WorldWideScience

Sample records for stronger zonal flows

  1. Solar-cycle variation of zonal and meridional flow

    International Nuclear Information System (INIS)

    Komm, R; Howe, R; Hill, F; Hernandez, I Gonzalez; Haber, D

    2011-01-01

    We study the variation with the solar cycle of the zonal and meridional flows in the near-surface layers of the solar convection zone. We have analyzed MDI Dynamics-Program data with ring-diagram analysis covering the rising phase of cycle 23, while the analyzed GONG high-resolution data cover the maximum and declining phase of cycle 23. For the zonal flow, the migration with latitude of the flow pattern is apparent in the deeper layers, while for the meridional flow, a migration with latitude is apparent only in the layers close to the surface. The faster-than-average bands of the zonal flow associated with the new cycle are clearly visible. Similarly, a pattern related to the new cycle appears in the residual meridional flow. We also study the flow differences between the hemispheres during the course of the solar cycle. The difference pattern of the meridional flow is slanted in latitude straddling the faster-than-average band of the torsional oscillation pattern in the zonal flow. The difference pattern of the zonal flow, on the other hand, resembles the cycle variation of the meridional flow. In addition, the meridional flow during the minimum of cycle 23/24 appears to be slightly stronger than during the previous minimum of cycle 22/23.

  2. Transport hysteresis and zonal flow stimulation in magnetized plasmas

    Science.gov (United States)

    Gravier, E.; Lesur, M.; Reveille, T.; Drouot, T.; Médina, J.

    2017-12-01

    A hysteresis in the relationship between zonal flows and electron heating is observed numerically by using gyrokinetic simulations in fusion plasmas. As the electron temperature increases, a first transition occurs, at a given electron/ion temperature ratio, above which zonal flows are much weaker than before the transition, leading to a poorly confined plasma. Beyond this transition, even if the electron temperature is lowered to a moderate value, the plasma fails to recover a dynamic state with strong zonal flows. Then, as the electron temperature decreases further, a new transition appears, at a temperature lower than the first transition, below which the zonal flows are stronger than they were initially. The confinement of the plasma and the heat flux are thus found to be sensitive to the history of the magnetized plasma. These transitions are associated with large exchanges of energy between the modes corresponding to instabilities ( m> 0 ) and zonal flows ( m = 0 ). We also observe that up to the first transition it is possible to use a control method to stimulate the appearance of zonal flows and therefore the confinement of the plasma. Beyond that transition, this control method is no longer effective.

  3. Review of zonal flows

    International Nuclear Information System (INIS)

    Diamond, P.H.; Itoh, S.-I.; Itoh, K.; Hahm, T.S.

    2004-10-01

    A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, zonal flows in nature are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave - zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying direction for progress in future research. (author)

  4. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Fujisawa, A.; Itoh, S.-I.; Yagi, M.; Nagashima, Y.; Diamond, P.H.; Tynan, G.R.; Hahm, T.S.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as ''drift wave-zonal flow turbulence.'' In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. (author)

  5. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Diamond, P.H.; Hahm, T.S.; Fujisawa, A.; Tynan, G.R.; Yagi, M.; Nagashima, Y.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as 'drift wave-zonal flow turbulence'. In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress

  6. Overview of zonal flow physics

    International Nuclear Information System (INIS)

    Diamond, P.H.; Itoh, K.; Itoh, S.-I.; Hahm, T.S.

    2005-01-01

    Zonal flows, by which we mean azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as 'drift wave-zonal flow turbulence'. In this theory overview, we present new viewpoints and unifying concepts which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. (author)

  7. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  8. Effect of mean flow on the interaction between turbulence and zonal flow

    International Nuclear Information System (INIS)

    Uzawa, Ken; Kishimoto, Yasuaki; Li Jiquan

    2006-01-01

    The effects of an external mean flow on the generation of zonal flow in drift wave turbulence are theoretically studied in terms of a modulational instability analysis. A dispersion relation for the zonal flow instability having complex frequency ω q =Ω q +iγ q is derived, which depends on the external mean flow's amplitude |φ f | and radial wave number k f . As an example, we chose an ion temperature gradient (ITG) turbulence-driven zonal flow as the mean flow acting on an electron temperature gradient (ETG) turbulence-zonal flow system. The growth rate of the zonal flow γ q is found to be suppressed, showing a relation γ q =γ q0 (1 - α|φ f | 2 k f 2 ), where γ q0 is the growth rate in the absence of mean flow and α is a positive numerical constant. This formula is applicable to a strong shearing regime where the zonal flow instability is stabilized at α|φ f 2 |k f 2 ≅ 1. Meanwhile, the suppression is accompanied by an increase of the real frequency |Ω q |. The underlying physical mechanism of the suppression is discussed. (author)

  9. Regulation of ETG turbulence by TEM driven zonal flows

    Science.gov (United States)

    Asahi, Yuuichi; Ishizawa, Akihiro; Watanabe, Tomohiko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji

    2013-10-01

    Anomalous heat transport driven by electron temperature gradient (ETG) turbulence is investigated by means of gyrokinetic simulations. It is found that the ETG turbulence can be suppressed by zonal flows driven by trapped electron modes (TEMs). The TEMs appear in a statistically steady state of ETG turbulence and generate zonal flows, while its growth rate is much smaller than those of ETGs. The TEM-driven zonal flows with lower radial wave numbers are more strongly generated than those driven by ETG modes, because of the higher zonal flow response to a density source term. An ExB shearing rate of the TEM-driven zonal flows is strong enough to suppress the long-wavelength ETG modes which make the main contribution to the turbulent transport.

  10. ON THE VARIATION OF ZONAL GRAVITY COEFFICIENTS OF A GIANT PLANET CAUSED BY ITS DEEP ZONAL FLOWS

    International Nuclear Information System (INIS)

    Kong Dali; Zhang Keke; Schubert, Gerald

    2012-01-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients J-bar 2n , n=1,2,3,..., without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, ΔJ 2n =J 2n -J-bar 2n , n=1,2,3,..., caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4 . It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., ΔJ 2n >=J-bar 2n for n ≥ 5.

  11. Transport in zonal flows in analogous geophysical and plasma systems

    Science.gov (United States)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  12. The role of zonal flows in disc gravito-turbulence

    Science.gov (United States)

    Vanon, R.

    2018-04-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  13. The role of zonal flows in disc gravito-turbulence

    Science.gov (United States)

    Vanon, R.

    2018-07-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling time-scale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  14. Zonal flows and turbulence in fluids and plasmas

    Science.gov (United States)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  15. Theory, simulation, and experimental studies of zonal flows

    International Nuclear Information System (INIS)

    Hahm, T. S.; Burrell, K.H.; Lin, Z.; Nazikian, R.; Synakowski, E.J.

    2000-01-01

    The authors report on current theoretical understanding of the characteristics of self-generated zonal flows as observed in nonlinear gyrokinetic simulations of toroidal ITG turbulence [Science 281, 1835 (1998)], and discuss various possibilities for experimental measurements of signature of zonal flows

  16. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.N.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    1999-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  17. Dynamics of zonal flows and self-regulating drift-wave turbulence

    International Nuclear Information System (INIS)

    Diamond, P.H.; Fleischer, J.; Rosenbluth, M.; Hinton, F.L.; Malkov, M.; Smolyakov, A.

    2001-01-01

    We present a theory of zonal flow - drift wave dynamics. Zonal flows are generated by modulational instability of a drift wave spectrum, and are damped by collisions. Drift waves undergo random shearing-induced refraction, resulting in increased mean square radial wavenumber. Drift waves and zonal flows together form a simple dynamical system, which has a single stable fixed point. In this state, the fluctuation intensity and turbulent diffusivity are ultimately proportional to the collisional zonal flow damping. The implications of these results for transport models is discussed. (author)

  18. Identification of zonal flows and their characteristics on transport barrier in CHS

    International Nuclear Information System (INIS)

    Fujisawa, A.; Shimizu, A.; Nakano, H.; Ohshima, S.; Iguchi, H.; Yoshimura, Y.; Minami, T.; Itoh, K.; Isobe, M.; Suzuki, C.; Nishimura, S.; Akiyama, T.; Nagaoka, K.; Takahashi, C.; Ida, K.; Toi, K.; Okamura, S.; Matsuoka, K.; Itoh, S.-I.; Diamond, P.H.

    2005-01-01

    Relation between turbulence and electric field has been one of the central issues related to the transport physics of toroidal plasmas. Recently, zonal flow, axi-symmetric band-like structure (m=n=0) with a finite radial wavelength, has just come up the third element responsible for the plasma transport. Theories and simulations have expected that the zonal flow should be a mechanism to control the saturation level of turbulence and the resultant transport. In CHS, dual heavy ion beam probes (HIBP) succeeded to prove the presence of the zonal flow and to show the dynamics and structure of the zonal flows. The experiment shows a long-distance correlation between radial electric field (or plasma flow) in low frequency range (< ∼1 kHz), together with radial structure of the zonal flow; characteristic radial length of ∼1.5 cm and life time of ∼1.5 ms. Different characteristics of the zonal flow and turbulence was found in states with and without a transport barrier; the zonal flow activity shrinks with an increase in turbulence level after the barrier breaks down. The recent HIBP experiments have just provided further insight into the system of zonal flow and turbulence. A wavelet analysis is performed on the fluctuation on the barrier position in the state with the transport barrier. The analysis reveals a causal relationship between the zonal flow evolution and turbulence level; the zonal flow is found to increase toward the mean flow direction as turbulence level decreases in the frequency range of 100-150kHz. The observation shows the presence of a nonlinear interaction between zonal flow and the turbulence, or a process of the zonal flow to affect the turbulence level. This paper presents surveys on zonal flow, particularly the recent experiments to demonstrate a causal relationship between zonal flow component and turbulence. Besides, other results obtained with a wavelet analysis are presented on the transport barrier; e.g., density and potential

  19. Collisionless kinetic-fluid model of zonal flows in toroidal plasmas

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Horton, W.

    2006-12-01

    A novel kinetic-fluid model is presented, which describes collisionless time evolution of zonal flows in tokamaks. In the new zonal-flow closure relations, the parallel heat fluxes are written by the sum of short- and long-time-evolution parts. The former part is given in the dissipative form of the parallel heat diffusion and relates to collisionless damping processes. The latter is derived from the long-time-averaged gyrocenter distribution and plays a major role in describing low-frequency or stationary zonal flows, for which the parallel heat fluxes are expressed in terms of the parallel flow as well as the nonlinear-source and initial-condition terms. It is shown analytically and numerically that, when applied to the zonal flow driven by either ion or electron temperature gradient turbulence, the kinetic-fluid equations including the new closure relations can reproduce the same long-time zonal-flow responses to the initial condition and to the turbulence source as those obtained from the gyrokinetic model. (author)

  20. Coherent Structure Phenomena in Drift Wave-Zonal Flow Turbulence

    International Nuclear Information System (INIS)

    Smolyakov, A. I.; Diamond, P. H.; Malkov, M.

    2000-01-01

    Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence that manifests itself by the intermittent distribution of regions with a reduced level of anomalous transport. (c) 2000 The American Physical Society

  1. Rethinking wave-kinetic theory applied to zonal flows

    Science.gov (United States)

    Parker, Jeffrey

    2017-10-01

    Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.

  2. Change of Zonal Flow Spectra in the JIPP T-IIU Tokamak Plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Watari, T.; Yamagishi, O.; Nishizawa, A.; Narihara, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.

    2007-01-01

    When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow

  3. Generation of zonal flow in the Earth's dissipative ionospheric F-layer

    International Nuclear Information System (INIS)

    Kaladze, T.D.; Shad, M.; Tsamalashvili, L.V.

    2011-01-01

    Generation of zonal flow in the Earth's dissipative ionospheric F-layer is considered. Dissipation arises due to Pedersen conductivity acting as an inductive (magnetic) inhibition. It is shown that in contrast to previous investigations the zonal flow growth rate does not depend on small wave vector component of zonal flow mode, needs no instability condition and the spectral energy transferring (inverse cascade) process unconditionally takes place. -- Highlights: → Generation of zonal flow in the Earth's dissipative ionospheric F-layer is considered. → Dissipation arises due to Pedersen conductivity acting as inductive (magnetic) inhibition. → It is shown that such generation doesn't need any instability condition. → Energy transferring (inverse cascade) process takes place even for the small values of pumping intensity.

  4. Global characteristics of zonal flows generated by ion temperature gradient driven turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan

    2004-08-01

    Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)

  5. Tokamak residual zonal flow level in near-separatrix region

    International Nuclear Information System (INIS)

    Bing-Ren, Shi

    2010-01-01

    Residual zonal flow level is calculated for tokamak plasmas in the near-separatrix region of a diverted tokamak. A recently developed method is used to construct an analytic divertor tokamak configuration. It is shown that the residual zonal flow level becomes smaller but still keeps finite near the separatrix because the neoclassical polarisation mostly due to the trapped particles goes larger in this region. (fluids, plasmas and electric discharges)

  6. Zonal flow generation in collisionless trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Anderson, J; Nordman, H; Singh, R; Weiland, J

    2006-01-01

    In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values

  7. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    Science.gov (United States)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  8. Zonal Flow Dynamics and Size-scaling of Anomalous Transport

    International Nuclear Information System (INIS)

    Liu Chen; White, Roscoe B.; Zonca, F.

    2003-01-01

    Nonlinear equations for the slow space-time evolution of the radial drift wave envelope and zonal flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent 4-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and White [Phys. Plasmas 7 (2000) 3129]. Solutions clearly demonstrate turbulence spreading due to nonlinearly enhanced dispersiveness and, consequently, the device-size dependence of the saturated wave intensities and transport coefficients

  9. Overview of edge turbulence and zonal flow studies on TEXTOR

    International Nuclear Information System (INIS)

    Xu, Y.; Kraemer-Flecken, A.; Reiser, D.

    2008-01-01

    In the TEXTOR tokamak, the edge turbulence properties and turbulence-associated zonal flows have been systematically investigated both experimentally and theoretically. The experimental results include the investigation of self-organized criticality (SOC) behavior, the intermittent blob transport and the geodesic acoustic mode (GAM) zonal flows. During the Dynamic Ergodic Divertor (DED) operation in TEXTOR, the impact of an ergodized plasma boundary on edge turbulence, turbulent transport and the fluctuation propagation has also been studied in detail. The results show substantial influence by the DED on edge turbulence. The theoretical simulations for TEXTOR parameters show characteristic features of the GAM flows and strong reduction of the blob transport by the DED at the plasma periphery. Moreover, the modelling reveals the importance of the Reynolds stress in driving mean (or zonal) flows at the plasma edge in the ohmic discharge phase in TEXTOR. (author)

  10. Mean shear flows, zonal flows, and generalized Kelvin-Helmholtz modes in drift wave turbulence: A minimal model for L→H transition

    International Nuclear Information System (INIS)

    Kim, Eun-jin; Diamond, P.H.

    2003-01-01

    The dynamics of and an interplay among structures (mean shear flows, zonal flows, and generalized Kelvin-Helmholtz modes) are studied in drift wave turbulence. Mean shear flows are found to inhibit the nonlinear generation of zonal flows by weakening the coherent modulation response of the drift wave spectrum. Based on this result, a minimal model for the L→H (low- to high-confinement) transition is proposed, which involves the amplitude of drift waves, zonal flows, and the density gradient. A transition to quiescent H-mode sets in as the profile becomes sufficiently steep to completely damp out drift waves, following an oscillatory transition phase where zonal flows regulate drift wave turbulence. The different roles of mean flows and zonal flows are elucidated. Finally, the effect of poloidally nonaxisymmetric structures (generalized Kelvin-Helmholtz mode) on anomalous transport is investigated, especially in reference to damping of collisionless zonal flows. Results indicate that nonlinear excitation of this structure can be potentially important in enhancing anomalous transport as well as in damping zonal flows

  11. GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS

    International Nuclear Information System (INIS)

    Dittrich, K.; Klahr, H.; Johansen, A.

    2013-01-01

    Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease with the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St ≥ 0.5 and dust-to-gas ratio 10 –4 to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.

  12. Zonal flow excitation by Shukla-Varma modes in a nonuniform dusty magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, P.K.; Stenflo, L.

    2002-01-01

    The nonlinear coupling between the Shukla-Varma (SV) modes and the zonal flows in a nonuniform dusty magnetoplasma is considered. By using a two-fluid model and the guiding center particle drifts, a pair of coupled mode equations is obtained. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the SV modes. The increment of the parametrically excited zonal flows is presented. The relevance of our investigation to laboratory and space plasmas is discussed

  13. Intermittent characteristics in coupling between turbulence and zonal flows

    International Nuclear Information System (INIS)

    Fujisawa, A; Shimizu, A; Nakano, H; Ohshima, S; Itoh, K; Nagashima, Y; Itoh, S-I; Iguchi, H; Yoshimura, Y; Minami, T; Nagaoka, K; Takahashi, C; Kojima, M; Nishimura, S; Isobe, M; Suzuki, C; Akiyama, T; Ido, T; Matsuoka, K; Okamura, S; Diamond, P H

    2007-01-01

    An extended application of Gabour's wavelet to bicoherence analysis succeeds in resolving the instantaneous structure of three wave couplings between disparate scale electric field fluctuations in the high temperature core in a toroidal plasma device named the compact helical system. The obtained results quantify an intermittent linkage between turbulence and zonal flows-a highlighted issue in the present plasma research. This is the first demonstration that the intermittent nature of the three wave coupling should underlie the turbulence power modulation due to zonal flows

  14. Zonal Flows Driven by Small-Scale Drift-Alfven Modes

    International Nuclear Information System (INIS)

    Li Dehui; Zhou Deng

    2011-01-01

    Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions. (magnetically confined plasma)

  15. Zonal structure of unbounded external-flow and aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L Q; Kang, L L; Wu, J Z, E-mail: lqliu@pku.edu.cn [State Key Laboratory of Turbulence and Complex System, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China)

    2017-08-15

    This paper starts from the far-field behaviors of velocity field in externally unbounded flow. We find that the well-known algebraic decay of disturbance velocity as derived kinematically is too conservative. Once the kinetics are taken into account by working on the fundamental solutions of far-field linearized Navier–Stokes equations, it is proven that the furthest far-field zone adjacent to the uniform fluid at infinity must be unsteady, viscous and compressible, where all disturbances degenerate to sound waves that decay exponentially. But this optimal rate does not exist in some commonly used simplified flow models, such as steady flow, incompressible flow and inviscid flow, because they actually work in true subspaces of the unbounded free space, which are surrounded by further far fields of different nature. This finding naturally leads to a zonal structure of externally unbounded flow field. The significance of the zonal structure is demonstrated by its close relevance to existing theories of aerodynamic force and moment in external flows, including the removal of the difficulties or paradoxes inherent in the simplified models. (paper)

  16. Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows

    International Nuclear Information System (INIS)

    Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko

    2015-01-01

    Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)

  17. Multi-scale-nonlinear interactions among micro-turbulence, double tearing instability and zonal flows

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient

  18. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  19. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-03-15

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  20. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Science.gov (United States)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  1. Analysis of zonal flow bifurcations in 3D drift wave turbulence simulations

    International Nuclear Information System (INIS)

    Kammel, Andreas

    2012-01-01

    The main issue of experimental magnetic fusion devices lies with their inherently high turbulent transport, preventing long-term plasma confinement. A deeper understanding of the underlying transport processes is therefore desirable, especially in the high-gradient tokamak edge which marks the location of the drift wave regime as well as the outer boundary of the still badly understood high confinement mode. One of the most promising plasma features possibly connected to a complete bifurcation theory for the transition to this H-mode is found in large-scale phenomena capable of regulating radial transport through vortex shearing - i.e. zonal flows, linearly stable large-scale poloidal vector E x vector B-modes based on radial flux surface averages of the potential gradient generated through turbulent self-organization. Despite their relevance, few detailed turbulence studies of drift wave-based zonal flows have been undertaken, and none of them have explicitly targeted bifurcations - or, within a resistive sheared-slab environment, observed zonal flows at all. In this work, both analytical means and the two-fluid code NLET are used to analyze a reduced set of Hasegawa-Wakatani equations, describing a sheared collisional drift wave system without curvature. The characteristics of the drift waves themselves, as well as those of the drift wave-based zonal flows and their retroaction on the drift wave turbulence are examined. The single dimensionless parameter ρ s proposed in previous analytical models is examined numerically and shown to divide the drift wave scale into two transport regimes, the behavioral characteristics of which agree perfectly with theoretical expectations. This transport transition correlates with a transition from pure drift wave turbulence at low ρ s into the high-ρ s zonal flow regime. The associated threshold has been more clearly identified by tracing it back to a tipping of the ratio between a newly proposed frequency gradient length at

  2. Characterization of zonal flow generation in weak electrostatic turbulence

    International Nuclear Information System (INIS)

    Negrea, M; Petrisor, I; Weyssow, B

    2008-01-01

    The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted

  3. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Science.gov (United States)

    Asahi, Y.; Ishizawa, A.; Watanabe, T.-H.; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-01

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  4. Statistical properties of Charney-Hasegawa-Mima zonal flows

    International Nuclear Information System (INIS)

    Anderson, Johan; Botha, G. J. J.

    2015-01-01

    A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxes to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed

  5. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  6. Blob/hole formation and zonal-flow generation in the edge plasma of the JET tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Naulin, Volker; Fundamenski, W.

    2009-01-01

    The first experimental evidence showing the connection between blob/hole formation and zonal-flow generation was obtained in the edge plasma of the JET tokamak. Holes as well as blobs are observed to be born in the edge shear layer, where zonal-flows shear off meso-scale coherent structures......, leading to disconnection of positive and negative pressure perturbations. The newly formed blobs transport azimuthal momentum up the gradient of the azimuthal flow and drive the zonal-flow shear while moving outwards. During this process energy is transferred from the meso-scale coherent structures...

  7. Zonal flows in tokamaks with anisotropic pressure

    International Nuclear Information System (INIS)

    Ren, Haijun

    2014-01-01

    Zonal flows (ZFs) in a tokamak plasma with anisotropic pressure are investigated. The dynamics of perpendicular and parallel pressures are determined by the Chew-Goldberger-Low double equations and low-β condition is adopted, where β is the ratio of plasma pressure to the magnetic field pressure. The dispersion relation is analytically derived and illustrates two branches of ZFs. The low frequency zonal flow (LFZF) branch becomes unstable when χ, the ratio of the perpendicular pressure to the parallel one, is greater than a threshold value χ c , which is about 3.8. In the stable region, its frequency increases first and then decreases with increasing χ. For χ = 1, the frequency of LFZF agrees well with the experimental observation. For the instability, the growth rate of LFZF increases with χ. The geodesic acoustic mode branch is shown to be always stable with a frequency increasing with χ. The safety factor is shown to diminish the frequencies of both branches or the growth rate of LFZF

  8. Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows

    International Nuclear Information System (INIS)

    Lin, Z.; Hahm, T.S.; Lee, W.W.; Tang, W.M.; White, R.B.

    2000-01-01

    A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geometry has been developed and applied to the investigation of zonal flows dynamics in toroidal ion-temperature-gradient turbulence. Full torus simulation results support the important conclusion that turbulence-driven zonal flows significantly reduce the turbulent transport. Linear collisionless simulations for damping of an initial poloidal flow perturbation exhibit an asymptotic residual flow. The collisional damping of this residual causes the dependence of ion thermal transport on the ion-ion collision frequency even in regimes where the instabilities are collisionless

  9. Profiles of zonal flows and turbulence mode numbers and probe system in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Hong Wenyu; Zhao Kaijun; Yan Longwen; Dong Jiaqi; Cheng Jun; Qian Jun

    2009-01-01

    The toroidal and poloidal symmetries (m-0, n-0) of the measured low frequency zonal flows (f=0-5 kHz) and geodesic acoustic mode zonal flow (f=16 kHz) electric potential and radial promulgate features were unambiguously identified with displaced Langmuir probe arrays in the edge plasma of the HL-2A tokamak for the first time. The finite radial wave vector (K r-LF =0.6 cm -1 , K r-GAM =2 cm -1 ) of the flows was simultaneously estimated. The formation mechanism of the flows is identified to be nonlinear three wave coupling between high frequency turbulent fluctuations and the flows. Changes of zonal flow amplitude bring by ECRH power and the boundary safety factors were simply studied. Moreover, change of zonal flow amplitude in radial direction was too observed. (authors)

  10. Anisotropic turbulence and zonal jets in rotating flows with a β-effect

    Directory of Open Access Journals (Sweden)

    B. Galperin

    2006-01-01

    Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the

  11. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  12. Forces on zonal flows in tokamak core turbulence

    International Nuclear Information System (INIS)

    Hallatschek, K.; Itoh, K.

    2005-01-01

    The saturation of stationary zonal flows (ZF) in the core of a tokamak has been analyzed in numerical fluid turbulence computer studies. The model was chosen to properly represent the kinetic global plasma flows, i.e., undamped stationary toroidal or poloidal flows and Landau damped geodesic acoustic modes. Reasonable agreement with kinetic simulations in terms of magnitude of transport and occurrence of the Dimits shift was verified. Contrary to common perception, in the final saturated state of turbulence and ZFs, the customary perpendicular Reynolds stress continues to drive the ZFs. The force balance is established by the essentially quasilinear parallel Reynolds stress acting on the parallel return flows required by incompressibility. (author)

  13. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Drouot, T.; Gravier, E.; Reveille, T.; Collard, M. [Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, 54 506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-10-15

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of the temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.

  14. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    Science.gov (United States)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  15. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  16. Pole dynamics for the Flierl-Petvishvili equation and zonal flow

    International Nuclear Information System (INIS)

    Spineanu, F.; Vlad, M.; Itoh, K.; Sanuki, H.; Itoh, S.-I.

    2003-09-01

    We use a systematic method which allows us to identify a class of exact solutions of the Flierl-Petvishvili equation. The solutions are periodic and have one dimensional geometry. We examine the physical properties and find that these structures can have a significant effect on the zonal flow generation. (author)

  17. L-H bifurcations as phase transitions, the role of zonal flows and the spectral energy transfer

    International Nuclear Information System (INIS)

    Shats, M.G.; Punzmann, H.; Xia, H.; Solomon, W.M.

    2003-01-01

    An overview of new results related to the physics of confinement bifurcations in the H-1 heliac is presented. A macroscopic description of the transport modifications across L-H transitions in H-1 suggests several analogies between these bifurcations and phase transitions. Among them is the nucleation in phase transitions which is manifested in the plasma both in time and in space. A microscopic picture reveals the importance of zonal flows, or time-varying shear radial electric field in the spatio-temporal structure of confinement bifurcations. In particular, the effect of zonal flows on the fluctuation-driven transport in H-1 is discussed. Finally, new results on the mechanism of generation of large coherent structures and zonal flows are reviewed. It is shown that inverse energy cascades in turbulent spectra are responsible for the structure generation in H-1. (orig.)

  18. A theory of self-organized zonal flow with fine radial structure in tokamak

    Science.gov (United States)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  19. Zonal methods and computational fluid dynamics

    International Nuclear Information System (INIS)

    Atta, E.H.

    1985-01-01

    Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy

  20. Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils

    KAUST Repository

    Zhang, Yue

    2015-07-23

    This paper presentsamultiscale finite-element formulation for the second modeofzonal detached-eddy simulation. The multiscale formulation corrects the lack of stability of the standard Galerkin formulation by incorporating the effect of unresolved scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free shear-layer rollup, vortex shedding from the upstream cylinder, and interaction with the downstream cylinder are well reproduced. Good agreement with experimental measurements gives credence to the accuracy of zonal detached-eddy simulation in modeling turbulent separated flows. A comprehensive study is then conducted on the performance degradation of ice-contaminated airfoils. NACA 23012 airfoil with a spanwise ice ridge and Gates Learjet Corporation-305 airfoil with a leading-edge horn-shape glaze ice are selected for investigation. Appropriate spanwise domain size and sufficient grid density are determined to enhance the reliability of the simulations. A comparison of lift coefficient and flowfield variables demonstrates the added advantage that the zonal detached-eddy simulation model brings to the Spalart-Allmaras turbulence model. Spectral analysis and instantaneous visualization of turbulent structures are also highlighted via zonal detached-eddy simulation. Copyright © 2015 by the CFD Lab of McGill University. Published by the American Institute of Aeronautics and Astronautics, Inc.

  1. Effects of plasma current on nonlinear interactions of ITG turbulence, zonal flows and geodesic acoustic modes

    International Nuclear Information System (INIS)

    Angelino, P; Bottino, A; Hatzky, R; Jolliet, S; Sauter, O; Tran, T M; Villard, L

    2006-01-01

    The mutual interactions of ion temperature gradient (ITG) driven modes, zonal flows and geodesic acoustic modes (GAM) in tokamak plasmas are investigated using a global nonlinear gyrokinetic formulation with totally unconstrained evolution of temperature gradient and profile. A series of numerical simulations with the same initial temperature and density profile specifications is performed using a sequence of ideal MHD equilibria differing only in the value of the total plasma current, in particular with identical magnetic shear profiles and shapes of magnetic surfaces. On top of a bursty or quasi-steady state behaviour the zonal flows oscillate at the GAM frequency. The amplitude of these oscillations increases with the value of the safety factor q, resulting in a less effective suppression of ITG turbulence by zonal flows at a lower plasma current. The turbulence-driven volume-averaged radial heat transport is found to scale inversely with the total plasma current

  2. The residual zonal dynamics in a toroidally rotating tokamak

    International Nuclear Information System (INIS)

    Zhou Deng

    2015-01-01

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In this presentation, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved to give the expression of residual zonal flows with arbitrary rotating velocity. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the previous simulation result for high aspect ratio tokamaks. (author)

  3. CALL FOR PAPERS: Special cluster issue on `Experimental studies of zonal flow and turbulence'

    Science.gov (United States)

    Itoh, S.-I.

    2005-07-01

    Plasma Physics and Controlled Fusion (PPCF) invites submissions on the topic of `Experimental studies of zonal flow and turbulence', for consideration for a special topical cluster of articles to be published early in 2006. The topical cluster will be published in an issue of PPCF, combined with regular articles. The Guest Editor for the special cluster will be S-I Itoh, Kyushu University, Japan. There has been remarkable progress in the area of structure formation by turbulence. One of the highlights has been the physics of zonal flow and drift wave turbulence in toroidal plasmas. Extensive theoretical as well as computational studies have revealed the various mechanisms in turbulence and zonal flows. At the same time, experimental research on the zonal flow, geodesic acoustic modes and generation of global electric field by turbulence has evolved rapidly. Fast growth in reports of experimental results has stimulated further efforts to develop increased knowledge and systematic understanding. Each paper considered for the special cluster should describe the present research status and new scientific knowledge/results from the authors on experimental studies of zonal flow, geodesic acoustic modes and generation of electric field by turbulence (including studies of Reynolds-Maxwell stresses, etc). Manuscripts submitted to this special cluster in Plasma Physics and Controlled Fusion will be refereed according to the normal criteria and procedures of the journal. The Guest Editor guides the progress of the cluster from the initial open call, through the standard refereeing process, to publication. To be considered for inclusion in the special cluster, articles must be submitted by 2 September 2005 and must clearly state `for inclusion in the Turbulent Plasma Cluster'. Articles submitted after this deadline may not be included in the cluster issue but may be published in a later issue of the journal. Please submit your manuscript electronically via our web site at www

  4. Generation of zonal flows by ion-temperature-gradient and related modes in the presence of neoclassical viscosity

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Smolyakov, A.I.; Kovalishen, E.A.; Shirokov, M.S.; Tsypin, V.S.; Galvao, R.M.O.

    2006-01-01

    Generation of zonal flows by primary waves that are more complex than those considered in the standard drift-wave model is studied. The effects of parallel ion velocity and ion perturbed temperature and the part of the nonlinear mode interaction proportional to the ion pressure are taken into account. This generalization of the standard model allows the analysis of generation of zonal flows by a rather wide variety of primary modes, including ion temperature gradients, ion sound, electron drift, and drift-sound modes. All the listed effects, which are present in the slab geometry model, are complemented by effects of neoclassical viscosity inherent to toroidal geometry. We show that the electrostatic potential of secondary small-scale modes is expressed in terms of a nonlinear shift of the mode frequency and interpret this shift in terms of the perpendicular and parallel Doppler, nonlinear Kelvin-Helmholtz (KH), and nonlinear ion-pressure-gradient effects. A basic assumption of our model is that the primary modes form a nondispersive monochromatic wave packet. The analysis of zonal-flow generation is performed following an approach similar to that of convective-cell theory. Neoclassical zonal-flow instabilities are separated into fast and slow ones, and these are divided into two varieties. The first of them is independent of the nonlinear KH effect, while the second one is sensitive to it

  5. Generation of Zonal Flow and Magnetic Field by Electromagnetic Planetary Waves in the Ionospheric E-Layer

    Science.gov (United States)

    Kahlon, L. Z.; Kaladze, T. D.

    2017-12-01

    We review the excitation of zonal flow and magnetic field by coupled electromagnetic (EM) ULF planetary waves in the Earth's ionospheric E layer. Coupling of different planetary low-frequency electromagnetic waves under the typical ionospheric E-layer conditions is revealed. Propagation of coupled internal-gravity-Alfvén (CIGA), coupled Rossby-Khantadze (CRK) and coupled Rossby-Alfvén-Khantadze (CRAK) waves is shown and studied. A set of appropriate nonlinear equations describing the interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is inferred. This nonlinear instability's mechanism is depended on the parametric excitation of triple finite-amplitude coupled waves leading to the inverse energy cascade towards the longer wavelength. The possibility of generation of the intense mean magnetic field is shown. Obtained growth rates are discussed for each considered coupled waves.

  6. Nonlinear generation of zonal flows by ion-acoustic waves in a uniform magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.

  7. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    Science.gov (United States)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  8. A zonal Galerkin-free POD model for incompressible flows

    Science.gov (United States)

    Bergmann, Michel; Ferrero, Andrea; Iollo, Angelo; Lombardi, Edoardo; Scardigli, Angela; Telib, Haysam

    2018-01-01

    A domain decomposition method which couples a high and a low-fidelity model is proposed to reduce the computational cost of a flow simulation. This approach requires to solve the high-fidelity model in a small portion of the computational domain while the external field is described by a Galerkin-free Proper Orthogonal Decomposition (POD) model. We propose an error indicator to determine the extent of the interior domain and to perform an optimal coupling between the two models. This zonal approach can be used to study multi-body configurations or to perform detailed local analyses in the framework of shape optimisation problems. The efficiency of the method to perform predictive low-cost simulations is investigated for an unsteady flow and for an aerodynamic shape optimisation problem.

  9. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  10. Zonal flow dynamics and control of turbulent transport in stellarators.

    Science.gov (United States)

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H

    2011-12-09

    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  11. Numerical study of unsteady flows past oscillating airfoils using direct zonal coupling method

    International Nuclear Information System (INIS)

    Zhang, F.; Khalid, M.

    2005-01-01

    A direct zonal coupling method was proposed for solving the flows past oscillating airfoils in this study. The entire computational domain was divided into inner and outer zones. The grid in the inner zone is moving with the oscillation of the airfoil, whereas the grid in the outer zone is artificially adjusted to the position consistent with the inner zone grid. The governing equations in the moving frame (the rotation potential energy is included) and those under the stationary frame were applied to inner and outer zones, respectively. By using this kind of treatment, the grid on the zonal interface is 1-to-1 matched. The coupling between the two zones is direct. Both the geometric and flow conservations are entirely satisfied. The NACA0012 and NLR7301 airfoils with oscillations were used as the test cases. The accuracy of the proposed method was demonstrated by the computational results compared with the experimental data.(author)

  12. Thermospheric zonal mean winds and tides revealed by CHAMP

    NARCIS (Netherlands)

    Lieberman, R.S.; Akmaev, R.A.; Fuller-Rowell, T.J.; Doornbos, E.

    2013-01-01

    We present direct, global observations of longitudinally averaged CHAMP zonal winds gathered between 2003 and 2007. A diurnal variation dominates the global zonal wind. Westward flows are observed from the early morning through afternoon hours, while eastward flows peak in the evening. A semidiurnal

  13. Comparison of entropy production rates in two different types of self-organized flows: Benard convection and zonal flow

    International Nuclear Information System (INIS)

    Kawazura, Y.; Yoshida, Z.

    2012-01-01

    Two different types of self-organizing and sustaining ordered motion in fluids or plasmas--one is a Benard convection (or streamer) and the other is a zonal flow--have been compared by introducing a thermodynamic phenomenological model and evaluating the corresponding entropy production rates (EP). These two systems have different topologies in their equivalent circuits: the Benard convection is modeled by parallel connection of linear and nonlinear conductances, while the zonal flow is modeled by series connection. The ''power supply'' that drives the systems is also a determinant of operating modes. When the energy flux is a control parameter (as in usual plasma experiments), the driver is modeled by a constant-current power supply, and when the temperature difference between two separate boundaries is controlled (as in usual computational studies), the driver is modeled by a constant-voltage power supply. The parallel (series)-connection system tends to minimize (maximize) the total EP when a constant-current power supply drives the system. This minimum/maximum relation flips when a constant-voltage power supply is connected.

