  14. Auxins in the development of an arbuscular mycorrhizal symbiosis in maize.

    Science.gov (United States)

    Fitze, Dorothee; Wiepning, Anne; Kaldorf, Michael; Ludwig-Müller, Jutta

    2005-11-01

    While the levels of free auxins in maize (Zea mays L.) roots during arbuscular mycorrhiza formation have been previously described in detail, conjugates of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) with amino acids and sugars were neglected. In this study, we have therefore determined free, ester and amide bound auxins in roots of maize inoculated with Glomus intraradices during early stages of the colonization process. Ester conjugates of IAA and IBA were found only in low amounts and they did not increase in AM colonized roots. The Levels of IAA and IBA amide conjugates increased 20 and 30 days past inoculation (dpi). The formation of free and conjugated IBA but not IAA was systemically induced during AM colonization in leaves of maize plants. This implicated a role for auxin conjugate synthesis and hydrolysis during AM. We have therefore investigated the in vivo metabolism of 3H-labeled IBA by TLC but only slight differences between control and AM-inoculated roots were observed. The activity of auxin conjugate hydrolase activity measured with three different putative substrates showed a decrease in infected roots compared to controls. The fluorinated IBA analog TFIBA inhibited IBA formation in leaves after application to the root system, but was not transported from roots to shoots. AM hyphae were also not able to transport TFIBA. Our results indicate complex control mechanisms to regulate the levels of free and conjugated auxins, which are locally and systemically induced during early stages of the formation of an arbuscular mycorrhizal symbiosis.

  15. Reaction of aromatic azides with strong acids: formation of fused nitrogen heterocycles and arylamines

    Directory of Open Access Journals (Sweden)

    Carvalho Marcia de

    1999-01-01

    Full Text Available We describe in this paper the action of trifluoroacetic acid, trifluoromethanesulfonic acid and aluminum chloride upon ortho-substituted aryl azides to form indoles, azepines and arylamines in good yields. The protonated azides lose nitrogen to form arylnitrenium ion intermediates which undergo intramolecular aromatic N-substitution. The acid decomposition of aryl azides is compared with reported thermolyses.

  16. Characterization of auxin-binding proteins from zucchini plasma membrane

    Science.gov (United States)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  17. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    Directory of Open Access Journals (Sweden)

    Paulo S. Monteiro

    2015-03-01

    Full Text Available An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The KM for sodium phytate hydrolysis was 30.9 mM, while the kcat and kcat/KM were 1.46 ×105 s−1 and 4.7 × 106s−1.M−1, respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg2+, Cd2+, K+ and Ca2+, and it was drastically inhibited by F−. The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.

  18. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis.

    Science.gov (United States)

    Kubeš, Martin; Yang, Haibing; Richter, Gregory L; Cheng, Yan; Młodzińska, Ewa; Wang, Xia; Blakeslee, Joshua J; Carraro, Nicola; Petrášek, Jan; Zažímalová, Eva; Hoyerová, Klára; Peer, Wendy Ann; Murphy, Angus S

    2012-02-01

    Arabidopsis ATP-binding cassette B4 (ABCB4) is a root-localised auxin efflux transporter with reported auxin uptake activity in low auxin concentrations. Results reported here demonstrate that ABCB4 is a substrate-activated regulator of cellular auxin levels. The contribution of ABCB4 to shootward auxin movement at the root apex increases with auxin concentration, but in root hair elongation assays ABCB4-mediated uptake is evident at low concentrations as well. Uptake kinetics of ABCB4 heterologously expressed in Schizosaccharomyces pombe differed from the saturation kinetics of AUX1 as uptake converted to efflux at threshold indole-3-acetic acid (IAA) concentrations. The concentration dependence of ABCB4 appears to be a direct effect on transporter activity, as ABCB4 expression and ABCB4 plasma membrane (PM) localisation at the root apex are relatively insensitive to changes in auxin concentration. However, PM localization of ABCB4 decreases with 1-naphthylphthalamic acid (NPA) treatment. Unlike other plant ABCBs studied to date, and consistent with decreased detergent solubility, ABCB4(pro) :ABCB4-GFP is partially internalised in all cell types by 0.05% DMSO, but not 0.1% ethanol. In trichoblasts, ABCB4(pro) :ABCB4-GFP PM signals are reduced by >200 nm IAA and 2,4-dichlorophenoxyacetic acid (2,4-D). In heterologous systems and in planta, ABCB4 transports benzoic acid with weak affinity, but not the oxidative catabolism products 2-oxindole-3-acetic-acid and 2-oxindole-3-acetyl-β-D-glucose. ABCB4 mediates uptake, but not efflux, of the synthetic auxin 2,4-D in cells lacking AUX1 activity. Results presented here suggest that 2,4-D is a non-competitive inhibitor of IAA transport by ABCB4 and indicate that ABCB4 is a target of 2,4-D herbicidal activity. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses.

    Science.gov (United States)

    Raya-González, Javier; López-Bucio, Jesús Salvador; Prado-Rodríguez, José Carlos; Ruiz-Herrera, León Francisco; Guevara-García, Ángel Arturo; López-Bucio, José

    2017-09-01

    Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.

  20. Genome-wide identification and transcriptional profiling analysis of auxin response-related gene families in cucumber.

    Science.gov (United States)

    Wu, Jian; Liu, Songyu; Guan, Xiaoyan; Chen, Lifei; He, Yanjun; Wang, Jie; Lu, Gang

    2014-04-08

    Auxin signaling has a vital function in the regulation of plant growth and development, both which are known to be mediated by auxin-responsive genes. So far, significant progress has been made toward the identification and characterization of auxin-response genes in several model plants, while no systematic analysis for these families was reported in cucumber (Cucumis sativus L.), a reference species for Cucurbitaceae crops. The comprehensive analyses will help design experiments for functional validation of their precise roles in plant development and stress responses. A genome-wide search for auxin-response gene homologues identified 16 auxin-response factors (ARFs), 27 auxin/indole acetic acids (Aux/IAAs), 10 Gretchen Hagen 3 (GH3s), 61 small auxin-up mRNAs (SAURs), and 39 lateral organ boundaries (LBDs) in cucumber. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of these five auxin-related family members. The distribution and density of auxin response-related genes on chromosomes were not uniform. Evolutionary analysis showed that the chromosomal segment duplications mainly contributed to the expansion of the CsARF, CsIAA, CsGH3, and CsLBD gene families. Quantitative real-time RT-PCR analysis demonstrated that many ARFs, AUX/IAAs, GH3s, SAURs, and LBD genes were expressed in diverse patterns within different organs/tissues and during different development stages. They were also implicated in IAA, methyl jasmonic acid, or salicylic acid response, which is consistent with the finding that a great number of diverse cis-elements are present in their promoter regions involving a variety of signaling transduction pathways. Genome-wide comparative analysis of auxin response-related family genes and their expression analysis provide new evidence for the potential role of auxin in development and hormone response of plants. Our data imply that the auxin response genes may be involved in various vegetative

  1. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Shi

    Full Text Available Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N and Glutathione S-transferase, C-terminal domain (GST_C. Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA and indole-3-aceticacid (IAA treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.

  2. Simultaneous estimation of a binary mixture of a weak acid and a strong acid by volumetric titration and pH measurement

    International Nuclear Information System (INIS)

    Karmakar, Sanat; Mallika, C.; Kamachi Mudali, U.

    2012-01-01

    High level liquid waste (HLLW) generated in the aqueous reprocessing of spent nuclear fuels for the separation of uranium and plutonium by PUREX process, comprises the fission and corrosion products in 4 M nitric acid. Reduction in waste volume is accomplished by destroying the acidity of the waste solution from 4 to less than 2 M by treating it with formaldehyde and subsequent concentration by evaporation. In the denitration by HCHO, nitric acid in the waste solution is reduced to NOx and water via nitrous acid as the intermediate product: whereas formaldehyde is oxidized to formic acid which is converted to CO 2 and H 2 O subsequently. The reaction is highly exothermic and the release of all gaseous products may lead to uncontrollable process conditions. Hence, for the safe operation, it is desirable to estimate the concentration of residual formic acid as well as nitric acid in the product stream as a function of time. The acidity in the feed solution is 4 M and the concentration of HNO 3 in the product solution is in the range 1- 4 M. Since the formic acid generated during the reaction will be consumed immediately, the concentration of residual acid will be in the range 0.05-0.5 M. A simultaneous titration method based on pH measurement and volumetric analysis has been developed in the present work for the quantitative determination of the weak acid (HCOOH)with known pKa value and the strong acid (HNO 3 ) in the binary mixture

  3. Serum uric acid: A strong and independent predictor of metabolic syndrome after adjusting for body composition.

    Science.gov (United States)

    Yu, Tae Yang; Jee, Jae Hwan; Bae, Ji Cheol; Jin, Sang-Man; Baek, Jong-Ha; Lee, Moon-Kyu; Kim, Jae Hyeon

    2016-04-01

    Some observational studies have suggested that serum uric acid (SUA) levels are one of the determinants of the metabolic syndrome (MetS). However, previous studies reported combined results for men and women after adjusting for sex and few studies take body composition into consideration. Therefore, we performed this sex-specific longitudinal study to investigate how baseline SUA levels influence incident MetS, including body composition as an adjusting factor in a large number of subjects. A total of 14,442 participants (8715 men and 5727 women) participating in a medical health check-up program without diagnosed MetS at baseline were enrolled. Separate analyses were performed for men and women including body composition as a confounding factor. Cox proportional hazards models were used to quantify independent associations between SUA levels and incident MetS. During 63,940person-years of follow-up, there were 4215 (2974 men, 1241 women) incident cases of MetS between 2006 and 2012. After adjustments for age, systolic BP, diastolic BP, BMI, eGFR, smoking status, TG, LDL-C, HDL-C, fasting glucose, and proportion of fat-free mass (100-fat mass, %), the hazard ratios (HR) [95% confidence interval (CI)] for incident MetS comparing the second, the third, and the fourth quartiles to the first quartile of SUA levels were 0.862 (0.770-0.965), 1.102 (0.991-1.225), and 1.246 (1.121-1.385) in men (p for trend<0.001), and 1.045 (0.862-1.266), 1.251 (1.050-1.490), and 1.321 (1.109-1.574) in women (p for trend<0.001), respectively. As a continuous variable, in fully-adjusted models, the HRs (95% CI) for incident MetS associated with each increase of 1mg/dl of SUA levels were 1.094 (1.060-1.130) in men (p<0.001) and 1.148 (1.072-1.228) in women (p<0.001), respectively. We demonstrated that SUA levels are strong and independent predictors of MetS. This relationship remained significant after full adjustments for multiple associated confounders including body composition in both

  4. Nicotine synthesis in Nicotiana tabacum L. induced by mechanical wounding is regulated by auxin.

    Science.gov (United States)

    Shi, Qiumei; Li, Chunjian; Zhang, Fusuo

    2006-01-01

    The effects of different kinds of mechanical wounding on nicotine production in tobacco plants were compared, with sand or hydroponics culture under controlled conditions. Both removal of the shoot apex and damage of the youngest unfolded leaves nos 1 and 2 by a comb-like brusher with 720 punctures caused an increase in nicotine concentration in whole plants at day 3, and reached its highest level at day 6. The nicotine concentration induced by excision of the shoot apex was much higher than that induced by leaf wounding. Both treatments also caused an increase in jasmonic acid (JA) concentration within 90 min in the shoot, followed by an increase in the roots (210 min), in which the JA concentration induced by leaf wounding was significantly higher than that induced by excision of the shoot apex. The increase in nicotine concentration occurred throughout the whole plant, especially in the shoot, while the increase in JA concentration in the shoot was restricted to the damaged tissues, and was not observed in the adjacent tissues. Removal of the lateral buds that emerged after excision of the shoot apex caused a further increase in nicotine concentrations in the plant tissues. Removal of mature leaves, however, did not cause any changes in nicotine concentration in the plant, even though the degree of wounding in this case was comparable with that occurring with apex removal. The results suggest that the nicotine production in tobacco plants was not correlated with the degree of wounding (cut-surface or punctures), but was highly dependent on the removal of apical meristems and hence on the major sources of auxin in the plant. Furthermore, immediate application of 1-naphthylacetic acid (NAA) on the cut surface after removing the shoot apex completely inhibited the increase both in nicotine in whole plants and in JA in the damaged stem segment and roots. Application of an auxin transport inhibitor around the stem directly under the shoot apex of intact plants also

  5. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    Science.gov (United States)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  6. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants.

    Science.gov (United States)

    Fang, Jia; Nan, Peng; Gu, Zongying; Ge, Xiaochun; Feng, Yu-Qi; Lu, Bao-Rong

    2018-01-01

    Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T 2 and T 3 Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium ( CP4 ). For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid) content in transgene-present, transgene-absent, empty vector (EV), and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T 2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T 3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.

  7. Overexpressing Exogenous 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS Genes Increases Fecundity and Auxin Content of Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Jia Fang

    2018-02-01

    Full Text Available Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T2 and T3Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium (CP4. For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid content in transgene-present, transgene-absent, empty vector (EV, and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.

  8. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    Science.gov (United States)

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  9. SOLVENT EFFECTS IN THE LIQUID-PHASE HYDRATION OF CYCLOHEXENE CATALYZED BY A MACROPOROUS STRONG ACID ION-EXCHANGE RESIN

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1992-01-01

    The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured

  10. Analytical Determination of Auxins and Cytokinins.

    Science.gov (United States)

    Dobrev, Petre I; Hoyerová, Klára; Petrášek, Jan

    2017-01-01

    Parallel determination of auxin and cytokinin levels within plant organs and tissues represents an invaluable tool for studies of their physiological effects and mutual interactions. Thanks to their different chemical structures, auxins, cytokinins and their metabolites are often determined separately, using specialized procedures of sample purification, extraction, and quantification. However, recent progress in the sensitivity of analytical methods of liquid chromatography coupled to mass spectrometry (LC-MS) allows parallel analysis of multiple compounds. Here we describe a method that is based on single step purification protocol followed by LC-MS separation and detection for parallel analysis of auxins, cytokinins and their metabolites in various plant tissues and cell cultures.

  11. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    Science.gov (United States)

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses. © 2014 Institute of Botany, Chinese Academy of Sciences.

  12. Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere

    DEFF Research Database (Denmark)

    Petaja, Tuukka; Sipila, Mikko; Paasonen, Pauli

    2011-01-01

    Sulfuric acid is a key compound in atmospheric nucleation. Here we report on the observation of a close-to-collision-limited sulfuric acid dimer formation in atmospherically relevant laboratory conditions in the absence of measurable quantities of ammonia or organics. The observed dimer formation...... compound(s) with (a) concentration(s) high enough to prevent the dimer evaporation. Such a stabilizing compound should be abundant enough in any natural environment and would therefore not limit the formation of sulfuric acid dimers in the atmosphere....

  13. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    Science.gov (United States)

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  14. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  15. Differential regulation of Ku gene expression in etiolated mung bean hypocotyls by auxins.

    Science.gov (United States)

    Liu, Pei-Feng; Chang, Wen-Chi; Wang, Yung-Kai; Munisamy, Suresh-Babu; Hsu, Shen-Hsing; Chang, Hwan-You; Wu, Shu-Hsing; Pan, Rong-Long

    2007-01-01

    Plant Ku genes were identified very recently in Arabidopsis thaliana, and their roles in repair of double-stranded break DNA and maintenance of telomere integrity were scrutinized. In this study, the cDNAs encoding Ku70 (VrKu70) and Ku80 (VrKu80) were isolated from mung bean (Vigna radiata L.) hypocotyls. Both genes were expressed widely among different tissues of mung bean with the highest levels in hypocotyls and leaves. The VrKu gene expression was stimulated by exogenous auxins in a concentration- and time-dependent manner. The stimulation could be abolished by auxin transport inhibitors, N-(1-naphthyl) phthalamic acid and 2,3,5-triiodobenzoic acid implicating that exogenous auxins triggered the effects following their uptake by the cells. Further analysis using specific inhibitors of auxin signaling showed that the stimulation of VrKu expression by 2,4-dichlorophenoxyacetic acid (2,4-D) was suppressed by intracellular Ca(2+) chelators, calmodulin antagonists, and calcium/calmodulin dependent protein kinase inhibitors, suggesting the involvement of calmodulin in the signaling pathway. On the other hand, exogenous indole-3-acetic acid (IAA) and alpha-naphthalene acetic acid (NAA) stimulated VrKu expression through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Altogether, it is thus proposed that 2,4-D and IAA (or NAA) regulate the expression of VrKu through two distinct pathways.

  16. Structural basis for oligomerization of auxin transcriptional regulators.

    Science.gov (United States)

    Nanao, Max H; Vinos-Poyo, Thomas; Brunoud, Géraldine; Thévenon, Emmanuel; Mazzoleni, Meryl; Mast, David; Lainé, Stéphanie; Wang, Shucai; Hagen, Gretchen; Li, Hanbing; Guilfoyle, Thomas J; Parcy, François; Vernoux, Teva; Dumas, Renaud

    2014-04-07

    The plant hormone auxin is a key morphogenetic regulator acting from embryogenesis onwards. Transcriptional events in response to auxin are mediated by the auxin response factor (ARF) transcription factors and the Aux/IAA (IAA) transcriptional repressors. At low auxin concentrations, IAA repressors associate with ARF proteins and recruit corepressors that prevent auxin-induced gene expression. At higher auxin concentrations, IAAs are degraded and ARFs become free to regulate auxin-responsive genes. The interaction between ARFs and IAAs is thus central to auxin signalling and occurs through the highly conserved domain III/IV present in both types of proteins. Here, we report the crystal structure of ARF5 domain III/IV and reveal the molecular determinants of ARF-IAA interactions. We further provide evidence that ARFs have the potential to oligomerize, a property that could be important for gene regulation in response to auxin.

  17. AUXIN BINDING PROTEIN1: the outsider.

    Science.gov (United States)

    Sauer, Michael; Kleine-Vehn, Jürgen

    2011-06-01

    AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence.

  18. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    KAUST Repository

    Hatzell, Marta C.

    2014-12-02

    © 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10-5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g-1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g-1) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  19. Auxin Activity: Past, present, and Future1

    Science.gov (United States)

    Enders, Tara A.; Strader, Lucia C.

    2016-01-01

    Long before its chemical identity was known, the phytohormone auxin was postulated to regulate plant growth. In the late 1800s, Sachs hypothesized that plant growth regulators, present in small amounts, move differentially throughout the plant to regulate growth. Concurrently, Charles Darwin and Francis Darwin were discovering that light and gravity were perceived by the tips of shoots and roots and that the stimulus was transmitted to other tissues, which underwent a growth response. These ideas were improved upon by Boysen-Jensen and Paál and were later developed into the Cholodny–Went hypothesis that tropisms were caused by the asymmetric distribution of a growth-promoting substance. These observations led to many efforts to identify this elusive growth-promoting substance, which we now know as auxin. In this review of auxin field advances over the past century, we start with a seminal paper by Kenneth Thimann and Charles Schneider titled “The relative activities of different auxins” from the American Journal of Botany, in which they compare the growth altering properties of several auxinic compounds. From this point, we explore the modern molecular understanding of auxin—including its biosynthesis, transport, and perception. Finally, we end this review with a discussion of outstanding questions and future directions in the auxin field. Over the past 100 yr, much of our progress in understanding auxin biology has relied on the steady and collective advance of the field of auxin researchers; we expect that the next 100 yr of auxin research will likewise make many exciting advances. PMID:25667071

  20. Radioresistance of kohlrabi (Brassicaoleacea L., var. gongylodes L.) seeds in relation to the metabolism of indoles, auxins and gibberellins

    International Nuclear Information System (INIS)

    Vackova, K.; Kutacek, M.

    1976-01-01

    Irradiation of the seeds of radioresistant kohlrabi with gamma-rays at doses 50 to 300 kR resulted in a decrease in growth and a drop in tryptophan (Try) level in seven-day-old plants. The level of glucobrassicin (GLUBR), 3-indolylacetonitrile (IAN) and gibberellic acid (GA 3 ) in the plants increased up to a maximum with a dose of about 150-200 kR, afterwards it decreased. It is assumed that the specific system of auxin synthesis in Brassica plants played an important role in the reparation processes and thus also in the radioresistance of these plants. In contrast to the divergent systems of auxin biosynthesis in other plants which are damaged by lower doses of radiation, the specific system of auxin formation via GLUBR synthesis, under formation of IAN intermediate, is widely not attacked by radiation. Thus, these irradiated plants are supplied with auxins and with gibberellins, the both hormones having a radioprotective effect. (author)

  1. Neutron Radiation Affects the Expression of Genes Involved in the Response to Auxin, Senescence and Oxidative Stress in Arabidopsis

    Science.gov (United States)

    Fortunati, A.; Tassone, P.; Migliaccio, F.

    2008-06-01

    Researches were conducted on the effect of neutron radiation on the expression of genes auxin activated or connected with the process of senescence in Arabidopsis plants. The research was done by applying the real-time polymerase chain reaction (PCR) technique. The results indicated that the auxin response factors (ARFs) genes are clearly downregulated, whereas the indolacetic acid-induced (Aux/IAAs) genes in some cases were upregulated. By contrast in the mutants for auxin transport aux1 and eir1 the ARFs genes were upregulated. In addition, both in the wildtype and mutants, some already known genes activated by stress and senescence were significantly upregulated. On the basis of these researches we conclude that the process of senescence induced by irradiation is, at least in part, controlled by the physiology of the hormone auxin.

  2. Auxins Upregulate Expression of the Indole-3-Pyruvate Decarboxylase Gene in Azospirillum brasilense

    Science.gov (United States)

    Vande Broek, Ann; Lambrecht, Mark; Eggermont, Kristel; Vanderleyden, Jos

    1999-01-01

    Transcription of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase involved in the biosynthesis of indole-3-acetic acid (IAA), is induced by IAA as determined by ipdC-gusA expression studies and Northern analysis. Besides IAA, exogenously added synthetic auxins such as 1-naphthaleneacetic acid, 2,4-dichlorophenoxypropionic acid, and p-chlorophenoxyacetic acid were also found to upregulate ipdC expression. No upregulation was observed with tryptophan, acetic acid, or propionic acid or with the IAA conjugates IAA ethyl ester and IAA-l-phenylalanine, indicating structural specificity is required for ipdC induction. This is the first report describing the induction of a bacterial gene by auxin. PMID:9973364

  3. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution.

