WorldWideScience

Sample records for stronger magnetic properties

  1. Magnetic properties

    Indian Academy of Sciences (India)

    Unknown

    netic moments of the particles, i.e. Zeeman energy, µH, where µ is the magnetic moment of the particle and H .... the domain magnetization of particle. Here, we have assumed a log-normal distribution function, P(D), for ... Effect of texturing field on a magnetically textured fluid magnetization for (a) (HT || H) and (b) (HT ⊥ H) ...

  2. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.

    Science.gov (United States)

    Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping

    2011-02-15

    A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rock magnetic properties

    International Nuclear Information System (INIS)

    Hearst, R.B.; Morris, W.A.

    1991-01-01

    In 1978 the Nuclear Fuel Waste Management Program began the long task of site selection and evaluation for nuclear waste disposal. The Canadian Nuclear Fuel Waste Management Program, administered by Atomic Energy of Canada Limited, Research Company has provided the geophysicist with the unique opportunity to evaluate many modes of geophysical investigation in conjunction with detailed geologic mapping at a number of research areas. Of particular interest is research area RA-7, East Bull Lake, Algoma District, Ontario. Geophysical survey methods applied to the study of this included detailed gravity, ground magnetics, VLF, an airborne magnetic gradiometer survey and an airborne helicopter magnetic and EM survey. A comprehensive suite of rock property studies was also undertaken providing information on rock densities and magnetic rock properties. Preliminary modeling of the magnetic data sets assuming only induced magnetization illustrated the difficulty of arriving at a magnetic source geometry consistent with the mapped surficial and borehole geology. Integration of the magnetic rock properties observations and industry standard magnetic modelling techniques provides a source model geometry that is consistent with other geophysical/geological data sets, e.g. gravity and observed geology. The genesis of individual magnetic signatures in the East Bull Lake gabbro-anorthosite record the intrusion, metamorphism and fracture alteration of the pluton. As shown by this paper, only by understanding the rock magnetic signatures associated with each of these events is it possible to obtain geologically meaningful interpretative models

  4. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  5. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  6. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic energy product. In order to control the particle size......, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase....

  7. Stronger synergies

    CERN Document Server

    Antonella Del Rosso

    2012-01-01

    CERN was founded 58 years ago under the auspices of UNESCO. Since then, both organisations have grown to become world leaders in their respective fields. The links between the two have always existed but today they are even stronger, with new projects under way to develop a more efficient way of exchanging information and devise a common strategy on topics of mutual interest.   CERN and UNESCO are a perfect example of natural partners: their common field is science and education is one of the pillars on which both are built. Historically, they share a common heritage. Both UNESCO and CERN were born of the desire to use scientific cooperation to rebuild peace and security in the aftermath of the Second World War. "Recently, building on our common roots and in close collaboration with UNESCO, we have been developing more structured links to ensure the continuity of the actions taken over the years," says Maurizio Bona, who is in charge of CERN relations with international orga...

  8. Magnetic Properties of Molecular and Nanoscale Magnets

    OpenAIRE

    Krupskaya, Yulia

    2011-01-01

    The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and op...

  9. Magnetic properties of iron nanoparticle

    International Nuclear Information System (INIS)

    Carvell, J.; Ayieta, E.; Gavrin, A.; Cheng, Ruihua; Shah, V. R.; Sokol, P.

    2010-01-01

    Magnetic properties of Fe nanoparticles with different sizes synthesized by a physical deposition technique have been investigated experimentally. We have used a high pressure sputtering technique to deposit iron nanoparticles on a silicon substrate. The nanoparticles are then analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), and superconducting quantum interference device techniques. TEM and AFM data show that the particle size could be tuned by adjusting the deposition conditions. The magnetic properties have been investigated from temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results show that two phases including both ferromagnetic and superparamagnetic particles are present in our system. From these data we extracted the superparamagnetic critical size to be 9 nm for our samples. Ferromagnetic particles are single magnetic domain particles and the magnetic properties can be explained by the Stoner and Wohlfarth model. For the superparamagnetic phase, the effective anisotropy constant, K eff , decreases as the particle size increases.

  10. SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES ...

    African Journals Online (AJOL)

    Preferred Customer

    SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES OF. POLYSTYRENE-ANCHORED COORDINATION COMPOUNDS OF. THIAZOLIDINONE. Dinesh Kumar1, Amit Kumar2* and Durga Dass3. 1Department of Chemistry, National Institute of Technology, Kurukshetra 136119, Haryana,. India. 2Department of ...

  11. Magnetic properties of hematite nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Hansen, Mikkel Fougt; Bender Koch, Christian

    2000-01-01

    The magnetic properties of hematite (alpha-Fe2O3) particles with sizes of about 16 nm have been studied by use of Mossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous...

  12. Transport Optical and Magnetic Properties of Solids.

    Science.gov (United States)

    Solid state physics, Band theory of solids, Semiconductors, Strontium compounds, Superconductors, Magnetic properties, Chalcogens, Transport properties, Optical properties, Bibliographies, Scientific research, Magnons

  13. The magnetic properties of the hollow cylindrical ideal remanence magnet

    OpenAIRE

    Bjørk, R.

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach ...

  14. Magnetic properties of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Yan, Lei; Zhang, Shuang; Chen, Peng; Wang, Weidong; Wang, Yanjie; Li, Hongyu

    2013-10-01

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto-thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 °C and a coercivity of 16.36 mT. Additionally, the low delta ratio (δFC/δZFC=1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  15. Magnetic properties of Acidithiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lei; Zhang, Shuang [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Chen, Peng [Gansu Institute of Business and Technology, Lanzhou, 730010 (China); Wang, Weidong; Wang, Yanjie [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Li, Hongyu, E-mail: hekouyanlei@gmail.com [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China)

    2013-10-15

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto–thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 °C and a coercivity of 16.36 mT. Additionally, the low delta ratio (δ{sub FC}/δ{sub ZFC} = 1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. - Highlights: • Rock magnetic investigations carried out on At.ferrooxidans in detail. • Results indicated that each cell contained 1 to 3 scattered magnetite magnetosomes. • The magnetosomes consist of SD and SP magnetite nanoparticles. • Cells showed ferromagnetic behavior with high Curie Temperature and low δ{sub FC}/δ{sub ZFC}. • Results are useful in studying the magnetosomes biomineralization.

  16. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  17. Magnetic materials fundamentals, products, properties, applications

    CERN Document Server

    Hilzinger, Rainer

    2013-01-01

    At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, ...

  18. Magnetic properties of layered superconductors

    International Nuclear Information System (INIS)

    Mansky, P.A.

    1993-01-01

    The organic superconductors (BEDT-TTF) 2 Cu(SNC) 2 and (TMTSF) 2 ClO 4 , with T c = 10K and 1.2K, have layered and highly anisotropic crystal structures. This thesis describes AC magnetic susceptibility measurements on these materials which illustrate the consequences of the discrete layered structure for the magnetic properties of the superconducting state. A DC magnetic field applied parallel to the layers of either material causes the rapid suppression of the AC screening response, and this indicates that the pinning restoring force for vortex motion parallel to the layers is anomalously weak in this orientation. This is believed to be due to the small size of the interlayer coherence length relative to the layer spacing. A simple estimate based on the energy and length scales relevant to Josephson coupled layers gives the correct order of magnitude for the pinning force. Pinning for vortices oriented perpendicular to the layers is larger by a factor of 500 for BEDT and 25 for TMTSF. When the DC field is applied at an angle to the layers, the initial suppression of the susceptibility is identical to that for a field parallel to the layers; when the field component normal to the layers exceeds a threshold, a sharp recovery of screening occurs. These observations indicate that the field initially enters the sample only in the direction parallel to the layers. The recovery of screening signals field penetration in the perpendicular direction at higher field strength, and is due to the onset of pinning by in-plane vortex cores. This magnetic open-quotes lock-inclose quotes effect is a qualitatively new behavior and is a direct consequence of weak interlayer coupling. The London penetration depth associated with interlayer currents is found to be on the order of hundreds of microns, comparable to that of a Josephson junction, and two to three orders of magnitude larger than for conventional superconductors

  19. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2015-01-01

    Full Text Available Localized magnetic hyperthermia using magnetic nanoparticles (MNPs under the application of small magnetic fields is a promising tool for treating small or deep-seated tumors. For this method to be applicable, the amount of MNPs used should be minimized. Hence, it is essential to enhance the power dissipation or heating efficiency of MNPs. Several factors influence the heating efficiency of MNPs, such as the amplitude and frequency of the applied magnetic field and the structural and magnetic properties of MNPs. We discuss some of the physics principles for effective heating of MNPs focusing on the role of surface anisotropy, interface exchange anisotropy and dipolar interactions. Basic magnetic properties of MNPs such as their superparamagnetic behavior, are briefly reviewed. The influence of temperature on anisotropy and magnetization of MNPs is discussed. Recent development in self-regulated hyperthermia is briefly discussed. Some physical and practical limitations of using MNPs in magnetic hyperthermia are also briefly discussed.

  20. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    Science.gov (United States)

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs.

  1. The magnetic properties of the hollow cylindrical ideal remanence magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bjørk, R., E-mail: rabj@dtu.dk

    2016-10-15

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet. - Highlights: • The ideal cylindrical magnet that produces a uniform field in the bore is examined in detail. • An ideal magnet is one that utilizes the magnets most efficiently. • The ideal magnet always produce a field lower than half of its maximum remanence. • The ideal magnet is compared to the Halbach cylinder. • The Halbach cylinder always produce a larger field than an equivalently sized ideal magnet.

  2. The magnetic properties of the hollow cylindrical ideal remanence magnet

    International Nuclear Information System (INIS)

    Bjørk, R.

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet. - Highlights: • The ideal cylindrical magnet that produces a uniform field in the bore is examined in detail. • An ideal magnet is one that utilizes the magnets most efficiently. • The ideal magnet always produce a field lower than half of its maximum remanence. • The ideal magnet is compared to the Halbach cylinder. • The Halbach cylinder always produce a larger field than an equivalently sized ideal magnet.

  3. Study on magnetic property and fracture behavior of magnetic materials

    International Nuclear Information System (INIS)

    Miya, Kenzo; Demachi, Kazuyuki; Aoto, Kazumi; Nagae, Yuji

    2002-04-01

    Establishment of evaluation methods of material degradation before crack initiation is needed very much to enhance the reliability of structural components. We remark magnetic methods in this report. Our objectives are to reveal the relation between degradation and magnetic property and to develop evaluation methods of material degradation, especially plastic deformation and stress corrosion cracking (SCC). In the former part of this report, evaluation methods for plastic deformation are discussed. At first, the study that shows the relation between the magnetic flux leakage and plastic deformation is reviewed. We developed the inverse analysis method of magnetization to specify the degradation distribution. Moreover, we propose inverse analysis of magnetic susceptibility for quantitative evaluation. In the latter part, the topic is SCC. We measured the magnetic flux leakage from the sample induced a SCC crack (Inconel 600). Inconel 600 is a paramagnetic material at room temperature but the sample shows ferromagnetic and the magnetic flux leakage was changed near the SCC crack. The possibility of detection of a SCC crack is shown by the inverse analysis result from the magnetic flux leakage. Finally, it is recognized by observation of the micro magnetic distributions by using a magnetic force microscope that the magnetization has relation with chromium depletion near grain boundaries and it is weak near the SCC crack. From these results, the magnetic method is very effective for evaluation of degradation. (author)

  4. The Characterization of the Magnetic Properties of Soft Magnetic Materials

    DEFF Research Database (Denmark)

    Larsen, Raino Michael

    1996-01-01

    The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings and cylin......The hysteresis curve and magnetic properties such as permeability, saturation induction, residual induction, coercive force and hysteresis losses are presented. The design and construction of equipment making it possible to measure true DC-values as well as AC-properties of toroid rings...

  5. Magnetic Properties of NdAl2

    DEFF Research Database (Denmark)

    Bak, P.

    1974-01-01

    The magnetic properties of NdAl2 are calculated using a Hamiltonian including crystal-field and isotropic exchange interaction terms. A two-dimensional mean-field theory is evaluated to calculate single-crystal magnetization curves. It is shown that the magnetic properties can be understood using...... the crystal-field parameters derived from the magnetic exciton spectrum measured by Houmann et al. by means of inelastic neutron scattering. The combined lambda -Schottky anomaly in the heat capacity is explained. No additional parameters are introduced....

  6. Magnetic properties of sulfur-doped graphene

    International Nuclear Information System (INIS)

    Zhu, J.; Park, H.; Podila, R.; Wadehra, A.; Ayala, P.; Oliveira, L.; He, J.; Zakhidov, A.A.; Howard, A.; Wilkins, J.; Rao, A.M.

    2016-01-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples. - Highlights: • Magnetic properties of pristine and S-doped graphene were investigated. • Pristine graphene with intrinsic defects exhibits a non-zero magnetic moment. • The addition of S-dopants was found to quench the magnetic ordering. • DFT calculations confirmed that magnetization in graphene arises from defects. • DFT calculations show S-dopants quench local magnetic moment of defect structures.

  7. Magnetic properties of sulfur-doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); Park, H. [Department of Physics, The Ohio State University, Columbus, OH (United States); Podila, R., E-mail: rpodila@g.clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); COMSET, Clemson University, Clemson, SC (United States); Wadehra, A. [Department of Physics, The Ohio State University, Columbus, OH (United States); Ayala, P. [Faculty of Physics, University of Vienna, Vienna (Austria); Oliveira, L.; He, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Zakhidov, A.A.; Howard, A. [Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX (United States); Wilkins, J. [Department of Physics, The Ohio State University, Columbus, OH (United States); Rao, A.M., E-mail: arao@g.clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States); Clemson Nanomaterial Center, Clemson University, Clemson, SC (United States); COMSET, Clemson University, Clemson, SC (United States)

    2016-03-01

    While studying magnetism of d- and f-electron systems has been consistently an active research area in physics, chemistry, and biology, there is an increasing interest in the novel magnetism of p-electron systems, especially in graphene and graphene-derived nanostructures. Bulk graphite is diamagnetic in nature, however, graphene is known to exhibit either a paramagnetic response or weak ferromagnetic ordering. Although many groups have attributed this magnetism in graphene to defects or unintentional magnetic impurities, there is a lack of compelling evidence to pinpoint its origin. To resolve this issue, we systematically studied the influence of entropically necessary intrinsic defects (e.g., vacancies, edges) and extrinsic dopants (e.g., S-dopants) on the magnetic properties of graphene. We found that the saturation magnetization of graphene decreased upon sulfur doping suggesting that S-dopants demagnetize vacancies and edges. Our density functional theory calculations provide evidence for: (i) intrinsic defect demagnetization by the formation of covalent bonds between S-dopant and edges/vacancies concurring with the experimental results, and (ii) a net magnetization from only zig-zag edges, suggesting that the possible contradictory results on graphene magnetism in the literature could stem from different defect-types. Interestingly, we observed peculiar local maxima in the temperature dependent magnetizations that suggest the coexistence of different magnetic phases within the same graphene samples. - Highlights: • Magnetic properties of pristine and S-doped graphene were investigated. • Pristine graphene with intrinsic defects exhibits a non-zero magnetic moment. • The addition of S-dopants was found to quench the magnetic ordering. • DFT calculations confirmed that magnetization in graphene arises from defects. • DFT calculations show S-dopants quench local magnetic moment of defect structures.

  8. Magnetic Properties of Nanoparticles of Antiferromagnetic Materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Bødker, Franz

    2003-01-01

    The magnetic properties of antiferromagnetic nanoparticles have been studied by Mossbauer spectroscopy and neutron scattering. Temperature series of Mossbauer spectra of non-interacting, superparamagnetic hematite nanoparticles were fitted by use of the Blume-Tjon relaxation model. It has been...... found that the magnetic anisotropy energy constant increases significantly with decreasing particle size. Neutron scattering experiments on similar samples give new information on both superparamagnetic relaxation and collective magnetic excitations. There is good agreement between the values...

  9. Magnetic and Electrical Properties of Leachate

    Directory of Open Access Journals (Sweden)

    Kartika Kirana

    2011-11-01

    Full Text Available Heavy metals content as well as magnetic and electrical properties of leachate from Sarimukti, West Java were studied in an attempt to seek correlation between heavy metals content and magnetic/electrical properties. Such correlation is expected to open the way for the use of magnetic/electrical properties as proxy indicators for the concentration of heavy metals in the leachate. The number of leachate samples studied is 21; 15 were taken spatially at depth of 1 m while the remaining 6 samples were taken vertically at a particular point. Measurement results showed that the heavy metals content in the leachate has a smaller concentration, except for Fe. The correlation between magnetic susceptibility and heavy metals content was found to be not so significant. The best correlation coefficient between magnetic susceptibility with heavy metals in leachate was found in Zn. Correlation between electrical conductivity and heavy metal is also not so significant, except for Zn and Cd. The use of magnetic properties as proxy indicator for heavy metals content in leachate is plausible provided that the magnetic susceptibility exceeds certain threshold value. Correlation between magnetic susceptibility, electrical conductivity and heavy metal content would be good if each quantity has a large value.

  10. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Unknown

    Electronic properties of magnetically doped nanotubes. KEIVAN ESFARJANI*, Z CHEN† and Y KAWAZOE†. Sharif Institute of Technology, and Institute for Physics and Mathematics, Tehran, Iran. †Institute for Materials Research, Tohoku University, Sendai, Japan. Abstract. Effect of doping of carbon nanotubes by magnetic ...

  11. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  12. Variation of magnetic properties of toroidal cores with magnetizing frequency

    International Nuclear Information System (INIS)

    Derebasi, N.; Rygal, R.; Moses, A.J.; Fox, D.

    2000-01-01

    AC magnetic properties of toroidal cores made from six different soft magnetic materials were measured. A solid steel core exhibited the highest remanance, coercivity and core loss as expected whereas a nanocrystalline core had the lowest remanance of the cores tested. Increase in dynamic core loss with frequency in steel particle and iron powder cores was low compared with the other cores but was low in permeability

  13. Dynamical properties of unconventional magnetic systems

    International Nuclear Information System (INIS)

    Helgesen, G.

    1997-05-01

    The Advanced Study Institute addressed the current experimental and theoretical knowledge of the dynamical properties of unconventional magnetic systems including low-dimensional and mesoscopic magnetism, unconventional ground state, quantum magnets and soft matter. The main approach in this Advanced Study Institute was to obtain basic understanding of co-operative phenomena, fluctuations and excitations in the wide range unconventional magnetic systems now being fabricated or envisioned. The report contains abstracts for lectures, invited seminars and posters, together with a list of the 95 participants from 24 countries with e-mail addresses

  14. Meson properties in magnetized quark matter

    Science.gov (United States)

    Wang, Ziyue; Zhuang, Pengfei

    2018-02-01

    We study neutral and charged meson properties in the magnetic field. Taking the bosonization method in a two-flavor Nambu-Jona-Lasinio model, we derive effective meson Lagrangian density with minimal coupling to the magnetic field, by employing derivative expansion for both the meson fields and Schwinger phases. We extract from the effective Lagrangian density the meson curvature, pole and screening masses. As the only Goldstone mode, the neutral pion controls the thermodynamics of the system and propagates the long range quark interaction. The magnetic field breaks down the space symmetry, and the quark interaction region changes from a sphere in vacuum to a ellipsoid in magnetic field.

  15. Magnetic properties of Gd intermetallics

    Science.gov (United States)

    Petit, L.; Szotek, Z.; Jackson, J.; Lüders, M.; Paudyal, D.; Mudryk, Y.; Pecharsky, V.; Gschneidner, K. A.; Staunton, J. B.

    2018-02-01

    Using first-principles calculations, based on disordered local moment theory, combined with the self-interaction corrected local spin density approximation, we study magnetic interactions in GdX intermetallics for X = Cu, Zn, Ga, Cd, and Mg. Our predicted magnetic orders and ordering temperatures both at zero and other pressures agree well with experiments including the large increase in the Curie temperature of GdCd under pressure that is shown by our own experimental measurements. From our results it emerges that the Ruderman-Kittel-Kasuya-Yosida interaction on its own can not explain the observed behaviour under pressure, and that the magnetic ordering mechanism is strongly influenced by the occupations of both Gd and anion d-bands.

  16. Synthesis, magnetic and microstructural properties of Alnico magnets with additives

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair, E-mail: dza.isit@yahoo.com [School of Materials Science and Engineering, South China, University of Technology, Guangzhou 510640 (China); Liu, Zhongwu [School of Materials Science and Engineering, South China, University of Technology, Guangzhou 510640 (China); Ul Haq, A. [Riphah International University, I-14, Islamabad (Pakistan)

    2017-04-15

    The phase formation, crystal structure, crystallographic texture, microstructure and magnetic properties of Alnico-8 alloys with varying Co and Nb content have been investigated and presented. Alnico-8 alloys were fabricated by induction melting and casting techniques. Magnetic properties in the alloys were induced by optimized thermomagnetic treatment and subsequent aging. The 37.9Fe-32Co-14Ni-7.5Al-3.1Cu-5.5Ti alloy exhibits coercivity of 110 kA/m, remanence of 0.66 T and energy product of 31.2 kJ/m{sup 3}. The addition of 35 wt% Co in conjunction with 1.5 wt% Nb to 37.9Fe-14Ni-7.5Al-3.1Cu-5.5Ti alloys led to increase the magnetic properties, especially coercivity. The enhancement of the coercivity is attributed to ideal shape anisotropy and optimum mass fraction of ferromagnetic Fe-Co rich particles, which are 25–30 nm in diameter and 300–350 nm in length. The 33.4Fe-35Co-14Ni-7.5Al-5.5Ti-3.1Cu-1.5 Nb alloy yields the optimum magnetic properties of coercivity of 141.4 kA/m, remanence of 0.83 T and energy product of 42.4 kJ/m{sup 3}. The good magnetic properties in the studied alloys are attributed to the nanostructured microstructure comprising textured Fe-Co-Nb rich α{sub 1} phase and Al-Ni-Cu rich α{sub 2} phase. - Highlights: • Synthesize of Alnico-8 magnets by casting and thermomagnetic treatment. • High coercivity up to 148.3 kA/m can be obtained with Alnico magnets. • Properties are affected by intrinsic properties of spinodal phases and thermal cycle. • Magnet exhibits properties as: H{sub c}=141.4 kA/m, B{sub r}=0.83 T and (BH){sub max}=42.4 kJ/m{sup 3}.

  17. Magnetic properties of sheet silicates

    International Nuclear Information System (INIS)

    Ballet, O.; Coey, J.M.D.

    1982-01-01

    Susceptibility, magnetisation and Moessbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe 2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe 2+ -Fe 2+ exchange interactions are ferromagnetic with Gapprox. equal to2 K, whereas Fe 3+ -Fe 3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe 2+ → Fe 3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1-7 K. One biotite sample showed an antiferromagnetic transition at Tsub(N) = 7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite. (orig.)

  18. Magnetic Properties of Electrically Contacted Fe4 Molecular Magnets

    Science.gov (United States)

    Burgess, Jacob; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Totti, Frederico; Ninova, Silviya; Yan, Shichao; Choi, Deung-Jang; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-03-01

    Single molecule magnets (SMMs) are often large and fragile molecules. This poses challenges for the construction of SMM based spintronics. Device geometries with two electronic leads contacting a molecule may be explored via scanning tunneling microscopy (STM). The Fe4 molecule stands out as a robust, thermally evaporable SMM, making it ideal for such an experiment. Here we present the first STM investigations of individual Fe4 molecules thermally evaporated onto a monolayer of Cu2N on a Cu (100) crystal. Using inelastic electron tunneling spectroscopy (IETS), spin excitations in single Fe4 molecules can be detected at meV energies. Analysis using a Spin Hamiltonian allows extraction of magnetic properties of individual Fe4 molecules, and investigation of the influence of the electronic leads. The tip and sample induce small changes in the magnetic properties of Fe4 molecules, making Fe4 a promising candidate for the development of spintronics devices based on SMMs.

  19. Three-dimensional magnetic properties of soft magnetic composite materials

    International Nuclear Information System (INIS)

    Lin, Z.W.; Zhu, J.G.

    2007-01-01

    A three-dimensional (3-D) magnetic property measurement system, which can control the three components of the magnetic flux density B vector and measure the magnetic field strength H vector in a cubic sample of soft magnetic material, has been developed and calibrated. This paper studies the relationship between the B and H loci in 3-D space, and the power losses features of a soft magnetic composite when the B loci are controlled to be circles with increasing magnitudes and ellipses evolving from a straight line to circle in three orthogonal planes. It is found that the B and H loci lie in the same magnetization plane, but the H loci and power losses strongly depend on the orientation, position, and process of magnetization. On the other hand, the H vector evolves into a unique locus, and the power loss approaches a unique value, respectively, when the B vector evolves into the round locus with the same magnitude from either a series of circles or ellipses

  20. Properties of magnetic nano-particles

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1997-01-01

    The intrinsic thermodynamic magnetic properties of clusters are discussed using spin wave theory for a Heisenberg model, with a fixed magnitude of the spins S-i = S and site independent nearest neighbor exchange interaction. The consequences of the more realistic Hubbard model is considered...... in which we allow for a magnetization profile at T = 0 and a structural relaxation, which in turn will give rise to a site dependent exchange interaction. Et is concluded that correlation effects among the electrons play a very important role in small clusters, albeit not modifying the thermodynamic...... properties drastically. The finite cluster size gives foremost rise to a discrete excitation spectrum with a large energy gap to the ground state. The relaxation of the magnetization during the reversal of the external magnetic field is discussed. A first step towards a quantitative understanding...