  14. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    Science.gov (United States)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  15. Spatio-temporal structure of turbulent Reynolds stress zonal flow drive in 3D magnetic configuration

    International Nuclear Information System (INIS)

    Schmid, B; Ramisch, M; Manz, P; Stroth, U

    2017-01-01

    The poloidal dependence of the zonal flow drive and the underlying Reynolds stress structure are studied at the stellarator experiment TJ-K by means of a poloidal Langmuir-probe array. This gives the unique possibility to study the locality of the Reynolds stress in a complex toroidal magnetic geometry. It is found that the Reynolds stress is not homogeneously distributed along the flux surface but has a strong poloidal asymmetry where it is concentrated on the outboard side with a maximum above the midplane. The average tilt of the turbulent structures is thereby reflected in the anisotropy of the bivariant velocity distribution. Using a conditional averaging technique the temporal dynamics reveal that the zonal flow drive is also maximal in this particular region. The results suggest an influence of the magnetic field line curvature, which controls the underlying plasma turbulence. The findings are a basis for further comparison with turbulence simulations in 3D geometry and demonstrate the need for a global characterisation of plasma turbulence. (paper)

  16. A comprehensive spectral theory of zonal-mode dynamics in trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Gatto, R.; Baver, D.A.; Fernandez, E.

    2005-01-01

    A comprehensive, self-consistent theory for spectral dynamics in trapped electron mode (TEM) turbulence offers critical new understanding and insights into zonal-mode physics. This theory shows that 1) zonal mode structure, anisotropy, excitation, and temporal behavior arise at and from the interface of nonlinear advection and linear wave properties; 2) waves induce a marked spectral energy-transfer anisotropy that preferentially drives zonal modes relative to non zonal modes; 3) triplet correlations involving density (as opposed to those involving only flow) mediate the dominant energy transfer at long wavelengths; 4) energy transfer becomes inverse in the presence of wave anisotropy, where otherwise it is forward; 5) zonal-mode excitation is accompanied by excitation of a spectrum of damped eigenmodes, making zonal modes nonlinearly damped; and 6) the combination of anisotropic transfer to zonal modes and their nonlinear damping make this the dominant saturation mechanism for TEM turbulence. This accounts for the reduction of turbulence level by zonal modes, not zonal-flow ExB shearing. (author)

  17. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wang, H. Q.; Wan, B. N.

    2012-01-01

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1MHz) turbulence was observed in the steep-gradient region...... leading to intermittent transport events across the edge transport barrier. Good confinement (H-98y,H-2 similar to 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows...... reproduced this state well. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769852]...

  18. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    Science.gov (United States)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection

  19. Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.

  20. Excitation of macromagnetohydrodynamic mode due to multiscale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2007-01-01

    This is the first numerical simulation demonstrating that a macromagnetohydrodynamic (macro-MHD) mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model. This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to grow. It effectively utilizes free energy of the equilibrium current density gradient and is destabilized by a positive feedback loop between zonal flow suppression and magnetic island growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow steadily. This simulation is more comparable with experimental observations of growing macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static equilibrium

  1. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    Science.gov (United States)

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  2. An Explanation of Jupiter's Equatorially Symmetric Gravitational Field using a Four-layer, Non-spheroidal Model with Zonal Flow

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John

    2017-10-01

    The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.

  3. Zonal flow shear amplification by depletion of anisotropic potential eddies in a magnetized plasma: idealized models and laboratory experiment

    International Nuclear Information System (INIS)

    Fedorczak, N; Manz, P; Chakraborty Thakur, S; Xu, M; Tynan, G R

    2013-01-01

    The consequences of vorticity conservation on the spatio-temporal interaction of a E × B zonal shear with a generic pattern of plasma potential modes are investigated in a magnetized plasma environment. Eddies organized on a chain along the zonal direction are locally depleted, resulting in what appears to be a radial decorrelation by the shear flow in the absence of dissipation. The eddy depletion occurs due to a transfer of enstrophy from the chain to the shear flow during the progressive growth in the chain anisotropy. The rate of zonal shear acceleration is derived analytically and its expression is validated by numerical simulations. The rate is proportional to the chain amplitude in the weak shear regime and to the shearing rate in the strong shear regime. Basic properties of the model are validated with fast visible imaging data collected on a magnetized plasma column experiment. A characteristic vorticity flux across the edge shear layer of tokamak plasmas is associated with the model predictions. The dependence of the interaction rate with turbulence amplitude and shearing rate could be an important ingredient of the low to high confinement mode transition. (paper)

  4. On generation of Alfvenic-like fluctuations by drift wave-zonal flow system in large plasma device experiments

    International Nuclear Information System (INIS)

    Horton, W.; Correa, C.; Chagelishvili, G. D.; Avsarkisov, V. S.; Lominadze, J. G.; Perez, J. C.; Kim, J.-H.; Carter, T. A.

    2009-01-01

    According to recent experiments, magnetically confined fusion plasmas with ''drift wave-zonal flow turbulence'' (DW-ZF) give rise to broadband electromagnetic waves. Sharapov et al. [Europhysics Conference Abstracts, 35th EPS Conference on Plasma Physics, Hersonissos, 2008, edited by P. Lalousis and S. Moustaizis (European Physical Society, Switzerland, 2008), Vol. 32D, p. 4.071] reported an abrupt change in the magnetic turbulence during L-H transitions in Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas. A broad spectrum of Alfvenic-like (electromagnetic) fluctuations appears from ExB flow driven turbulence in experiments on the large plasma device (LAPD) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. Evidence of the existence of magnetic fluctuations in the shear flow region in the experiments is shown. We present one possible theoretical explanation of the generation of electromagnetic fluctuations in DW-ZF systems for an example of LAPD experiments. The method used is based on generalizing results on shear flow phenomena from the hydrodynamics community. In the 1990s, it was realized that fluctuation modes of spectrally stable nonuniform (sheared) flows are non-normal. That is, the linear operators of the flows modal analysis are non-normal and the corresponding eigenmodes are not orthogonal. The non-normality results in linear transient growth with bursts of the perturbations and the mode coupling, which causes the generation of electromagnetic waves from the drift wave-shear flow system. We consider shear flow that mimics tokamak zonal flow. We show that the transient growth substantially exceeds the growth of the classical dissipative trapped-particle instability of the system.

  5. Another look at zonal flows: Resonance, shearing, and frictionless saturation

    Science.gov (United States)

    Li, J. C.; Diamond, P. H.

    2018-04-01

    We show that shear is not the exclusive parameter that represents all aspects of flow structure effects on turbulence. Rather, wave-flow resonance enters turbulence regulation, both linearly and nonlinearly. Resonance suppresses the linear instability by wave absorption. Flow shear can weaken the resonance, and thus destabilize drift waves, in contrast to the near-universal conventional shear suppression paradigm. Furthermore, consideration of wave-flow resonance resolves the long-standing problem of how zonal flows (ZFs) saturate in the limit of weak or zero frictional drag, and also determines the ZF scale. We show that resonant vorticity mixing, which conserves potential enstrophy, enables ZF saturation in the absence of drag, and so is effective at regulating the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-regulation effect in an extended 0D predator-prey model of drift-ZF turbulence. This analysis determines the saturated ZF shear and shows that the mesoscopic ZF width scales as LZ F˜f3 /16(1-f ) 1 /8ρs5/8l03 /8 in the (relevant) adiabatic limit (i.e., τckk‖2D‖≫1 ). f is the fraction of turbulence energy coupled to ZF and l0 is the base state mixing length, absent ZF shears. We calculate and compare the stationary flow and turbulence level in frictionless, weakly frictional, and strongly frictional regimes. In the frictionless limit, the results differ significantly from conventionally quoted scalings derived for frictional regimes. To leading order, the flow is independent of turbulence intensity. The turbulence level scales as E ˜(γL/εc) 2 , which indicates the extent of the "near-marginal" regime to be γLcase of avalanche-induced profile variability. Here, εc is the rate of dissipation of potential enstrophy and γL is the characteristic linear growth rate of fluctuations. The implications for dynamics near marginality of the strong scaling of saturated E with γL are discussed.

  6. Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer

    Science.gov (United States)

    Guan, W.; Ren, X.; Hu, H.

    2017-12-01

    The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is

  7. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2009-01-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-? theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  8. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2009-05-19

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  9. Zonal-flow dynamics from a phase-space perspective

    Science.gov (United States)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; Dodin, I. Y.

    2017-10-01

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. However, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics (GO) limit. Here we present a new theory that captures both of these effects, while still treating DW quanta (``driftons'') as particles in phase space. In this theory, the drifton dynamics is described by an equation of the Wigner-Moyal type, which is analogous to the phase-space formulation of quantum mechanics. The ``Hamiltonian'' and the ``dissipative'' parts of the DW-ZF interactions are clearly identified. Moreover, this theory can be interpreted as a phase-space representation of the second-order cumulant expansion (CE2). In the GO limit, this formulation features additional terms missing in the traditional WKE that ensure conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the traditional WKE. Numerical simulations are presented to illustrate the importance of these additional terms. Supported by the U.S. DOE through Contract Nos. DE-AC02-09CH11466 and DE-AC52-07NA27344, by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  10. Dynamics of zonal shear collapse with hydrodynamic electrons

    Science.gov (United States)

    Hajjar, R. J.; Diamond, P. H.; Malkov, M. A.

    2018-06-01

    This paper presents a theory for the collapse of the edge zonal shear layer, as observed at the density limit at low β. This paper investigates the scaling of the transport and mean profiles with the adiabaticity parameter α, with special emphasizes on fluxes relevant to zonal flow (ZF) generation. We show that the adiabaticity parameter characterizes the strength of production of zonal flows and so determines the state of turbulence. A 1D reduced model that self-consistently describes the spatiotemporal evolution of the mean density n ¯ , the azimuthal flow v¯ y , and the turbulent potential enstrophy ɛ=⟨(n˜ -∇2ϕ˜ ) 2/2 ⟩ —related to fluctuation intensity—is presented. Quasi-linear analysis determines how the particle flux Γn and vorticity flux Π=-χy∇2vy+Πre s scale with α, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adiabatic (α > 1) to hydrodynamic (α y=Πre s/χy —representative of the strength of the shear—also drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease in ZF production, not an increase in damping. A physical picture for the onset of collapse is presented. The findings of this paper are used to motivate an explanation of the phenomenology of low β density limit evolution. A change from adiabatic ( α=kz2vth 2/(|ω|νei)>1 ) to hydrodynamic (α < 1) electron dynamics is associated with the density limit.

  11. Dynamics in the Modern Upper Atmosphere of Venus: Zonal Wind Transition to Subsolar-to-Antisolar Flow

    Science.gov (United States)

    Livengood, T. A.; Kostiuk, T.; Hewagama, T.; Fast, K. E.

    2017-12-01

    We observed Venus on 19-23 Aug 2010 (UT) to investigate equatorial wind velocities from above the cloud tops through the lower thermosphere. Measurements were made from the NASA Infrared Telescope Facility using the NASA Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition. High-resolution spectra were acquired on a CO2 pressure-broadened absorption feature that probes the lower mesosphere ( 70 km altitude) with a non-LTE core emission of the same transition that probes the lower thermosphere ( 110 km). The resolving power of λ/Δλ≈3×107 determines line-of-sight velocity from Doppler shifts to high precision. The altitude differential between the features enables investigating the transition from zonal wind flow near the cloud tops to subsolar-to-antisolar flow in the thermosphere. The fully-resolved carbon dioxide transition was measured near 952.8808 cm-1 (10.494 µm) rest frequency at the equator with 1 arcsec field-of-view on Venus (24 arcsec diameter) distributed about the central meridian and across the terminator at ±15° intervals in longitude. The non-LTE emission is solar-pumped and appears only on the daylight side, probing subsolar-to-antisolar wind velocity vector flowing radially from the subsolar point through the terminator, which was near the central meridian in these observations and had zero line-of-sight wind projection at the terminator. The velocity of the zonal flow is approximately uniform, with maximum line-of-sight projection at the limb, and can be measured by the frequency of the absorption line on both the daylight and dark side. Variations in Doppler shift between the observable features and the differing angular dependence of the contributing wind phenomena thus provide independent mechanisms to distinguish the dynamical processes at the altitude of each observed spectral feature. Winds up to >100 m/s were determined in previous investigations with uncertainties of order 10 m/s or less.

  12. Changes in the zonal mean flow, temperature, and planetary waves observed in the Northern Hemisphere mid-winter months during the last decades

    Science.gov (United States)

    Rakushina, E. V.; Ermakova, T. S.; Pogoreltsev, A. I.

    2018-06-01

    Four sets of data: the UK Met Office, Modern Era Retrospective-analysis for Research and Applications (MERRA), Japanese 55-year Reanalysis data (JRA-55), and ERA-Interim data (ERA) have been used to estimate the climatic variability of the zonal mean flow, temperature, and Stationary Planetary Waves (SPW1, SPW2) from the troposphere up to the lower mesosphere levels. The composites of the meteorological fields during mid-winter month have been averaged over the first (1995-2005) and second (2006-2016) 11 years intervals and have been compared mainly paying attention to interannual and intraseasonal variability. Results show that changes in the mean fields and SPW2 are weaker and statistical significance of these changes is lower in comparison with the changes observed in the intraseasonal variability of these characteristics. All data sets demonstrate a decrease of SPW1 amplitude at the higher-middle latitudes in the lower stratosphere and opposite effect in the upper stratosphere. However, there is an increase of the intraseasonal variability for all meteorological parameters and this rise is statistically significant. The results obtained show that UK Met Office data demonstrate stronger changes and increase of the intraseasonal variability in comparison with other data sets.

  13. The interplay between Reynolds stress and zonal flows: direct numerical simulation as a bridge between theory and experiment

    International Nuclear Information System (INIS)

    Vergote, M; Schoor, M Van; Xu, Y; Jachmich, S; Weynants, R

    2006-01-01

    We describe the results of a measurement campaign on the CASTOR tokamak where the drive of flows and zonal flows by Reynolds stress was investigated by means of a dual probe head system allowing us to measure the properties of the electrostatic turbulence and the rotation velocities at the same location and at the same moment. We compare these experimental results with a turbulence model linked to a one dimensional fluid model describing the electrostatic turbulence and its influence on the background flow. The turbulence is simulated locally on the basis of the Hasegawa-Wakatani equations, completed with magnetic inhomogeneity terms. In the fluid model the toroidal geometry is correctly taken into account, while various sources and sinks like viscosity, interaction with neutrals, Reynolds stress and electric current induced by biasing are included. The good agreement of the predicted flow with the measured one demonstrates that in a pure cylindrical geometry the modelled strength of Reynolds stress acceleration of flow is overestimated

  14. Changes in Jupiter's Zonal Wind Profile Preceding and During the Juno Mission

    Science.gov (United States)

    Tollefson, Joshua; Wong, Michael H.; de Pater, Imke; Simon, Amy A.; Orton, Glenn S.; Rogers, John H.; Atreya, Sushil K.; Cosentino, Richard G.; Januszewski, William; Morales-Juberias, Raul; hide

    2017-01-01

    We present five epochs of WFC3 HST Jupiter observations taken between 2009-2016 and extract global zonal wind profiles for each epoch. Jupiter's zonal wind field is globally stable throughout these years, but significant variations in certain latitude regions persist. We find that the largest uncertainties in the wind field are due to vortices or hot-spots, and show residual maps which identify the strongest vortex flows. The strongest year-to-year variation in the zonal wind profiles is the 24 deg N jet peak. Numerous plume outbreaks have been observed in the Northern Temperate Belt and are associated with decreases in the zonal velocity and brightness. We show that the 24 deg N jet peak velocity and brightness decreased in 2012 and again in late 2016, following outbreaks during these years. Our February 2016 zonal wind profile was the last highly spatially resolved measurement prior to Juno s first science observations. The final 2016 data were taken in conjunction with Juno's perijove 3 pass on 11 December 2016, and show the zonal wind profile following the plume outbreak at 24 deg N in October 2016.

  15. Free Flow Zonal Electrophoresis for Fractionation of Plant Membrane Compartments Prior to Proteomic Analysis.

    Science.gov (United States)

    Barkla, Bronwyn J

    2018-01-01

    Free flow zonal electrophoresis (FFZE) is a versatile, reproducible, and potentially high-throughput technique for the separation of plant organelles and membranes by differences in membrane surface charge. It offers considerable benefits over traditional fractionation techniques, such as density gradient centrifugation and two-phase partitioning, as it is relatively fast, sample recovery is high, and the method provides unparalleled sample purity. It has been used to successfully purify chloroplasts and mitochondria from plants but also, to obtain highly pure fractions of plasma membrane, tonoplast, ER, Golgi, and thylakoid membranes. Application of the technique can significantly improve protein coverage in large-scale proteomics studies by decreasing sample complexity. Here, we describe the method for the fractionation of plant cellular membranes from leaves by FFZE.

  16. Convectively driven decadal zonal accelerations in Earth's fluid core

    Science.gov (United States)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  17. Evidence of Zonal-Flow-Driven Limit-Cycle Oscillations during L-H Transition and at H-mode Pedestal of a New Small-ELM Regime in EAST

    DEFF Research Database (Denmark)

    Xu, G.; Wang, H.; Guo, H.

    Small-amplitude edge localized oscillations have been observed, for the first time, in EAST preceding the L-H transition at marginal input power, which manifest themselves as dithering in the divertor D signals at a frequency under 4 kHz, much lower than the GAM frequency. Detailed measurements...... edge turbulence in the range of 30 100 kHz and low-frequency Er oscillations. Just prior to the L-H transition, the Er oscillations often evolve into intermittent negative Er spikes. The Er oscillations, as well as the Er spikes, are strongly correlated with the turbulence driven Reynolds stress, thus...... providing a direct evidence of the zonal flows for the L-H transition at marginal input power. Furthermore, near the transition threshold sawtooth heat pulses appear to periodically enhance the dithering, finally triggering the L-H transition after a big sawtooth crash. The zonal flow induced limit...

  18. Tertiary instability of zonal flows within the Wigner-Moyal formulation of drift turbulence

    Science.gov (United States)

    Zhu, Hongxuan; Ruiz, D. E.; Dodin, I. Y.

    2017-10-01

    The stability of zonal flows (ZFs) is analyzed within the generalized-Hasegawa-Mima model. The necessary and sufficient condition for a ZF instability, which is also known as the tertiary instability, is identified. The qualitative physics behind the tertiary instability is explained using the recently developed Wigner-Moyal formulation and the corresponding wave kinetic equation (WKE) in the geometrical-optics (GO) limit. By analyzing the drifton phase space trajectories, we find that the corrections proposed in Ref. to the WKE are critical for capturing the spatial scales characteristic for the tertiary instability. That said, we also find that this instability itself cannot be adequately described within a GO formulation in principle. Using the Wigner-Moyal equations, which capture diffraction, we analytically derive the tertiary-instability growth rate and compare it with numerical simulations. The research was sponsored by the U.S. Department of Energy.

  19. RELATIONSHIPS BETWEEN ZONAL WIND ANOMALIES IN HIGH AND LOW TROPOSPHERE AND ANNUAL FREQUENCY OF NW PACIFIC TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    GONG Zhen-song; HE Min

    2007-01-01

    Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition.It is indicated that when △ U200-△U850 >0 in the eastern tropical Pacific and △ U200- △U850 <0 in western tropical Pacific, the Walker cell is stronger in the Pacific tropical region and the annual frequency of NW Pacific tropical cyclone are above normal. In the years with zonal wind anomalies, the circulation of high and low troposphere and the vertical motions in the troposphere have significant characteristics. In the time scale of short-range climate prediction, zonal wind anomalies in high and low troposphere are useful as a preliminary signal of the annual frequency prediction of NW Pacific tropical cyclones.

  20. Zonally averaged model of dynamics, chemistry and radiation for the atmosphere

    Science.gov (United States)

    Tung, K. K.

    1985-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations on a sphere, taking advantage of the more direct relationship between the mean meridional circulation and diabatic heating rate which is available in isentropic coordinates. Possible differences between results of nongeostrophic theory and the commonly used geostrophic formulation are discussed concerning: (1) the role of eddy forcing of the diabatic circulation, and (2) the nonlinear nearly inviscid limit vs the geostrophic limit. Problems associated with the traditional Rossby number scaling in quasi-geostrophic formulations are pointed out and an alternate, more general scaling based on the smallness of mean meridional to zonal velocities for a rotating planet is suggested. Such a scaling recovers the geostrophic balanced wind relationship for the mean zonal flow but reveals that the mean meridional velocity is in general ageostrophic.

  1. Boundary layers affected by different pressure gradients investigated computationally by a zonal RANS-LES method

    International Nuclear Information System (INIS)

    Roidl, B.; Meinke, M.; Schröder, W.

    2014-01-01

    Highlights: • Reformulated synthetic turbulence generation method (RSTGM) is applied. • Zonal RANS-LES method is applied to boundary layers at pressure gradients. • Good agreement with the pure LES and other reference data is obtained. • The RSTGM is applicable to pressure gradient flows without modification. • RANS-to-LES boundary should be located where -1·10 6 6 is satisfied. -- Abstract: The reformulated synthetic turbulence generation (RSTG) method is used to compute by a fully coupled zonal RANS-LES approach turbulent non-zero-pressure gradient boundary layers. The quality of the RSTG method, which is based on the same shape functions and length scale distributions as in zero-pressure gradient flow, is discussed by comparing the zonal RANS-LES findings with pure LES, pure RANS, direct numerical simulation (DNS), and experimental data. For the favorable pressure gradient (FPG) simulation the RANS-to-LES transition occurs in the accelerated flow region and for the adverse pressure gradient (APG) case it is located in the decelerated flow region. The results of the time and spanwise averaged skin-friction distributions, velocity profiles, and Reynolds stress distributions of the zonal RANS-LES simulation show a satisfactory to good agreement with the pure LES, reference DNS, and experimental data. The quality of the findings shows that the rigorous formulation of the synthetic turbulence generation makes the RSTG method applicable without a priori knowledge of the flow properties but those determined by the RANS solution and without using additional control planes to regulate the shear stress budget to a wide range of Reynolds numbers and pressure gradients. The method is a promising approach to formulate embedded RANS-to-LES boundaries in flow regions where the Pohlhausen or acceleration parameter satisfies -1·10 -6 ⩽K⩽2·10 -6

  2. In search of zonal flows using cross-bispectrum analysis in the boundary plasma of the Hefei Tokamak-7

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Song, M.

    2002-01-01

    Langmuir probes have been used to measure the electrostatic Reynolds stress and the floating potential fluctuation in the boundary plasma of the Hefei Tokamak-7 (HT-7) [J. Li, B. N. Wan, and J. S. Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)]. The cross bispectrum of r V(tilde sign) θ φ(tilde sign) f > indicates the existence of difference-frequency nonlinear phase coupling and the generation of fluctuations near the geodesic acoustic mode frequency. The inverse cascade process might be linked to the generation of zonal flows by small-scale electrostatic drift-wave turbulence

  3. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  4. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  5. Three-dimensional features of GAM zonal flows in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Yan, L.W.; Cheng, J.; Hong, W.Y.; Zhao, K.J.; Lan, T.; Dong, J.Q.; Liu, A.D.; Yu, C.X.; Yu, D.L.; Qian, J.; Huang, Y.; Yang, Q.W.; Ding, X.T.; Liu, Y.; Pan, C.H.

    2007-01-01

    A novel design of the three-step Langmuir probe (TSLP) array has been developed to investigate the zonal flow (ZF) physics in the HL-2A tokamak. Three TSLP arrays are applied to measure the three-dimensional (3D) features of ZFs. They are separated by 65 mm in the poloidal and 800 mm in the toroidal directions, respectively. The 3D properties of the geodesic acoustic mode (GAM) ZFs are presented. The poloidal and toroidal modes of the radial electric fields of the GAM perturbations are simultaneously determined in the HL-2A tokamak for the first time. The modes have narrow radial wave numbers (k r ρ i = 0.03-0.07) and short radial scale lengths (2.4-4.2 cm). High coherence of both the GAM and the ambient turbulence separated by toroidal 22.5 0 along a magnetic field line is observed, which contrasts with the high coherence of the GAM and the low coherence of the ambient turbulence apart from the field line. The nonlinear three wave coupling between the turbulent fluctuations and the ZFs is a plausible mechanism for flow generation. The skewness and kurtosis spectra of the probability distribution function of the potential perturbations are contrasted with the corresponding bicoherence for the first time, which support the three wave coupling mechanism

  6. Zonal RANS/LES coupling simulation of a transitional and separated flow around an airfoil near stall

    Energy Technology Data Exchange (ETDEWEB)

    Richez, F.; Mary, I.; Gleize, V. [ONERA, Department of Computational Fluid Dynamics and Aeroacoustics, 29 Avenue de la Division Leclerc, BP 72, Chatillon (France); Basdevant, C. [Universite Paris-Nord, Laboratoire d' Analyse, Geometrie et Applications, CNRS, Villetaneuse (France)

    2008-05-15

    The objective of the current study is to examine the course of events leading to stall just before its occurrence. The stall mechanisms are very sensitive to the transition that the boundary layer undergoes near the leading edge of the profile by a so-called laminar separation bubble (LSB). In order to provide helpful insights into this complex flow, a zonal Reynolds-averaged Navier-Stokes (RANS)/large-eddy simulation (LES) simulation of the flow around an airfoil near stall has been achieved and its results are presented and analyzed in this paper. LSB has already been numerically studied by direct numerical simulation (DNS) or LES, but for a flat plate with an adverse pressure gradient only. We intend, in this paper, to achieve a detailed analysis of the transition process by a LSB in more realistic conditions. The comparison with a linear instability analysis has shown that the numerical instability mechanism in the LSB provides the expected frequency of the perturbations. Furthermore, the right order of magnitude for the turbulence intensities at the reattachment point is found. (orig.)

  7. Climatology and trends in the forcing of the stratospheric zonal-mean flow

    Directory of Open Access Journals (Sweden)

    E. Monier

    2011-12-01

    Full Text Available The momentum budget of the Transformed Eulerian-Mean (TEM equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis (ERA-40 and the National Centers for Environmental Prediction (NCEP Reanalysis 2 (R-2. This study outlines the considerable contribution of unresolved waves, deduced to be gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH stratospheric polar night jet has a tendency to occur later in the season in the more recent years. This temporal shift follows long-term changes in planetary wave activity that are mainly due to synoptic waves, with a lag of one month. In the Southern Hemisphere (SH, the polar vortex shows a tendency to persist further into the SH summertime. This also follows a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001 period. Ozone depletion is well known for strengthening the polar vortex through the thermal wind balance. However, the results of this work show that the SH polar vortex does not experience any significant long-term changes until the month of December, even though the intensification of the ozone hole occurs mainly between September and November. This study suggests that the decrease in planetary wave activity in November provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. In addition, the absence of strong eddy feedback before November explains the lack of significant trends in the polar vortex in the SH early spring. A long-term weakening in the Brewer-Dobson (B-D circulation in the polar region is identified in the NH winter and early spring and during the SH late spring and is likely driven by the decrease in planetary wave activity previously mentioned. During the rest of the year, there are large discrepancies in the representation of the B

  8. Full radius linear and nonlinear gyrokinetic simulations for tokamaks and stellarators: Zonal flows, applied E x B flows, trapped electrons and finite beta

    International Nuclear Information System (INIS)

    Villard, L.; Allfrey, S.J.; Bottino, A.

    2003-01-01

    The aim of this paper is to report on recent advances made on global gyrokinetic simulations of Ion Temperature Gradient modes (ITG) and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E x B zonal flows are studied with a global nonlinear δ f formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means to verify the quality of the numerical simulation. Due to an optimised loading technique the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation establishes a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profile alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profile. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear δf formulation. An ASDEX-Upgrade experiment with an Internal Transport Barrier (ITB) is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite β effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values. (author)

  9. Why is the radial flow in central pA collisions stronger than in AA?

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Shuryak, Edward

    2014-01-01

    Both the transverse size and entropy density per area in central pA collisions is smaller than in central AA, and yet the radial flow is stronger. We propose an explanation to this puzzle. Using a weak attraction between strings through the σ-meson exchange, fitted to the lattice data, we find collective implosion of the “spaghetti” multi-string state. Collectivization of the sigma field of the strings is the QCD analog of the black hole formation occurring in holographic models

  10. Zonally averaged chemical-dynamical model of the lower thermosphere

    International Nuclear Information System (INIS)

    Kasting, J.F.; Roble, R.G.

    1981-01-01

    A zonally averaged numerical model of the thermosphere is used to examine the coupling between neutral composition, including N 2 , O 2 and O, temperature, and winds at solstice for solar minimum conditions. The meridional circulation forced by solar heating results in a summer-to-winter flow, with a winter enhancement in atomic oxygen density that is a factor of about 1.8 greater than the summer hemisphere at 160 km. The O 2 and N 2 variations are associated with a latitudinal gradient in total number density, which is required to achieve pressure balance in the presence of large zonal jets. Latitudinal profiles OI (5577A) green line emission intensity are calculated by using both Chapman and Barth mechanisms. Composition of the lower thermosphere is shown to be strongly influenced by circulation patterns initiated in the stratosphere and lower mesosphere, below the lower boundary used in the model

  11. Low-frequency variation of a zonally localized jet stream: Observation and theory

    International Nuclear Information System (INIS)

    Cai, M.

    1994-01-01

    The climatological mean circulation in the extratropics of the Northern Hemisphere is characterized by two zonally localized jet streams over the east coasts of the two major continents. The zonal inhomogeneity of the climatological mean circulation is believed to be a primary factor determining the geographical locations of the maximum activity centers of the atmospheric transients, such as storm tracks over the east coasts of the two major continents and frequent blocking episodes occurring over the central regions of the two oceans. The impact of the transients on the zonally localized jet streams is studied mostly in the linear dynamics framework in terms of so-called open-quotes feedbackclose quotes diagnosis. This study investigates nonlinear instability of a zonally localized jet stream. The emphasis is on the nonlinear adjustment of a zonally localized jet stream associated with the development of the transients via local instability. The adjustment of a zonally localized jet stream would naturally consists of two parts: One is the time-invariant part and the other is the transient part (temporal variation of the adjustment). In conjunction with the observation, the time-mean adjustment is part of the climatological mean flow and hence is open-quotes invisible.close quotes The transient part of the adjustment is evidenced by the changes of the jet streams in terms of both location and intensity. In this study, we tend to relate the transient part of the adjustment of the jet stream to the maximum activity centers of low-frequency variability. The underlying mechanisms that are responsible for the temporal variation of the adjustment will be investigated. The time-mean adjustment will be also studied to better understand the temporal variation of the adjustment

  12. Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence

    International Nuclear Information System (INIS)

    Uzawa, K.; Li Jiquan; Kishimoto, Y.

    2009-01-01

    The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determined not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.

  13. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  14. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  15. Fluctuating zonal flows in the I-mode regime in Alcator C-Moda)

    Science.gov (United States)

    Cziegler, I.; Diamond, P. H.; Fedorczak, N.; Manz, P.; Tynan, G. R.; Xu, M.; Churchill, R. M.; Hubbard, A. E.; Lipschultz, B.; Sierchio, J. M.; Terry, J. L.; Theiler, C.

    2013-05-01

    Velocity fields and density fluctuations of edge turbulence are studied in I-mode [F. Ryter et al., Plasma Phys. Controlled Fusion 40, 725 (1998)] plasmas of the Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] tokamak, which are characterized by a strong thermal transport barrier in the edge while providing little or no barrier to the transport of both bulk and impurity particles. Although previous work showed no clear geodesic-acoustic modes (GAM) on C-Mod, using a newly implemented, gas-puff-imaging based time-delay-estimate velocity inference algorithm, GAM are now shown to be ubiquitous in all I-mode discharges examined to date, with the time histories of the GAM and the I-mode specific [D. Whyte et al., Nucl. Fusion 50, 105005 (2010)] Weakly Coherent Mode (WCM, f = 100-300 kHz, Δf/f≈0.5, and kθ≈1.3 cm-1) closely following each other through the entire duration of the regime. Thus, the I-mode presents an example of a plasma state in which zero frequency zonal flows and GAM continuously coexist. Using two-field (density-velocity and radial-poloidal velocity) bispectral methods, the GAM are shown to be coupled to the WCM and to be responsible for its broad frequency structure. The effective nonlinear growth rate of the GAM is estimated, and its comparison to the collisional damping rate seems to suggest a new view on I-mode threshold physics.

  16. A reformulated synthetic turbulence generation method for a zonal RANS–LES method and its application to zero-pressure gradient boundary layers

    International Nuclear Information System (INIS)

    Roidl, B.; Meinke, M.; Schröder, W.

    2013-01-01

    Highlights: • A synthetic turbulence generation method (STGM) is presented. • STGM is applied to sub and supersonic flows at low and moderate Reynolds numbers. • STGM shows a convincing quality in zonal RANS–LES for flat-plate boundary layers (BLs). • A good agreement with the pure LES and reference DNS findings is obtained. • RANS-to-LES transition length is reduced to less than four boundary-layer thicknesses. -- Abstract: A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses

  17. The role of zonal flows and predator-prey oscillations in triggering the formation of edge and core transport barriers

    Science.gov (United States)

    Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.

    2014-07-01

    We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.

  18. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    Science.gov (United States)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.

  19. Impact of large scale flows on turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Grandgirard, V [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Dif-Pradalier, G [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Fleurence, E [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Bertrand, P [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Besse, N [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Crouseilles, N [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Sonnendruecker, E [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Latu, G [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France); Violard, E [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France)

    2006-12-15

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.

  20. Impact of large scale flows on turbulent transport

    International Nuclear Information System (INIS)

    Sarazin, Y; Grandgirard, V; Dif-Pradalier, G; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Besse, N; Crouseilles, N; Sonnendruecker, E; Latu, G; Violard, E

    2006-01-01

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport

  1. Zonal asymmetry of daytime 150-km echoes observed by Equatorial Atmosphere Radar in Indonesia

    Directory of Open Access Journals (Sweden)

    T. Yokoyama

    2009-03-01

    Full Text Available Multi-beam observations of the daytime ionospheric E-region irregularities and the so-called 150-km echoes with the 47-MHz Equatorial Atmosphere Radar (EAR in West Sumatra, Indonesia (0.20° S, 100.32° E, 10.36° S dip latitude are presented. 150-km echoes have been frequently observed by the EAR, and their characteristics are basically the same as the equatorial ones, except for an intriguing zonal asymmetry; stronger echoes in lower altitudes in the east directions, and weaker echoes in higher altitudes in the west. The highest occurrence is seen at 5.7° east with respect to the magnetic meridian, and the altitude gradually increases as viewing from the east to west. Arc structures which return backscatter echoes are proposed to explain the asymmetry. While the strength of radar echoes below 105 km is uniform within the wide coverage of azimuthal directions, the upper E-region (105–120 km echoes also show a different type of zonal asymmetry, which should be generated by an essentially different mechanism from the lower E-region and 150-km echoes.

  2. First evidence of the role of zonal flows for the L-H transition at marginal input power in the EAST tokamak

    DEFF Research Database (Denmark)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.

    2011-01-01

    A quasiperiodic Er oscillation at a frequency of transition, has been observed for the first time in the EAST tokamak, using two...... toroidally separated reciprocating probes. Just prior to the L-H transition, the Er oscillation often evolves into intermittent negative Er spikes. The low-frequency Er oscillation, as well as the Er spikes, is strongly correlated with the turbulence-driven Reynolds stress, thus providing first evidence...... of the role of the zonal flows in the L-H transition at marginal input power. These new findings not only shed light on the underlying physics mechanism for the L-H transition, but also have significant implications for ITER operations close to the L-H transition threshold power....

  3. Observed flow variability along the thalweg, and on the coastal slopes of the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lilover, Madis-Jaak; Elken, Jüri; Suhhova, Irina; Liblik, Taavi

    2017-08-01

    Bottom-mounted ADCP measurements from 10 installations, collected between 2009 and 2014 and each lasting several months, are analysed in order to distinguish between different flow regimes, and to detect variability (a) along the thalweg of the elongated basin, with different regimes in summer and in winter, and (b) on the coastal slopes. In the deep thalweg area the mean flow speed amounts to 6-13 cm s-1, whereas the maximum speeds appear in winter near the bottom of the basin, and in summer within the halocline (around 70 m depth). The mean zonal flow component reveals a nearly depth uniform inflow during winter, and a layered inflow-outflow during summer. In years where up-estuary (W to SW) winds are stronger during the summer, inflow dominates in upper layers, and anti-estuarine outflow dominates in deeper layers. This causes the export of a salt wedge, and the weakening of haline stratification. Infra-low frequency zonal currents (i.e. excluding topographic waves etc. with periods of less than 10 days) have a structure which is uniform with depth for 53% of the time in winter; in summer, a layered structure is present 65% of the time. However, during both periods the reversed estuarine flow (inflow in upper layers and outflow in the bottom layer) appears, on average, for 30% of the time. The deep flow zonal component is well correlated with westward winds during summer (r = 0.84), and south-westward winds during winter (r = 0.77). On the coastal slopes, the speed of the currents are lower than in the thalweg region, and they decay with depth. In the vertical the flow exhibits a layered structure in both the winter and summer seasons.

  4. Fluctuating zonal flows in the I-mode regime in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Cziegler, I.; Diamond, P. H.; Fedorczak, N.; Manz, P.; Tynan, G. R.; Xu, M. [Center for Momentum Transport and Flow Organization, University of California, San Diego, La Jolla, California 92093 (United States); Churchill, R. M.; Hubbard, A. E.; Lipschultz, B.; Sierchio, J. M.; Terry, J. L.; Theiler, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138 (United States)

    2013-05-15

    Velocity fields and density fluctuations of edge turbulence are studied in I-mode [F. Ryter et al., Plasma Phys. Controlled Fusion 40, 725 (1998)] plasmas of the Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] tokamak, which are characterized by a strong thermal transport barrier in the edge while providing little or no barrier to the transport of both bulk and impurity particles. Although previous work showed no clear geodesic-acoustic modes (GAM) on C-Mod, using a newly implemented, gas-puff-imaging based time-delay-estimate velocity inference algorithm, GAM are now shown to be ubiquitous in all I-mode discharges examined to date, with the time histories of the GAM and the I-mode specific [D. Whyte et al., Nucl. Fusion 50, 105005 (2010)] Weakly Coherent Mode (WCM, f = 100–300 kHz, Δf/f≈0.5, and k{sub θ}≈1.3 cm{sup −1}) closely following each other through the entire duration of the regime. Thus, the I-mode presents an example of a plasma state in which zero frequency zonal flows and GAM continuously coexist. Using two-field (density-velocity and radial-poloidal velocity) bispectral methods, the GAM are shown to be coupled to the WCM and to be responsible for its broad frequency structure. The effective nonlinear growth rate of the GAM is estimated, and its comparison to the collisional damping rate seems to suggest a new view on I-mode threshold physics.