    Science.gov (United States)

    Yang, Xi; Song, Li; Xue, Hong-Wei

    2008-11-01

    Overexpression of membrane steroid binding protein 1 (MSBP1) stimulates the root gravitropism and anti-gravitropism of hypocotyl, which is mainly due to the enhanced auxin redistribution in the bending regions of hypocotyls and root tips. The inhibitory effects by 1-N-naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, are suppressed under the MSBP1 overexpression, suggesting the positive effects of MSBP1 on polar auxin transport. Interestingly, sub-cellular localization studies showed that MSBP1 is also localized in endosomes and observations of the membrane-selective dye FM4-64 revealed the enhanced vesicle trafficking under MSBP1 overexpression. MSBP1-overexpressing seedlings are less sensitive to brefeldin A (BFA) treatment, whereas the vesicle trafficking was evidently reduced by suppressed MSBP1 expression. Enhanced MSBP1 does not affect the polar localization of PIN2, but stimulates the PIN2 cycling and enhances the asymmetric PIN2 redistribution under gravi-stimulation. These results suggest that MSBP1 could enhance the cycling of PIN2-containing vesicles to stimulate the auxin redistribution under gravi-stimulation, providing informative hints on interactions between auxin and steroid binding protein.

  4. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000.

    Directory of Open Access Journals (Sweden)

    Sheri A McClerklin

    2018-01-01

    Full Text Available The bacterial pathogen Pseudomonas syringae modulates plant hormone signaling to promote infection and disease development. P. syringae uses several strategies to manipulate auxin physiology in Arabidopsis thaliana to promote pathogenesis, including its synthesis of indole-3-acetic acid (IAA, the predominant form of auxin in plants, and production of virulence factors that alter auxin responses in the host; however, the role of pathogen-derived auxin in P. syringae pathogenesis is not well understood. Here we demonstrate that P. syringae strain DC3000 produces IAA via a previously uncharacterized pathway and identify a novel indole-3-acetaldehyde dehydrogenase, AldA, that functions in IAA biosynthesis by catalyzing the NAD-dependent formation of IAA from indole-3-acetaldehyde (IAAld. Biochemical analysis and solving of the 1.9 Å resolution x-ray crystal structure reveal key features of AldA for IAA synthesis, including the molecular basis of substrate specificity. Disruption of aldA and a close homolog, aldB, lead to reduced IAA production in culture and reduced virulence on A. thaliana. We use these mutants to explore the mechanism by which pathogen-derived auxin contributes to virulence and show that IAA produced by DC3000 suppresses salicylic acid-mediated defenses in A. thaliana. Thus, auxin is a DC3000 virulence factor that promotes pathogenicity by suppressing host defenses.

  5. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth

    International Nuclear Information System (INIS)

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-01-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with ( 35 S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12 h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth

  6. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth. [Fragaria ananassa

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-04-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with (/sup 35/S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12 h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth.

  7. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-08-01

    Full Text Available Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS. However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID, a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

  8. Effect of Varying Concentrations of Auxin (2,4-D) on In vitro Callus ...

    African Journals Online (AJOL)

    Study was carried out to determine the effect of varying concentrations of auxin on callus initiation using the leaves Artemisia annua as explants which were sterilized and inoculated into Murashig and Skoog basal medium supplemented with varying concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D) and incubated ...

  9. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1980-01-01

    One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  10. Biochemical activity of auxins in dependence of their structures in Wolffia arrhiza (L. Wimm.

    Directory of Open Access Journals (Sweden)

    Romuald Czerpak

    2011-01-01

    Full Text Available Wolffia arrhiza (L. Wimm. (Lemnaceae as a mixotrophic plant reacts considerably weaker to used auxins with different chemical structures than typical photosynthetic vascular plants and algae especially from Chlorophyta. Among used auxin compounds, the highest stimulative activity on W. arrhiza growth and biochemical parameters which were analysed in biomass, can be attributed to phenylacetic acid (PAA, a somewhat smaller to indole-3-acetic acid (IAA and the smallest to 2-naphthaleneacetic acid (NAA used in optimal concentration of 10-6 M, in comparison with the control culture, devoid of exogenous auxins. The investigated auxins, especially PAA and IAA, were found to have the most powerful stimulative activity (prevailingly between the 10th and the 15th day of cultivation on the content of reducing sugars between 127 and 169%, chlorophyll a and b from 117 to 125%, total carotenoids from 115 to 132% and net photosynthetic rate from 127 to 144% in comparison with the control culture, which was treated as 100% for reference. However, the content of water-soluble proteins as well as nucleic acids (DNA and RNA in the biomass of W. arrhiza was less effectively stimulated, hardly from 110 to 116% when compared to the control culture (100%.

  11. Polar auxin transport: controlling where and how much

    Science.gov (United States)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  12. Auxin uptake, transport and accumulation in relation to rooting and ageing of mung bean cuttings

    International Nuclear Information System (INIS)

    Jarvis, B.C.; Shaheed, A.I.

    1986-01-01

    The rooting response of mung bean cuttings (Phaseolus aureus Roxb. cv. Berkin) to indoleacetic acid (IAA) progressively declined when they were aged in water prior to auxin treatment. With increased duration of the ageing period the uptake of basally-supplied auxin by cuttings decreased. This correlated with diminished transpiration. Notwithstanding this decline in the uptake of IAA, a decreasing proportion of the acquired auxin was transported acropetally out of the hypocotyl with increasing age of the cuttings. Recovery of 14 C from cuttings 24 h after the foliar application of 14 C-IAA declined with increasing age of the cuttings. Furthermore, the total amount of radioactivity recovered in the hypocotyl diminished as a function of the increasing age of cuttings, as did the proportion of radioactivity located in the hypocotyl. (author)

  13. The diageotropica mutant of tomato lacks high specific activity auxin sites

    International Nuclear Information System (INIS)

    Hicks, G.R.; Lomax, T.L.; Rayle, D.L.

    1989-01-01

    Tomato (Lycopersicum esculentum, Mill) plants homozygous for the single gene diageotropica (dgt) mutation have reduced shoot growth, abnormal vascular tissue, altered leaf morphology, and lack of lateral root branching. These and other morphological and physiological abnormalities suggest that dgt plants are unable to respond to the plant growth hormone auxin (indole-3-acetic acid, IAA). The photoaffinity auxin analogue 3 H-5N 3 -IAA specifically labels a polypeptide doublet of 40 ad 42 kD in membrane preparations from stems of the parental variety VFN8, but not from stems of dgt. In elongation tests, excised dgt roots respond in the same manner to IAA an VFN8 roots. These data suggest that the two polypeptides are part of a physiologically important auxin receptor system which is altered in a tissue-specific manner in the mutant

  14. Comparison of three strong ion models used for quantifying the acid-base status of human plasma with special emphasis on the plasma weak acids.

    Science.gov (United States)

    Anstey, Chris M

    2005-06-01

    Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 acid-base physiology and by the ease of measurement of the independent model parameters.

  15. Quantitative Analysis of Plant Hormones, Auxins, in Biotechnologically Cultured Products of Medicinal Plants

    OpenAIRE

    HIDEYO, SUZUKI; CHUZO, SUGA; TEIJIRO, MORIMOTO; MASATOSHI, HARADA; National Institute Hygienic Sciences; Bioscience Research Laboratory, Mitsui Petrochemical Industries, Ltd.; Bioscience Research Laboratory, Mitsui Petrochemical Industries, Ltd.; National Institute Hygienic Sciences

    1991-01-01

    The biotechnologically cultured cells of Coptis plant and Lithospermum plant were analyzed for the residual levels of plant hormones, especially of auxins, 3-indoleacetic acid (IAA) and α-naphthylacetic acid (NAA). The procedures of clean-up and high-performance liquid chromatography (HPLC) using a reversed-phase column were studied. 0.1 n sodium hydroxide extracts of samples were successively partitioned between water and ether. Two solvent mixtures of water-acetonitrile-glacial acetic acid ...

  16. Control of cytokinin and auxin homeostasis in cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Žižková, Eva; Kubeš, Martin; Dobrev, Petre; Přibyl, Pavel; Šimura, J.; Zahajská, Lenka; Záveská Drábková, Lenka; Novák, Ondřej; Motyka, Václav

    2017-01-01

    Roč. 119, č. 1 (2017), s. 151-166 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA16-14649S; GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 ; RVO:67985939 Keywords : solid-phase extraction * performance liquid-chromatography * yucca flavin monooxygenases * tandem mass-spectrometry * abscisic-acid * arabidopsis-thaliana * indole-3-acetic-acid iaa * endogenous cytokinins * chlorella-vulgaris * phenylacetic acid * Cytokinin * auxin * cyanobacteria * algae * metabolism * cytokinin oxidase/dehydrogenase * cytokinin 2-methylthioderivatives * trans-zeatin * indole-3-acetic acid * tRNA Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  17. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...... production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly...... demonstrate that, in addition to glycolysis, also the mitochondrial TCA cycle is strongly accelerated after exposure of astrocytes to T23, suggesting that a protein tyrosine kinase may be involved in the regulation of the TCA cycle in astrocytes....

  18. Evaluation of DNA typing as a positive identification method for soft and hard tissues immersed in strong acids.

    Science.gov (United States)

    Robino, C; Pazzi, M; Di Vella, G; Martinelli, D; Mazzola, L; Ricci, U; Testi, R; Vincenti, M

    2015-11-01

    Identification of human remains can be hindered by several factors (e.g., traumatic mutilation, carbonization or decomposition). Moreover, in some criminal cases, offenders may purposely adopt various expedients to thwart the victim's identification, including the dissolution of body tissues by the use of corrosive reagents, as repeatedly reported in the past for Mafia-related murders. By means of an animal model, namely porcine samples, we evaluated standard DNA typing as a method for identifying soft (muscle) and hard (bone and teeth) tissues immersed in strong acids (hydrochloric, nitric and sulfuric acid) or in mixtures of acids (aqua regia). Samples were tested at different time intervals, ranging between 2 and 6h (soft tissues) and 2-28 days (hard tissues). It was shown that, in every type of acid, complete degradation of the DNA extracted from soft tissues preceded tissue dissolution and could be observed within 4h of immersion. Conversely, high molecular weight DNA amenable to STR analysis could be isolated from hard tissues as long as cortical bone fragments were still present (28 days for sulfuric acid, 7 days for nitric acid, 2 days for hydrochloric acid and aqua regia), or the integrity of the dental pulp chamber was preserved (7 days, in sulfuric acid only). The results indicate that DNA profiling of acid-treated body parts (in particular, cortical bone) is still feasible at advanced stages of corrosion, even when the morphological methods used in forensic anthropology and odontology can no longer be applied for identification purposes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of auxin and copper on growth of saffron

    Directory of Open Access Journals (Sweden)

    Mozafar Sharifi

    2014-03-01

    Full Text Available Saffron is known as one of the most common spices and medicinal plant in the world. Little information is available on the effects of copper and growth regulators on morphological characteristics of saffron. The aim of this study was to evaluate the influence of different concentrations of copper and auxin on morphological properties of root and leaf of saffron. This study was arranged as a factorial experiment in greenhouse condition and in hydroponic system. Copper was used in copper sulfate (CuSO4 form (0, 0.02, 0.1 and 0.2 mg/L and auxin in naphthalene acetic acid (NAA form (0, 1 and 2 g/L. Results showed that interaction of Naphthalene acetic acid 1 g/L and copper sulfate 0.1 mg/L increased root number, as well as root and leaf dry weight. Furthermore, naphthalene acetic acid 1 and 2 g/L in most treatments reduced the number of buds. Copper concentration of corm was increased in 0.2 mg/L copper sulfate.

  20. Irrepressible, truncated auxin response factors: natural roles and applications in dissecting auxin gene regulation pathways.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Krogan, Naden T; Marcos, Danielle; Caragea, Adriana E; Berleth, Thomas

    2012-08-01

    The molecularly well-characterized auxin signal transduction pathway involves two evolutionarily conserved families interacting through their C-terminal domains III and IV: the Auxin Response Factors (ARFs) and their repressors the Aux/IAAs, to control auxin-responsive genes, among them genes involved in auxin transport. ( 1) (,) ( 2) We have developed a new genetic tool to study ARF function. Using MONOPTEROS (MP)/ARF5, we have generated a truncated version of MP (MPΔ), ( 3) which has lost the target domains for repression by Aux/IAA proteins. Besides exploring genetic interactions between MP and Aux/IAAs, we used this construct to trace MP's role in vascular patterning, a previously characterized auxin dependent process. ( 4) (,) ( 5) Here we summarize examples of naturally occurring truncated ARFs and summarize potential applications of truncated ARFs as analytical tools.

  1. [Effect of auxins on production of coumarin in a suspension culture of Angelica archangelica L].

    Science.gov (United States)

    Siatka, T; Kasparová, M

    2003-07-01

    The paper examined the effect of selected auxins (2,4-dichlorophenoxyacetic acid, alpha-naphthalene-acetic acid, beta-indoleacetic acid, beta-indoleburytic acid; each in four concentrations--0.2, 2, 10, and 20 mg/l) on the production of coumarins in the suspension culture of Angelica archangelica L. cultinated in the dark and under permanent lighting(3500 lux). The effect of the light regimen is, in comparison with auxins, less marked--the content of coumarins is mostly comparable both under permanent lighting and in the dark. The highest coumarin content was achieved with the use of alpha-naphthalene-acetic acid in a concentration of 0.2 mg/l with cultivation in the dark.

  2. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  3. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    Science.gov (United States)

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the

  5. The role of the distal elongation zone in the response of maize roots to auxin and gravity

    Science.gov (United States)

    Ishikawa, H.; Evans, M. L.

    1993-01-01

    We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism.

  6. Auxin, ethylene and light in gravitropic growth: new insights

    Science.gov (United States)

    Edelmann, Hg; Sabovljevic, A.; Njio, G.; Roth, U.

    The regulation mechanism of gravitropic differential plant growth is commonly divided into three sequential processes: the perception of the gravistimulus (generally attributed to amyloplast sedimentation), the transduction of the perceived signal (of which very little is known), and the adequate differential growth response (generally attributed to asymmetric auxin redistribution). The detailled mechanism is still unresolved and remains to be elucidated in significant parts. Employing 2D SDS-PAGE /Q-TOF amongst other methods and strategies we studied the effect of different auxins on gravitropism of coleoptiles and hypocotyls. We also analyzed the effects of light and ethylene (synthesis and perception) on gravitropic growth of primary shoots and roots and analyzed the protein pattern with respect to the observed physiological effects. In coleoptiles, under the applied experimental conditions the effect of 2,4-dichlorophenoxy acetic acid (2,4 D) on gravitropism differed from the effect of indolylacetic acid (IAA), which was similar to the one observed in sunflower hypocotyls. In roots, the relevance of ethylene for gravitropic differential growth and the capacity to evade mechanical barriers during horizontal gravistimulation was analyzed in detail. A special focus was addressed on the physiological significance of the root cap. We will show that the relevance of ethylene for gravitropism has hitherto been misjudged. Further new findings and their implications for the regulation mechanism of gravitropism will be presented and discussed. Kramer et al., (2003) J. Ex. Bot. 54, (393), 2723-2732 Edelmann, H.G., (2002) J. Ex. Bot. 53, (375), 1825-1828

  7. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    , nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.

  8. Inhibition of auxin transport and auxin signaling and treatment with far red light induces root coiling in the phospholipase-A mutant ppla-I-1. Significance for surface penetration?

    Science.gov (United States)

    Perrineau, F; Wimalasekera, R; Effendi, Y; Scherer, G F E

    2016-06-01

    When grown on a non-penetretable at a surface angle of 45°, Arabidopsis roots form wave-like structures and, in wild type rarely, but in certain mutants the tip root even may form circles. These circles are called coils. The formation of coils depends on the complex interaction of circumnutation, gravitropism and negative thigmotropism where - at least - gravitropism is intimately linked to auxin transport and signaling. The knockout mutant of patatin-related phospholipase-AI-1 (pplaI-1) is an auxin-signaling mutant which forms moderately increased numbers of coils on tilted agar plates. We tested the effects of the auxin efflux transport inhibitor NPA (1-naphthylphtalamic acid) and of the influx transport inhibitor 1-NOA (1-naphthoxyacetic acid) which both further increased root coil formation. The pPLAI-1 inhibitors HELSS (haloenol lactone suicide substrate=E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) and ETYA (eicosatetraynoic acid) which are auxin signaling inhibitors also increased coil formation. In addition, far red light treatment increased coil formation. The results point out that a disturbance of auxin transport and signaling is one potential cause for root coils. As we show that the mutant pplaI-1 penetrates horizontal agar plates better than wild type plants root movements may help penetrating the soil. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2017-07-01

    Full Text Available Lead hydroxyl compounds are known as rutile flotation of the traditional activated component, but the optimum pH range for flotation is 2–3 using styryl phosphoric acid (SPA as collector, without lead hydroxyl compounds in slurry solution. In this study, Bi3+ ions as a novel activator was investigated. The results revealed that the presence of Bi3+ ions increased the surface potential, due to the specific adsorption of hydroxyl compounds, which greatly increases the adsorption capacity of SPA on the rutile surface. Bi3+ ions increased the activation sites through the form of hydroxyl species adsorbing on the rutile surface and occupying the steric position of the original Ca2+ ions. The proton substitution reaction occurred between the hydroxyl species of Bi3+ ions (Bi(OHn+(3−n and the hydroxylated rutile surface, producing the compounds of Ti-O-Bi2+. The micro-flotation tests results suggested that Bi3+ ions could improve the flotation recovery of rutile from 61% to 90%, and from 61% to 64% for Pb2+ ions.

  10. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.

    Science.gov (United States)

    Wójcikowska, Barbara; Gaj, Małgorzata D

    2017-06-01

    Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.

  11. Auxin effects on in vitro and in vivo protein phosphorylation in pea

    International Nuclear Information System (INIS)

    Gallagher, S.R.; Ray, P.M.

    1987-01-01

    Terminal 8mm sections from the third internode of dark grown 7 day old Pisum sativum cv Alaska seedlings were separated into membrane and soluble fractions. SDS gradient PAGE identified approximately 50 in vivo phosphorylated proteins and proved superior to 2-D SDS PAGE in terms of resolution and repeatability. Addition of indoleacetic acid (IAA), fusicoccin, or 2,4 dichlorophenoxyacetic acid to membranes resulted in no detectable change in the number or phosphorylation level of the labeled proteins during in vitro phosphorylation in the presence of submicromolar concentrations of calcium. Similar results were obtained with soluble proteins. In the absence of calcium, the level of in vitro protein phosphorylation was much less, but not auxin effects could be identified. Furthermore, treatment of the sections with IAA in vivo followed by cell fractionation and in vitro phosphorylation failed to identify auxin responsive proteins. Lastly, when sections were labeled with 32 P inorganic phosphate in the presence of 17 uM IAA, no auxin specific changes were found in the level of phosphorylation or in the number of phosphorylated proteins. Auxin effects on phosphorylation are thus slight or below their detection limit

  12. Uric Acid Is a Strong Risk Marker for Developing Hypertension From Prehypertension: A 5-Year Japanese Cohort Study.

    Science.gov (United States)

    Kuwabara, Masanari; Hisatome, Ichiro; Niwa, Koichiro; Hara, Shigeko; Roncal-Jimenez, Carlos A; Bjornstad, Petter; Nakagawa, Takahiko; Andres-Hernando, Ana; Sato, Yuka; Jensen, Thomas; Garcia, Gabriela; Rodriguez-Iturbe, Bernardo; Ohno, Minoru; Lanaspa, Miguel A; Johnson, Richard J

    2018-01-01

    Prehypertension frequently progresses to hypertension, a condition associated with high morbidity and mortality from cardiovascular diseases and stroke. However, the risk factors for developing hypertension from prehypertension remain poorly understood. We conducted a retrospective cohort study using the data from 3584 prehypertensive Japanese adults (52.1±11.0 years, 2081 men) found to be prehypertensive in 2004 and reexamined in 2009. We calculated the cumulative incidences of hypertension over 5 years, examined risk factors, and calculated odds ratios (ORs) for developing hypertension after adjustments for age, sex, body mass index, smoking and drinking habits, baseline systolic and diastolic blood pressure, pulse rate, diabetes mellitus, dyslipidemia, chronic kidney disease, and serum uric acid levels. The additional analysis evaluated whether serum uric acid (hyperuricemia) constituted an independent risk factor for developing hypertension. The cumulative incidence of hypertension from prehypertension over 5 years was 25.3%. There were no significant differences between women and men (24.4% versus 26.0%; P =0.28). The cumulative incidence of hypertension in subjects with hyperuricemia (n=726) was significantly higher than those without hyperuricemia (n=2858; 30.7% versus 24.0%; P uric acid (OR, 1.149; P uric acid is a strong risk marker for developing hypertension from prehypertension. Further studies are needed to determine whether treatment of hyperuricemia in prehypertensive subjects could impede the onset of hypertension. © 2017 American Heart Association, Inc.

  13. Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals

    KAUST Repository

    Muhammed, Madathumpady Abubaker Habeeb

    2018-02-20

    Elucidating the underlying principles behind band gap engineering is paramount for the successful implementation of semiconductors in photonic and optoelectronic devices. Recently it has been shown that the band gap of a wide and direct band gap semiconductor, such as ZnO, can be modified upon cocrystallization with amino acids, with the role of the biomolecules remaining unclear. Here, by probing and modeling the light-emitting properties of ZnO-amino acid cocrystals, we identify the amino acids\\' role on this band gap modulation and demonstrate their effective chirality transfer to the interband excitations in ZnO. Our 3D quantum model suggests that the strong band edge emission blue-shift in the cocrystals can be explained by a quasi-periodic distribution of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule cocrystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors.

  14. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins.