  1. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    International Nuclear Information System (INIS)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  2. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengyu, E-mail: liusytyut@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Suhong, E-mail: zhangsh04@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Jianying; Wen, Jing; Qiao, Yan [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-01-15

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  3. The magnetic properties of Am stars

    Science.gov (United States)

    Blazère, A.; Petit, P.; Neiner, C.

    2018-01-01

    We present the results of a spectropolarimetric study of three Am stars: β UMa, θ Leo and Alhena. Two of the three stars of this study showed peculiar magnetic signatures with prominent positive lobes, like the one of Sirius A, that are not expected in the standard theory of the Zeeman effect. Alhena, contrary to Sirius A, β UMa and θ Leo, exhibits normal signatures. The follow-up spectropolarimetric observations of Alhena allowed us to determine the magnetic properties of this star.

  4. Magnetic properties of heavy-fermion superconductors

    International Nuclear Information System (INIS)

    Rauchschwalbe, U.

    1986-01-01

    In the present thesis the magnetic properties of heavy-fermion superconductors are investigated. The magnetoresistance and the critical magnetic fields show a variety of anomalous phenomena. The Kondo lattices CeCu 2 Si and CeAl 3 are analysed by magnetoresistance and the field dependence of the resistivitis of UBe 13 , UPt 3 , URu 2 Si 2 and CeRu 3 Si are measured for temperatures < or approx. 1 K. (BHO)

  5. MAGNETIC PROPERTIES OF HEMATITE NANOSTRUCTURES

    OpenAIRE

    Munayco S., J.; 5aavedra V., I.; Munayco S., P.; Ale B., N.

    2014-01-01

    Nanostructured a-Fe203 (hematite) was produced usíng high-energy ball milling and analized by X-ray diffraction (XRD), 57Fe Mi.issbauer spectrometry and magnetization measurements. The results showed that after 2 h milling, a-Fe203 nanosize particles were obtained about 15 nm. The 57 Fe Mossbauer spectrometry correlated with magnetometry showed also that Morin transition was notobserved after 0,75 h milling. Son estudiados los procedimientos de producción nanopartículas de hematita, evaluá...

  6. Magnetic properties of confined electron gas

    International Nuclear Information System (INIS)

    Felicio, J.R.D. de.

    1977-04-01

    The effects of confinement by a two or three-dimensional harmonic potential on the magnetic properties of a free electron gas are investigated using the grand-canonical ensemble framework. At high temperatures an extension of Darwin's, Felderhof and Raval's works is made taking into account spin effects at low temperature. A comprehensive description of the magnetic properties of a free electron gas is given. The system is regarded as finite, but the boundary condition psi=0 is not introduced. The limits of weak and strong confinement are also analysed [pt

  7. Electronic structure and magnetic properties of actinides

    International Nuclear Information System (INIS)

    Fournier, J.-M.

    1975-01-01

    The study of the actinide series shows the change between transition metal behavior and lanthanide behavior, between constant weak paramagnetism for thorium and strong Curie-Weiss paramagnetism for curium. Curium is shown to be the first metal of the actinide series to be magnetically ordered, its Neel temperature being 52K. The magnetic properties of the actinides depending on all the peripheral electrons, their electronic structure was studied and an attempt was made to determine it by means of a phenomenological model. Attempts were also made to interrelate the different physical properties which depend on the outer electronic structure [fr

  8. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  9. Magnetic properties of Martian surface material

    Science.gov (United States)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  10. Magnetic Properties of Dy in Pb

    Energy Technology Data Exchange (ETDEWEB)

    Skanthakumar, S.; Soderholm, L.; Movshovich, R.

    1999-07-10

    Superconductivity can be induced at high temperatures in Pb{sub 2}Sr{sub 2}RCu{sub 3}O{sub 8} (R - rare earth) by partially doping Ca{sup 2+} for R{sup 3+}. In order to understand the interplay between magnetism and superconductivity, the magnetic properties of the parent compounds, Pb{sub 2}Sr{sub 2}RCu{sub 3}O{sub 8}, have been studied. The work presented here includes magnetic susceptibility and specific heat measurements on R=Dy and extends the previous studies on R=Ce, Pr, Tb, Ho and Er. Specific heat experiments suggest that the Dy ions order antiferromagnetically with an ordering temperature of 1.3K. The magnetic susceptibility data are in good agreement with the susceptibility calculated using crystal field parameters that are extrapolated from previous modeling of the R=Er and Ho analogs of this series.

  11. Structure and magnetic properties of colossal magnetoresistance ...

    Indian Academy of Sciences (India)

    5Sr0.5CoO3 ... phenomenon of colossal magnetoresistance (CMR) that occur in these compounds. The structural and magnetic properties of these ... strain field that reduces with temperature. The Co–O2–Co bond angle is found to be 168◦.

  12. Maghemite polymer nanocomposites with modulated magnetic properties

    International Nuclear Information System (INIS)

    Millan, A.; Palacio, F.; Falqui, A.; Snoeck, E.; Serin, V.; Bhattacharjee, A.; Ksenofontov, V.; Guetlich, P.; Gilbert, I.

    2007-01-01

    A method is presented for the production of maghemite polymer nanocomposites with modulated magnetic properties. Magnetic nanocomposites prepared using this method show regular variation in the magnetic blocking temperature from 2 K to 300 K, and variation in the saturation magnetization from 0 to 50 emu g -1 (Fe 2 O 3 ). The method is based on the in situ formation of maghemite nanoparticles in nitrogen-base polymer matrixes. The particle size can be varied regularly from 1.5 nm to 16 nm by changing the ratio of iron loading in the polymer and/or the Fe(II)/Fe(III) ratios. The particles are isolated and uniformly distributed within the matrix. The materials were characterized by electron microscopy, electron energy loss spectroscopy, Moessbauer spectroscopy, infrared spectroscopy, small angle X-ray scattering, wide angle X-ray scattering and magnetic measurements. The nanocomposites obtained are useful model material for the study of the magnetic behavior of magnetic nanoparticles, as well as for use in many industrial and biomedical applications

  13. Magnetic properties and microwave absorption properties of short ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Magnetic properties and ... Ying Liu1 Chengwen Qiang2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China ...

  14. Magnetic properties and microwave absorption properties of short ...

    Indian Academy of Sciences (India)

    The morphology and thickness of the. Ni–Fe/CF composites were analysed on a Hitachi S-4800 field-emission SEM operated at an accelerating voltage of. 5 kV. The magnetic properties of the Ni–Fe/CF compos- ites were measured with a Lake Shore 7304 vibrating sam- ple magnetometer (VSM) at room temperature.

  15. Spectroscopic properties of transition elements and their related magnetic properties

    International Nuclear Information System (INIS)

    Porcher, P.; Malta, O.L.

    1988-01-01

    The optical and magnetic properties of transition elements (nd N and nf N ions) are analysed. The phenomenological parameters introduced in the crystal-ligand field theory, the free ion interactions and crystalline matrix as well as electrostatic repulsion are studied. (M.J.C.) [pt

  16. Magnetic properties of magnetic glass-like carbon prepared from furan resin alloyed with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kazumasa, E-mail: naka@sss.fukushima-u.ac.jp [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Okuyama, Kyoko [Materials Science Area, Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Takase, Tsugiko [Institute of Environmental Radioactivity (IER), Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)

    2017-03-01

    Magnetic glass-like carbons that were heat-treated at different temperatures or were filled with different magnetic nanoparticle contents were prepared from furan resin alloyed with magnetic fluid (MF) or Fe{sub 3}O{sub 4} powder in their liquid-phase states during mixing. Compared to the Fe{sub 3}O{sub 4} powder-alloyed carbon, the MF-alloyed carbon has highly dispersed the nanoparticles, and has the excellent saturation magnetization and coercivity. It is implied that saturation magnetizations are related to changes in the types of phases for the nanoparticles and the relative intensities of X-ray diffraction peaks for iron and iron-containing compounds in the carbons. Additionally, the coercivities are possibly affected by the size and crystallinity of the nanoparticles, the relative amounts of iron, and the existence of amorphous compounds on the carbon surfaces. - Highlights: • Magnetic glass-like carbons were prepared from furan resin alloyed with magnetic fluid. • The nanoparticles of MF-alloyed GLCs were highly dispersed. • MF-alloyed GLCs had excellent magnetic properties compared to powder-alloyed ones. • The magnetic properties changed with treatment temperature and nanoparticle content. • The changes in magnetic properties were investigated with XRD and FE-SEM.

  17. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  18. Magnetic Properties of selected Prussian Blue Analogs

    Science.gov (United States)

    Shrestha, Manjita

    Prussian Blue Analogs (PBAs) of composition M[M(C,N)6 ] 2.xH2O are bimetallic cyanide complexes, where M and M are bivalent or trivalent transition metals and x is number of water molecule per unit cell. The PBAs form cubic framework structures, which consist mostly of alternating MIIIN6 and MIIC 6 octahedrals. However, occupancies of the octrahedrals are not perfect: they may be empty and the charges are balanced by the guest water molecules at the lattice site (C or N site) or the interstitial site (between the octahedrals) of the unit cell. Most (but not all) PBAs exhibit negative thermal expansion behavior, i.e. volume decrease with increasing temperature. Another area of interest in PBA research is the occurrence of unusual magnetic properties. Similar to other molecular magnets, large crystal-field splitting due to the octrahedral environment may result in a combination of low- or high-spin configurations of the localized magnetic moments, i.e. spin crossover effects may be found. My dissertation focuses on the magnetic properties of the selected 3d transition-metal PBAs, namely metal hexacyanochromates M3[Cr(C,N)6 ]2.xH2O, metal hexcyanoferrates M3[Fe(C,N)6]2.xH2O and metal hexcyanocobaltates M3[Co(C,N)6]2 .xH2O where M = Mn, Co, Ni and Cu. In particular, I analyzed the temperature and field dependencies of the bulk magnetic response of those PBAs. My results show that the magnetic susceptibility of all studied PBAs follows the Curie-Weiss behavior in the paramagnetic region up to room temperature; however, some of the compounds exhibit long-range magnetic order at lower temperatures (ferromagnetic or antiferromagnetic). In particular, the data provide evidence for magnetic ground states for most of the metal hexacyanochromates and all of the metal hexacyanoferrates but none of the hexacyanocobaltates that were studied. For each of the compounds, my analysis provides a measure of the effective magnetic moment, which is then compared with the predicted

  19. Rotational properties of magnetic chemically peculiar stars

    Science.gov (United States)

    Netopil, M.; Paunzen, E.; Hümmerich, S.; Bernhard, K.

    2018-01-01

    The magnetic chemically peculiar (mCP) stars of the upper main sequence exhibit strong and globally organized magnetic fields that are inclined to the rotational axis and facilitate the development of surface abundance inhomogeneities resulting in photometric and spectroscopic variability. Photometric time series data are much easier to obtain than spectroscopic/polarimetric data or are available from large surveys, thus the number of known rotational periods increased significantly during the last years. Furthermore, Gaia data allow us to place an unprecedentedly large sample of mCP stars in the Hertzsprung-Russell diagram and to investigate evolutionary effects. In this paper we review the rotational properties of mCP stars and discuss open issues of stellar rotation in the presence of strong magnetic fields.

  20. Thickness dependent properties of magnetic ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Bach Thanh [Faculty of Physics, Hanoi University of Science, VNU, 334 Nguyen Trai, Hanoi (Viet Nam); Thao, Pham Huong, E-mail: hthao82@gmail.com [Faculty of Physics, Hanoi University of Science, VNU, 334 Nguyen Trai, Hanoi (Viet Nam); Faculty of Physics, Hue College of Education, 32 Le Loi, Thua Thien Hue (Viet Nam)

    2013-10-01

    The dependence of magnetic properties on the thickness of few-layer thin films is investigated at finite temperature using the functional integral method for solving the Heisenberg spin model. The temperature dependence of the ultra-thin film's magnetization and Curie temperature are calculated in terms of the mean field theory and of the Gaussian spin fluctuation approximations. It has been shown that both Curie temperature and temperature interval, where the magnetization is non-zero, are strongly reduced with the thickness reduction by using the spin fluctuation approximations in comparison with the mean field results. Curie temperature dependence on the film thickness calculated numerically well agrees with the experimental data for Ni/Cu(1 0 0) and Ni/Cu(1 1 1) ultrathin films.

  1. General properties of magnetic CP stars

    Science.gov (United States)

    Glagolevskij, Yu. V.

    2017-07-01

    We present the review of our previous studies related to observational evidence of the fossil field hypothesis of formation and evolution of magnetic and non-magnetic chemically peculiar stars. Analysis of the observed data shows that these stars acquire their main properties in the process of gravitational collapse. In the non-stationary Hayashi phase, a magnetic field becomes weakened and its configuration complicated, but the fossil field global orientation remains. After a non-stationary phase, relaxation of young star's tangled field takes place and by the time of joining ZAMS (Zero Age Main Sequence) it is generally restored to a dipole structure. Stability of dipole structures allows them to remain unchanged up to the end of their life on the Main Sequence which is 109 years at most.

  2. Sintered soft magnetic materials. Properties and applications

    Science.gov (United States)

    Bas, J. A.; Calero, J. A.; Dougan, M. J.

    2003-01-01

    A comparison is presented of the characteristics and production requirements of a variety of materials used to produce sintered soft magnetic parts. These include pure iron, phosphorous-iron, silicon-iron, nickel-iron, and cobalt-iron, together with new coated materials based on encapsulated iron powders. In these bonded materials an organic and/or inorganic insulator is used to coat the metallic powder particles giving a magnetic composite. The suitability of the different materials for use in both direct and alternating current applications is reviewed, and examples are provided of their application in both the automotive and other sectors. The results of a comparative study of motors using stators and rotors based on both conventional laminated materials and the insulated iron powders are presented, in which the new materials show advantages of reduced hysteresis losses at high frequencies, and isotropy of magnetic properties. Nevertheless, the applications of these materials in electrical motors requires the modification of existing designs.

  3. The critical properties of magnetic films

    International Nuclear Information System (INIS)

    Saber, M.; Ainane, A.; Essaoudi, I.; Miguel, J.J. de

    2010-01-01

    Within the framework of the transverse spin-1/2 Ising model and by using the effective field theory with a probability distribution technique that accounts for the self spin correlations, we have studied the critical properties of an L-layer film of simple cubic symmetry in which the exchanges strength are assumed to be different from the bulk values in N S surface layers. We derive and illustrate the expressions for the phase diagrams, order parameter profiles and susceptibility. In such films, the critical temperature can shift to either lower or higher temperature compared with the corresponding bulk value. We calculate also some magnetic properties of the film, such as the layer magnetizations, their averages and their profiles and the longitudinal susceptibility of the film. The film longitudinal susceptibility still diverges at the film critical temperature as does the bulk longitudinal susceptibility.

  4. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  5. Microstructure, magnetic properties and magnetic hardening in 2:17 Sm-Co magnets

    International Nuclear Information System (INIS)

    Tang, W.; Zhang, Y.; Hadjipanayis, G.C.

    2002-01-01

    A comprehensive and systematic study has been made on Sm(Co,Fe,M,L) z magnets (M=Cu or Ni, and L=Zr or Ti) to completely understand the effects of composition and processing on the microstructure and magnetic properties of magnets. Ti-containing magnets do not have a lamellar phase but exhibit only a cellular microstructure, resulting in a much lower coercivity (below 10 kOe). Ni-containing magnets exhibit a perfect cellular/lamellar microstructure, but without a large domain wall energy gradient at the interface of the 2:17 and 1:5 phases, leading to a low coercivity. Only in the magnets containing both Cu and Zr, a uniform and stable cellular/lamellar microstructure with a high domain wall energy gradient across the 1:5 phase is formed, resulting in high coercivity. These results indicate that the conditions for effective magnetic hardening are: (1) Formation of a cellular/lamellar microstructure, and (2) establishment of a domain wall energy gradient at the cell boundaries. Based on all of these experimental results, the magnetization reversal mechanism of 2:17 Sm-Co magnets can be explained by both the domain wall pinning and nucleation models. The nucleation mechanism holds at any temperature in the Cu-rich magnets, and only above the Curie temperature of the 1:5 phase in the alloys with the lower Cu content. In these cases, the 2:17 cells become magnetically decoupled. (orig.)

  6. The magnetic properties of mill scale-derived permanent magnet

    International Nuclear Information System (INIS)

    Woon, H.S.; Hashim, M.M.; Yahya, N.; Zakaria, A.; Lim, K.P.

    2005-01-01

    In the permanent magnet SrO-FeO-Fe 2 O 3 system, there exist several magnetically ordered compounds with a stable phase at room temperature. The most important are the M(SrFe 12 O 19 ), X(SrFe 15 O 23 ) and W(SrFe 18 O 27 ) phases with hexagonal close packed structure. In this project, M(SrFe 12 O 19 ) was prepared using mill scale, a steel-maker byproduct, as raw material. The Malaysia steel industry generates approximately 30,000 metric tons of waste products such as mill scale every year. Transportation and disposal of the byproducts are costly and the environmental regulations are becoming stricter. Hence, local steel mills are to find new ways to recycle the waste as a feedstock for the steel-making process or as a saleable product. The M(SrFe 12 O 19 ) was synthesized using the conventional ceramic process. The formation of the SrFe 12 O 19 was confirmed by X-ray diffraction. The magnetic properties such as the energy product (BH)max, coercive force (iHc) and remanence (Br) were also reported in this paper. (Author)

  7. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  8. Electronic, magnetic and mechanical properties of (Fe,Ni)2Nb from density functional theory

    Science.gov (United States)

    Qi, J. J.; Zhou, Y.; Wang, W.; Qian, L. H.; Lv, Z. Q.; Fu, W. T.

    2018-04-01

    A comprehensive analysis of the phase stability, electronic structure, magnetic and mechanical properties of the Laves phases Fe2Nb and Ni2Nb with C14, C15 and C36 structures has been presented using first-principles calculations. The effects of pressure on the formation energy and magnetic properties of Fe2Nb and Ni2Nb have been discussed. The effects of the composition on the mechanical properties of (Fe,Ni)2Nb have also been discussed. The results show that the electrons in Fe2Nb transfer from Fe to Nb, while the electrons shift from Nb to Ni in Ni2Nb. Fe2Nb and Ni2Nb with C14, C15 and C36 structure are of strong metallicity, and the metallicity of C15 phase is stronger than that of C14 and C36 types. The magnetic moments of Fe2Nb are similar to each other, and the value of C14-Fe2Nb is little bigger than that of the two others. The magnetic moments of Fe2Nb decrease with increasing pressure and the values decline evidently from 0 to 20 GPa. The hardness of C15 phase, with stronger metallicity, is lower than that of C14 phase and C36 phase. For (Fe,Ni)2Nb, the hardness decreases with increasing Ni and the ability to resist deformation increases with decreasing Ni.

  9. Hygroscopic properties of magnetic recording tape

    Science.gov (United States)

    Cuddihy, E. F.

    1976-01-01

    Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.

  10. Synthesis, structure and magnetic properties of the polyoxovanadate ...

    Indian Academy of Sciences (India)

    Unknown

    equipped with a normal focus, 2⋅4 kW sealed tube. X-ray source (Mo Kα radiation, λ = 0⋅71073 Å) op- ..... spin values decreases, as the Zeeman coupling to these states is stronger than to the states with smaller ... Frustration effect has been shown to be one of the strong interesting phenomena in many of the magnetic.

  11. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  12. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Haracz, S.; Hilgendorff, M.; Rybka, J.D.; Giersig, M.

    2015-01-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  13. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further...... approximations, be reduced to the Stoner model. Results for the volume dependence of the ferromagnetic moment and the electronic pressure of bcc, fcc and hcp Fe are presented, together with theoretical values for the equilibrium atomic volume, the bulk modulus, the ferromagnetic moment, the spin susceptibility...

  14. Effect of process on the magnetic properties of bonded NdFeB magnet

    International Nuclear Information System (INIS)

    Li, J.; Liu, Y.; Gao, S.J.; Li, M.; Wang, Y.Q.; Tu, M.J.

    2006-01-01

    The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm 3 and the maximum energy product can reach 114 kJ/m 3

  15. Effect of process on the magnetic properties of bonded NdFeB magnet

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Liu, Y. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)]. E-mail: liuying5536@163.com; Gao, S.J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Li, M. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Wang, Y.Q. [South-West Magnetic Science and Technology Developing Company, Mianyang, 621600 (China); Tu, M.J. [School of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)

    2006-04-15

    The effects of magnetic separation, coupling treatment, lubricating treatment, preform and biaxial molding on the density and magnetic properties of bonded NdFeB magnet were investigated. The results demonstrate that magnetic separation separates the powders with low coercive force; coupling treatment improves the interfaces between the powders and the binders; decrease in volume fraction of the binder increases magnetic properties of the magnet; granular arrangement improves both the magnetic and mechanical properties when powders are arranged in certain size; lubricating treatment improves the formability of the magnet and preform and biaxial molding improves both density and magnetic properties greatly. Combining these methods, the density of the bonded NdFeB magnet can reach 6.52 g/cm{sup 3} and the maximum energy product can reach 114 kJ/m{sup 3}.

  16. Modelling dielectric and magnetic properties of ferroconcrete

    Directory of Open Access Journals (Sweden)

    T. Frenzel

    2008-05-01

    Full Text Available This contribution discusses the modelling and parameterization of dielectric and magnetic properties of ferroconcrete by using numerical electromagnetic field analysis software. The software is based on the Method of Moments (MoM. The shielding effectiveness (SE of the ferroconcrete DUT was already measured in a study by order of the government. According to these results, the ferroconcrete DUT is modelled and calculated. Therefore the DUT is subdivided into two parts. The first part represents the reinforcement mesh; the second part represents the lossy concrete with complex permittivity. Afterwards, the reflection and transmission properties of numerical analysed building materials are validated and compared with the measurement results in a frequency range of 30–1000 MHz.

  17. Photoelectric properties of magnetically sensitive MOS structures

    Science.gov (United States)

    Davydov, V. N.; Lanskaya, O. G.; Lilenko, E. P.; Nesmelov, S. N.

    1998-05-01

    The photoelectric properties of MOS structures having compensation regions near the field electrode have been studied experimentally. It is shown that the presence of such regions can lead to the appearance of a number of features in the integrated photoelectric properties: the presence of a large photovoltage signal in enhancement, dependence of the form of the photovoltage frequency dependence on the intensity of the light flux, and distortion of the shape of the photovoltage signal in inversion. The presence of compensation regions can be established using measurements of the distribution of the photovoltage over the area of the structure and measurements of the voltage dependence of the phase of the integrated photovoltage signal. The increase or decrease of the photovoltage signal in enhancement after exposure to a weak magnetic field is due to the rearrangement of the impurity-defect structure in the near-surface layer of the semiconductor, leading to the appearance of compensated semiconductor regions near the field electrode.

  18. Serrated magnetic properties in metallic glass by thermal cycle

    International Nuclear Information System (INIS)

    Ri Myong-Chol; Sohrabi, Sajad; Ding Da-Wei; Wang Wei-Hua; Dong Bang-Shao; Zhou Shao-Xiong

    2017-01-01

    Fe-based metallic glasses (MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe 78 Si 9 B 13 glassy ribbon. The values of magnetic induction (or magnetic flux density) B and coercivity H c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall, increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry. (paper)

  19. Electrical and magnetic properties of new copper arylcarboxylates

    Science.gov (United States)

    Cueto, Senida; Rys, Paul; Rys, Franz S.; Sanjinez, Rosendo; Peter Straumann, Hans

    1992-02-01

    The magnetic and electrical properties of new copper arylcarboxylates are presented. Special emphasis on copper(II) terephthalate trihydrate (CuTT) is given, and the magnetic and electrical properties are correlated with the crystal structure, recently determined by us. We have obtained new conductor materials by partial reduction of CuTT. The properties of these new compounds are discussed.

  20. Magnetic properties of Proxima Centauri b analogues

    Science.gov (United States)

    Zuluaga, Jorge I.; Bustamante, Sebastian

    2018-03-01

    The discovery of a planet around the closest star to our Sun, Proxima Centauri, represents a quantum leap in the testability of exoplanetary models. Unlike any other discovered exoplanet, models of Proxima b could be contrasted against near future telescopic observations and far future in-situ measurements. In this paper we aim at predicting the planetary radius and the magnetic properties (dynamo lifetime and magnetic dipole moment) of Proxima b analogues (solid planets with masses of ∼ 1 - 3M⊕ , rotation periods of several days and habitable conditions). For this purpose we build a grid of planetary models with a wide range of compositions and masses. For each point in the grid we run the planetary evolution model developed in Zuluaga et al. (2013). Our model assumes small orbital eccentricity, negligible tidal heating and earth-like radiogenic mantle elements abundances. We devise a statistical methodology to estimate the posterior distribution of the desired planetary properties assuming simple lprior distributions for the orbital inclination and bulk composition. Our model predicts that Proxima b would have a mass 1.3 ≤Mp ≤ 2.3M⊕ and a radius Rp =1.4-0.2+0.3R⊕ . In our simulations, most Proxima b analogues develop intrinsic dynamos that last for ≥4 Gyr (the estimated age of the host star). If alive, the dynamo of Proxima b have a dipole moment ℳdip >0.32÷2.9×2.3ℳdip , ⊕ . These results are not restricted to Proxima b but they also apply to earth-like planets having similar observed properties.