  5. The role of horizontal thermal advection in regulating wintertime mean and extreme temperatures over the central United States during the past and future

    Science.gov (United States)

    Wang, F.; Vavrus, S. J.

    2017-12-01

    Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection

  6. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    OpenAIRE

    Xuguang Chen; Yuan Wang; Yu Mei; Xin Zhang

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration p...

  7. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    International Nuclear Information System (INIS)

    Aburjania, G. D.; Chargazia, Kh. Z.

    2011-01-01

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

  8. Topographic instability of flow in a rotating fluid

    Directory of Open Access Journals (Sweden)

    K. I. Patarashvili

    2006-01-01

    Full Text Available Here are presented the results of experimental and theoretical studies on a stability of zonal geostrophic flows in the rotating layer of the shallow water. In the experiments, a special apparatus by Abastumani Astrophysical Observatory Georgian Academy of Science was used. This apparatus represents a paraboloid of rotation, which can be set in a regulable rotation around the vertical axis. Maximal diameter of the paraboloid is 1.2 m, radius of curvature in the pole is 0.698 m. In the paraboloid, water spreads on walls as a layer uniform on height under the period of rotation 1.677 s. Against a background of the rotating fluid, the zonal flows are formed by the source-sink system. It consists of two concentric circular perforations on the paraboloid bottom (width is 0.3 cm, radiuses are 8.4 and 57.3 cm, respectively; water can be pumped through them with various velocities and in all directions. It has been established that under constant vertical depth of the rotating fluid the zonal flows are stable. There are given the measurements of the radial profiles for the water level and velocity in the stationary regime. It has been found that zonal flows may lose stability under the presence of the radial gradient of full depth formed by a change of angular velocity of paraboloid rotation. An instability origin results in the loss of flow axial symmetry and in the appearance of self-excited oscillations in the zonal flow. At the given angular velocity of rotation, instability is observed only in the definite range of intensities of the source-sink system. The theoretical estimations are performed in the framework of the equations of the shallow water theory, including the terms describing the bottom friction. It has been shown that the instability of zonal flows found experimentally has a topographical nature and is related with non-monotone dependence of the potential vorticity on radius.

  9. Ozone zonal asymmetry and planetary wave characterization during Antarctic spring

    Directory of Open Access Journals (Sweden)

    I. Ialongo

    2012-03-01

    Full Text Available A large zonal asymmetry of ozone has been observed over Antarctica during winter-spring, when the ozone hole develops. It is caused by a planetary wave-driven displacement of the polar vortex. The total ozone data by OMI (Ozone Monitoring Instrument and the ozone profiles by MLS (Microwave Limb Sounder and GOMOS (Global Ozone Monitoring by Occultation of Stars were analysed to characterize the ozone zonal asymmetry and the wave activity during Antarctic spring. Both total ozone and profile data have shown a persistent zonal asymmetry over the last years, which is usually observed from September to mid-December. The largest amplitudes of planetary waves at 65° S (the perturbations can achieve up to 50% of zonal mean values is observed in October. The wave activity is dominated by the quasi-stationary wave 1 component, while the wave 2 is mainly an eastward travelling wave. Wave numbers 1 and 2 generally explain more than the 90% of the ozone longitudinal variations. Both GOMOS and MLS ozone profile data show that ozone zonal asymmetry covers the whole stratosphere and extends up to the altitudes of 60–65 km. The wave amplitudes in ozone mixing ratio decay with altitude, with maxima (up to 50% below 30 km.

    The characterization of the ozone zonal asymmetry has become important in the climate research. The inclusion of the polar zonal asymmetry in the climate models is essential for an accurate estimation of the future temperature trends. This information might also be important for retrieval algorithms that rely on ozone a priori information.

  10. Estimating zonal electricity supply curves in transmission-constrained electricity markets

    International Nuclear Information System (INIS)

    Sahraei-Ardakani, Mostafa; Blumsack, Seth; Kleit, Andrew

    2015-01-01

    Many important electricity policy initiatives would directly affect the operation of electric power networks. This paper develops a method for estimating short-run zonal supply curves in transmission-constrained electricity markets that can be implemented quickly by policy analysts with training in statistical methods and with publicly available data. Our model enables analysis of distributional impacts of policies affecting operation of electric power grid. The method uses fuel prices and zonal electric loads to determine piecewise supply curves, identifying zonal electricity price and marginal fuel. We illustrate our methodology by estimating zonal impacts of Pennsylvania's Act 129, an energy efficiency and conservation policy. For most utilities in Pennsylvania, Act 129 would reduce the influence of natural gas on electricity price formation and increase the influence of coal. The total resulted savings would be around 267 million dollars, 82 percent of which would be enjoyed by the customers in Pennsylvania. We also analyze the impacts of imposing a $35/ton tax on carbon dioxide emissions. Our results show that the policy would increase the average prices in PJM by 47–89 percent under different fuel price scenarios in the short run, and would lead to short-run interfuel substitution between natural gas and coal. - Highlights: • We develop a method to estimate of zonal supply curves in electricity markets. • The model estimates zonal electricity prices and zonal fuel utilization. • The model implicitly captures the average impacts of transmission constraints. • Using the method, we project supply curves for the seventeen utility zones of PJM. • We use the estimated supply curves to study the impacts of Pennsylvania's Act 129 and a carbon tax of $35 per ton

  11. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    Science.gov (United States)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  12. Instabilities of continuously stratified zonal equatorial jets in a periodic channel model

    Directory of Open Access Journals (Sweden)

    S. Masina

    2002-05-01

    Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature.  This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets

  13. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    Directory of Open Access Journals (Sweden)

    Xuguang Chen

    2014-01-01

    Full Text Available Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  14. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    Science.gov (United States)

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  15. Instabilities of continuously stratified zonal equatorial jets in a periodic channel model

    Directory of Open Access Journals (Sweden)

    S. Masina

    Full Text Available Several numerical experiments are performed in a nonlinear, multi-level periodic channel model centered on the equator with different zonally uniform background flows which resemble the South Equatorial Current (SEC. Analysis of the simulations focuses on identifying stability criteria for a continuously stratified fluid near the equator. A 90 m deep frontal layer is required to destabilize a zonally uniform, 10° wide, westward surface jet that is symmetric about the equator and has a maximum velocity of 100 cm/s. In this case, the phase velocity of the excited unstable waves is very similar to the phase speed of the Tropical Instability Waves (TIWs observed in the eastern Pacific Ocean. The vertical scale of the baroclinic waves corresponds to the frontal layer depth and their phase speed increases as the vertical shear of the jet is doubled. When the westward surface parabolic jet is made asymmetric about the equator, in order to simulate more realistically the structure of the SEC in the eastern Pacific, two kinds of instability are generated. The oscillations that grow north of the equator have a baroclinic nature, while those generated on and very close to the equator have a barotropic nature. 

    This study shows that the potential for baroclinic instability in the equatorial region can be as large as at mid-latitudes, if the tendency of isotherms to have a smaller slope for a given zonal velocity, when the Coriolis parameter vanishes, is compensated for by the wind effect.

    Key words. Oceanography: general (equatorial oceanography; numerical modeling – Oceanography: physics (fronts and jets

  16. Nongeostrophic theory of zonally averaged circulation. I - Formulation

    Science.gov (United States)

    Tung, Ka Kit

    1986-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.

  17. Building an Anisotropic Meniscus with Zonal Variations

    Science.gov (United States)

    Higashioka, Michael M.; Chen, Justin A.; Hu, Jerry C.

    2014-01-01

    Toward addressing the difficult problems of knee meniscus regeneration, a self-assembling process has been used to re-create the native morphology and matrix properties. A significant problem in such attempts is the recapitulation of the distinct zones of the meniscus, the inner, more cartilaginous and the outer, more fibrocartilaginous zones. In this study, an anisotropic and zonally variant meniscus was produced by self-assembly of the inner meniscus (100% chondrocytes) followed by cell seeding the outer meniscus (coculture of chondrocytes and meniscus cells). After 4 weeks in culture, the engineered, inner meniscus exhibited a 42% increase in both instantaneous and relaxation moduli and a 62% increase in GAG/DW, as compared to the outer meniscus. In contrast, the circumferential tensile modulus and collagen/DW of the outer zone was 101% and 129% higher, respectively, than the values measured for the inner zone. Furthermore, there was no difference in the radial tensile modulus between the control and zonal engineered menisci, suggesting that the inner and outer zones of the engineered zonal menisci successfully integrated. These data demonstrate that not only can biomechanical and biochemical properties be engineered to differ by the zone, but they can also recapitulate the anisotropic behavior of the knee meniscus. PMID:23931258

  18. Computational Fluid Dynamics (CFD) Computations With Zonal Navier-Stokes Flow Solver (ZNSFLOW) Common High Performance Computing Scalable Software Initiative (CHSSI) Software

    National Research Council Canada - National Science Library

    Edge, Harris

    1999-01-01

    ...), computational fluid dynamics (CFD) 6 project. Under the project, a proven zonal Navier-Stokes solver was rewritten for scalable parallel performance on both shared memory and distributed memory high performance computers...

  19. Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.

    Science.gov (United States)

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.

  20. Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses

    Directory of Open Access Journals (Sweden)

    Xu-Guang Chen

    2013-01-01

    Full Text Available The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.

  1. Cost-Optimal ATCs in Zonal Electricity Markets

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Kazempour, Jalal; Pinson, Pierre

    2017-01-01

    from the physical ATCs based on security indices only typically used in zonal electricity markets today. Determining cost-optimal ATCs requires viewing ATCs as an endogenous market construct, and leads naturally to the definition of a market entity whose responsibility is to optimize ATCs....... The optimization problem which this entity solves is a stochastic bilevel problem, which we decompose to yield a computationally tractable formulation. We show that cost-optimal ATCs depend non-trivially on the underlying network structure, and the problem of finding a setof cost-optimal ATCs is in general non...... by a factor of 2 or more, and ATCs which are zero between well-connected areas.Our results indicate that the perceived efficiency gap between zonal and nodal markets may be exagerrated if non-optimal ATCs are used....

  2. Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases

    Science.gov (United States)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.

    2016-03-01

    In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind

  3. Temporal Variation of Large Scale Flows in the Solar Interior ...

    Indian Academy of Sciences (India)

    tribpo

    Temporal Variation of Large Scale Flows in the Solar Interior. 355. Figure 2. Zonal and meridional components of the time-dependent residual velocity at a few selected depths as marked above each panel, are plotted as contours of constant velocity in the longitude-latitude plane. The left panels show the zonal component, ...

  4. Currents, Geostrophic, Aviso, 0.25 degrees, Global, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviso Zonal Geostrophic Current is inferred from Sea Surface Height Deviation, climatological dynamic height, and basic fluid mechanics.

  5. The relevance of grid expansion under zonal markets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Joachim; Hagspiel, Simeon; Just, Lisa [ewi Energy Research and Scenarios gGmbH, Cologne (Germany); Cologne Univ. (Germany). Dept. of Economics; Brown, Tom [Frankfurt Institute of Advanced Studies (Germany)

    2015-12-15

    The European electricity market design is based on zonal markets with uniform prices. Locational price signals within these zones - necessary to ensure long-term efficiency - are not provided. Specifically, if intra-zonal congestion occurs due to missing grid expansion, the market design is revealed as inherently incomplete. This might lead to severe, unwanted distortions of the electricity market, both in the short- and in the long-term. In this paper, we study these distortions with a specific focus on the impact of restricted grid expansion under zonal markets. For this, we use a long term fundamental dispatch and investment model of the European electricity system and gradually restrict the allowed expansion of the transmission grid per decade. We find that the combination of an incomplete market design and restricted grid expansion leads to a misallocation of generation capacities and the inability to transport electricity to where it is needed. Consequences are severe and lead to load curtailment of up to 2-3 %. Moreover, missing grid expansion makes it difficult and costly to reach envisaged energy targets in the power sector. Hence, we argue that in the likely event of restricted grid expansion, either administrative measures or - presumably more efficient - an adaptation of the current market design to include locational signals will become necessary.

  6. The relevance of grid expansion under zonal markets

    International Nuclear Information System (INIS)

    Bertsch, Joachim; Hagspiel, Simeon; Just, Lisa

    2015-01-01

    The European electricity market design is based on zonal markets with uniform prices. Locational price signals within these zones - necessary to ensure long-term efficiency - are not provided. Specifically, if intra-zonal congestion occurs due to missing grid expansion, the market design is revealed as inherently incomplete. This might lead to severe, unwanted distortions of the electricity market, both in the short- and in the long-term. In this paper, we study these distortions with a specific focus on the impact of restricted grid expansion under zonal markets. For this, we use a long term fundamental dispatch and investment model of the European electricity system and gradually restrict the allowed expansion of the transmission grid per decade. We find that the combination of an incomplete market design and restricted grid expansion leads to a misallocation of generation capacities and the inability to transport electricity to where it is needed. Consequences are severe and lead to load curtailment of up to 2-3 %. Moreover, missing grid expansion makes it difficult and costly to reach envisaged energy targets in the power sector. Hence, we argue that in the likely event of restricted grid expansion, either administrative measures or - presumably more efficient - an adaptation of the current market design to include locational signals will become necessary.

  7. Generation of zonal flows in rotating fluids and magnetized plasmas

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.

    2006-01-01

    The spontaneous generation of large-scale flows by the rectification of small-scale turbulent fluctuations is of great importance both in geophysical flows and in magnetically confined plasmas. These flows regulate the turbulence and may set up effective transport barriers. In the present....... The analogy to large-scale flow generation in drift-wave turbulence dynamics in magnetized plasma is briefly discussed....

  8. Structure and variances of equatorial zonal circulation in a multimodel ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B. [Environment Canada, Climate Data and Analysis Section, Climate Research Division, Toronto, ON (Canada); Zwiers, F.W. [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); Boer, G.J. [Environment Canada, Canadian Centre for Climate Modeling and Analysis, Climate Research Division, Victoria, BC (Canada); Ting, M.F. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-11-15

    The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and inter-compared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEP-NCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (SRES A1B) simulations. We evaluate the 20C3M modeled zonal circulations by comparing them with those in the reanalyses. We then examine the variability of the circulation, its changes with global warming, and the associated thermodynamic maintenance. The tropical zonal circulation involves three major components situated over the Pacific, Indian, and Atlantic oceans. The three cells are supported by the corresponding diabatic heating extending deeply throughout the troposphere, with heating centers apparent in the mid-troposphere. Seasonal features appear in the zonal circulation, including variations in its intensity and longitudinal migration. Most models, and hence the multi-model mean, represent the annual and seasonal features of the circulation and the associated heating reasonably well. The multi-model mean reproduces the observed climatology better than any individual model, as indicated by the spatial pattern correlation and mean square difference of the mass flux and the diabatic heating compared to the reanalysis based values. Projected changes in the zonal circulation under A1B forcing are dominated by mass flux changes over the Pacific and Indian oceans. An eastward shift of the Pacific Walker circulation is clearly evident with global warming, with anomalous rising motion apparent over the equatorial central Pacific and anomalous sinking motions in the west and east, which favors an overall strengthening of the Walker circulation. The zonal circulation weakens and shifts westwards over the Indian Ocean under external forcing, whereas it strengthens and shifts

  9. Tests of a numerical algorithm for the linear instability study of flows on a sphere

    Energy Technology Data Exchange (ETDEWEB)

    Perez Garcia, Ismael; Skiba, Yuri N [Univerisidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-04-01

    A numerical algorithm for the normal mode instability of a steady nondivergent flow on a rotating sphere is developed. The algorithm accuracy is tested with zonal solutions of the nonlinear barotropic vorticity equation (Legendre polynomials, zonal Rossby-Harwitz waves and monopole modons). [Spanish] Ha sido desarrollado un algoritmo numerico para estudiar la inestabilidad lineal de un flujo estacionario no divergente en una esfera en rotacion. La precision del algoritmo se prueba con soluciones zonales de la ecuacion no lineal de vorticidad barotropica (polinomios de Legendre, ondas zonales Rossby-Harwitz y modones monopolares).

  10. Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements

    International Nuclear Information System (INIS)

    Liu, Fan; Bie, Zhaohong; Liu, Shiyu; Ding, Tao

    2017-01-01

    Highlights: • Analyzing zonal reserve requirements for wind integrated power system. • Modeling day-ahead optimal dispatch solved by chance constrained programming theory. • Determining optimal zonal reserve demand with minimum confidence interval. • Analyzing numerical results on test and large-scale real-life power systems. - Abstract: Large-scale integration of renewable power presents a great challenge for day-ahead dispatch to manage renewable resources while provide available reserve for system security. Considering zonal reserve is an effective way to ensure reserve deliverability when network congested, a random day-ahead dispatch optimization of wind integrated power system for a least operational cost is modeled including zonal reserve requirements and N − 1 security constraints. The random model is transformed into a deterministic one based on the theory of chance constrained programming and a determination method of optimal zonal reserve demand is proposed using the minimum confidence interval. After solving the deterministic model, the stochastic simulation is conducted to verify the validity of solution. Numerical tests and results on the IEEE 39 bus system and a large-scale real-life power system demonstrate the optimal day-ahead dispatch scheme is available and the proposed method is effective for improving reserve deliverability and reducing load shedding after large-capacity power outage.

  11. Is an inefficient transmission market better than none at all? On zonal and nodal pricing in electricity systems

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Joachim

    2015-09-15

    In this paper, the trade-off between inefficient transmission forward markets (in nodal pricing regimes) and the inefficiency induced by hiding transmission constraints from the market (in zonal pricing regimes) is analyzed. First, a simple two node model formalizing the general trade-off is developed. Then, comparative statics are performed with a stochastic equilibrium model including more nodes, loop flows and an energy and transmission forward market. Inefficiency in the transmission forward market is introduced via a bid-ask-spread and risk aversion of market participants. The welfare impacts for a broad range of supply, demand, grid and inefficiency parameters are analyzed numerically. For efficient spot and forward markets, the results of the literature of nodal pricing being the efficient benchmark are confirmed. With inefficient transmission forward markets, however, zonal pricing proves advantageous in situations with little congestion and low costs. The results imply that the trade-off between the pricing regimes should be considered carefully when defining the geographical scope of bidding zones.

  12. On non-local energy transfer via zonal flow in the Dimits shift

    International Nuclear Information System (INIS)

    St-Onge, Denis A.

    2017-01-01

    The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an E×B nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.

  13. On non-local energy transfer via zonal flow in the Dimits shift

    Science.gov (United States)

    St-Onge, Denis A.

    2017-10-01

    The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.

  14. Atmospheric statistical dynamic models. Model performance: the Lawrence Livermore Laboratoy Zonal Atmospheric Model

    International Nuclear Information System (INIS)

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Luther, F.M.

    1978-06-01

    Results from the zonal model indicate quite reasonable agreement with observation in terms of the parameters and processes that influence the radiation and energy balance calculations. The model produces zonal statistics similar to those from general circulation models, and has also been shown to produce similar responses in sensitivity studies. Further studies of model performance are planned, including: comparison with July data; comparison of temperature and moisture transport and wind fields for winter and summer months; and a tabulation of atmospheric energetics. Based on these preliminary performance studies, however, it appears that the zonal model can be used in conjunction with more complex models to help unravel the problems of understanding the processes governing present climate and climate change. As can be seen in the subsequent paper on model sensitivity studies, in addition to reduced cost of computation, the zonal model facilitates analysis of feedback mechanisms and simplifies analysis of the interactions between processes

  15. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-12-01

    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  16. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  17. Zonal NePhRO scoring system: a superior renal tumor complexity classification model.

    Science.gov (United States)

    Hakky, Tariq S; Baumgarten, Adam S; Allen, Bryan; Lin, Hui-Yi; Ercole, Cesar E; Sexton, Wade J; Spiess, Philippe E

    2014-02-01

    Since the advent of the first standardized renal tumor complexity system, many subsequent scoring systems have been introduced, many of which are complicated and can make it difficult to accurately measure data end points. In light of these limitations, we introduce the new zonal NePhRO scoring system. The zonal NePhRO score is based on 4 anatomical components that are assigned a score of 1, 2, or 3, and their sum is used to classify renal tumors. The zonal NePhRO scoring system is made up of the (Ne)arness to collecting system, (Ph)ysical location of the tumor in the kidney, (R)adius of the tumor, and (O)rganization of the tumor. In this retrospective study, we evaluated patients exhibiting clinical stage T1a or T1b who underwent open partial nephrectomy performed by 2 genitourinary surgeons. Each renal unit was assigned both a zonal NePhRO score and a RENAL (radius, exophytic/endophytic properties, nearness of tumor to the collecting system or sinus in millimeters, anterior/posterior, location relative to polar lines) score, and a blinded reviewer used the same preoperative imaging study to obtain both scores. Additional data points gathered included age, clamp time, complication rate, urine leak rate, intraoperative blood loss, and pathologic tumor size. One hundred sixty-six patients underwent open partial nephrectomy. There were 37 perioperative complications quantitated using the validated Clavien-Dindo system; their occurrence was predicted by the NePhRO score on both univariate and multivariate analyses (P = .0008). Clinical stage, intraoperative blood loss, and tumor diameter were all correlated with the zonal NePhRO score on univariate analysis only. The zonal NePhRO scoring system is a simpler tool that accurately predicts the surgical complexity of a renal lesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Photoreceptor atrophy in acute zonal occult outer retinopathy

    DEFF Research Database (Denmark)

    Zibrandtsen, N.; Munch, I.C.; Klemp, K.

    2006-01-01

    Purpose: To assess retinal morphology in acute zonal occult outer retinopathy (AZOOR). Methods: Three patients with a normal ophthalmoscopic fundus appearance, a history of photopsia, and visual field loss compatible with AZOOR were examined using optical coherence tomography, automated perimetry...

  19. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  20. Linear zonal atmospheric prediction for adaptive optics

    Science.gov (United States)

    McGuire, Patrick C.; Rhoadarmer, Troy A.; Coy, Hanna A.; Angel, J. Roger P.; Lloyd-Hart, Michael

    2000-07-01

    We compare linear zonal predictors of atmospheric turbulence for adaptive optics. Zonal prediction has the possible advantage of being able to interpret and utilize wind-velocity information from the wavefront sensor better than modal prediction. For simulated open-loop atmospheric data for a 2- meter 16-subaperture AO telescope with 5 millisecond prediction and a lookback of 4 slope-vectors, we find that Widrow-Hoff Delta-Rule training of linear nets and Back- Propagation training of non-linear multilayer neural networks is quite slow, getting stuck on plateaus or in local minima. Recursive Least Squares training of linear predictors is two orders of magnitude faster and it also converges to the solution with global minimum error. We have successfully implemented Amari's Adaptive Natural Gradient Learning (ANGL) technique for a linear zonal predictor, which premultiplies the Delta-Rule gradients with a matrix that orthogonalizes the parameter space and speeds up the training by two orders of magnitude, like the Recursive Least Squares predictor. This shows that the simple Widrow-Hoff Delta-Rule's slow convergence is not a fluke. In the case of bright guidestars, the ANGL, RLS, and standard matrix-inversion least-squares (MILS) algorithms all converge to the same global minimum linear total phase error (approximately 0.18 rad2), which is only approximately 5% higher than the spatial phase error (approximately 0.17 rad2), and is approximately 33% lower than the total 'naive' phase error without prediction (approximately 0.27 rad2). ANGL can, in principle, also be extended to make non-linear neural network training feasible for these large networks, with the potential to lower the predictor error below the linear predictor error. We will soon scale our linear work to the approximately 108-subaperture MMT AO system, both with simulations and real wavefront sensor data from prime focus.

  1. Wall modeling for the simulation of highly non-isothermal unsteady flows

    International Nuclear Information System (INIS)

    Devesa, A.

    2006-12-01

    Nuclear industry flows are most of the time characterized by their high Reynolds number, density variations (at low Mach numbers) and a highly unsteady behaviour (low to moderate frequencies). High Reynolds numbers are un-affordable by direct simulation (DNS), and simulations must either be performed by solving averaged equations (RANS), or by solving only the large eddies (LES), both using a wall model. A first investigation of this thesis dealt with the derivation and test of two variable density wall models: an algebraic law (CWM) and a zonal approach dedicated to LES (TBLE-ρ). These models were validated in quasi-isothermal cases, before being used in academic and industrial non-isothermal flows with satisfactory results. Then, a numerical experiment of pulsed passive scalars was performed by DNS, were two forcing conditions were considered: oscillations are imposed in the outer flow; oscillations come from the wall. Several frequencies and amplitudes of oscillations were taken into account in order to gain insights in unsteady effects in the boundary layer, and to create a database for validating wall models in such context. The temporal behaviour of two wall models (algebraic and zonal wall models) were studied and showed that a zonal model produced better results when used in the simulation of unsteady flows. (author)

  2. Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations

    Science.gov (United States)

    Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.

    2018-06-01

    Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.

  3. Generation and saturation of large-scale flows in flute turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Isliker, H.; Pavlenko, V. P.; Hizanidis, K.; Vlahos, L.

    2005-01-01

    The excitation and suppression of large-scale anisotropic modes during the temporal evolution of a magnetic-curvature-driven electrostatic flute instability are numerically investigated. The formation of streamerlike structures is attributed to the linear development of the instability while the subsequent excitation of the zonal modes is the result of the nonlinear coupling between linearly grown flute modes. When the amplitudes of the zonal modes become of the same order as that of the streamer modes, the flute instabilities get suppressed and poloidal (zonal) flows dominate. In the saturated state that follows, the dominant large-scale modes of the potential and the density are self-organized in different ways, depending on the value of the ion temperature

  4. Large-scale Flow and Transport of Magnetic Flux in the Solar ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Horizontal large-scale velocity field describes horizontal displacement of the photospheric magnetic flux in zonal and meridian directions. The flow systems of solar plasma, constructed according to the velocity field, create the large-scale cellular-like patterns with up-flow in the center and the down-flow on the ...

  5. Acute Zonal Cone Photoreceptor Outer Segment Loss.

    Science.gov (United States)

    Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A

    2017-05-01

    The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if

  6. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.

  7. Household/Zonal Socioeconomic Characteristics and Tour Making: Case of Richmond/Tri-Cities Model Region in Virginia

    Directory of Open Access Journals (Sweden)

    Xueming CHEN

    2014-06-01

    Full Text Available This paper statistically assesses the impacts of household/zonal socio economic characteristics on tour making within the Richmond/Tri-Cities Model Region, Virginia, United States, based on the dataset made available through the 2009 Virginia National Household Travel Survey (NHTS Add-On Program. The tour analysis distinguishes nine tour types (three simple tours and six complex tours stratified by aggregate tour purposes of work (including school and other subsistence activities, maintenance and discretionary. A series of regression model runs have yielded the following conclusions: First, at aggregate level, the number of drivers, median household income, household size, number of workers, and zonal walking modal share are statistically significant and positively impact tour frequency. Tour length and complexity are positively related to household income and number of vehicles, but negatively related to zonal walking modal share. Second, at an individual tour type level, each tour type’s frequency/length/complexity is impacted by a different set of household/zonal socioeconomic characteristics. Zonal socioeconomic characteristics have little or no impacts on household tour making. It is recognized that many unknown factors may also have impacted tour activities, which require further in-depth studies in order to better explain complex tours.

  8. NOAA Climate Data Record (CDR) of Zonal Mean Ozone Binary Database of Profiles (BDBP), version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) of Zonal Mean Ozone Binary Database of Profiles (BDBP) dataset is a vertically resolved, global, gap-free and zonal mean dataset...

  9. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway

    Science.gov (United States)

    Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang

    2018-02-01

    Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.

  10. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  11. Theoretical and experimental zonal drift velocities of the ionospheric plasma bubbles over the Brazilian region

    Science.gov (United States)

    Arruda, Daniela C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, Vivian M.; Takahashi, H.; Medeiros, A. F.; Buriti, R. A.

    2006-01-01

    This work presents equatorial ionospheric plasma bubble zonal drift velocity observations and their comparison with model calculations. The bubble zonal velocities were measured using airglow OI630 nm all-sky digital images and the model calculations were performed taking into account flux-tube integrated Pedersen conductivity and conductivity weighted neutral zonal winds. The digital images were obtained from an all-sky imaging system operated over the low-latitude station Cachoeira Paulista (Geogr. 22.5S, 45W, dip angle 31.5S) during the period from October 1998 to August 2000. Out of the 138 nights of imager observation, 29 nights with the presence of plasma bubbles are used in this study. These 29 nights correspond to geomagnetically rather quiet days (∑K P hours, the calculated zonal drift velocities were found to be larger than the experimental values. The best matching between the calculated and observed zonal velocities were seen to be for a few hours around midnight. The model calculation showed two humps around 20 LT and 24 LT that were not present in the data. Average decelerations obtained from linear regression between 20 LT and 24 LT were found to be: (a) Spring 1998, -8.61 ms -1 h -1; (b) Summer 1999, -0.59 ms -1 h -1; (c) Spring 1999, -11.72 ms -1 h -1; and (d) Summer 2000, -8.59 ms -1 h -1. Notice that Summer and Winter here correspond to southern hemisphere Summer and Winter, not northern hemisphere.

  12. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

    Science.gov (United States)

    Kim, B. H.; Ha, K. J.

    2017-12-01

    The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the Indian Walker circulation and Atlantic Walker circulation changes by the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.

  13. Currents, HF Radio-derived, Monterey Bay, Normal Model, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements, with missing values filled in by a normal model....

  14. Currents, HF Radio-derived, Monterey Bay, 25 hr, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 25 hour running average of the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  15. Currents, HF Radio-derived, Ano Nuevo, 25 hr, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 25 hour running average of the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  16. Currents, HF Radio-derived, SF Bay, 25 hr, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 25 hour running average of the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN...

  17. Currents, HF Radio-derived, SF Bay, 1 hr, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 1 hour average of the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN EXPERIMENTAL...

  18. Currents, HF Radio-derived, Bodega Bay, 1 hr, Zonal, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data is the 1 hour average of the zonal component of ocean surface currents derived from High Frequency Radio-derived measurements. THIS IS AN EXPERIMENTAL...

  19. On the wave forcing of the semi-annual zonal wind oscillation

    Science.gov (United States)

    Nagpal, O. P.; Raghavarao, R.

    1991-01-01

    Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.

  20. GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid V1.00

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpT) contains zonal means and related...

  1. GOZCARDS Source Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpO3) contains zonal means and related information...

  2. GOZCARDS Merged Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpO3) contains zonal means and related information...

  3. Zonal PANS: evaluation of different treatments of the RANS-LES interface

    Science.gov (United States)

    Davidson, L.

    2016-03-01

    The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.

  4. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    Science.gov (United States)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  5. Predicting temperature and moisture distributions in conditioned spaces using the zonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, K.C. [Parana Pontifical Catholic Univ., Curitiba (Brazil); Wurtz, E.; Inard, C. [La Rochelle Univ., La Rochelle, Cedex (France). LEPTAB

    2005-07-01

    Moisture interacts with building elements in a number of different ways that impact upon building performance, causing deterioration of building materials, as well as contributing to poor indoor air quality. In humid climates, moisture represents one of the major loads in conditioned spaces. It is therefore important to understand and model moisture transport accurately. This paper discussed an intermediate zonal approach to building a library of data in order to predict whole hygrothermal behavior in conditioned rooms. The zonal library included 2 models in order to consider building envelope moisture buffering effects as well as taking into account the dynamic aspect of jet airflow in the zonal method. The zonal library was then applied to a case study to show the impact of external humidity on the whole hygrothermal performance of a room equipped with a vertical fan-coil unit. The proposed theory was structured into 3 groups representing 3 building domains: indoor air; envelope; and heating, ventilation and air conditioning (HVAC) systems. The indoor air sub-model related to indoor air space, where airflow speed was considered to be low. The envelope sub-model related to the radiation exchanges between the envelope and its environment as well as to the heat and mass transfers through the envelope material. The HVAC system sub-model referred to the whole system including equipment, control and specific airflow from the equipment. All the models were coupled into SPARK, where the resulting set of non-linear equations were solved simultaneously. A case study of a large office conditioned by a vertical fan-coil unit with a rectangular air supply diffuser was presented. Details of the building's external and internal environment were provided, as well as convective heat and mass transfer coefficients and temperature distributions versus time. Results of the study indicated that understanding building material moisture buffering effects is as important as

  6. A zonal wavefront sensor with multiple detector planes

    Science.gov (United States)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  7. Changes to Saturn's zonal-mean tropospheric thermal structure after the 2010-2011 northern hemisphere storm

    Energy Technology Data Exchange (ETDEWEB)

    Achterberg, R. K.; Hesman, B. E. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Gierasch, P. J.; Conrath, B. J. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Fletcher, L. N. [Atmospheric Oceanic and Planetary Physics, University of Oxford, Clarenden Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Bjoraker, G. L.; Flasar, F. M., E-mail: Richard.K.Achterberg@nasa.gov [Planetary Systems Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States)

    2014-05-10

    We use far-infrared (20-200 μm) data from the Composite Infrared Spectrometer on the Cassini spacecraft to determine the zonal-mean temperature and hydrogen para-fraction in Saturn's upper troposphere from observations taken before and after the large northern hemisphere storm in 2010-2011. During the storm, zonal mean temperatures in the latitude band between approximately 25°N and 45°N (planetographic latitude) increased by about 3 K, while the zonal mean hydrogen para-fraction decreased by about 0.04 over the same latitudes, at pressures greater than about 300 mbar. These changes occurred over the same latitude range as the disturbed cloud band seen in visible images. The observations are consistent with low para-fraction gas being brought up from the level of the water cloud by the strong convective plume associated with the storm, while being heated by condensation of water vapor, and then advected zonally by the winds near the plume tops in the upper troposphere.

  8. Stronger Schrödinger-like uncertainty relations

    International Nuclear Information System (INIS)

    Song, Qiu-Cheng; Qiao, Cong-Feng

    2016-01-01

    Highlights: • A stronger Schrödinger-like uncertainty relation in the sum of variances of two observables is obtained. • An improved Schrödinger-like uncertainty relation in the product of variances of two observables is obtained. • A stronger uncertainty relation in the sum of variances of three observables is proposed. - Abstract: Uncertainty relation is one of the fundamental building blocks of quantum theory. Nevertheless, the traditional uncertainty relations do not fully capture the concept of incompatible observables. Here we present a stronger Schrödinger-like uncertainty relation, which is stronger than the relation recently derived by Maccone and Pati (2014) [11]. Furthermore, we give an additive uncertainty relation which holds for three incompatible observables, which is stronger than the relation newly obtained by Kechrimparis and Weigert (2014) [12] and the simple extension of the Schrödinger uncertainty relation.

  9. GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHCl) contains zonal means and related...

  10. Nonlinear drift waves in a dusty plasma with sheared flows

    Energy Technology Data Exchange (ETDEWEB)

    Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.

  11. Nonlinear drift waves in a dusty plasma with sheared flows

    International Nuclear Information System (INIS)

    Vranjes, J.; Shukla, R.K.

    2002-01-01

    Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented

  12. Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses

    Directory of Open Access Journals (Sweden)

    Y. Kawatani

    2016-06-01

    Full Text Available This paper reports on a project to compare the representation of the monthly-mean zonal wind in the equatorial stratosphere among major global atmospheric reanalysis data sets. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD of the monthly-mean zonal wind and this depends on latitude, longitude, height, and the phase of the quasi-biennial oscillation (QBO. At each height the SD displays a prominent equatorial maximum, indicating the particularly challenging nature of the reanalysis problem in the low-latitude stratosphere. At 50–70 hPa the geographical distributions of SD are closely related to the density of radiosonde observations. The largest SD values are over the central Pacific, where few in situ observations are available. At 10–20 hPa the spread among the reanalyses and differences with in situ observations both depend significantly on the QBO phase. Notably the easterly-to-westerly phase transitions in all the reanalyses except MERRA are delayed relative to those directly observed in Singapore. In addition, the timing of the easterly-to-westerly phase transitions displays considerable variability among the different reanalyses and this spread is much larger than for the timing of the westerly-to-easterly phase changes. The eddy component in the monthly-mean zonal wind near the Equator is dominated by zonal wavenumber 1 and 2 quasi-stationary planetary waves propagating from midlatitudes in the westerly phase of the QBO. There generally is considerable disagreement among the reanalyses in the details of the quasi-stationary waves near the Equator. At each level, there is a tendency for the agreement to be best near the longitude of Singapore, suggesting that the Singapore observations act as a strong constraint on all the reanalyses. Our measures of the quality of the reanalysis clearly show systematic improvement over the period considered (1979–2012. The SD among the reanalysis

  13. GOZCARDS Source Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpHNO3) contains zonal means and related...

  14. GOZCARDS Merged Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHNO3) contains zonal means and related...

  15. TOMS/EP UV Reflectivity Daily and Monthly Zonal Means V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/EP UV Reflectivity Daily and Monthly Zonal Means Version 8 data in ASCII format. (The shortname for this Level-3 Earth Probe TOMS...