    Science.gov (United States)

    Liu, Zhong; Shi, Ming-Zhu; Xie, De-Yu

    2014-04-01

    Red pap1-D cells of Arabidopsis thaliana have been cloned from production of anthocyanin pigmentation 1-Dominant (pap1-D) plants. The red cells are metabolically programmed to produce high levels of anthocyanins by a WD40-bHLH-MYB complex that is composed of the TTG1, TT8/GL3 and PAP1 transcription factors. Here, we report that indole 3-acetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) regulate anthocyanin biosynthesis in these red cells. Seven concentrations (0, 0.2, 0.4, 2.2, 9, 18 and 27 μM) were tested for the three auxins. IAA and 2,4-D at 2.2-27 μM reduced anthocyanin levels. NAA at 0-0.2 μM or above 9 μM also decreased anthocyanin levels, but from 0.4 to 9 μM, it increased them. HPLC-ESI-MS analysis identified seven cyanin molecules that were produced in red pap1-D cells, and their levels were affected by auxins. The expression levels of ten genes, including six transcription factors (TTG1, EGL3, MYBL2, TT8, GL3 and PAP1) and four pathway genes (PAL1, CHS, DFR and ANS) involved in anthocyanin biosynthesis were analyzed upon various auxin treatments. The resulting data showed that 2,4-D, NAA and IAA control anthocyanin biosynthesis by regulating the expression of TT8, GL3 and PAP1 as well as genes in the anthocyanin biosynthetic pathway, such as DFR and ANS. In addition, the expression of MYBL2, PAL1 and CHS in red pap1-D and wild-type cells differentially respond to the three auxins. Our data demonstrate that the three auxins regulate anthocyanin biosynthesis in metabolically programmed red cells via altering the expression of transcription factor genes and pathway genes.

  15. The effect of gamma-radiation on the growth and auxin metabolism of autotrophic and heterotrophic tobacco callus tissue

    International Nuclear Information System (INIS)

    Koeves, E.; Szabo, M.; Sirokman, F.

    1980-01-01

    Cell cultures synthesizing and not synthesizing auxin (autotroph and heterothrop, resp.) were prepared from the callus tissue of nicotiana tabacum. They were irradiated by 0.1-40 Gy 60 Co. Increasing the radiation dose the weight of the samples has decreased and the decomposition of indol-acetic acid has increased. Irradiation up to 1.0 Gy had less significant effects in the heterotrophs than in the autotrophs. It is concluded that besides the activation of indol-acetic acid oxidation, gamma-irradiation also inhibits the synthesis of auxin. (author)

  16. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology

    Science.gov (United States)

    Simmons, C.; Migliaccio, F.; Masson, P.; Caspar, T.; Soll, D.

    1995-01-01

    A root gravitropism mutant was isolated from the DuPont Arabidopsis thaliana T-DNA insertional mutagenesis collection. This mutant has reduced root gravitropism, hence the name rgr1. Roots of rgr1 are shorter than those of wild-type, and they have reduced lateral root formation. In addition, roots of rgr1 coil clockwise on inclined agar plates, unlike wild-type roots which grow in a wavy pattern. The rgr1 mutant has increased resistance, as measured by root elongation, to exogenously applied auxins (6-fold to indole-3-acetic acid, 3-fold to 2,4-dichlorophenoxyacetic acid, and 2-fold to napthyleneacetic acid). It is also resistant to polar auxin transport inhibitors (2-fold to triiodobenzoic acid and 3- to 5-fold to napthylphthalamic acid). The rgr1 mutant does not appear to be resistant to other plant hormone classes. When grown in the presence of 10(-7) M 2,4-dichlorophenoxyacetic acid, rgr1 roots have fewer root hairs than wild type. All these rgr1 phenotypes are Mendelian recessives. Complementation tests indicate that rgr1 is not allelic to previously characterized agravitropic or auxin-resistant mutants. The rgr1 locus was mapped using visible markers to 1.4 +/- 0.6 map units from the CH1 locus at 1-65.4. The rgr1 mutation and the T-DNA cosegregate, suggesting that rgr1 was caused by insertional gene inactivation.

  17. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development

    Directory of Open Access Journals (Sweden)

    Guy eGolan

    2013-08-01

    Full Text Available Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1,000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA. To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.

  18. Auxin metabolism rates and implications for plant development

    Directory of Open Access Journals (Sweden)

    Eric M Kramer

    2015-03-01

    Full Text Available Studies of auxin metabolism rarely express their results as a metabolic rate, although the data obtained would often permit such a calculation to be made. We analyze data from 31 previously published papers to quantify the rates of auxin biosynthesis, conjugation, conjugate hydrolysis, and catabolism in seed plants. Most metabolic pathways have rates in the range 10 nM/h to 1 μM/h, with the exception of auxin conjugation, which has rates as high as ~100 μM/h. The highest rates of auxin conjugation suggests that auxin metabolic sinks may be very small, perhaps as small as a single cell. By contrast, the relatively low rate of auxin biosynthesis requires plants to conserve and recycle auxin during long-distance transport. The consequences for plant development are discussed.

  19. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants

    Czech Academy of Sciences Publication Activity Database

    Barbez, E.; Kubeš, Martin; Rolčík, Jakub; Béziat, Ch.; Pěnčík, Aleš; Wang, B.; Rosquete, M. R.; Zhu, J.; Dobrev, Petre; Lee, Y.; Zažímalová, Eva; Petrášek, Jan; Geisler, M.; Friml, J.; Kleine-Vehn, J.

    2012-01-01

    Roč. 485, č. 7396 (2012), s. 119-124 ISSN 0028-0836 R&D Projects: GA MŠk(CZ) LC06034; GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GAP305/11/0797 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin homeostasis * PILS (PIN-likes) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 38.597, year: 2012

  20. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    Science.gov (United States)

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-07

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  1. The Clubroot Pathogen (Plasmodiophora brassicae Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Linda Jahn

    2013-11-01

    Full Text Available The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1 in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA and transcription factors (ARF. As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3, the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.

  2. The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L.

    Science.gov (United States)

    Jones, Maxwell P A; Cao, Jin; O'Brien, Rob; Murch, Susan J; Saxena, Praveen K

    2007-09-01

    The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.

  3. The auxin-resistant diageotropica mutant of tomato responds to gravity via an auxin-mediated pathway

    Science.gov (United States)

    Rice, M. S.; Lomax, T. L.

    2000-01-01

    Hypocotyls of the diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) do not elongate in response to exogenous auxin, but can respond to gravity. This appears paradoxical in light of the Cholodny-Went hypothesis, which states that shoot gravicurvature results from asymmetric stimulation of elongation by auxin. While light-grown dgt seedlings can achieve correct gravitropic reorientation, the response is slow compared to wild-type seedlings. The sensitivity of dgt seedlings to inhibition of gravicurvature by immersion in auxin or auxin-transport inhibitors is similar to that of wild-type plants, indicating that both an auxin gradient and auxin transport are required for the gravitropic response and that auxin uptake, efflux, and at least one auxin receptor are functional in dgt. Furthermore, dgt gravicurvature is the result of asymmetrically increased elongation as would be expected for an auxin-mediated response. Our results suggest differences between elongation in response to exogenous auxin (absent in dgt) and elongation in response to gravistimulation (present but attenuated in dgt) and confirm the presence of two phases during the gravitropic response, both of which are dependent on functional auxin transport.

  4. Auxins and cytokinins in plant development

    Czech Academy of Sciences Publication Activity Database

    Kamínek, Miroslav; Ludwig-Müller, J.; Vaňková, Radomíra; Zažímalová, Eva

    2006-01-01

    Roč. 25, č. 1 (2006), s. 89-97 ISSN 0721-7595 R&D Projects: GA ČR GA206/98/1510 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * Auxins * Plant Development Subject RIV: EF - Botanics Impact factor: 2.107, year: 2006

  5. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    Science.gov (United States)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  6. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin

    Directory of Open Access Journals (Sweden)

    Siva K. Malka

    2017-12-01

    Full Text Available Glucosinolates (GLS are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase, and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx and indole-3-acetonitrile (IAN. IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.

  7. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    The use of (35)S-labeled calmodulin (CaM) to screen a corn root cDNA expression library has led to the isolation of a CaM-binding protein, encoded by a cDNA with sequence similarity to small auxin up RNAs (SAURs), a class of early auxin-responsive genes. The cDNA designated as ZmSAUR1 (Zea mays SAURs) was expressed in Escherichia coli, and the recombinant protein was purified by CaM affinity chromatography. The CaM binding assay revealed that the recombinant protein binds to CaM in a calcium-dependent manner. Deletion analysis revealed that the CaM binding site was located at the NH(2)-terminal domain. A synthetic peptide of amino acids 20-45, corresponding to the potential CaM binding region, was used for calcium-dependent mobility shift assays. The synthetic peptide formed a stable complex with CaM only in the presence of calcium. The CaM affinity assay indicated that ZmSAUR1 binds to CaM with high affinity (K(d) approximately 15 nM) in a calcium-dependent manner. Comparison of the NH(2)-terminal portions of all of the characterized SAURs revealed that they all contain a stretch of the basic alpha-amphiphilic helix similar to the CaM binding region of ZmSAUR1. CaM binds to the two synthetic peptides from the NH(2)-terminal regions of Arabidopsis SAUR-AC1 and soybean 10A5, suggesting that this is a general phenomenon for all SAURs. Northern analysis was carried out using the total RNA isolated from auxin-treated corn coleoptile segments. ZmSAUR1 gene expression began within 10 min, increased rapidly between 10 and 60 min, and peaked around 60 min after 10 microM alpha-naphthaleneacetic acid treatment. These results indicate that ZmSAUR1 is an early auxin-responsive gene. The CaM antagonist N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride inhibited the auxin-induced cell elongation but not the auxin-induced expression of ZmSAUR1. This suggests that calcium/CaM do not regulate ZmSAUR1 at the transcriptional level. CaM binding to ZmSAUR1 in a calcium

  8. A new graphene oxide/polypyrrole foam material with pipette-tip solid-phase extraction for determination of three auxins in papaya juice.

    Science.gov (United States)

    Wang, Lihui; Wang, Mingyu; Yan, Hongyuan; Yuan, Yanan; Tian, Jing

    2014-11-14

    A new material, graphene oxide/polypyrrole (GO/Ppy), was synthesized by mixing graphene oxide and polypyrrole in a specific proportion. It possesses a unique structure similar to that of foam. A homemade pipette-tip solid-phase extraction (PT-SPE) device, which is more simple and convenient than traditional devices, was used for saving reagents and operation time. When GO/Ppy was used as the adsorbent of PT-SPE for determining three auxins (indole-3-propionic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid) present in trace amounts in papaya juice, it showed high affinity and adsorption capacity for all the three auxins. GO/Ppy-PT-SPE also had a significant capacity for eliminating the interferences from the papaya juice matrix. Under optimized conditions, a good linearity of auxins was obtained in the range 16.3-812.5 ng g(-1); the average recoveries at the three spiked levels of the three auxins ranged from 89.4% to 105.6% with the relative standard deviations ≤ 3.0%. Meanwhile, six papaya juice samples with different growth stages were analyzed under optimum conditions, and trace auxins in the range 18.3-100.6 ng g(-1) were observed. Because of its high selectivity, simplicity, and reliability, the GO/Ppy-PT-SPE method developed herein can be potentially applied for determining trace auxins in complex biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Shape of an Auxin Pulse, and What It Tells Us about the Transport Mechanism.

    Directory of Open Access Journals (Sweden)

    Graeme Mitchison

    2015-10-01

    Full Text Available Auxin underlies many processes in plant development and physiology, and this makes it of prime importance to understand its movements through plant tissues. In stems and coleoptiles, classic experiments showed that the peak region of a pulse of radio-labelled auxin moves at a roughly constant velocity down a stem or coleoptile segment. As the pulse moves it becomes broader, at a roughly constant rate. It is shown here that this 'spreading rate' is larger than can be accounted for by a single channel model, but can be explained by coupling of channels with differing polar transport rates. An extreme case is where strongly polar channels are coupled to completely apolar channels, in which case auxin in the apolar part is 'dragged along' by the polar part in a somewhat diffuse distribution. The behaviour of this model is explored, together with others that can account for the experimentally observed spreading rates. It is also shown that saturation of carriers involved in lateral transport can explain the characteristic shape of pulses that result from uptake of large amounts of auxin.

  10. Effects of auxins on growth and scopoletin accumulation in cell suspension cultures of Angelica archangelica L.

    Science.gov (United States)

    Siatka, T; Kasparová, M

    2008-01-01

    Scopoletin is a coumarin possessing many interesting biological effects, e.g., spasmolytic, anti-inflammatory, antimutagenic, antioxidant, antifungal, apoptosis-inducing, antiproliferative, acetylcholinesterase-inhibitory, and hypouricemic activities. Plant tissue cultures represent a promising alternative source of valuable plant-derived substances. A number of physical and chemical factors influence the cell growth and secondary metabolite biosynthesis in plant tissue cultures. The mechanism of their action is not completely understood. Besides other factors, plant growth regulators and light conditions play an important role. Effects of four auxins (2,4-dichlorophenoxyacetic acid, 2,4-D, alpha-naphthaleneacetic acid, NAA, beta-indoleacetic acid, IAA or beta-indolebutyric acid, IBA) at four concentrations (0.2, 2, 10 or 20 mg/l) on the culture growth and accumulation of scopoletin in the medium were tested in Angelica archangelica cell suspension cultures cultured under continuous light or in the dark. The highest culture growth was achieved with 2 mg/l 2,4-D, and 10 mg/l IAA. The best scopoletin levels were obtained with 0.2 mg/l 2,4-D, 2 mg/l 2,4-D, 10 mg/l NAA, and 20 mg/l IAA. The effects of light conditions were less marked than those of auxins and their concentrations in influencing both the cell growth and scopoletin accumulation in Angelica archangelica cell suspension cultures. The changes brought about by auxins were modified by light conditions.

  11. Dual-cloud point extraction and tertiary amine labeling for selective and sensitive capillary electrophoresis-electrochemiluminescent detection of auxins.

    Science.gov (United States)

    Yin, Xue-Bo; Guo, Jun-Min; Wei, Wei

    2010-02-19

    The low concentrations of the auxins in samples of plant tissue necessitate the use of selective and sensitive techniques for their quantification. Herein a selective and sensitive method based on dual-cloud point extraction (dCPE) and tertiary amine labeling for the quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) by capillary electrophoresis-electrochemiluminescence (CE-ECL) is proposed. The procedure for dCPE included two cloud point processes with Triton X-114 as the extractant. The two auxins became hydrophobic in an acidic solution and were extracted into surfactant-rich phase after the first cloud point procedure. They were then back-extracted into the alkaline aqueous phase during the second cloud point step. The extracted auxins were reacted with 2-(2-aminoethyl)-1-methylpyrrolidine (AEMP) in acetonitrile that contained N,N'-dicyclohexylcarbodiimide and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine to produce their AEMP-derivatives. The two auxin-AEMP-derivatives were subjected into CE and detected by Ru(bpy)(3)(2+)-based ECL. The preconcentration factors for IAA and IBA with dCPE were 40.5 and 43.4, respectively. The on-capillary detection limits (S/N=3) were 2.5 and 2.8nM for IAA and IBA. This protocol presents a clear advantage in that it reduces the interference from the matrixes extensively and gives a high sensitivity for the detection of auxins. The proposed method was applied successfully to the detection of the two auxins in acacia tender leaves, buds, and bean sprout. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoe) marnierianum: role of auxin and ethylene.

    Science.gov (United States)

    Kulka, Richard G

    2008-01-01

    Epiphyllous plantlets develop on leaves of Bryophyllum marnierianum when they are excised from the plant. Shortly after leaf excision, plantlet shoots develop from primordia located near the leaf margin. After the shoots have enlarged for several days, roots appear at their base. In this investigation, factors regulating plantlet root development were studied. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) abolished root formation without markedly affecting shoot growth. This suggested that auxin transport from the plantlet shoot induces root development. Excision of plantlet apical buds inhibits root development. Application of indole-3-acetic acid (IAA) in lanolin at the site of the apical buds restores root outgrowth. Naphthalene acetic acid (NAA), a synthetic auxin, reverses TIBA inhibition of plantlet root emergence on leaf explants. Both of these observations support the hypothesis that auxin, produced by the plantlet, induces root development. Exogenous ethylene causes precocious root development several days before that of a control without hormone. Ethylene treatment cannot bypass the TIBA block of root formation. Therefore, ethylene does not act downstream of auxin in root induction. However, ethylene amplifies the effects of low concentrations of NAA, which in the absence of ethylene do not induce roots. Ag(2)S(2)O(3), an ethylene blocker, and CoCl(2), an ethylene synthesis inhibitor, do not abolish plantlet root development. It is therefore unlikely that ethylene is essential for root formation. Taken together, the experiments suggest that roots develop when auxin transport from the shoot reaches a certain threshold. Ethylene may augment this effect by lowering the threshold and may come into play when the parent leaf senesces.

  13. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  14. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    NARCIS (Netherlands)

    Dhonukshe, P.; Grigoriev, I.; Fischer, R.; Tominaga, M.; Robinson, D.G.; Hašek, J.; Paciorek, T.; Petrášek, J.; Seifertová, D.; Tejos, R.; Meisel, L.A.; Zažímalová, E.; Gadella (jr.), T.W.J.; Stierhof, Y.-D.; Ueda, T.; Oiwa, K.; Akhmanova, A.; Brock, R.; Spang, A.; Friml, J.

    2008-01-01

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this

  15. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes

    NARCIS (Netherlands)

    P. Dhonukshe (Pankaj); I. Grigoriev (Ilya); R. Fischer (Rainer); M. Tominaga (Motoki); D.G. Robinson (David); J. Hašek (Jiří); T. Paciorek (Tomasz); J. Petrášek (Jan); D. Seifertová (Daniela); R. Tejos (Ricardo); L.A. Meisel (Lee); E. Zažímalová (Eva); T.W.J. Gadella (Theodorus); Y.D. Stierhof; T. Ueda (Takashi); K. Oiwa (Kazuhiro); A.S. Akhmanova (Anna); R. Brock (Roland); A. Spang (Anne); J. Friml (Jiří)

    2008-01-01

    textabstractMany aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating

  16. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes.

    NARCIS (Netherlands)

    Dhonukshe, P.; Grigoriev, I.; Fischer, R.; Tominaga, M.; Robinson, D.G.; Hasek, J.; Paciorek, T.; Petrasek, J.; Seifertova, D.; Tejos, R.; Meisel, L.A.; Zazimalova, E.; Gadella, T.W.; Stierhof, Y.D.; Ueda, T.; Oiwa, K.; Akhmanova, A.; Brock, R.E.; Spang, A.; Friml, J.

    2008-01-01

    Many aspects of plant development, including patterning and tropisms, are largely dependent on the asymmetric distribution of the plant signaling molecule auxin. Auxin transport inhibitors (ATIs), which interfere with directional auxin transport, have been essential tools in formulating this

  17. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling.

    Science.gov (United States)

    Eysholdt-Derzsó, Emese; Sauter, Margret

    2017-09-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    Science.gov (United States)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  19. Maize AUXIN-BINDING PROTEIN 1 and AUXIN-BINDING PROTEIN 4 impact on leaf growth, elongation, and seedling responsiveness to auxin and light

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Čudejková, Mária; Zalabák, David; Hlobilová, Marta; Rolčík, Jakub; Pěnčík, Aleš; Bergougnoux, Véronique; Fellner, Martin

    2012-01-01

    Roč. 90, č. 10 (2012), s. 990-1006 ISSN 1916-2790 R&D Projects: GA MŠk(CZ) 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin-binding protein * growth Subject RIV: EF - Botanics Impact factor: 1.225, year: 2012

  20. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries

    Directory of Open Access Journals (Sweden)

    Massimiliano eCorso

    2016-02-01

    Full Text Available In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigour. This study investigates the effect of M4 on Cabernet Sauvignon (CS berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behaviour of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  1. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  2. Auxin effects on ion transport in Chara corallina.

    Science.gov (United States)

    Zhang, Suyun; de Boer, Albertus H; van Duijn, Bert

    2016-04-01

    The plant hormone auxin has been widely studied with regard to synthesis, transport, signaling and functions among the land plants while there is still a lack of knowledge about the possible role for auxin regulation mechanisms in algae with "plant-like" structures. Here we use the alga Chara corallina as a model to study aspects of auxin signaling. In this respect we measured auxin on membrane potential changes and different ion fluxes (K(+), H(+)) through the plasma membrane. Results showed that auxin, mainly IAA, could hyperpolarize the membrane potential of C. corallina internodal cells. Ion flux measurements showed that the auxin-induced membrane potential change may be based on the change of K(+) permeability and/or channel activity rather than through the activation of proton pumps as known in land plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Auxins reverse plant male sterility caused by high temperatures.

    Science.gov (United States)

    Sakata, Tadashi; Oshino, Takeshi; Miura, Shinya; Tomabechi, Mari; Tsunaga, Yuta; Higashitani, Nahoko; Miyazawa, Yutaka; Takahashi, Hideyuki; Watanabe, Masao; Higashitani, Atsushi

    2010-05-11

    With global warming, plant high temperature injury is becoming an increasingly serious problem. In wheat, barley, and various other commercially important crops, the early phase of anther development is especially susceptible to high temperatures. Activation of auxin biosynthesis with increased temperatures has been reported in certain plant tissues. In contrast, we here found that under high temperature conditions, endogenous auxin levels specifically decreased in the developing anthers of barley and Arabidopsis. In addition, expression of the YUCCA auxin biosynthesis genes was repressed by increasing temperatures. Application of auxin completely reversed male sterility in both plant species. These findings suggest that tissue-specific auxin reduction is the primary cause of high temperature injury, which leads to the abortion of pollen development. Thus, the application of auxin may help sustain steady yields of crops despite future climate change.

  4. Onset of cell division in maize germination: action of auxins

    International Nuclear Information System (INIS)

    de Jimenez, E.S.; Baiza, A.; Aguilar, R.

    1987-01-01

    Seed germination implies metabolic reactivation, synthesis of macromolecules and onset of cell division. During maize germination, meristematic tissues of embryos re-initiate cell division asynchronically. Since auxins are known to stimulate cell division, they asked how auxins might regulate cell cycle re-initiation. Embryonic tissues were incubated with and without auxins. A pulse of either 3 H-thymidine or 32 P-ortophosphate was given to the tissues. Mitotic indexes were determined and % of labeled mitotic cells recorded. Results indicated that meristematic cells re-initiate cell division either from G 1 or G 2 phases. Auxin stimulated differentially the cell division process of these cells. 32 P incorporation into cytoplasmic or nucleic histones was measured. Auxins stimulated this incorporation. Active turnover of histone phosphorylation occurred simultaneously to the cell division process. It is suggested that auxins might regulate the cell cycle by phosphorylation-dephosphorylation of histones

  5. Diamino moiety functionalized silica nanoparticles as pseudostationary phase in capillary electrochromatography separation of plant auxins.