  1. Hot magnetized nuclear matter: Thermodynamic and saturation properties

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Z. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Bordbar, G.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha, Maragha (Iran, Islamic Republic of)

    2017-03-15

    We have used a realistic nuclear potential, AV{sub 18}, and a many-body technique, the lowest-order constraint variational (LOCV) approach, to calculate the properties of hot magnetized nuclear matter. By investigating the free energy, spin polarization parameter, and symmetry energy, we have studied the temperature and magnetic field dependence of the saturation properties of magnetized nuclear matter. In addition, we have calculated the equation of state of magnetized nuclear matter at different temperatures and magnetic fields. It was found that the flashing temperature of nuclear matter decreases by increasing the magnetic field. In addition, we have studied the effect of the magnetic field on liquid gas phase transition of nuclear matter. The liquid gas coexistence curves, the order parameter of the liquid gas phase transition, and the properties of critical point at different magnetic fields have been calculated. (orig.)

  2. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests.

    Science.gov (United States)

    Kennedy, Nabla M; Robertson, Susan J; Green, D Scott; Scholefield, Scott R; Arocena, Joselito M; Tackaberry, Linda E; Massicotte, Hugues B; Egger, Keith N

    2015-09-01

    Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.

  3. Effect of annealing process of iron powder on magnetic properties ...

    Indian Academy of Sciences (India)

    Iron powder magnetic cores are used as soft magnetic rotors, in micro special motors such as BS brake motors, refrigerator compressor motors and brushless servo motors. Heat treatment of iron powder played an important role in the magnetic properties and loss of the motor cores. After the annealing process, the cracks ...

  4. Effect of annealing process of iron powder on magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Iron powder magnetic cores are used as soft magnetic rotors, in micro special motors such as BS brake motors, refrigerator compressor motors and brushless servo motors. Heat treatment of iron powder played an important role in the magnetic properties and loss of the motor cores. After the annealing process,.

  5. Tailoring the bandgap and magnetic properties by bismuth ...

    Indian Academy of Sciences (India)

    2017-11-30

    Nov 30, 2017 ... the structural distortions through Cr–O polyhedral, which are evident from Raman scattering studies. The observed structural and magnetic ... Raman spectroscopy; magnetic properties; optical bandgap. 1. Introduction. Orthochromites, RCrO3 ... and their complex magnetic interactions. These compounds.

  6. Crystal Fields and the Magnetic Properties of Praseodymium and Neodymium

    DEFF Research Database (Denmark)

    Johansson, Torben; Lebech, Bente; Nielsen, Mourits

    1970-01-01

    The magnetic properties of Pr and Nd single crystals have been studied by neutron-diffraction and susceptibility measurements. In contrast to earlier results on polycrystals, monocrystalline Pr is found not to be magnetically ordered, because of crystal field effects, but a magnetic field induces...

  7. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    Science.gov (United States)

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  8. Synthesis, Characterization, and Enhanced Magnetic Properties of Iron Carbide Nanomaterials

    Science.gov (United States)

    Williams, Brent M.

    Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet alternative with magnetic properties comparable to that of hexaferrite materials. Unfortunately, CoxC magnets have a low magnetic saturation (50 emu g-1) which drastically lowers its energy product. Alternatively, iron carbide has a rather high bulk magnetization value of 140 emu g-1 and is composed of naturally abundant materials. The sole issue of iron carbide is that it is considered an intermediate magnet with properties between those of a hard and a soft magnetic material. The main focus of this work is the enhancement of the hard magnetic properties of iron carbide through size effect, shape anisotropy, magnetocrystalline anisotropy and exchange anisotropy. First a wet synthesis method was developed which utilized hexadecyltrimethylammonium chloride to control particle size, shape, and crystal structure to manipulate the magnetic properties of iron carbide. With this method a semi-hard 50 nm orthorhombic Fe3C phase and a magnetically soft single crystal hexagonal Fe7C3 structure with texture-induced magnetic properties were developed. The properties for both materials were further enhanced through formation of exchange bias Fe3C/CoO nanoaggregates and spring exchange coupling of the ferromagnetically hard and soft phases of Fe7C3/SrFe 12O19. A 33% increase in coercivity

  9. Structure and magnetic properties of Zr–Mn substituted strontium ...

    Indian Academy of Sciences (India)

    nets, telecommunication and components in microwave, high frequency and magneto-optical devices [1–5]. Each of the mentioned applications requires special mag- netic properties; hence, the magnetic properties of hexaferrite must be tuned to make it suitable for different applications. One of the ways to modify magnetic ...

  10. Theoretical investigation of magnetic property in paramagnetic neodymium gallium garnet under high magnetic field

    International Nuclear Information System (INIS)

    Wang Wei; Liu Gongqiang; Wang Jinhui

    2006-01-01

    The magnetic property in neodymium gallium garnet (NdGaG) is studied by the quantum theory. The ground configuration split states are calculated taking into account the spin-orbit interaction and crystal field effect. Taking account of the Nd-Nd exchange interaction, a good agreement between experimental and theoretical values can be obtained for the variation of the magnetic moment with the external magnetic field under 'extreme' conditions (low temperature and high magnetic field). Moreover, the temperature dependence of magnetic moment and the magnetic susceptibility χ is also discussed. Above 30 K, the magnetization (M) shows a linear field (H e ) dependence

  11. Structure and magnetic properties of Alnico ribbons

    Science.gov (United States)

    Zhang, Ce; Li, Ying; Han, Xu-Hao; Du, Shuai-long; Sun, Ji-bing; Zhang, Ying

    2018-04-01

    Al-Ni-Co alloy has been widely applied in various industrial fields due to its excellent thermal and magnetic stability. In this paper, new Al-Ni-Co ribbons are prepared by simple processes combining melt-spinning with annealing, and their phase transition, microstructure and magnetic properties are studied. The results show that after as-spun ribbons are annealed, the grain size of ribbons increases from 1.1 ± 0.3 μm to 4.8 ± 0.8 μm, but still much smaller than that of the bulk Al-Ni-Co alloy manufactured by traditional technologies. In addition, some rod-like Al70Co20Ni10-type, Al9Co2-type and Fe2Nb-type phases are precipitated at grain boundaries; simultaneously, the distinct spinodal decomposition microstructure with periodic ingredient variation is thoroughly formed in all grains by the reaction of α → α1 + α2. Furthermore, the α1 and α2 distribute alternately like a maze, the Fe-Co-rich α1 phase holds 35.9-47.3 vol%, while the Al-Ni-rich α2 phase occupies the rest. Finally, the coercivity of annealed ribbons can reach to 485.3 ± 76.6 Oe. If the annealed ribbons are further aged at 560 °C, their Hc even increases to 738.1 ± 81.0 Oe. The coercivity mechanism is discussed by the combination of microstructure and domain structure.

  12. Ground state magnetic properties of Fe nanoislands on Cu(111)

    International Nuclear Information System (INIS)

    Kishi, Tomoya; David, Melanie; Nakanishi, Hiroshi; Kasai, Hideaki; Dino, Wilson Agerico; Komori, Fumio

    2005-01-01

    We investigate magnetic properties of Fe nanoislands on Cu(111) in the relaxed structure within the density functional theory. We observe that the nanoislands exhibit the ferromagnetic properties with large magnetic moment. We find that the change in the magnetic moment of each Fe atom is induced by deposition on Cu(111) and structure relaxation of Fe nanoislands. Moreover, we examine the stability of ferromagnetic states of Fe nanoislands by performing the total energy calculations. (author)

  13. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    Science.gov (United States)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  14. Magnetic properties of amorphous glass-covered wires

    International Nuclear Information System (INIS)

    Chiriac, H.; Ovari, T.-A.

    2002-01-01

    Magnetic properties of ferromagnetic amorphous glass-covered wires with positive, negative, and nearly zero magnetostriction are reviewed. It is shown that their peculiar magnetic characteristics originate during the specific preparation process through dimensions and induced internal stresses. The role of the magnetoelastic coupling on the domain structure formation and subsequently on the magnetization process is discussed, together with the tailoring possibilities of such magnetic materials

  15. Dopant-mediated structural and magnetic properties of TbMnO3

    Science.gov (United States)

    Sharma, Vinit; McDannald, A.; Staruch, M.; Ramprasad, R.; Jain, M.

    2015-07-01

    Structural and magnetic properties of the doped terbium manganites (Tb,A)MnO3 (A = Gd, Dy, and Ho) have been investigated using first-principles calculations and further confirmed by subsequent experimental studies. Both computational and experimental studies suggest that compared to the parent material, namely, TbMnO3 (with a magnetic moment of 9.7 μ B for Tb3+) Dy- and Ho-ion substituted TbMnO3 results in an increase in the magnetic susceptibility at low fields ( ≤ 10.6 μ B for Dy3+ and Ho3+). The observed spiral-spin AFM order in TbMnO3 is stable with respect to the dopant substitutions, which modify the Mn-O-Mn bond angles and lead to stronger the ferromagnetic component of the magnetic moment. Given the fact that magnetic ordering in TbMnO3 causes the ferroelectricity, this is an important step in the field of the magnetically driven ferroelectricity in the class of magnetoelectric multiferroics, which traditionally have low magnetic moments due to the predominantly antiferromagnetic order. In addition, the present study reveals important insights on the phenomenological coupling mechanism in detail, which is essential in order to design new materials with enhanced magneto-electric effects at higher temperatures.

  16. Nanocomposite permanent magnetic materials Nd-Fe-B type: The influence of nanocomposite on magnetic properties

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2005-01-01

    Full Text Available The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others – the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.

  17. Injection-Molded Soft Magnets Prepared from Fe-Based Metallic Glass: Mechanical and Magnetic Properties

    Science.gov (United States)

    Zhong, Tian; Huang, Ran; Huang, Jia; Ouyang, Wei

    2015-10-01

    The injection-molded metallic glass soft magnet is prepared from the powder of melt-spun ribbon of Fe36Co36B20Si4Nb4 glassy alloy and Nylon 6,6 of wt.% from 5 to 20 via the polymer injection molding technology. The product is characterized by the SEM, mechanical, and magnetic test. The results indicate that this type of materials has comparable mechanical properties and morphological feature with the conventional injection-molded NdFeB magnet and exhibits excellent soft magnetic behaviors. The magnetic properties of the injected magnets are compared with the raw metallic glass, solvent-casted resin bonding magnets, and thermal-treated magnets to confirm that the processing temperature of Nylon injection does not affect the magnetism. The injection technology is a practical processing method to be applied on the metallic glass for potential usage.

  18. Prospects for stronger calandria tubes

    International Nuclear Information System (INIS)

    Ells, C.E.; Coleman, C.E.; Hosbons, R.R.; Ibrahim, E.F.; Doubt, G.L.

    1990-12-01

    The CANDU calandria tubes, made of seam welded and annealed Zircaloy-2, have given exemplary service in-reactor. Although not designed as a system pressure containment, calandria tubes may remain intact even in the face of pressure tube rupture. One such incident at Pickering Unit 2 demonstrated the economic advantage of such an outcome, and a case can be made for increasing the probability that other calandria tubes would perform in a similar fashion. Various methods of obtaining stronger calandria tubes are available, and reviewed here. When the tubes are internally pressurized, the weld is the weak section of the tube. Increasing the oxygen concentration in the starting sheet, and thickening the weld, are promising routes to a stronger tube

  19. Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Niu Xiaodong; Ye Xiaojiang; Li Mingjun; Iwamoto, Yuhiro

    2012-01-01

    The dynamic rheological properties of viscoelastic magnetic fluids in externally applied uniform magnetic fields are investigated by a laboratory-made cone-plate rheometer in this study. In particular, the effects of the magnetic field on the viscoelastic properties (the complex dynamic modulus) of the viscoelastic magnetic fluids are studied. In the investigation, three viscoelastic magnetic fluids are made by mixing a magnetic fluid and a viscoelastic fluid with different mass ratios. As a supplementation to the experimental investigation, a theoretical analysis is also presented. The present study shows that the viscosity and elasticity of the viscoelastic magnetic fluids are significantly influenced by the magnetic field and the concentrations of the magnetic particles in the test fluids. Theoretical analysis qualitatively explains the present findings. - Highlights: ► The dynamic rheological properties of the viscoelastic magnetic fluids in uniform magnetic fields are investigated. ► Both the magnetic field strength and the concentration of the magnetic particles in the fluids have significant effects on the viscosity and elasticity of the viscoelastic magnetic fluids. ► Theoretical prediction and analysis qualitatively explains the present findings.

  20. Electronic properties of magnetically doped nanotubes

    Indian Academy of Sciences (India)

    Effect of doping of carbon nanotubes by magnetic transition metal atoms has been considered in this paper. In the case of semiconducting tubes, it was found that the system has zero magnetization, whereas in metallic tubes the valence electrons of the tube screen the magnetization of the dopants: the coupling to the tube ...

  1. Properties of pseudo magnetism acting between bodies

    Directory of Open Access Journals (Sweden)

    Anish Deva

    Full Text Available A non-contact force has been found to be always acting between two bodies kept close to each other in different media. The properties of the force are different as compared to other non-contact forces such as gravitation and electrostatics, as was shown in our previous work. The aim of this paper is to find how the force behaves when two objects are brought near each other, one being completely immersed in the medium and the other kept just outside. The magnitude of the force in each medium has been calculated through experiments and then compared with each other. The discrepancies obtained between these magnitudes (10−5 N in water and 10−6 N in engine oil and the varied oscillation patterns (amplitude and frequency obtained from graphs have shown that the force behaves differently with different media. In general, the frequency of the force has been found to be of the order 10−2 Hz. The behaviour has also been found to depend on the nature of the material and shape of the object. This correlation has been ascertained by using a Gauss meter to measure the force acting between two objects and also that of an individual object. The polarity of the force i.e. whether attractive or repulsive, has been found to vary across the length of the objects and graphs have been plotted to demonstrate this property. Keywords: Non-contact force, Medium, Magnetism, Gravitation, Frequency

  2. LHC Season 2: A stronger machine

    CERN Multimedia

    Dominguez, Daniel

    2015-01-01

    1) New magnets / De nouveaux aimants 2) Stronger connections / Des jonctions électriques renforcées 3) Safer magnets / Des aimants plus sûrs 4) Higher energy beams / Des faisceaux d’énergie plus élevée 5) Narrower beams / Des faisceaux plus serrés 6) Smaller but closer proton packets / Des groupes de protons plus petits mais plus rapprochés 7) Higher voltage / Une tension plus haute 8) Superior cryogenics / Un système cryogénique amélioré 9) Radiation-resistant electronics / Une électronique qui résiste aux radiations 10) More secure vacuum / Un vide plus sûr

  3. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Martirosyan, K.S.; Galstyan, E.; Hossain, S.M.; Wang Yiju; Litvinov, D.

    2011-01-01

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m 2 /g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO 2 . The activation energy for carbon combustion synthesis of BaFe 12 O 19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H c ∼3000 Oe and M s ∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  4. Magnetic and Electric Properties of , ( Layered Perovskites

    Directory of Open Access Journals (Sweden)

    A. I. Ali

    2013-01-01

    Full Text Available The electric and magnetic properties of layered perovskites have been investigated systematically over the doping range . It was found that both Sr1.5Y0.5CoO4 and Sr1.4Y0.6CoO4 undergo ferromagnetic (FM transition around 145 K and 120 K, respectively. On the other hand, Sr1.3Y0.7CoO4 and Sr1.2Y0.8CoO4 compounds showed paramagnetic behavior over a wide range of temperatures. In addition, spin-glass transition ( was observed at 10 K for Sr1.3Y0.7CoO4. All investigated samples are semiconducting-like within the temperature range of 10–300 K. The temperature dependence of the electrical resistivity, , was described by two-dimensional variable range hopping (2D-VRH model at 50 K < ≤ 300 K. Comparison with other layered perovskites was discussed in this work.

  5. Magnetic nanoparticles: synthesis, ordering and properties

    International Nuclear Information System (INIS)

    Vazquez, M.; Luna, C.; Morales, M.P.; Sanz, R.; Serna, C.J.; Mijangos, C.

    2004-01-01

    Polyol methods to synthesize nanoparticles and their arrays are firstly described. Magnetic nanoparticles self-assemble under particular conditions into spherical superstructures, like CoNi nanoparticles, or planar structures with hexagonal ordering, like FePt nanoparticles. Particles and their arrays are structurally analysed by techniques like TEM, X-ray, etc. Magnetic characterization is firstly performed by VSM magnetomer as a function of the nanoparticles size paying particular attention to the transition from multidomain to single-domain structures. Later on, magnetic exchange coupling effects are discussed including the temperature dependence of magnetic parameters as coercive and exchange bias fields, as well as the influence of field or zero-field cooling processes. Finally, magnetic polymers consisting of magnetic nanoparticles embedded into PVC polymeric matrix are prepared and magnetically analysed

  6. Magnetic and structural properties of nanoparticles of nickel oxide

    Science.gov (United States)

    Shim, Hyunja (Jenny)

    In this dissertation, magnetic properties of NiO nanoparticles (NP) prepared by the sol-gel method in the size range D = 5 nm to 20 nm, with and without oleic acid (OA) coating, are reported. Transmission electron microscopy (TEM) studies show the morphology of the smaller particles to be primarily rod-like, changing over to nearly spherical shapes for D >10 nm. Average sizes D of NP determined by x-ray diffraction (XRD) are compared with the results from TEM. From the analysis of the XRD line intensities, the particle size dependence of the Debye-Waller factors for Ni and O atoms are derived. It is found that the Debye-Waller factors of nickel and oxygen atoms in smaller particles are larger than those in bulk NiO. For the coated and uncoated NiO nanorods of 5 nm diameter, variations of the magnetization M with temperature T (5 K to 370 K) and temperature variations of the EMR (electron magnetic resonance) spectra were measured to determine the respective blocking temperatures TB(m) and TB(EMR). The following differences are noted: (1) TB(m) is reduced from 230 K (uncoated) to 85 K(coated) for H = 25 Oe; (2) Decrease of TB(m) with H is weaker and the ratio TB(EMR)/T B(m) is smaller for the uncoated particles. These differences are due to stronger interparticle interaction present in the uncoated particles. Temperature variation (5 K-300 K) of the AC magnetic susceptibilities (chi' and chi") at various frequencies f (0.1-10,000 Hz) are reported for the coated and uncoated 5 nm diameter nanorods of NiO. Using the peak in chi' as the blocking temperature TB, it is observed that TB increases with increasing f. The data for the two samples fit the Vogel-Fulcher law: f = f0exp[-Ea/k(TB-T0)] with f 0 = 9.2 x 1011 Hz, Ea/k = 1085 K and T0 = 162 K (0 K) for the uncoated (coated) particles. This shows that T0 provides a good measure of the effects of interparticle interactions on magnetic relaxation and that these interactions are essentially eliminated with the OA coating

  7. Control over magnetic properties in bulk hybrid materials

    Science.gov (United States)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  8. Magnetic properties of ultra-small goethite nanoparticles

    DEFF Research Database (Denmark)

    Brok, Erik; Frandsen, Cathrine; Madsen, Daniel Esmarch

    2014-01-01

    Goethite (α-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain...... boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mo...... temperatures most likely due to freezing of spins in canted spin structures. From hysteresis curves we estimate the saturation magnetization from uncompensated magnetic moments to be σs = 0.044 A m2 kg-1 at room temperature. Inelastic neutron scattering measurements show a strong signal from excitations...

  9. Magnetic properties of a doped graphene-like bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, An-Bang [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Jiang, Wei, E-mail: weijiang.sut.edu@gmail.com [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Zhang, Na [Shenyang Normal University, Shenyang 110034 (China)

    2017-05-15

    A doped graphene-like bilayer is described using a four-sublattice Heisenberg model both ferromagnetic and antiferrimagnetic couplings. The magnetic properties of the bilayer system are studied using the Heisenberg model, retarded Green's function and the linear spin-wave approximation. The spin-wave spectra, energy gap, and the magnetization and quantum fluctuation of the system at the ground state are calculated with various intra- and interlayer couplings. The results indicate that the effect of antiferromagnetic exchange coupling on the magnetic properties of the system is significant. Magnetizations at low temperature show intersection points due to the quantum effects.

  10. Correlation of magnetic properties with deformation in electrical steels

    Science.gov (United States)

    Papadopoulou, S.

    2016-03-01

    This paper investigates the utilization of magnetic Barkhausen Noise (MBN) and hysteresis loops methods for the non-destructive characterization of deformed electrical steel samples. For this reason electrical steel samples were subjected to uniaxial tensile tests on elastic and plastic region of deformations. Both the MBN and hysteresis loops were measured. The results shown a strong degradation of the magnetic properties on plastically strains. This was attributed to the irreversible movement of the magnetic domain walls, due to the presence of high dislocation density. The resulting magnetic properties were further evaluated by examining the microstructure of the deformed samples by using scanning electron microscopy.

  11. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Hirofumi Yoshikawa

    2010-02-01

    Full Text Available Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials, and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  12. Magnetic properties of a novel molecule-based ferrimagnet exhibiting multiple magnetic pole reversal

    International Nuclear Information System (INIS)

    Cador, Olivier; Vaz, Maria G.F.; Stumpf, Humberto O.; Mathoniere, Corine

    2001-01-01

    The magnetic properties of a new molecule-based ferrimagnet containing three different spin sources have been studied. Below the magnetic ordering temperature, the magnetic poles reverse once in a small external field as the temperature varies. At a higher field, they reverse twice at temperatures that depend on the measurement process. A double thermal hysteresis is observed in a constant field. These experimental results can be rationalized by a combination of the molecular-field theory (MFT) and magnetic anisotropy

  13. Combined effects of additive elements on the magnetic properties of Fe-Nd-B sintered magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    1996-01-01

    Combined effects of additional elements on the magnetic properties of sintered Fe-Nd-B magnets were studied for two systems: containing both Al or Co and Al and Mo, respectively. It was found that the magnets containing Al and Co exhibit substantially higher coercivities than those with additions of only Al or Co. The improved coercivity for the alloys containing Al and Co, when compared with the quaternary alloys, we attribute to a reduced proportion of the soft magnetic inclusions in the grain boundary area. The investigation of combined effects of Al and Mo additions on the magnetic properties revealed that although both Al and Mo when added separately enhance the properties, their combined effect brought about deterioration of the coercivity. X-ray microanalysis detected Mo, Fe, Nd and Al rich inclusions, existence of which was considered to be the reason for a poor magnetic decoupling of the hard magnetic grains and drop of the coercivity. The magnetic, properties were discussed in the light of phase constitution and their possible influence on the magnetization reversal. Three dimensional diagrams of the magnetic properties versus composition were composed. (author)

  14. Intrinsic and extrinsic magnetic properties of the naturally layered manganites

    International Nuclear Information System (INIS)

    Berger, A.; Mitchell, J. F.; Miller, D. J.; Jiang, J. S.; Bader, S. D.

    1999-01-01

    Structural and magnetic properties of the two-layered Ruddlesden-Popper phase SrO(La 1-x Sr x MnO 3 ) 2 with x = 0.3--0.5 are highlighted. Intrinsic properties of these naturally layered manganites include a colossal magnetoresistance, a composition-dependent magnetic anisotropy, and almost no remanence. Above the Curie temperature there is a non-vanishing extrinsic magnetization attributed to intergrowths (stacking faults in the layered structure). These lattice imperfections consist of additional or missing manganite layers, as observed in transmission electron microscopy. Their role in influencing the properties of the host material is highlighted

  15. Influences of Laser Spot Welding on Magnetic Property of a Sintered NdFeB Magnet

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2016-08-01

    Full Text Available Laser welding has been considered as a promising method to join sintered NdFeB permanent magnets thanks to its high precision and productivity. However, the influences of laser welding on the magnetic property of NdFeB are still not clear. In the present paper, the effects of laser power on the remanence (Br were experimentally investigated in laser spot welding of a NdFeB magnet (N48H. Results show that the Br decreased with the increase of laser power. For the same welding parameters, the Br of magnets, that were magnetized before welding, were much lower than that of magnets that were magnetized after welding. The decrease in Br of magnets after laser welding resulted from the changes in microstructures and, in turn, the deterioration of magnetic properties in the nugget and the heat affected zone (HAZ in a laser weld. It is recommended that the dimensions of nuggets and HAZ in laser welds of a NdFeB permanent magnet should be as small as possible, and the magnets should be welded before being magnetized in order to achieve a better magnetic performance in practical engineering applications.