  16. Parasitic Diseases of Ruminants Brought to Two Zonal Veterinary ...

    African Journals Online (AJOL)

    A five years study (2003-2007) of parasitic diseases of ruminants brought to two Zonal Veterinary clinics located in the Southern part of Niger State, Central Nigeria was carried out to establish disease patterns in cattle, sheep and goats. The study was based on the data extracted from the monthly records of parasitic disease ...

  17. GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpN2O) contains zonal means and related...

  18. GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpN2O) contains zonal means and related...

  19. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  20. Analysis of blood flow patterns in aortic aneurysm by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi

    1993-01-01

    Cine MRI (0.5 T) using rephased gradient echo technique was performed to study the patterns of blood flow in the aortic aneurysm of 16 patients with aortic aneurysm, and the data were compared with those of 5 healthy volunteers. In the transaxial section, the blood flow in normal aorta appeared as homogeneous high intensity during systole. On the other hand, the blood flow in the aneurysm appeared as inhomogeneous flow enhancement with flow void. In the sagittal scan, the homogeneous flow enhancement in a normal aorta was also observed during systole and its apex of flow enhancement was 'taper'. The blood flow patterns in the aneurysm were classified as 'irregular', 'zonal', 'eddy', and 'obscure' depending on the contrast of flow enhancement and flow void. Their apexes were 'taper' or 'round'. The blood flow patterns in the aneurysm were related to the size of aneurysm. In patients with a large size 'aneurysm, their flow patterns were 'eddy' or 'obscure' and the flow enhancement was 'round'. On the other hand, in patients with a small size aneurysm, their flow patterns were 'irregular' or 'zonal', and their flow enhancement was 'taper'. Though the exact mechanism of abnormal flow patterns in an aortic aneurysm remains to be determined, cine MRI gives helpful informations in assessing blood flow dynamics in the aneurysm. (author)

  1. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    Science.gov (United States)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  2. Female Psychology in August Strindberg's the Stronger

    OpenAIRE

    Sutandio, Anton; Apriliani, Erica

    2017-01-01

    This research aimed to offer interpretations of August Strindberg's The Stronger through the lens of female psychology. The Stronger is unique as it seemed very simple yet so intense and powerful with layers of interpretations. Written during 1888-1889, The Stronger, which only had two characters and only one speaking character, had become one of Strindberg's shortest yet important plays during his career. The female psychology approach used in the analysis would cover the discussion of gende...

  3. Biomimetic multidirectional scaffolds for zonal osteochondral tissue engineering via a lyophilization bonding approach.

    Science.gov (United States)

    Clearfield, Drew; Nguyen, Andrew; Wei, Mei

    2018-04-01

    The zonal organization of osteochondral tissue underlies its long term function. Despite this, tissue engineering strategies targeted for osteochondral repair commonly rely on the use of isotropic biomaterials for tissue reconstruction. There exists a need for a new class of highly biomimetic, anisotropic scaffolds that may allow for the engineering of new tissue with zonal properties. To address this need, we report the facile production of monolithic multidirectional collagen-based scaffolds that recapitulate the zonal structure and composition of osteochondral tissue. First, superficial and osseous zone-mimicking scaffolds were fabricated by unidirectional freeze casting collagen-hyaluronic acid and collagen-hydroxyapatite-containing suspensions, respectively. Following their production, a lyophilization bonding process was used to conjoin these scaffolds with a distinct collagen-hyaluronic acid suspension mimicking the composition of the transition zone. Resulting matrices contained a thin, highly aligned superficial zone that interfaced with a cellular transition zone and vertically oriented calcified cartilage and osseous zones. Confocal microscopy confirmed a zone-specific localization of hyaluronic acid, reflecting the depth-dependent increase of glycosaminoglycans in the native tissue. Poorly crystalline, carbonated hydroxyapatite was localized to the calcified cartilage and osseous zones and bordered the transition zone. Compressive testing of hydrated scaffold zones confirmed an increase of stiffness with scaffold depth, where compressive moduli of chondral and osseous zones fell within or near ranges conducive for chondrogenesis or osteogenesis of mesenchymal stem cells. With the combination of these biomimetic architectural and compositional cues, these multidirectional scaffolds hold great promise for the engineering of zonal osteochondral tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 948-958, 2018. © 2017 Wiley Periodicals

  4. Statistical data analysis method for multi-zonal airflow measurement using multiple kinds of perfluorocarbon tracer gas

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Hiroyasu; Onishi, Yoshinori [Institute of Technology, Shimizu Corporation, 4-17, Etchujima 3-chome, Koto-ku, Tokyo 135-8530 (Japan); Tanabe, Shin-ichi [School of Science and Engineering, Department of Architecture, Waseda University, 3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555 (Japan); Kashihara, Seiichi [R and D Laboratories, Asahi Kasei Homes Corporation, 2-1, Samejima Fuji-shi, Shizuoka 416-8501 (Japan)

    2009-03-15

    Conventional multi-zonal ventilation measurement methods by multiple types of perfluorocarbon tracers use a number of different gases equal to the number of zones (n). The possible n x n+n airflows are estimated from the mass balance of the gases and the airflow balance. However, some airflows may not occur because of inter-zonal geometry, and the introduction of unnecessary, unknown parameters can impair the accuracy of the estimation. Also, various error factors often yield an irrational negative airflow rate. Conventional methods are insufficient for the evaluation of error. This study describes a way of using the least-squares technique to improve the precision of estimation and to evaluate reliability. From the equations' residual, the error variance-covariance matrix {lambda}{sub q} of the estimated airflow rate error is deduced. In addition, the coefficient of determinant using the residual sum of squares and total variation is introduced. Furthermore, the error matrix{sub m}{lambda}{sub q} from the measurement errors in the gas concentration and gas emission rate is deduced. The discrepancy ratio of the model premises is defined by dividing the diagonal elements of the former by those of the latter. Moreover, the index of irrationality of the estimated negative airflow rate is defined, based on the different results of the three estimation methods. Some numerical experiments are also carried out to verify the flow rate estimation and the reliability evaluation theory. (author)

  5. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    Science.gov (United States)

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Zonal wavefront sensing using a grating array printed on a polyester film

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 (India); Kumar, Suraj [Department of Applied Sciences, Gauhati University, Guwahati, Assam 781014 (India)

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  7. Zonal wavefront sensing using a grating array printed on a polyester film

    Science.gov (United States)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  8. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    Science.gov (United States)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  9. Stronger Fire-Resistant Epoxies

    Science.gov (United States)

    Fohlen, George M.; Parker, John A.; Kumar, Devendra

    1988-01-01

    New curing agent improves mechanical properties and works at lower temperature. Use of aminophenoxycyclotriphosphazene curing agents yields stronger, more heat- and fire-resistant epoxy resins. Used with solvent if necessary for coating fabrics or casting films.

  10. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    Science.gov (United States)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  11. Nature of turbulent transport across sheared zonal flows: insights from gyrokinetic simulations

    International Nuclear Information System (INIS)

    Sanchez, R; Newman, D E; Leboeuf, J-N; Decyk, V K

    2011-01-01

    The traditional view regarding the reduction of turbulence-induced transport across a stable sheared flow invokes a reduction of the characteristic length scale in the direction perpendicular to the flow as a result of the shearing and stretching of eddies caused by the differential pull exerted in the direction of the flow. A reduced effective transport coefficient then suffices to capture the reduction, that can then be readily incorporated into a transport model. However, recent evidence from gyrokinetic simulations of the toroidal ion-temperature-gradient mode suggests that the dynamics of turbulent transport across sheared flows changes in a more fundamental manner, and that the use of reduced effective transport coefficients fails to capture the full dynamics that may exhibit both subdiffusion and non-Gaussian statistics. In this contribution, after briefly reviewing these results, we propose some candidates for the physical mechanisms responsible for endowing transport with such non-diffusive characteristics, backing these proposals with new numerical gyrokinetic data.

  12. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  13. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1. [First Global Atmospheric Research Program Global Experiment (FGGE); Special Observing Period (SOP)

    Science.gov (United States)

    Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.

    1981-01-01

    By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.

  14. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    Science.gov (United States)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  15. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    Science.gov (United States)

    Hazarika, Durlav; Das, Ranjay

    2018-04-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  16. Intrarenal blood flow distribution in dog kidney determined by /sup 99m/Tc microaggregates and 201Tl

    International Nuclear Information System (INIS)

    Abildgaard, U.; Amtorp, O.; Gyring, J.; Daugaard, G.; Larsen, B.

    1988-01-01

    Intrarenal distribution of blood flow was assessed with radioactive albumin microaggregates (MA) in three cortical zones of the dog kidney. The experimentally obtained zonal fractions of total renal blood flow were compared with predicted zonal blood flow fractions obtained in a mathematical model. The maximal degree of skimming that could possibly occur in a single experiment was estimated. The analysis showed that local blood flow in the inner cortical zone was maximally underestimated by 17% because of skimming of MA, and in the outer cortical zone the blood flow was maximally overestimated by 13% with the method of radioactive MA uptake. Renal uptake of 201 Tl was measured simultaneously in exactly the same locations. Paired measurements of intrarenal blood flow distribution by MA and Tl uptake methodologies showed that local blood flow assessed with MA in the inner cortical zone was significantly lower than that obtained with 201 Tl and that a higher blood flow rate was obtained in the outer cortical zone with MA compared with 201 Tl. This disparity could be accounted for by the effect of skimming of MA as predicted by the model

  17. Intra-seasonal Oscillations (ISO of zonal-mean meridional winds and temperatures as measured by UARS

    Directory of Open Access Journals (Sweden)

    F. T. Huang

    2005-06-01

    Full Text Available Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI on the UARS spacecraft in the upper mesosphere (95km, persistent and regular intra-seasonal oscillations (ISO with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here on an analysis of concurrent UARS temperature measurements, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55km, their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  18. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  19. Shear flow generation and energetics in electromagnetic turbulence

    DEFF Research Database (Denmark)

    Naulin, V.; Kendl, A.; Garcia, O.E.

    2005-01-01

    acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated. By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions...... relevant to the edge of fusion devices is revealed for a broad range of parameters. The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén...

  20. T1rho and T2 relaxation times of the normal adult knee meniscus at 3T: analysis of zonal differences.

    Science.gov (United States)

    Takao, Shoichiro; Nguyen, Tan B; Yu, Hon J; Hagiwara, Shigeo; Kaneko, Yasuhito; Nozaki, Taiki; Iwamoto, Seiji; Otomo, Maki; Schwarzkopf, Ran; Yoshioka, Hiroshi

    2017-05-18

    Prior studies describe histological and immunohistochemical differences in collagen and proteoglycan content in different meniscal zones. The aim of this study is to evaluate horizontal and vertical zonal differentiation of T1rho and T2 relaxation times of the entire meniscus from volunteers without symptom and imaging abnormality. Twenty volunteers age between 19 and 38 who have no knee-related clinical symptoms, and no history of prior knee surgeries were enrolled in this study. Two T1rho mapping (b-FFE T1rho and SPGR T1rho) and T2 mapping images were acquired with a 3.0-T MR scanner. Each meniscus was divided manually into superficial and deep zones for horizontal zonal analysis. The anterior and posterior horns of each meniscus were divided manually into white, red-white and red zones for vertical zonal analysis. Zonal differences of average relaxation times among each zone, and both inter- and intra-observer reproducibility were statistically analyzed. In horizontal zonal analysis, T1rho relaxation times of the superficial zone tended to be higher than those of the deep zone, and this difference was statistically significant in the medial meniscal segments (84.3 ms vs 76.0 ms on b-FFE, p meniscus (88.4 ms vs 77.1 ms on b-FFE, p meniscus, p = 0.011). T2 relaxation times of the white zone were significantly higher than those of the red zone in the medial meniscus posterior horn (96.8 ms vs 84.3 ms, p meniscus anterior horn (104.6 ms vs 84.2 ms, p 0.74) or good (0.60-0.74) in all meniscal segments on both horizontal and vertical zonal analysis, except for inter-class correlation coefficients of the lateral meniscus on SPGR. Compared with SPGR T1rho images, b-FFE T1rho images demonstrated more significant zonal differentiation with higher inter- and intra-observer reproducibility. There are zonal differences in T1rho and T2 relaxation times of the normal meniscus.

  1. Prospects for stronger calandria tubes

    International Nuclear Information System (INIS)

    Ells, C.E.; Coleman, C.E.; Hosbons, R.R.; Ibrahim, E.F.; Doubt, G.L.

    1990-12-01

    The CANDU calandria tubes, made of seam welded and annealed Zircaloy-2, have given exemplary service in-reactor. Although not designed as a system pressure containment, calandria tubes may remain intact even in the face of pressure tube rupture. One such incident at Pickering Unit 2 demonstrated the economic advantage of such an outcome, and a case can be made for increasing the probability that other calandria tubes would perform in a similar fashion. Various methods of obtaining stronger calandria tubes are available, and reviewed here. When the tubes are internally pressurized, the weld is the weak section of the tube. Increasing the oxygen concentration in the starting sheet, and thickening the weld, are promising routes to a stronger tube

  2. Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils

    KAUST Repository

    Zhang, Yue; Habashi, Wagdi G.; Khurram, Rooh Ul Amin

    2015-01-01

    scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free

  3. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  4. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    Science.gov (United States)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  5. Analysis of equatorial plasma bubble zonal drift velocities in the Pacific sector by imaging techniques

    Directory of Open Access Journals (Sweden)

    D. Yao

    2007-03-01

    Full Text Available Using 1024 nights of data from 2002–2005 taken by the Cornell Narrow Field Imager (CNFI, we examine equatorial plasma bubble (EPB zonal drift velocity characteristics. CNFI is located at the Maui Space Surveillance Site on the Haleakala Volcano (geographic: 20.71° N, 203.83° E; geomagnetic: 21.03° N, 271.84° E on the island of Maui, Hawaii. The imager is set up to view in a magnetic field-aligned geometry in order to maximize its resolution. We calculate the zonal drift velocities using two methods: a correlation routine and an EPB west-wall intensity gradient tracking routine. These two methods yield sizeable differences in the evenings, suggesting strong pre-local midnight EPB development. An analysis of the drift velocities is also performed based on the three influencing factors of season, geomagnetic activity, and solar activity. In general, our data match published trends and drift characteristics from past studies. However, we find that the drift magnitudes are much lower than results from other imagers at similar latitude sectors but at different longitude sectors, suggesting that zonal drift velocities have a longitudinal dependence.

  6. Non-Migrating Tides, with Zonally Symmetric Component, Generated in the Mesosphere

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we discuss results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). The NSM extends from the ground into the thermosphere and describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. With emphasis on the non-migrating tides, having periods of 24 and 12 hours, we discuss our modeling results that account for the classical migrating solar excitation sources only. As reported earlier, the NSM reproduces the observed seasonal variations and in particular the large equinoctial maxima in the amplitude of the migrating diurnal tide at altitudes around 90 km. Filtering of the tide by the zonal circulation and GW momentum deposition was identified as the cause. The GWs were also shown to produce a strong non-linear interaction between the diurnal and semi-diurnal tides. Confined largely to the mesosphere, the NSM produces through dynamical interactions a relatively large contribution of non-migrating tides. A striking feature is seen in the diurnal and semi-diurnal oscillations of the zonal mean (m = 0). Eastward propagating tides are also generated for zonal wave numbers m = 1 to 4. When the NSM is run without GWs, the amplitudes for the non-migrating tides, including m = 0, are generally small. Planetary wave interaction and non-linear coupling that involves the filtering of GWs and related height integration of dynamical features are discussed as possible mechanisms for generating these non-migrating tides in the NSM. As is the case for the solar migrating tides, the non-migrating tides reveal persistent seasonal variations. Under the influence of the QBO and SAO, interannual variations are produced.

  7. Comparison of Global Distributions of Zonal-Mean Gravity Wave Variance Inferred from Different Satellite Instruments

    Science.gov (United States)

    Preusse, Peter; Eckermann, Stephen D.; Offermann, Dirk; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    Gravity wave temperature fluctuations acquired by the CRISTA instrument are compared to previous estimates of zonal-mean gravity wave temperature variance inferred from the LIMS, MLS and GPS/MET satellite instruments during northern winter. Careful attention is paid to the range of vertical wavelengths resolved by each instrument. Good agreement between CRISTA data and previously published results from LIMS, MLS and GPS/MET are found. Key latitudinal features in these variances are consistent with previous findings from ground-based measurements and some simple models. We conclude that all four satellite instruments provide reliable global data on zonal-mean gravity wave temperature fluctuations throughout the middle atmosphere.

  8. On the long-term variability of Jupiter and Saturn zonal winds

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  9. Experimental Investigation on Zonal Structure in Drag-Reducing Channel Flow with Surfactant Additives

    Directory of Open Access Journals (Sweden)

    Masaaki Motozawa

    2011-01-01

    Full Text Available The spatial structure of a drag-reducing channel flow with surfactant additives in a two-dimensional channel was investigated experimentally. We carried out detailed measurements of the instantaneous velocity in the streamwise wall-normal plane and streamwise spanwise plane by using particle image velocimetry (PIV. The surfactant used in this experiment is a kind of cationic surfactant CTAC. The weight concentrations of the CTAC solution were 25 and 40 ppm on the flow. We considered the effects of Reynolds number ranging from 10000 to 25000 and the weight concentration of CTAC. The results of this paper showed that in the drag-reducing flow, there appeared an area where the root mean square of streamwise velocity fluctuation and the vorticity fluctuation sharply decreased. This indicated that two layers with different turbulent structure coexisted on the boundary of this area. Moreover, these layers had characteristic flow structures, as confirmed by observation of the instantaneous vorticity fluctuation map.

  10. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  11. Wall modeling for the simulation of highly non-isothermal unsteady flows; Modelisation de paroi pour la simulation d'ecoulements instationnaires non-isothermes

    Energy Technology Data Exchange (ETDEWEB)

    Devesa, A

    2006-12-15

    Nuclear industry flows are most of the time characterized by their high Reynolds number, density variations (at low Mach numbers) and a highly unsteady behaviour (low to moderate frequencies). High Reynolds numbers are un-affordable by direct simulation (DNS), and simulations must either be performed by solving averaged equations (RANS), or by solving only the large eddies (LES), both using a wall model. A first investigation of this thesis dealt with the derivation and test of two variable density wall models: an algebraic law (CWM) and a zonal approach dedicated to LES (TBLE-{rho}). These models were validated in quasi-isothermal cases, before being used in academic and industrial non-isothermal flows with satisfactory results. Then, a numerical experiment of pulsed passive scalars was performed by DNS, were two forcing conditions were considered: oscillations are imposed in the outer flow; oscillations come from the wall. Several frequencies and amplitudes of oscillations were taken into account in order to gain insights in unsteady effects in the boundary layer, and to create a database for validating wall models in such context. The temporal behaviour of two wall models (algebraic and zonal wall models) were studied and showed that a zonal model produced better results when used in the simulation of unsteady flows. (author)

  12. The application of zonal trademark combustion monitoring and tuning system to coal boilers for efficiency improvement and emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guang; Zhou, Wei; Widmer, Neil C.; Moyeda, David K. [GE Energy, Irvine, CA (United States)

    2013-07-01

    Coal-fired boilers equipped with Low NO{sub x} Burner (LNB) and Overfire Air (OFA) are challenged with maintaining good combustion conditions. In many cases, the significant increases in carbon monoxide (CO) and unburned carbon levels can be attributed to local poor combustion conditions as a result of poorly controlled fuel-air distribution within the furnace. The Zonal trademark combustion monitoring and tuning system developed by GE is available to detect and correct the furnace air-fuel distribution imbalance. The system monitors the boiler excess oxygen (O{sub 2}) and combustible gases, primarily carbon monoxide (CO), by using spatially distributed multipoint sensors located in the boiler's high temperature upper convective backpass region. At these locations, the furnace flow is still significantly stratified allowing tracing of poor combustion zones to specific burners and OFA ports. Using a model-based tuning system, operators can rapidly respond to poor combustion conditions by redistributing airflows to select burners and OFA ports. By improving combustion at every point within the furnace, the boiler can operate at reduced excess O{sub 2} and reduced furnace exit gas temperature (FEGT) while also reducing localized hot spots, corrosive gas conditions, slag formation, and carbon-in-ash. Benefits include improving efficiency, reducing NO{sub X} emissions, increasing output and maximizing availability. This chapter presents the results from implementing the Zonal combustion monitoring and tuning system on a 460 MW tangential-fired coal boiler in the Western United States.

  13. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  14. The paramo vegetation of Ramal de Guaramacal, Trujillo State, Venezuela. 1. Zonal communities

    NARCIS (Netherlands)

    Cuello, A.N.L.; Cleef, A.M.

    2009-01-01

    Zonal paramo vegetation communities present on top of Ramal de Guaramacal, Trujillo state, Venezuela, have been studied with the aim to provide a syntaxonomic scheme or classification, based oil analysis of the physiognomy, floristic composition, ecological relations and spatial distribution of the

  15. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  16. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    Science.gov (United States)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  17. Female Psychology in August Strindberg’s The Stronger

    Directory of Open Access Journals (Sweden)

    Anton Sutandio

    2017-11-01

    Full Text Available This research aimed to offer interpretations of August Strindberg’s The Stronger through the lens of female psychology. The Stronger is unique as it seemed very simple yet so intense and powerful with layers of interpretations. Written during 1888-1889, The Stronger, which only had two characters and only one speaking character, had become one of Strindberg’s shortest yet important plays during his career. The female psychology approach used in the analysis would cover the discussion of gender role, women’s self-esteem, competition for males, women’s friendships, ego style, and female psychology. It was an interdisciplinary research that combined structuralist, historical, biographical, and feminist approach to gain a better interpretation on the play. By referring to three different sources on the concept of female psychology, the analysis offered different and interesting interpretations on the nature and dynamics of the two female characters’ relationship. The Stronger has shown an enigmatic attraction in Strindberg’s authorship in which the readers could see the co-existence, collision, conflict, and merge of different paradigms concerning sex, gender, and sexuality.

  18. HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients V007

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Extinction at 12.1 Microns Zonal Fourier Coefficients" version 7 data product (H3ZFC12MEXT) contains the entire mission (~3 years) of HIRDLS...

  19. Tidal signatures of the thermospheric mass density and zonal wind at midlatitude: CHAMP and GRACE observations

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2015-02-01

    Full Text Available By using the accelerometer measurements from CHAMP and GRACE satellites, the tidal signatures of the thermospheric mass density and zonal wind at midlatitudes have been analyzed in this study. The results show that the mass density and zonal wind at southern midlatitudes are dominated by a longitudinal wave-1 pattern. The most prominent tidal components in mass density and zonal wind are the diurnal tides D0 and DW2 and the semidiurnal tides SW1 and SW3. This is consistent with the tidal signatures in the F region electron density at midlatitudes as reported by Xiong and Lühr (2014. These same tidal components are observed both in the thermospheric and ionospheric quantities, supporting a mechanism that the non-migrating tides in the upper atmosphere are excited in situ by ion–neutral interactions at midlatitudes, consistent with the modeling results of Jones Jr. et al. (2013. We regard the thermospheric dynamics as the main driver for the electron density tidal structures. An example is the in-phase variation of D0 between electron density and mass density in both hemispheres. Further research including coupled atmospheric models is probably needed for explaining the similarities and differences between thermospheric and ionospheric tidal signals at midlatitudes.

  20. Relation of zonal plasma drift and wind in the equatorial F region as derived from CHAMP observations

    Directory of Open Access Journals (Sweden)

    J. Park

    2013-06-01

    Full Text Available In this paper we estimate zonal plasma drift in the equatorial ionospheric F region without counting on ion drift meters. From June 2001 to June 2004 zonal plasma drift velocity is estimated from electron, neutral, and magnetic field observations of Challenging Mini-satellite Payload (CHAMP in the 09:00–20:00 LT sector. The estimated velocities are validated against ion drift measurements by the Republic of China Satellite-1/Ionospheric Plasma and Electrodynamics Instrument (ROCSAT-1/IPEI during the same period. The correlation between the CHAMP (altitude ~ 400 km estimates and ROCSAT-1 (altitude ~ 600 km observations is reasonably high (R ≈ 0.8. The slope of the linear regression is close to unity. However, the maximum westward drift and the westward-to-eastward reversal occur earlier for CHAMP estimates than for ROCSAT-1 measurements. In the equatorial F region both zonal wind and plasma drift have the same direction. Both generate vertical currents but with opposite signs. The wind effect (F region wind dynamo is generally larger in magnitude than the plasma drift effect (Pedersen current generated by vertical E field, thus determining the direction of the F region vertical current.

  1. The Educational Program "Zajedno Jaci" (Stronger Together) in Croatia

    Science.gov (United States)

    Spanja, Sanja

    2011-01-01

    In this paper, we explore intercultural learning undertaken through the educational program "Stronger Together." The program "Stronger Together" was created in 1998 in order to support and educate teachers working with children in post-war regions of Croatia using intercultural education and cooperative learning as tools for…

  2. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  3. Stronger synergies

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    CERN was founded 58 years ago under the auspices of UNESCO. Since then, both organisations have grown to become world leaders in their respective fields. The links between the two have always existed but today they are even stronger, with new projects under way to develop a more efficient way of exchanging information and devise a common strategy on topics of mutual interest.   CERN and UNESCO are a perfect example of natural partners: their common field is science and education is one of the pillars on which both are built. Historically, they share a common heritage. Both UNESCO and CERN were born of the desire to use scientific cooperation to rebuild peace and security in the aftermath of the Second World War. "Recently, building on our common roots and in close collaboration with UNESCO, we have been developing more structured links to ensure the continuity of the actions taken over the years," says Maurizio Bona, who is in charge of CERN relations with international orga...

  4. Measuring Zonal Transport Variability of the Antarctic Circumpolar Current Using GRACE Ocean Bottom Pressure

    Science.gov (United States)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2012-12-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.

  5. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    Science.gov (United States)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1993-01-01

    The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.

  6. Combining zonal refractive and diffractive aspheric multifocal intraocular lenses.

    Science.gov (United States)

    Muñoz, Gonzalo; Albarrán-Diego, César; Javaloy, Jaime; Sakla, Hani F; Cerviño, Alejandro

    2012-03-01

    To assess visual performance with the combination of a zonal refractive aspheric multifocal intraocular lens (MIOL) (Lentis Mplus, Oculentis GmbH) and a diffractive aspheric MIOL (Acri.Lisa 366, Acri.Tech GmbH). This prospective interventional cohort study comprised 80 eyes from 40 cataract patients (mean age: 65.5±7.3 years) who underwent implantation of the Lentis Mplus MIOL in one eye and Acri.Lisa 366 MIOL in the fellow eye. The main outcome measures were refraction; monocular and binocular uncorrected and corrected distance, intermediate, and near visual acuities; monocular and binocular defocus curves; binocular photopic contrast sensitivity function compared to a monofocal intraocular lens (IOL) control group (40 age-matched pseudophakic patients implanted with the AR-40e [Abbott Medical Optics]); and quality of vision questionnaire. Binocular uncorrected visual acuities were 0.12 logMAR (0.76 decimal) or better at all distances measured between 6 m and 33 cm. The Lentis Mplus provided statistically significant better vision than the Acri.Lisa at distances between 2 m and 40 cm, and the Acri.Lisa provided statistically significant better vision than the Lentis Mplus at 33 cm. Binocular defocus curve showed little drop-off at intermediate distances. Photopic contrast sensitivity function for distance and near were similar to the monofocal IOL control group except for higher frequencies. Moderate glare (15%), night vision problems (12.5%), and halos (10%) were reported. Complete independence of spectacles was achieved by 92.5% of patients. The combination of zonal refractive aspheric and diffractive aspheric MIOLs resulted in excellent uncorrected binocular distance, intermediate, and near vision, with low incidence of significant photic phenomena and high patient satisfaction. Copyright 2012, SLACK Incorporated.

  7. Using a Zonal Model To Assess the Effect of a Heated Floor on Thermal Comfort Quality

    International Nuclear Information System (INIS)

    Boukhris, Yosr; Gharbi, Leila; Ghrab-Morcos, Nadia

    2009-01-01

    People s perceptions of indoor air quality and thermal comfort are affected by air speed and temperature. We have extended the three-dimensional zonal model, ZAER, to be able to predict the temperature fields and the air distributions between and within rooms in the case of natural convection. This paper presents an application of the new zonal model dealing with the influence of a heated floor of one room upon the winter thermal comfort of an unconditioned Tunisian dwelling. Coupling ZAER with a thermal comfort model allows the assessment of the thermal quality of the dwelling through the prediction of a comfort indicator. The obtained results show that a heated floor can be a useful component to improve thermal comfort in the Tunisian context, even in another room

  8. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  9. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    DEFF Research Database (Denmark)

    Horn, T; Junge, Jette; Nielsen, O

    1988-01-01

    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal ...

  10. Light microscopical demonstration and zonal distribution of parasinusoidal cells (Ito cells) in normal human liver

    DEFF Research Database (Denmark)

    Horn, T; Junge, Jette; Nielsen, O

    1988-01-01

    The parasinusoidal cells of the liver (Ito cells) were demonstrated light microscopically in autopsy specimens fixed in formalin and stained with Oil red O after dichromate treatment. The method allows examination of large samples containing numerous acini. Quantitative assessment showed a zonal...

  11. Elaboration of generalized criterion for zonality determination of the Chernobyl' NPP working spaces

    International Nuclear Information System (INIS)

    Simakov, A.V.; Bad'in, V.I.; Nosovskij, A.V.

    1992-01-01

    Analysis of the features of radioactive dose rating, regularities of their formation and dosimetry allows suggesting generalized criterion for assess zonality of compartments and territories, combining all factors and their action on operators. This criterion may be used during design of the new objects, development of programs and pursuance of work on removal of atomic power plants from operation. 6 refs.; 1 fig

  12. ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-08-01

    We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.

  13. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle [Clean Tech Innovations, Bartlesville, OK (United States)

    2017-08-08

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mud losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability for use in

  14. Acute Zonal Occult Outer Retinopathy with Atypical Findings

    Directory of Open Access Journals (Sweden)

    Dimitrios Karagiannis

    2014-01-01

    Full Text Available Background. To report a case of acute zonal occult outer retinopathy (AZOOR with atypical electrophysiology findings. Case Presentation. A 23-year-old-female presented with visual acuity deterioration in her right eye accompanied by photopsia bilaterally. Corrected distance visual acuity at presentation was 20/50 in the right eye and 20/20 in the left eye. Fundus examination was unremarkable. Visual field (VF testing revealed a large scotoma. Pattern and full-field electroretinograms (PERG and ERG revealed macular involvement associated with generalized retinal dysfunction. Electrooculogram (EOG light rise and the Arden ratio were within normal limits bilaterally. The patient was diagnosed with AZOOR due to clinical findings, visual field defect, and ERG findings. Conclusion. This is a case of AZOOR with characteristic VF defects and clinical symptoms presenting with atypical EOG findings.

  15. Kinetic transport in a magnetically confined and flux-constrained fusion plasma; Transport cinetique dans un plasma de fusion magnetique a flux force

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G

    2007-11-15

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  16. Kinetic transport in a magnetically confined and flux-constrained fusion plasma

    International Nuclear Information System (INIS)

    Darmet, G.

    2007-11-01

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  17. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    Science.gov (United States)

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  18. Numerical modelling in building thermo-aeraulics: from CFD modelling to an hybrid finite volume / zonal approach; Modelisation numerique de la thermoaeraulique du batiment: des modeles CFD a une approche hybride volumes finis / zonale

    Energy Technology Data Exchange (ETDEWEB)

    Bellivier, A.

    2004-05-15

    For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)

  19. Integration of singularity and zonality methods for prospectivity map of blind mineralization

    Directory of Open Access Journals (Sweden)

    samaneh safari

    2016-12-01

    Full Text Available Singularity based on fractal and multifractal is a technique for detection of depletion and enrichment for geochemical exploration, while the index of vertical geochemical zonality (Vz of Pb.Zn/Cu.Ag is a practical method for exploration of blind porphyry copper mineralization. In this study, these methods are combined for recognition, delineation, and enrichment of Vz in Jebal- Barez in the south of Iran. The studied area is located in the Shar-E-Babak–Bam ore field in the southern part of the Central Iranian volcano–plutonic magmatic arc. The region has a semiarid climate, mountainous topography, and poor vegetation cover. Seven hundreds samples of stream sedimentary were taken from the region. Geochemical data subset represent a total drainage basin area. Samples are analyzed for Cu, Zn, Ag, Pb, Au, W, As, Hg, Ba, Bi by atomic absorption method. Prospectivity map for blind mineralization is represented in this area. The results are in agreement with previous studies which have been focused in this region. Kerver is detected as the main blind mineralization in Jebal- Barz which had been previously intersected by drilled borehole for exploration purposes. In this research, it has been demonstrated that employing the singularity of geochemical zonality anomalies method, as opposed to using singularity of elements, improves mapping of mineral prospectivity.

  20. Physics of electron internal transport barrier in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  1. Mean and oscillating plasma flows and turbulence interactions across the L-H confinement transition.

    Science.gov (United States)

    Conway, G D; Angioni, C; Ryter, F; Sauter, P; Vicente, J

    2011-02-11

    A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  2. TOMS EP UV Aerosol Index Daily and Monthly Zonal Means V008 (TOMSEPL3zaer) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/EP UV Aerosol Index Daily and Monthly Zonal Means Version 8 data in ASCII format.The Total Ozone Mapping Spectrometer (TOMS) Version...

  3. ULTRA-WIDE-FIELD FUNDUS AUTOFLUORESCENCE FINDINGS IN PATIENTS WITH ACUTE ZONAL OCCULT OUTER RETINOPATHY.

    Science.gov (United States)

    Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe

    2017-06-01

    To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.

  4. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    Science.gov (United States)

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  5. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    Science.gov (United States)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple

  6. A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers

    Science.gov (United States)

    Deck, Sébastien; Weiss, Pierre-Elie; Renard, Nicolas

    2018-06-01

    A turbulent inflow for a rapid and low noise switch from RANS to Wall-Modelled LES on curvilinear grids with compressible flow solvers is presented. It can be embedded within the computational domain in practical applications with WMLES grids around three-dimensional geometries in a flexible zonal hybrid RANS/LES modelling context. It relies on a physics-motivated combination of Zonal Detached Eddy Simulation (ZDES) as the WMLES technique together with a Dynamic Forcing method processing the fluctuations caused by a Zonal Immersed Boundary Condition describing roughness elements. The performance in generating a physically-sound turbulent flow field with the proper mean skin friction and turbulent profiles after a short relaxation length is equivalent to more common inflow methods thanks to the generation of large-scale streamwise vorticity by the roughness elements. Comparisons in a low Mach-number zero-pressure-gradient flat-plate turbulent boundary layer up to Reθ = 6 100 reveal that the pressure field is dominated by the spurious noise caused by the synthetic turbulence methods (Synthetic Eddy Method and White Noise injection), contrary to the new low-noise approach which may be used to obtain the low-frequency component of wall pressure and reproduce its intermittent nature. The robustness of the method is tested in the flow around a three-element airfoil with WMLES in the upper boundary layer near the trailing edge of the main element. In spite of the very short relaxation distance allowed, self-sustainable resolved turbulence is generated in the outer layer with significantly less spurious noise than with the approach involving White Noise. The ZDES grid count for this latter test case is more than two orders of magnitude lower than the Wall-Resolved LES requirement and a unique mesh is involved, which is much simpler than some multiple-mesh strategies devised for WMLES or turbulent inflow.

  7. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    Science.gov (United States)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  8. Morpho-anatomy of stypopodium zonale (phaeophycota) from the coast of karachi, pakistan

    International Nuclear Information System (INIS)

    Abbas, A.; Shameel, M.

    2014-01-01

    A brown alga Stypopodium zonale (Lamouroux) Papenfuss (Dictyotales) was collected from Manora and Buleji, the coastal areas near Karachi (Pakistan) during March 2006-April 2009 and investigated for its morphology, anatomy and reproductive structures. This is the first detailed study on the Pakistani specimens of this species from these points of view, where presence or absence of intercellular spaces, cell-wall thickness of different cells and structure of surface cells were examined. In this connection the apical, middle and basal parts of the thallus were investigated anatomically. (author)

  9. Drug policing assemblages: Repressive drug policies and the zonal banning of drug users in Denmark’s club land

    DEFF Research Database (Denmark)

    Søgaard, Thomas F.; Houborg, Esben; Pedersen, Michael M.

    2017-01-01

    in local ‘drug policing assemblages’ characterized by inter-agency relation-building, the creative combination of public and private (legal) resources and internal power struggles. It also provides evidence of how drug policing assemblages give rise to many different, and often surprising, forms...... how zonal banning is also used to target drug-using clubbers in Denmark. Methods: Based on ethnographic observations and interviews with nightlife control agents in two Danish cities, the article aims to provide new insights into how the enforcement of national drug policies on drug-using clubbers......, is shaped by plural nightlife policing complexes. Results: The paper demonstrates how the policing of drug-using clubbers is a growing priority for both police and private security agents. The article also demonstrates how the enforcement of zonal bans on drug-using clubbers involves complex collaborative...

  10. Inclusion of inhomogeneous deformation and strength characteristics in the problem on zonal disintegration of rocks

    Science.gov (United States)

    Chanyshev, AI; Belousova, OE

    2018-03-01

    The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.