    Science.gov (United States)

    Li, Hui; Ding, Guo-Sheng; Yue, Chun-Yue; Tang, An-Na

    2012-07-01

    A novel and simple method for the preparation of silica nanoparticles having surface-functionalized diamino moiety (dASNPs) was reported in our paper and characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetry techniques. To test this method practically, in this contribution we describe the enhanced separation of four plant auxins - indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (dCPAA), and 2-(1-naphthyl) acetic acid (NAA) - by capillary electrochromatography using diamino moiety functionalized silica nanoparticles as pseudostationary phase (PSP) in the running buffer. The effect of pH, buffer concentration, and diamino moiety functionalized silica nanoparticles concentration on the selectivity of separation was investigated. A combination of the nanoparticles and running buffer reversed the electroosmotic direction making possible the rapid and efficient separation of the auxins from the auxins migrated in the same direction with the EOF under optimum experimental conditions. A good resolution of four auxins was obtained within 5.5 min under optimum experimental conditions. The precision (RSD, n = 5) was in the range of 0.72-0.91% and 1.89-2.23% for migration time and peak area response, respectively. The detection limits were 0.48, 0.44, 0.46, and 0.42 μM for NAA, IBA, IAA, and dCPAA, respectively. Furthermore, the method was successfully tested for the determination of IAA in the grapes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss.

    Science.gov (United States)

    Alvarez, Alfonso; Montesano, Marcos; Schmelz, Eric; Ponce de León, Inés

    2016-01-01

    Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors.

  7. Activation of shikimate, phenylpropanoid, oxylipins and auxin pathways in Pectobacterium carotovorum elicitors-treated moss

    Directory of Open Access Journals (Sweden)

    Alfonso eAlvarez

    2016-03-01

    Full Text Available Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs and damage-associated molecular patterns (DAMPs are perceived by pattern recognition receptors (PRRs, leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins and auxin pathways upon treatment with P.c. carotovorum derived elicitors.

  8. Strong and long-lasting antinociceptive and anti-inflammatory conjugate of naturally occurring oleanolic acid and aspirin

    Directory of Open Access Journals (Sweden)

    Barbara Bednarczyk-Cwynar

    2016-07-01

    Full Text Available The conjugate 8 was obtained as a result of condensation of 3-hydroxyiminooleanolic acid morfolide (7 and aspirin in dioxane. Analgesic effect of OAO-ASA (8 for the range of doses 0.3 – 300.0 mg/kg (p.o. was performed in mice using a hot plate test. Anti-inflammatory activity was assessed on carrageenan-induced paw edema in rats for the same range of doses. The conjugate OAO-ASA (8 did not significantly change locomotor activity of mice, therefore sedative properties of the compound should be excluded. The compound 8 proved a simple, proportional, dose-dependent analgesic action and expressed strong anti-inflammatory activity showing a reversed U-shaped, dose-dependent relation with its maximum at 30.0 mg/kg. After its combined administration with morphine (MF, 5.0 mg/kg, s.c. the lowering of antinociceptive activity was found; however, the interaction with naloxone (NL, 3.0 mg/kg, s.c. did not affect the antinociceptive effect of OAO-ASA (8, therefore its opioid mechanism of action should be rather excluded. After combined administration with acetylsalicylic acid (ASA, 300.0 mg/kg, p.o. in hot-plate test, the examined compound 8 enhanced the antinociceptive activity in significant way. It also shows that rather the whole molecule is responsible for the antinociceptive and anti-inflammatory effect of the tested compound 8, however it cannot be excluded that the summarizing effect is produced by ASA released from the compound 8 and the rest of triterpene derivative. The occurrence of tolerance for triterpenic derivative 8 was not observed, since the analgesic and anti-inflammatory effects after chronic administration of the conjugate OAO-ASA (8 was on the same level as after its single treatment. It seemed that the anti-inflammatory mechanism of action of OAO-ASA (8 is not simple, even its chronic administration lowered both blood concentration of IL-6 and mRNA IL-6 expression. However, the effects of the conjugate OAO-ASA (8 on TNF-α level

  9. Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid.

    Science.gov (United States)

    Laube, Hendrik; Boden, Jana; Schneider, Roland

    2017-07-01

    During the production of bio-based bulk chemicals, such as lactic acid (LA), organic impurities have to be removed to produce a ready-to-market product. A capillary electrophoresis method for the simultaneous detection of LA and organic impurities in less than 10 min was developed. LA and organic impurities were detected using a direct UV detection method with micellar background electrolyte, which consisted of borate and sodium dodecyl sulfate. We investigated the effects of electrolyte composition and temperature on the speed, sensitivity, and robustness of the separation. A few validation parameters, such as linearity, limit of detection, and internal and external standards, were evaluated under optimized conditions. The method was applied for the detection of LA and organic impurities, including tyrosine, phenylalanine, and pyroglutamic acid, in samples from a continuous LA fermentation process from post-extraction tapioca starch and yeast extract.

  10. Catalytic performance of strong acid catalyst: Methyl modified SBA-15 loaded perfluorinated sulfonic acid obtained by the waste perfluorinated sulfonic acid ion exchange membrane

    Science.gov (United States)

    Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian

    2018-02-01

    Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.

  11. Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA

    Czech Academy of Sciences Publication Activity Database

    Brcko, A.; Pěnčík, Aleš; Magnus, V.; Prebeg, T.; Mlinaric, S.; Antunovic, J.; Lepeduš, H.; Cesar, V.; Strnad, Miroslav; Rolčík, Jakub; Salopek-Sondi, B.

    2012-01-01

    Roč. 31, č. 1 (2012), s. 63-78 ISSN 0721-7595 R&D Projects: GA AV ČR KAN200380801 Keywords : Auxin * Indole-3-acetic acid * Amide conjugates * Christmas rose * Helleborus niger L. * Flower and fruit development * Perianth greening * Peduncle elongation * Vascular system Subject RIV: EF - Botanics Impact factor: 1.990, year: 2012

  12. Development of 4-methoxy-7-nitroindolinyl (MNI)-caged auxins which are extremely stable in planta

    OpenAIRE

    Hayashi, Ken-ichiro; Kusaka, Naoyuki; Yamasaki, Soma; Zhao, Yunde; Nozaki, Hiroshi

    2015-01-01

    Phytohormone auxin is a master regulator in plant growth and development. Regulation of cellular auxin level plays a central role in plant development. Auxin polar transport system modulates an auxin gradient that determines plant developmental process in response to environmental conditions and developmental programs. Photolabile caged auxins allow optical control of artificial auxin gradients at cellular resolution. Especially, two-photon uncaging system achieves high spatiotemporal control...

  13. 5 prime -Azido-(3,6- sup 3 H sub 2 )-1-naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, R.; Feldwisch, J.; Schell, J.; Palme, K. (Max-Planck-Inst. fuer Zuechtungsforschung, Koeln (West Germany)); Boland, W. (Univ. Karlsruhe (West Germany))

    1992-01-15

    1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks carrier mediated auxin efflux from plant cells. To allow identification of the NPA receptor thought to be part of the auxin efflux carrier, the authors have synthesized a tritiated, photolabile NPA analogue, 5{prime}-azido-(3,6-{sup 3}H{sub 2})NPA (({sup 3}H{sub 2})N{sub 3}NPA). This analogue was used to identify NPA-binding proteins in fractions highly enriched for plasma membrane vesicles isolated from maize coleoptiles (Zea mays L.). Competition studies showed that binding of ({sup 3}H{sub 2})N{sub 3}NPA to maize plasma membrane vesicles was blocked by nonradioactive NPA but not by benzoic acid. After incubation of plasma membrane vesicles with ({sup 3}H{sub 2})N{sub 3}NPA and exposure to UV light, they observed specific photoaffinity labeling of a protein with an apparent molecular mass of 23 kDa. Pretreatment of the plasma membrane vesicles with indole-3-acetic acid or with the auxin-transport inhibitors NPA and 2,3,5-triiodobenzoic acid strongly reduced specific labeling of this protein. This 23-kDa protein was also labeled by addition of 5-azido-(7-{sup 3}H)indole-3-acetic acid to plasma membranes prior to exposure to UV light. The 23-kDa protein was solubilized from plasma membranes by 1% Triton X-100. The possibility that this 23-kDa polypeptide is part of the auxin efflux carrier system is discussed.

  14. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis f. sp. tritici involved in auxin biosynthesis and rust pathogenicity.

    Science.gov (United States)

    Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H

    2014-03-01

    The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.

  15. The pH of very dilute solutions of strong acids – a calculation for a medical or biomedical class involving the application of simple numerical skills

    OpenAIRE

    Peter Michael Barling

    2012-01-01

    This paper presents the solution to a calculationof the pH of a very dilute solution of a strong acid orbase, taking into account the effect of the hydroniumor hydroxyl ions generated from the ionisation of thestrong acid or base on the ionisation of water, as asecond very weak acid. To be solved successfully, thiscalculation involves the concepts of conservation ofcharge, pH and the application of the general solutionto a quadratic equation. Such an exercise involves theapplication of skills...

  16. Basipetal auxin transport is required for gravitropism in roots of Arabidopsis

    Science.gov (United States)

    Rashotte, A. M.; Brady, S. R.; Reed, R. C.; Ante, S. J.; Muday, G. K.; Davies, E. (Principal Investigator)

    2000-01-01

    Auxin transport has been reported to occur in two distinct polarities, acropetally and basipetally, in two different root tissues. The goals of this study were to determine whether both polarities of indole-3-acetic acid (IAA) transport occur in roots of Arabidopsis and to determine which polarity controls the gravity response. Global application of the auxin transport inhibitor naphthylphthalamic acid (NPA) to roots blocked the gravity response, root waving, and root elongation. Immediately after the application of NPA, the root gravity response was completely blocked, as measured by an automated video digitizer. Basipetal [(3)H]IAA transport in Arabidopsis roots was inhibited by NPA, whereas the movement of [(14)C]benzoic acid was not affected. Inhibition of basipetal IAA transport by local application of NPA blocked the gravity response. Inhibition of acropetal IAA transport by application of NPA at the root-shoot junction only partially reduced the gravity response at high NPA concentrations. Excised root tips, which do not receive auxin from the shoot, exhibited a normal response to gravity. The Arabidopsis mutant eir1, which has agravitropic roots, exhibited reduced basipetal IAA transport but wild-type levels of acropetal IAA transport. These results support the hypothesis that basipetally transported IAA controls root gravitropism in Arabidopsis.

  17. Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Péret, Benjamin; Porco, Silvana; Sairanen, Ilkka; Ljung, Karin; Bennett, Malcolm; King, John

    2015-02-07

    Emergence of new lateral roots from within the primary root in Arabidopsis has been shown to be regulated by the phytohormone auxin, via the expression of the auxin influx carrier LAX3, mediated by the ARF7/19 IAA14 signalling module (Swarup et al., 2008). A single cell model of the LAX3 and IAA14 auxin response was formulated and used to demonstrate that hysteresis and bistability may explain the experimentally observed 'all-or-nothing' LAX3 spatial expression pattern in cortical cells containing a gradient of auxin concentrations. The model was tested further by using a parameter fitting algorithm to match model output with qRT-PCR mRNA expression data following exogenous auxin treatment. It was found that the model is able to show good agreement with the data, but only when the exogenous auxin signal is degraded over time, at a rate higher than that measured in the experimental medium, suggesting the triggering of an endogenous auxin homeostasis mechanism. Testing the model over a more physiologically relevant range of extracellular auxin shows bistability and hysteresis still occur when using the optimised parameters, providing the rate of LAX3 active auxin transport is sufficiently high relative to passive diffusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The circadian clock regulates auxin signaling and responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Michael F Covington

    2007-08-01

    Full Text Available The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the phytohormone auxin plays a similarly far-reaching role in the spatial regulation of plant growth and development. Went and Thimann noted 70 years ago that plant sensitivity to auxin varied according to the time of day, an observation that they could not explain. Here we present work that explains this puzzle, demonstrating that the circadian clock regulates auxin signal transduction. Using genome-wide transcriptional profiling, we found many auxin-induced genes are under clock regulation. We verified that endogenous auxin signaling is clock regulated with a luciferase-based assay. Exogenous auxin has only modest effects on the plant clock, but the clock controls plant sensitivity to applied auxin. Notably, we found both transcriptional and growth responses to exogenous auxin are gated by the clock. Thus the circadian clock regulates some, and perhaps all, auxin responses. Consequently, many aspects of plant physiology not previously thought to be under circadian control may show time-of-day-specific sensitivity, with likely important consequences for plant growth and environmental responses.

  19. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    Science.gov (United States)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  20. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, Bartley B. [Univ. of California, Berkeley, CA (United States)

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF2, ThO2, YDT(0.85ThO2-0.15YO1.5), and LDT(0.85ThO2- 0.15LaO1.5) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  1. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  2. Points of regulation for auxin action

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Napier, R. M.

    2003-01-01

    Roč. 21, č. 7 (2003), s. 625-634 ISSN 0721-7714 R&D Projects: GA MŠk LN00A081 Grant - others:EU INCO COPERNICUS(XE) ERBIC15 CT98 0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : Plant hormone * Homeostasis * Auxin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.423, year: 2003

  3. Effect of Cd2+ and Cd2+/auxin mixtures on lipid monolayers - Model membrane studies on the role of auxins in phytoremediation of metal ions from contaminated environment.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Mach, Marzena; Węder, Karolina; Pająk, Katarzyna; Wydro, Paweł

    2017-06-01

    In this work Langmuir monolayer experiments were performed to analyze the effect of Cd 2+ ions and their mixtures with synthetic auxin (1-naphthaleneacetic acid - NAA) on lipid films. These investigations were motivated by the fact that auxins act effectively as the agents improving the removal of metal ions from contaminated water and soil by plants (phytoextraction), and although their mechanism of action in this area is still unclear, it was suggested that it can be membrane-related. The experiments were done for one component (1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC; 1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC; 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) - DPPG) monolayers and mixed (DPPG/DOPC and DPPG/DPPC) films treated as model of plant leaves membranes. The monolayer properties were analyzed based on the surface pressure-area isotherms obtained during film compression, stability measurements and Brewster angle microcopy studies. The collected results together with the data presented in literature evidenced that both metal ions and auxins modify lipid system properties and by using them in a combination it is possible to weaken the influence of sole metal ions on membrane organization. This seems to be in agreement with the hypothesis that the role of plant growth regulators in increasing phytoextraction effectiveness may be membrane-related. However, further experiments are required to find possible correlations between the type and concentration of metal ion, composition of membrane or structural elements in auxin molecule and observed alterations in membrane properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparison of the Electrochemical Behavior of Ti and Nanostructured Ti-Coated AISI 304 Stainless Steel in Strongly Acidic Solutions

    Science.gov (United States)

    Attarzadeh, Farid Reza; Elmkhah, Hassan; Fattah-Alhosseini, Arash

    2017-02-01

    In this study, the electrochemical behaviors of pure titanium (Ti) and nanostructured (NS) Ti-coated AISI 304 stainless steel (SS) in strongly acidic solutions of H2SO4 were investigated and compared. A type of physical vapor deposition method, cathodic arc evaporation, was applied to deposit NS Ti on 304 SS. Scanning electron microscope and X-ray diffraction were used to characterize surface coating morphology. Potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky (M-S) analysis were used to evaluate the passive behavior of the samples. Electrochemical measurements revealed that the passive behavior of NS Ti coating was better than that of pure Ti in 0.1 and 0.01 M H2SO4 solutions. M-S analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and the deposition method did not affect the semiconducting type of passive films formed on the coated samples. In addition, this analysis showed that the NS Ti coating had lower donor densities. Finally, all electrochemical tests showed that the passive behavior of the Ti-coated samples was superior, mainly due to the formation of thicker, yet less defective passive films.

  5. A strategy for the preparation of thioantimonates based on the concept of weak acids and corresponding strong bases.

    Science.gov (United States)

    Anderer, Carolin; Delwa de Alarcón, Natalie; Näther, Christian; Bensch, Wolfgang

    2014-12-15

    By following a new synthetic approach, which is based on the in situ formation of a basic medium by the reaction between the strong base Sb(V)S4 (3-) and the weak acid H2 O, it was possible to prepare three layered thioantimonate(III) compounds of composition [TM(2,2'-bipyridine)3 ][Sb6 S10 ] (TM=Ni, Fe) and [Ni(4,4'-dimethyl-2,2'-bipyridine)3 ][Sb6 S10 ] under hydrothermal conditions featuring two different thioantimonate(III) network topologies. The antimony source, Na3 SbS4 ⋅ 9 H2 O, undergoes several decomposition reactions and produces the Sb(III) S3 species, which condenses to generate the layered anion. The application of transition-metal complexes avoids crystallization of dense phases. The reactions are very fast compared to conventional hydrothermal/solvothermal syntheses and are much less sensitive to changes of the reaction parameters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Miniaturized molecularly imprinted matrix solid-phase dispersion coupled with high performance liquid chromatography for rapid determination of auxins in orange samples.

    Science.gov (United States)

    Yan, Hongyuan; Wang, Fang; Wang, Hui; Yang, Gengliang

    2012-09-21

    A simple, convenient and high selective miniaturized molecularly imprinted matrix solid-phase dispersion (mini-MI-MSPD) technique using l-tryptophan-imprinted polymers as sorbents was proposed for simultaneous extraction of four auxins (indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA)) from orange samples coupled with high performance liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized using l-tryptophan as dummy template showed high affinity and selectivity to auxins, and so they were applied as the specific dispersant of MSPD to simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.02-2.00 μg g(-1) and the average recoveries of four auxins at three spiked levels ranged from 87.6% to 104.5% with the relative standard deviation (RSD) ≤4.4%. The presented mini-MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion and homogenization in a single step and the advantages of MIPs for high affinity and selectivity towards four auxins, which could be applied to the determination of auxins in complicated vegetal samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

    Science.gov (United States)

    Böttcher, Christine; Boss, Paul K.; Davies, Christopher

    2011-01-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes. PMID:21543520

  8. Time course and auxin sensitivity of cortical microtubule reorientation in maize roots

    Science.gov (United States)

    Blancaflor, E. B.; Hasenstein, K. H.

    1995-01-01

    The kinetics of MT [microtubule] reorientation in primary roots of Zea mays cv. Merit, were examined 15, 30, 45, and 60 min after horizontal positioning. Confocal microscopy of longitudinal tissue sections showed no change in MT orientation 15 and 30 min after horizontal placement. However, after 45 and 60 min, MTs of the outer 4-5 cortical cell layers along the lower side were reoriented. In order to test whether MT reorientation during graviresponse is caused by an auxin gradient, we examined the organization of MTs in roots that were incubated for 1 h in solutions containing 10(-9) to 10(-6) M IAA. IAA treatment at 10(-8) M or less showed no major or consistent changes but 10(-7) M IAA resulted in MT reorientation in the cortex. The auxin effect does not appear to be acid-induced since benzoic acid (10(-5) M) did not cause MT reorientation. The region closest to the maturation zone was most sensitive to IAA. The data indicate that early stages of gravity induced curvature occur in the absence of MT reorientation but sustained curvature leads to reoriented MTs in the outer cortex. Growth inhibition along the lower side of graviresponding roots appears to result from asymmetric distribution of auxin following gravistimulation.

  9. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa under Phytohormone Stimuli and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-05-01

    Full Text Available The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related gene pairs together with organ/tissue specific expression revealed possible function gaining and function losing events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments.

  10. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis.

    Science.gov (United States)

    Chen, Wei Wei; Yang, Jian Li; Qin, Cheng; Jin, Chong Wei; Mo, Ji Hao; Ye, Ting; Zheng, Shao Jian

    2010-10-01

    In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.

  11. Effects of different concentarions of auxins on rooting and root ...

    African Journals Online (AJOL)

    The effect of auxins and their different concentrations on rooting and root characters of air and ground layers of jojoba was assessed at Maxima Estate Private Limited Farm, Hyderabad, India in 1998. Auxins IBA, NAA and their mixture (IBA + NAA) at concentrations of 1000, 2000, 4000 and 6000 ppm with lanolin paste were ...

  12. The Use of Auxin Quantification for Understanding Clonal Tree Propagation

    Directory of Open Access Journals (Sweden)

    Carlos A. Stuepp

    2017-01-01

    Full Text Available Qualitative and quantitative hormone analyses have been essential for understanding the metabolic, physiological, and morphological processes that are influenced by plant hormones. Auxins are key hormones in the control of many aspects of plant growth and development and their endogenous levels are considered critical in the process of adventitious root induction. Exogenous auxins are used extensively in the clonal propagation of tree species by cuttings or tissue culture. Understanding of auxin effects has advanced with the development of increasingly accurate methods for auxin quantification. However, auxin analysis has been challenging because auxins typically occur at low concentrations, while compounds that interfere with their detection often occur at high concentrations, in plant tissues. Interference from other compounds has been addressed by extensive purification of plant extracts prior to auxin analysis, although this means that quantification methods have been limited by their expense. This review explores the extraction, purification, and quantification of auxins and the application of these techniques in developing improved methods for the clonal propagation of forestry trees.

  13. The Dynamics of Auxin Transport in Tobacco Cells

    Czech Academy of Sciences Publication Activity Database

    Zažímalová, Eva; Petrášek, Jan; Morris, David

    special issue, - (2003), s. 207-224 ISSN 1310-4586 R&D Projects: GA MŠk LN00A081 Grant - others:INCO Copernicus(XE) ERBIC 15 CT98 0118 (to E.Z.) Institutional research plan: CEZ:AV0Z5038910 Keywords : Auxin carrier * Auxin transport * Brefeldin Subject RIV: EB - Genetics ; Molecular Biology

  14. Optimization of suitable auxin application in a recalcitrant woody ...

    African Journals Online (AJOL)

    A study was carried out to determine and optimize suitable auxin for callus induction in Eurycoma longifolia. The induction of callus cultures using leaf, petiole, rachis, stem, tap root, fibrous root, cotyledon and embryo segments were successfully achieved by using various auxins such as 2,4-D, IAA, NAA, picloram and ...

  15. In-silico identification and phylogenetic analysis of auxin efflux ...

    African Journals Online (AJOL)

    ufuoma

    2014-01-08

    Jan 8, 2014 ... 3Departent di Biologia Vegetale, Viale Mattioli, 10125, University of Turin, Italy. 4Istituto Agrario San Michele all'Adige, Research and Innovation Centre, Foundation ..... research of this plant at the molecular level. Auxin efflux carrier genes identified in this report will help to understand the role of auxin ...