  16. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  17. Magnetism in nanoparticles: tuning properties with coatings

    International Nuclear Information System (INIS)

    Crespo, Patricia; De la Presa, Patricia; Marín, Pilar; Multigner, Marta; María Alonso, José; Rivero, Guillermo; María González-Calbet, José; Hernando, Antonio; Yndurain, Félix

    2013-01-01

    This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications. (topical review)

  18. Determination of magnetic properties of multilayer metallic thin films

    International Nuclear Information System (INIS)

    Birlikseven, C.

    2000-01-01

    In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the experimental results to the theoretical models, effective magnetization and angles between the ferromagnetic layers were calculated. The correspondence between magnetization and magnetoresistance was evaluated. To see the effect of anisotropic magnetoresistance in the magnetoresistance measurements, a new experimental set-up was build and measurements were taken in this set-up. A series of soft permalloy thin films were made, and temperature dependent resistivity, magnetoresistance, anisotropic magnetoresistance and magnetization measurements were taken

  19. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    Science.gov (United States)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  20. Investigations on structural, optical and magnetic properties of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Investigations on structural, optical and magnetic properties of solution-combustion-synthesized nanocrystalline iron molybdate. KRITHIKADEVI RAMACHANDRAN SIVA CHIDAMBARAM BALRAJ BASKARAN ARULMOZHI MUTHUKUMARASAMY JOHN ...

  1. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  2. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  3. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  4. Magnetic properties of roller-quenched high silicon steel ribbons

    Science.gov (United States)

    Kan, T.; Ito, Y.; Shimanaka, H.

    1982-03-01

    The magnetic properties of high silicon steel ribbons prepared by the roller-quenching method were investigated, and this new material was considered to offer the potential of reducing core losses of electrical machines and power transformers.

  5. Synthesis and magnetic properties of one-dimensional metal ...

    Indian Academy of Sciences (India)

    Unknown

    Synthesis and magnetic properties of one-dimensional metal oxalate networks as molecular-based magnets. †. B P SINGH and B SINGH*. Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India. MS received 23 November 1998; revised 25 October 1999. Abstract. The homo- and ...

  6. Synthesis and magnetic properties of one-dimensional metal ...

    Indian Academy of Sciences (India)

    Unknown

    Molecular-based magnets; magnetic properties; one-dimensional metal oxalate; synthesis and structure of metal-oxalates. 1. Introduction. Synthesis and characterization of the polymetallic com- plexes with a goal to report .... an asymmetric ν(C=O) vibration at 1700 and δ(CO) at ca. 800 cm– 1. In the infrared spectra (figures ...

  7. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    National School of Applied Sciences, Safi, Morocco. 5Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France. MS received 17 October 2012; revised 17 December 2012. Abstract. Structural and magnetic properties of Sn0⋅95Co0⋅05O2 nanocrystalline and diluted magnetic semicon-.

  8. Synthesis, structure and magnetic properties of the polyoxovanadate ...

    Indian Academy of Sciences (India)

    The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based on the Heisenberg model, in addition to correlating to ...

  9. Magnetic properties and spin kinetics in Kondo lattices

    Directory of Open Access Journals (Sweden)

    S.I. Belov, A.S. Kutuzov

    2015-12-01

    Full Text Available We present a theoretical model to describe unusual properties of Kondo lattices. The influence of the Kondo effect on the static magnetic susceptibility and electron spin resonance (ESR parameters is studied in a simple molecular field approximation together with a scaling perturbative approach. Theoretical expressions well agree with the ESR and static magnetic susceptibility experimental data.

  10. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high-en...

  11. Structural and magnetic properties of zinc- and aluminum ...

    Indian Academy of Sciences (India)

    a decrease in ferrimagnetic behaviour. Keywords. Ferrite; co-precipitation; magnetization; AC susceptibility. PACS Nos 78.67.Bf; 01.30.-y; 85.70.Ge. 1. Introduction. The method of preparation plays a very important role with regard to the chemical, structural and magnetic properties of spinel ferrite [1]. Ferrites are commonly ...

  12. High temperature magnetic properties of nanocrystalline Sn0 ...

    Indian Academy of Sciences (India)

    Administrator

    High temperature magnetic properties of nanocrystalline Sn0⋅95Co0⋅05O2. O MOUNKACHI1, E SALMANI2, ... exchange interaction between the magnetic ions and the band electrons. Tin dioxide (SnO2) is an n-type ... rate must be well controlled for the chemical homogene- ity. The reactants were constantly stirred using ...

  13. Magnetic properties of Fe1-xMnx/Fe nanocomposites

    DEFF Research Database (Denmark)

    Anhøj, Thomas Aarøe; Jacobsen, Claus Schelde; Mørup, Steen

    2004-01-01

    We have prepared nanocomposites of mixtures of ferromagnetic alpha-Fe and antiferromagnetic gamma-Fe50Mn50 nanoparticles, and studied their magnetic and structural properties by magnetization measurements, Mössbauer spectroscopy, and x-ray diffraction. A sample consisting of a 1:1 mixture...

  14. Structural and magnetic properties of granular CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, L.G.; Figueroa, A.I.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Rubín, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Ciencia y Tecnología de Materiales y Fluidos, E-50018 Zaragoza (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain); Deranlot, C.; Petroff, F. [Unité Mixte de Physique CNRS/Thales, F-91767 Palaiseau Cedex, France and Université Paris-Sud, F-191405 Orsay Cedex (France); Ruiz, L.; González-Calbet, J.M [Dept. de Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Brookes, N.B.; Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), CS40220, F-38043 Grenoble Cedex 9 (France); Bartolomé, J. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Dept. de Física de la Materia Condensada, E-50009 Zaragoza (Spain)

    2016-02-15

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk. - Highlights: • CoPd granular nanolayers show perpendicular magnetic anisotropy. • Three magnetic phases are detected: hard-ferro, soft-ferro and superparamagnetism. • The nanoparticles have Co-core and CoPd alloy shell morphology.

  15. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties

    International Nuclear Information System (INIS)

    Li, X.T.; Yue, M.; Liu, W.Q.; Li, X.L.; Yi, X.F.; Huang, X.L.; Zhang, D.T.; Chen, J.W.

    2015-01-01

    The waste Nd–Fe–B sintered magnets up to 500 kg per batch were recycled to manufacture anisotropic sintered magnets by combination of hydrogen decrepitation (HD) and alloying technique. Magnetic properties and thermal stability of both the waste magnets and recycled magnets were investigated. The recycled magnet exhibits magnetic properties with remanence (B r ) of 12.38 kGs, coercivity (H ci ) of 24.89 kOe, and maximum energy product [(BH) max ] of 36.51 MGOe, respectively, which restores 99.20% of B r , 105.65% of H ci , and 98.65% of (BH) max of the waste magnets, respectively. The volume fraction of Nd-rich phase in the recycled magnets is about 10.1 vol.%, which is bigger than that of the waste magnets due to the additive of Nd 3 PrFe 14 B alloy containing more rare earth. The remanence temperature coefficient (α) and coercivity temperature coefficient (β) of the recycled magnets are −0.1155%/K and −0.5099%/K in the range of 288–423 K, respectively, which are comparative to those of the waste magnets. - Highlights: • Large batch recycling of waste Nd–Fe–B sintered magnets were performed. • The recycled magnet restores 99.20% of B r , 105.65% of H ci and 98.65% of (BH) max of the magnet. • The recycled magnets bears bigger volume fraction and better distribution of Nd-rich phase. • The recycled magnets exhibit similar temperature coefficients and maximum working temperature

  16. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  17. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  18. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    structured spinel ferrites such as Ni0.5Zn0.5Fe2O4 and Mn0.67Zn0.33Fe2O4 and also that of the nanocomposite Nd2Fe14B/-Fe permanent magnetic material. The increase in the magnetic transition temperature of Ni-Zn ferrite from 538 K in the ...

  19. Magnetic properties of ultra-small goethite nanoparticles

    Science.gov (United States)

    Brok, E.; Frandsen, C.; Madsen, D. E.; Jacobsen, H.; Birk, J. O.; Lefmann, K.; Bendix, J.; Pedersen, K. S.; Boothroyd, C. B.; Berhe, A. A.; Simeoni, G. G.; Mørup, S.

    2014-09-01

    Goethite (α-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mössbauer spectroscopy. The ‘ultra-small’ size of these particles (i.e. that the particles consist of one or only a few grains) allows for more direct elucidation of the particles' intrinsic magnetic properties. We find from ac and dc magnetization measurements a significant upturn of the magnetization at very low temperatures most likely due to freezing of spins in canted spin structures. From hysteresis curves we estimate the saturation magnetization from uncompensated magnetic moments to be σs = 0.044 A m2 kg-1 at room temperature. Inelastic neutron scattering measurements show a strong signal from excitations of the uniform mode (q = 0 spin waves) at temperatures of 100-250 K and Mössbauer spectroscopy studies show that the magnetic fluctuations are dominated by ‘classical’ superparamagnetic relaxation at temperatures above ˜170 K. From the temperature dependence of the hyperfine fields and the excitation energy of the uniform mode we estimate a magnetic anisotropy constant of around 1.0 × 105 J m-3.

  20. Magnetic properties of nano-multiferroic materials

    Science.gov (United States)

    Ramam, Koduri; Diwakar, Bhagavathula S.; Varaprasad, Kokkarachedu; Swaminadham, Veluri; Reddy, Venu

    2017-11-01

    Latent magnetization in the multiferroics can be achieved via the structural distortion with respect to particle size and destroying the spiral spin structure, which plays the vital role in high-performance applications. In this investigation, multifunctional single phase Bi1-xLaxFe1-yCoyO3 nanomaterials were synthesized by co-precipitation technique. The chemical composition, phase genesis, morphology and thermal characteristics of the Bi1-xLaxFe1-yCoyO3 were studied by FTIR, XRD, SEM/EDS, TEM and TGA. XRD studies confirmed single phase distorted rhombohedral structure in Bi1-xLaxFe1-yCoyO3. The novelty in magnetic behavior of the Bi0.85La0.15Fe0.75Co0.25O3 multiferroic at room temperature showed both ferro and anti-ferromagnetic nature with higher order remanent magnetization among other nanocomposites in this study. This magnetic anomaly in Bi0.85La0.15Fe0.75Co0.25O3 is due to doping and size effects on the crystal structure that leads to spin-orbit interactions. Besides, Bi0.85La0.15Fe0.75Co0.25O3 integrated graphene oxide (GO) nanocomposite has shown the change in the magnetic hysteresis that indicates the effect of the semiconducting behavior of GO on the ordered magnetic moments in the multiferroic. This kind of magnetic anomaly could form advanced multiferroic devices.

  1. Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2008-01-01

    In this work, the morphological and magnetic properties of cobalt nanoclusters obtained from two different sulphate electrolyte solutions were studied. The aggregates were electrodeposited onto highly oriented pyrolytic graphite electrodes in overpotential conditions, in order to investigate the cationic influence on the final properties of the aggregates. In both cases, scanning electron microscopy and atomic force microscopy showed random isolated clusters on the electrode surface, where size variations were determined by the electrolyte solution. By using magnetic force microscopy, the distribution of the electrodeposited magnetic material was more clearly observed which gave some insights on the growth mechanism of these aggregates.

  2. Electronic and magnetic properties of ultrathin rhodium nanowires

    CERN Document Server

    Wang Bao Lin; Ren-Yun; Sun Hou Qian; Chen Xiao Shuang; Zhao Ji Jun

    2003-01-01

    The structures of ultrathin rhodium nanowires are studied using empirical molecular dynamics simulations with a genetic algorithm. Helical multishell cylindrical and pentagonal packing structures are found. The electronic and magnetic properties of the rhodium nanowires are calculated using an spd tight-binding Hamiltonian in the unrestricted Hartree-Fock approximation. The average magnetic moment and electronic density of states are obtained. Our results indicate that the electronic and magnetic properties of the rhodium nanowires depend not only on the size of the wire but also on the atomic structure. In particular, centred pentagonal and hexagonal structures can be unusually ferromagnetic.

  3. Magnetic and electrical properties of ITER vacuum vessel steels

    International Nuclear Information System (INIS)

    Mergia, K.; Apostolopoulos, G.; Gjoka, M.; Niarchos, D.

    2007-01-01

    Full text of publication follows: Ferritic steel AISI 430 is a candidate material for the lTER vacuum vessel which will be used to limit the ripple in the toroidal magnetic field. The magnetic and electrical properties and their temperature dependence in the temperature range 300 - 900 K of AISI 430 ferritic stainless steels are presented. The temperature variation of the coercive field, remanence and saturation magnetization as well as electrical resistivity and the effect of annealing on these properties is discussed. (authors)

  4. Magnetic properties of a classical XY spin dimer in a “planar” magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu [Department of Physics, Prairie View A& M University, Prairie View, TX 77446 (United States); Prenga, Dode [Department of Physics, Faculty of Natural Sciences, University of Tirana, Bul. Zog I, Tirana (Albania)

    2016-10-15

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a “planar” external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin–spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks. - Highlights: • Exact magnetic properties of a dimer system of classical XY spins in magnetic field. • Partition function in nonzero magnetic field obtained in closed-form. • Novel exact analytic results are important for spin models in a magnetic field. • Result provides benchmarks to gauge the accuracy of computational techniques.

  5. Structural and magnetic properties of Mg substituted Co nanoferrites

    International Nuclear Information System (INIS)

    Sharma, Jyoti; Parashar, Jyoti; Jadoun, Priya; Saxena, V. K.; Bhatnagar, D.; Sharma, Neha; Yadav, Premlata; Sharma, K. B.

    2016-01-01

    The structural and magnetic properties of magnesium substituted cobalt nano ferrites Co x Mg 1-x Fe 2 O 4 (x= 0.2, 0.4 and 1.0) have been investigated. The structural characterization has been done by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). The magnetic studies indicate that the samples show ferromagnetic behaviour at room temperature as well as at low temperature. The magnetization decreases with Mg content in both the cases due to the less magnetic nature of Mg ions than that of the Co ions.

  6. Thermal to electricity conversion using thermal magnetic properties

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  7. Magnetic Properties of Iron Clusters in Silver

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al-Omari, I.; Bouziane, K. [College of Science, Department of Physics (Oman); Widatallah, H. [Khartoum University, Department of Physics, Faculty of Science (Sudan)

    2004-12-15

    The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

  8. Calculation of microscopic exchange interactions and modelling of macroscopic magnetic properties in molecule-based magnets.

    Science.gov (United States)

    Novoa, J J; Deumal, M; Jornet-Somoza, J

    2011-06-01

    The state-of-the-art theoretical evaluation and rationalization of the magnetic interactions (J(AB)) in molecule-based magnets is discussed in this critical review, focusing first on isolated radical···radical pair interactions and afterwards on how these interactions cooperate in the solid phase. Concerning isolated radical pairwise magnetic interactions, an initial analysis is done on qualitative grounds, concentrating also on the validity of the most commonly used models to predict their size and angularity (namely, McConnell-I and McConnell-II models, overlap of magnetic orbitals,…). The failure of these models, caused by their oversimplified description of the magnetic interactions, prompted the introduction of quantitative approaches, whose basic principles and relative quality are also evaluated. Concerning the computation of magnetic interactions in solids, we resort to a sum of pairwise magnetic interactions within the Heisenberg Hamiltonian framework, and follow the First-principles Bottom-Up procedure, which allows the accurate study of the magnetic properties of any molecule-based magnet in an unbiased way. The basic principles of this approach are outlined, applied in detail to a model system, and finally demonstrated to properly describe the magnetic properties of molecule-based systems that show a variety of magnetic topologies, which range from 1D to 3D (152 references).

  9. Magnetoresistance and magnetic properties of the double perovskites

    International Nuclear Information System (INIS)

    Philipp, J.B.; Majewski, P.; Resinger, D.; Gepraegs, S; Opel, M.; Reb, A.; Alff, L.; Gross, R.

    2004-01-01

    The magnetic double perovskite materials of composition A 2 BB'O 6 with A an alkaline earth ion and B and B' a magnetic and non-magnetic transition metal or lanthanide ions, respectively, have attracted considerable attention due to their interesting magnetic properties ranging from antiferromagnetism to geometrically frustrated spin systems and ferromagnetism. With respect to application in spin electronics, the ferromagnetic double perovskites with BB' = CrW, CrRe, FeMo or FeRe and A = Ca, Ba, Sr are highly interesting due to their in most cases high Curie temperatures well above room temperature and their half-magnetic behaviour. Here, we summarize the structural, magnetotransport, magnetic and optical properties of the ferromagnetic double perovskites and discuss the underlying physics. In particular, we discuss the impact of the steric effects resulting in a distorted perovskite structure, doping effects obtained by a partial replacing of the divalent alkaline earth ions on the A site by a trivalent lanthanide as well as B/B' cationic disorder on the Curie temperature T C , the saturation magnetization and the magnetotransport properties. Our results support the presence of a kinetic energy driven mechanism in the ferromagnetic double perovskites, where ferromagnetism is stabilised by a hybridization of states of the non-magnetic B'- site positioned in between the high spin B-sites. (author)

  10. Hard magnetic property and δM(H) plot for sintered NdFeB magnet

    International Nuclear Information System (INIS)

    Gao, R.W.; Zhang, D.H.; Li, W.; Li, X.M.; Zhang, J.C.

    2000-01-01

    The hard magnetic properties and the interactions between the grains for sintered Nd 16 Fe 73 Co 5 B 6 magnets are investigated by using δM(H) plot technique. The results show that the δM(H) plot of NdFeB sintered magnet can explain the effects of the microstructure (size, shape and orientation of the grains) and the intergrain interactions on the hard magnetic properties of the magnet. However, the value of δM(H) is positive when the applied field is not strong enough, which means that the common δM(H) plot theory is not completely consistent with the sintered NdFeB magnet

  11. Superconductivity and magnetism: Materials properties and developments

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, N.H.; Bay, N.; Grivel, J.C. (eds.) [and others

    2003-07-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T{sub c} superconductivity, magnetic superconductors, MgB{sub 2}, CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  12. Superconductivity and magnetism: Materials properties and developments

    International Nuclear Information System (INIS)

    Andersen, N.H.; Bay, N.; Grivel, J.C.

    2003-01-01

    The 24th Risoe International Symposium on Materials Science focuses on development of new materials, devices and applications, as well as experimental and theoretical studies of novel and unexplained phenomena in superconductivity and magnetism, e.g. within high.T c superconductivity, magnetic superconductors, MgB 2 , CMR materials, nanomagnetism and spin-tronics. The aim is to stimulate exchange of ideas and establish new collaborations between leading Danish and international scientists. The topics are addressed by presentations from 24 invited speakers and by 41 contributed papers. (ln)

  13. Magnetic properties of the binary Nickel/Bismuth alloy

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa; Şarlı, Numan, E-mail: numansarli82@gmail.com

    2017-09-01

    Highlights: • We model and investigate the magnetic properties of the Ni/Bi alloy within the EFT. • Magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc. • Magnetization of the Bi1 is dominant and Ni is at least dominant T < Tc. • Total magnetization of the Ni/Bi alloy is close to those of Ni at T < Tc. • Hysteresis curves are overlap at T < 0.1 and they behave separately at T > 0.1. - Abstract: Magnetic properties of the binary Nickel/Bismuth alloy (Ni/Bi) are investigated within the effective field theory. The Ni/Bi alloy has been modeled that the rhombohedral Bi lattice is surrounded by the hexagonal Ni lattice. According to lattice locations, Bi atoms have two different magnetic properties. Bi1 atoms are in the center of the hexagonal Ni atoms (Ni/Bi1 single layer) and Bi2 atoms are between two Ni/Bi1 bilayers. The Ni, Bi1, Bi2 and Ni/Bi undergo a second-order phase transition from the ferromagnetic phase to paramagnetic phase at Tc = 1.14. The magnetizations of the Ni/Bi alloy are observed as Bi1 > Bi2 > Ni/Bi > Ni at T < Tc; hence the magnetization of the Bi1 is dominant and Ni is at least dominant. However, the total magnetization of the Ni/Bi alloy is close to magnetization of the Ni at T < Tc. The corcivities of the Ni, Bi1, Bi2 and Ni/Bi alloy are the same with each others, but the remanence magnetizations are different. Our theoretical results of M(T) and M(H) of the Ni/Bi alloy are in quantitatively good agreement with the some experimental results of binary Nickel/Bismuth systems.

  14. Magnetic nanofluid properties as the heat transfer enhancement agent

    Directory of Open Access Journals (Sweden)

    Roszko Aleksandra

    2016-01-01

    Full Text Available The main purpose of this paper was to investigate an influence of various parameters on the heat transfer processes with strong magnetic field utilization. Two positions of experimental enclosure in magnetic environment, two methods of preparation and three different concentrations of nanoparticles (0.0112, 0.056 and 0.112 vol.% were taken into account together with the magnetic field strength. Analysed nanofluids consisted of distilled water (diamagnetic and Cu/CuO particles (paramagnetic of 40–60 nm size. The nanofluids components had different magnetic properties what caused complex interaction of forces’ system. The heat transfer data and fluid flow structure demonstrated the influence of magnetic field on the convective phenomena. The most visible consequence of magnetic field application was the heat transfer enhancement and flow reorganization under applied conditions.

  15. Magnetic properties of FeV/MgO-based structures

    Science.gov (United States)

    Bersweiler, Mathias; Watanabe, Kyota; Sato, Hideo; Matsukura, Fumihiro; Ohno, Hideo

    2017-08-01

    We investigate the magnetic properties of Fe100- x V x /MgO-based structures with a V composition x up to 20 at. %. The introduction of V results in the reduction of spontaneous magnetization, the damping constant, and both interfacial and bulk perpendicular magnetic anisotropies. However, the insertion of thin Fe layers at the FeV/MgO interfaces results in an effective perpendicular magnetic anisotropy as large as that of Fe/MgO. The result shows potential for lowering the threshold current for magnetization switching in FeV/MgO-based magnetic tunnel junctions, while maintaining a thermal stability factor similar to that in Fe/MgO-based junctions.

  16. The structural and magnetic properties of holmium/scandium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    The properties of Ho/Sc superlattices grown by molecular beam epitaxy (MBE) have been investigated using X-ray and neutron diffraction techniques. Structural studies reveal the novel existence of more than one a lattice parameter. Examining the magnetic properties, it is found that the Ho 4f...

  17. Modelling of the magnetic and magnetostrictive properties of high ...

    Indian Academy of Sciences (India)

    physical model. The description of functional properties of the magnetic material can be given by the model's parameters – linked with physical properties of the material. That is why ... For the measurements of magnetostrictive characteristics, semiconductor strain- ... Due to the fact that iteration-based method of calcula-.

  18. Sulfur doping effect on microstructure and magnetic properties of Nd-Fe-B sintered magnets

    Science.gov (United States)

    Yang, Fang; Sui, Yan-li; Chen, Cun-guang; Ye, Si-Yang; Li, Ping; Guo, Zhi-meng; Paley, Vladislay; Volinsky, Alex A.

    2018-01-01

    In this paper, the effects of sulfur (S) doping on microstructure and magnetic properties of Nd-Fe-B sintered magnets were studied. With 0.2 wt% S doping, the melting point of the Nd-rich eutectic phases decreased from 1038 K to 1021 K. Clear and continuous grain boundary phases were also formed with smaller grain size. The average grain size was 7.83 μm, which was approximately 1.3 μm smaller than that of the undoped magnets. The coercivity enhancement was attributed to boundary microstructure modification and grain size optimization. The coercivity of the 0.2 wt% S-doped magnets increased from 15.54 kOe to 16.67 kOe, with slight changes of the remanence and the maximum magnetic energy production. The magnetic properties of the overdoped magnets deteriorated, due to the reduction in density and decrease of the volume fraction of the main phase. Globular S precipitates in the Nd-rich triple junctions were hexagonal Nd2O2S phase and tetragonal NdS2 phase. S addition allows reducing Dy usage in magnets with comparable magnetic properties.

  19. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    when the grain size is reduced to 16 nm is correlated to the enhancement in the AB super- exchange interaction ... anisotropy is removed by thermal annealing and thus facilitating the enhancement of the energy product. ... netic recording media, magnetic hyperthermia, drug delivery systems etc. [1]. In this paper we report ...

  20. Structural and magnetic properties of the layered

    Indian Academy of Sciences (India)

    The brownmillerite-type layered compound Ca2.375La0.125Sr0.5GaMn2O8 has been synthesized. The crystal and magnetic structures have been refined by the Rietveld analysis of the neutron powder diffraction patterns at 300 and 20 K. This compound crystallizes in the orthorhombic symmetry under the space group ...

  1. Magnetic properties of the Ce2Fe17-x Mn x helical magnets up to high magnetic fields

    International Nuclear Information System (INIS)

    Kuchin, A.G.; Mushnikov, N.V.; Bartashevich, M.I.; Prokhnenko, O.; Khrabrov, V.I.; Lapina, T.P.