  11. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics

    NARCIS (Netherlands)

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, Wouter J A; van Weeren, P. René; Malda, J

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To

  12. Cross-equatorial flow through an abyssal channel under the complete Coriolis force: Two-dimensional solutions

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    The component of the Coriolis force due to the locally horizontal component of the Earth's rotation vector is commonly neglected, under the so-called traditional approximation. We investigate the role of this "non-traditional" component of the Coriolis force in cross-equatorial flow of abyssal ocean currents. We focus on the Antarctic Bottom Water (AABW), which crosses from the southern to the northern hemisphere through the Ceara abyssal plain in the western Atlantic ocean. The bathymetry in this region resembles a northwestward channel, connecting the Brazil Basin in the south to the Guyana Basin in the north. South of the equator, the AABW leans against the western continental rise, consistent with a northward flow in approximate geostrophic balance. The AABW then crosses to the other side of the abyssal channel as it crosses the equator, and flows into the northern hemisphere leaning towards the east against the Mid-Atlantic Ridge. The non-traditional component of the Coriolis force is strongest close to the equator. The traditional component vanishes at the equator, being proportional to the locally vertical component of the Earth's rotation vector. The weak stratification of the abyssal ocean, and subsequent small internal deformation radius, defines a relatively short characteristic horizontal lengthscale that tends to make non-traditional effects more prominent. Additionally, the steep gradients of the channel bathymetry induce large vertical velocities, which are linked to zonal accelerations by the non-traditional components of the Coriolis force. We therefore expect non-traditional effects to play a substantial role in cross-equatorial transport of the AABW. We present asymptotic steady solutions for non-traditional shallow water flow through an idealised abyssal channel, oriented at an oblique angle to the equator. The current enters from the south, leaning up against the western side of the channel in approximate geostrophic balance, and crosses the

  13. Women's political participation leads to stronger local economies ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-08

    Jun 8, 2016 ... Under changes to India's constitution, Indian women are gaining a stronger ... Legal reforms are encouraging women to contribute to economic growth ... on a panel on empowering women entrepreneurs at IDRC in Ottawa.

  14. Chemical reaction due to stronger Ramachandran interaction

    Indian Academy of Sciences (India)

    The origin of a chemical reaction between two reactant atoms is associated with the activation energy, on the assumption that, high-energy collisions between these atoms, are the ones that overcome the activation energy. Here, we show that a stronger attractive van der Waals (vdW) and electron-ion Coulomb interactions ...

  15. Pulmonary blood flow distribution measured by radionuclide computed tomography

    International Nuclear Information System (INIS)

    Maeda, H.; Itoh, H.; Ishii, Y.

    1982-01-01

    Distributions of pulmonary blood flow per unit lung volume were measured in sitting patients with a radionuclide computed tomography (RCT) by intravenously administered Tc-99m macroaggregates of human serum albumin (MAA). Four different types of distribution were distinguished, among which a group referred as type 2 had a three zonal blood flow distribution as previously reported (West and co-workers, 1964). The pulmonary arterial pressure (Pa) and the venous pressure (Pv) were determined in this group of distribution. These values showed satifactory agreements with the pulmonary artery pressure (Par) and the capillary wedged pressure (Pcw) measured by Swan-Ganz catheter in eighteen supine patients. Those good correlations enable to establish a noninvasive methodology for measurement of pulmonary vascular pressures

  16. Combining Stocks and Flows of Knowledge

    DEFF Research Database (Denmark)

    Ambos, Tina C.; Nell, Phillip Christopher; Pedersen, Torben

    2013-01-01

    While previous research has mostly focused on either knowledge stocks or knowledge flows, our study is among the first to integrate these perspectives in order to shed light on the complementarity effects of different types of knowledge stocks and flows in the multinational corporation (MNC...... of complementarity create benefits for these units, but that the effects from intra-functional combinations of knowledge stocks and flows are significantly stronger than from cross-functional combinations....

  17. Selection for production-related traits in Pelargonium zonale: improved design and analysis make all the difference.

    Science.gov (United States)

    Molenaar, Heike; Glawe, Martin; Boehm, Robert; Piepho, Hans-Peter

    2017-01-01

    Ornamental plant variety improvement is limited by current phenotyping approaches and neglected use of experimental designs. The present study was conducted to show the benefits of using an experimental design and corresponding analysis in ornamental breeding regarding simulated response to selection in Pelargonium zonale for production-related traits. This required establishment of phenotyping protocols for root formation and stem cutting counts, with which 974 genotypes were assessed in a two-phase experimental design. The present paper evaluates this protocol. The possibility of varietal improvement through indirect selection on secondary traits such as branch count and flower count was assessed by genetic correlations. Simulated response to selection varied greatly, depending on the genotypic variances of the breeding population and traits. A varietal improvement of over 20% is possible for stem cutting count, root formation, branch count and flower count. In contrast, indirect selection of stem cutting count by branch count or flower count was found to be ineffective. The established phenotypic protocols and two-phase experimental designs are valuable tools for breeding of P. zonale .

  18. Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model

    International Nuclear Information System (INIS)

    Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Burley, J.D.; Johnston, H.S.

    1992-01-01

    We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions

  19. Impact of resonant magnetic perturbations on zonal modes, drift-wave turbulence and the L–H transition threshold

    International Nuclear Information System (INIS)

    Leconte, M.; Diamond, P.H.; Xu, Y.

    2014-01-01

    We study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows and confinement in the framework of resistive drift-wave turbulence. This work was motivated, in parts, by experiments reported at the IAEA 2010 conference (Xu et al 2011 Nucl. Fusion 51 062030) which showed a decrease of long-range correlations during the application of RMPs. We derive and apply a zero-dimensional predator–prey model coupling the drift-wave–zonal-mode system (Leconte and Diamond 2012 Phys. Plasmas 19 055903) to the evolution of mean quantities. This model has both density-gradient drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. This model allows a description of the full L–H transition evolution with RMPs, including the mean sheared flow evolution. The key results are the following: (i) the L–I and I–H power thresholds both increase with RMP amplitude | b-tilde x |, the relative increase of the L–I threshold scales as ΔP LI ∝| b-tilde x | 2 ν ∗ −2 ρ s −2 , where ν * is edge collisionality and ρ s is the sound gyroradius. (ii) RMPs are predicted to decrease the hysteresis between the forward and back-transition. (iii) Taking into account the mean density evolution, the density profile—sustained by the particle source—has an increased turbulent diffusion compared with the reference case without RMPs which provides one possible explanation for the density pump-out effect. (paper)

  20. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  1. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  2. The right of the stronger: The play Sisyphus and critias

    Directory of Open Access Journals (Sweden)

    Jordović Ivan

    2004-01-01

    Full Text Available The Focus of this study is the standpoint of the play Sisyphus and critias the leader of the thirty towards the right of the stronger. this is a question of constant interest in scientific circles, since its answer can serve as the indicator of the influence this famous theory has had. this interest has been encouraged by the fact that critias’ authorship of the play is questionable. however, the question of the author is not of primary importance for this article, because there are some arguments, among some well known ones, which were not considered and which Show that in this satire, regardless of the author and the purpose of this fragment, the right of the stronger is actually non-existant. the first argument to support this theory is that nomosphysis antithesis is nowhere explicitly mentioned although it is the crucial element of the right of the stronger. in addition there is no claim in the play that the exploitation of the strong by the week or by law accrued. the second argument is that despite the incapability of laws to prevent the secret injustice, they and their importance for the human society are depicted in a positive light. it should also be noted that, unlike callicles and glaucon, laws are created to stop the bad and not the good. the third argument is that the invention of religion is accepted as a positive achievement, which finally enables the overcoming of primeval times and lawlessness. the reflection of this argument is a positive characterization of the individual who invented the fear of gods. the fourth argument, which has not been taken into consideration so far is the way the supporters and opponents of lawlessness are described and marked as κακοί and έσξλοί in the satire only physically strong are considered as strong as opposed to callicles, where they are also spiritually superior. intelectually superior in Sisyphus is the inventor of the fear of gods who is also in favor of law and order. the fact

  3. Women's political participation leads to stronger local economies ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Edgard Rodriguez - IDRC. Women attend a self-help group meeting near Hyderabad, India. Keenara Khanderia. Under changes to India's constitution, Indian women are gaining a stronger political voice. Legal reforms are encouraging women to contribute to economic growth and investments in community growth.

  4. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  5. Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow

    Directory of Open Access Journals (Sweden)

    Laurent Schindfessel

    2015-08-01

    Full Text Available Despite the ratio of incoming discharges being recognized as a key parameter in open-channel confluence hydrodynamics, little is known about the flow patterns when the tributary provides more than 90% of the total discharge. This paper offers a systematic study of flow features when the tributary becomes increasingly dominant in a 90° confluence with a fixed concordant bed. Large-eddy simulations are used to investigate the three-dimensional complex flow patterns for three different discharge ratios. It is found that the tributary flow impinges on the opposing bank when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream channel of the confluence, which induces significant changes in the incoming velocity distribution. Moreover, it results in stronger helicoidal cells in the downstream channel, along with zones of upwelling flow. In turn, the changed flow patterns also influence the mixing layer and the flow recovery. Finally, intermittent events of stronger upwelling flow are discerned. Improved understanding of flow patterns at confluences where the tributary is dominant is applicable to both engineering and earth sciences.

  6. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    Science.gov (United States)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  7. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  8. Evidence of long-term change in zonal wind in the tropical lower mesosphere: Observations and model simulations

    Czech Academy of Sciences Publication Activity Database

    Ratnam, M. V.; Kumar, G. K.; Rao, N. V.; Murthy, B. V. K.; Laštovička, Jan; Qian, L.

    2013-01-01

    Roč. 40, č. 2 (2013), s. 397-401 ISSN 0094-8276 R&D Projects: GA ČR GAP209/10/1792 Institutional support: RVO:68378289 Keywords : mesosphere * zonal wind * long-term trends * TIME-GCM * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/grl.50158/abstract

  9. Zonal velocity and texture in the jovian atmosphere inferred from Voyager images

    International Nuclear Information System (INIS)

    Ingersoll, A.P.; Beebe, R.F.; Collins, S.A.; Hunt, G.E.; Mitchell, J.L.; Muller, P.; Smith, B.A.; Terrile, R.J.

    1979-01-01

    The first report (Smith et al. Science; 204: 951 (1979)) of the Voyager imaging science team following the 5 March 1979 encounter described Jupiter's changing appearance at resolutions down to 10 km, over intervals as small as 1 h. Examples of small-scale convection, rapid variations of features, and complex interactions of closed vortices were presented. This article extends these results in two ways. First, measurements of the latitudinal profile of zonal (eastward) velocity are presented, from which the absolute vorticity gradient is estimated. Second, a classification scheme based on texture ie the patterns of small features visible at resolutions of 100 km or better, is presented. (UK)

  10. Effects of parallel dynamics on vortex structures in electron temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Nakata, M.; Watanabe, T.-H.; Sugama, H.; Horton, W.

    2011-01-01

    Vortex structures and related heat transport properties in slab electron temperature gradient (ETG) driven turbulence are comprehensively investigated by means of nonlinear gyrokinetic Vlasov simulations, with the aim of elucidating the underlying physical mechanisms of the transition from turbulent to coherent states. Numerical results show three different types of vortex structures, i.e., coherent vortex streets accompanied with the transport reduction, turbulent vortices with steady transport, and a zonal-flow-dominated state, depending on the relative magnitude of the parallel compression to the diamagnetic drift. In particular, the formation of coherent vortex streets is correlated with the strong generation of zonal flows for the cases with weak parallel compression, even though the maximum growth rate of linear ETG modes is relatively large. The zonal flow generation in the ETG turbulence is investigated by the modulational instability analysis with a truncated fluid model, where the parallel dynamics such as acoustic modes for electrons is incorporated. The modulational instability for zonal flows is found to be stabilized by the effect of the finite parallel compression. The theoretical analysis qualitatively agrees with secondary growth of zonal flows found in the slab ETG turbulence simulations, where the transition of vortex structures is observed.

  11. Vortical flows

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie-Zhi [Peking Univ., Beijing (China). College of Engineering; Ma, Hui-Yang [Univ. of Chinese Academy of Sciences, Beijing (China). Dept. of Physics; Zhou, Ming-De [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering

    2015-11-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  12. Vortical flows

    International Nuclear Information System (INIS)

    Wu, Jie-Zhi; Ma, Hui-Yang; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  13. ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina.

    Science.gov (United States)

    Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C

    2018-01-01

    To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.

  14. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    International Nuclear Information System (INIS)

    Candy, J.

    2015-01-01

    This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flow stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal

  15. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J. [General Atomics, San Diego, CA (United States)

    2015-12-01

    This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flow stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal

  16. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  17. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  18. In Vivo Zonal Variation and Liver Cell-Type Specific NF-κB Localization after Chronic Adaptation to Ethanol and following Partial Hepatectomy.

    Directory of Open Access Journals (Sweden)

    Harshavardhan Nilakantan

    Full Text Available NF-κB is a major inflammatory response mediator in the liver, playing a key role in the pathogenesis of alcoholic liver injury. We investigated zonal as well as liver cell type-specific distribution of NF-κB activation across the liver acinus following adaptation to chronic ethanol intake and 70% partial hepatectomy (PHx. We employed immunofluorescence staining, digital image analysis and statistical distributional analysis to quantify subcellular localization of NF-κB in hepatocytes and hepatic stellate cells (HSCs. We detected significant spatial heterogeneity of NF-κB expression and cellular localization between cytoplasm and nucleus across liver tissue. Our main aims involved investigating the zonal bias in NF-κB localization and determining to what extent chronic ethanol intake affects this zonal bias with in hepatocytes at baseline and post-PHx. Hepatocytes in the periportal area showed higher NF-κB expression than in the pericentral region in the carbohydrate-fed controls, but not in the ethanol group. However, the distribution of NF-κB nuclear localization in hepatocytes was shifted towards higher levels in pericentral region than in periportal area, across all treatment conditions. Chronic ethanol intake shifted the NF-κB distribution towards higher nuclear fraction in hepatocytes as compared to the pair-fed control group. Ethanol also stimulated higher NF-κB expression in a subpopulation of HSCs. In the control group, PHx elicited a shift towards higher NF-κB nuclear fraction in hepatocytes. However, this distribution remained unchanged in the ethanol group post-PHx. HSCs showed a lower NF-κB expression following PHx in both ethanol and control groups. We conclude that adaptation to chronic ethanol intake attenuates the liver zonal variation in NF-κB expression and limits the PHx-induced NF-κB activation in hepatocytes, but does not alter the NF-κB expression changes in HSCs in response to PHx. Our findings provide new

  19. The Sinuosity of Atmospheric Circulation over North America and its Relationship to Arctic Climate Change and Extreme Events

    Science.gov (United States)

    Vavrus, S. J.; Wang, F.; Martin, J. E.; Francis, J. A.

    2015-12-01

    Recent research has suggested a relationship between mid-latitude weather and Arctic amplification (AA) of global climate change via a slower and wavier extratropical circulation inducing more extreme events. To test this hypothesis and to quantify the waviness of the extratropical flow, we apply a novel application of the geomorphological concept of sinuosity (SIN) over greater North America. SIN is defined as the ratio of the curvilinear length of a geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500 hPa daily heights from reanalysis and model simulations to calculate past and future SIN. The circulation exhibits a distinct annual cycle of maximum SIN (waviness) in summer and a minimum in winter, inversely related to the annual cycle of zonal wind speed. Positive trends in SIN have emerged in recent decades during winter and summer at several latitude bands, generally collocated with negative trends in zonal wind speeds. High values of SIN coincide with many prominent extreme-weather events, including Superstorm Sandy. RCP8.5 simulations (2006-2100) project a dipole pattern of zonal wind changes that varies seasonally. In winter, AA causes inflated heights over the Arctic relative to mid-latitudes and an associated weakening (strengthening) of the westerlies north (south) of 40N. The AA signal in summer is strongest over upper-latitude land, promoting localized atmospheric ridging aloft with lighter westerlies to the south and stronger zonal winds to the north. The changes in wind speeds in both seasons are inversely correlated with SIN, indicating a wavier circulation where the flow weakens. In summer the lighter winds over much of the U. S. resemble circulation anomalies observed during extreme summer heat and drought. Such changes may be linked to enhanced heating of upper-latitude land surfaces caused by earlier snow melt during spring-summer.

  20. LHC Season 2: A stronger machine

    CERN Multimedia

    Dominguez, Daniel

    2015-01-01

    1) New magnets / De nouveaux aimants 2) Stronger connections / Des jonctions électriques renforcées 3) Safer magnets / Des aimants plus sûrs 4) Higher energy beams / Des faisceaux d’énergie plus élevée 5) Narrower beams / Des faisceaux plus serrés 6) Smaller but closer proton packets / Des groupes de protons plus petits mais plus rapprochés 7) Higher voltage / Une tension plus haute 8) Superior cryogenics / Un système cryogénique amélioré 9) Radiation-resistant electronics / Une électronique qui résiste aux radiations 10) More secure vacuum / Un vide plus sûr

  1. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  2. Interannual variations in the zonal asymmetry of the subpolar latitudes total ozone column during the austral spring

    Directory of Open Access Journals (Sweden)

    Eduardo A. Agosta

    2010-06-01

    Full Text Available The Southern Hemisphere midlatitude Total Ozone Column (TOC shows a horseshoe like structure with a minimum which appears to have two preferential extreme positions during October: one, near southern South America, the other, near the Greenwich Meridian approximately. The interannual zonal ozone asymmetry exists independently of the variations induced by the 11-year solar cycle, the Quasi-Biennial Oscillation (QBO and planetary wave activity inducing the Brewer-Dobson circulation. The classification and climatological composition of these two extreme ozone-minimum positions allows for the observations of statistically significant patterns in geopotential height and zonal winds associated with the quasi-stationary wave 1, extending throughout lower stratosphere. The changes in the quasi-stationary wave 1 associated with the extreme TOC positions appear to have sinks and sources determining transient interactions between troposphere and the stratosphere. Thus, distinct climate states in the troposphere seem to be dynamically linked with the state of the stratosphere and ozone layer. The migration of the TOC trough from southern South America to the east during the 1990s can be related to changes in the troposphere/stratosphere coupling through changes in the Southern Annular Mode variability in spring.La Columna Total de Ozono (CTO de las latitudes medias del Hemisferio Sur muestra una estructura de herradura con un mínimo que muestra tener dos posiciones preferenciales extremas durante octubre: uno, en las cercanías del sur de Sudamérica, y el otro, cerca del meridiano de Greenwich. La asimetría zonal de ozono existe independientemente de las variaciones inducidas por el ciclo solar de 11 años, la Oscilación Cuasi-Bianual (QBO y la actividad de onda planetaria asociada a la circulación de Brewer-Dobson. La clasificación y composición climatológica de estas dos situaciones longitudinalmente extremas de mínimo de ozono permite observar

  3. Lower-Body Muscle Structure and Jump Performance of Stronger and Weaker Surfing Athletes.

    Science.gov (United States)

    Secomb, Josh L; Nimphius, Sophia; Farley, Oliver R; Lundgren, Lina; Tran, Tai T; Sheppard, Jeremy M

    2016-07-01

    To identify whether there are any significant differences in the lower-body muscle structure and countermovement-jump (CMJ) and squat-jump (SJ) performance between stronger and weaker surfing athletes. Twenty elite male surfers had their lower-body muscle structure assessed with ultrasonography and completed a series of lower-body strength and jump tests including isometric midthigh pull (IMTP), CMJ, and SJ. Athletes were separated into stronger (n = 10) and weaker (n = 10) groups based on IMTP performance. Large significant differences were identified between the groups for vastus lateralis (VL) thickness (P = .02, ES = 1.22) and lateral gastrocnemius (LG) pennation angle (P = .01, ES = 1.20), and a large nonsignificant difference was identified in LG thickness (P = .08, ES = 0.89). Furthermore, significant differences were present between the groups for peak force, relative peak force, and jump height in the CMJ and SJ (P Stronger surfing athletes in this study had greater VL and LG thickness and LG pennation angle. These muscle structures may explain their better performance in the CMJ and SJ. A unique finding in this study was that the stronger group appeared to better use their strength and muscle structure for braking as they had significantly higher eccentric peak velocity and vertical displacement during the CMJ. This enhanced eccentric phase may have resulted in a greater production and subsequent utilization of stored elastic strain energy that led to the significantly better CMJ performance in the stronger group.

  4. Some studies of zonal and meridional wind characteristics at low latitude Indian stations

    Science.gov (United States)

    Nagpal, O. P.; Kumar, S.

    1985-12-01

    At the beginning of the Indian Middle Atmosphere Programme (IMAP), it was decided that the preparation of consolidation reports of already available parameters for the middle atmosphere would be useful. Atmospheric wind data obtained by rockets and balloons constituted one such parameter which had to be consolidated. The present paper summaries the results of this consolidation study. Both zonal and meridional components of winds at four low latitude Indian stations namely Thumba, Shar, Hyderabad, and Balasore, have been analyzed to yield reference wind profiles for each month. The montly mean values have been used to bring out the amplitudes and phases of the annual, semiannual and quasi-biennial oscillations.

  5. Some studies of zonal and meridional wind characteristics at low latitude Indian stations

    Science.gov (United States)

    Nagpal, O. P.; Kumar, S.

    1985-01-01

    At the beginning of the Indian Middle Atmosphere Programme (IMAP), it was decided that the preparation of consolidation reports of already available parameters for the middle atmosphere would be useful. Atmospheric wind data obtained by rockets and balloons constituted one such parameter which had to be consolidated. The present paper summaries the results of this consolidation study. Both zonal and meridional components of winds at four low latitude Indian stations namely Thumba, Shar, Hyderabad, and Balasore, have been analyzed to yield reference wind profiles for each month. The montly mean values have been used to bring out the amplitudes and phases of the annual, semiannual and quasi-biennial oscillations.

  6. Effects of flow gradients on directional radiation of human voice.

    Science.gov (United States)

    Pulkki, Ville; Lähivaara, Timo; Huhtakallio, Ilkka

    2018-02-01

    In voice communication in windy outdoor conditions, complex velocity gradients appear in the flow field around the source, the receiver, and also in the atmosphere. It is commonly known that voice emanates stronger towards the downstream direction when compared with the upstream direction. In literature, the atmospheric effects are used to explain the stronger emanation in the downstream direction. This work shows that the wind also has an effect to the directivity of voice also favouring the downstream direction. The effect is addressed by measurements and simulations. Laboratory measurements are conducted by using a large pendulum with a loudspeaker mimicking the human head, whereas practical measurements utilizing the human voice are realized by placing a subject through the roof window of a moving car. The measurements and a simulation indicate congruent results in the speech frequency range: When the source faces the downstream direction, stronger radiation coinciding with the wind direction is observed, and when it faces the upstream direction, radiation is not affected notably. The simulated flow gradients show a wake region in the downstream direction, and the simulated acoustic field in the flow show that the region causes a wave-guide effect focusing the sound in the direction.

  7. On the bicoherence analysis of plasma turbulence

    International Nuclear Information System (INIS)

    Itoh, K.; Nagashima, Y.; Fujisawa, A.; Itoh, S.-I.; Yagi, M.; Diamond, P.H.; Fukuyama, A.

    2005-10-01

    The bicoherence of fluctuations in a system of drift waves and zonal flows is discussed. In strong drift-wave turbulence, where broad-band fluctuations are excited, the bicoherence is examined. A Langevin equation formalism of turbulent interactions allows us to relate the bicoherence coefficient to the projection of nonlinear force onto the test mode. The dependence of the summed bicoherence on the amplitude of zonal flows is clarified. The importance of observing biphase is also stressed. The results provide a basis for measurement of nonlinear interaction in a system of drift waves and zonal flow. (author)

  8. Final Scientific/Technical Report for "Nanite" for Better Well-Bore Integrity and Zonal Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Veedu, Vinod [Oceanit Laboratories, Inc., Honolulu, HI (United States); Hadmack, Michael [Oceanit Laboratories, Inc., Honolulu, HI (United States); Pollock, Jacob [Oceanit Laboratories, Inc., Honolulu, HI (United States); Pernambuco-Wise, Paul [Oceanit Laboratories, Inc., Honolulu, HI (United States); Ah Yo, Derek [Oceanit Laboratories, Inc., Honolulu, HI (United States)

    2017-05-30

    Nanite™ is a cementitious material that contains a proprietary formulation of functionalized nanomaterial additive to transform conventional cement into a smart material responsive to pressure (or stress), temperature, and any intrinsic changes in composition. This project has identified optimal sensing modalities of smart well cement and demonstrated how real-time sensing of Nanite™ can improve long-term wellbore integrity and zonal isolation in shale gas and applicable oil and gas operations. Oceanit has explored Nanite’s electrical sensing properties in depth and has advanced the technology from laboratory proof-of-concept to sub-scale testing in preparation for field trials.

  9. Propagation properties of Rossby waves for latitudinal β-plane variations of f and zonal variations of the shallow water speed

    Directory of Open Access Journals (Sweden)

    C. T. Duba

    2012-05-01

    Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.

  10. Robust Co-Optimization to Energy and Reserve Joint Dispatch Considering Wind Power Generation and Zonal Reserve Constraints in Real-Time Electricity Markets

    Directory of Open Access Journals (Sweden)

    Chunlai Li

    2017-07-01

    Full Text Available This paper proposes an energy and reserve joint dispatch model based on a robust optimization approach in real-time electricity markets, considering wind power generation uncertainties as well as zonal reserve constraints under both normal and N-1 contingency conditions. In the proposed model, the operating reserves are classified as regulating reserve and spinning reserve according to the response performance. More specifically, the regulating reserve is usually utilized to reduce the gap due to forecasting errors, while the spinning reserve is commonly adopted to enhance the ability for N-1 contingencies. Since the transmission bottlenecks may inhibit the deliverability of reserve, the zonal placement of spinning reserve is considered in this paper to improve the reserve deliverability under the contingencies. Numerical results on the IEEE 118-bus test system show the effectiveness of the proposed model.

  11. Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin Woo; Kim, Su Ho; Sohn, Chae Hoon [Sejong Univ., Seoul (Korea, Republic of)

    2013-12-15

    The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of power plants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

  12. Prostate Zonal Volumetry as a Predictor of Clinical Outcomes for Prostate Artery Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Assis, André Moreira de, E-mail: andre.assis@criep.com.br, E-mail: andre.maa@gmail.com; Maciel, Macello Sampaio, E-mail: macielmjs@gmail.com; Moreira, Airton Mota, E-mail: airton.mota@criep.com.br; Paula Rodrigues, Vanessa Cristina de, E-mail: vanessapaular@yahoo.com.br [University of Sao Paulo Medical School, Vascular and Interventional Radiology Unit, Radiology Institute (Brazil); Antunes, Alberto Azoubel, E-mail: antunesuro@uol.com.br; Srougi, Miguel, E-mail: srougi@uol.com.br [University of Sao Paulo Medical School, Urology Department (Brazil); Cerri, Giovanni Guido, E-mail: giovanni-cerri@uol.com.br [University of Sao Paulo Medical School, Radiology Institute (Brazil); Carnevale, Francisco Cesar, E-mail: francisco.carnevale@criep.com.br [University of Sao Paulo Medical School, Vascular and Interventional Radiology Unit, Radiology Institute (Brazil)

    2017-02-15

    PurposeTo determine prostate baseline zonal volumetry and correlate these findings with clinical outcomes for patients who underwent prostate artery embolization (PAE) for lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH).Materials and MethodsThis is a retrospective study that included patients treated by PAE from 2010 to 2014. Baseline and 6-month follow-up evaluations included prostate MRI with whole prostate (WP) and central gland (CG) volume measurements—as well as prostate zonal volumetry index (ZVi) calculation, defined as the CG/WP volumes relation—the International Prostate Symptom Score (IPSS), and the Quality of life (QoL) index. Baseline WP, CG, and ZVi were statistical compared to IPSS and QoL values at 6 months.ResultsA total of 93 consecutive patients were included, with mean age of 63.4 years (range, 51–86). Clinical failure, defined as IPSS > 7 or QoL > 2, was seen in four cases (4.3%). Mean reductions in prostate volumes after PAE were of 30.6% and 31.2% for WP and CG, respectively (p < 0.0001). Clinical parameters had mean decrease from 21 to 3.3 points for IPSS, and from 4.7 to 1.2 points for QoL (p < 0.0001). Baseline WP, CG, and ZVi correlated to the degree of clinical improvement (p < 0.05 for all). The baseline ZVi cut-off calculated for better clinical outcomes was > 0.45, with 85% sensitivity and 75% specificity.ConclusionsBaseline CG and WP volumes as well as ZVi presented strong correlation with clinical outcomes in patients undergoing PAE, and its assessment should be considered in pre-treatment evaluation whenever possible. Both patients and medical team should be aware of the possibility of less favorable outcomes when ZVi < 0.45.

  13. Prostate Zonal Volumetry as a Predictor of Clinical Outcomes for Prostate Artery Embolization

    International Nuclear Information System (INIS)

    Assis, André Moreira de; Maciel, Macello Sampaio; Moreira, Airton Mota; Paula Rodrigues, Vanessa Cristina de; Antunes, Alberto Azoubel; Srougi, Miguel; Cerri, Giovanni Guido; Carnevale, Francisco Cesar

    2017-01-01

    PurposeTo determine prostate baseline zonal volumetry and correlate these findings with clinical outcomes for patients who underwent prostate artery embolization (PAE) for lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH).Materials and MethodsThis is a retrospective study that included patients treated by PAE from 2010 to 2014. Baseline and 6-month follow-up evaluations included prostate MRI with whole prostate (WP) and central gland (CG) volume measurements—as well as prostate zonal volumetry index (ZVi) calculation, defined as the CG/WP volumes relation—the International Prostate Symptom Score (IPSS), and the Quality of life (QoL) index. Baseline WP, CG, and ZVi were statistical compared to IPSS and QoL values at 6 months.ResultsA total of 93 consecutive patients were included, with mean age of 63.4 years (range, 51–86). Clinical failure, defined as IPSS > 7 or QoL > 2, was seen in four cases (4.3%). Mean reductions in prostate volumes after PAE were of 30.6% and 31.2% for WP and CG, respectively (p < 0.0001). Clinical parameters had mean decrease from 21 to 3.3 points for IPSS, and from 4.7 to 1.2 points for QoL (p < 0.0001). Baseline WP, CG, and ZVi correlated to the degree of clinical improvement (p < 0.05 for all). The baseline ZVi cut-off calculated for better clinical outcomes was > 0.45, with 85% sensitivity and 75% specificity.ConclusionsBaseline CG and WP volumes as well as ZVi presented strong correlation with clinical outcomes in patients undergoing PAE, and its assessment should be considered in pre-treatment evaluation whenever possible. Both patients and medical team should be aware of the possibility of less favorable outcomes when ZVi < 0.45.

  14. HIRDLS/Aura Level 3 Nitrogen Dioxide (NO2) 1deg Lat Zonal Fourier Coefficients V007 (H3ZFCNO2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Nitrogen Dioxide (NO2) Zonal Fourier Coefficients" version 7 data product (H3ZFCNO2) contains the entire mission (~3 years) of HIRDLS data...

  15. A Stronger Reason for the Right to Sign Languages

    Science.gov (United States)

    Trovato, Sara

    2013-01-01

    Is the right to sign language only the right to a minority language? Holding a capability (not a disability) approach, and building on the psycholinguistic literature on sign language acquisition, I make the point that this right is of a stronger nature, since only sign languages can guarantee that each deaf child will properly develop the…

  16. Application of Classical and Lie Transform Methods to Zonal Perturbation in the Artificial Satellite

    Science.gov (United States)

    San-Juan, J. F.; San-Martin, M.; Perez, I.; Lopez-Ochoa, L. M.

    2013-08-01

    A scalable second-order analytical orbit propagator program is being carried out. This analytical orbit propagator combines modern perturbation methods, based on the canonical frame of the Lie transform, and classical perturbation methods in function of orbit types or the requirements needed for a space mission, such as catalog maintenance operations, long period evolution, and so on. As a first step on the validation of part of our orbit propagator, in this work we only consider the perturbation produced by zonal harmonic coefficients in the Earth's gravity potential, so that it is possible to analyze the behaviour of the perturbation methods involved in the corresponding analytical theories.

  17. Generation of zonal magnetic fields by drift waves in a current carrying nonuniform magnetoplasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    It is shown that zonal magnetic fields (ZMFs) can be nonlinearly excited by incoherent drift waves (DWs) in a current carrying nonuniform magnetoplasma. The dynamics of incoherent DWs in the presence of ZMFs is governed by a wave-kinetic equation. The governing equation for ZMFs in the presence of nonlinear advection force of the DWs is obtained from the parallel component of the electron momentum equation and the Faraday law. Standard techniques are used to derive a nonlinear dispersion relation, which depicts instability via which ZMFs are excited in plasmas. ZMFs may inhibit the turbulent cross-field particle and energy transport in a nonuniform magnetoplasma.

  18. Can tree-ring isotopes (δ18O and δ13C) improve our understanding of hydroclimate variability in the Columbia River Basin?

    Science.gov (United States)

    Csank, A. Z.; Wise, E.; McAfee, S. A.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental

  19. The vertical structure of Jupiter and Saturn zonal winds from nonlinear simulations of major vortices and planetary-scale disturbances

    Science.gov (United States)

    Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.

    2012-12-01

    Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).

  20. Comparison of sensor systems designed using multizone, zonal, and CFD data for protection of indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. Lisa; Wen, Jin [Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2010-04-15

    Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. (author)

  1. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    Science.gov (United States)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  2. Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment

    Science.gov (United States)

    Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.

  3. Stronger vection in junior high school children than in adults.

    Science.gov (United States)

    Shirai, Nobu; Imura, Tomoko; Tamura, Rio; Seno, Takeharu

    2014-01-01

    Previous studies have shown that even elementary school-aged children (7 and 11 years old) experience visually induced perception of illusory self-motion (vection) (Lepecq et al., 1995, Perception, 24, 435-449) and that children of a similar age (mean age = 9.2 years) experience more rapid and stronger vection than do adults (Shirai et al., 2012, Perception, 41, 1399-1402). These findings imply that although elementary school-aged children experience vection, this ability is subject to further development. To examine the subsequent development of vection, we compared junior high school students' (N = 11, mean age = 14.4 years) and adults' (N = 10, mean age = 22.2 years) experiences of vection. Junior high school students reported significantly stronger vection than did adults, suggesting that the perceptual experience of junior high school students differs from that of adults with regard to vection and that this ability undergoes gradual changes over a relatively long period of development.

  4. Improved real-time PCR assay for detection of the quarantine potato pathogen, Synchytrium endobioticum, in zonal centrifuge extracts from soil and in plants

    NARCIS (Netherlands)

    Gent-Pelzer, van M.P.E.; Krijger, M.C.; Bonants, P.J.M.

    2010-01-01

    Real-time PCR was used for quantitative detection of the potato pathogen, Synchytrium endobioticum, in different substrates: zonal centrifuge extracts, warts and different plant parts of potato. Specific primers and a TaqMan probe, designed from the internal transcribed spacer region of the

  5. Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values

    Science.gov (United States)

    Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Riese, Martin

    2016-10-01

    Based on simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the period 1979-2013, with model transport driven by the ECMWF ERA-Interim reanalysis, we discuss the impact of the El Niño Southern Oscillation (ENSO) on the variability of the dynamics, water vapor, ozone, and mean age of air (AoA) in the tropical lower stratosphere during boreal winter. Our zonally resolved analysis at the 390 K potential temperature level reveals that not only (deseasonalized) ENSO-related temperature anomalies are confined to the tropical Pacific (180-300°E) but also anomalous wave propagation and breaking, as quantified in terms of the Eliassen-Palm (EP) flux divergence, with strongest local contribution during the La Niña phase. This anomaly is coherent with respective anomalies of water vapor (±0.5 ppmv) and ozone (±100 ppbv) derived from CLaMS being in excellent agreement with the Aura Microwave Limb Sounder observations. Thus, during El Niño a more zonally symmetric wave forcing drives a deep branch of the Brewer-Dobson (BD) circulation. During La Niña this forcing increases at lower levels (≈390 K) over the tropical Pacific, likely influencing the shallow branch of the BD circulation. In agreement with previous studies, wet (dry) and young (old) tape recorder anomalies propagate upward in the subsequent months following El Niño (La Niña). Using CLaMS, these anomalies are found to be around +0.3 (-0.2) ppmv and -4 (+4) months for water vapor and AoA, respectively. The AoA ENSO anomaly is more strongly affected by the residual circulation (≈2/3) than by eddy mixing (≈1/3).

  6. Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks

    International Nuclear Information System (INIS)

    Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.

    2010-01-01

    Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.

  7. Longitudinal differences and inter-annual variations of zonal wind in the tropical stratosphere and troposphere

    Science.gov (United States)

    Reddy, C. A.; Raghava Reddi, C.

    1986-12-01

    A quantitative assessment has been made of the longitude-dependent differences and the interannual variations of the zonal wind components in the equatorial stratosphere and troposphere, from the analysis of rocket and balloon data for 1979 and 1980 for three stations near ±8.5° latitude (Ascension Island at 14.4°W, Thumba at 76.9°E and Kwajalein at 67.7°E) and two stations near 21.5° latitude (Barking Sands at 159.6°W and Balasore at 86.9°E). The longitude-dependent differences are found to be about 10-20 m s -1 (amounting to 50-200% in some cases) for the semi-annual oscillation (SAO) and the annual oscillation (AO) amplitudes, depending upon the altitude and latitude. Inter-annual variations of about 10 m s -1 also exist in both oscillations. The phase of the SAO exhibits an almost 180° shift at Kwajalein compared to that at the other two stations near 8.5°, while the phase of the AO is independent of longitude, in the stratosphere. The amplitude and phase of the quasi-biennial oscillation (QBO) are found to be almost independent of longitude in the 18-38 km range, but above 40 km height the QBO amplitude and phase have different values in different longitude sectors for the three stations near ±8.5° latitude. The mean zonal wind shows no change from 1979 to 1980, but in the troposphere at 8.5° latitude strong easterlies prevail in the Indian zone, in contrast to the westerlies at the Atlantic and Pacific stations.