  16. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  17. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice

    Directory of Open Access Journals (Sweden)

    Huwei Sun

    2017-12-01

    Full Text Available Fe deficiency (-Fe is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA and NO levels in roots, and the responses of root growth in rice to different levels of Fe supply were investigated using wild type (WT, ospin1b and osnia2 mutants. -Fe promoted LR formation but inhibited seminal root elongation. IAA levels, [3H] IAA transport, and expression levels of PIN1a-c genes in roots were reduced under -Fe, suggesting that polar auxin transport from shoots to roots was decreased. Application of IAA to -Fe seedlings restored seminal root length, but not LR density, to levels similar to those under normal Fe (+Fe, and the seminal root length was shorter in two ospin1b mutants relative to WT under +Fe, but not under -Fe, confirming that auxin transport participates in -Fe-inhibited seminal root elongation. Moreover, -Fe-induced LR density and -Fe-inhibited seminal root elongation paralleled NO production in roots. Interestingly, similar NO accumulation and responses of LR density and root elongation were observed in osnia2 mutants compared to WT, and the higher expression of NOA gene under -Fe, suggesting that -Fe-induced NO was generated via the NO synthase-like pathway rather than the nitrate reductase pathway. However, IAA could restore the functions of NO in inhibiting seminal root elongation, but did not replace the role of NO-induced LR formation under -Fe. Overall, our findings suggested that NO functions downstream of auxin in regulating LR formation; NO-inhibited seminal root elongation by decreasing meristem activity in root tips under -Fe, with the involvement of auxin.

  18. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron

    International Nuclear Information System (INIS)

    Suttle, J.C.

    1988-01-01

    The effect of the defoliant thidiazuron (TDZ) on basipetal auxin transport in petiole segments isolated from cotton (Gossypium hirsutum L. cv LG102) seedlings was examined using the donor/receiver agar block technique. Treatment of intact seedlings with TDZ at concentrations of 1 micromolar or greater resulted in a dose-dependent inhibition of 14 C-IAA transport in petiole segment isolated 1 or 2 days after treatment. Using 100 micromolar TDZ, the inhibition was detectable 19 hours after treatment and was complete by 27 hours. Both leaves and petiole segments exhibited a marked increase in ethylene production following treatment with TDZ at concentrations of 0.1 micromolar or greater. The involvement of ethylene in this TDA response was evaluated by examining the effects of two inhibitors of ethylene action: silver thiosulfate, 2,5-norbornadiene. One day after treatment, both inhibitors effectively antagonized the TDZ-induced inhibition of auxin transport. Two days after TDZ treatment both inhibitors were ineffective. The decrease in IAA transport in TDZ treated tissues was associated with increased metabolism of IAA. The transport of 14 C-2,4-dichlorophenoxyacetic acid was also inhibited by TDZ treatment. This inhibition was not accompanied by increased metabolism. Incorporation of TDZ into the receiver blocks had no effect on auxin transport. The ability of the phytotropin N-1-naphthylphthalamic acid to stimulate IAA uptake from a bathing medium was reduced in TDZ-treated tissues. This reduction is thought to reflect a decline in the auxin efflux system following TDZ treatment

  19. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  20. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis.

    Science.gov (United States)

    Nishimura, Takeshi; Hayashi, Ken-Ichiro; Suzuki, Hiromi; Gyohda, Atsuko; Takaoka, Chihiro; Sakaguchi, Yusuke; Matsumoto, Sachiko; Kasahara, Hiroyuki; Sakai, Tatsuya; Kato, Jun-Ichi; Kamiya, Yuji; Koshiba, Tomokazu

    2014-02-01

    Indole-3-acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole-3-pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5-(4-chlorophenyl)-4H-1,2,4-triazole-3-thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC-expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1-His suggested that yucasin strongly inhibited YUC1-His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over-expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss-of-function mutant of TAA1, sav3-2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l-kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin-treated sav3-2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  1. Auxin and ethylene regulation of diameter growth in trees.

    Science.gov (United States)

    Savidge, R A

    1988-12-01

    Recent studies on the phytohormonal regulation of seasonal cell-division activity in the cambium, primary-wall radial expansion of cambial derivatives, differentiation of xylem cells, and growth of the cortex in forest trees of the north temperate zone are reviewed. Indol-3-ylacetic acid (IAA, auxin) has been characterized by combined gas chromatography-mass spectrometry (GC-MS) in the cambial region of Abies balsamea, Pinus densiflora, Pinus sylvestris and Quercus robur. All of the evidence supports the hypothesis that developing leaves and extending shoots are primary sources of IAA. The rate of ethylene emanation varies among conifer species when adjoining phloem and cambial tissues are incubated in vitro. The cambium from young cuttings of Abies balsamea produces more ethylene than that from older cuttings. Ethylene production by seven-year-old Abies balsamea cambium is substantially increased in vitro when the tissue is provided with exogenous 1-aminocyclopropane-1-carboxylic acid and IAA. In response to elevated ethylene concentrations, cortex growth is accelerated in both hardwood and conifer seedlings. Ethrel (2-chloroethylphosphonic acid) increases ray size and ray-cell number and promotes traumatic resin-canal development in xylem. In Ulmus americana, endogenous ethylene concentrations are inversely correlated with cambial activity. Ethylene decreases vessel diameter in Acer negundo, Acer platanoides and Ulmus americana. Several studies suggest that ethylene has a role in regulating reaction-wood formation in both conifers and hardwoods.

  2. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris).

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-09-01

    The possible interaction of the plant hormones auxin and ethylene and the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing bacteria on ethylene production in canola (Brassica campestris) in the presence of inhibitory concentrations of growth regulators were investigated. The effects of auxin (indole-3-acetic acid and 2,4-dichlorophenoxy acetic acid), auxin transport inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid, ethylene precursor 1-aminocyclopropane-1-carboxylate and ethylene synthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine hydrochloride on root elongation were concentration dependent. Exogenous addition of growth regulators influences the enzyme activities of ethylene production and we have presented here evidences that support the hypothesis that inhibitory effects of auxin on root elongation are independent of ethylene. Additionally, we have proved that inoculation of ACC deaminase containing Methylobacterium oryzae sequester ACC exuded from roots and hydrolyze them lowering the concentration of ACC in root exudates. However, the inhibitory actions of exogenous additions of auxins could not be ameliorated by bacterial inoculation that reduces ethylene concentration in canola seedlings.

  3. A modular analysis of the auxin signalling network.

    Directory of Open Access Journals (Sweden)

    Etienne Farcot

    Full Text Available Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF and Aux/IAA (IAA transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants.

  4. Interactions of auxinic compounds on a Ca2+ signaling and root growth in Arabidopsis thaliana

    Science.gov (United States)

    Auxinic-like compounds have been widely used as weed control agents. Over the years, the mode of action of auxinic herbicides have been elucidated, but most studies thus far have focused on their effects on later stages of plant growth. Here, we show that some select auxins and auxinic-like herbicid...

  5. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    Science.gov (United States)

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes. © 2011 Blackwell Publishing Ltd.

  6. Quantitative physicochemical analysis of acid-base balance and clinical utility of anion gap and strong ion gap in 806 neonatal calves with diarrhea.

    Science.gov (United States)

    Trefz, F M; Constable, P D; Lorenz, I

    2015-01-01

    Acid-base abnormalities in neonatal diarrheic calves can be assessed by using the Henderson-Hasselbalch equation or the simplified strong ion approach which use the anion gap (AG) or the strong ion gap (SIG) to quantify the concentration of unmeasured strong anions such as D-lactate. To determine and compare the clinical utility of AG and SIG in quantifying the unmeasured strong anion charge in neonatal diarrheic calves, and to examine the associations between biochemical findings and acid-base variables by using the simplified strong ion approach. We hypothesized that the SIG provides a more accurate prediction of unmeasured strong anions than the AG. Eight hundred and six neonatal diarrheic calves admitted to a veterinary teaching hospital. Retrospective study utilizing clinicopathologic findings extracted from medical records. Hyperphosphatemia was an important predictor of venous blood pH. Serum inorganic phosphorus and plasma D-lactate concentrations accounted for 58% of the variation in venous blood pH and 77% of the variation in AG and SIG. Plasma D- and total lactate concentrations were slightly better correlated with SIG (rs = -0.69; -0.78) than to AG (rs = 0.63; 0.74). Strong ion gap is slightly better at quantifying the unmeasured strong anion concentration in neonatal diarrheic calves than AG. Phosphorus concentrations should be included as part of the calculation of Atot when applying the simplified strong ion approach to acid-base balance to critically ill animals with hyperphosphatemia. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. Timing of ripening initiation in grape berries and its relationship to seed content and pericarp auxin levels.

    Science.gov (United States)

    Gouthu, Satyanarayana; Deluc, Laurent G

    2015-02-12

    Individual berries in a grape (Vitis vinifera L.) cluster enter the ripening phase at different times leading to an asynchronous cluster in terms of ripening. The factors causing this variable ripening initiation among berries are not known. Because the influence via hormonal communication of the seed on fruit set and growth is well known across fruit species, differences in berry seed content and resultant quantitative or qualitative differences in the hormone signals to the pericarp likely influence the relative timing of ripening initiation among berries of the cluster. At the time of the initiation of cluster ripening (véraison), underripe green berries have higher seed content compared to the riper berries and there is a negative correlation between the seed weight-to-berry weight ratio (SB) and the sugar level in berries of a cluster. Auxin levels in seeds relative to the pericarp tissues are two to 12 times higher at pre-ripening stages. The pericarp of berries with high-SB had higher auxin and lower abscisic acid (ABA) levels compared to those with low-SB from two weeks before véraison. In the prevéraison cluster, the expression of auxin-response factor genes was significantly higher in the pericarp of high-SB berries and remained higher until véraison compared to low-SB berries. The expression level of auxin-biosynthetic genes in the pericarp was the same between both berry groups based upon similar expression activity of YUC genes that are rate-limiting factors in auxin biosynthesis. On the other hand, in low-SB berries, the expression of ABA-biosynthetic and ABA-inducible NCED and MYB genes was higher even two weeks before véraison. Differences in the relative seed content among berries plays a major role in the timing of ripening initiation. Towards the end of berry maturation phase, low and high levels of auxin are observed in the pericarp of low- and high-SB berries, respectively. This results in higher auxin-signaling activity that lasts longer

  8. The impact of auxins used in assisted phytoextraction of metals from the contaminated environment on the alterations caused by lead(II) ions in the organization of model lipid membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Sroka, Aleksandra; Jabłońska, Klaudia

    2016-07-01

    Auxins are successfully used to improve phytoextraction efficiency of metal ions from the contaminated environment, however, the mechanism of their activity in this field is not explained. Auxins are known to exert various biochemical alterations in the plant membranes and cells, but their activity involves also direct interactions with lipids leading to changes in membrane organization. Following the suggestion that the auxins-induced modifications in membrane properties alleviate toxic effect of metal ions in this paper we have undertaken the comparative studies on the effect of metal ions and metal ions/auxins mixtures on model membrane systems. The experiments were done on lipid monolayers differing in their composition spread on water subphase and on Pb(2+), Indole-3-acetic acid (IAA), 1-Naphthaleneacetic acid (NAA) and Pb(2+)/IAA and Pb(2+)/NAA water solutions. The analysis of the collected data suggests that metal ions and auxins can change fluidity of the lipid systems and weaken the interactions between monolayer components. This manifested in the increase of the mean area per molecule and the excess area per molecule values for the films on Pb(2+), auxins as well as Pb(2+)/auxin solutions as compared to the values on pure water subphase. However, the presence of auxin in the mixture with lead(II) ions makes the alterations induced by sole metal ions weaker. This effect was more pronounced for the membranes of a higher packing. Thus it was proposed that auxins may enhance phytoextraction of metal ions by weakening their destabilizing effect on membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells

    Science.gov (United States)

    Long, Joanne C.; Zhao, Wei; Rashotte, Aaron M.; Muday, Gloria K.; Huber, Steven C.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (D-Glc and D-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented.

  10. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  11. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    International Nuclear Information System (INIS)

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7- 3 H]IAA([ 3 H]N 3 IAA), in a manner similar to the accumulation of [ 3 H]IAA. The association of the [ 3 H]N 3 IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [ 3 H]N 3 IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO 4 /PAGE and fluorography. When the reaction temperature was lowered to -196 degree C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors

  12. Changes in auxin activity in tumourous and normal tobacco calluses treated with morphactin IT 3233

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available The addition of morphactin IT 3233 in 1-40 mg/dm3 concentrations to the medium inhibited the growth in vitro of normal and tumourous tobacco calluses. The auxin activity (estimated by the Avena coleoptile straight growth test of the acid ether extracts from these tissues increased. The activity of zone I (Rf 0.2-0.4, 0.5, solvent system: butanol:water:ammonia 10:10:1 in normal tissues increased more intensively than that of zone II (Rf 0.6-0.8, 0.9. In tumourous tissues, however, these changes were smaller and they concerned merely zone I of auxin activity (Rf 0.0-0.5. It seems that the mechanism of morphactin activity in both kinds of tissue is different. It may be supposed that the excessive accumulation of auxins induces growth inhibition of tissues. A previously found increase in the activity of IAA-oxidase influenced by morphactin might be considered as an adaptation to a higher level of IAA.

  13. A high-throughput method for the quantitative analysis of auxins.

    Science.gov (United States)

    Barkawi, Lana S; Tam, Yuen-Yee; Tillman, Julie A; Normanly, Jennifer; Cohen, Jerry D

    2010-09-01

    Auxin measurements in plants are critical to understanding both auxin signaling and metabolic homeostasis. The most abundant natural auxin is indole-3-acetic acid (IAA). This protocol is for the precise, high-throughput determination of free IAA in plant tissue by isotope dilution analysis using gas chromatography-mass spectrometry (GC-MS). The steps described are as follows: harvesting of plant material; amino and polymethylmethacrylate solid-phase purification followed by derivatization with diazomethane (either manual or robotic); GC-MS analysis; and data analysis. [¹³C₆]IAA is the standard used. The amount of tissue required is relatively small (25 mg of fresh weight) and one can process more than 500 samples per week using an automated system. To extract eight samples, this procedure takes ∼3 h, whether performed manually or robotically. For processing more than eight samples, robotic extraction becomes substantially more time efficient, saving at least 0.5 h per additional batch of eight samples.

  14. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis

    OpenAIRE

    Sakamoto, Tomoaki; Fujioka, Shozo

    2013-01-01

    Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription f...

  15. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .3. EFFECT OF SULFOLANE ON THE EQUILIBRIUM CONVERSION

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium

  16. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays

    Science.gov (United States)

    Young, L. M.; Evans, M. L.; Hertel, R.

    1990-01-01

    We compared the kinetics of auxin redistribution across the caps of primary roots of 2-day-old maize (Zea mays, cv Merit) seedlings with the time course of gravitropic curvature. [3H] indoleacetic acid was applied to one side of the cap in an agar donor and radioactivity moving across the cap was collected in an agar receiver applied to the opposite side. Upon gravistimulation the roots first curved upward slightly, then returned to the horizontal and began curving downward, reaching a final angle of about 67 degrees. Movement of label across the caps of gravistimulated roots was asymmetric with preferential downward movement (ratio downward/upward = ca. 1.6, radioactivity collected during the 90 min following beginning of gravistimulation). There was a close correlation between the development of asymmetric auxin movement across the root cap and the rate of curvature, with both values increasing to a maximum and then declining as the roots approached the final angle of curvature. In roots preadapted to gravity (alternate brief stimulation on opposite flanks over a period of 1 hour) the initial phase of upward curvature was eliminated and downward bending began earlier than for controls. The correlation between asymmetric auxin movement and the kinetics of curvature also held in comparisons between control and preadapted roots. Both downward auxin transport asymmetry and downward curvature occurred earlier in preadapted roots than in controls. These findings are consistent with suggestions that the root cap is not only the site of perception but also the location of the initial redistribution of effectors that ultimately leads to curvature.

  17. The role of auxin in temperature regulated hypocotyl elongation

    Energy Technology Data Exchange (ETDEWEB)

    Estelle, Mark [Univ. of California, San Diego, CA (United States)

    2015-10-02

    The major goal of this project was to determine how auxin mediates the response of Arabidopsis seedlings to increased ambient temperature. Previous studies have shown that the response is due, in part, to increased auxin biosynthesis via the IPA auxin biosynthetic pathway. This effect is related to increased transcription of genes that encode enzymes in this pathway. However, during the last year we have shown that transcription of key auxin regulated genes increases within minutes of a shift to elevated temperature. This response is probably to rapid to be explained by changes in the levels of auxin biosynthetic enzymes. Interestingly, we have recently discovered that temperature shift is associated with a rapid increase in the level of the auxin co-receptor TIR1. This change appears is the result of increased stability of the protein. At the same time, we have discovered that stability of TIR1 is dependent on the chaperone HSP9o and its co-chaperone SGT1. By using the specific HSP90 inhibitor GDA, we show that HSP90 is required for the temperature dependent change in TIR1 levels. We have also shown that HSP90 and SGT1 interact directly with TIR1. Our results also lead us to propose a new model in which the plant responds rapidly to changes in ambient temperature by directly regulating the TIR1/AFB receptor system, thus modulating the auxin signaling pathway.

  18. The PIN-FORMED (PIN) protein family of auxin transporters.

    Science.gov (United States)

    Krecek, Pavel; Skupa, Petr; Libus, Jirí; Naramoto, Satoshi; Tejos, Ricardo; Friml, Jirí; Zazímalová, Eva

    2009-01-01

    The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies.

  19. [Growth-regulating activity of N-benzyl- and O-benzyl-containing compounds belonging to a new group of synthetic analogues of natural auxins].

    Science.gov (United States)

    Gafurov, R G; Makhmutova, A A

    2005-01-01

    We studied the effect of benzylamine, benzyl alcohol, and their derivatives (constituting a new group of synthetic analogues of natural auxins) on rooting of leaf and stem cuttings, rhizogenesis and growth of barley plantlets and tomato seedlings, and tomato plant productivity. These compounds promoted rooting of leaf and stem bean cuttings, increased rhizogenic activity, and stimulated the development of root systems in barley and tomato seeds. The activity of the compounds studied was similar to that of standard substances (3-indoleacetic acid potassium salt and 2-naphthylacetic acid). The benzyl group attached to the oxygen or nitrogen atom was shown to be the smallest molecular structure which provided auxin activity of the compounds. Derivatives of benzyl alcohol containing the quaternary ammonium fragment possessed auxin and anti-gibberellin (retardant) properties. They were selected by chemical synthesis of low-molecular-weight bioregulators with desired properties (a combination of chemical fragments with complementary physiological activity in the molecule). Auxin and anti-gibberellin (retardant) activities produced a synergistic effect. Germination of seeds treated with these compounds was accompanied by a more significant increase in the weight and length of roots (compared to standard auxins). The rate of seedling establishment reached 100%. The development of fruits and accumulation of reserve nutrient substances were synchronized and accelerated after spraying vegetating plants with solutions of studied compounds. The synergistic effect underlay a significant increase in the amount and quality of the crop (e.g., tomatoes).

  20. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH

    OpenAIRE

    Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete

    2013-01-01

    Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions.

  2. Natural vs synthetic auxin: studies on the interactions between plant hormones and biological membrane lipids.

    Science.gov (United States)

    Flasiński, Michał; Hąc-Wydro, Katarzyna

    2014-08-01

    Analysis of the interactions between two representatives of plant hormones: synthetic (1-naphthaleneacetic acid, NAA) as well as natural (indole-3-acetic acid, IAA) and phospholipids occurring in biological membrane of both plant and animal cells was the subject of present studies. The aim of undertaken experiments was to elucidate the problem of direct influence of these plant growth regulators on phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in monolayers at the air/water solution interface. The studied phospholipids differ not only as regards the structure of polar head-groups but also in the length of hydrophobic chains as well as their saturation degree. These differences result also in the main properties and functions of these phospholipids in biomembranes. The analysis of the results was based on the characteristics of the surface pressure (π)--area (A) isotherms registered for monolayers spread on the subphase containing plant hormone and as a reference on the surface of pure water. Moreover, as a complementary technique, Brewster angle microscopy was applied for the direct visualization of the investigated surface films. The obtained results revealed that auxins effectively influence phospholipids monolayers, regardless of the lipid structure, at the concentration of 10(-4)M. It was found that for this concentration, the influence of auxins was visibly larger in the case of PCs as compared to PEs. On the other hand, in the case of auxins solution of ≤ 10(-5)M, the observed trend was opposite. Generally, our studies showed that the natural plant hormone (IAA) interacts with the investigated lipid monolayers stronger than its synthetic derivative (NAA). The reason of these differences connects with the steric properties of both auxins; namely, the naphthalene ring of NAA molecule occupies larger space than the indole system of IAA. Therefore molecules of the latter compound penetrate easier into the region of phospholipids׳ polar head

  3. Auxins action on Glycine max secretory phospholipase A2 is mediated by the interfacial properties imposed by the phytohormones.

    Science.gov (United States)

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-07-01

    Secretory phospholipase A2 (sPLA2) are soluble enzymes that catalyze the conversion of phospholipids to lysophospholipids and free fatty acids at membrane interfaces. The effect of IAA and IPA auxins over the activity of recombinant sPLA2 isoforms from Glycine max was studied using membrane model systems including mixed micelles and Langmuir lipid monolayers. Both phytohormones stimulate the activity of both plant sPLA2 using DLPC/Triton mixed micelles as substrate. To elucidate the mechanism of action of the phytohormones, we showed that both auxins are able to self-penetrate lipid monolayers and cause an increment in surface pressure and an expansion of lipid/phytohormone mixed interfaces. The stimulating effect of auxins over phospholipase A2 activity was still present when using Langmuir mixed monolayers as organized substrate regardless of sPLA2 source (plant or animal). All the data suggest that the stimulating effect of auxins over sPLA2 is due to a more favorable interfacial environment rather to a direct effect over the enzyme. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase1

    Science.gov (United States)

    Laskowski, Marta J.; Dreher, Kate A.; Gehring, Mary A.; Abel, Steffen; Gensler, Arminda L.; Sussex, Ian M.

    2002-01-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress. PMID:11842161

  5. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase.

    Science.gov (United States)

    Laskowski, Marta J; Dreher, Kate A; Gehring, Mary A; Abel, Steffen; Gensler, Arminda L; Sussex, Ian M

    2002-02-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.

  6. CYP94A1, a plant cytochrome P450-catalyzing fatty acid omega-hydroxylase, is selectively induced by chemical stress in Vicia sativa seedlings.