    2007-01-01

    Magnetic properties of the Ce 2 Fe 17- x Mn x , x=0-2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5-1 are helical antiferromagnets and those with 1 B that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce 2 Fe 17- x Mn x compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce 2 Fe 17- x Mn x helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce 2 Fe 17- x Mn x , x=0.5-2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated

  2. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    Science.gov (United States)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  3. Magnetic properties of nano-composite particles

    Science.gov (United States)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  4. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  5. Magnetic properties of nanocomposite Fe-doped SBA-15 magnetic materials

    International Nuclear Information System (INIS)

    Jin, H.X.; Li, L.; Chu, N.J.; Liu, Y.P.; Wang, L.Y.; Lu, Q.; Qian, J.; Sun, L.N.; Tang, Q.; Ge, H.L.; Wang, X.Q.

    2008-01-01

    Fe-doped SBA-15 magnetic materials was synthesized by pH-adjusting method, and then characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). All results showed that the samples presented ferromagnetism and the magnetism improved with the Fe content. Saturation magnetization and coercivity of the as-prepared Fe-doped SBA-15 samples increased with the calcined temperature up to 850 deg. C, followed by decreasing. Furthermore, the magnetic properties at lower temperature (measured at 100 K) of the Fe-doped samples was presented. Finally, the type of the intergranular exchange interaction was conformed by plotting Henkel (δM) formulation

  6. Formation and magnetic properties of Mn-Zn ferrites nanoparticles

    International Nuclear Information System (INIS)

    Kronkalns, G.

    2003-01-01

    The magnetic properties of ferrites are dependent on the crystalline structure and the location of metal ions in the material. The correct crystalline structure of a certain ferrite is formed by a special, very complex, technology. Bulk ferrites are synthesized at high temperatures (>1300 K) under a special, very complex, thermal treatment. On the other hand, the preparation of ferrite nanoparticles for magnetic fluids (MF) synthesis demands another special technology. More commonly used is the wet chemical coprecipitation production technology of magnetic nanoparticles for MF. The ferrites synthesized by the wet chemical method have different magnetic characteristics if compared o the ferrites prepared by standard ceramic methods. In this paper the preparation and physical properties of ultrafine Mn 0.5 Zn 0.5 Fe 2 O 4 ferrite particles and MF on its base, after their special thermal treatment, are studied. (author)

  7. Nd-Fe-B-Co-Al based permanent magnets with improved magnetic properties and temperature characteristics

    International Nuclear Information System (INIS)

    Mizoguchi, T.; Sakai, I.; Niu, H.; Inomata, K.

    1986-01-01

    Magnetic properties of Nd-Fe-B-Co-Al alloy magnets have been studied with respect to both boron and aluminum concentration. Both cobalt and aluminum substitution for iron is remarkably effective for increasing magnetic hardness in the low boron concentration region. The following magnetic properties were attained for Nd/sub 15/Fe/sub 62.5/B5.5Co/sub 16/Al : Br=13.2KG, iHc=11.0k0e, (BH)/sub max/=41.OMGOe and T/sub c/=500 0 C. The reversible temperature coefficient of remanence in the above magnet was -0.071%/deg., approximately one-half that for the Nd/sub 15/Fe/sub 77/B/sub 8/ magnet. It was observed that Laves phase Nd(Fe, Co)/sub 2/ precipitates in cobalt containing magnets. The authors think that the addition of aluminum makes this Nd(Fe,Co)/sub 2/ magnetic phase non-magnetic; which is considered to be the cause of coercivity increase

  8. Synthesis and magnetic properties of Zn Spinel ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Sofer, Z.; Nádherný, L.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Maryško, Miroslav

    2013-01-01

    Roč. 57, č. 2 (2013), s. 162-166 ISSN 0862-5468 R&D Projects: GA ČR GA13-17538S; GA MŠk(CZ) 7AMB12FR019 Institutional support: RVO:68378271 Keywords : Zn spinel * synthesis * magnetic properties * antiferromagnet * bulk ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.434, year: 2013

  9. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    OpenAIRE

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The opti...

  10. Temperature dependence of the magnetic properties of ferromagnetic amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, P.

    1979-01-01

    The magnetic hysteresis properties of amorphous alloys have recently been discussed in terms of an exchange-enhanced applied field. This absolute-zero model is here extended to finite temperatures. The modified treatment predicts a remanent magnetization which is unaffected by thermal activation while the coercive force falls (finally to zero) as temperature increases. Comparison with experiment for TbFe/sub 2/ suggests that regions of volume approx. =7500 A/sup 3/ reverse coherently.

  11. Magnetic properties of fcc Ni-based transition metal alloy

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav; Bruno, P.

    2008-01-01

    Roč. 77, č. 22 (2008), 224422/1-224422/8 ISSN 1098-0121 R&D Projects: GA MŠk OC 150; GA AV ČR IAA100100616; GA ČR GA202/07/0456 Institutional research plan: CEZ:AV0Z10100520 Keywords : Ni-based alloys * magnetic properties * Curie temperatures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  12. Effect of pressure on the magnetic properties of lanthanum manganite

    International Nuclear Information System (INIS)

    Gonchar', L. E.; Leskova, Yu. V.; Nikiforov, A. E.; Kozlenko, D. P.

    2010-01-01

    The crystalline structure of pure lanthanum manganite under external hydrostatic pressure has been studied. The behavior of magnetic properties and nuclear magnetic resonance (NMR) spectra under these conditions is theoretically predicted. It is shown that an increase in the Neel temperature with pressure is not only caused by the general contraction of the crystal, but is also related to certain peculiarities in the baric behavior of the orbital structure.

  13. Magnetic properties of nanostructured CuFe2O4

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Goya, G.F.; Rechenberg, H.R.

    1999-01-01

    The structural evolution and magnetic properties of nanostructured copper ferrite, CuFe2O4, have been investigated by X-ray diffraction, Mossbauer spectroscopy, and magnetization measurements. Nanometre-sized CuFe2O4 particles with a partially inverted spinel structure were synthesized by high......-energy ball milling in an open container with grain sizes ranging from 9 to 61 nm. Superparamagnetic relaxation effects have been observed in milled samples at room temperature by Mossbauer and magnetization measurements. At 15 K, the average hyperfine field of CuFe2O4 decreases with decreasing average grain...... size while the coercive force, shift of the hysteresis loop, magnetic hardness, and saturation magnetization at 4.2 K increase with decreasing average grain size. At 295 K the coercive-field dependence on the average grain size is described, with particles showing superparamagnetic relaxation effects...

  14. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    small horse-shoe magnet (4 mT). The zero-field and in-field (6 T) Mössbauer spectra were recorded using a constant acceleration Mössbauer spectrometer with a 57Co source diffused into a Rh matrix. In the case of Mn0.67Zn0.33Fe2O4, the reagents. FeSO4·7H2O, MnCl2·4H2O, ZnSO4·H2O and Fe2(SO4)3 were used ...

  15. Magnetic properties of neutron-star matter

    International Nuclear Information System (INIS)

    Chao, N.C.

    1975-01-01

    An array of qualitative and quantitative evidence is presented to the effect that neutron-star matter in its ground state is antiferromagnetic rather than ferromagnetic. The energy of pure neutron matter is evaluated as a function of spin polarization by a two-body Jastrow procedure, for densities up to five times that of ordinary nuclear matter. The anti-ferromagnetic state is energetically preferred to states with non-zero spin polarization, and lies considerably lower in energy than the ferromagnetic state. The magnetic susceptibility of the material is calculated as a function of density in the same approximation, with results which are in good agreement with independent estimates [pt

  16. Growth, structure, morphology, and magnetic properties of Ni ferrite films.

    Science.gov (United States)

    Dong, Chunhui; Wang, Gaoxue; Guo, Dangwei; Jiang, Changjun; Xue, Desheng

    2013-04-27

    The morphology, structure, and magnetic properties of nickel ferrite (NiFe2O4) films fabricated by radio frequency magnetron sputtering on Si(111) substrate have been investigated as functions of film thickness. Prepared films that have not undergone post-annealing show the better spinel crystal structure with increasing growth time. Meanwhile, the size of grain also increases, which induces the change of magnetic properties: saturation magnetization increased and coercivity increased at first and then decreased. Note that the sample of 10-nm thickness is the superparamagnetic property. Transmission electron microscopy displays that the film grew with a disorder structure at initial growth, then forms spinel crystal structure as its thickness increases, which is relative to lattice matching between substrate Si and NiFe2O4.

  17. Single crystal Processing and magnetic properties of gadolinium nickel

    Energy Technology Data Exchange (ETDEWEB)

    Shreve, Andrew John [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd2O3 W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.

  18. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  19. Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle

    International Nuclear Information System (INIS)

    Bouhou, S.; El Hamri, M.; Essaoudi, I.; Ainane, A.; Ahuja, R.

    2015-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation function, the thermal and the magnetic properties of a single Ising nanoparticle consisting of a ferromagnetic core, a ferromagnetic surface shell and a ferrimagnetic interface coupling are examined. The effect of the transverse field in the surface shell, the exchange interactions between core/shell and in surface shell on the free energy, thermal magnetization, specific heat and susceptibility are studied. A number of interesting phenomena have been found such as the existence of the compensation phenomenon and the magnetization profiles exhibit P-type, N-type and Q-type behaviors

  20. The Influence of Geometry on the Magnetic Properties of Ybco

    Science.gov (United States)

    Darwin, Michael John

    1995-01-01

    The purpose of the present study was to investigate the influence of geometry on the magnetic properties of the high temperature superconductor YBa_2 Cu_3O_{7 -delta}. In particular, this study was interested in addressing what effects a flat geometry has on the magnetic properties of a superconductor when a magnetic field is applied perpendicular to the flat plane. Much of the past data concerning magnetic hysteresis in these materials has been collected using bulk magnetic measurement techniques. Unfortunately, bulk measurements must be interpreted using models which describe physical behavior apparent only at smaller length scales. To avoid this interpreted step, and to test some traditionally accepted ideas regarding the spatial dependence of current density in these samples, the present study uses a novel approach to observing the local magnetic behavior at the surface of these superconductors. The local magnetic flux density was directly monitored using micro Hall sensors placed at the surface of the sample. It was found that demagnetization effects are extremely important for large aspect ratio samples and that the observed magnetic behavior cannot be described by the standard elliptical approximation. A modified critical state model valid for thin samples was developed which incorporates demagnetization effects for the perpendicular geometry. This model can be used to explain the observed magnetic hysteresis, magnetic relaxation, and the effects transport current has on the critical state. Novel evidence for surface barriers in YBCO thin films is briefly presented. A geometrical barrier to flux penetration is found to exist in a detwinned YBa _2CU_3O _{7-delta} single crystal and also in a YBa_2CU_3 O_{7-delta} polycrystalline system. This barrier cannot exist in samples which have elliptical cross-sections and is the result of the flat geometry.

  1. Electronic and magnetic properties of MnAu nanoparticles

    International Nuclear Information System (INIS)

    Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O; El moussaoui, H.

    2014-01-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles

  2. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    Science.gov (United States)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  3. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    International Nuclear Information System (INIS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-01-01

    Fe 3 O 4 /poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe 3 O 4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe 3 O 4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release

  4. Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders

    Energy Technology Data Exchange (ETDEWEB)

    Zamanpour, Mehdi, E-mail: zamanpour.m@husky.neu.edu; Bennett, Steven; Taheri, Parisa; Chen, Yajie [Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States); Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    Co{sub x}C magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 45 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of Co{sub x}C, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co{sub 2}C and Co{sub 3}C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  5. Measurement of magnetic properties at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    This picture shows part of the low-mu permeameter to measure permeability of stainless steels and other low-mu materials used in superconducting magnets. The sample, a 5 mm diam., 45 mm long rod, is suspended to long leads before being inserted in the test cryostat. For the measurement the sample is surrounded by a flux- measuring coil and placed in the field of a superconducting solenoid. At a given field the sample is removed.During the removal, the voltage induced in the flux-measuring coil is time integrated giving the flux variation. This equipment was developed to select stainless steels and other low-mu materials used in the ISR Prototype Superconducting Qaudrupole. The person is W.Ansorge.

  6. Are melanized feather barbs stronger?

    Science.gov (United States)

    Butler, Michael; Johnson, Amy S

    2004-01-01

    Melanin has been associated with increased resistance to abrasion, decreased wear and lowered barb breakage in feathers. But, this association was inferred without considering barb position along the rachis as a potentially confounding variable. We examined the cross-sectional area, breaking force, breaking stress, breaking strain and toughness of melanized and unmelanized barbs along the entire rachis of a primary feather from an osprey (Pandion haliaetus). Although breaking force was higher for melanized barbs, breaking stress (force divided by cross-sectional area) was greater for unmelanized barbs. But when position was considered, all mechanical differences between melanized and unmelanized barbs disappeared. Barb breaking stress, breaking strain and toughness decreased, and breaking stiffness increased, distally along the rachis. These proximal-distal material property changes are small and seem unlikely to affect flight performance of barbs. Our observations of barb bending, breaking and morphology, however, lead us to propose a design principle for barbs. We propose that, by being thicker-walled dorso-ventrally, the barb's flexural stiffness is increased during flight; but, by allowing for twisting when loaded with dangerously high forces, barbs firstly avoid failure by bending and secondly avoid complete failure by buckling rather than rupturing.

  7. Size-dependent magnetic properties of nickel nanochains

    International Nuclear Information System (INIS)

    He Lin; Zheng Wangzhi; Zhou Wei; Du Honglin; Chen Chinping; Guo Lin

    2007-01-01

    Magnetic properties with three different sizes of Ni nanochains, synthesized by a technique of wet chemical solution, have been investigated experimentally. The sample sizes (average diameter of the nano-particles) are 50, 75, and 150 nm, with a typical length of a few microns. The characterizations by XRD and TEM reveal that the samples consist of Ni nano-particles forming a one-dimensional (1D) chain-like structure. Magnetic properties have been investigated by temperature dependent magnetization M(T) and field dependent magnetization M(H) measurements. The results are explained within the context of the core-shell model. First, the freezing of disordered spins in the shell layer has resulted in a peak structure on the zero-field-cooled (ZFC) M(T) curve. The peak position is identified as the freezing temperature T F . It is well described by the de Almeida-Thouless (AT) equation for the surface spin glass state. Second, the shape anisotropy of the 1D structure has caused a wide separation between the field-cooled (FC) and ZFC M(T) curves. This is mainly attributed to the blocking of the core magnetism by an anisotropy barrier, E A . Third, by the M(H) measurement in the low field region, the open hysteresis loop measured at T = 5 K F is significantly enlarged in comparison with that taken at T>T F . This indicates that a significant part of the contribution to the magnetic irreversibility at T F is arising from the disordered spins in the shell layer. Last, with the reduced sample size, the coercivity, H C , increases whereas the saturation magnetization goes down substantially. These imply that, as the sample size reduces, the effect of shape anisotropy becomes larger in the magnetization reversal process and the contribution to the magnetism from the ferromagnetically ordered core becomes smaller

  8. Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties.

    Science.gov (United States)

    Scheifers, Jan P; Zhang, Yuemei; Fokwa, Boniface P T

    2017-09-19

    Boron's unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB 66 (used as monochromator for synchrotron radiation) up to the most metal-rich Nd 2 Fe 14 B (the best permanent magnet to date). The excellent magnetic properties of the latter compound originate from its unique crystal structure to which the presence of boron is essential. In general, knowing the crystal structure of any given extended solid is the prerequisite to understanding its physical properties and eventually predicting new synthetic targets with desirable properties. The ability of boron to form strong chemical bonds with itself and with metallic elements has enabled us to construct new structures with exciting properties. In recent years, we have discovered new boride structures containing some unprecedented boron fragments (trigonal planar B 4 units, planar B 6 rings) and low-dimensional substructures of magnetically active elements (ladders, scaffolds, chains of triangles). The new boride structures have led to new superconducting materials (e.g., NbRuB) and to new itinerant magnetic materials (e.g., Nb 6 Fe 1-x Ir 6+x B 8 ). The study of boride compounds containing chains (Fe-chains in antiferromagnetic Sc 2 FeRu 5 B 2 ), ladders (Fe-ladders in ferromagnetic Ti 9 Fe 2 Rh 18 B 8 ), and chains of triangles (Cr 3 chains in ferrimagnetic and frustrated TiCrIr 2 B 2 ) of magnetically active elements allowed us to gain a deep understanding of the factors (using density functional theory calculations) that can affect magnetic ordering of such low-dimensional magnetic units. We discovered that the magnetic properties of phases containing these magnetic subunits can be drastically tuned by chemical substitution within the metallic nonmagnetic network. For example, the small hysteresis (measure of magnetic energy storage) of Ti 2 FeRh 5 B 2 can be successively increased up to 24-times by gradually

  9. Structural, elastic, optoelectronic and magnetic properties of ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... In recent times, ternary compounds with chemical formula. CdRE2X4 (RE = rare earth, X = S, Se) .... equation of state (EOS) to obtain the ground state properties of the title compound, such as the lattice ... cubic CdHo2S4 are C11 = 134.76 GPa, C12 = 29.48 GPa and C44 = 23.41 GPa. To the best of our ...

  10. Structural, magnetic and magnetocaloric properties of EuMnO3 perovskite manganite: A comprehensive MCE study

    Science.gov (United States)

    Phebe Kokila, I.; Kanagaraj, M.; Sathish Kumar, P.; Peter, Sebastian C.; Sekar, C.; Annal Therese, Helen

    2018-02-01

    Pervoskite manganite EuMnO3 synthesized by solid-state route was studied for their structural and magnetocaloric properties. EuMnO3 formed a single phase compound in orthorhombic crystal structure with a space group of Pbnm. The zero field cooling and field cooling magnetic responses exhibit an optimal Neel temperature (TN) of 57 K. A stronger magnetic coupling between the EuMnO3 particles are observed by a delay in reaching TN. The magnetocaloric effect analyzed extensively from the negative entropy (‑ΔSm) change of 15.23 JKg‑1K‑1 for EuMnO3, exhibited a Relative Cooling Power (RCP) of ∼211 JKg‑1 at 1.2 T proposing EuMnO3 as a potential magnetic refrigerant.

  11. Magnetic and electrical properties of Cr substituted Ni nano ferrites

    Directory of Open Access Journals (Sweden)

    Katrapally Vijaya Kumar

    2018-03-01

    Full Text Available Nano-ferrites with composition NiCrxFe2-xO4 (where x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 were synthesized through citrate-gel auto combustion technique at moderately low temperature. X-ray analysis shows cubic spinel structure single phase without any impurity peak and average crystallite size in the range 8.5–10.5 nm. Magnetic properties were measured using a vibrating sample magnetometer at room temperature in the applied field of ±6 KOe. The obtained M-H loop area is very narrow, hence the synthesized nano ferrites are soft magnetic materials with small coercivity. Magnetic parameters such as saturation magnetization (Ms, coercivity (Hc, remanent magnetization (Mr and residual magnetization were measured and discussed with regard to Cr3+ ion concentration. Electrical properties were measured using two probe method from room temperature to well beyond transition temperature. The DC resistivity variation with temperature shows the semiconductor nature. Resistivity, drift mobility and activation energy values are measured and discussed with regard to composition. The Curie temperature was determined using DC resistivity data and Loria-Sinha method. The observed results can be explained in detail on the basis of composition.

  12. Magnetic Properties of Different-Aged Chernozemic Soils

    Science.gov (United States)

    Fattakhova, Leysan; Shinkarev, Alexandr; Kosareva, Lina; Nourgaliev, Danis; Shinkarev, Aleksey; Kondrashina, Yuliya

    2016-04-01

    We investigated the magnetic properties and degree of mineral weathering in profiles of different-aged chernozemic soils derived from a uniform parent material. In this work, layer samples of virgin leached chernozem and chernozemic soils formed on the mound of archaeological earthy monument were used. The characterization of the magnetic properties was carried out on the data of the magnetometry and differential thermomagnetic analysis. The evaluation of the weathering degree was carried out on a loss on ignition, cation exchange capacity and X-ray phase analysis on the data of the original soil samples and samples of the heavy fraction of minerals. It was found that the magnetic susceptibility enhancement in humus profiles of newly formed chernozemic soils lagged significantly behind the organic matter content enhancement. This phenomenon is associated with differences in kinetic parameters of humus formation and structural and compositional transformation of the parent material. It is not enough time of 800-900 years to form a relatively "mature" magnetic profile. These findings are well consistent with the chemical kinetic model (Boyle et al., 2010) linking the formation of the soils magnetic susceptibility with the weathering of primary Fe silicate minerals. Different-aged chernozemic soils are at the first stage of formation of a magnetic profile when it is occur an active production of secondary ferrimagnetic minerals from Fe2+ released by primary minerals.

  13. Electronic and magnetic properties of orthorhombic iron selenide

    Science.gov (United States)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  14. Temperature-dependent magnetic properties of a magnetoactive elastomer: Immobilization of the soft-magnetic filler

    Science.gov (United States)

    Bodnaruk, Andrii V.; Brunhuber, Alexander; Kalita, Viktor M.; Kulyk, Mykola M.; Snarskii, Andrei A.; Lozenko, Albert F.; Ryabchenko, Sergey M.; Shamonin, Mikhail

    2018-03-01

    The magnetic properties of a magnetoactive elastomer (MAE) filled with μm-sized soft-magnetic iron particles have been experimentally studied in the temperature range between 150 K and 310 K. By changing the temperature, the elastic modulus of the elastomer matrix was modified, and it was possible to obtain magnetization curves for an invariable arrangement of particles in the sample and in the case when the particles were able to change their position within the MAE under the influence of magnetic forces. At low (less than 220 K) temperatures, when the matrix becomes rigid, the magnetization of the MAE does not show a hysteresis behavior, and it is characterized by a negative value of the Rayleigh constant. At room temperature, when the polymer matrix is compliant, a magnetic hysteresis exists where the dependence of the differential magnetic susceptibility on the magnetic field exhibits local maxima. The appearance of these maxima is explained by the elastic resistance of the matrix to the displacement of particles under the action of magnetic forces.

  15. Microstructure, texture, and magnetic properties of backward extruded NdFeB ring magnets

    International Nuclear Information System (INIS)

    Gruenberger, W.; Hinz, D.; Schlaefer, D.; Schultz, L.

    1996-01-01

    Radially-oriented NdFeB ring magnets have been prepared by backward extrusion of melt-spun material. The average remanence measured in the radial direction reaches values above 1.2 T. Due to the inhomogeneity of the deformation, the magnetic properties and X-ray diffraction patterns revealed a gradual improvement of the alignment from the outer shell to regions near the inner surface of the ring. (orig.)

  16. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaev, D.A.; Krasikov, A.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Dubrovskiy, A.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wroclaw (Poland); Popkov, S.I.; Stolyar, S.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Bayukov, O.A.; Iskhakov, R.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Ladygina, V.P. [Presidium of Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Yaroslavtsev, R.N. [Siberian Federal University, Krasnoyarsk 660041 (Russian Federation)

    2016-07-15

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants K{sub V}≈1.7×10{sup 5} erg/cm{sup 3} and K{sub S}≈0.055 erg/cm{sup 2} have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed. - Highlights: • Ferrihydrite nanoparticles of biogenic origin are obtained. • Magnetic characterization reveals superparamagnetic behavior. • The blocking temperature increases upon the low-temperature (T=160 °C) heat treatment. • The blocking temperature nonlinearly depends on the particle volume. • The bulk and surface magnetic anisotropy constants have been determined.

  17. Neutron investigations of magnetic properties of crystal substances with use of a pulsed magnetic field

    CERN Document Server

    Nitts, V V

    2001-01-01

    Bases for neutron researches of magnetic properties of crystal substances with use of a pulsed magnetic field and analysis of possible application of various neutron sources in this area are submitted. The review of the most interesting physical results is presented. Main investigations on pulsed reactors of JINR are researches on kinetics of the first order reorientational phase transitions induced in single crystals, and also measurements of antiferromagnetic ordering induced by an external magnetic field. Magnetic phase transitions, induced by a field up to 160 kOe in several magnetic ordering substances, were studied in KEK (Japan). Experiment on observation of spin-flop transition in MnF sub 2 was carried out on TRIGA-reactor in a mode of single flashes of power

  18. Scattering and absorption properties of multiply coated magnetic nanoparticles.

    Science.gov (United States)

    Puri, Shruti; Mukhopadhyay, Gautam

    2009-09-01

    The optical properties of a material are characterized by its electric and magnetic susceptibilities. Finding analytical expressions for those quantities for a nanoparticle of arbitrary shape is generally a formidable task. A great deal of insight in to the basic phenomena can be obtained by studying analytically solvable cases, for nanoparticles of ellipsoidal and spherical shapes. We present here our study on the scattering and absorptive properties of multiply coated magnetic spherical and elliptical nanoparticles as functions of frequency of an incident electromagnetic radiation. We will present our results based on the analytical expressions for the dielectric and magnetic susceptibilities derived for such multiply coated nanoparticles. To our knowledge, the latter results are new. We will also present our results based on Maxwell-Garnett theory for a material having uniform distribution of mono dispersed multiply coated nanoparticles.