  8. Synchronized flow in oversaturated city traffic.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  9. Recursive analytical solution describing artificial satellite motion perturbed by an arbitrary number of zonal terms

    Science.gov (United States)

    Mueller, A. C.

    1977-01-01

    An analytical first order solution has been developed which describes the motion of an artificial satellite perturbed by an arbitrary number of zonal harmonics of the geopotential. A set of recursive relations for the solution, which was deduced from recursive relations of the geopotential, was derived. The method of solution is based on Von-Zeipel's technique applied to a canonical set of two-body elements in the extended phase space which incorporates the true anomaly as a canonical element. The elements are of Poincare type, that is, they are regular for vanishing eccentricities and inclinations. Numerical results show that this solution is accurate to within a few meters after 500 revolutions.

  10. Storm-time meridional flows: a comparison of CINDI observations and model results

    Directory of Open Access Journals (Sweden)

    M. Hairston

    2014-06-01

    Full Text Available During a large geomagnetic storm, the electric field from the polar ionosphere can expand far enough to affect the mid-latitude and equatorial electric fields. These changes in the equatorial zonal electric field, called the penetration field, will cause changes in the meridional ion flows that can be observed by radars and spacecraft. In general this E × B ion flow near the equator caused by the penetration field during undershielding conditions will be upward on the dayside and downward on the nightside of the Earth. Previous analysis of the equatorial meridional flows observed by CINDI instrument on the C/NOFS spacecraft during the 26 September 2011 storm showed that all of the response flows on the dayside were excess downward flows instead of the expected upward flows. These observed storm-time responses are compared to a prediction from a physics-based coupled model of thermosphere–ionosphere–inner-magnetosphere in an effort to explain these observations. The model results suggest that the equatorial downward flow could be attributed to a combined effect of the overshielding and disturbance dynamo processes. However, some discrepancy between the model and observation indicates a need for improving our understanding of how sensitive the equatorial electric field is to various model input parameters that describe the magnetosphere–ionosphere coupling processes.

  11. Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2D QDFT

    Science.gov (United States)

    Grigoryan, Artyom M.; John, Aparna; Agaian, Sos S.

    2017-03-01

    2-D quaternion discrete Fourier transform (2-D QDFT) is the Fourier transform applied to color images when the color images are considered in the quaternion space. The quaternion numbers are four dimensional hyper-complex numbers. Quaternion representation of color image allows us to see the color of the image as a single unit. In quaternion approach of color image enhancement, each color is seen as a vector. This permits us to see the merging effect of the color due to the combination of the primary colors. The color images are used to be processed by applying the respective algorithm onto each channels separately, and then, composing the color image from the processed channels. In this article, the alpha-rooting and zonal alpha-rooting methods are used with the 2-D QDFT. In the alpha-rooting method, the alpha-root of the transformed frequency values of the 2-D QDFT are determined before taking the inverse transform. In the zonal alpha-rooting method, the frequency spectrum of the 2-D QDFT is divided by different zones and the alpha-rooting is applied with different alpha values for different zones. The optimization of the choice of alpha values is done with the genetic algorithm. The visual perception of 3-D medical images is increased by changing the reference gray line.

  12. Combining Stocks and Flows of Knowledge

    DEFF Research Database (Denmark)

    Ambos, Tina C.; Nell, Phillip Christopher; Pedersen, Torben

    In the area of knowledge management and knowledge governance, previous research has mostly focused on either knowledge stocks or knowledge flows of firms or organizational units. Contrary to this work, our study is among the first to integrate these two perspectives in order to shed light...... on the complementarity effects of different types of knowledge stocks and flows in the multinational corporation (MNC). We investigate intra-functional as well as cross-functional complementarity effects from the perspective of the knowledge recipient. We test the impact of stocks on flows on the benefit that is created...... for MNC units. Based on a comprehensive sample of 324 relationships between MNC units we find that both types of complementarity create benefits for these units, but that the effects from intra-functional combinations of knowledge stocks and flows are significantly stronger than from cross...

  13. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    Science.gov (United States)

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.

  14. Effect of Resonant Magnetic Perturbations on secondary structures in Drift-Wave turbulence

    Science.gov (United States)

    Leconte, Michael

    2011-10-01

    In this work, we study the effects of RMPs on turbulence, flows and confinement, in the framework of two paradigmatic models, resistive ballooning and resistive drift waves. For resistive ballooning turbulence, we use 3D global numerical simulations, including RMP fields and (externally-imposed) sheared rotation profile. Without RMPs, relaxation oscillations of the pressure profile occur. With RMPs, results show that long-lived convection cells are generated by the combined effects of pressure modulation and toroidal curvature coupling. These modify the global structure of the turbulence and eliminate relaxation oscillations. This effect is due mainly to a modification of the pressure profile linked to the presence of residual magnetic island chains. Hence convection-cell generation increases for increasing δBr/B0. For RMP effect on zonal flows in drift wave turbulence, we extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large δBr/B0. Both the vorticity flux (Reynolds stress), and particle flux are modulated. We derive an extended predator prey model which couples zonal potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters, and predicts a novel type of transport bifurcation in the presence of RMPs. We find a novel set of system states that are similar to the Hmode-like state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude and low collisionality, both the ambient turbulence and zonal flow energy increase with δBr/B0. For larger RMP strength, the turbulence energy increases, but the energy of zonal flows decreases with δBr/B0, corresponding to a damping of zonal flows. At high

  15. Hyper and hypothyroidism change the expression and diurnal variation of thyroid hormone receptor isoforms in rat liver without major changes in their zonal distribution

    NARCIS (Netherlands)

    Zandieh-Doulabi, B.; Platvoet-ter Schiphorst, M.; Kalsbeek, A.; Wiersinga, W. M.; Bakker, O.

    2004-01-01

    We investigated the effect of hypothyroidism or hyperthyroidism on mRNA and protein expression, diurnal variation and zonal distribution of thyroid hormone receptor (TR) isoforms TRalpha1 TRalpha2 and TRbeta1 in rat liver. Hypothyroidism results in increased isoform mRNA and protein expression

  16. Radiative modelling by the zonal method and WSGG model in inhomogeneous axisymmetric cylindrical enclosure

    International Nuclear Information System (INIS)

    Méchi, Rachid; Farhat, Habib; Said, Rachid

    2016-01-01

    Nongray radiation calculations are carried out for a case problem available in the literature. The problem is a non-isothermal and inhomogeneous CO 2 -H 2 O- N 2 gas mixture confined within an axisymmetric cylindrical furnace. The numerical procedure is based on the zonal method associated with the weighted sum of gray gases (WSGG) model. The effect of the wall emissivity on the heat flux losses is discussed. It is shown that this property affects strongly the furnace efficiency and that the most important heat fluxes are those leaving through the circumferential boundary. The numerical procedure adopted in this work is found to be effective and may be relied on to simulate coupled turbulent combustion-radiation in fired furnaces. (paper)

  17. The Role of Fine Sediment Content on Soil Consolidation and Debris Flows Development after Earthquake

    Science.gov (United States)

    Lyu, L.; Xu, M., III; Wang, Z.

    2017-12-01

    Fine sediment has been identified as an important factor determining the critical runoff that initiates debris flows because its contribution to shear strength through consolidation. Especially, owing to the 2008 Wenchuan earthquake in China enormous of loose sediment with different fractions of fine particles was eroded and supplied as materials for debris flows. The loose materials are gradually consolidated along with time, and therefore stronger rainfall is required to overcome the shear strength and to initiate debris flows. In this study, flume experiments were performed to explore soil consolidation and shear strength on mass failure and debris flow initiation under the conditions that different fractions of fine sediment were contained in the materials. Under the low content of fine sediment conditions (mass percentages: 0-10%), the debris flows formed with large pores and low shear strength and thus fine particles were too few to fill up the pores among the coarse particles. The consolidation rate was mostly influenced by the content of the fine particles. Consolidation of fine particles caused an increase of the shear strength and decrease of the rainfall infiltration, and therefore, debris flow initiation required stronger rainfall as the consolidation of the fine particles developed.

  18. Zonal drifts of ionospheric irregularities at temperate latitude in the Indian region

    Directory of Open Access Journals (Sweden)

    S. Kumar

    1995-07-01

    Full Text Available The systematic time differences observed in the onset of postsunset VHF scintillations recorded simultaneously at Ujjain (Geogr. lat. 23.2°N, Geogr. long. 75.6°E and Bhopal (Geogr. lat. 23.2°N, Geogr. long. 77.6°E, situated at the peak of the anomaly crest in the Indian region, have been analysed to determine the zonal drifts of scintillation-producing irregularities. The method is based on the assumption that the horizontal movement of irregularities does not change while crossing the F-region cross-over points of these stations. The calculated velocities of irregularities indicate an eastward drift decreasing from about 180 m s–1 to 55 m s–1 during the course of night. In the premidnight period, the drifts are reduced under the magnetically disturbed conditions. The average east-west extension of irregularites is found to be in the range of 200–500 km.

  19. Estructuración de un sistema para la clasificación y agregación de valor para el papel y plástico en la Administración zonal Quitumbe de Quito

    OpenAIRE

    Vaca Ibadango, Marco Vinicio

    2014-01-01

    This work aims at implementing a center for environmental education and management for the Zonal Administration Quitumbe of Quito. It also seeks to contribute to a better quality of life, raising awareness to the public about environmental care, and as a citizen input can help families who have nobly found in recycling plastic and paper a way of life. Este trabajo tiene por objetivo la implementación de un Centro de educación y gestión ambiental para la Administración Zonal Quitumbe de Qui...

  20. Numerical simulation of the geometrical-optics reduction of CE2 and comparisons to quasilinear dynamics

    Science.gov (United States)

    Parker, Jeffrey B.

    2018-05-01

    Zonal flows have been observed to appear spontaneously from turbulence in a number of physical settings. A complete theory for their behavior is still lacking. Recently, a number of studies have investigated the dynamics of zonal flows using quasilinear (QL) theories and the statistical framework of a second-order cumulant expansion (CE2). A geometrical-optics (GO) reduction of CE2, derived under an assumption of separation of scales between the fluctuations and the zonal flow, is studied here numerically. The reduced model, CE2-GO, has a similar phase-space mathematical structure to the traditional wave-kinetic equation, but that wave-kinetic equation has been shown to fail to preserve enstrophy conservation and to exhibit an ultraviolet catastrophe. CE2-GO, in contrast, preserves nonlinear conservation of both energy and enstrophy. We show here how to retain these conservation properties in a pseudospectral simulation of CE2-GO. We then present nonlinear simulations of CE2-GO and compare with direct simulations of quasilinear (QL) dynamics. We find that CE2-GO retains some similarities to QL. The partitioning of energy that resides in the zonal flow is in good quantitative agreement between CE2-GO and QL. On the other hand, the length scale of the zonal flow does not follow the same qualitative trend in the two models. Overall, these simulations indicate that CE2-GO provides a simpler and more tractable statistical paradigm than CE2, but CE2-GO is missing important physics.

  1. Statistical dynamical subgrid-scale parameterizations for geophysical flows

    International Nuclear Information System (INIS)

    O'Kane, T J; Frederiksen, J S

    2008-01-01

    Simulations of both atmospheric and oceanic circulations at given finite resolutions are strongly dependent on the form and strengths of the dynamical subgrid-scale parameterizations (SSPs) and in particular are sensitive to subgrid-scale transient eddies interacting with the retained scale topography and the mean flow. In this paper, we present numerical results for SSPs of the eddy-topographic force, stochastic backscatter, eddy viscosity and eddy-mean field interaction using an inhomogeneous statistical turbulence model based on a quasi-diagonal direct interaction approximation (QDIA). Although the theoretical description on which our model is based is for general barotropic flows, we specifically focus on global atmospheric flows where large-scale Rossby waves are present. We compare and contrast the closure-based results with an important earlier heuristic SSP of the eddy-topographic force, based on maximum entropy or statistical canonical equilibrium arguments, developed specifically for general ocean circulation models (Holloway 1992 J. Phys. Oceanogr. 22 1033-46). Our results demonstrate that where strong zonal flows and Rossby waves are present, such as in the atmosphere, maximum entropy arguments are insufficient to accurately parameterize the subgrid contributions due to eddy-eddy, eddy-topographic and eddy-mean field interactions. We contrast our atmospheric results with findings for the oceans. Our study identifies subgrid-scale interactions that are currently not parameterized in numerical atmospheric climate models, which may lead to systematic defects in the simulated circulations.

  2. A preliminary comparison of Na lidar and meteor radar zonal winds during geomagnetic quiet and disturbed conditions

    Science.gov (United States)

    Kishore Kumar, G.; Nesse Tyssøy, H.; Williams, Bifford P.

    2018-03-01

    We investigate the possibility that sufficiently large electric fields and/or ionization during geomagnetic disturbed conditions may invalidate the assumptions applied in the retrieval of neutral horizontal winds from meteor and/or lidar measurements. As per our knowledge, the possible errors in the wind estimation have never been reported. In the present case study, we have been using co-located meteor radar and sodium resonance lidar zonal wind measurements over Andenes (69.27°N, 16.04°E) during intense substorms in the declining phase of the January 2005 solar proton event (21-22 January 2005). In total, 14 h of measurements are available for the comparison, which covers both quiet and disturbed conditions. For comparison, the lidar zonal wind measurements are averaged over the same time and altitude as the meteor radar wind measurements. High cross correlations (∼0.8) are found in all height regions. The discrepancies can be explained in light of differences in the observational volumes of the two instruments. Further, we extended the comparison to address the electric field and/or ionization impact on the neutral wind estimation. For the periods of low ionization, the neutral winds estimated with both instruments are quite consistent with each other. During periods of elevated ionization, comparatively large differences are noticed at the highermost altitude, which might be due to the electric field and/or ionization impact on the wind estimation. At present, one event is not sufficient to make any firm conclusion. Further study with more co-located measurements are needed to test the statistical significance of the result.

  3. Comparison of turbulent flow through hexagram and hexagon orifices in circular pipes using large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Nicolleau, Franck C G A; Qin, Ning, E-mail: n.qin@sheffield.ac.uk [Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-04-15

    Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice. (paper)

  4. Stronger misdirection in curved than in straight motion

    Directory of Open Access Journals (Sweden)

    Jorge eOtero-Millan

    2011-11-01

    Full Text Available Illusions developed by magicians are a rich and largely untapped source of insight into perception and cognition. Here we show that curved motion, as employed by the magician in a classic sleight of hand trick, generates stronger misdirection than rectilinear motion, and that this difference can be explained by the differential engagement of the smooth pursuit and the saccadic oculomotor systems. This research moreover exemplifies how the magician’s intuitive understanding of the spectator’s mindset can surpass that of the cognitive scientist in specific instances, and that observation-based behavioral insights developed by magicians are worthy of quantitative investigation in the neuroscience laboratory.

  5. Spray flow-network flow transition of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime

    2010-07-01

    We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.

  6. Spray flow-network flow transition of binary Lennard-Jones particle system

    KAUST Repository

    Inaoka, Hajime; Yukawa, Satoshi; Ito, Nobuyasu

    2010-01-01

    We simulate gas-liquid flows caused by rapid depressurization using a molecular dynamics model. The model consists of two types of Lennard-Jones particles, which we call liquid particles and gas particles. These two types of particles are distinguished by their mass and strength of interaction: a liquid particle has heavier mass and stronger interaction than a gas particle. By simulations with various initial number densities of these particles, we found that there is a transition from a spray flow to a network flow with an increase of the number density of the liquid particles. At the transition point, the size of the liquid droplets follows a power-law distribution, while it follows an exponential distribution when the number density of the liquid particles is lower than the critical value. The comparison between the transition of the model and that of models of percolation is discussed. The change of the average droplet size with the initial number density of the gas particles is also presented. © 2010 Elsevier B.V. All rights reserved.

  7. Bell inequalities stronger than the Clauser-Horne-Shimony-Holt inequality for three-level isotropic states

    International Nuclear Information System (INIS)

    Ito, Tsuyoshi; Imai, Hiroshi; Avis, David

    2006-01-01

    We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3x3 isotropic states in the sense that they are violated by some isotropic states in the 3x3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polytope on nine points. This gives a partial solution to an open problem posed by Collins and Gisin. The results of numerical optimization suggest that they are candidates for being stronger than the I 3322 Bell inequality for 3x3 isotropic states. On the other hand, we found no Bell inequalities stronger than the CHSH inequality for 2x2 isotropic states. In addition, we illustrate an inclusion relation among some Bell inequalities derived by triangular elimination

  8. Self-adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows

    International Nuclear Information System (INIS)

    Daude, F.; Mary, I.; Comte, P.

    2014-01-01

    An improvement of the efficiency of implicit schemes based on Newton-like methods for the simulation of turbulent flows by compressible LES or DNS is proposed. It hinges on a zonal Self-Adaptive Newton method (hereafter denoted SAN), capable of taking advantage of Newton convergence rate heterogeneities in multi-scale flow configurations due to a strong spatial variation of the mesh resolution, such as transitional or turbulent flows controlled by small actuators or passive devices. Thanks to a predictor of the local Newton convergence rate, SAN provides computational savings by allocating resources in regions where they are most needed. The consistency with explicit time integration and the efficiency of the method are checked in three test cases: - The standard test-case of 2-D linear advection of a vortex, on three different two-block grids. - Transition to 3-D turbulence on the lee-side of an airfoil at high angle of attack, which features a challenging laminar separation bubble with a turbulent reattachment. - A passively-controlled turbulent transonic cavity flow, for which the CPU time is reduced by a factor of 10 with respect to the baseline algorithm, illustrates the interest of the proposed algorithm. (authors)

  9. Predatory blue crabs induce stronger nonconsumptive effects in eastern oysters Crassostrea virginica than scavenging blue crabs

    Directory of Open Access Journals (Sweden)

    Avery E. Scherer

    2017-02-01

    Full Text Available By influencing critical prey traits such as foraging or habitat selection, predators can affect entire ecosystems, but the nature of cues that trigger prey reactions to predators are not well understood. Predators may scavenge to supplement their energetic needs and scavenging frequency may vary among individuals within a species due to preferences and prey availability. Yet prey reactions to consumers that are primarily scavengers versus those that are active foragers have not been investigated, even though variation in prey reactions to scavengers or predators might influence cascading nonconsumptive effects in food webs. Oysters Crassostrea virginica react to crab predators by growing stronger shells. We exposed oysters to exudates from crabs fed live oysters or fed aged oyster tissue to simulate scavenging, and to controls without crab cues. Oysters grew stronger shells when exposed to either crab exudate, but their shells were significantly stronger when crabs were fed live oysters. The stronger response to predators than scavengers could be due to inherent differences in diet cues representative of reduced risk in the presence of scavengers or to degradation of conspecific alarm cues in aged treatments, which may mask risk from potential predators subsisting by scavenging.

  10. Solar wind acceleration in a prescribed flow geometry

    International Nuclear Information System (INIS)

    Biernat, H.; Koemle, N.; Lichtenegger, H.

    1985-01-01

    It is known that the flow tubes above coronal holes diverge stronger than radial and that the magnetic field lines may be considerably curved near the border of the holes. The authors investigate the consequences of such a magnetic field geometry on the flow of the solar wind plasma in the vicinity of the Sun. For this purpose the one-dimensional conservation equations are solved along prescribed flow tubes. A temperature profile based on observational data (EUV rocket-observations) is used in the calculations. In an alternative approach the temperature is determined by a polytropic index, which is assumed to be variable. The authors study how both curvature and non-radial divergence of the flow tubes modify the velocity, the density, and the energy balance of the solar wind plasma. (Auth.)

  11. When surging seas meet stronger rain: Nuclear techniques in flood management

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2015-01-01

    Unusually high rainfall in many parts of the world is a result of climate change, scientists say. Since warmer air can hold more water, the rationale goes, increased temperatures will increase the chances of stronger rainfall events. And when surging seas combine with stronger rain, the outcome is almost certain: floods. Floods are the most frequently occurring natural disasters, and south-east Asia is particularly vulnerable. Climate change and variability are expected to bring about increased typhoon activities, rising sea levels and off-season monsoon rains in southeast Asia and other regions. These can cause devastating floods in countries like Cambodia, Laos, Pakistan, the Philippines, Thailand and Viet Nam. For the residents of these countries who have survived the ravages of major floods, the road to recovery can be long and arduous. As the flood water recedes, they have to contend with new forms of flood: floods of concern and worries as to how to rebuild their houses, their lives and their cities. Governments, too, face huge challenges in rebuilding roads, public buildings, infrastructure and natural resources destroyed or polluted by the flood.

  12. Flow Battery Solution for Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  13. Transient thermal stresses due to a zonal heat source moving back and forth over the surface on an infinite plate

    International Nuclear Information System (INIS)

    Sumi, N.; Hetnarski, R.B.

    1989-01-01

    A solution is given for the transient thermal stresses due to a zonal heat source moving back and forth with a constant angular frequency over the surface of an infinite elastic plate. The transient temperature distribution is obtained by using the complex Fourier and Laplace transforms, and the associated thermal stresses are obtained by means of the thermoelastic displacement potential and the Galerkin function. Graphical representations for the solution in dimensionless terms are included in this paper. (orig.)

  14. Representativeness of single lidar stations for zonally averaged ozone profiles, their trends and attribution to proxies

    Directory of Open Access Journals (Sweden)

    C. Zerefos

    2018-05-01

    Full Text Available This paper is focusing on the representativeness of single lidar stations for zonally averaged ozone profile variations over the middle and upper stratosphere. From the lower to the upper stratosphere, ozone profiles from single or grouped lidar stations correlate well with zonal means calculated from the Solar Backscatter Ultraviolet Radiometer (SBUV satellite overpasses. The best representativeness with significant correlation coefficients is found within ±15° of latitude circles north or south of any lidar station. This paper also includes a multivariate linear regression (MLR analysis on the relative importance of proxy time series for explaining variations in the vertical ozone profiles. Studied proxies represent variability due to influences outside of the earth system (solar cycle and within the earth system, i.e. dynamic processes (the Quasi Biennial Oscillation, QBO; the Arctic Oscillation, AO; the Antarctic Oscillation, AAO; the El Niño Southern Oscillation, ENSO, those due to volcanic aerosol (aerosol optical depth, AOD, tropopause height changes (including global warming and those influences due to anthropogenic contributions to atmospheric chemistry (equivalent effective stratospheric chlorine, EESC. Ozone trends are estimated, with and without removal of proxies, from the total available 1980 to 2015 SBUV record. Except for the chemistry related proxy (EESC and its orthogonal function, the removal of the other proxies does not alter the significance of the estimated long-term trends. At heights above 15 hPa an inflection point between 1997 and 1999 marks the end of significant negative ozone trends, followed by a recent period between 1998 and 2015 with positive ozone trends. At heights between 15 and 40 hPa the pre-1998 negative ozone trends tend to become less significant as we move towards 2015, below which the lower stratosphere ozone decline continues in agreement with findings of recent literature.

  15. Representativeness of single lidar stations for zonally averaged ozone profiles, their trends and attribution to proxies

    Science.gov (United States)

    Zerefos, Christos; Kapsomenakis, John; Eleftheratos, Kostas; Tourpali, Kleareti; Petropavlovskikh, Irina; Hubert, Daan; Godin-Beekmann, Sophie; Steinbrecht, Wolfgang; Frith, Stacey; Sofieva, Viktoria; Hassler, Birgit

    2018-05-01

    This paper is focusing on the representativeness of single lidar stations for zonally averaged ozone profile variations over the middle and upper stratosphere. From the lower to the upper stratosphere, ozone profiles from single or grouped lidar stations correlate well with zonal means calculated from the Solar Backscatter Ultraviolet Radiometer (SBUV) satellite overpasses. The best representativeness with significant correlation coefficients is found within ±15° of latitude circles north or south of any lidar station. This paper also includes a multivariate linear regression (MLR) analysis on the relative importance of proxy time series for explaining variations in the vertical ozone profiles. Studied proxies represent variability due to influences outside of the earth system (solar cycle) and within the earth system, i.e. dynamic processes (the Quasi Biennial Oscillation, QBO; the Arctic Oscillation, AO; the Antarctic Oscillation, AAO; the El Niño Southern Oscillation, ENSO), those due to volcanic aerosol (aerosol optical depth, AOD), tropopause height changes (including global warming) and those influences due to anthropogenic contributions to atmospheric chemistry (equivalent effective stratospheric chlorine, EESC). Ozone trends are estimated, with and without removal of proxies, from the total available 1980 to 2015 SBUV record. Except for the chemistry related proxy (EESC) and its orthogonal function, the removal of the other proxies does not alter the significance of the estimated long-term trends. At heights above 15 hPa an inflection point between 1997 and 1999 marks the end of significant negative ozone trends, followed by a recent period between 1998 and 2015 with positive ozone trends. At heights between 15 and 40 hPa the pre-1998 negative ozone trends tend to become less significant as we move towards 2015, below which the lower stratosphere ozone decline continues in agreement with findings of recent literature.

  16. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  17. TEM heat transport and fluctuations in the HSX stellarator: experiments and comparison with gyrokinetic simulation

    Science.gov (United States)

    Smoniewski, J.; Faber, B. J.; Sánchez, E.; Calvo, I.; Pueschel, M. J.; Likin, K. M.; Deng, C. B.; Talmadge, J. N.

    2017-10-01

    The Helically Symmetric eXperiment (HSX) has demonstrated reduced neoclassical transport in the plasma core with quasi-symmetry [Lore Thesis 2010], while outside this region the electron thermal diffusivity is well above the neoclassical level, likely due to the Trapped Electron Mode (TEM) [Weir PoP 2015, Faber PoP 2015]. We compare gyrokinetic simulations of the TEM to experimental heat flux and density fluctuation measurements for two configurations: Quasi-Helical Symmetry (QHS) and broken symmetry (Mirror). Both experiment and simulation show that the heat flux for Mirror is larger than for QHS by about a factor of two. Initial interferometer measurements provide evidence that density-gradient-driven TEMs are driving turbulence. Calculations of the collisionless damping of zonal flows provide another perspective into the difference between geometries. Similar to other stellarators [Monreal PPCF 2016], the zonal flow residual goes to zero at long wavelengths in both configurations. Additionally, the very short time decay of the zonal flow due to neoclassical polarization is constant between configurations. However, the collisionless damping time is longer and the zonal flow oscillation frequency is smaller in QHS than Mirror, consistent with reduced radial particle drifts. Work supported by the US DOE under Grant DE-FG02-93ER54222.

  18. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    International Nuclear Information System (INIS)

    Jošt, D; Škerlavaj, A; Lipej, A

    2012-01-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  19. Numerical flow simulation and efficiency prediction for axial turbines by advanced turbulence models

    Science.gov (United States)

    Jošt, D.; Škerlavaj, A.; Lipej, A.

    2012-11-01

    Numerical prediction of an efficiency of a 6-blade Kaplan turbine is presented. At first, the results of steady state analysis performed by different turbulence models for different operating regimes are compared to the measurements. For small and optimal angles of runner blades the efficiency was quite accurately predicted, but for maximal blade angle the discrepancy between calculated and measured values was quite large. By transient analysis, especially when the Scale Adaptive Simulation Shear Stress Transport (SAS SST) model with zonal Large Eddy Simulation (ZLES) in the draft tube was used, the efficiency was significantly improved. The improvement was at all operating points, but it was the largest for maximal discharge. The reason was better flow simulation in the draft tube. Details about turbulent structure in the draft tube obtained by SST, SAS SST and SAS SST with ZLES are illustrated in order to explain the reasons for differences in flow energy losses obtained by different turbulence models.

  20. Centrifugal compressor tip clearance and impeller flow

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen-Varri, Ahti; Tiainen, Jonna; Turunen-Saaresti, Teemu; Gronman, Aki; Ameli, Alireza; Backman, Jari [Laboratory of Fluid Dynamics, LUT School of Energy Systems, Lappeenranta University of Technology, Lappeenranta (Finland); Engeda, Abraham [Turbomachinery Laboratory, Dept. of Mechanical Engineering, Michigan State University, East Lansing (United States)

    2016-11-15

    Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease.

  1. Centrifugal compressor tip clearance and impeller flow

    International Nuclear Information System (INIS)

    Jaatinen-Varri, Ahti; Tiainen, Jonna; Turunen-Saaresti, Teemu; Gronman, Aki; Ameli, Alireza; Backman, Jari; Engeda, Abraham

    2016-01-01

    Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease

  2. A reduced model for ion temperature gradient turbulent transport in helical plasmas

    International Nuclear Information System (INIS)

    Nunami, M.; Watanabe, T.-H.; Sugama, H.

    2013-07-01

    A novel reduced model for ion temperature gradient (ITG) turbulent transport in helical plasmas is presented. The model enables one to predict nonlinear gyrokinetic simulation results from linear gyrokinetic analyses. It is shown from nonlinear gyrokinetic simulations of the ITG turbulence in helical plasmas that the transport coefficient can be expressed as a function of the turbulent fluctuation level and the averaged zonal flow amplitude. Then, the reduced model for the turbulent ion heat diffusivity is derived by representing the nonlinear turbulent fluctuations and zonal flow amplitude in terms of the linear growth rate of the ITG instability and the linear response of the zonal flow potentials. It is confirmed that the reduced transport model results are in good agreement with those from nonlinear gyrokinetic simulations for high ion temperature plasmas in the Large Helical Device. (author)

  3. Numerical solution of the full potential equation using a chimera grid approach

    Science.gov (United States)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  4. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    Science.gov (United States)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  5. Zonal frequency analysis of the gyral and sulcal extent of cerebral infarcts. Part III: Middle cerebral artery and watershed infarcts

    International Nuclear Information System (INIS)

    Naidich, T.P.; Firestone, M.I.; Blum, J.T.; Abrams, K.J.

    2003-01-01

    We tested the hypothesis that frequency analysis of the anatomic zones affected by single anterior (A), posterior (P), and middle (M) cerebral artery (CA), multivessel, and watershed infarcts will disclose specific sites (peak zones) most frequently involved by each type, sites most frequently injured by multiple different types (vulnerable zones), and overlapping sites of equal relative frequency for two or more different types of infarct (equal frequency zones). We adopted precise definitions of each vascular territory. CT and MRI studies of 50 MCA, 20 ACA-MCA, three PCA-MCA, and 30 parasagittal watershed infarcts were mapped onto a standard template. Relative infarct frequencies in each zone were analyzed within and across infarct types to identify the centers and peripheries of each, vulnerable zones, and equal frequency zones. These data were then correlated with the prior analysis of 47 ACA, PCA, dual ACA-PCA, and ACA-PCA-MCA infarcts. Zonal frequency data for MCA and watershed infarcts, the sites of peak infarct frequency, the sites of vulnerability to diverse infarcts, and the overlapping sites of equal infarct frequency are tabulated and displayed in standardized format for direct comparison of different infarcts. This method successfully displays the nature, sites, and extent of individual infarct types, illustrates the shifts in zonal frequency and lesion center that attend dual and triple infarcts, and clarifies the relationships among the diverse types of infarct. (orig.)

  6. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  7. Desarrollo y aplicación de indicadores de gestión a través del cuadro de mando integral, en el área de talento humano del centro zonal SIS Ecu 911 Ibarra

    OpenAIRE

    Terán Moran, Erika Pamela

    2017-01-01

    Desarrollar y aplicar los indicadores de gestión a través del cuadro de mando integral en el área de Talento Humano del Centro Zonal SIS ECU 911 Ibarra. El presente trabajo propone el desarrollo y aplicación de Indicadores de Gestión a través del Cuadro de Mando Integral, en el Área de Talento Humano del Centro Zonal SIS ECU 911 Ibarra; con el propósito de monitorear la consecución de los fines y propósitos institucionales, creando una cultura de trabajo por procesos, y de mejoramiento con...

  8. Theoretical Studies of Drift-Alfven and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chen

    2005-07-06

    Nonlinear equations for the slow space-time evolution of the radial drift-wave envelope and zonal flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent four-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and White [Phys. Plasmas 7, 3129 (2000)]. Solutions clearly demonstrate turbulence spreading due to nonlinearly dispersiveness and, consequently, the device-size dependence of the saturated wave intensities and transport coefficients.

  9. Investigations of the role of nonlinear couplings in structure formation and transport regulation in plasma turbulence

    Science.gov (United States)

    Holland, Christopher George

    Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well

  10. On the origin of pre-reversal enhancement of the zonal equatorial electric field

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2009-05-01

    Full Text Available In November 2004, a large and variable interplanetary electric field (IEF was felt in the reference frame of the Earth. This electric field penetrated to the magnetic equator and, when the Jicamarca Radio Observatory (JRO was in the dusk sector, resulted in a reversal of the normal zonal component of the field. In turn, this caused a counter-electrojet (CEJ, a westward current rather than the usual eastward current. At the time of the normal pre-reversal enhancement (PRE of the eastward field, the Jicamarca incoherent scatter radar (ISR observed that the westward component became even more westward. Two of the three current explanations for the PRE depend on the neutral wind patterns. However, this unique event was such that the neutral wind-driven dynamos could not have changed. The implication is that the Haerendel-Eccles mechanism, which involves partial closure of the equatorial electrojet (EEJ after sunset, must be the dominant mechanism for the PRE.

  11. Enhanced performance of fast-response 3-hole wedge probes for transonic flows in axial turbomachinery

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, D.; Paniagua, G. [von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Fernandez Oro, J.M. [Universidad de Oviedo, Area de Mecanica de Fluidos, Gijon (Spain); Denos, R. [European Commission, Directorate General for Research, Brussels (Belgium)

    2011-01-15

    The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 10{sup 6}, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks. (orig.)

  12. A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d-Finite Functions

    Directory of Open Access Journals (Sweden)

    Agata Bezubik

    2006-03-01

    Full Text Available This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained.

  13. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  14. IMF By associated interhemispheric asymmetries in ionospheric convection and field-aligned currents

    Science.gov (United States)

    Kunduri, B.; Baker, J.; Ruohoniemi, J. M.; Clausen, L.; Ribeiro, A.

    2012-12-01

    The solar wind-magnetosphere interaction plays an important role in controlling the dynamics of ionospheric convection. It is widely known that the By component of IMF generates asymmetries in ionospheric convection between the northern and southern polar caps. Some studies show that IMF By-generated electric field penetrates into the closed magnetosphere producing differences in the high latitude ionospheric convection between hemispheres. The differences in convection were attributed to field-aligned potential drop between hemispheres resulting in flow of interhemispheric field aligned currents. In the current paper we present interhemispheric observations of high latitude ionospheric convection on closed field lines in the noon-dusk sector. The observations reveal that the convection is stronger in the northern (southern) hemisphere when IMF By is positive (negative) irrespective of season. The inter-hemispheric differences can be attributed to the flow of interhemispheric field aligned currents which support the existence of oppositely-directed zonal plasma flows in the closed field line regions, suppressing the convection in one hemisphere and aiding it in the other. We estimate the strength of these currents, analyze their characteristics and identify the various factors such as magnetic local time, magnetic latitude and ionospheric conductivity that impact them.

  15. Cloud motions on Venus - Global structure and organization

    Science.gov (United States)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  16. Direct electron crystallographic determination of zeolite zonal structures

    International Nuclear Information System (INIS)

    Dorset, Douglas L.; Gilmore, Christopher J.; Jorda, Jose Luis; Nicolopoulos, Stavros

    2007-01-01

    The prospect for improving the success of ab initio zeolite structure investigations with electron diffraction data is evaluated. First of all, the quality of intensities obtained by precession electron diffraction at small hollow cone illumination angles is evaluated for seven representative materials: ITQ-1, ITQ-7, ITQ-29, ZSM-5, ZSM-10, mordenite, and MCM-68. It is clear that, for most examples, an appreciable fraction of a secondary scattering perturbation is removed by precession at small angles. In one case, ZSM-10, it can also be argued that precession diffraction produces a dramatically improved 'kinematical' data set. There seems to no real support for application of a Lorentz correction to these data and there is no reason to expect for any of these samples that a two-beam dynamical scattering relationship between structure factor amplitude and observed intensity should be valid. Removal of secondary scattering by the precession mode appears to facilitate ab initio structure analysis. Most zeolite structures investigated could be solved by maximum entropy and likelihood phasing via error-correcting codes when precession data were used. Examples include the projected structure of mordenite that could not be determined from selected area data alone. One anomaly is the case of ZSM-5, where the best structure determination in projection is made from selected area diffraction data. In a control study, the zonal structure of SSZ-48 could be determined from selected area diffraction data by either maximum entropy and likelihood or traditional direct methods. While the maximum entropy and likelihood approach enjoys some advantages over traditional direct methods (non-dependence on predicted phase invariant sums), some effort must be made to improve the figures of merit used to identify potential structure solutions

  17. Spherical zonal components of cosmic ray between Forbush decreases

    International Nuclear Information System (INIS)

    Takahashi, Hachiro; Yahagi, Naohiro; Nagashima, Kazuo.

    1974-01-01

    Two examples are added to the previous report on the zonal harmonic components of cosmic ray in the space between planets by the three dimensional analysis of anisotropy of cosmic ray. Remarkable Forbush decreases occurred in region I during the period from March 20th to April 11th, 1966 and in region II during the period from August 29th to September 11th, 1966. The data used for analysis are the neutron components that have been informed from cosmic ray observation stations in the world. Power type and power exponential type differential rigidity spectra G(P) were used to find isotropic components. The change of the isotropic component a 0 0 was similar to the change of the neutron intensity in Deep River. The southnorth anisotropic phenomenon of cosmic ray intensity was recognized. The anisotropy in the opposite direction to the southnorth anisotropic phenomenon reported by Nagashima et al. was recognized markedly during the period from March 26th to 30th. These tendencies were checked by comparing with the data from the cosmic ray observation stations located near both poles of the earth. McMurdo and Mawson near the south pole, and Thule and Alert near the north pole were selected. The results of analysis were confirmed with these data. Further, the results of the previous report were checked by using the data from the stations near both poles, namely Thule, Resolute Bay, and Mawson. The good coincidence was confirmed on the anisotropic components. (Iwakiri, K.)