    Science.gov (United States)

    Benveniste, Irène; Bronner, Roberte; Wang, Yong; Compagnon, Vincent; Michler, Pierre; Schreiber, Lukas; Salaün, Jean-Pierre; Durst, Francis; Pinot, Franck

    2005-08-01

    CYP94A1 is a cytochrome P450 (P450) catalyzing fatty acid (FA) omega-hydroxylation in Vicia sativa seedlings. To study the physiological role of this FA monooxygenase, we report here on its regulation at the transcriptional level (Northern blot). Transcripts of CYP94A1, as those of two other P450-dependent FA hydroxylases (CYP94A2 and CYP94A3) from V. sativa, are barely detectable during the early development of the seedlings. CYP94A1 transcripts, in contrast to those of the two other isoforms, are rapidly (less than 20 min) and strongly (more than 100 times) enhanced after treatment by clofibrate, an hypolipidemic drug in animals and an antiauxin (p-chlorophenoxyisobutyric acid) in plants, by auxins (2,4-dichlorophenoxyacetic acid and indole-3-acetic acid), by an inactive auxin analog (2,3-dichlorophenoxyacetic acid), and also by salicylic acid. All these compounds activate CYP94A1 transcription only at high concentrations (50-500 microM range). In parallel, these high levels of clofibrate and auxins modify seedling growth and development. Therefore, the expression of CYP94A1 under these conditions and the concomitant morphological and cytological modifications would suggest the implication of this P450 in a process of plant defense against chemical injury.

  7. Overexpression of the Auxin Binding PROTEIN1 Modulates PIN-Dependent Auxin Transport in Tobacco Cells

    Czech Academy of Sciences Publication Activity Database

    Čovanová, Milada; Sauer, M.; Rychtář, J.; Friml, J.; Petrášek, Jan; Zažímalová, Eva

    2013-01-01

    Roč. 8, č. 7 (2013) E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GPP501/12/P951 Institutional research plan: CEZ:AV0Z50380511 Keywords : ZEA-MAYS-L * PLANT HORMONE AUXIN * MEMBRANE H+- ATPASE Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  8. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  9. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    International Nuclear Information System (INIS)

    Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2013-01-01

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd 2+ ) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd 2+ concentration and rescued Cd 2+ -induced chlorosis in Arabidopsis thaliana. Under Cd 2+ stress conditions, NAA increased Cd 2+ retention in the roots and most Cd 2+ in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd 2+ , whereas it significantly increased the content of hemicellulose 1 and the amount of Cd 2+ retained in it. There were highly significant correlations between Cd 2+ concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd 2+ or NAA + Cd 2+ treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd 2+ in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd 2+ toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd 2+ fixation in the root, thus reducing the translocation of Cd 2+ from roots to shoots

  10. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.).

    Science.gov (United States)

    Xu, Junxu; Zha, Manrong; Li, Ye; Ding, Yanfeng; Chen, Lin; Ding, Chengqiang; Wang, Shaohua

    2015-09-01

    Nitrogen availability and cytokinin could promote shoot branching in rice, whereas auxin and strigolactone inhibited it. The interaction between nitrogen availability and the three hormones is discussed. Rice shoot branching is strongly affected by nitrogen availability and the plant hormones auxin, cytokinin, and strigolactone; however, the interaction of them in the regulation of rice shoot branching remains a subject of debate. In the present study, nitrogen and the three hormones were used to regulate rice tiller bud growth in the indica rice variety Yangdao 6. Both nitrogen and CK promoted shoot branching in rice, whereas auxin and SL inhibited it. We used HPLC to determine the amounts of endogenous IAA and CK, and we used quantitative real-time PCR analysis to quantify the expression levels of several genes. Nitrogen enhanced the amount of CK by promoting the expression levels of OsIPTs in nodes. In addition, both nitrogen and CK downregulated the expression of genes related to SL synthesis in root and nodes, implying that the inhibition of SL synthesis by nitrogen may occur at least partially through the CK pathway. SL did not significantly reduce the amount of CK or the expression levels of OsIPT genes, but it did significantly reduce the amount of auxin and the auxin transport capacity in nodes. Auxin itself inhibited CK synthesis and promoted SL synthesis in nodes rather than in roots. Furthermore, we found that CK and SL quickly reduced and increased the expression of FC1 in buds, respectively, implying that FC1 might be a common target for the CK and SL pathways. Nitrogen and auxin delayed expression change patterns of FC1, potentially by changing the downstream signals for CK and SL.

  11. Lipid oxidation in fish oil enriched mayonnaise : Calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Thomsen, Mikael Holm

    2001-01-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA...... was attributed to its ability to chelate free metal ions and iron from egg yolk located at the oil-water interface. Gallic acid reduced the levels of both free radicals and lipid hydroperoxides but promoted slightly the oxidative flavor deterioration in mayonnaise and influenced the profile of volatiles. Gallic...... acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter...

  12. Influence of auxins combinations on accumulation of reserpine in the callus of Rauvolfia tetraphylla L.

    Science.gov (United States)

    Anitha, S; Kumari, B D Ranjitha

    2007-11-01

    Reserpine is a monoterpene indole alkaloid used to treat hypertension because of its hypotensive property and psychiatric disorders because of its tranquilizing effect. Protocol has been standardized to enhance the synthesis of reserpine in leaf derived calli of Rauvolfia tetraphylla L. by adjusting the auxins combinations in the medium consisting of MS nutrient salts and B5 vitamins. Auxins such as naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were used in 1-5 microM concentration along with 9 microM concentration of 2,4 dichlorophenoxy acetic acid (2,4-D), which was found suitable for callus induction. The combination of (2,4-D) with NAA had been proved to accumulate maximum amount of reserpine followed by 2,4-D with IBA. The IAA with 2,4-D combination yielded very less amount of reserpine than the other combinations and 9 microM 2,4-D alone. The results suggest that there may be synergetic effect of NAA with 2,4-D and IBA with 2,4-D for increase in the biomass and reserpine accumulation and antagonistic effect of IAA with 2,4-D for the above said factors in the callus.

  13. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Bajguz, Andrzej; Piotrowska-Niczyporuk, Alicja

    2013-10-01

    The relationships between brassinosteroids (BRs) (brassinolide, BL; 24-epiBL; 28-homoBL; castasterone, CS; 24-epiCS; 28-homoCS) and auxins (indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-propionic acid, IPA) in the regulation of cell number, phytohormone level and metabolism in green alga Chlorella vulgaris were investigated. Exogenously applied auxins had the highest biological activity in algal cells at 50 μM. Among the auxins, IAA was characterized by the highest activity, while IBA - by the lowest. BRs at 0.01 μM were characterized by the highest biological activity in relation to auxin-treated and untreated cultures of C. vulgaris. The application of 50 μM IAA stimulated the level of all detected endogenous BRs in C. vulgaris cells. The stimulatory effect of BRs in green algae was arranged in the following order: BL > 24-epiBL > 28-homoBL > CS > 24-epiCS > 28-homoCS. Auxins cooperated synergistically with BRs stimulating algal cell proliferation and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for the mixture of BL with IAA, whereas the lowest in the culture treated with both 28-homoCS and IBA. However, regardless of the applied mixture of BRs with auxins, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone. Obtained results confirm that both groups of plant hormones cooperate synergistically in the control of growth and metabolism of unicellular green alga C. vulgaris. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Auxin transport in the evolution of branching forms.

    Science.gov (United States)

    Harrison, C Jill

    2017-07-01

    Contents 545 I. 545 II. 546 III. 546 IV. 548 V. 548 VI. 549 VII. 549 Acknowledgements 549 References 549 SUMMARY: Branching is one of the most striking aspects of land plant architecture, affecting resource acquisition and yield. Polar auxin transport by PIN proteins is a primary determinant of flowering plant branching patterns regulating both branch initiation and branch outgrowth. Several lines of experimental evidence suggest that PIN-mediated polar auxin transport is a conserved regulator of branching in vascular plant sporophytes. However, the mechanisms of branching and auxin transport and relationships between the two are not well known outside the flowering plants, and the paradigm for PIN-regulated branching in flowering plants does not fit bryophyte gametophytes. The evidence reviewed here suggests that divergent auxin transport routes contributed to the diversification of branching forms in distinct land plant lineages. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. In-silico identification and phylogenetic analysis of auxin efflux ...

    African Journals Online (AJOL)

    In-silico identification and phylogenetic analysis of auxin efflux carrier gene family in Setaria italica L. Tapan Kumar Mohanta, Mickael Malnoy, Nibedita Mohanta, Chidananda Nagamangala Kanchiswamy ...

  16. Design, Synthesis, and Evaluation of Novel Auxin Mimic Herbicides.

    Science.gov (United States)

    Do-Thanh, Chi-Linh; Vargas, Jose J; Thomas, Joseph W; Armel, Gregory R; Best, Michael D

    2016-05-11

    Due to the key roles of auxins as master regulators of plant growth, there is considerable interest in the development of compounds with auxin-like properties for growth management and weed control applications. Herein, we describe the design and multistep synthesis of ten compounds bearing combinations of functional groups commonly associated with auxin-type properties. Following synthesis, these compounds were tested against multiple weed species as well as sweet corn. In general, while these structures were not quite as active as commercial auxin mimic herbicides, multiple compounds exhibited broadleaf weed activity with concurrent selectivity in sweet corn (Zea mays L. var. saccharum). In addition, differential results were observed upon subtle changes to structure, providing insights into the structural properties required for activity.

  17. High-temperature injury and auxin biosynthesis in microsporogenesis.

    Directory of Open Access Journals (Sweden)

    Atsushi eHigashitani

    2013-03-01

    Full Text Available Plant reproductive development is more sensitive than vegetative growth to many environmental stresses. With global warming, in particular, plant high temperature injury is becoming an increasingly serious problem. In wheat, barley, and various other commercially important crops, the early phase of anther development is especially susceptible to high temperatures. We recently demonstrated that high temperature causes cell-proliferation arrest and represses auxin signaling in a tissue-specific manner of the anther cells of barley and Arabidopsis. These phenomena were accompanied by comprehensive alterations in transcription including repression of cell-proliferation related genes and YUCCA auxin biosynthesis genes. Moreover, application of auxin completely improved the transcriptional alterations, the production of normal pollen grains, and seed setting rate under increasing temperatures. These denote that auxin, which has been used widely as potent and selective herbicides, is useful for the promotion of plant fertility and maintenance of crop yields under the global warming conditions.

  18. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    Directory of Open Access Journals (Sweden)

    Patricia Müller-Moulé

    2016-10-01

    Full Text Available Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.

  19. Effects of auxins on in vitro reserve compounds of Phalaenopsis ...

    African Journals Online (AJOL)

    Orchidaceae). Sandra Sayuri Ori, Edison Paulo Chu, Armando Reis Tavares. Abstract. The effects of auxin and the endogenous levels of reserve compounds of Phalaenopsis amabilis (L.) Blume (Orchidaceae) were analyzed in vitro. Rootless plants ...

  20. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-08-04

    Molecular-level insight into the dissociation of nitric acid in water is obtained from photoelectron X-ray spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from N1s binding energy shifts of HNO3(aq) as a function of concentration, and is associated with variations in the local electronic structure of the nitrogen atom. It also shows up as a discontinuity in the degree of dissociation as a function of concentration, determined here from the N1s photoelectron signal intensity, which can be separately quantified for undissociated HNO3(aq) and dissociated NO3-(aq). Intermolecular interactions within the nitric acid solution are discussed on the basis of MD simulations, which reveal that molecular HNO3 interacts remarkably weakly with solvating water molecules at low concentration; around 4 M there is a turnover to a more structured solvation shell, accompanied by an increase in hydrogen bonding between HNO3 and water. We suggest that the driving force behind the more structured solvent configuration of HNO3 is the overlap of nitric acid solvent shells that sets in around 4 M concentration. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  2. Aging rather than stress strongly influences amino acid metabolisms in the brain and genital organs of female mice.

    Science.gov (United States)

    Kodaira, Momoko; Nagasawa, Mao; Yamaguchi, Takeshi; Ikeda, Hiromi; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-03-01

    Aging and stress affect quality of life, and proper nourishment is one of means of preventing this effect. Today, there is a focus on the amount of protein consumed by elderly people; however, changes in the amino acid metabolism of individuals have not been fully considered. In addition, the difference between average life span and healthy life years is larger in females than it is in males. To prolong the healthy life years of females, in the present study we evaluated the influence of stress and aging on metabolism and emotional behavior by comparing young and middle-aged female mice. After 28 consecutive days of immobilization stress, behavioral tests were conducted and tissue sampling was performed. The results showed that the body weight of middle-aged mice was severely lowered by stress, but emotional behaviors were hardly influenced by either aging or stress. Aging influenced changes in amino acid metabolism in the brain and increased various amino acid levels in the uterus and ovary. In conclusion, we found that aged mice were more susceptible to stress in terms of body-weight reduction, and that amino acid metabolisms in the brain and genital organs were largely influenced by aging rather than by stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Fluorinated antimony(v) derivatives: strong Lewis acidic properties and application to the complexation of formaldehyde in aqueous solutions.

    Science.gov (United States)

    Tofan, Daniel; Gabbaï, François P

    2016-11-01

    As part of our ongoing studies of water tolerant Lewis acids, we have synthesized and investigated the properties of Sb(C 6 F 5 ) 3 (O 2 C 6 Cl 4 ), a fluorinated stiborane whose Lewis acidity approaches that of B(C 6 F 5 ) 3 . While chloroform solutions of this Lewis acid can be kept open to air or exposed to water for extended periods of time, this new Lewis acid reacts with P t Bu 3 and paraformaldehyde to form the corresponding formaldehyde adduct t Bu 3 P-CH 2 -O-Sb(C 6 F 5 ) 3 (O 2 C 6 Cl 4 ). To test if this reactivity can also be observed with systems that combine the phosphine and the stiborane within the same molecule, we have also prepared o -C 6 H 4 (PPh 2 )(SbAr 2 (O 2 C 6 Cl 4 )) (Ar = Ph, C 6 F 5 ). These yellow compounds, which possess an intramolecular P→Sb interaction, are remarkably inert to water but do, nonetheless, react with and accomodate formaldehyde into the P/Sb pocket. In the case of the fluorinated derivative o -C 6 H 4 (PPh 2 )(Sb(C 6 F 5 ) 2 (O 2 C 6 Cl 4 )), formaldehyde complexation, which occurs in water/dichloromethane biphasic mixtures, is accompanied by a colourimetric turn-off response thus highlighting the potential that this chemistry holds in the domain of molecular sensing.

  4. Polar auxin transport is essential for gall formation by Pantoea agglomerans on Gypsophila.

    Science.gov (United States)

    Chalupowicz, Laura; Weinthal, Dan; Gaba, Victor; Sessa, Guido; Barash, Isaac; Manulis-Sasson, Shulamit

    2013-02-01

    The virulence of the bacterium Pantoea agglomerans pv. gypsophilae (Pag) on Gypsophila paniculata depends on a type III secretion system (T3SS) and its effectors. The hypothesis that plant-derived indole-3-acetic acid (IAA) plays a major role in gall formation was examined by disrupting basipetal polar auxin transport with the specific inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-naphthylphthalamic acid (NPA). On inoculation with Pag, galls developed in gypsophila stems above but not below lanolin rings containing TIBA or NPA, whereas, in controls, galls developed above and below the rings. In contrast, TIBA and NPA could not inhibit tumour formation in tomato caused by Agrobacterium tumefaciens. The colonization of gypsophila stems by Pag was reduced below, but not above, the lanolin-TIBA ring. Following Pag inoculation and TIBA treatment, the expression of hrpL (a T3SS regulator) and pagR (a quorum-sensing transcriptional regulator) decreased four-fold and that of pthG (a T3SS effector) two-fold after 24 h. Expression of PIN2 (a putative auxin efflux carrier) increased 35-fold, 24 h after Pag inoculation. However, inoculation with a mutant in the T3SS effector pthG reduced the expression of PIN2 by two-fold compared with wild-type infection. The results suggest that pthG might govern the elevation of PIN2 expression during infection, and that polar auxin transport-derived IAA is essential for gall initiation. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  5. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Science.gov (United States)

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. The PIN-FORMED (PIN) protein family of auxin transporters

    Czech Academy of Sciences Publication Activity Database

    Křeček, Pavel; Skůpa, Petr; Libus, Jiří; Naramoto, S.; Tejos, R.; Friml, J.; Zažímalová, Eva

    2009-01-01

    Roč. 10, č. 12 (2009), s. 249.1-249.11 ISSN 1474-760X R&D Projects: GA MŠk(CZ) LC06034; GA AV ČR KJB600380904; GA AV ČR(CZ) IAA601630703 Institutional research plan: CEZ:AV0Z50380511 Keywords : PIN protein family * auxin efflux carriers * auxin transport Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.626, year: 2009

  7. Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis.

    Science.gov (United States)

    Šimura, Jan; Spíchal, Lukáš; Adamec, Lubomír; Pěnčík, Aleš; Rolčík, Jakub; Novák, Ondřej; Strnad, Miroslav

    2016-05-01

    The typical rootless linear shoots of aquatic carnivorous plants exhibit clear, steep polarity associated with very rapid apical shoot growth. The aim of this study was to determine how auxin and cytokinin contents are related to polarity and shoot growth in such plants. The main auxin and cytokinin metabolites in separated shoot segments and turions of two carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, were analysed using ultra-high-performance liquid chromatography coupled with triple quad mass spectrometry. In both species, only isoprenoid cytokinins were identified. Zeatin cytokinins predominated in the apical parts, with their concentrations decreasing basipetally, and the trans isomer predominated in A. vesiculosa whereas the cis form was more abundant in U australis. Isopentenyladenine-type cytokinins, in contrast, increased basipetally. Conjugated cytokinin metabolites, the O-glucosides, were present at high concentrations in A. vesiculosa but only in minute amounts in U. australis. N(9)-glucoside forms were detected only in U. australis, with isopentenyladenine-9-glucoside (iP9G) being most abundant. In addition to free indole-3-acetic acid (IAA), indole-3-acetamide (IAM), IAA-aspartate (IAAsp), IAA-glutamate (IAGlu) and IAA-glycine (IAGly) conjugates were identified. Both species show common trends in auxin and cytokinin levels, the apical localization of the cytokinin biosynthesis and basipetal change in the ratio of active cytokinins to auxin, in favour of auxin. However, our detailed study of cytokinin metabolic profiles also revealed that both species developed different regulatory mechanisms of active cytokinin content; on the level of their degradation, in U. australis, or in the biosynthesis itself, in the case of A. vesiculosa Results indicate that the rapid turnover of these signalling molecules along the shoots is essential for maintaining the dynamic balance between the rapid polar growth and development of the apical

  8. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling1[OPEN

    Science.gov (United States)

    Eysholdt-Derzsó, Emese

    2017-01-01

    When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip. PMID:28698356

  9. Current analytical methods for plant auxin quantification--A review.

    Science.gov (United States)

    Porfírio, Sara; Gomes da Silva, Marco D R; Peixe, Augusto; Cabrita, Maria J; Azadi, Parastoo

    2016-01-01

    Plant hormones, and especially auxins, are low molecular weight compounds highly involved in the control of plant growth and development. Auxins are also broadly used in horticulture, as part of vegetative plant propagation protocols, allowing the cloning of genotypes of interest. Over the years, large efforts have been put in the development of more sensitive and precise methods of analysis and quantification of plant hormone levels in plant tissues. Although analytical techniques have evolved, and new methods have been implemented, sample preparation is still the limiting step of auxin analysis. In this review, the current methods of auxin analysis are discussed. Sample preparation procedures, including extraction, purification and derivatization, are reviewed and compared. The different analytical techniques, ranging from chromatographic and mass spectrometry methods to immunoassays and electrokinetic methods, as well as other types of detection are also discussed. Considering that auxin analysis mirrors the evolution in analytical chemistry, the number of publications describing new and/or improved methods is always increasing and we considered appropriate to update the available information. For that reason, this article aims to review the current advances in auxin analysis, and thus only reports from the past 15 years will be covered. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The PIN1 family gene PvPIN1 is involved in auxin-dependent root emergence and tillering in switchgrass

    Directory of Open Access Journals (Sweden)

    Kaijie Xu

    2016-03-01

    Full Text Available Abstract Switchgrass (Panicum virgatum L.; family Poaceae is a warm-season C4 perennial grass. Tillering plays an important role in determining the morphology of aboveground parts and the final biomass yield of switchgrass. Auxin distribution in plants can affect a variety of important growth and developmental processes, including the regulation of shoot and root branching, plant resistance and biological yield. Auxin transport and gradients in plants are mediated by influx and efflux carriers. PvPIN1, a switchgrass PIN1-like gene that is involved in regulating polar transport, is a putative auxin efflux carrier. Neighbor-joining analysis using sequences deposited in NCBI databases showed that the PvPIN1gene belongs to the PIN1 family and is evolutionarily closer to the Oryza sativa japonica group. Tiller emergence and development was significantly promoted in plants subjected toPvPIN1 RNA interference (RNAi, which yielded a phenotype similar to that of wild-type plants treated with the auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid. A transgenic approach that inducedPvPIN1 gene overexpression or suppression altered tiller number and the shoot/root ratio. These data suggest that PvPIN1plays an important role in auxin-dependent adventitious root emergence and tillering.

  11. EFFECT OF AUXIN AND CYTOKININ ON VINCRISTINE PRODUCTION BY CALLUS CULTURES OF CATHARANTHUS ROSEUS L. (APOCYNACEAE)

    OpenAIRE

    Chinnamadasamy Kalidass; Veerabahu Ramasamy Mohan; Arjunan Daniel

    2009-01-01

    Callus cultures of Catharanthus roseus L. were established to verify whether they produce vincristine as the intact plant. Different growth regulator combinations were applied to Murashige and Skoog (MS) medium to influence the level of production of vincristine. The effects of various combinations (0.5 µM to 3.0 µM) of auxin and cytokinin on the growth and accumulation of vincristine were investigated. MS medium supplemented with 2,4-Dichlorophenoxy acetic acid (2,4-D) 1.0 µM and 6-furfur...

  12. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    Science.gov (United States)

    Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun

    2016-10-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  13. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guangchao Liu

    2016-10-01

    Full Text Available Auxin is necessary for the inhibition of root growth induced by aluminium (Al stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC, which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3 is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4 functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  14. Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalancho?) marnierianum: role of auxin and ethylene

    OpenAIRE

    Kulka, Richard G.