  19. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)

    2013-08-15

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  20. On magnetic properties of superparamagnets in the Curie point region

    CERN Document Server

    Nikolaev, V I; Eng-Chan, K

    2000-01-01

    The features of the paraprocess in superparamagnetic particles in the Curie point region are discussed. To describe the dependencies of the magnetic properties of superparamagnetic particles on temperature and field, the molecular field theory supplemented with the Langevin model is applied. It is shown that, as in the case of ordinary ferromagnetic particles, the paraprocess in superparamagnetic particles in the region of small fields is determined by the dominant influence of the exchange field inside the particle. The role of the external field is, mainly, to change (or even to give rise to) the exchange field. However, the quantitative characteristics describing the paraprocess in a superparamagnet are completely different. The magnetic susceptibility of the paraprocess chi sub M (M being the specific magnetization of the particle corresponding to its 'relaxation' magnetic moment mu in the field H) at the Curie temperature is independent of the field strength. Under the same conditions, the 'experimentall...

  1. Gd doped Au nanoclusters: Molecular magnets with novel properties

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, magnetic, and optical properties of subnanometer Au N and AuN-1Gd1 gas phase clusters (N = 2 to 8) are systematically investigated in the framework of (time-dependent) density functional theory, using the B3LYP hybrid exchange correlation functional. The size dependent evolution of the gap between the highest occupied and lowest unoccupied molecular orbitals, the magnetism, and the absorption spectra are studied. The simultaneous appearance of large magnetic moments, significant band gaps, and plasmon resonances in the visible spectral region leads to novel multi-functional nanomaterials for applications in drug delivery, magnetic resonance imaging, and photo-responsive agents. © 2013 Elsevier B.V. All rights reserved.

  2. Low temperature properties of the magnetic semiconductor TmTe

    International Nuclear Information System (INIS)

    Matsumura, Takeshi; Nakamura, Shintaro; Goto, Terutaka; Amitsuka, Hiroshi; Matsuhira, Kazuyuki; Sakakibara; Toshiro; Suzuki, Takashi

    1998-01-01

    The magnetic susceptibility, elastic constant, specific heat and magnetization of the magnetic semiconductor TmTe have been measured in detail. A phase transition which is likely to be an antiferro quadrupolar ordering was found to occur at 1.8 K. The specific heat measurements under magnetic fields along the three main crystal axes revealed the unusual characters of this phase transition. The (H-T) phase diagram below 5 T is very similar to that of the antiferro quadrupolar ordering in CeB 6 . Above 5 T, however, the phase line for H parallels (100) begins to close toward T = 0 K. The physical properties in the paramagnetic region at high temperatures are discussed in the mean field approximation. The theoretical fitting of the elastic softening indicates the antiferro inter-ionic quadrupolar interactions. However, the mean field theory can not explain the specific heat results. (author). 50 refs

  3. Structural and magnetic properties of amorphous iron oxide

    Science.gov (United States)

    Yusuf, S. M.; Mukadam, M. D.; De Teresa, J. M.; Ibarra, M. R.; Kohlbrecher, J.; Heinemann, A.; Wiedenmann, A.

    2010-02-01

    The structural and magnetic properties of amorphous Fe2O3 have been studied by polarized neutron small angle scattering, transmission electron microscopy (TEM) and dc magnetization techniques. The small angle neutron scattering (SANS) study shows two different lognormal distributions of particle sizes with mean diameters of ∼4.14 and 1.21 nm with standard deviations 0.33 and 0.40, respectively, and the structure factor corresponds to a mass fractal with a fractal dimension of 2.42. A short-range crystalline nature for these nanoparticles has been confirmed from the high resolution TEM study. The magnetic field and temperature dependent magnetization has been found to scale very well with the SANS signal. It is evident from the field dependent polarized SANS study that the spin clusters do not grow in size under applied field; rather a larger spin alignment occurs under field.

  4. Magnetic properties of checkerboard lattice: a Monte Carlo study

    Science.gov (United States)

    Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2017-12-01

    The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.

  5. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Science.gov (United States)

    Goc, K.; Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L.; Rybak, A.; Kmita, G.; Kapusta, Cz.

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained.

  6. Tailoring the bandgap and magnetic properties by bismuth ...

    Indian Academy of Sciences (India)

    2017-11-30

    Nov 30, 2017 ... Abstract. The intrinsic distortions present in rare-earth orthochromites (RCrO3) observed from lanthanum to lutetium (in. R-site) can influence the magnetic properties like Neel transition and weak ferromagnetic coupling. A nonmagnetic cation with similar ionic radius would be a suitable candidate to ...

  7. Structural, electronic and magnetic properties of MnB2

    Indian Academy of Sciences (India)

    Abstract. The self-consistent ab-initio calculations, based on density functional theory approach and using the full potential linear augmented plane wave method, are performed to investigate both electronic and magnetic properties of the MnB2 compounds. Polarized spin and spin–orbit coupling are included in calculations ...

  8. Structural and magnetic properties of the layered compound Ca2 ...

    Indian Academy of Sciences (India)

    ter physics due to the interesting physical properties revealed by them. Among the low dimensional magnetic materials, two-dimensional compounds of the type. A3B B2O8 (A = La, Ca, Sr, Y and (B ,B) = alkali or transition metal ions) have recently attracted a lot of interest [1–5]. These compounds crystallize in the or-.

  9. Effect of heat treatment on structure and magnetic properties of ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorp- tion and heat treatment processes. We investigated the effect of heat treatment conditions on structure, mor- phology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles ...

  10. Simulations of the magnetic properties experiment on Mars Exploration Rovers

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Worm, E. S.; Bertelsen, P.; Goetz, W.; Kinch, K.; Madsen, M. B.; Merrison, J. P.; Nornberg, P.

    2005-01-01

    We present some of the main findings from simulation studies of the Magnetic Properties Experiment on the Mars Exploration Rovers. The results suggest that the dust has formed via mechanical breakdown of surface rocks through the geological history of the planet, and that liquid water need not have played any significant role in the dust formation processes.

  11. Structural, morphological and magnetic properties of La1 ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Structural, morphological and magnetic properties of La1−NaMnO3 ( ≤ ) nanoparticles produced by the solution combustion method. C O Ehi-Eromosele B I Ita K O Ajanaku A Edobor-Osoh O Aladesuyi S A Adalikwu F E Ehi- ...

  12. Biomonitoring of particulate matter by magnetic properties of Ulmus ...

    African Journals Online (AJOL)

    faraz

    2012-09-11

    Sep 11, 2012 ... Biomonitoring of the particulate matter (PM) helps us to find out quantity and quality of vegetation in different parts of the city and create sustainable urban landscape. This study explains the results of an air pollution biomonitoring in Isfahan (Iran) with regards to the magnetic properties of tree leaves of.

  13. Modelling of the magnetic and magnetostrictive properties of high ...

    Indian Academy of Sciences (India)

    This high correspondence of experimental and modelled characteristics is confirmed by the fact that Pearson r2 indicator is surpassing 99%. 4. Modelling of the magnetostrictive properties. In a simplified model, the magnetostriction λ can be calculated from quadratic equation as a function of magnetization M [11]:. Table 1.

  14. Electrical and Magnetic Properties of Polyvinyl Alcohol-Cobalt ...

    Indian Academy of Sciences (India)

    7

    [14] has reported the electrical transport properties of polyvinyl alcohol- selenium nanocomposite ... of Cobalt Ferrite Nanoparticles. Cobalt Ferrite nanoparticles are synthesized by wet chemical method using raw materials of ... constantly stirred using the magnetic stirrer until the pH level reached to 12. A specified amount.

  15. Synthesis, structure, thermal, transport and magnetic properties of VN ceramics

    Czech Academy of Sciences Publication Activity Database

    Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.

    2016-01-01

    Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016

  16. Strain-induced structural, magnetic and ferroelectric properties of ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... deposited on the composite film surface by DC sputtering techniques. The magnetic measurements of these composite films were performed using a vibratory sample magnetometer. (VSM). Ferroelectric properties of films were measured using a Precision multiferroic analyser. All measurements were per-.

  17. Size Induced Structural and Magnetic Properties of Nanostructured ...

    African Journals Online (AJOL)

    Their structural and magnetic properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) measurements. The average crystallite size of CoFe2O4was observed to increase from 23 to 65 nm as the annealing temperature was increased from ...

  18. Structural, electronic and magnetic properties of MnB 2

    Indian Academy of Sciences (India)

    The self-consistent ab-initio calculations, based on density functional theory approach and using the full potential linear augmented plane wave method, are performed to investigate both electronic and magnetic properties of the MnB2 compounds. Polarized spin and spin–orbit coupling are included in calculations within ...

  19. Structural, morphological and magnetic properties of La1 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Structural, morphological and magnetic properties of La1−NaMnO3 ( ≤ ) nanoparticles produced by the solution combustion method. C O Ehi-Eromosele B I Ita K O Ajanaku A Edobor-Osoh O Aladesuyi S A Adalikwu F E Ehi-Eromosele. Volume 38 ...

  20. magnetic properties of new perovskite-related oxides

    Indian Academy of Sciences (India)

    Ca1/5)(Mn(2/5)–NiTi3/5)O3: Rietveld studies, dielectric and magnetic properties of new perovskite-related oxides. Pika Jha Saroj L Samal Kandalam V Ramanujachary Samuel E Lofland Ashok K Ganguli. Ceramics and Glasses Volume 28 ...

  1. Structural and electronic properties of non-magnetic intermetallic ...

    Indian Academy of Sciences (India)

    Abstract. The structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) crys- tallized in hexagonal phase have been investigated using the full potential linearized augmented-plane wave (FP-. LAPW) method based on the density functional theory (DFT), within the generalized gradient ...

  2. Confinining properties of QCD in strong magnetic backgrounds

    Directory of Open Access Journals (Sweden)

    Bonati Claudio

    2017-01-01

    Full Text Available Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  3. Tailoring magnetic and dielectric properties of rubber ferrite ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Rubber ferrite composites containing various mixed ferrites were prepared for different compositions and various loadings. The magnetic and dielectric properties of the fillers as well as the ferrite filled matrixes were evaluated separately. The results are correlated. Simple equations are proposed to predetermine ...

  4. Structural, electronic and magnetic properties of MnB2

    Indian Academy of Sciences (India)

    Structural, electronic and magnetic properties of MnB2 ... University, Rabat, Morocco; Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9, France; Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat, Morocco; Hassan II Academy of Science and Technology, Rabat, Morocco ...

  5. Structural, electronic and magnetic properties of MnB2

    Indian Academy of Sciences (India)

    4Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat, Morocco. 5Hassan II Academy of Science and Technology, Rabat, ... based on density functional theory approach and using the full potential linear augmented plane wave method, are performed to investigate both electronic and magnetic properties.

  6. Structure and magnetic properties of Zr–Mn substituted strontium ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 5. Structure and magnetic properties of Zr–Mn substituted strontium hexaferrite Sr(Zr,Mn) x Fe 12 − 2 x O 19 nanoparticles synthesized by sol–gel auto-combustion method. S ALAMOLHODA S M MIRKAZEMI Z GHIAMI M NIYAIFAR. Volume 39 Issue 5 ...

  7. Effect of alloying on the electronic structure and magnetic properties ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 26; Issue 1. Effect of alloying on the electronic structure and magnetic properties of Fe, Co and Ni with Au and Ag. Ashish Bhattacharjee Mesbahuddin Ahmed Abhijit Mookerjee Amal Halder. Volume 26 Issue 1 January 2003 pp 199-205 ...

  8. Effect of heat treatment on structure and magnetic properties

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  9. Tailoring the bandgap and magnetic properties by bismuth ...

    Indian Academy of Sciences (India)

    The intrinsic distortions present in rare-earth orthochromites (RCrO 3 ) observed from lanthanum to lutetium (inR-site) can influence the magnetic properties like Neel transition and weak ferromagnetic coupling. A nonmagnetic cationwith similar ionic radius would be a suitable candidate to engineer the inherent distortions ...

  10. Improvement of the microstructure and magnetic properties of sintered NdFeB permant magnets

    International Nuclear Information System (INIS)

    Vial, F.; Rozendaal, E.; Sagawa, M.

    1998-01-01

    A correlation between sintered NdFeB process, microstructure of the products at each step of the process and magnetic properties has been established. To increase (BH) max of sintered NdFeB magnets, the total rare-earth content in the alloy has to be decreased and to keep coercivity as high as possible, the unavoidable oxygen pick-up has to be substantially reduced. The composition improvements tend to create a high sensitivity to form abnormal grain growth which can potentially occur during the sintering operation. Special attention has been given to characterising, understanding the mechanisms and solving this defect which could affect the magnetic properties. In addition, the composition and each step of the process have been optimised to improve magnetic properties, thermal stability and corrosion resistance of the NdFeB permanent magnets. These collaborative studies have resulted in a significant improvement of both remanence and coercivity of the sintered NdFeB permanent magnets, covering a wide coercivity range from 800 to 2500 kA/m (10 to 35 kOe) with respective associated energy products of 400 to 270 kJ/m3 (52 to 35 MGOe). (orig.)

  11. A measurement system for two-dimensional DC-biased properties of magnetic materials

    International Nuclear Information System (INIS)

    Enokizono, M.; Matsuo, H.

    2003-01-01

    So far, the DC-biased magnetic properties have been measured in one dimension (scalar). However, these scalar magnetic properties are not enough to clarify the DC-biased magnetic properties because the scalar magnetic properties cannot exactly take into account the phase difference between the magnetic flux density B vector and the magnetic filed strength H vector. Thus, the magnetic field strength H and magnetic flux density B in magnetic materials must be measured as vector quantities (two-dimensional), directly. We showed the measurement system using a single-sheet tester (SST) to clarify the two-dimensional DC-biased magnetic properties. This system excited AC in Y-direction and DC in X-direction. This paper shows the measurement system using an SST and presents the measurement results of two-dimensional DC-biased magnetic properties when changing the DC exciting voltage and the iron loss

  12. Magnetic minerals in Pliocene and Pleistocene marine marls from Southern Italy : rock magnetic properties and alteration during thermal demagnetization

    NARCIS (Netherlands)

    Van Velzen, A.J.

    1994-01-01

    The rock magnetic properties of two different Pliocene to Pleistocene marine marls from southern Italy are studied. Different conditions during sedimentation have led to two completely different magnetic mineralogies in these marls. Chapters 2, 3 and 4 examine the rock magnetic properties of the

  13. Development of Ferrite-Coated Soft Magnetic Composites: Correlation of Microstructure to Magnetic Properties

    Science.gov (United States)

    Sunday, Katie Jo

    Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and boast high melting temperatures, thus providing adequate electrical barriers between metallic particles. These insulating layers are necessary for reducing eddy current losses by increasing resistivity in order to improve the overall magnetic efficiency and subsequent frequency range. The goals of this work are to correlate ferrite-coated Fe powder composites microstructure for the coating and core powder to magnetic properties such as permeability, coercivity, and core loss. We first explore the relevant concepts of SMC materials from their composition to processing steps to pertinent properties. This thesis employs a suite of characterization techniques for powder and composite properties. We use X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to provide a complete understanding of the effect of processing conditions on ferrite-coated Fe-based SMCs. Magnetic, mechanical, and electrical properties are then analyzed to correlate microstructural features and determine their effect on such properties. In the second part of this thesis, we present a proof of concept study on Al2O3- and Al2O3- Fe3O4-coated Fe powder composites, illustrating magnetization is highly dependent on ferromagnetic volume. We then expand on previous work to compare an ideal, crystalline state using Fe3O 4-Fe thin film heterostructures to a highly strained state using bulk powder studies. Fe3O4-coated Fe composites are produced via mechanical

  14. Gas Marbles: Much Stronger than Liquid Marbles

    Science.gov (United States)

    Timounay, Yousra; Pitois, Olivier; Rouyer, Florence

    2017-06-01

    Enwrapping liquid droplets with hydrophobic particles allows the manufacture of so-called "liquid marbles" [Aussillous and Quéré Nature (London) 411, 924 (2001); , 10.1038/35082026Mahadevan Nature (London)411, 895 (2001), 10.1038/35082164]. The recent intensive research devoted to liquid marbles is justified by their very unusual physical and chemical properties and by their potential for various applications, from microreactors to water storage, including water pollution sensors [Bormashenko Curr. Opin. Colloid Interface Sci. 16, 266 (2011), 10.1016/j.cocis.2010.12.002]. Here we demonstrate that this concept can be successfully applied for encapsulating and protecting small gas pockets within an air environment. Similarly to their liquid counterparts, those new soft-matter objects, that we call "gas marbles," can sustain external forces. We show that gas marbles are surprisingly tenfold stronger than liquid marbles and, more importantly, they can sustain both positive and negative pressure differences. This magnified strength is shown to originate from the strong cohesive nature of the shell. Those interesting properties could be exploited for imprisoning valuable or polluted gases or for designing new aerated materials.

  15. Molecule-based magnets

    Indian Academy of Sciences (India)

    Administrator

    Being weakly coloured, unlike their opaque classical magnet 'cousins' listed above, possibilities of ..... which confers a memory effect on it. Stronger coercive fields are expected for Co. 2+. -based molecular ... of them a colour change, too, occurs reversibly and simultaneously with the change in magnetic properties at.

  16. Effect of Magnetic Hysteresis of the Solid Phase on the Rheological Properties of Mr Fluids

    Science.gov (United States)

    de Vicente, J.; Durán, J. D. G.; Delgado, A. V.; González-Caballero, F.; Bossis, G.

    An experimental investigation is described concerning the effect of the existence of a remanent magnetization of the dispersed particles on the rheological properties of magnetorheological fluids (MRF). Two MRF's were used: (1) solid phase: cobalt ferrite particles + silica gel (1.5% w/w) liquid phase: silicone oil (viscosity 20 mPa.s) and (2) solid phase: carbonyl iron + silica gel; liquid phase; silicone oil. The cobalt ferrite particles were synthetized as monodisperse colloidal spheres with an average diameter of 850 nm. The dependence of the dimensionless shear stress (τ*/φ) vs. Mason number (Mn) fails to scale when a ``magnetorheological hysteresis procedure'' is followed, specially for the higher volume fractions used (~ 7.5%). The yield stress (τy) is first estimated from successive rheograms obtained decreasing the external field (H0) values for different φ. A more precise determination can be done by applying a stress ramp in the oscillatory regime. The critical stress amplitude (τc) needed to exceed the viscoelastic linear region (VLR) is obtained. It is found that both τy and τc strongly depend on the magnetic history of the sample. As expected, the previous results were not obtained in a classical MRF of carbonyl iron particles since they do not present magnetic hysteresis. We conclude that cobalt ferrite suspensions are an other kind of MRF which works at low fields (0 - 17.8 kA/m) with the opposite effect: decrease of the yield stress with the field. This property can be improved using particles with stronger remanent magnetization.

  17. Magnetic properties of sintered high energy sm-co and nd-fe-b magnets

    Directory of Open Access Journals (Sweden)

    Talijan Nadežda M.

    2006-01-01

    Full Text Available Magnetic properties of permanent magnetic materials based on intermetallic compounds of Sm-Co and Nd-Fe-B are in direct dependence on the microstructure. In the first part of this paper, having in mind the importance of the regime of sintering and heat treatment to obtain the optimal magnetic structure, yet another approach in defining the most adequate technological parameters of the sintering process for applied heat treatment conditions was made. The goal of these investigations was to use the correlation that exists between sintering conditions (temperature and time and intensity of the diffraction peak of the (111 plane of the SmCo5 phase to optimize. In the second part a brief overview of high energy magnetic materials based on Nd-Fe-B is presented with special emphasis to the current research and development of high remanent nanocomposite magnetic materials based on Nd-Fe-B alloys with a reduced Nd content. Part of experimental results gained during research of the sintering process of SmCo5 magnetic materials were realized and published earlier. The scientific meeting devoted to the 60th anniversary of Frankel’s theory of sintering was an opportunity to show once more the importance and role of sintering in optimization of the magnetic microstructure of sintered Sm Co5 magnetic materials.

  18. Copper nanoparticles functionalized PE: Preparation, characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic); Orendac, M., E-mail: martin.orendac@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Kolska, Z., E-mail: zdenka.kolska@seznam.cz [Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Cizmar, E., E-mail: erik.cizmar@upjs.sk [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Dendisova, M., E-mail: vyskovsm@vscht.cz [Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, V., E-mail: vaclav.svorcik@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague 6 (Czech Republic)

    2016-12-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Copper nanoparticles were coated on polyethylene via dithiol interlayer. • Prepared samples exhibit excellent structural and magnetic properties. • Studied properties may be utilized in design and fabrication of electronic devices. - Abstract: We report grafting of copper nanoparticles (CuNP) on plasma activated high density polyethylene (HDPE) via dithiol interlayer pointing out to the structural and magnetic properties of those composites. The as-synthesized Cu nanoparticles have been characterized by high-resolution transmission electron microscopy (HRTEM/TEM) and UV–vis spectroscopy. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, energy dispersive X-ray spectroscopy (EDS), zeta potential, electron spin resonance (ESR) and SQUID magnetometry. From TEM and HRTEM analyses, it is found that the size of high purity Cu nanoparticles is (12.2 ± 5.2) nm. It was determined that in the CuNPs, the copper atoms are arranged mostly in the (111) and (200) planes. Absorption in UV–vis region by these nanoparticles is ranging from 570 to 670 nm. EDS revealed that after 1 h of grafting are Cu nanoparticles homogeneously distributed over the whole surface and after 24 h of grafting Cu nanoparticles tend to aggregate slightly. The combined investigation of magnetic properties using ESR spectrometry and SQUID magnetometry confirmed the presence of copper nanoparticles anchored on PE substrate and indicated ferromagnetic interactions.

  19. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Energy Technology Data Exchange (ETDEWEB)

    El Moussaoui, H., E-mail: elmoussaoui.hassan@gmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Mahfoud, T.; Habouti, S. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); El Maalam, K.; Ben Ali, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hamedoun, M.; Mounkachi, O. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid – BP 63, 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4}; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases. - Highlights: • We have studied the microstructural and the magnetic properties of Sn{sub 1-x}MnxFe{sub 2}O{sub 4}. • The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} have a blocking temperature around 100 K. • The Ms and Hc increase with the augmentation of Mn content.

  20. Modification of magnetic properties of polyethyleneterephthalate by iron ion implantation

    International Nuclear Information System (INIS)

    Lukashevich, M.G.; Batlle, X.; Labarta, A.; Popok, V.N.; Zhikharev, V.A.; Khaibullin, R.I.; Odzhaev, V.B.

    2007-01-01

    Fe + ions (40 keV) were implanted into polyethyleneterephthalate (PET) films with fluences of (0.25-1.5) x 10 17 cm -2 . Magnetic properties of the synthesised Fe:PET composites were studied using superconducting quantum interference device (SQUID) technique in temperature range of 2-300 K. For range of fluences (0.5-0.75) x 10 17 cm -2 the samples reveal superparamagnetic behaviour at room temperature. At fluences above 0.75 x 10 17 cm -2 the strong increase of magnetisation and transition to ferromagnetic properties are registered. Analysis of the magnetic hysteresis loops suggests an easy plane magnetic anisotropy similar to that found for thin magnetic films. Zero-field-cooled (ZFC) and field-cooled (FC) temperature measurements of magnetisation are found to be in agreement with earlier observed formation of Fe nanoparticles (NPs) in the implanted layers. The growth and agglomeration of the NPs forming the quasi-continuous labyrinth-like structure in the polymer film at the highest implantation fluence of 1.5 x 10 17 cm -2 is an origin for the transition to the ferromagnetic properties

  1. Study of Cu-doping effects on magnetic properties of Fe-doped ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    doped ZnO; diluted magnetic semiconductors; DOS. 1. Introduction. Magnetism and semiconducting properties can coexist in semiconductor materials by introducing a small fraction of magnetic impurity atoms such as Mn, Cr, Co, Ni, Fe and Cu.

  2. Metallic Amorphous Thin Films and Heterostructures with Tunable Magnetic Properties

    OpenAIRE

    Zamani, Atieh

    2015-01-01

    The primary focus of this thesis is to study the effect of doping on magnetic properties in amorphous Fe100−xZrx alloys. Samples with compositions of x = 7,11.6 and 12 at.% were implanted with different concentrations of H. Moreover, the samples with a composition of x = 7 at.% were also implanted with He, B, C and N. Magnetic measurements were performed, using SQUID magnetometry and MOKE, in order to compare the as-grown and the implanted films. The Curie temperature (Tc) increases and the c...

  3. The magnetic properties of the Am star Alhena

    Science.gov (United States)

    Blazèere, A.; Petit, P.; Neiner, C.

    2017-12-01

    Alhena (γ Gem) is a bright magnetic Am star that exhibit normal Zeeman signature with a positive and negative lobe, contrary to all previously studied Am stars that show the presence of ultra-weak (sub-Gauss) fields with peculiar Zeeman signatures with an unexpected prominent positive lobe. We present here the result of the follow-up observations of Alhena, thanks to very high signal-to-noise data obtained with the spectropolarimeter Narval. Thanks to this data, we determine the magnetic properties of Alhena.

  4. Magnetic properties of tetrataenite-rich meteorites. Pt. 2

    International Nuclear Information System (INIS)

    Nagata, T.; Funaki, M.; Danon, J.