  18. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Directory of Open Access Journals (Sweden)

    Stephen D Thorpe

    Full Text Available Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC. Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  19. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage.

    Science.gov (United States)

    Thorpe, Stephen D; Nagel, Thomas; Carroll, Simon F; Kelly, Daniel J

    2013-01-01

    Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.

  20. BUILDING STRONGER STATE ENERGY PARTNERSHIPS WITH THE U.S. DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Kate Burke

    2002-11-01

    This technical progress report includes an update of the progress during the second year of cooperative agreement DE-FC26-00NT40802, Building Stronger State Energy Partnerships with the U.S. Department of Energy. The report also describes the barriers in conduct of the effort, and our assessment of future progress and activities.

  1. Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.

    Science.gov (United States)

    Peters, Carl N; Evans, Iain E J

    2016-12-01

    Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.

  2. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    Science.gov (United States)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  3. Flow characteristics of developing laminar steady flows in a straight duct connected to a square curved duct

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyun Chull [Chosun Univ., Gwangju (Korea, Republic of)

    2005-05-01

    In the present study, the characteristics of developing steady laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental measurement. Flow characteristics such as shear stress distributions, pressure distributions and friction coefficient experimentally in a square cross-sectional straight duct by using the PIV system. For the PIV measurement by particles produced from mosquito coils particles. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental results can be summarized as follows. Critical Reynolds number, Re{sub cr} which indicates transition from laminar steady flow to transition steady flow was 2,150. Shear stress per unit length on the wall was stronger than that in the fully developed flow region. This was attributed to the fact that shear stress and pressure loss in the curvature of a duct were increased. Pressure distributions were gradually decreased irrespective of Reynolds number in the whole test section. This trends were in a good agreement with the reference results. Pipe friction coefficient in the steady state flow region was calculate from method of least squares. The co-relationship between fiction coefficient and Reynolds number was established as follow; {lambda}=56/Re.

  4. Transport barriers with and without shear flows in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinell, Julio J.

    2014-01-01

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence

  5. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  6. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1

    Science.gov (United States)

    Paegle, J.; Kalnay, E.; Baker, W. E.

    1981-01-01

    The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.

  7. A stronger perfume for LPG

    International Nuclear Information System (INIS)

    Willcox, C.K.

    1996-01-01

    The odorisation of Liquefied Petroleum Gas (LPG) is undertaken to improve the safe use and transport of this popular fuel. Effective LPG odorisation should enable leaks to be detected by any person with a normal sense of smell before gas concentrations reach a hazardous level. The objective is identical to that for odorising natural gas. However, the physical characteristics of propane and butane present particular difficulties. These do not occur with natural gas, which has a dynamic, flowing, simple-phase system. (author)

  8. A stronger perfume for LPG

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, C.K.

    1996-11-01

    The odorisation of Liquefied Petroleum Gas (LPG) is undertaken to improve the safe use and transport of this popular fuel. Effective LPG odorisation should enable leaks to be detected by any person with a normal sense of smell before gas concentrations reach a hazardous level. The objective is identical to that for odorising natural gas. However, the physical characteristics of propane and butane present particular difficulties. These do not occur with natural gas, which has a dynamic, flowing, simple-phase system. (author)

  9. Stronger interference from distractors in the right hemifield during visual search.

    Science.gov (United States)

    Carlei, Christophe; Kerzel, Dirk

    2018-03-01

    The orientation-bias hypothesis states that there is a bias to attend to the right visual hemifield (RVF) when there is spatial competition between stimuli in the left and right hemifield [Pollmann, S. (1996). A pop-out induced extinction-like phenomenon in neurologically intact subjects. Neuropsychologia, 34(5), 413-425. doi: 10.1016/0028-3932(95)00125-5 ]. In support of this hypothesis, stronger interference was reported for RVF distractors with contralateral targets. In contrast, previous studies using rapid serial visual presentation (RSVP) found stronger interference from distractors in the left visual hemifield (LVF). We used the additional singleton paradigm to test whether this discrepancy was due to the different distractor features that were employed (colour vs. orientation). Interference from the colour distractor with contralateral targets was larger in the RVF than in the LVF. However, the asymmetrical interference disappeared when observers had to search for an inconspicuous colour target instead of the inconspicuous shape target. We suggest that the LVF orienting-bias is limited to situations where search is driven by bottom-up saliency (singleton search) instead of top-down search goals (feature search). In contrast, analysis of the literature suggests the opposite for the LVF bias in RSVP tasks. Thus, the attentional asymmetry may depend on whether the task involves temporal or spatial competition, and whether search is based on bottom-up or top-down signals.

  10. The Integration Role of European Defense Procurement in Achieving a More Competitive and Stronger European Defense Equipment Market

    Science.gov (United States)

    2015-06-01

    and systems, even monopolistic ) essence of the supply side of the defense market . There are only a few suppliers that can meet today’s complex...DEFENSE PROCUREMENT IN ACHIEVING A MORE COMPETITIVE AND STRONGER EUROPEAN DEFENSE EQUIPMENT MARKET by Kiril O. Angelov June 2015 Thesis Advisor...COMPETITIVE AND STRONGER EUROPEAN DEFENSE EQUIPMENT MARKET 5. FUNDING NUMBERS 6. AUTHOR(S) Kiril O. Angelov 7. PERFORMING ORGANIZATION NAME(S) AND

  11. Axial velocity profiles and secondary flows of developing laminar flows in a straight connected exit region of a 180 .deg. square curved duct

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyun Chull; Lee, Heang Nam; Park, Gil Moon [Chosun Univ., Gwangju (Korea, Republic of)

    2005-10-01

    In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code (STARCD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D{sub h}=50.

  12. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  13. Contribution to the study of unsteady condensation in transonic flow

    International Nuclear Information System (INIS)

    Collignan, B.; Laali, A.R.

    1993-12-01

    The aim of this thesis is the study of transonic steam flows with condensation, especially at high pressure. This study includes a numerical part an experimental one. The modelling has consisted of introducing a spontaneous condensation model in a one-dimensional Euler code using steam-water thermodynamic tables. Calculations, performed with this code, are in good agreement with experimental results at low pressure. The experimental study has been undertaken on a high pressure experimental loop installed at the Bugey nuclear power plant. We have studied steam flows in nozzles. The results obtained show that a partial heterogeneous condensation occurs in these flows. This proportion is stronger if the expansion rate of the flow is low and if the inlet pressure is high. However, a correction factor is obtained for high pressure nucleation rate model from experimental results. No unsteady condensation has been observed for flows between 15 bars and 50 bars with the steam available at Bugey power plant. (authors). figs., 71 refs., 6 annexes

  14. Gas Marbles: Much Stronger than Liquid Marbles

    Science.gov (United States)

    Timounay, Yousra; Pitois, Olivier; Rouyer, Florence

    2017-06-01

    Enwrapping liquid droplets with hydrophobic particles allows the manufacture of so-called "liquid marbles" [Aussillous and Quéré Nature (London) 411, 924 (2001); , 10.1038/35082026Mahadevan Nature (London)411, 895 (2001), 10.1038/35082164]. The recent intensive research devoted to liquid marbles is justified by their very unusual physical and chemical properties and by their potential for various applications, from microreactors to water storage, including water pollution sensors [Bormashenko Curr. Opin. Colloid Interface Sci. 16, 266 (2011), 10.1016/j.cocis.2010.12.002]. Here we demonstrate that this concept can be successfully applied for encapsulating and protecting small gas pockets within an air environment. Similarly to their liquid counterparts, those new soft-matter objects, that we call "gas marbles," can sustain external forces. We show that gas marbles are surprisingly tenfold stronger than liquid marbles and, more importantly, they can sustain both positive and negative pressure differences. This magnified strength is shown to originate from the strong cohesive nature of the shell. Those interesting properties could be exploited for imprisoning valuable or polluted gases or for designing new aerated materials.

  15. Investigation of the thermal mixing in a T-junction flow with different SRS approaches

    Energy Technology Data Exchange (ETDEWEB)

    Gritskevich, M.S., E-mail: gritskevich@ymail.com [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation); Garbaruk, A.V. [St. Petersburg State Polytechnical University, 195251 St. Petersburg (Russian Federation); Frank, Th.; Menter, F.R. [Software Development Department, ANSYS, 83714 Otterfing (Germany)

    2014-11-15

    Highlights: • Global (SAS, DDES) and zonal (ELES-WMLES) models are compared for the T-junction flow. • All the models accurately predict mean, RMS, and spectral quantities. • ELES-WMLES approach yields very good results independent of the advection scheme. • SAS and the DDES models are slightly less accurate. • SAS depends on the advection scheme. - Abstract: An investigation of different turbulence Scale-Resolving Simulation (SRS) modeling approaches for the flow in a T-junction has been conducted using the Scale-Adaptive Simulation (SAS), the Delayed Detached Eddy Simulation (DDES) and the Embedded Large Eddy Simulation (ELES) methods. The results show that all models are able to accurately predict mean and RMS velocity profiles and velocity spectra, when are used in combination with a low dissipation advection scheme. However, when a slightly more dissipative scheme is used, the SAS model yields less accurate results, indicating that this flow does not produce a strong enough flow instability to allow the safe application of this model. The DDES and the ELES models show less sensitivity to the numerical setting compared to the SAS model. The main goal of the study is the accurate prediction of heat transfer on the walls in the mixing zone. In that respect, the ELES method produces the most consistent agreement with the experimental data.

  16. Turbulence and transport characteristics of a barrier in a toroidal plasma

    International Nuclear Information System (INIS)

    Fujisawa, A; Shimizu, A; Nakano, H; Ohsima, S; Itoh, K; Iguchi, H; Yoshimura, Y; Minami, T; Nagaoka, K; Takahashi, C; Kojima, M; Nishimura, S; Isobe, M; Suzuki, C; Akiyama, T; Nagashima, Y; Ida, K; Toi, K; Ido, T; Itoh, S-I; Matsuoka, K; Okamura, S; Diamond, P H

    2006-01-01

    Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g. spectra of both density and potential fluctuations, the coherence and the phase between them and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. Time-dependent analysis reveals that the intermittency of turbulence is correlated with the evolution of the stationary zonal flow

  17. Turbulence and transport characteristics of a barrier in a toroidal plasma

    International Nuclear Information System (INIS)

    Fujisawa, A.; Shimizu, A.; Nakano, H.

    2005-10-01

    Turbulence and zonal flow at a transport barrier are studied with twin heavy ion beam probes in a toroidal helical plasma. A wavelet analysis is used to extract turbulence properties, e.g., spectra of both density and potential fluctuations, coherence and phase between them, and the dispersion relation. Particle transport estimated from the fundamental characteristics is found to clearly rise with their intermittent activities after the barrier is broken down. The time-dependent analysis reveals that intermittency of turbulence is correlated with evolution of stationary zonal flow. (author)

  18. Formative flow in bedrock canyons

    Science.gov (United States)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted

  19. Modeling temperature and moisture fields in conditioned spaces using zonal approach, including sorption phenomena in buildings materials; Modelisation thermo-hydro-aeraulique des locaux climatises selon l'approche zonale (prise en compte des phenomenes de sorption d'humidite)

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro Mendoca, K.

    2004-05-15

    Building simulation models represent in our days an important tool for building conception and performance analysis. Although moisture interacts in many ways with the whole building affecting therefore its behavior, frequently these models neglects the interactions between them. In addition, in most of them, indoor air conditions are considered uniform, which is a non-realistic assumption in conditioned spaces. In this work, a model to predict temperature and moisture fields in conditioned spaces, using zonal approach, is proposed. This method is based in dividing spatially a room in a relative small number of zones, typically on the order of tens to hundreds, where the state variables of air are considered uniform, with the exception of pressure that varies hydrostatically. While not as fine-grained as CFD simulation, zonal models do give useful information about temperature and moisture distributions that is important in comfort analysis. The proposed model was structured in three groups of sub-models representing the three building domains: indoor air, envelope and HVAC system. The indoor air sub-model is related to the indoor air space, where airflow speed can be considered weak. The envelope sub-model is related to the radiation exchanges between envelope and its neighborhood, and to the simultaneous heat and mass transfers across the envelope material. This latest can be represented by four sub-models of different complexity levels, with two of them taking into account moisture adsorption and desorption by building materials. Concerning to the HVAC system model, it refers to the whole system that means equipment, control and specific airflow from equipment. All sub-models were coupled into a modular simulation environment, SPARK, well-adapted to compare different models. The applicability of the proposed model is shown by two examples. The first one shows the importance of considering moisture sorption phenomena in the prediction of indoor air conditions

  20. Flow experience in teams: The role of shared leadership.

    Science.gov (United States)

    Aubé, Caroline; Rousseau, Vincent; Brunelle, Eric

    2018-04-01

    The present study tests a multilevel mediation model concerning the effect of shared leadership on team members' flow experience. Specifically, we investigate the mediating role of teamwork behaviors in the relationships between 2 complementary indicators of shared leadership (i.e., density and centralization) and flow. Based on a multisource approach, we collected data through observation and survey of 111 project teams (521 individuals) made up of university students participating in a project management simulation. The results show that density and centralization have both an additive effect and an interaction effect on teamwork behaviors, such that the relationship between density and teamwork behaviors is stronger when centralization is low. In addition, teamwork behaviors play a mediating role in the relationship between shared leadership and flow. Overall, the findings highlight the importance of promoting team-based shared leadership in organizations to favor the flow experience. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  2. Atmospheric statistical dynamic models. Climate experiments: albedo experiments with a zonal atmospheric model

    International Nuclear Information System (INIS)

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Luther, F.M.

    1978-06-01

    The zonal model experiments with modified surface boundary conditions suggest an initial chain of feedback processes that is largest at the site of the perturbation: deforestation and/or desertification → increased surface albedo → reduced surface absorption of solar radiation → surface cooling and reduced evaporation → reduced convective activity → reduced precipitation and latent heat release → cooling of upper troposphere and increased tropospheric lapse rates → general global cooling and reduced precipitation. As indicated above, although the two experiments give similar overall global results, the location of the perturbation plays an important role in determining the response of the global circulation. These two-dimensional model results are also consistent with three-dimensional model experiments. These results have tempted us to consider the possibility that self-induced growth of the subtropical deserts could serve as a possible mechanism to cause the initial global cooling that then initiates a glacial advance thus activating the positive feedback loop involving ice-albedo feedback (also self-perpetuating). Reversal of the cycle sets in when the advancing ice cover forces the wave-cyclone tracks far enough equatorward to quench (revegetate) the subtropical deserts

  3. Dependence between sea surge, river flow and precipitation in south and west Britain

    Directory of Open Access Journals (Sweden)

    C. Svensson

    2004-01-01

    northwards has slightly stronger flow-surge dependence in summer than in winter, whereas dependence is stronger in winter than in summer for the southern part of the study area. Keywords: : Britain, dependence, sea surge, river flow, precipitation, mid-latitude cyclone, seasonality, time lag

  4. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    Science.gov (United States)

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics

  5. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems.

    Science.gov (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.

    1997-03-01

    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  6. [Altitude-belt zonality of wood vegetation within mountainous regions of the Sayan Mountains: a model of ecological second-order phase transitions ].

    Science.gov (United States)

    Sukhovol'skiĭ, V G; Ovchinnikova, T M; Baboĭ, S D

    2014-01-01

    As a description of altitude-belt zonality of wood vegetation, a model of ecological second-order transitions is proposed. Objects of the study have been chosen to be forest cenoses of the northern slope of Kulumyss Ridge (the Sayan Mauntains), while the results are comprised by the altitude profiles of wood vegetation. An ecological phase transition can be considered as the transition of cenoses at different altitudes from the state of presence of certain tree species within the studied territory to the state of their absence. By analogy with the physical model of second-order, phase transitions the order parameter is introduced (i.e., the area portion occupied by a single tree species at the certain altitude) as well as the control variable (i.e., the altitude of the wood vegetation belt). As the formal relation between them, an analog of the Landau's equation for phase transitions in physical systems is obtained. It is shown that the model is in a good accordance with the empirical data. Thus, the model can be used for estimation of upper and lower boundaries of altitude belts for individual tree species (like birch, aspen, Siberian fir, Siberian pine) as well as the breadth of their ecological niches with regard to altitude. The model includes also the parameters that describe numerically the interactions between different species of wood vegetation. The approach versatility allows to simplify description and modeling of wood vegetation altitude zonality, and enables assessment of vegetation cenoses response to climatic changes.

  7. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Directory of Open Access Journals (Sweden)

    R. Rüfenacht

    2012-11-01

    Full Text Available We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found.

    WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance.

    In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11

  8. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    Science.gov (United States)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  9. Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness.

    Science.gov (United States)

    Reiter, Johannes G; Hilbe, Christian; Rand, David G; Chatterjee, Krishnendu; Nowak, Martin A

    2018-02-07

    Direct reciprocity is a mechanism for cooperation among humans. Many of our daily interactions are repeated. We interact repeatedly with our family, friends, colleagues, members of the local and even global community. In the theory of repeated games, it is a tacit assumption that the various games that a person plays simultaneously have no effect on each other. Here we introduce a general framework that allows us to analyze "crosstalk" between a player's concurrent games. In the presence of crosstalk, the action a person experiences in one game can alter the person's decision in another. We find that crosstalk impedes the maintenance of cooperation and requires stronger levels of forgiveness. The magnitude of the effect depends on the population structure. In more densely connected social groups, crosstalk has a stronger effect. A harsh retaliator, such as Tit-for-Tat, is unable to counteract crosstalk. The crosstalk framework provides a unified interpretation of direct and upstream reciprocity in the context of repeated games.

  10. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  11. Aeroacoustics of rectangular T-junctions subject to combined grazing and bias flows - An experimental investigation

    Science.gov (United States)

    Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2015-03-01

    Scattering matrices are determined experimentally and used to study the low-amplitude interaction, between the acoustic and the hydrodynamic fields in a T-junction of rectangular ducts. In particular, combinations of grazing and bias flows are investigated in the study. It is observed that for all flow combinations, waves incident on the junction at the downstream side only are attenuated, while waves incident at the other branches may be amplified or attenuated, depending on the Strouhal number. When bias in-flow is introduced to a grazing flow, there is first an increase and then a decrease in both amplification and attenuation, as the bias in-flow Mach number is increased. Comparing with T-junctions of circular ducts, the interaction is stronger for rectangular duct junctions.

  12. Changes in ENSO amplitude under climate warming and cooling

    Science.gov (United States)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  13. Preliminary study on the flow field over Greece

    International Nuclear Information System (INIS)

    Pissimanis, D; Karras, G; Notaridou, V; Bartzis, J.G.

    1989-02-01

    Full text: For radiation risk assessment from long distance sources, the knowledge of the synoptic air flow field patterns over the territory under consideration is required. In the present study a first representation of the air flow field in the atmospheric boundary layer over Greece is attempted. For this purpose, synoptic weather maps at 850mb available for a ten-years period, as well as sounding data from six meteorological stations were utilized, while the Greek territory was divided into four parts, i.e. NW, NE, SW, SE, with a number of stations in each sector. It was shown that the prevailing wind directions of the upper flow are either of the W/SW sector (winter, spring) or the northern sector (summer, autumn). In the SE sector a stronger tendency towards winds from the nothern sector was shown, due to the thermal low near Cyprus. The main characteristics of the surface flow is the strong influence by topographical features. Typical examples are the strong NW winds in Northern Greece due to the Vardar Valley, and the sea breeze circulations at coastal environments. (author)

  14. Computational Flow Field in Energy Efficient Engine (EEE)

    Science.gov (United States)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, preliminary results for the recently-updated Open National Combustion Code (Open NCC) as applied to the EEE are presented. The comparison between two different numerical schemes, the standard Jameson-Schmidt-Turkel (JST) scheme and the advection upstream splitting method (AUSM), is performed for the cold flow and the reacting flow calculations using the RANS. In the cold flow calculation, the AUSM scheme predicts a much stronger reverse flow in the central recirculation zone. In the reacting flow calculation, we test two cases: gaseous fuel injection and liquid spray injection. In the gaseous fuel injection case, the overall flame structures of the two schemes are similar to one another, in the sense that the flame is attached to the main nozzle, but is detached from the pilot nozzle. However, in the exit temperature profile, the AUSM scheme shows a more uniform profile than that of the JST scheme, which is close to the experimental data. In the liquid spray injection case, we expect different flame structures in this scenario. We will give a brief discussion on how two numerical schemes predict the flame structures inside the EEE using different ways to introduce the fuel injection.

  15. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings

    Science.gov (United States)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan

    2016-12-01

    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  16. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  17. Strategy and your stronger hand.

    Science.gov (United States)

    Moore, Geoffrey A

    2005-12-01

    There are two kinds of businesses in the world, says the author. Knowing what they are--and which one your company is--will guide you to the right strategic moves. One kind includes businesses that compete on a complex-systems model. These companies have large enterprises as their primary customers. They seek to grow a customer base in the thousands, with no more than a handful of transactions per customer per year (indeed, in some years there may be none), and the average price per transaction ranges from six to seven figures. In this model, 1,000 enterprises each paying dollar 1 million per year would generate dollar 1 billion in annual revenue. The other kind of business competes on a volume-operations model. Here, vendors seek to acquire millions of customers, with tens or even hundreds of transactions per customer per year, at an average price of relatively few dollars per transaction. Under this model, it would take 10 million customers each spending dollar 8 per month to generate nearly dollar 1 billion in revenue. An examination of both models shows that they could not be further apart in their approach to every step along the classic value chain. The problem, though, is that companies in one camp often attempt to create new value by venturing into the other. In doing so, they fail to realize how their managerial habits have been shaped by the model they've grown up with. By analogy, they have a "handedness"--the equivalent of a person's right- or left-hand dominance--that makes them as adroit in one mode as they are awkward in the other. Unless you are in an industry whose structure forces you to attempt ambidexterity (in which case, special efforts are required to manage the inevitable dropped balls), you'll be far more successful making moves that favor your stronger hand.

  18. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping

    International Nuclear Information System (INIS)

    Welsch, Goetz H.; Mamisch, Tallal C.; Quirbach, Sebastian; Trattnig, Siegfried; Zak, Lukas; Marlovits, Stefan

    2009-01-01

    The objective of this study was to use advanced MR techniques to evaluate and compare cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) in the patella and medial femoral condyle (MFC). Thirty-four patients treated with MACT underwent 3-T MRI of the knee. Patients were treated on either patella (n = 17) or MFC (n = 17) cartilage and were matched by age and postoperative interval. For morphological evaluation, the MR observation of cartilage repair tissue (MOCART) score was used, with a 3D-True-FISP sequence. For biochemical assessment, T2 mapping was prepared by using a multiecho spin-echo approach with particular attention to the cartilage zonal structure. Statistical evaluation was done by analyses of variance. The MOCART score showed no significant differences between the patella and MFC (p ≥ 0.05). With regard to biochemical T2 relaxation, higher T2 values were found throughout the MFC (p < 0.05). The zonal increase in T2 values from deep to superficial was significant for control cartilage (p < 0.001) and cartilage repair tissue (p < 0.05), with an earlier onset in the repair tissue of the patella. The assessment of cartilage repair tissue of the patella and MFC afforded comparable morphological results, whereas biochemical T2 values showed differences, possibly due to dissimilar biomechanical loading conditions. (orig.)

  19. Center for the Study of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Parker, Scott E.

    2012-01-01

    We have discovered a possible 'natural fueling' mechanism in tokamak fusion reactors using large scale gyrokinetic turbulence simulation. In the presence of a heat flux dominated tokamak plasma, cold ions naturally pinch radially inward. If cold DT fuel is introduced near the edge using shallow pellet injection, the cold fuel will pinch inward, at the expense of hot helium ash going radially outward. By adjusting the cold DT fuel concentration, the core DT density profiles can be maintained. We have also shown that cold source ions from edge recycling of cold neutrals are pinched radially inward. This mechanism may be important for fully understanding the edge pedestal buildup after an ELM crash. Work includes benchmarking the gyrokinetic turbulence codes in the electromagnetic regime. This includes cyclone base case parameters with an increasing plasma beta. The code comparisons include GEM, GYRO and GENE. There is good linear agreement between the codes using the Cyclone base case, but including electromagnetics and scanning the plasma beta. All the codes have difficulty achieving nonlinear saturation as the kinetic ballooning limit is approached. GEM does not saturate well when beta gets above about 1/2 of the ideal ballooning limit. We find that the lack of saturation is due to the long wavelength k y modes being nonlinearly pumped to high levels. If the fundamental k y mode is zeroed out, higher values of beta nonlinearly saturate well. Additionally, there have been studies to better understand CTEM nonlinear saturation and the importance of zonal flows. We have continued our investigation of trapped electron mode (TEM) turbulence. More recently, we have focused on the nonlinear saturation of TEM turbulence. An important feature of TEM is that in many parameter regimes, the zonal flow is unimportant. We find that when zonal flows are unimportant, zonal density is the dominant saturation mechanism. We developed a simple theory that agrees with the simulation

  20. Climate Prediction Center (CPC) Northern and Southern Hemisphere Blocking Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atmospheric blocking is commonly referred to as the situation when the normal zonal flow is interrupted by strong and persistent meridional flow. The normal eastward...

  1. GCM simulations of cold dry Snowball Earth atmospheres

    Science.gov (United States)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  2. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Poulipoulis, G.; Throumoulopoulos, G. N. [Physics Department, University of Ioannina, Ioannina 451 10 (Greece); Konz, C. [Max-Planck Institut für Plasma Physics, 85748 Garching bei München (Germany)

    2016-07-15

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  3. Possible effects of small-scale intermittency in turbulent reacting flows

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.

    2006-12-01

    It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale 'intermittency' on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here. (author)

  4. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  5. DE 2 observations of disturbances in the upper atmosphere during a geomagnetic storm

    International Nuclear Information System (INIS)

    Miller, N.J.; Brace, L.H.; Spencer, N.W.; Carignan, G.R.

    1990-01-01

    Data taken in the dusk sector of the mid-latitude thermosphere at 275-450 km by instruments on board Dynamics Explorer 2 in polar orbit are used to examine the response of the ionosphere- thermosphere system during a geomagnetic storm. The results represent the first comparison of nearly simultaneous measurements of storm disturbances in dc electric fields, zonal ion convection, zonal winds, gas composition and temperature, and electron density and temperature, at different seasons in a common local time sector. The storm commenced on November 24, 1982, during the interaction of a solar wind disturbance with the geomagnetic field while the north-south component of the interplanetary magnetic field, B z , was northward. The storm main phase began while B z was turning southward. Storm-induced variations in meridional de electric fields, neutral composition, and N e were stronger and spread farther equatorward in the winter hemisphere. Westward ion convection was intense enough to produce westward winds of 600 m s - 1 via ion drag in the winter hemisphere. Frictional heating was sufficient to elevate ion temperatures above electron temperatures in both seasons and to produce large chemical losses of O + by increasing the rate of O + loss via ion-atom interchange. Part of the chemical loss of O + was compensated by upward flow of O + as the ion scale height adjusted to the increasing ion temperatures. In this storm, frictional heating was an important subauroral heat source equatorward to at least 53 degree invariant latitude

  6. The effect of topography on the evolution of unstable disturbances in a baroclinic atmosphere

    Science.gov (United States)

    Clark, J. H. E.

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, their stability, and the long term evolution of incipient unstable waves. The flow is forced by latitudinally dependent radiative heating. Dissipation is in the form of Rayleigh friction. An analytical solution is found for the propagating finite amplitude waves which result from baroclinic instability of the zonal winds when topography is absent. The appearance of this solution for wavelengths just longer than the Rossby radius of deformation and disappearance of ultra-long wavelengths is interpreted in terms of the Hopf bifurcation theory. Simple dynamic and thermodynamic criteria for the existence of periodic Rossby solutions are presented. A Floquet stability analysis shows that the waves are neutral. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance.

  7. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2016-12-15

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.

  8. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

    International Nuclear Information System (INIS)

    Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum

    2016-01-01

    The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition

  9. Sexual harassment and emotional and behavioural symptoms in adolescence: stronger associations among boys than girls.

    Science.gov (United States)

    Kaltiala-Heino, Riittakerttu; Fröjd, Sari; Marttunen, Mauri

    2016-08-01

    To study the associations between subjection to sexual harassment and emotional (depression) and behavioural (delinquency) symptoms among 14-to-18-year-old adolescents, and gender differences within these associations. 90,953 boys and 91,746 girls aged 14-18 participated in the School Health Promotion Study (SHPS), a school-based survey designed to examine the health, health behaviours, and school experiences of teenagers. Experiences of sexual harassment were elicited with five questions addressing five separate forms of harassment. Depression was measured by the 13-item Beck Depression Inventory and delinquency with a modified version of the International Self-Report Delinquency Study (ISRD) instrument. Data were analysed using cross-tabulations with Chi-square statistics and logistic regression. All sexual harassment experiences studied were associated with both depression (adjusted odds ratios varied from 2.2 to 2.7 in girls and from 2.0 to 5.1 in boys) and delinquency (adjusted odds ratios 3.1-5.0 in girls and 1.7-6.9 in boys). Sexual name-calling had a stronger association with depression and with delinquency in girls (adjusted odds ratios, respectively, 2.4 and 4.2), than in boys (adjusted odds ratios, respectively, 2.0 and 1.7), but otherwise stronger associations with emotional and behavioural symptoms were seen in boys. Subjection to sexual harassment is associated with both emotional and behavioural symptoms in both girls and boys. The associations are mostly stronger for boys. Boys subjected to sexual harassment may feel particularly threatened regarding their masculinity, and there may be less support available for boys traumatised due to sexual harassment.

  10. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy.

    Science.gov (United States)

    Fujiwara, Takamitsu; Imamura, Yutaka; Giovinazzo, Vincent J; Spaide, Richard F

    2010-09-01

    The purpose of this study was to investigate the fundus autofluorescence and optical coherence tomography findings in eyes with acute zonal occult outer retinopathy (AZOOR). A retrospective observational case series of the fundus autofluorescence and spectral domain optical coherence tomography in a series of patients with AZOOR. There were 19 eyes of 11 patients (10 women), who had a mean age of 49.1 +/- 13.9 years. Fundus autofluorescence abnormalities were seen in 17 of the 19 eyes, were more common in the peripapillary area, and were smaller in extent than the optical coherence tomography abnormalities. Nine eyes showed progression of hypoautofluorescence area during the mean follow-up of 69.7 months. The mean thickness of the photoreceptor layer at fovea was 177 microm in eyes with AZOOR, which was significantly thinner than controls (193 microm, P = 0.049). Abnormal retinal laminations were found in 12 eyes and were located over areas of loss of the photoreceptors. The subfoveal choroidal thickness was 243 microm, which is normal. Fundus autofluorescence abnormalities in AZOOR showed distinct patterns of retinal pigment epithelial involvement, which may be progressive. Thinning of photoreceptor cell layer with loss of the outer segments and abnormal inner retinal lamination in the context of a normal choroid are commonly found in AZOOR.

  11. The role of flow experience in cyber-game addiction.

    Science.gov (United States)

    Chou, Ting-Jui; Ting, Chih-Chen

    2003-12-01

    Consumer habit, an important key to repetitive consumption, is an interesting yet puzzling phenomenon. Sometimes this consumption becomes obsessive--consumers will continue to act a certain way even when they feel it is not in their best interests. However, not all consumers develop such addictions. This study uses cyber-game addiction syndrome as an analogue to trace the possible causes of consumer addiction. Results from structure equation modeling show that repetition of favorite activities has a moderate effect upon addiction, which is in line with the assertion of rational addiction theory. However, flow experience--the emotional state embracing perceptional distortion and enjoyment--shows a much stronger impact on addiction. This suggests that consumers who have experienced flow are more likely to be addicted.

  12. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    International Nuclear Information System (INIS)

    Galanti, Eli; Kaspi, Yohai; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano

    2017-01-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  13. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Galanti, Eli; Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot (Israel); Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano, E-mail: eli.galanti@weizmann.ac.il [Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Universita di Roma, Rome (Italy)

    2017-07-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  14. Low-order models of wave interactions in the transition to baroclinic chaos

    Directory of Open Access Journals (Sweden)

    W.-G. Früh

    1996-01-01

    Full Text Available A hierarchy of low-order models, based on the quasi-geostrophic two-layer model, is used to investigate complex multi-mode flows. The different models were used to study distinct types of nonlinear interactions, namely wave- wave interactions through resonant triads, and zonal flow-wave interactions. The coupling strength of individual triads is estimated using a phase locking probability density function. The flow of primary interest is a strongly modulated amplitude vacillation, whose modulation is coupled to intermittent bursts of weaker wave modes. This flow was found to emerge in a discontinuous bifurcation directly from a steady wave solution. Two mechanism were found to result in this flow, one involving resonant triads, and the other involving zonal flow-wave interactions together with a strong β-effect. The results will be compared with recent laboratory experiments of multi-mode baroclinic waves in a rotating annulus of fluid subjected to a horizontal temperature gradient.

  15. Long ligands reinforce biological adhesion under shear flow

    Science.gov (United States)

    Belyaev, Aleksey V.

    2018-04-01

    In this work, computer modeling has been used to show that longer ligands allow biological cells (e.g., blood platelets) to withstand stronger flows after their adhesion to solid walls. A mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall has been developed. The theoretical threshold between adherent and non-adherent regimes has been derived analytically and confirmed by simulations. These results lead to a deeper understanding of numerous biophysical processes, e.g., arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.

  16. Numerical investigation into the unsteady effects of non-axisymmetric turbine endwall contouring on secondary flows

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2011-08-01

    Full Text Available with the rotor leading edge, i.e. the location that the wake impinges on the leading edge of the rotor. It can be seen that there was not much fluctuation in time in the pressure profiles. With regards to the annular case the pressure surface shows... and lighter for a given b) (1) (A) (b) (1) (A) 2 thrust rating, the stronger secondary flows become. Therefore a reduction in secondary flow leads to an increase in performance of the turbine engine. One of the methods currently being investigated...

  17. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  18. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    International Nuclear Information System (INIS)

    Huang, W D; Fan, H G; Chen, N X

    2012-01-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  19. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Science.gov (United States)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  20. Contrasting the solar rotation rate of cycles 23 and 24

    International Nuclear Information System (INIS)

    Antia, H M; Basu, Sarbani

    2013-01-01

    The minimum between solar cycles 23 and 24 was quite unusual compared with other minima for which detailed data are available and this pointed to the possibility that cycle 24 will be unusual. Cycle 24 is almost at its maximum now and we take this opportunity to compare and contrast the solar rotation rate and zonal flows between the two cycles. We find that the rotation rate during cycle 24 is slightly lower than that during cycle 23. Additionally we find that the poleward branch of the zonal flow that is believed to be the harbinger of the next solar cycle is very week in cycle 24.

  1. A Human Capital Framework for a Stronger Teacher Workforce. Advancing Teaching--Improving Learning. White Paper

    Science.gov (United States)

    Myung, Jeannie; Martinez, Krissia; Nordstrum, Lee

    2013-01-01

    Building a stronger teacher workforce requires the thoughtful orchestration of multiple processes working together in a human capital system. This white paper presents a framework that can be used to take stock of current efforts to enhance the teacher workforce in school districts or educational organizations, as well as their underlying theories…

  2. A stronger patch test elicitation reaction to the allergen hydroxycitronellal plus the irritant sodium lauryl sulfate

    DEFF Research Database (Denmark)

    Heydorn, S; Andersen, K E; Johansen, J D

    2003-01-01

    Household and cleaning products often contain both allergens and irritants. The aim of this double-blinded, randomized, paired study was to determine whether patch testing with an allergen (hydroxycitronellal) combined with an irritant [sodium lauryl sulfate (SLS)] cause a stronger patch test...

  3. Fathers see stronger family resemblances than non-fathers in unrelated children's faces.

    Science.gov (United States)

    Bressan, Paola; Dal Pos, Stefania

    2012-12-01

    Even after they have taken all reasonable measures to decrease the probability that their spouses cheat on them, men still face paternal uncertainty. Such uncertainty can lead to paternal disinvestment, which reduces the children's probability to survive and reproduce, and thus the reproductive success of the fathers themselves. A theoretical model shows that, other things being equal, men who feel confident that they have fathered their spouses' offspring tend to enjoy greater fitness (i.e., leave a larger number of surviving progeny) than men who do not. This implies that fathers should benefit from exaggerating paternal resemblance. We argue that the self-deceiving component of this bias could be concealed by generalizing this resemblance estimation boost to (1) family pairs other than father-child and (2) strangers. Here, we tested the prediction that fathers may see, in unrelated children's faces, stronger family resemblances than non-fathers. In Study 1, 70 men and 70 women estimated facial resemblances between children paired, at three different ages (as infants, children, and adolescents), either to themselves or to their parents. In Study 2, 70 men and 70 women guessed the true parents of the same children among a set of adults. Men who were fathers reported stronger similarities between faces than non-fathers, mothers, and non-mothers did, but were no better at identifying childrens' real parents. We suggest that, in fathers, processing of facial resemblances is biased in a manner that reflects their (adaptive) wishful thinking that fathers and children are related.