    2008-01-01

    Epiphyllous plantlets develop on leaves of Bryophyllum marnierianum when they are excised from the plant. Shortly after leaf excision, plantlet shoots develop from primordia located near the leaf margin. After the shoots have enlarged for several days, roots appear at their base. In this investigation, factors regulating plantlet root development were studied. The auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) abolished root formation without markedly affecting shoot growth. This ...

  15. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide*♦

    Science.gov (United States)

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E. Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R.; Alvarez, Beatriz

    2015-01-01

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS−, is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS− toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS− is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes. PMID:26269587

  16. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development

    Czech Academy of Sciences Publication Activity Database

    Nordström, A.; Tarkowski, Petr; Tarkowská, Danuše; Norbaek, R.; Astot, C.; Doležal, Karel; Sandberg, G.

    2004-01-01

    Roč. 101, č. 21 (2004), s. 8039-8044 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z5038910 Keywords : Arabidopsis * auxin * cytokinin * biosynthesis Subject RIV: EF - Botanics Impact factor: 10.452, year: 2004

  17. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling.

    Science.gov (United States)

    Xu, Tao; Wang, Yanling; Liu, Xin; Gao, Song; Qi, Mingfang; Li, Tianlai

    2015-07-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Flakus, Henryk T., E-mail: flakus@ich.us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland); Tyl, Aleksandra; Jablonska, Magdalena [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland)

    2009-10-16

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d{sub 2}, d{sub 8} and d{sub 10} deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the {nu}{sub O-H} and the {nu}{sub O-D} bands. The two-branch fine structure pattern of the {nu}{sub O-H} and {nu}{sub O-D} bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic 'self-organization' effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  19. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    Science.gov (United States)

    Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena

    2009-10-01

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  20. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Defining a Two-pronged Structural Model for PB1 (Phox/Bem1p) Domain Interaction in Plant Auxin Responses

    Energy Technology Data Exchange (ETDEWEB)

    Korasick, David A.; Chatterjee, Srirupa; Tonelli, Marco; Dashti, Hesam; Lee, Soon Goo; Westfall, Corey S.; Fulton, D. Bruce; Andreotti, Amy H.; Amarasinghe, Gaya K.; Strader, Lucia C.; Jez, Joseph M.

    2015-04-03

    Phox/Bem1p (PB1) domains are universal structural modules that use surfaces of different charge for protein-protein association. In plants, PB1-mediated interactions of auxin response factors (ARF) and auxin/indole 3-acetic acid inducible proteins regulate transcriptional events modulated by the phytohormone auxin. Here we investigate the thermodynamic and structural basis for Arabidopsis thaliana ARF7 PB1 domain self-interaction. Isothermal titration calorimetry and NMR experiments indicate that key residues on both the basic and acidic faces of the PB1 domain contribute to and organize coordinately to stabilize protein-protein interactions. Calorimetric analysis of ARF7PB1 site-directed mutants defines a two-pronged electrostatic interaction. The canonical PB1 interaction between a lysine and a cluster of acidic residues provides one prong with an arginine and a second cluster of acidic residues defining the other prong. Evolutionary conservation of this core recognition feature and other co-varying interface sequences allows for versatile PB1-mediated interactions in auxin signaling.

  2. Evaluation of different approaches to quantify strong organic acidity and acid-base buffering of organic-rich surface waters in Sweden.

    Science.gov (United States)

    Köhler, Stephan; Hruska, Jakub; Jönsson, Jörgen; Lövgren, Lars; Lofts, Stephen

    2002-11-01

    The role of organic acids in buffering pH in surface waters has been studied using a small brownwater stream (26mg L(-1) TOC) draining a forested catchment in Northern Sweden. Under the conditions of elevated pressure of CO2 stream field pH was changed between 3.5 and 6.1 during the acidification and alkalinization experiment. Acid-base characteristics of the natural organic matter were also determined using a high precision potentiometric method for a concentrated sample from the same stream. We compared the predictions from the Windermere Humic Aqueous Model (WHAM Model V), a model derived from the potentiometric titration (diprotic/monoprotic acid model) and a previously derived triprotic acid model which only uses alkalinity and TOC as input variables. The predicted buffering characteristics of all three models are very similar in the pH range 4.5-7 which suggests that during routine analysis alkalinity and TOC are sufficient to give a good estimate of organic acid anion charge contribution in a large range of surface waters. A slightly adjusted version of WHAM V successfully describes the organic charge contribution in a large number of sampled surface water lakes, which were previously used to calibrate the triprotic model.

  3. Free radical-scavenging activity and DNA damaging potential of auxins IAA and 2-methyl-IAA evaluated in human neutrophils by the alkaline comet assay.

    Science.gov (United States)

    Salopek-Sondi, Branka; Piljac-Zegarac, Jasenka; Magnus, Volker; Kopjar, Nevenka

    2010-01-01

    Auxins, of which indole-3-acetic acid (IAA) is the most widespread representative, are plant hormones. In addition to plants, IAA also naturally occurs in humans in micromolar concentrations. In the presence of peroxidase, indolic auxins are converted to cytotoxic oxidation products and have thus been proposed for use in gene-directed enzyme/prodrug tumor therapy. Since data on the genotoxicity of IAA and its derivatives are not consistent, here we investigate the early DNA damaging effects (2-h treatment) of the auxins, IAA, and 2-methyl-indole-3-acetic acid (2-Me-IAA) by the alkaline comet assay and compare them with their free radical-scavenging activity measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Human neutrophils are chosen as the test system since they possess inherent peroxidase activity. The results of the comet assay indicate an increase in DNA damage in a dose-dependent manner up to 1.00 mM of both auxins. Generally, IAA applied in the same concentration had greater potential to damage DNA in human neutrophils than did 2-Me-IAA. The genotoxicities of the two examined auxins are negatively correlated with their antioxidant activities, as measured by the DPPH assay; 2-Me-IAA showed a higher antioxidant capacity than did IAA. We assume that differences in the molecular structure of the tested auxins contributed to differences in their metabolism, in particular, with respect to interactions with peroxidases and other oxidative enzymes in neutrophils. However, the exact mechanisms have to be elucidated in future studies. (c) 2010 Wiley Periodicals, Inc.

  4. GA(3) enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis.

    Science.gov (United States)

    Li, Guijun; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-03-01

    We used auxin-signalling mutants, auxin transport mutants, and auxin-related marker lines to show that exogenously applied GA enhances auxin-induced root inhibition by affecting auxin signalling and transport. Variation in root elongation is valuable when studying the interactions of phytohormones. Auxins influence the biosynthesis and signalling of gibberellins (GAs), but the influence of GAs on auxins in root elongation is poorly understood. This study was conducted to investigate the effect of GA3 on Arabidopsis root elongation in the presence of auxin. Root elongation was inhibited in roots treated with both IAA and GA3, compared to IAA alone, and the effect was dose dependent. Further experiments showed that GA3 could modulate auxin signalling based on root elongation in auxin-signalling mutants and the expression of auxin-responsive reporters. The GA3-enhanced inhibition of root elongation observed in the wild type was not found in the auxin-signalling mutants tir1-1 and axr1-3. GA3 increased DR5::GUS expression in the root meristem and elongation zones, and IAA2::GUS in the columella. The DR5rev::GFP signal was enhanced in columella cells of the root caps and in the elongation zone in GA3-treated seedling roots. A reduction was observed in the stele of PAC-treated roots. We also examined the effect of GA3 on auxin transport. The enhanced responsiveness caused by GA3 was not observed in the auxin influx mutant aux1-7 or the efflux mutant eir1-1. Additional molecular data demonstrated that GA3 could promote auxin transport via AUX1 and PIN proteins. However, GA3-induced PIN gene expression did not fully explain GA-enhanced PIN protein accumulation. These results suggest that GA3 is involved in auxin-mediated primary root elongation by modulating auxin signalling and transport, and thus enhances root responsiveness to exogenous IAA.

  5. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-01-01

    Background and Aims Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. Methods The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9–F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. Key Results Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. Conclusions The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based

  6. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D.

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Kaselytė, Greta; Okockytė, Vaiva; Žukauskaitė, Justina; Žvingila, Donatas; Rančelis, Vytautas

    2015-03-01

    Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite

  7. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Drdová, Edita; Synek, Lukáš; Pečenková, Tamara; Hála, Michal; Kulich, I.; Fowler, J.E.; Murphy, A.S.; Žárský, Viktor

    2013-01-01

    Roč. 73, č. 5 (2013), s. 709-719 ISSN 0960-7412 R&D Projects: GA ČR GPP501/11/P853; GA ČR(CZ) GAP305/11/1629; GA MŠk(CZ) LC06034; GA AV ČR KJB600380802 Grant - others:GA MŠk(CZ) ME10033 Institutional research plan: CEZ:AV0Z50380511 Keywords : exocyst * polar auxin transport * PIN recycling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.815, year: 2013

  8. Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates

    Czech Academy of Sciences Publication Activity Database

    Hoyerová, Klára; Hošek, Petr; Quareshy, M.; Li, J.; Klíma, Petr; Kubeš, Martin; Yemm, A. A.; Neve, P.; Tripathi, A.; Bennett, M.J.; Napier, R. M.

    2018-01-01

    Roč. 217, č. 4 (2018), s. 1625-1639 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA16-19557S; GA MŠk LD15137 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : auxin transport * cheminformatics * herbicide * herbicide resistance * molecular field maps * pharmacophore * structure–activity relationship * uptake carrier Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 7.330, year: 2016

  9. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis.

    Science.gov (United States)

    Sakamoto, Tomoaki; Fujioka, Shozo

    2013-04-01

    Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription factors. Auxin pretreatment increased the sensitivity to brassinosteroids of brassinosteroid-responsive genes. Although multilevel interactions between auxins and brassinosteroids have previously been reported, our findings suggest a possibility that auxins control the degree of brassinosteroid perception by regulating the expression of gene for brassinosteroid receptor, and this phenomenon is conserved between monocots (rice) and dicots (Arabidopsis).

  10. Synthesis of Plant Auxin Derivatives and Their Effects on Ceratopteris Richardii

    Science.gov (United States)

    Stilts, Corey E.; Fisher, Roxanne

    2007-01-01

    Bioassays are commonly used to test the biological activity of chemicals and other exercises are presented in which students synthesize plant hormones. Lab exercise is conducted using commercially available auxins and auxin regulating compounds.

  11. Methanetrisulfonic Acid: A Highly Efficient Strongly Acidic Catalyst for Wagner-Meerwein Rearrangement, Friedel-Crafts Alkylation and Acylation Reactions. Examples from Vitamin E Synthesis

    Directory of Open Access Journals (Sweden)

    Francesco Pace

    2009-04-01

    Full Text Available Methanetrisulfonic acid had been prepared for the first time over 140 years ago, but it was used only scarcely in chemical transformations. In the course of our activities dealing with key-steps of industrial syntheses of vitamins, e.g. economically important vitamin E (acetate, we found that methanetrisulfonic acid is an extremely effective catalyst in a variety of reactions. Examples of its applications are Wagner-Meerwein rearrangements, Friedel-Crafts alkylations and ring closures, as well as acylation reactions. Use of this catalyst in truly catalytic amounts (0.04-1.0 mol% resulted in highly selective transformations and yields over 95%. (Remark by the authors: We are describing only one example each for the various types of reactions. Therefore, it would be more appropriate to write (here and in the Introduction and in the Conclusion sections: “Wagner-Meerwein rearrangement, Friedel-Crafts alkylation and ring closure, as well as acylation reactions”

  12. What has been seen cannot be unseen-detecting auxin in vivo

    Czech Academy of Sciences Publication Activity Database

    Pařízková, Barbora; Pernisová, M.; Novák, Ondřej

    2017-01-01

    Roč. 18, č. 12 (2017), č. článku 2736. E-ISSN 1422-0067 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA16-01137S Institutional support: RVO:61389030 Keywords : Auxin * Auxin distribution * Auxin signalling * Auxin transport * Direct visualization * Indirect visualization * Receptor * Sensor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.226, year: 2016

  13. Control of development and valepotriate production by auxins in micropropagated Valeriana glechomifolia.

    Science.gov (United States)

    Bello de Carvalho, C M; Maurmann, N; Luz, D I; Fett-Neto, A G; Rech, S B

    2004-10-01

    Valeriana glechomifolia is a plant species endemic to southern Brazil that accumulates valepotriates, which are terpene derivatives, in all of its organs. Valepotriates are the presumed sedative generic components of the pharmaceutically used species of Valeriana. The influence of various concentrations of the auxins indole-3-acetic acid, indole-3-butyric acid and alpha-naphthaleneacetic acid on the growth of micropropagated V. glechomifolia was investigated under conditions of transient and continuous exposure. Changes in the development of roots and shoots as well as the production of the valepotriates acevaltrate, valtrate and didrovaltrate (analyzed by high-performance liquid chromatography) were evaluated. The best performance in valepotriate production, growth and survival under ex vitro conditions following plant acclimatization was achieved in the continuous presence of 5.71 microM IAA. When cultured in medium containing IAA plants produced stable levels of valepotriates throughout the entire cultivation period.

  14. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  15. Transport and distribution of labelled auxin in geotropically stimulated fruit-bearing shoots of royal delicious apple (Malus domestica Borkh.)

    International Nuclear Information System (INIS)

    Sharma, N.

    1991-01-01

    14 C-IAA was fed to mid-leaf of 30 cm shoot of apple trees planted at 30deg, 45deg, 60deg and 90deg angles from horizontal. Shoots were detached after 2 days and radioactivity of acidic auxin in upper and under side shoot and spurs and fruit was assayed. In non-vertical trees, significantly higher 14 C-IAA was detected from under side shoots and spurs compared to upper side. 14 C-IAA activity in two sides of shoot of vertical plantation was at par. Among fruit portions, means 14 C-IAA (cpm/100 mg) was more in seed than in skin and pulp. Auxin moved predominantly basipetally. Acropetal movement was higher in non-vertical trees. Recovery of 14 C-IAA was highest in 30deg and least in 90deg plantation. (author). 15 refs., 3 tabs., 1 figs

  16. Mitochondrial oxidative stress alters a pathway in Caenorhabditis elegans strongly resembling that of bile acid biosynthesis and secretion in vertebrates.

    Directory of Open Access Journals (Sweden)

    Ju-Ling Liu

    Full Text Available Mammalian bile acids (BAs are oxidized metabolites of cholesterol whose amphiphilic properties serve in lipid and cholesterol uptake. BAs also act as hormone-like substances that regulate metabolism. The Caenorhabditis elegans clk-1 mutants sustain elevated mitochondrial oxidative stress and display a slow defecation phenotype that is sensitive to the level of dietary cholesterol. We found that: 1 The defecation phenotype of clk-1 mutants is suppressed by mutations in tat-2 identified in a previous unbiased screen for suppressors of clk-1. TAT-2 is homologous to ATP8B1, a flippase required for normal BA secretion in mammals. 2 The phenotype is suppressed by cholestyramine, a resin that binds BAs. 3 The phenotype is suppressed by the knock-down of C. elegans homologues of BA-biosynthetic enzymes. 4 The phenotype is enhanced by treatment with BAs. 5 Lipid extracts from C. elegans contain an activity that mimics the effect of BAs on clk-1, and the activity is more abundant in clk-1 extracts. 6 clk-1 and clk-1;tat-2 double mutants show altered cholesterol content. 7 The clk-1 phenotype is enhanced by high dietary cholesterol and this requires TAT-2. 8 Suppression of clk-1 by tat-2 is rescued by BAs, and this requires dietary cholesterol. 9 The clk-1 phenotype, including the level of activity in lipid extracts, is suppressed by antioxidants and enhanced by depletion of mitochondrial superoxide dismutases. These observations suggest that C. elegans synthesizes and secretes molecules with properties and functions resembling those of BAs. These molecules act in cholesterol uptake, and their level of synthesis is up-regulated by mitochondrial oxidative stress. Future investigations should reveal whether these molecules are in fact BAs, which would suggest the unexplored possibility that the elevated oxidative stress that characterizes the metabolic syndrome might participate in disease processes by affecting the regulation of metabolism by BAs.

  17. Graphene-oxide-supported Pt nanoparticles with high activity and stability for hydrazine electro-oxidation in a strong acidic solution

    Science.gov (United States)

    Kim, Ji Dang; Choi, Myong Yong; Choi, Hyun Chul

    2017-10-01

    Graphene-oxide-supported Pt (GO-Pt) nanoparticles were prepared by performing diimide-activated amidation and used in an electrocatalyst for hydrazine electro-oxidation in 0.5 M H2SO4 solution. The physico-chemical properties of the GO-Pt nanoparticles were characterized with various techniques, which revealed that highly dispersed Pt nanoparticles with an average size of 2.6 nm were densely deposited on the amidated GO due to their strong adhesion. Cyclic voltammograms were obtained and demonstrate that the GO-Pt catalyst exhibits significantly improved catalytic activity and long-term stability in hydrazine electro-oxidation in a strong acidic solution when compared to commercial Pt/C and Pt metal electrodes. These enhanced electrochemical properties are attributed to the large electrochemically active surface area that results from the smaller size and excellent dispersion of the Pt nanoparticles on amidated GO.

  18. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells

    Czech Academy of Sciences Publication Activity Database

    Seifertová, Daniela; Skůpa, Petr; Rychtář, J.; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-01-01

    Roč. 171, č. 6 (2014), s. 429-437 ISSN 0176-1617 R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : Auxin influx * Auxin efflux * Auxin metabolic profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.557, year: 2014

  19. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley.

    Science.gov (United States)

    Bai, Bin; Bian, Hongwu; Zeng, Zhanghui; Hou, Ning; Shi, Bo; Wang, Junhui; Zhu, Muyuan; Han, Ning

    2017-03-01

    High-throughput small RNA sequencing has identified several potential aluminum (Al)-responsive microRNAs (miRNAs); however, their regulatory role remains unknown. Here, we identified two miR393 family members in barley, and confirmed two target genes-HvTIR1 and HvAFB-through a modified form of 5'-RACE (rapid amplification of cDNA ends) as well as degradome data analysis. Furthermore, we investigated the biological function of the miR393/target module in root development and its Al stress response. The investigation showed that miR393 affected root growth and adventitious root number by altering auxin sensitivity. Al3+ exposure suppressed miR393 expression in root apex, while overexpression of miR393 counteracted Al-induced inhibition of root elongation and alleviated reactive oxygen species (ROS)-induced cell death. Target mimic (MIM393)-mediated inhibition of miR393's activity enhanced root sensitivity to Al toxicity. We also confirmed that auxin enhanced Al-induced root growth inhibition in barley via application of exogenous 1-naphthaleneacetic acid (NAA), and the expression of auxin-responsive genes in the root apex was induced upon Al treatment. Overexpression of miR393 attenuated the effect of exogenous NAA on Al-induced root growth inhibition, and down-regulated the expression of auxin-responsive genes under Al stress, implying that miR393 regulates root sensitivity to Al through the alteration of auxin signaling output in barley. Therefore, these data indicate that miR393 acts as an integrator of environmental cues in auxin signaling, and suggest a new strategy to improve plant resistance to Al toxicity. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  1. Interactions of Verkade's Superbase with Strong Lewis Acids: From Labile Mono- and Binuclear Lewis Acid-Base Complexes to Phosphenium Cations.

    Science.gov (United States)

    Mummadi, Suresh; Kenefake, Dustin; Diaz, Rony; Unruh, Daniel K; Krempner, Clemens

    2017-09-05

    A series of mono- and binuclear Lewis acid-base complexes of the formulas N[CH 2 CH 2 N(Pr i )] 3 P→LA [LA = BH 3 (8), Ga(C 6 F 5 ) 3 (10), GaCl 3 (11)], LA←N[CH 2 CH 2 N(Pr i )] 3 P [LA = Al(C 6 F 5 ) 3 (6a), AlMe 3 (6b), AlEt 3 (6c), AlBu i 3 (6d), BF 3 (13)], and LA←N[CH 2 CH 2 N(Pr i )] 3 P→LA [Lewis acid (LA) = Al(C 6 F 5 ) 3 (7a), AlMe 3 (7b), AlEt 3 (7c), AlBu i 3 (7d), AlCl 3 (7e), BH 3 (9)] were generated from reactions of Verkade's base, N[CH 2 CH 2 N(Pr i )] 3 P (1), with various boron-, aluminum-, and gallium-containing Lewis acids, and characterized by multinuclear NMR spectroscopy. {N[CH 2 CH 2 N(Pr i )] 3 P→C 7 H 7 }[BF 4 ] (5) was synthesized via the treatment of 1 with [C 7 H 7 ][BF 4 ]. The reaction of 1 with B(C 6 F 5 ) 3 , followed by the addition of [Ph 3 C] 2 [B 12 Cl 12 ], gave rise to the rearranged borate salt [PN 4 C 9 H 17 (Pr i ) 2 ][B 12 Cl 12 ] (3), while treating 1 with [Ph 3 C] 2 [B 12 Cl 12 ] exclusively afforded {N[CH 2 CH 2 N(Pr i )] 3 PH} 2 [B 12 Cl 12 ] (4). Reactions of 1 with 2 equiv of GaCl 3 and BF 3 , respectively, afforded the novel phosphenium gallate and borate salts 12a, 12b, and 15. The solid-state structures of 1, 3-5, 6b, 7a, 7b, 7e, 8, 10, 11, 12b, 13, and 15 were determined by X-ray crystallography.

  2. Isatin as an auxin source favoring floral and vegetative shoot regeneration from calli produced by thin layer explants of tomato pedicel

    Science.gov (United States)

    Applewhite, P. B.; K-Sawhney, R.; Galston, A. W.

    1994-01-01

    Thin layer explants taken from the pedicels and peduncles of flowering tomato plants yielded calli with great organogenetic potential. Of the 15 cultivars tested, 7 regenerated roots, shoots and eventually entire fruit-bearing plants. Calli grown on modified Murashige-Skoog medium responded to varied auxins and cytokinins with different morphogenetic patterns. Thus, naphthaleneacetic acid yielded root-producing calli, while the auxin precursor isatin (indole 2,3-dione) caused the production of calli with vegetative and floral shoots, rarely yielding roots. This may be related to isatin's slow, steady conversion to an active auxin (Plant Physiol 41:1485-1488, 1966) in contrast with naphthaleneacetic acid's immediate presentation of a high level of active auxin. The highest incidence of vegetative shoot (100%) and flower (50%) formation was obtained with 10 micromoles isatin and 3 micromoles zeatin. A few of the flowers developed into ripe fruits. The high frequency of induction of vegetative shoots and flowers before roots with isatin suggests its utility in micropropagation from plant tissue cultures.