    1985-01-01

    Magnetic hysteresis and thermomagnetic characteristics of St. Severin (LL 6 ), Appley Bridge (LL 6 ) and Tuxtuac (LL 5 ) chondrites, which contain tetrataenite in their metallic components, are measured and analyzed in comparison with another tetrataenite-rich chondrite, Yamato 74160. The magnetic properties of tetrataenite-rich meteorites are characterized by (a) high magnetic coercive force (H sub(C)) which amounts to 520 Oe for St. Severin and 160 Oe for Appley Bridge, (b) essential flatness up to about 500 0 C and then a sharp irreversible drop down to Curie point of the first-run heating thermomagnetic curve. Both characteristic features are broken down to the ordinary features of disordered taenite by a breakdown of tetrataenite structure at elevated temperatures beyond the order-disorder transition temperature. The natural remanent magnetization (NRM) of tetrataenite-rich meteorites is extremely stable against AF-demagnetization and other magnetic disturbances because of the high magnetic coercivity of tetrataenite. The breakdown processes of ordered tetrataenite structure by heat treatments are experimentally pursued for the purpose of research of a possible formation process of tetrataenite phase in meteorites. (Author) [pt

  5. Characteristics of Magnetic Properties of Substituted Hexagonal Ferrites

    Directory of Open Access Journals (Sweden)

    Vladimir Jancarik

    2006-01-01

    Full Text Available The samples of barium hexaferrite BaFe12-2x(Me1Me2xO19 with x from 0.0 to 0.6 were prepared by variousmethods. The cationic preference of mainly divalent Me1 = Zn, Co, Ni, Sn ions and tetravalent Me2 = Ti, Zr, Ir, Sn, Ru ionsand their combinations in substituted Ba ferrites was investigated. The substitutions were performed to reduce the grain sizeand high magnetic uniaxial anisotropy field of the M-type Ba ferrite without affecting the magnetic polarisation. The goal isto reach the properties of ferrite proper for high-density magnetic recording and microwave absorption devices. Magneticproperties were determined as a function of the substitution level x. The specific saturation magnetic polarisation Js–m andremanence Js–rincreased with small x due to the substitution of non-magnetic and less magnetic ions in 4f1 and 4f2 sites. Thesteep decrease of coercivity Hc with increasing x may be caused by the Co2+ preference of 4f2 site and Ti4+or Zr4+ions preference of 2b and slightly in 4f1 sites. The temperature coefficient of the coercivity TKHc was very low (0.01kA.m-1.°C-1for the Co-Zr substitutions and positive for the rest of samples.

  6. Electronic and magnetic properties of small rhodium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Yee Yeen; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    We report a theoretical study of the electronic and magnetic properties of rhodium-atomic clusters. The lowest energy structures at the semi-empirical level of rhodium clusters are first obtained from a novel global-minimum search algorithm, known as PTMBHGA, where Gupta potential is used to describe the atomic interaction among the rhodium atoms. The structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof generalized gradient approximation. For the purpose of calculating the magnetic moment of a given cluster, we calculate the optimized structure as a function of the spin multiplicity within the DFT framework. The resultant magnetic moments with the lowest energies so obtained allow us to work out the magnetic moment as a function of cluster size. Rhodium atomic clusters are found to display a unique variation in the magnetic moment as the cluster size varies. However, Rh{sub 4} and Rh{sub 6} are found to be nonmagnetic. Electronic structures of the magnetic ground-state structures are also investigated within the DFT framework. The results are compared against those based on different theoretical approaches available in the literature.

  7. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties

    International Nuclear Information System (INIS)

    Burn, D M; Atkinson, D; Hase, T P A

    2014-01-01

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga + ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe. (paper)

  8. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai, E-mail: lihai7772006@126.com [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Liu, Xiaowei [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150001 (China); Dong, Changchun [School of Software, Harbin University of Science and Technology, Harbin, 150001 (China); Zhang, Haifeng [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China)

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  9. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    International Nuclear Information System (INIS)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-01-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  10. Effect of magnetic field annealing on microstructure and magnetic properties of FePt films

    International Nuclear Information System (INIS)

    Li, Y.B.; Lou, Y.F.; Zhang, L.R.; Ma, B.; Bai, J.M.; Wei, F.L

    2010-01-01

    FePt (20 nm) films were annealed in a magnetic field (along the normal direction of the films) at a temperature around the Curie temperature of L1 0 FePt. The influence of magnetic filed annealing on texture and magnetic properties of FePt films were investigated. The results indicate that preferential (0 0 1) orientation and perpendicular anisotropy can be obtained in L1 0 FePt films by using magnetic field annealing around the Curie temperature of L1 0 FePt. This is one of the potential methods to obtain (0 0 1) orientation and thus to improve the perpendicular anisotropy in FePt films.

  11. Magnetic Properties of Ternary DyMn_2X_2 Compounds (X=Si and Ge)(Magnetism)

    OpenAIRE

    Hideya, Onodera; Hisao, Kobayashi; Takahito, Ono; Masayoshi, Ohashi; Hiroshi, Yamauchi; Yasuo, Yamaguchi; Institute for Materials Research, Tohoku University; Institute for Materials Research, Tohoku University:(Present address)Electrotechnical Laboratory; Institute for Materials Research, Tohoku University:(Present address)Research Laboratory, Oki Electric Industry Co. Ltd.; Institute for Materials Research, Tohoku University; Institute for Materials Research, Tohoku University; Institute for Materials Research, Tohoku University

    1993-01-01

    Magnetic properties of DyMn_2Si_2, DyMn_2Ge_2 and their mixed compounds DyMn_2(Si_Ge_x)_2, which display a variety of interesting magnetic behaviors originating in competing magnetic interactions and anisotropy, have been investigated systematically by magnetization mesurements ^Dy Mossbauer spectroscopy and neutron diffraction experiments. This report presents a review of the results mainly obtained by the magnetization measurements.

  12. Electronic and magnetic properties of perfect and defected germanium nanoribbons

    International Nuclear Information System (INIS)

    Pang Qing; Zhang Yan; Zhang Jianmin; Ji, Vincent; Xu Kewei

    2011-01-01

    Highlights: · Perfect AGeNRs are NM semiconductor with three-branch band gaps and decaying profiles. · Perfect ZGeNRs are AFM semiconductor with a decreasing band gap as width increases. · The band gap of AGeNRs can be tuned by mono- or di-vacancy at different positions. · Metallization can be realized in ZGeNRs by mono- or di-vacancy at different positions. · Magnetic properties of ZGeNRs depend closely upon the vacancy positions. - Abstract: The electronic and magnetic properties of both perfect and defected germanium nanoribbons (GeNRs) are investigated by using projector-augmented wave method based on density-functional theory. All the GeNRs with different edge shapes (armchair or zigzag) and widths are cut from the buckled Ge hexagonal sheet which is found to be semi-metallic as the planar graphene sheet. The results show that the perfect armchair GeNRs are nonmagnetic semiconductors and their band gaps exhibit three branches with decaying profiles, while the perfect zigzag GeNRs show the stable antiferromagnetic semiconducting ground state and their band gaps monotonously decrease with increasing ribbon width. These properties of the GeNRs are similar to graphene nanoribbons and should be important for designing new functional Ge-based nanodevices. The effects of the monovacancy or divacancy on the electronic and magnetic properties of the GeNRs are also considered. We found that the band gap of armchair GeNRs can be easily tuned by a monovancancy or divacancy at different positions, which provides a way of band gap engineering of armchair GeNRs for actual applications. Different from the defected armchair GeNRs, the metallization can be realized in zigzag GeNRs by a monovacancy or a divacancy, however, their magnetic properties depend closely upon the vacancy positions.

  13. Magnetic and magnetocaloric properties of partially disordered RFeAl (R = Gd, Tb) intermetallic

    Czech Academy of Sciences Publication Activity Database

    Kaštil, Jiří; Javorský, P.; Kamarád, Jiří; Diop, L.V.B.; Isnard, O.; Arnold, Zdeněk

    2014-01-01

    Roč. 54, Nov (2014), s. 15-19 ISSN 0966-9795 Institutional support: RVO:68378271 Keywords : magnetic properties * thermodynamic properties * energy systems Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.131, year: 2014

  14. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Goc, K., E-mail: Kamil.Goc@fis.agh.edu.pl [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Rybak, A.; Kmita, G. [ABB Corporate Research Center, 13A Starowislna Street, 31-038 Krakow (Poland); Kapusta, Cz. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland)

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained. - Highlights: • Influence of magnetic field on the particle chains in epoxy composites is analysed. • Strontium ferrite fillers with good thermal and low electrical conductivity. • Influence of interparticle interactions for agglomeration efficiency. • The impact of chains formed on the heat transfer by creating conductive paths. • Connection between structural anisotropy and transport properties anisotropy.

  15. Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2010-01-01

    Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology that relies on the magnetocaloric effect in a solid refrigerant. Magnetocaloric materials are in development and properties are reported regularly. Recently, there has been an emphasis...... the performance of a practical system. The distribution of the magnetocaloric effect as a function of temperature was also studied. It was found that the adiabatic temperature change in a magnetocaloric material can be more important than the isothermal entropy change for certain conditions. A material...... on developing materials with a high entropy change with magnetization while placing lower emphasis on the adiabatic temperature change. This work uses model magnetocaloric materials and a numerical AMR model to predict how the temperature change and entropy change with magnetization interact and how they affect...

  16. Magnetic Properties of Nd-Group V Compounds

    DEFF Research Database (Denmark)

    Bak, Poul Erik; Lindgård, Per-Anker

    1973-01-01

    molecular field curve (for J=9/2) which neglects crystal-field effects. Theoretical high-field magnetization curves are presented. The observed tetragonal distortion below the Neel temperature TN is explained by the theory. The effect of biquadratic exchange interaction is investigated.......The Nd monopnictides NdP, NdAs and NdSb are simple cubic type I antiferromagnets in which the crystal-field splitting is larger than the exchange energy. The magnetic properties are calculated by means of a mean-field theory including crystal-field and magnetoelastic effects. The calculations...... are based on energy levels determined by inelastic neutron diffraction. Exchange constants are derived by comparing the theoretical paramagnetic susceptibility with experiments over a large temperature range. The temperature dependence of the sublattice magnetization deviates significantly from the usual...

  17. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  18. Magnetic properties and core electron binding energies of liquid water

    Science.gov (United States)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  19. Electronic structure and magnetic properties of Pd sub(3)Fe

    International Nuclear Information System (INIS)

    Kuhnen, C.A.

    1988-01-01

    In this work we study the electronic and magnetic properties of the Pd sub(3)Fe alloy. For the ordered phase of Pd sub(3)Fe we employed the Linear Muffin-Tin Orbitals Method, with the atomic sphere approximation, which is a first principles method and includes spin polarization. The theoretical results for the thermal and magnetic properties show good agreement with experience. Here we explain the formation of the localized magnetic moments from completely itinerant electrons. We investigate the influence of the hydrogen in the physical properties of the compound Pd sub(3)Fe, where we obtain a drastic reduction in the magnetic moments at the Pd and Fe sites. This reduction is confirmed by experience. The self consistent potentials of the Pd sub(3)Fe compound were used for an analysis of the influence of the disorder in the electronic structure of Pd sub(3)Fe alloy. To this end, we employ a spin polarized version of the Green's Function Method with the Coherent Potential Approximation (or KKR-CPA). The results obtained show that in random ferromagnetic alloys different degrees of disorder occurs for the different spin directions. The formation of the magnetic moments in these alloys were explained from the existence of 'virtual crystal' states for spin up electrons and 'split band' states for spin down electrons. Finally we employ the muffin-tin orbitals to calculate the X-ray photoemission spectra of the Pd sub(3)Fe and Pd sub(3)FeH compounds, which allows us a direct comparison between theory and experiment. (author)

  20. Magnetic properties of three-dimensional Hubbard-sigma model

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.

    1989-11-01

    It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)

  1. Static Magnetic Properties of AL800 Garnet Material

    Energy Technology Data Exchange (ETDEWEB)

    Kuharik, J. [Fermilab; Madrak, R. [Fermilab; Makarov, A. [Fermilab; Pellico, W. [Fermilab; Sun, S. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2017-05-17

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial; thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.

  2. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng

    2016-01-01

    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  3. Synthesis and magnetic properties of prussian blue modified Fe nanoparticles

    International Nuclear Information System (INIS)

    Arun, T.; Prakash, K.; Justin Joseyphus, R.

    2013-01-01

    Fe nanoparticles are prepared using a unique polyol process and modified with prussian blue (PB) at various concentrations. The presence of PB in the Fe nanoparticles are confirmed from thermal, Fourier transform infrared spectroscopy and electron microscopic analyses. The prussian blue existed on ;the surface of the nanoparticles when the concentration is 200 μM and in excess with 1000 μM. ;Fe nanoparticles are reduced in size using Pt as nucleating agent and modified with the optimum concentration of PB. The saturation magnetization decreases with the concentration of PB whereas the coercivity is influenced by the size of the Fe nanoparticles. The presence of oxide layer in Fe nanoparticles helps in the surface modification with PB. The Fe nanoparticles of particle size 53 nm modified with 200 μM of PB showed a saturation magnetization of 110 emu/g. The magnetic properties suggest that the PB modified Fe nanoparticles are better candidates for detoxification applications. - Highlights: • Fe nanoparticles surface modified with prussian blue (PB) were synthesized. • Optimum PB concentration on size reduced Fe showed better magnetic properties. • Coercivity decreased with increasing concentration of PB. • Fe-PB nanoparticles could be used for detoxification applications

  4. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  5. Structural, magnetic and magnetotransport properties of La0⋅7 ...

    Indian Academy of Sciences (India)

    Unknown

    of resistivity ρ(T) is in contrast to the expected me- tallic behaviour below TC due to DE interactions. Similar results were reported for La0⋅1Ce0⋅4Sr0⋅5MnO3 with the ... with low concentration of barium, i.e. a substitution level of 30%. The results of magnetic and magneto- transport properties are very much similar to that.

  6. Effect of cobalt substitution on magnetic and transport properties of ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 34; Issue 2. Effect of cobalt substitution on magnetic and transport properties of Nd0.5Sr0.5Mn1−CoO3 ( = 0.1, 0.3 and 0.5). Saket Asthana. Volume 34 Issue 2 April 2011 pp 279-282 ...

  7. Study of dependence of magnetic properties on seeding ...

    Indian Academy of Sciences (India)

    hydroxides is facilitated which subsequently gives rise to a pure spinel phase. The average particle sizes of the spinel phase and of α-. Fe2O3 have been estimated from ..... Dependence of magnetic properties on seeding temperature in Cu0·25Co0·25Zn0·5Fe2O4. 1101. Duan J and Gregory J 2003 Adv. Colloid. Interf. Sci.

  8. Optical and magnetic properties of PAA@Fe nanocomposite films

    Directory of Open Access Journals (Sweden)

    Jing-jing Zhang

    2013-07-01

    Full Text Available A simple method to fabricate porous anodic alumina films embedded with Fe is reported. The films exhibit vivid structural colors and magnetic properties after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The coercivity mechanism of the Fe nanowires in our case is consistent with fanning reversal mode. PAA@Fe films can be used in many areas including decoration, display and multifunctional anti-counterfeiting applications.

  9. Magnetic properties of point defects in proton irradiated diamond

    International Nuclear Information System (INIS)

    Makgato, T.N.; Sideras-Haddad, E.; Ramos, M.A.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A.; Shrivastava, S.; Erasmus, R.

    2016-01-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1–2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1–1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μ eff ~(0.1–0.2)μ B . No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K. - Highlights: • Proton macro-irradiation of pure diamond creates fluence dependent paramagnetism. • The effective magnetic moment is found to be in the range μ eff ~(0.1–0.2)μ B . • No evidence of long range magnetic ordering is observed.

  10. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, M. I., E-mail: imrancssp@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Yar, A., E-mail: asfandyarhargan@gmail.com [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia); Ahmad, F., E-mail: faizahmad@petronas.com.my; Abdullah, M. Z., E-mail: zaki-abdullah@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 31750 PERAK (Malaysia)

    2015-07-22

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO{sub 4.}6H{sub 2}O buffered with H{sub 3}BO{sub 3} and acidized by dilute H{sub 2}SO{sub 4}. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (∼ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  11. Synthesis and magnetic properties of single phase titanomagnetites

    Energy Technology Data Exchange (ETDEWEB)

    Schoenthal, W., E-mail: wms@andrew.cmu.edu; Liu, X.; Cox, T.; Laughlin, D. E.; McHenry, M. E. [Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Mesa, J. L.; Diaz-Michelena, M. [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Maicas, M. [Universidad Politecnica de Madrid, ISOM-ETSIT, Madrid (Spain)

    2014-05-07

    The focus of this paper is the study of cation distributions and resulting magnetizations in titanomagnetites (TMs), (1−x)Fe{sub 3}O{sub 4−x}Fe{sub 2}TiO{sub 4} solid solutions. TM remnant states are hypothesized to contribute to planetary magnetic field anomalies. This work correlates experimental data with proposed models for the TM pseudobinary. Improved synthesis procedures are reported for single phase Ulvöspinel (Fe{sub 2}TiO{sub 4}), and TM solid solutions were made using solid state synthesis techniques. X-ray diffraction and scanning electron microscopy show samples to be single phase solid solutions. M-H curves of TM75, 80, 85, 90, and 95 (TMX where X = at. % of ulvöspinel) were measured using a Physical Property Measurement System at 10 K, in fields of 0 to 8 T. The saturation magnetization was found to be close to that predicted by the Neel model for cation distribution in TMs. M-T curves of the remnant magnetization were measured from 10 K to 350 K. The remnant magnetization was acquired at 10 K by applying an 8 T field and then releasing the field. Experimental Neel temperatures are reported for samples in the Neel model ground state.

  12. Magnetic properties of point defects in proton irradiated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Makgato, T.N., E-mail: Thuto.Makgato@students.wits.ac.za [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Sideras-Haddad, E. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Center of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa); Ramos, M.A. [CMAM, Centro de Micro-Analisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Departamento de Fisica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); García-Hernández, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A. [CMAM, Centro de Micro-Analisis de Materiales, Universidad Autónoma de Madrid, C/Faraday 3, Campus de Cantoblanco, E-28049 Madrid (Spain); Shrivastava, S. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Erasmus, R. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Center of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa)

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1–2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1–1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μ{sub eff}~(0.1–0.2)μ{sub B}. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K. - Highlights: • Proton macro-irradiation of pure diamond creates fluence dependent paramagnetism. • The effective magnetic moment is found to be in the range μ{sub eff}~(0.1–0.2)μ{sub B}. • No evidence of long range magnetic ordering is observed.

  13. Magnetic and Magnetoelectric Properties of Rare Earth Molybdates

    Directory of Open Access Journals (Sweden)

    B. K. Ponomarev

    2012-01-01

    Full Text Available We present results on ferroelectric, magnetic, magneto-optical properties and magnetoelectric effect of rare earth molybdates (gadolinium molybdate, GMO, and terbium molybdate, TMO, and samarium molybdate, SMO, belonging to a new type of ferroelectrics predicted by Levanyuk and Sannikov. While cooling the tetragonal β-phase becomes unstable with respect to two degenerate modes of lattice vibrations. The β-β′ transition is induced by this instability. The spontaneous polarization appears as a by-product of the lattice transformation. The electric order in TMO is of antiferroelectric type. Ferroelectric and ferroelastic GMO and TMO at room temperature are paramagnets. At low temperatures GMO and TMO are antiferromagnetic with the Neel temperatures TN=0.3 K (GMO and TN=0.45 K (TMO. TMO shows the spontaneous destruction at 40 kOe magnetic field. Temperature and field dependences of the magnetization in TMO are well described by the magnetism theory of singlets at 4.2 K ≤ T ≤ 30 K. The magnetoelectric effect in SMO, GMO and TMO, the anisotropy of magnetoelectric effect in TMO at T = (1.8–4.2 K, the Zeeman effect in TMO, the inversion of the electric polarization induced by the laser beam are discussed. The correlation between the magnetic moment of rare earth ion and the magnetoelectric effect value is predicted. The giant fluctuations of the acoustic resonance peak intensity near the Curie point are observed.

  14. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    International Nuclear Information System (INIS)

    Lahoubi, M; Younsi, W; Soltani, M-L; Ouladdiaf, B

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T 1g of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A 2g . A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T RS =14.5 K. The onset of MA is detected below two characteristic temperatures, Ta 1 =125 K and Ta 2 =75 K respectively to the hard axis (HA) and . Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A g . It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  15. Analysis of the magnetic properties in hard-magnetic nanofibers composite

    Science.gov (United States)

    Murillo-Ortíz, R.; Mirabal-García, M.; Martínez-Huerta, J. M.; Cabal Velarde, J. G.; Castaneda-Robles, I. E.; Lobo-Guerrero, A.

    2018-03-01

    The magnetic properties of the strontium hexaferrite nanoparticles were studied as they were embedded at different concentrations in poly(vinyl alcohol) (PVA) nanofibers. These nanoparticles were prepared using the Pechini method and a low frequency sonication process obtaining a 3.4 nm average diameter. The composite consisting of hard magnetic nanoparticles homogeneously dispersed in a polymeric matrix was fabricated using a homemade electrospinning with 25 kV DC power supply. The obtained nanofibers had an average diameter of 110 nm, and nanoparticles were arranged and distributed within the nanofibers under the influence of a strong electric field. The configuration of the magnetic nanoparticles in the PVA nanofibers was such that the interparticle exchange interaction became negligible, while the magnetostatic interaction turned out predominant. The results reveal a considerable improvement in the energy product (BHmax) and in the squareness ratio (Mr/Ms) for nanoparticle concentrations between 15 and 30% per gram of PVA. The nanoparticles arrangement occurred at densities below the percolation concentration enhanced the hard-magnetic properties of the nanofibers, which indicates that the organization of the particles along the fibers induces anisotropy from the magnetostatic interaction among the magnetic nanoparticles. Finally, we close the discussion analyzing the observed effect below the percolation threshold, where the induced anisotropy caused the reduction of the full-width at half-maximum of the switching field distribution curves.

  16. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr-B additives

    Science.gov (United States)

    Rehman, Sajjad Ur; Jiang, Qingzheng; Ge, Qing; Lei, Weikai; Zhang, Lili; Zeng, Qingwen; ul Haq, A.; Liu, Renhui; Zhong, Zhenchen

    2018-04-01

    Alnico alloys are prepared with nominal composition of 31.4-xFe-7.0Al-36.0Co-4.0Cu-1.0Nb-14.0Ni-6.0Ti-0.6Zr-xB (x = 0.02, 0.04, 0.06, 0.08, in wt%) by arc melting and casting techniques and subsequent heat treatment. The alloys are characterized by X-ray diffraction method, optical microscope, scanning electron microscope and pulse field magnetometer by plotting magnetic hysteresis demagnetization curve. The results of HRSEM show at least two new phases at α-grain boundaries and triple junctions. These phases, when retained at low concentration, help in enhancing magnetic properties of alnico alloys by purifying spinodal phases and reducing the adverse effects of impurity elements. Two different heat treatment cycles are employed. In the first phase, the alloys are processed by using heat treatment cycles without magnetic field; and Hc of 1.35 kOe, Br of 4.87 kGs and (BH)max of 1.96 MGOe are obtained by furnace cooling below TC and subsequent tempering at 680 °C and 550 °C. In the second phase, the alloy with best magnetic properties is treated thermo-magnetically; and Hc of 1.68 kOe, Br of 7.1 kG and (BH)max of 4.45 MGOe are obtained.

  17. Drug delivery property, bactericidal property and cytocompatibility of magnetic mesoporous bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Zhuo [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Li, Yang [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Xi-Bin [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Liu, Li-Na [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234 (China); Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2014-08-01

    A multifunctional magnetic mesoporous bioactive glass (MMBG) has been widely used for a drug delivery system, but its biological properties have been rarely reported. Herein, the effects of mesopores and Fe{sub 3}O{sub 4} nanoparticles on drug loading–release property, bactericidal property and biocompatibility have been investigated by using mesoporous bioactive glass (MBG) and non-mesoporous bioactive glass (NBG) as control samples. Both MMBG and MBG have better drug loading efficiency than NBG because they possess ordered mesoporous channels, big specific surface areas and high pore volumes. As compared with MBG, the Fe{sub 3}O{sub 4} nanoparticles in MMBG not only provide magnetic property, but also improve sustained drug release property. For gentamicin-loaded MMBG (Gent-MMBG), the sustained release of gentamicin and the Fe{sub 3}O{sub 4} nanoparticles minimize bacterial adhesion significantly and prevent biofilm formation against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Moreover, the magnetic Fe{sub 3}O{sub 4} nanoparticles in MMBG can promote crucial cell functions such as cell adhesion, spreading and proliferation. The excellent biocompatibility and drug delivery property of MMBG suggest that Gent-MMBG has great potentials for treatment of implant-associated infections. - Highlights: • Multifunctional magnetic mesoporous bioactive glass is fabricated. • The bioactive glass has great biocompatibility. • The bioactive glass exhibits high drug loading–release properties. • The drug delivery system has bactericidal property. • Magnetic particles improve cell adhesion, spreading and proliferation.

  18. Predicting the Magnetic Properties of ICMEs: A Pragmatic View

    Science.gov (United States)

    Riley, P.; Linker, J.; Ben-Nun, M.; Torok, T.; Ulrich, R. K.; Russell, C. T.; Lai, H.; de Koning, C. A.; Pizzo, V. J.; Liu, Y.; Hoeksema, J. T.