  4. Building Stronger State Energy Partnerships with the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Kate

    2011-09-30

    This final technical report details the results of total work efforts and progress made from October 2007 – September 2011 under the National Association of State Energy Officials (NASEO) cooperative agreement DE-FC26-07NT43264, Building Stronger State Energy Partnerships with the U.S. Department of Energy. Major topical project areas in this final report include work efforts in the following areas: Energy Assurance and Critical Infrastructure, State and Regional Technical Assistance, Regional Initiative, Regional Coordination and Technical Assistance, and International Activities in China. All required deliverables have been provided to the National Energy Technology Laboratory and DOE program officials.

  5. Do External or Internal Technology Spillovers Have a Stronger Influence on Innovation Efficiency in China?

    Directory of Open Access Journals (Sweden)

    Xionghe Qin

    2017-09-01

    Full Text Available In this study, we bridge an important gap in the literature by comparing the extent to which external technology spillovers, as indicated by foreign direct investment (FDI, and internal technology spillovers, as indicated by university-institute-industry cooperation (UIC, influence innovation efficiency in China. We divide the innovation process into two sequential stages, namely the knowledge creation and technology commercialization stages, and employ a network data envelopment analysis approach to measure innovation efficiency at each stage. The spatial analysis of the distribution of knowledge creation efficiency and technology commercialization efficiency reveals the heterogeneity of innovation efficiency at the provincial level. Then, a panel data regression is used to analyze the effect of FDI and UIC on innovation efficiency at each stage, using data from 2009 to 2015 for 30 provinces in China. By comparing FDI with UIC, we find that FDI has a higher coefficient and stronger significance level at the knowledge creation stage, while only industry-institute linkages exhibit a stronger association with innovation efficiency at the technology commercialization stage.

  6. Characteristics of flow past a slender, emergent cylinder in shallow open channels

    Science.gov (United States)

    Heidari, Mehdi; Balachandar, Ram; Roussinova, Vesselina; Barron, Ronald M.

    2017-06-01

    The complex wake created by an emergent cylinder with a large aspect ratio in a shallow open channel flow is studied experimentally using particle image velocimetry. The unique characteristics of the bed-mounted slender cylinder wake are analysed. Velocity fields, turbulence parameters, and wake development in shallow open channel flow are studied at two different Reynolds numbers and subcritical Froude numbers by carrying out measurements in different horizontal and vertical planes. In the mid-depth plane, velocity and turbulence statistics are independent of Reynolds number, while higher turbulence intensities and Reynolds shear stresses were observed in the near-bed plane for the low Reynolds number case. The narrower wake is observed in the near-bed plane due to the effect of the bed. Combined with stronger vertical velocity and turbulence intensities noted near the bed in the vertical midplane, this suggests increased activity of the vortex structures in the low Reynolds number case. Under shallow conditions, stronger disturbances of the free surface are observed for the case of high Reynolds and Froude numbers. The study also revisits the definition of the wake stability parameter and proposes a new definition which incorporates not only the bed friction but also the drag experienced by the cylinder.

  7. Hybrid Pricing in a Coupled European Power Market with More Wind Power

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong; Panos, Evangelos

    2015-01-01

    In the European market, the promotion of wind power leads to more network congestion. Zonal pricing (market coupling), which does not take the physical characteristics of transmission into account, is the most commonly used method to relieve congestion in Europe. Zonal pricing fails to provide adequate locational price signals regarding the energy resource scarcity and thus creates a large amount of unscheduled cross-border flows originating from wind-generated power, making the interconne...

  8. Comparing the International Knowledge Flow of China’s Wind and Solar Photovoltaic (PV Industries: Patent Analysis and Implications for Sustainable Development

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2018-06-01

    Full Text Available Climate-relevant technologies, like wind and solar energy, are crucial for mitigating climate change and for achieving sustainable development. Recent literature argues that Chinese solar firms play more active roles in international knowledge flows, which may better explain their success in international markets when compared to those of Chinese wind firms; however, empirical evidence remains sparse. This study aims to explore to what extent and how do the international knowledge flows differ between China’s wind and solar photovoltaic (PV industries? From a network perspective, this paper develops a three-dimensional framework to compare the knowledge flows in both explicit and tacit dimensions: (i inter-country explicit knowledge clusters (by topological clustering of patent citation network; (ii inter-firm explicit knowledge flow (patent citation network of key firms; and, (iii inter-firm tacit knowledge flow (by desktop research and interviews. The results show that China’s PV industry has stronger international knowledge linkages in terms of knowledge clustering and explicit knowledge flow, but the wind power industry has a stronger tacit knowledge flow. Further, this study argues that the differences of global knowledge links between China’s wind and solar PV industries may be caused by technology characteristics, market orientation, and policy implementation. This suggests that these industries both have strong connections to global knowledge networks, but they may involve disparate catch-up pathways that concern follower-modes and leader-modes. These findings are important to help us understand how China can follow sustainable development pathways in the light of climate change.

  9. Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity

    DEFF Research Database (Denmark)

    Harndahl, Mikkel Nors; Rasmussen, Michael; Nielsen, Morten

    2012-01-01

    Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity Mikkel Harndahla, Michael Rasmussena, Morten Nielsenb, Soren Buusa,∗ a Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Denmark b Center for Biological Seq...... al., 2007. J. Immunol. 178, 7890–7901. doi:10.1016/j.molimm.2012.02.025...

  10. Enforcement costs: some humanitarian alternatives to stronger patent rights.

    Science.gov (United States)

    Trotter, Andrew

    2012-01-01

    Diseases that cause comparatively few problems in developed countries kill millions of people in the Third World each year. In many cases, people die because they cannot afford the medication needed to save their lives. In others, there are simply no drugs available because there are no wealthy western patients to justify pharmaceutical companies investing in a cure. This reveals a deep-seated problem within the patent system and the pharmaceutical industry that emphasises markets and profits at the expense of health and global welfare. Global efforts have seen substantial improvements in access to medicines in isolated areas, but with international agreements driving towards stronger patent protection and the expiry date for the TRIPS grace period fast approaching, it is time to consider alternatives which will allow the patent system to work for the humanitarian cause rather than against it. This paper considers two such problems in the patent system and pharmaceutical industry - prohibitive pricing and misdirected incentives - to offer a mode of regulation and enforcement that will support both a viable pharmaceutical industry and the human right to health and medication.

  11. Spontaneous electromagnetic emission from a strongly localized plasma flow.

    Science.gov (United States)

    Tejero, E M; Amatucci, W E; Ganguli, G; Cothran, C D; Crabtree, C; Thomas, E

    2011-05-06

    Laboratory observations of electromagnetic ion-cyclotron waves generated by a localized transverse dc electric field are reported. Experiments indicate that these waves result from a strong E×B flow inhomogeneity in a mildly collisional plasma with subcritical magnetic field-aligned current. The wave amplitude scales with the magnitude of the applied radial dc electric field. The electromagnetic signatures become stronger with increasing plasma β, and the radial extent of the power is larger than that of the electrostatic counterpart. Near-Earth space weather implications of the results are discussed.

  12. Redox zonation for different groundwater flow paths during bank filtration: a case study at Liao River, Shenyang, northeastern China

    Science.gov (United States)

    Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue

    2018-03-01

    The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.

  13. Investigation of the effects of time periodic pressure and engpotential gradients on viscoelastic fluid flow in circular narrow confinements

    DEFF Research Database (Denmark)

    Nguyen, Trieu; van der Meer, Devaraj; van den Berg, Albert

    2017-01-01

    -Boltzmann equation, together with the incompressible Cauchy momentum equation under no-slip boundary conditions for viscoelastic fluid in the case of a combination of time periodic pressure-driven and electro-osmotic flow. The resulting solutions allow us to predict the electrical current and solution flow rate...... conversion applications. We also found that time periodic electro-osmotic flow in many cases is much stronger enhanced than time periodic pressure-driven flow when comparing the flow profiles of oscillating PDF and EOF in micro-and nanochannels. The findings advance our understanding of time periodic......In this paper we present an in-depth analysis and analytical solution for time periodic hydrodynamic flow (driven by a time-dependent pressure gradient and electric field) of viscoelastic fluid through cylindrical micro-and nanochannels. Particularly, we solve the linearized Poisson...

  14. Impacts of Traffic Tidal Flow on Pollutant Dispersion in a Non-Uniform Urban Street Canyon

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2018-02-01

    Full Text Available A three-dimensional geometrical model was established based on a section of street canyons in the 2nd Ring Road of Wuhan, China, and a mathematical model describing the fluid flow and pollutant dispersion characteristics in the street canyon was developed. The effect of traffic tidal flow was investigated based on the measurement results of the passing vehicles as the pollution source of the CFD method and on the spatial distribution of pollutants under various ambient crosswinds. Numerical investigation results indicated that: (i in this three-dimensional asymmetrical shallow street canyon, if the pollution source followed a non-uniform distribution due to the traffic tidal flow and the wind flow was perpendicular to the street, a leeward side source intensity stronger than the windward side intensity would cause an expansion of the pollution space even if the total source in the street is equal. When the ambient wind speed is 3 m/s, the pollutant source intensity near the leeward side that is stronger than that near the windward side (R = 2, R = 3, and R = 5 leads to an increased average concentration of CO at pedestrian breathing height by 26%, 37%, and 41%, respectively. (R is the ratio parameter of the left side pollution source and the right side pollution source; (ii However, this feature will become less significant with increasing wind speeds and changes of wind direction; (iii the pollution source intensity exerted a decisive influence on the pollutant level in the street canyon. With the decrease of the pollution source intensity, the pollutant concentration decreased proportionally.

  15. A mechanistic determination of horizontal flow regime bound using void wave celerity

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.W. [Ajou Univ., Suwon (Korea, Republic of)

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  16. A mechanistic determination of horizontal flow regime bound using void wave celerity

    International Nuclear Information System (INIS)

    Park, J.W.

    1995-01-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed

  17. Becoming Stronger at Broken Places: A Model for Group Work with Young Adult from Divorced Families.

    Science.gov (United States)

    Hage, Sally M.; Nosanow, Mia

    2000-01-01

    Describes a model for group work with young adults from divorced families using an 8-session psychoeducational group intervention. Goals include reducing isolation, establishing connectedness, and building a stronger sense of identify. By educating young adults on topics such as assertiveness, communication skills, and self-esteem, it will give…

  18. The storm tracks and the energy cycle of the Southern Hemisphere: sensitivity to sea-ice boundary conditions

    Directory of Open Access Journals (Sweden)

    C. G. Menéndez

    1999-11-01

    Full Text Available The effect of sea-ice on various aspects of the Southern Hemisphere (SH extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control. In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.Key words. Air-sea interactions · Meteorology and atmospheric dynamics (climatology; ocean · atmosphere interactions

  19. The storm tracks and the energy cycle of the Southern Hemisphere: sensitivity to sea-ice boundary conditions

    Directory of Open Access Journals (Sweden)

    C. G. Menéndez

    Full Text Available The effect of sea-ice on various aspects of the Southern Hemisphere (SH extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control. In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.

    Key words. Air-sea interactions · Meteorology and atmospheric dynamics (climatology; ocean · atmosphere interactions

  20. ZONAL IMPACT ANALYSIS OF A STRATEGIC PLANNING APPROACH FOR LAND DEVELOPMENT CONTROLS

    Directory of Open Access Journals (Sweden)

    Karin LIMAPORNWANITCH

    2004-01-01

    Full Text Available Due to rapid urban developments in developing cities, the integration of land-use and transportation planning is very necessary. However, up-to-date land-use and transportation interaction planning is still difficult, because of rapid urbanization and complex relationships. The lack of human resources, budget, and necessary data are some of the hindrances. The planners in Bangkok have tried to utilize Traffic Impact Assessment (TIA in harmonizing land developments and transportation improvements, but without a complete land-use comprehensive plan, the TIA cannot effectively manage urbanization. This paper intends to propose a Zonal Impact Analysis (ZIA framework as a strategic planning tool to balance travel demands of land developments and performance of transportation systems over urban areas. First, the land-use planning situation in Bangkok is explained, afterwards the framework is described. The framework is applied into Bangkapi areas as a case study. Both single and simultaneous development cases are considered. It was found that more comprehensive development alternatives were established. The most suitable zone for a single project is Zone 179, as the advantages of location in the center of radial networks, so full accessibility can be provided. Without any network improvements in Zone 179, the simultaneous developments should be implemented in Zone 168 and 173, as high capacities of the expressway are available. The results give a better understanding on the characteristics of land-use and transportation planning in Bangkapi. Finally, it was emphasized that the ZIA framework is a strategic planning alternative to increase the capabilities of growth management for sustainable developments.

  1. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  2. Kinetic simulations of neoclassical and anomalous transport processes in helical systems

    International Nuclear Information System (INIS)

    Sugama, Hideo; Watanabe, Tomohiko; Nunami, Masanori; Satake, Shinsuke; Matsuoka, Seikichi; Tanaka, Kenji

    2012-01-01

    Drift kinetic and gyrokinetic theories and simulations are powerful means for quantitative predictions of neoclassical and anomalous transport fluxes in helical systems such as the Large Helical Device (LHD). The δf Monte Carlo particle simulation code, FORTEC-3D, is used to predict radial profiles of the neoclassical particle and heat transport fluxes and the radial electric field in helical systems. The radial electric field profiles in the LHD plasmas are calculated from the ambipolarity condition for the neoclassical particle fluxes obtained by the global simulations using the FORTEC-3D code, in which effects of ion or electron finite orbit widths are included. Gyrokinetic Vlasov simulations using the GKV code verify the theoretical prediction that the neoclassical optimization of helical magnetic configuration enhances the zonal flow generation which leads to the reduction of the turbulent heat diffusivity χ i due to the ion temperature gradient (ITG) turbulence. Comparisons between results for the high ion temperature LHD experiment and the gyrokinetic simulations using the GKV-X code show that the χ i profile and the poloidal wave number spectrum of the density fluctuation obtained from the simulations are in reasonable agreements with the experimental results. It is predicted theoretically and confirmed by the linear GKV simulations that the E × B rotation due to the background radial electric field E r can enhance the zonal-flow response to a given source. Thus, in helical systems, the turbulent transport is linked to the neoclassical transport through E r which is determined from the ambipolar condition for neoclassical particle fluxes and influences the zonal flow generation leading to reduction of the turbulent transport. In order to investigate the E r effect on the regulation of the turbulent transport by the zonal flow generation, the flux-tube bundle model is proposed as a new method for multiscale gyrokinetic simulations. (author)

  3. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    Science.gov (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Valuation of storage under zonal pricing market structure. Case study: Italy

    International Nuclear Information System (INIS)

    Oprescu, Bogdan; Quoilin, Sylvain

    2016-01-01

    The European Commission has proposed to reduce the greenhouse gas emissions to 80-95% below 1990 levels by 2050. Intermediately there is a binding legislation regarding the climate and energy targets for 2020. These targets, known as the ''20-20-20'' targets, set three key objectives for 2020: a 20% reduction in EU greenhouse gas emissions from 1990 levels, raising the share of EU energy consumption produced from renewable resources to 20% and a 20% improvement in the EU's energy efficiency. This policy is to be followed by the actions proposed in a policy framework for climate and energy in the period from 2020 to 2030: a new reduction target for domestic GHG emissions of 40% compared to 1990 for the year 2030, a target at European level for renewable energy of at least 27% for the year 2030 and a proposal for a 30% energy savings target for 2030. The 2020 targets for Italy translate into a 17% share of gross final energy consumption being delivered by Electricity from Renewable Energy Sources (RES-E). Various studies consider the integration of energy storage at the same time as RES-E as a solution to provide more flexibility in the energy system. Even though some studies model the electricity in higher detail, the case of Italy is rarely covered as an individual country. The goal of this paper is to evaluate the impact of adding storage in the Italian power system under different assumptions. The base case is the simplified assumption of a copper plate system where no transmission constraints are considered. This is then compared to the zonal dispatch which considers a simplified grid to underline the importance of locational signals for storage.

  5. Valuation of storage under zonal pricing market structure. Case study: Italy

    Energy Technology Data Exchange (ETDEWEB)

    Oprescu, Bogdan [CentraleSupelec, Gif-sur-Yvette (France). Joint Research Centre; Quoilin, Sylvain [Liege Univ. (Belgium). Joint Research Centre

    2016-07-01

    The European Commission has proposed to reduce the greenhouse gas emissions to 80-95% below 1990 levels by 2050. Intermediately there is a binding legislation regarding the climate and energy targets for 2020. These targets, known as the ''20-20-20'' targets, set three key objectives for 2020: a 20% reduction in EU greenhouse gas emissions from 1990 levels, raising the share of EU energy consumption produced from renewable resources to 20% and a 20% improvement in the EU's energy efficiency. This policy is to be followed by the actions proposed in a policy framework for climate and energy in the period from 2020 to 2030: a new reduction target for domestic GHG emissions of 40% compared to 1990 for the year 2030, a target at European level for renewable energy of at least 27% for the year 2030 and a proposal for a 30% energy savings target for 2030. The 2020 targets for Italy translate into a 17% share of gross final energy consumption being delivered by Electricity from Renewable Energy Sources (RES-E). Various studies consider the integration of energy storage at the same time as RES-E as a solution to provide more flexibility in the energy system. Even though some studies model the electricity in higher detail, the case of Italy is rarely covered as an individual country. The goal of this paper is to evaluate the impact of adding storage in the Italian power system under different assumptions. The base case is the simplified assumption of a copper plate system where no transmission constraints are considered. This is then compared to the zonal dispatch which considers a simplified grid to underline the importance of locational signals for storage.

  6. Dynamics of Structures in Configuration Space and Phase Space: An Introductory Tutorial

    Science.gov (United States)

    Diamond, P. H.; Kosuga, Y.; Lesur, M.

    2015-12-01

    Some basic ideas relevant to the dynamics of phase space and real space structures are presented in a pedagogical fashion. We focus on three paradigmatic examples, namely; G. I. Taylor's structure based re-formulation of Rayleigh's stability criterion and its implications for zonal flow momentum balance relations; Dupree's mechanism for nonlinear current driven ion acoustic instability and its implication for anomalous resistivity; and the dynamics of structures in drift and gyrokinetic turbulence and their relation to zonal flow physics. We briefly survey the extension of mean field theory to calculate evolution in the presence of localized structures for regimes where Kubo number K ≃ 1 rather than K ≪ 1, as is usual for quasilinear theory.

  7. Edge Zonal Flows and Blob Propagation in Alcator C-Mod

    International Nuclear Information System (INIS)

    Zweben, S.; Terry, J.L.; Agostini, M.; Davis, B.; Grulke, O.; Hager, R.; Hughes, J.; LaBombard, B.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    2011-01-01

    Here we describe recent measurements of the 2-D motion of turbulence in the edge and scrape-off layer (SOL) of the Alcator C-Mod tokamak. This data was taken using the outer midplane gas puff imaging (GPI) camera, which views a 6 cm radial by 6 cm poloidal region near the separatrix just below the outer midplane [1]. The data were taken in Ohmic or RF heated L-mode plasmas at 400,000 frames/sec for ∼50 msec/shot using a Phantom 710 camera in a 64 x 64 pixel format. The resulting 2-D vs. time movies [2] can resolve the structure and motion of the turbulence on a spatial scale covering 0.3-6 cm. The images were analyzed using either a 2-D cross-correlation code (Sec. 2) or a 2-D blob tracking code (Sec. 3).

  8. Finite approximations in fluid mechanics

    International Nuclear Information System (INIS)

    Hirschel, E.H.

    1986-01-01

    This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems

  9. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  10. Possible ionospheric preconditioning by shear flow leading to equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2005-10-01

    Full Text Available Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities – Space plasma physics (Waves and instabilities

  11. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    Science.gov (United States)

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  12. Relationships among goal orientations, motivational climate and flow in adolescent athletes: differences by gender.

    Science.gov (United States)

    Moreno Murcia, Juan Antonio; Cervelló Gimeno, Eduardo; González-Cutre Coll, David

    2008-05-01

    The purpose of this investigation was to examine the relationships among perceived motivational climate, individuals' goal orientations, and dispositional flow, with attention to possible gender differences. A sample of 413 young athletes, ages 12 to 16 years, completed the Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2) and Perception of Success Questionnaire (POSQ), as well as the Dispositional Flow Scale. Task orientation was positively and significantly related to a perceived task-involving motivational climate and to the disposition to experience flow in the sport. Ego orientation was positively and significantly associated with a perceived ego-involving motivational climate and with dispositional flow. The perceptions of task-involving and ego-involving motivational climates were positively and significantly linked to general dispositional flow. Multiple regression analysis indicated that both task and ego goal orientations and perceived task- and ego-oriented climates predicted dispositional flow. Males displayed a stronger ego orientation, and were more likely to report that they participated in an ego-oriented climate, than did females. To the contrary, the females were more likely to perceive a task-oriented climate than did the males. No meaningful differences were found between males and females in general dispositional flow.

  13. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    Science.gov (United States)

    Li, K. F.; Yao, K.; Taketa, C.; Zhang, X.; Liang, M. C.; Jiang, X.; Newman, C. E.; Tung, K. K.; Yung, Y. L.

    2015-12-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As examples, we apply this model to Titan and Venus. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss the application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  14. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  15. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    Science.gov (United States)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow.

  17. Experimental study of micro-shock tube flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ouk; Kim, Gyu Wan; Rasel, Md. Alim Iftakhar [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Kim, Heuy Dong [Fire Research Center, Korea Institute of Civil Engineering and Building Technology, Hwasung (Korea, Republic of)

    2015-03-15

    The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3 mm to 6 mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

  18. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  19. Snowball Earth: Asynchronous coupling of sea-glacier flow with a global climate model

    Science.gov (United States)

    Pollard, D.; Kasting, J. F.; Zugger, M. E.

    2017-05-01

    During Snowball Earth episodes of the Neoproterozoic and Paleoproterozoic, limited amounts of tropical open ocean (Jormungand), or tropical ocean with thin ice cover, would help to explain (1) vigorous glacial activity in low latitudes, (2) survival of photosynthetic life, and (3) deglacial recovery without excessive buildup of atmospheric CO2. Some previous models have suggested that tropical open ocean or thin-ice cover is possible; however, its viability in the presence of kilometer-thick sea glaciers flowing from higher latitudes has not been demonstrated conclusively. Here we describe a new method of asynchronously coupling a zonal sea-glacier model with a 3-D global climate model and apply it to Snowball Earth. Equilibrium curves of ice line versus CO2 are mapped out, as well as their dependence on ocean heat transport efficiency, sea-glacier flow, and other model parameters. No climate states with limited tropical open ocean or thin ice are found in any of our model runs, including those with sea glaciers. If this result is correct, then other refugia such as cryoconite pans would have been required for life to survive. However, the reasons for the differences between our results and others should first be resolved. It is suggested that small-scale convective dynamics, affecting fractional snow cover in low latitudes, may be a critical factor accounting for these differences.

  20. Jupiter's Great Red Spot: compactness condition and stability

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Yano

    Full Text Available Linear Rossby wave dispersion relationships suggest that Jupiter's Great Red Spot (GRS is a baroclinic structure embedded in a barotropic shearing zonal flow. Quasi-geostrophic (QG two-layer simulations support the theory, as long as an infinitely deep zonal flow is assumed. However, once a finite depth of the lower layer is assumed, a self-interaction of the baroclinic eddy component produces a barotropic radiating field, so that the GRS-like eddy can no longer remain compact. Compactness is recovered by explicitly introducing a deep dynamics of the interior for the lower layer, instead of the shallow QG formulation. An implication of the result is a strong coupling of the GRS to a convectively active interior.

  1. Meridional-Flow Measurements from 15 Years of GONG Spherical-Harmonic Time Series

    International Nuclear Information System (INIS)

    Kholikov, S; Hernandez, I Gonzalez; Hill, F; Leibacher, J

    2011-01-01

    We present results of meridional-flow measurements for 1995-2009, using travel-time differences from velocity images reconstructed using GONG spherical harmonic (SH) coefficients after applying phase-velocity and low-m filters. This filtering technique increases the signal-to-noise ratio and thus extends travel-time measurements to relatively high latitudes and deep into the convection zone. Preliminary analyses shows a strong one-year periodicity presumably due to solar pole misalignment and B 0 -angle artifacts, which makes it difficult to see underlying temporal variations. Removing a simple one-year-period sine wave fit reveals long-term temporal variations of the flow on top of this yearly periodicity. High-latitude measurements are affected more stronger by foreshortening and B 0 -angle artifacts. We analyze different B 0 -angle intervals separately, so in each hemisphere better high-latitude visibility comes six months apart. This approach suggests why at high latitudes travel-time measurements of meridional flow shows a tendency to change sign instead of continuing towards the poles.

  2. Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments

    Directory of Open Access Journals (Sweden)

    M. H. Mueller

    2013-04-01

    Full Text Available The mean transit time (MTT of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.

  3. Zonal management of arsenic contaminated ground water in Northwestern Bangladesh.

    Science.gov (United States)

    Hill, Jason; Hossain, Faisal; Bagtzoglou, Amvrossios C

    2009-09-01

    This paper used ordinary kriging to spatially map arsenic contamination in shallow aquifers of Northwestern Bangladesh (total area approximately 35,000 km(2)). The Northwestern region was selected because it represents a relatively safer source of large-scale and affordable water supply for the rest of Bangladesh currently faced with extensive arsenic contamination in drinking water (such as the Southern regions). Hence, the work appropriately explored sustainability issues by building upon a previously published study (Hossain et al., 2007; Water Resources Management, vol. 21: 1245-1261) where a more general nation-wide assessment afforded by kriging was identified. The arsenic database for reference comprised the nation-wide survey (of 3534 drinking wells) completed in 1999 by the British Geological Survey (BGS) in collaboration with the Department of Public Health Engineering (DPHE) of Bangladesh. Randomly sampled networks of zones from this reference database were used to develop an empirical variogram and develop maps of zonal arsenic concentration for the Northwestern region. The remaining non-sampled zones from the reference database were used to assess the accuracy of the kriged maps. Two additional criteria were explored: (1) the ability of geostatistical interpolators such as kriging to extrapolate information on spatial structure of arsenic contamination beyond small-scale exploratory domains; (2) the impact of a priori knowledge of anisotropic variability on the effectiveness of geostatistically based management. On the average, the kriging method was found to have a 90% probability of successful prediction of safe zones according to the WHO safe limit of 10ppb while for the Bangladesh safe limit of 50ppb, the safe zone prediction probability was 97%. Compared to the previous study by Hossain et al. (2007) over the rest of the contaminated country side, the probability of successful detection of safe zones in the Northwest is observed to be about 25

  4. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  5. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  6. Development of a zonal applicability tool for remote handling equipment in DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Madzharov, Vladimir, E-mail: vladimir.madzharov@kit.edu [Karlsruhe Institute of Technology, Institute for Material Handling and Logistics, Karlsruhe (Germany); Mittwollen, Martin [Karlsruhe Institute of Technology, Institute for Material Handling and Logistics, Karlsruhe (Germany); Leichtle, Dieter [Fusion for Energy F4E, Barcelona (Spain); Hermon, Gary [Culham Center for Fusion Energy, Culham Science Centre, OX14 3DB Abingdon (United Kingdom)

    2015-10-15

    Highlights: • Radiation-hardness assessment of remote handling (RH) components used in DEMO. • A radiation assessment tool for supporting remote handling engineers. • Connecting data from the radiation field analysis to the radiation hardness data. • Output is the expected lifetime of the selected RH component used for maintenance. - Abstract: A radiation-induced damage caused by the ionizing radiation can induce a malfunctioning of the remote handling equipment (RHE) used during maintenance in fusion power plants, other nuclear power stations and high-energy accelerators facilities like e.g. IFMIF. Therefore to achieve a sufficient length of operational time inside future fusion power plants, a suitable radiation tolerant RHE for maintenance operations in radiation environments is inevitably required. To assess the influence of the radiation on remote handling equipment (RHE), an investigation about radiation hardness assessment of typically used RHE components, has been performed. Additionally, information about the absorbed total dose that every component can withstand before failure was collected. Furthermore, the development of a zonal applicability tool for supporting RHE designers has been started using Excel VBA. The tool connects the data from the radiation field analysis (3-D radiation map) to the radiation hardness data of the planned RHE for DEMO remote maintenance. The intelligent combination of the available information for the radiation behaviour and radiation level at certain time and certain location may help with the taking of decisions about the application of RHE in radiation environment. The user inputs the following parameters: the specific device used in the RHE, the planned location and the maintenance period. The output is the expected lifetime of the selected RHE component at the given location and maintenance period. Planned action times have to be also considered. After having all the parameters it can be decided, if specific RHE

  7. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  8. Dark Flow, Depression and Multiline Slot Machine Play.

    Science.gov (United States)

    Dixon, Mike J; Stange, Madison; Larche, Chanel J; Graydon, Candice; Fugelsang, Jonathan A; Harrigan, Kevin A

    2018-03-01

    Multiline slot machines allow for a unique outcome type referred to as a loss disguised as a win (LDW). An LDW occurs when a player gains credits on a spin, but fewer credits than their original wager (e.g. 15-cent gain on a 20-cent wager). These outcomes alter the gambler's play experience by providing frequent, albeit smaller, credit gains throughout a playing session that are in fact net losses. Despite this negative overall value, research has shown that players physiologically respond to LDWs as if they are wins, not losses. These outcomes also create a "smoother" experience for the player that seems to promote a highly absorbing, flow-like state that we have called "dark flow". Past research has indicated that there may be a relationship between problem gambling status and dark flow, as well as between dark flow, depression, and gambling expectancies. In this study, we sought to further understand these relationships, while examining the influence of LDWs on game preference in the context of single versus multiline slots play. We used a realistic slot machine simulator equipped with a force transducer to measure how hard players pressed the spin button following different outcomes. This measure of arousal showed that LDWs were treated similarly to small wins. Participants overwhelmingly preferred the multiline game and experienced more positive affect while playing it, compared to the single-line game. Problem gambling severity index scores were related to dark flow in both games, but this relationship was stronger for the multiline game. Additionally, depression symptomatology and dark flow were strongly correlated in the multiline game, with significant relationships between depression and gambling expectancy, and gambling expectancy and dark flow ratings also emerging.

  9. Coupling-induced complexity in nephron models of renal blood flow regulation

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund; Sosnovtseva, Olga; Mosekilde, Erik

    2010-01-01

    Marsh DJ. Coupling-induced complexity in nephron models of renal blood flow regulation. Am J Physiol Regul Integr Comp Physiol 298: R997-R1006, 2010. First published February 10, 2010; doi: 10.1152/ajpregu.00714.2009.-Tubular pressure and nephron blood flow time series display two interacting...... oscillations in rats with normal blood pressure. Tubulo-glomerular feedback (TGF) senses NaCl concentration in tubular fluid at the macula densa, adjusts vascular resistance of the nephron's afferent arteriole, and generates the slower, larger-amplitude oscillations (0.02-0.04 Hz). The faster smaller...... of glomerular pressure caused by fluctuations of blood pressure. The oscillations become irregular in animals with chronic high blood pressure. TGF feedback gain is increased in hypertensive rats, leading to a stronger interaction between the two mechanisms. With a mathematical model that simulates tubular...

  10. Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers

    International Nuclear Information System (INIS)

    Kagan, Grigory; Catto, Peter J

    2008-01-01

    A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion temperature profile cannot have a pedestal similar to that of plasma density

  11. Partitioning dynamics of unsaturated flows in fractured porous media: Laboratory studies and three-dimensional multi-scale smoothed particle hydrodynamics simulations of gravity-driven flow in fractures

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.; Shigorina, E.; Noffz, T.; Dentz, M.; Sauter, M.; Tartakovsky, A. M.

    2017-12-01

    Preferential flow dynamics in unsaturated fractures remain a challenging topic on various scales. On pore- and fracture-scales the highly erratic gravity-driven flow dynamics often provoke a strong deviation from classical volume-effective approaches. Against the common notion that flow in fractures (or macropores) can only occur under equilibrium conditions, i.e., if the surrounding porous matrix is fully saturated and capillary pressures are high enough to allow filling of the fracture void space, arrival times suggest the existence of rapid preferential flow along fractures, fracture networks, and fault zones, even if the matrix is not fully saturated. Modeling such flows requires efficient numerical techniques to cover various flow-relevant physics, such as surface tension, static and dynamic contact angles, free-surface (multi-phase) interface dynamics, and formation of singularities. Here we demonstrate the importance of such flow modes on the partitioning dynamics at simple fracture intersections, with a combination of laboratory experiments, analytical solutions and numerical simulations using our newly developed massively parallel smoothed particle hydrodynamics (SPH) code. Flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency

  12. Contribution to the study of the zonal variation of the climate aridity in central northern Sahara (Algeria)

    Science.gov (United States)

    Benseghier-Hadjaidji, Fatiha; Talbi, Nadjib; Derridj, Arezki

    2018-05-01

    The environment degradation at the level of all its compartments which we notice at present, calls us to the risks that it would underestimate the climatic and consequently bioclimatic crisis there, in the North as in the South of the Mediterranean region. To protect the environment is not a luxury. In this respect, we wondered about the zonal variation of the climate aridity at the level of three bordering climatic stations: El-Oued, Touggourt and Ouargla. These are distant from 160 km on average some of the others. For that purpose, we based ourselves on the statistical tool the software "instat +" for the estimation of the ETP (PM) and afterward the determination of the pluvio-evapotranspiration "quotient P/ETP". For this analysis, the climatic data spread out over a period of 20 years. The results allowed to specify the aridity degree of the studied zone. So, they reveal a mitigation of the aridity of the climate in Touggourt and El-Oued while the hyper-aridity distinguishes well the Ouargla region. This approach contributes to a better knowledge of the dry ecosystems. This is important to indicate it to turn better in the eremologic search later.

  13. Which global stock indices trigger stronger contagion risk in the Vietnamese stock market? Evidence using a bivariate analysis

    Directory of Open Access Journals (Sweden)

    Wang Kuan-Min

    2013-01-01

    Full Text Available This paper extends recent investigations into risk contagion effects on stock markets to the Vietnamese stock market. Daily data spanning October 9, 2006 to May 3, 2012 are sourced to empirically validate the contagion effects between stock markets in Vietnam, and China, Japan, Singapore, and the US. To facilitate the validation of contagion effects with market-related coefficients, this paper constructs a bivariate EGARCH model of dynamic conditional correlation coefficients. Using the correlation contagion test and Dungey et al.’s (2005 contagion test, we find contagion effects between the Vietnamese and four other stock markets, namely Japan, Singapore, China, and the US. Second, we show that the Japanese stock market causes stronger contagion risk in the Vietnamese stock market compared to the stock markets of China, Singapore, and the US. Finally, we show that the Chinese and US stock markets cause weaker contagion effects in the Vietnamese stock market because of stronger interdependence effects between the former two markets.

  14. Coupling ground penetrating radar and fluid flow modeling for oilfield monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Zhou, F.; Slob, E.C.; Arts, R.

    2011-01-01

    The recent introduction of smart well technology allows for new geophysical monitoring opportunities. Smart wells, which allow zonal production control, combined with monitoring techniques capable of capturing the arrival of undesired fluids, have the potential to significantly increase the oil

  15. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  16. A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.

    Science.gov (United States)

    Kunar, Melina A; John, Rebecca; Sweetman, Hollie

    2014-01-01

    Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.

  17. The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory.

    Science.gov (United States)

    Li, Man; Wang, Yanhui; Jia, Limin

    2017-01-01

    Aimed at the complicated problems of attraction characteristics regarding passenger flow in urban rail transit network, the concept of the gravity field of passenger flow is proposed in this paper. We establish the computation methods of field strength and potential energy to reveal the potential attraction relationship among stations from the perspective of the collection and distribution of passenger flow and the topology of network. As for the computation methods of field strength, an optimum path concept is proposed to define betweenness centrality parameter. Regarding the computation of potential energy, Compound Simpson's Rule Formula is applied to get a solution to the function. Taking No. 10 Beijing Subway as a practical example, an analysis of simulation and verification is conducted, and the results shows in the following ways. Firstly, the bigger field strength value between two stations is, the stronger passenger flow attraction is, and the greater probability of the formation of the largest passenger flow of section is. Secondly, there is the greatest passenger flow volume and circulation capacity between two zones of high potential energy.

  18. The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Aimed at the complicated problems of attraction characteristics regarding passenger flow in urban rail transit network, the concept of the gravity field of passenger flow is proposed in this paper. We establish the computation methods of field strength and potential energy to reveal the potential attraction relationship among stations from the perspective of the collection and distribution of passenger flow and the topology of network. As for the computation methods of field strength, an optimum path concept is proposed to define betweenness centrality parameter. Regarding the computation of potential energy, Compound Simpson's Rule Formula is applied to get a solution to the function. Taking No. 10 Beijing Subway as a practical example, an analysis of simulation and verification is conducted, and the results shows in the following ways. Firstly, the bigger field strength value between two stations is, the stronger passenger flow attraction is, and the greater probability of the formation of the largest passenger flow of section is. Secondly, there is the greatest passenger flow volume and circulation capacity between two zones of high potential energy.

  19. Vortex lattice ordering in the flux flow state of Nb thin films

    International Nuclear Information System (INIS)

    Grimaldi, Gaia; Leo, Antonio; Nigro, Angela; Pace, Sandro

    2010-01-01

    We measure current-voltage characteristics at high driving currents for different magnetic fields and temperatures in Nb thin films of rather strong pinning. In a definite range of the B-T phase diagram we find that a current induced transition occurs in the flux flow motion of the vortex lattice, namely a dynamic ordering (DO). Contrary to the case of weaker pinning materials, DO is observed only at low fields, due to the stronger intrinsic disorder that can deform plastically the moving vortex lattice even for small applied fields.

  20. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    Science.gov (United States)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.