  3. Calculation of the total plasma concentration of nonvolatile weak acids and the effective dissociation constant of nonvolatile buffers in plasma for use in the strong ion approach to acid-base balance in cats.

    Science.gov (United States)

    McCullough, Sheila M; Constable, Peter D

    2003-08-01

    To determine values for the total concentration of nonvolatile weak acids (Atot) and effective dissociation constant of nonvolatile weak acids (Ka) in plasma of cats. Convenience plasma samples of 5 male and 5 female healthy adult cats. Cats were sedated, and 20 mL of blood was obtained from the jugular vein. Plasma was tonometered at 37 degrees C to systematically vary PCO2 from 8 to 156 mm Hg, thereby altering plasma pH from 6.90 to 7.97. Plasma pH, PCO2, and concentrations of quantitatively important strong cations (Na+, K+, and Ca2+), strong anions (Cl-, lactate), and buffer ions (total protein, albumin, and phosphate) were determined. Strong ion difference was estimated from the measured strong ion concentrations and nonlinear regression used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference. Mean (+/- SD) values were as follows: Atot = 24.3 +/- 4.6 mmol/L (equivalent to 0.35 mmol/g of protein or 0.76 mmol/g of albumin); Ka = 0.67 +/- 0.40 x 10(-7); and the negative logarithm (base 10) of Ka (pKa) = 7.17. At 37 degrees C, pH of 7.35, and a partial pressure of CO2 (PCO2) of 30 mm Hg, the calculated venous strong ion difference was 30 mEq/L. These results indicate that at a plasma pH of 7.35, a 1 mEq/L decrease in strong ion difference will decrease pH by 0.020, a 1 mm Hg decrease in PCO2 will increase plasma pH by 0.011, and a 1 g/dL decrease in albumin concentration will increase plasma pH by 0.093.

  4. Exploring the link between auxin receptors, rapid cell elongation and organ tropisms.

    Science.gov (United States)

    Möller, Benjamin; Schenck, Daniel; Lüthen, Hartwig

    2010-05-01

    Auxin receptor F-box proteins of the TIR1/AFB family are known to regulate auxin-induced gene expression. We could demonstrate that rapid auxin-induced hypocotyl elongation, the most classical auxin response, is only mildly affected in Arabidopsis plants in which most of the receptor genes have been knocked out, while gene expression is almost completely abolished. Here we test the same receptor mutant plants for their gravitropic and phototropic responsiveness, generally considered to base on auxin gradients across the hypocotyl.

  5. Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems

    OpenAIRE

    Mohammad Faisal; Naseem Ahmad; Mohammad Anis; Abdulrahman A. Alatar; Ahmad A. Qahtan

    2018-01-01

    An efficient micropropagation protocol was developed for Ruta graveolens Linn. using shoot tip meristems derived from a 4-month-old field grown plant. In vitro shoot regeneration and proliferation was accomplished on Murashige and Skoogs (MS) semi-solid medium in addition to different doses of cytokinins viz.6- benzyl adenine (BA), Kinetin (Kn) or 2-isopetynyl adenine (2iP), singly or in combination with auxins viz. indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acet...

  6. A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study.

    Science.gov (United States)

    Ho, Kwok M; Lan, Norris S H; Williams, Teresa A; Harahsheh, Yusra; Chapman, Andrew R; Dobb, Geoffrey J; Magder, Sheldon

    2016-01-01

    This cohort study compared the prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill. The relationships between SIG, lactate, anion gap (AG), anion gap albumin-corrected (AG-corrected), base excess or strong ion difference-effective (SIDe), all obtained within the first hour of intensive care unit (ICU) admission, and the hospital mortality of 6878 patients were analysed. The prognostic significance of each acid-base marker, both alone and in combination with the Admission Mortality Prediction Model (MPM0 III) predicted mortality, were assessed by the area under the receiver operating characteristic curve (AUROC). Of the 6878 patients included in the study, 924 patients (13.4 %) died after ICU admission. Except for plasma chloride concentrations, all acid-base markers were significantly different between the survivors and non-survivors. SIG (with lactate: AUROC 0.631, confidence interval [CI] 0.611-0.652; without lactate: AUROC 0.521, 95 % CI 0.500-0.542) only had a modest ability to predict hospital mortality, and this was no better than using lactate concentration alone (AUROC 0.701, 95 % 0.682-0.721). Adding AG-corrected or SIG to a combination of lactate and MPM0 III predicted risks also did not substantially improve the latter's ability to differentiate between survivors and non-survivors. Arterial lactate concentrations explained about 11 % of the variability in the observed mortality, and it was more important than SIG (0.6 %) and SIDe (0.9 %) in predicting hospital mortality after adjusting for MPM0 III predicted risks. Lactate remained as the strongest predictor for mortality in a sensitivity multivariate analysis, allowing for non-linearity of all acid-base markers. The prognostic significance of SIG was modest and inferior to arterial lactate concentration for the critically ill. Lactate concentration should always be considered regardless whether physiological, base excess or physical-chemical approach

  7. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    Science.gov (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  8. In-situ methylation of strongly polar organic acids in natural waters supported by ion-pairing agents for headspace GC-MSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, P.L.; Walther, W. [Dresden University of Technology, Institute for Groundwater Managemant, Dresden (Germany); Nestler, W. [Institute for Technology and Economics, Department of Civil Engineering and Architecture, Dresden (Germany)

    1998-06-01

    Strongly polar organic substances like halogenated acetic acids have been analyzed in surface water and groundwater in the catchment area of the upper Elbe river in Saxony since 1992. Coming directly from anthropogenic sources like industry, agriculture and indirectly by rainfall, their concentrations can increase up to 100 {mu}g/L in the aquatic environment of this catchment area. A new static headspace GC-MSD method without a manual pre-concentration step is presented to analyze the chlorinated acetic acids relevant to the Elbe river as their volatile methyl esters. Using an ion-pairing agent as modifier for the in-situ methylation of the analytes by dimethylsulfate, a minimal detection limit of 1 {mu}g/L can be achieved. Problems like the thermal degradation of chlorinated acetic acids to halogenated hydrocarbons and changing reaction yields during the headspace methylation, could be effectively reduced. The method has been successfully applied to monitoring bank infiltrate, surface water, groundwater and water works pumped raw water according to health provision principles. (orig.) With 3 figs., 2 tabs., 29 refs.

  9. Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production.

    Science.gov (United States)

    Hu, Xiao-Long; Du, Hai; Xu, Yan

    2015-12-02

    Chinese strong-aroma type liquor (CSAL) is a popular distilled alcoholic beverage in China. It is produced by a complex fermentation process that is conducted in pits in the ground. Ethyl caproate is a key flavor compound in CSAL and is thought to originate from caproic acid produced by Clostridia inhabiting the fermentation pit mud. However, the particular species of Clostridium associated with this production are poorly understood and problematic to quantify by culturing. In this study, a total of 28 closest relatives including 15 Clostridia and 8 Bacilli species in pit muds from three CSAL distilleries, were detected by culture-dependent and -independent methods. Among them, Clostridium kluyveri was identified as the main producer of caproic acid. One representative strain C. kluyveri N6 could produce caproic, butyric and octanoic acids and their corresponding ethyl esters, contributing significantly to CSAL flavor. A real time quantitative PCR assay of C. kluyveri in pit muds developed showed that a concentration of 1.79×10(7) 16S rRNA gene copies/g pit mud in LZ-old pit was approximately six times higher than that in HLM and YH pits and sixty times higher than that in LZ-new pit respectively. This method can be used to improve the management of pit mud microbiology and its impact on CSAL quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis

    Science.gov (United States)

    Brown, D. E.; Rashotte, A. M.; Murphy, A. S.; Normanly, J.; Tague, B. W.; Peer, W. A.; Taiz, L.; Muday, G. K.

    2001-01-01

    Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.

  11. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana.

    Science.gov (United States)

    Bartel, B; Fink, G R

    1994-01-01

    Nitrilases (nitrile aminohydrolase, EC 3.5.5.1) convert nitriles to carboxylic acids. We report the cloning, characterization, and expression patterns of four Arabidopsis thaliana nitrilase genes (NIT1-4), one of which was previously described [Bartling, D., Seedorf, M., Mithöfer, A. & Weiler, E. W. (1992) Eur. J. Biochem. 205, 417-424]. The nitrilase genes encode very similar proteins that hydrolyze indole-3-acetonitrile to the phytohormone indole-3-acetic acid in vitro, and three of the four genes are tandemly arranged on chromosome III. Northern analysis using gene-specific probes and analysis of transgenic plants containing promoter-reporter gene fusions indicate that the four genes are differentially regulated. NIT2 expression is specifically induced around lesions caused by bacterial pathogen infiltration. The sites of nitrilase expression may represent sites of auxin biosynthesis in A. thaliana. Images PMID:8022831

  12. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin

    Science.gov (United States)

    Veluthambi, K.; Poovaiah, B. W.

    1986-01-01

    In vitro and in vivo protein phosphorylations in oat (Avena sativa L.) coleoptile segments were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by two-dimensional gel electrophoresis. In vitro phosphorylation of several polypeptides was distinctly promoted at 1 to 15 micromolar free Ca2+ concentrations. Ca2(+)-stimulated phosphorylation was markedly reduced by trifluoperazine, chlorpromazine, and naphthalene sulfonamide (W7). Two polypeptides were phosphorylated both under in vitro and in vivo conditions, but the patterns of phosphorylation of several other polypeptides were different under the two conditions indicating that the in vivo phosphorylation pattern of proteins is not truly reflected by in vitro phosphorylation studies. Trifluoperazine, W7, or ethylene glycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) + calcium ionophore A23187 treatments resulted in reduced levels of in vivo protein phosphorylation of both control and auxin-treated coleoptile segments. Analysis by two-dimensional electrophoresis following in vivo phosphorylation revealed auxin-dependent changes of certain polypeptides. A general inhibition of phosphorylation by calmodulin antagonists suggested that both control and auxin-treated coleoptiles exhibited Ca2+, and calmodulin-dependent protein phosphorylation in vivo.

  13. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Bai, Qingsong; Hou, Dan; Li, Long; Cheng, Zhanchao; Ge, Wei; Liu, Jun; Li, Xueping; Mu, Shaohua; Gao, Jian

    2017-04-01

    Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and subcellular location predictions. A transcriptome analysis indicated that 37 (except PheSAUR18) of the PheSAUR genes were expressed during shoot growth process and that the PheSAUR genes were differentially expressed. Furthermore, quantitative real-time PCR analysis indicated that all of the PheSAUR genes could be induced in different tissues of seedlings and that 37 (except PheSAUR41) of the PheSAUR genes were up-regulated after indole-3-acetic acid (IAA) treatment. These results reveal a comprehensive overview of the PheSAUR gene family and may pave the way for deciphering their functions during bamboo development.

  14. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong

    2017-09-01

    Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Transcriptomic and Hormonal Analyses Reveal that YUC-Mediated Auxin Biogenesis Is Involved in Shoot Regeneration from Rhizome in Cymbidium

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-10-01

    Full Text Available Cymbidium, one of the most important orchid genera in horticulture, can be classified into epiphytic and terrestrial species. Generally, epiphytic Cymbidium seedlings can be easily propagated by tissue culture, but terrestrial seedlings are difficult to propagate. To date, the molecular mechanisms underlying the differences in the ease with which terrestrial and epiphytic cymbidiums can be propagated are largely unknown. Using RNA-sequencing, quantitative reverse transcription PCR and enzyme-linked immunosorbent assay, Cymbidium ‘Xiaofeng’ (CXF, which can be efficiently micropropagated, and terrestrial Cymbidium sinense ‘Qijianbaimo’ (CSQ, which has a low regeneration ability, were used to explore the molecular mechanisms underlying the micropropagation ability of Cymbidium species. To this end, 447 million clean short reads were generated, and 31,264 annotated unigenes were obtained from 10 cDNA libraries. A total of 1,290 differentially expressed genes (DEGs were identified between CXF and CSQ during shoot induction. Gene ontology (GO enrichment analysis indicated that the DEGs were significantly enriched in auxin pathway-related GO terms. Further analysis demonstrated that YUC and GH3 family genes, which play crucial roles in the regulation of auxin/IAA (indole-3-acetic acid metabolism, acted quickly in response to shoot induction culture in vitro and were closely correlated with variation in shoot regeneration between CXF and CSQ. In addition, the study showed that IAA accumulated rapidly and significantly during shoot induction in CXF compared to that in CSQ; in contrast, no significant changes in other hormones were observed between CXF and CSQ. Furthermore, shoot regeneration in CXF was inhibited by a yucasin-auxin biosynthesis inhibitor, indicating that increased IAA level is required for high-frequency shoot regeneration in CXF. In conclusion, our study revealed that YUC-mediated auxin biogenesis is involved in shoot

  16. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    International Nuclear Information System (INIS)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2015-01-01

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q max ) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q max of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation

  17. Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-03-15

    Graphical abstract: Adsorption of indole-3-acetic acid (IAA) on aminopropyl-modified mesoporous sieves. - Highlights: • Four types of mesoporous molecular sieves were used as sorbents for removal of auxins. • SBA-15, MCF, PHTS and SBA-16 were grafted with (3-aminopropyl)triethoxysilane. • The adsorption capacity of modified materials was higher as compared to pure silicas. • Surface modification and pore volume play important role in adsorption process. - Abstract: In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption–desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Q{sub max}) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Q{sub max} of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.

  18. Lateral root formation and the multiple roles of auxin

    NARCIS (Netherlands)

    Du, Yujuan; Scheres, Ben

    2018-01-01

    Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles

  19. Auxin inhibits endocytosis and promotes its own efflux from cells

    Czech Academy of Sciences Publication Activity Database

    Paciorek, T.; Zažímalová, Eva; Ruthardt, N.; Petrášek, Jan; Stierhof, Y. D.; Kleine-Vehn, J.; Morris, David; Emans, N.; Jürgens, G.; Geldner, N.; Friml, J.

    2005-01-01

    Roč. 435, č. 7046 (2005), s. 1251-1256 ISSN 0028-0836 R&D Projects: GA AV ČR IAA6038303 Institutional research plan: CEZ:AV0Z50380511 Keywords : Phytohormones * polar auxin transport * plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 29.273, year: 2005

  20. Auxins and Shoot Tropisms--A Tenuous Connection?

    Science.gov (United States)

    Hall, A. B.; And Others

    1980-01-01

    Discussed is the Cholodny-Went hypothesis which explains geo- and phototropic curvature in shoots in terms of a perception phase at the apex with a response at some remote site. Hormonal messages, lateral transmission of a stimulus, auxin concentration gradients, and what should be taught concerning this hypothesis are discussed. (DS)

  1. The role of auxins in somatic embryogenesis of Abies alba

    Czech Academy of Sciences Publication Activity Database

    Vondráková, Zuzana; Eliášová, Kateřina; Fischerová, Lucie; Vágner, Martin

    2011-01-01

    Roč. 6, č. 4 (2011), s. 587-596 ISSN 1895-104X R&D Projects: GA MŠk OC 158 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin inhibitor * Fir * Phytohormone Subject RIV: EF - Botanics Impact factor: 1.000, year: 2011

  2. Evaluation of different densities of auxin and endophytic fungi ...

    African Journals Online (AJOL)

    Mentha piperita and Thymus vulgaris are two important species of the family Lamiaceae. Two distinct experiments were conducted and examined; the first evaluate the effect of different auxin levels on M. piperita and T. vulgaris growth, while the second examined the effect of two fungi Piriformospora indica and Sebacina ...

  3. Synthetic auxin herbicides control germinating scotch broom (Cytisus scoparius)

    Science.gov (United States)

    Timothy B. Harrington

    2014-01-01

    Scotch broom is a large, nonnative shrub that has invaded forests and grasslands in 27 U.S. states. Without treatment, Scotch broom’s persistent seedbank ensures a continuing source of regeneration after soil disturbance. In growth chamber studies, five rates of three synthetic auxin herbicides, aminocyclopyrachlor (AC), aminopyralid (AP), and clopyralid (CP), were...

  4. Differential in vitro response of microsomal subfractions to auxins

    International Nuclear Information System (INIS)

    Wilkinson, E.E.; Brightman, A.O.; Zhu, X.-Z.; Morre, J.

    1990-01-01

    Soybean microsomes incubated with or without 1 μM 2,4-D loose phosphatidylcholine, phosphatidylinositol and other phospholipids. Vesicles labeled in vivo with [ 14 C]choline prior to isolation and incubation exhibit rapid 2,4-D-induced hydrolysis of phosphatidylcholine to a plateau within 15 min. As much as 50% of the radioactivity of the membrane appeared in the soluble supernatant. However, when separated into plasma membrane (PM)-enriched and PM-depleted fractions, the PM-enriched fraction was unresponsive to auxin. Similarly, highly purified pM fractions from soybean microsomes exhibited no auxin-stimulated breakdown of phosphoinosotides, and no stimulations of phospholipase C or of phospholipase A 2 . Instead, PM exhibited an auxin-stimulated NADH oxidase activity not shown by microsomes depleted of PM. The results suggest that in vitro auxin effects on phospholipid metabolism involve components of the microsomal fraction other than PM such as the endoplasmic reticulum or tonoplast, whereas PM responds by enhanced NADH oxidase activity

  5. Why plants need more than one type of auxin

    Czech Academy of Sciences Publication Activity Database

    Simon, Sibu; Petrášek, Jan

    2011-01-01

    Roč. 180, č. 3 (2011), s. 454-460 ISSN 0168-9452 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin * IAA * 4-Cl-IAA * IBA * PAA Subject RIV: ED - Physiology Impact factor: 2.945, year: 2011

  6. Identification and expression analysis of primary auxin-responsive ...

    Indian Academy of Sciences (India)

    Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus) ... The results showed that 11/29 CsIAA genes were expressed in leaves whether treated with IAA or not and the time course of processing and compared with the control, five CsIAA genes showed low ...

  7. Effects of auxins on in vitro reserve compounds of Phalaenopsis ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The effects of auxin and the endogenous levels of reserve compounds of Phalaenopsis amabilis (L.) ..... mechanisms, and the physiological process of sugar transport, and their cellular and temporal expression patterns must be defined. Our results demonstrate the presence of high metabolic ...

  8. ADP1 Affects Plant Architecture by Regulating Local Auxin Biosynthesis

    Science.gov (United States)

    Li, Shibai; Qin, Genji; Novák, Ondřej; Pěnčík, Aleš; Ljung, Karin; Aoyama, Takashi; Liu, Jingjing; Murphy, Angus; Gu, Hongya; Tsuge, Tomohiko; Qu, Li-Jia

    2014-01-01

    Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. PMID:24391508

  9. Evaluation of acid-base disorders in dogs and cats presenting to an emergency room. Part 2: comparison of anion gap, strong ion gap, and semiquantitative analysis.

    Science.gov (United States)

    Hopper, Kate; Epstein, Steven E; Kass, Philip H; Mellema, Matthew S

    2014-01-01

    To compare the diagnostic performance of the anion gap (AG) with 2 physicochemical approaches to identify unmeasured anions. Prospective cohort study. University teaching hospital. Eighty-four dogs and 14 cats presenting to a university teaching hospital emergency room. All dogs and cats in which venous blood samples for acid-base, lactate, and serum biochemical analysis were all collected within 60 minutes of each other, over a 5-month enrollment period. Unmeasured anions were quantified using each of three approaches: the anion gap (AG), strong ion gap (SIG), and a semiquantitative approach (XA). An increased AG metabolic acidosis was evident in 34/98 of cases. The Stewart approach identified an increased SIG acidosis in 49/98 of cases. There was a strong correlation between SIG and AG (r = 0.89; P anions in 68/98 of cases. There was a moderate correlation between AG and XA (r = 0.68; P anions occurred commonly in this sample of small animal emergency room patients and physiochemical approaches identified more animals with unmeasured anions than the traditional AG calculation. Further studies are needed to determine if the results of the physicochemical approach improves clinical management and warrants the associated increases in cost and complexity. © Veterinary Emergency and Critical Care Society 2014.

  10. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Simon, S.; Skůpa, Petr; Viaene, T.; Zwiewka, M.; Tejos, R.; Klíma, Petr; Čarná, Mária; Rolčík, J.; De Rycke, R.; Moreno, I.; Dobrev, Petre; Orellana, A.; Zažímalová, Eva; Friml, J.

    2016-01-01

    Roč. 211, č. 1 (2016), s. 65-74 ISSN 0028-646X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA16-10948S Institutional support: RVO:61389030 Keywords : auxin * endoplasmic reticulum (ER) * lateral root Subject RIV: ED - Physiology Impact factor: 7.330, year: 2016

  11. Auxins affected ginsenoside production and growth of hairy roots in Panax hybrid.

    Science.gov (United States)

    Washida, Daisuke; Shimomura, Koichiro; Takido, Michio; Kitanaka, Susumu

    2004-05-01

    Hairy roots of interspecific hybrid ginseng (Panax ginseng x P. quinquefolium), induced by Agrobacterium rhizogenes ATCC 15834, grew well in B5 liquid media supplemented with 2.5 microM auxins (3-indole butyric acid (IBA), 1-naphtaleneacetic acid (NAA) and 3-indoleacetic acid (IAA)). The hairy roots cultured in B5 liquid medium supplemented with 2.5 microM IBA showed best growth (6.39 g fresh weight per a flask, at week 8). The highest content of the total ginsenosides was 1.63% as dry weight at week 8 when cultured with 2.5 microM NAA. The different auxins affected the numbers and lateral branching roots. Especially, 2.5 microM IBA promoted the lateral root formation (43.7+/-4.0 roots, at week 8), and 2.5 microM NAA promoted the lateral root growth (45.3+/-5.6 mm, at week 8). The growth and ginsenosides production of 8-week old hairy roots cultured in B5 liquid media supplemented with IBA and NAA combinations were also investigated. Hairy roots produced higher amounts of ginsenosides in B5 liquid media supplemented with 0.5-1.0 microM IBA and NAA combinations than that cultured in B5 liquid media supplemented with only IBA and NAA. The highest yield of ginsenoside was obtained when cultured with 0.5 microM IBA and 1.0 microM IBA combination (6.38 mg per a flask, at week 8).

  12. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can ex