    2017-12-01

    The southward component of the interplanetary magnetic field plays a crucial role in being able to successfully predict space weather phenomena. Yet, thus far, it has proven extremely difficult to forecast with any degree of accuracy. In this presentation, we describe an empirically-based modeling framework for estimating Bz values during the passage of interplanetary coronal mass ejections (ICMEs). The model includes: (1) an empirically-based estimate of the magnetic properties of the flux rope in the low corona (including helicity and field strength); (2) an empirically-based estimate of the dynamic properties of the flux rope in the high corona (including direction, speed, and mass); and (3) a physics-based estimate of the evolution of the flux rope during its passage to 1 AU driven by the output from (1) and (2). We compare model output with observations for a selection of events to estimate the accuracy of this approach. Importantly, we pay specific attention to the uncertainties introduced by the components within the framework, separating intrinsic limitations from those that can be improved upon, either by better observations or more sophisticated modeling. Our analysis suggests that current observations/modeling are insufficient for this empirically-based framework to provide reliable and actionable prediction of the magnetic properties of ICMEs. We suggest several paths that may lead to better forecasts.

  19. Magnetic properties of TOAB-capped CuO nanoparticles.

    Science.gov (United States)

    Seehra, M.; Punnoose, A.; Mahamuni, S.

    2002-03-01

    Synthesis of CuO nanoparticles (NP) capped with TOAB (tetraoctylammonium bromide) and their structural properties were reported recently [1]. Here we report on the magnetic properties of the TOAB-capped CuO-NP of size 4, 6 and 10 nm and compare these properties with those of uncapped CuO-NP in the size range of 6.6-37 nm described in the above abstract [2] and in a recent publication [3]. Temperature (5 K 350 K) and magnetic field (up to 55 kOe) variations of magnetization M, coercivity H_c, exchange bias He (field-cooled in 55 kOe) and the Neel temperature TN (where He goes to zero) were measured. The TOAB-capped NP have higher magnitudes of Ms (the weak ferromagnetic component of M) and lower He values, confirming the 1/Ms variation of He observed in uncapped CuO-NP for size Magnone, Seehra & Bonevich, Phys. Rev. B64, 174420 (2001).

  20. Static and dynamic magnetic properties of stripe-patterned Fe20Ni80 soft magnetic films

    Science.gov (United States)

    Zhu, Zengtai; Feng, Hongmei; Cheng, Xiaohong; Xie, Hongkang; Liu, Qingfang; Wang, Jianbo

    2018-01-01

    Stripe-patterned soft magnetic Fe20Ni80 films were fabricated on silicon substrate via radio frequency magnetron sputtering technology. The static and dynamic magnetic properties of samples were measured by a vibrating sample magnetometer and vector network analyzer. The vector network analyzer ferromagnetic resonance technique was used to analyze the experimental results, which showed that damping and in-plane uniaxial anisotropy can be tuned significantly for the samples with various stripe widths from 5 to 20 µm. A stripe-shaped anisotropy model was used to analyze the experimental results, which were in accord with the theoretical predictions. Moreover, the variation of damping was investigated in detail.

  1. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  2. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  3. Phase composition and magnetic properties in hot deformed magnets based on Misch-metal

    Science.gov (United States)

    Ma, Q.; Zhang, Z. Y.; Zhang, X. F.; Hu, Z. F.; Liu, Y. L.; Liu, F.; Jv, X. M.; Wang, J.; Li, Y. F.; Zhang, J. X.

    2018-04-01

    In this paper, the Rare-earth Iron Boron (RE-Fe-B) magnets were fabricated successfully by using the double main phase method through mixing the Neodymium Iron Boron (Nd-Fe-B) powders and Misch-metal Iron Boron (MM-Fe-B) powders with different ratio. Aiming at the nanocrystalline RE2Fe14B magnets prepared by using spark plasma sintering technology, phase structure and magnetic properties were investigated. It is found that the Misch-metal (MM) alloys promote the domain nucleation during the the process of magnetization reversal and then damage the coercivity (Hcj) of isotropic RE2Fe14B magnets, while the Hcj could still remain more than 1114.08 kA/m when the mass proportion of MM (simplified as: "a") is 30%. Curie temperature and phase structure were also researched. Two kinds of mixed-solid-solution (MSS) main phases with different Lanthanum (La) and Cerium (Ce) content were believed to be responsible for the two curie temperature of the RE2Fe14B magnets with "a" ≥20%. This is resulted from the inhomogeneous elemental distribution of RE2Fe14B phase.

  4. Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators

    Science.gov (United States)

    Krieger, J. A.; Chang, Cui-Zu; Husanu, M.-A.; Sostina, D.; Ernst, A.; Otrokov, M. Â. M.; Prokscha, T.; Schmitt, T.; Suter, A.; Vergniory, M. Â. G.; Chulkov, E. Â. V.; Moodera, J. S.; Strocov, V. N.; Salman, Z.

    2017-11-01

    We combine low energy muon spin rotation (LE -μ SR ) and soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb ) 2Te3 . We find that one achieves a full magnetic volume fraction in samples of (V/Cr ) x(Bi,Sb ) 2 -xTe3 at doping levels x ≳0.16 . The observed magnetic transition is not sharp in temperature indicating a gradual magnetic ordering. We find that the evolution of magnetic ordering is consistent with formation of ferromagnetic islands which increase in number and/or volume with decreasing temperature. Resonant ARPES at the V L3 edge reveals a nondispersing impurity band close to the Fermi level as well as V weight integrated into the host band structure. Calculations within the coherent potential approximation of the V contribution to the spectral function confirm that this impurity band is caused by V in substitutional sites. The implications of our results on the observation of the quantum anomalous Hall effect at mK temperatures are discussed.

  5. Magnetic Properties of Two-Phase Composite Magnetic Material and Its Application to Electrical Equipment

    Directory of Open Access Journals (Sweden)

    Zhiwei CHEN

    2015-11-01

    Full Text Available A detailed research on the magnetic properties, preparation, and application of two-phase composite magnetic material was conducted in this paper. Firstly, in order to obtain the characteristics of high remanence and low coercivity, a micro field mathematical model of hysteresis was established and the magnetization model of this material was determined on the basis of micro magnetic theory. Secondly, the relationship between remanence and coercivity was analyzed and the preparation technology of the material was proposed from the perspective of the elemental composition, the heat treatment, and the other steps. Finally, after mastering the magnetization characteristic, conversion and control mechanism of the material, a new power transformer with function of DC bias compensation based on the two-phase composite magnetic material was proposed. The simulation and experimental results showed that the transformer could achieve a good compensation for the DC bias problem by using material remanence, which provides intelligent and energy-saving electrical equipment for the electric network safe operation.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9707

  6. Neutron irradiation effects on magnetic properties of some Heusler alloys

    International Nuclear Information System (INIS)

    Onodera, Hideya; Shinohara, Takeshi; Yamamoto, Hisao; Watanabe, Hiroshi

    1975-01-01

    The neutron irradiation effects were studied with measurements of temperature dependence of magnetization in ordered and disordered Heusler alloys. The irradiation was carried out in JMTR with a total flux of fast neutrons of 10 20 nvt. Fully ordered Cu 2 MnIn, partially ordered Cu 2 MnAl and completely disordered Cu 2 MnSn were prepared with various temperature treatments. The magnetization-temperature curves of each specimen were measured before and after irradiation. In the irradiated Cu 2 MnIn, the disordering by the irradiation gave rise to a decrease of magnetization, and the temperature dependence of magnetization showed that the disordered region contained various regions with different degrees of disorder. For the distribution of the disordered region, the calculation based on the theory of temperature spike by Seitz and Koekler gave a feasible result that a disordered region comprised a central core with a radius of 5.4 A which was completely disordered and a periphery of 3.3 A thickness which was partially disordered. From the magnetization-temperature curves of Cu 2 MnAl, it was considered that the disordered regions induced by the irradiation had different properties from those induced by the heat treatment. The former were the localized and comprised regions corresponding to various degrees of disorder, while the latter spread spatially in a wide range with a certain degree of disorder. The ordering by enhanced diffusion occurred simultaneously to an extent comparable to the disordering, and so it played an important role in the magnetization in the partially disordered Cu 2 MnAl. In the disordered Cu 2 MnSn, however, the ordering effect was very small. It is supposed to be difficult for the A2 structure to transform into the L2 1 structure by the enhanced diffusion. (auth.)

  7. The study of magnetic properties, coercivity mechanism and bending strength of hot-deformed RE-Fe-B magnets

    International Nuclear Information System (INIS)

    Ju, Jinyun; Tang, Xu; Chen, Renjie; Yan, Aru; Jin, Chaoxiang; Yin, Wenzong; Wang, Zexuan; Lee, Don; Zhang, Zhimin

    2015-01-01

    The effect on mechanical properties and magnetic properties of hot-deformed magnets with different rare earth (RE) content has been investigated. The results show that the optimal comprehensive magnetic properties are obtained at 13.09 at% RE. The bending strength parallel to c-axis orientation increases with the increasing of RE content, while that perpendicular to c-axis orientation exhibits decrease. Moreover, the micro magnetic structure was observed and the coercivity mechanism of the hot-deformed magnet sample was discussed. - Highlights: • The optimal comprehensive magnetic properties are obtained at 13.09 at% RE. • The bending strength with different rare earth content is determined. • Domain wall moved irreversibly when the external field gets close to the coercivity. • Inhomogeneous domain wall pinning should be the dominant coercivity mechanism

  8. Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Cuchet, Lea

    2015-01-01

    Due to their advantageous properties in terms of data retention, storage density and critical current density for Spin Transfer Torque (STT) switching, the magnetic tunnel junctions with perpendicular anisotropy have become predominant in the developments for MRAM applications. The aim of this thesis is to improve the anisotropy and transport properties of such structures and to realize even more complex stacks such as perpendicular double junctions. Studies on the magnetic properties and Tunnel Magnetoresistance (TMR) measurements showed that to optimize the performances of the junctions, all the thicknesses of the different layers constituting the stack have to be adapted. To guaranty both a large TMR as well a strong perpendicular anisotropy, compromises are most of the time needed. Studies as a function of magnetic thickness enabled to extract the saturation magnetization, the critical thickness and the magnetic dead layer thickness both in the bottom reference and the top storage layer in structures capped with Ta. This type of junction could be tested electrically after patterning the sample into nano-pillars. Knowing that perpendicular anisotropy mostly arises at the metal/oxide interface, the Ta capping layer was replaced by a MgO one, leading to a huge increase in the anisotropy of the free layer. A second top reference was then added on such a stack to create functional perpendicular double junctions. CoFeB/insertion/CoFeB synthetic antiferromagnetic storage layers could be developed and were proved to be stable enough to replace the standard Co/Pt-based reference layers. (author) [fr

  9. CoCrTa thin films for magnetic recording media: structure, magnetic properties and time-dependence effect

    NARCIS (Netherlands)

    Phan le kim, P.L.K.

    This thesis has been devoted to deposition process, structures, magnetic properties and time-dependence effect of CoCrTa magnetic thin films for recording media. The experimental study began from Chapter 5 by investigating properties of single layer CoCrTa thin films, produced under different

  10. Size-dependent magnetic properties of iron oxide nanoparticles

    Science.gov (United States)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  11. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany); Arami, Hamed; Ferguson, R. Mathew [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States); Krishnan, Kannan M., E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  12. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    Science.gov (United States)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd–Fe–B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  13. Magnetic properties of tunicate blood cells. II. Ascidia ceratodes.

    Science.gov (United States)

    Kustin, K; Robinson, W E; Frankel, R B; Spartalian, K

    1996-08-15

    The magnetic properties of intact blood cells of the tunicate Ascidia ceratodes have been measured up to 50 kOe with a SQUID susceptometer. Analysis of total metal contents by plasma emission spectroscopy and V(IV) content by epr indicates that approximately 5% of the accumulated vanadium is +4 vanadyl ion. Measured values of the magnetic moment Mp at different values of the applied magnetic field H over the temperature range T = 2-100 K depend on the magnitude of the field indicating magnetic anisotropy of the ground state. The slope of the Mp vs. H/T curve at high temperature is significantly higher than expected from electron spin S = 1 per vanadium(III) ion. The model that fits these data best is a dimer with one V(III) S = 1 ion ferromagnetically coupled to a second V(III) S = 1 ion, with spin-coupling constant J = 3.5 cm-1, and 5% of the total vanadium content in the form of a V(IV) S = 1/2 ion. Since vanadium in A. ceratodes is known to reside in at least three different types of blood cell, the excellent fit indicates that the metal is stored predominantly as a dimer regardless of blood cell type. Ferromagnetic coupling implies that the two vanadium ions in the dimer are connected by an unprotonated mu-oxo bridge.

  14. The structural and magnetic properties of dual phase cobalt ferrite.

    Science.gov (United States)

    Gore, Shyam K; Jadhav, Santosh S; Jadhav, Vijaykumar V; Patange, S M; Naushad, Mu; Mane, Rajaram S; Kim, Kwang Ho

    2017-05-31

    The bismuth (Bi 3+ )-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co 2+ by trivalent Bi 3+ cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi 3+ doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi 3+ -addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi 3+ -doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi 3+ -doping in enhancing the magnetic properties of cobalt ferrite.

  15. Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry

    Science.gov (United States)

    Betz, B.; Rauscher, P.; Siebert, R.; Schaefer, R.; Kaestner, A.; Van Swygenhoven, H.; Lehmann, E.; Grünzweig, C.

    The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.

  16. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Science.gov (United States)

    de la Vega, A. Estrada; Garza-Navarro, M. A.; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V.

    2016-01-01

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  17. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  18. Magnetic properties of (misch metal, Nd-Fe-B melt-spun magnets

    Directory of Open Access Journals (Sweden)

    R. Li

    2017-05-01

    Full Text Available The effect of replacing Nd with misch metal (MM on magnetic properties and thermal stability has been investigated on melt-spun (Nd1-xMMx13.5Fe79.5B7 ribbons by varying x from 0 to 1. All of the alloys studied crystallize in the tetragonal 2:14:1 structure with single hard magnetic phase. Curie temperature (Tc, coercivity (Hcj, remanence magnetization (Br and maximum energy product ((BHmax all decrease with MM content. The melt-spun MM13.5Fe79.5B ribbons with high ratio of La and Ce exhibit high magnetic properties of Hcj = 8.2 kOe and (BHmax= 10.3 MGOe at room temperature. MM substitution also significantly strengthens the temperature stability of coercivity. The coercivities of the samples with x = 0.2 and even 0.4 exhibit large values close to that of Nd13.5Fe79.5B7 ribbons above 400 K.

  19. Properties of a magnetic superconductor with weak magnetization-application to ErNi2B2C

    International Nuclear Information System (INIS)

    Ng, T.K.; Leung, W.T.

    2001-01-01

    Using a Ginsburg-Landau free-energy functional, we study the H-T phase diagram of a weak magnetic superconductor, where the magnetization from the magnetic component is marginal in supporting a spontaneous vortex phase. In particular, the competition between the spiral state and spontaneous vortex phase is analysed. Our theory is applied to understand the magnetic properties of ErNi 2 B 2 C. (orig.)

  20. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  1. Magnet properties of Mn70Ga30 prepared by cold rolling and magnetic field annealing

    International Nuclear Information System (INIS)

    Ener, Semih; Skokov, Konstantin P.; Karpenkov, Dmitriy Yu.; Kuz'min, Michael D.; Gutfleisch, Oliver

    2015-01-01

    The remanence and coercivity of arc melted Mn 70 Ga 30 can be substantially improved by cold rolling. For best performance the rolled material should be annealed at T=730 K in the presence of a magnetic field of 1 T. The so-obtained magnet has a remanence of 0.239 T and a coercivity of 1.24 T at room temperature. The underlying reason for the high coercivity and remanence is the increase of the content of a metastable ferrimagnetic D0 22 phase at the expense of the normally stable anti-ferromagnetic D0 19 . Magnetic field significantly increases the nucleation rate of the ferromagnetic D0 22 phase that leads to grain size refinement and as a consequence of improving remanence and coercive field. - Highlights: • Alternative synthesis method for D0 22 phase formation in Mn–Ga is developed. • Effect of cold rolling and annealing on magnetic properties of Mn 70 Ga 30 is examined. • Small magnetic fields are sufficient to accelerate nucleation of the D0 22 phase

  2. Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting

    Science.gov (United States)

    Jhong, Kai Jyun; Huang, Wei-Chin; Lee, Wen Hsi

    Selective Laser Melting (SLM) is a powder-based additive manufacturing which is capable of producing parts layer-by-layer from a 3D CAD model. The aim of this study is to adopt the selective laser melting technique to magnetic material fabrication. [1]For the SLM process to be practical in industrial use, highly specific mechanical properties of the final product must be achieved. The integrity of the manufactured components depend strongly on each single laser-melted track and every single layer, as well as the strength of the connections between them. In this study, effects of the processing parameters, such as the space distance of surface morphology is analyzed. Our hypothesis is that when a magnetic product is made by the selective laser melting techniques instead of traditional techniques, the finished component will have more precise and effective properties. This study analyzed the magnitudes of magnetic properties in comparison with different parameters in the SLM process and compiled a completed product to investigate the efficiency in contrast with products made with existing manufacturing processes.

  3. Magnetic properties and the effect of non-magnetic impurities in the quasi-2D quantum magnet

    Science.gov (United States)

    Khuntia, P.; Dey, T.; Mahajan, A. V.

    2016-09-01

    We present synthesis, x-ray diffraction, magnetisation and specific heat studies on the quasi-two-dimensional (2D) S = 1/2 antiferromagnet (CuCl)LaNb2O7 and its doping analogues (Cu1-x Zn x Cl)LaNb2O7 (0 ≤ x ≤ 0.05), (Cu0.95Mg0.05Cl)LaNb2O7, and (CuCl)La1-y Ba y Nb2O7 (0 ≤ y ≤ 0.10). The magnetic susceptibility and specific heat of the parent compound and its isovalent or hetereovalent counterparts do not display any signature of magnetic ordering down to 1.8 K. The parent compound and its doping variants exhibit spin-singlet behaviour with a finite gap in the spin excitation spectrum due to dimerisation of the dominant intradimer interactions as evidenced from our magnetic susceptibility and specific heat data. The systematic increase of magnetic susceptibility at low temperature with non-magnetic Zn2+ and Mg2+ (S = 0) substitution at the Cu2+ site reflect that impurities induce local moments around the non-magnetic sites. While heterovalent Ba2+ substitution at the La3+ site do not result in mobile holes but rather give rise to a Curie term in the susceptibility due to localisation. The low value of spin S = 1/2, and absence of long range ordering or spin freezing, and the presence of competing exchange interactions hold special significance in hosting novel magnetic properties in this class of quasi-2D quantum material.

  4. Magnetic properties of electrospun non-woven superconducting fabrics

    Science.gov (United States)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas; Hauet, Thomas; Hartmann, Uwe

    2016-03-01

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi2Sr2CaCuO8 (Bi-2212) nanowires. The individual nanowires have a diameter of ˜150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigated by electron microscopy.

  5. Magnetic and sensitive magnetoelastic properties of Finemet nanostructured ribbon

    International Nuclear Information System (INIS)

    Pham Duc Thang; Hoang Hai Duong; Nguyen Hoang Nghi

    2009-01-01

    Soft-magnetic Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 (Finemet) ribbon has been fabricated by using melt-spinning techniques. After annealing at suitable temperature the ribbon changes from an amorphous to crystalline state which related to the formation of Fe nanocrystallites. Study on the magnetic and magnetoelastic properties of the ribbon is presented. Furthermore, based on the fabricated ribbon stress sensors are simply constructed. The sensors showed high sensitivity of 3.8 mV/MPa as well as a wide working range up to 17 MPa. These sensors are potential for practical applications such as detecting small stress and movement in civil structures.

  6. Magnetic properties of electrospun non-woven superconducting fabrics

    International Nuclear Information System (INIS)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas; Hartmann, Uwe; Hauet, Thomas

    2016-01-01

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi 2 Sr 2 CaCuO 8 (Bi-2212) nanowires. The individual nanowires have a diameter of ∼150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigated by electron microscopy.

  7. Magnetic properties of electrospun non-woven superconducting fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas; Hartmann, Uwe [Institute of Experimental Physics, Saarland University, Campus C 6 3, 66123 Saarbrücken (Germany); Hauet, Thomas [Institute Jean Lamour, UMR CNRS-Université de Lorraine, Vandoevre-lès-Nancy (France)

    2016-03-15

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi{sub 2}Sr{sub 2}CaCuO{sub 8} (Bi-2212) nanowires. The individual nanowires have a diameter of ∼150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigated by electron microscopy.

  8. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  9. Magnetic properties of slablike Josephson-junction arrays

    International Nuclear Information System (INIS)

    Chen, D.; Sanchez, A.; Hernando, A.

    1994-01-01

    Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA's) consisting of 2N+1 rows of grains are calculated for the dc Josephson effect with gauge-invariant phase differences. When N is large, the intergranular magnetization curve, M J (H), of the JJA's in low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of the JJA's, but in a larger field interval, its amplitude is dually modulated with periods determined by the junction and void areas. M J (H) curves for small N are more complicated. The concept of Josephson vortices and the application of the results to high-T c superconductors are discussed

  10. Structural and magnetic properties of nickel antimony ferrospinels

    International Nuclear Information System (INIS)

    Ivanov, S.A.; Tellgren, R.; Porcher, F.; André, G.; Ericsson, T.; Nordblad, P.; Sadovskaya, N.; Kaleva, G.; Politova, E.; Baldini, M.; Sun, C.; Arvanitis, D.; Anil Kumar, P.; Mathieu, R.

    2015-01-01

    Spinel-type compounds of Fe–Ni–Sb–O system were synthesized as polycrystalline powders. The crystal and magnetic properties were investigated using X-ray and neutron powder diffraction, Mössbauer and X-ray absorption spectroscopy and magnetization measurements. The samples crystallize in the cubic system, space group Fd – 3 m. The distribution of cations between octahedral and tetrahedral sites was refined from the diffraction data sets using constraints imposed by the magnetic, Mössbauer and EDS results and the ionic radii. The cation distribution and the temperature dependence of the lattice parameter (a) and the oxygen positional parameter (u) were obtained. A chemical formula close to Fe 0.8 Ni 1.8 Sb 0.4 O 4 was determined, with Sb 5+ cations occupying octahedral sites, and Fe 3+ and Ni 2+ occupying both tetrahedral and octahedral sites. Fe 3+ mainly (85/15 ratio) occupy tetrahedral sites, and conversely Ni 2+ mainly reside on octahedral ones. The magnetic unit cell is the same as the crystallographic one, having identical symmetry relations. The results indicate that the compounds have a collinear ferrimagnetic structure with antiferromagnetic coupling between the tetrahedral (A) and octahedral (B) sites. Uniquely, the temperature dependence of the net magnetization of this rare earth free ferrimagnet exhibits a compensation point. - Highlights: • Polycrystalline spinel-type compounds of (Fe,Ni)[Fe,Ni,Sb]2O4 were synthesized. • Fe (3+) and Ni (2+) cations occupy mainly tetrahedral (resp. octahedral) sites. • The ferrimagnetic behavior observed below 650 K is investigated in detail. • Squid magnetometry and neutron powder diffraction data are compared

  11. Magnetic and elastic properties of the antiferromagnet uranium mononitride

    International Nuclear Information System (INIS)

    Van Doorn, C.F.

    1976-10-01

    The magnetic and elastic properties of antiferromagnetic uranium mononitride single crystals are studied in the thesis from the measurements of the temperature dependences of the magnetic susceptibility, electrical resistivity and elastic constants. The elastic constants C 11 , C 12 and C 44 were determined in the temperature interval 4 to 300 K by ultrasonic measurements of the five possible wave velocities in the [100] and [110] directions. A test for internal consistency was also made. A dip of about 9 percent occurs in C 11 at a temperature of 5 to 6 K lower than the Neel temperature T(N) (equals about 53 K). Starting at T(N), a renormalization in C 44 is proportional to the square of the sublattice magnetization also occurs. Both these results agree with model calculations which include spin-phonon interactions. The investigation of this anomaly was extended by measuring the electrical resistivity of a sample cut from the same crystal as that on which the elasticity was measured. No anomalous behavior was observed at the temperature where C 11 displays its anomaly. However, a discontinuity in the temperature derivative of the resistance was found at T(N). The possible effect of a magnetic field on the resistivity, as well as on the elasticity, was investigated without any measurable effect. The magnetic susceptibility was measured with a Foner magnetometer between 4 and 1 000 K. It was found that above the Neel temperature the paramagnetic susceptibility followed a revised Curie-Weiss law. In an attempt to ascertain the ionic state of the 5f-uranium ion in UN, use was made of the experimentally determined Weiss constant, spin disorder resistivity and Knight shift. A calculation was made that gave a good representation of the ratio of the experimental susceptibilities along the [100] and [110] directions in the ordered region [af

  12. Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis.

    Science.gov (United States)

    Chatterjee, Biplab K; Bhattacharjee, Kaustav; Dey, Abhishek; Ghosh, Chandan K; Chattopadhyay, Kalyan K

    2014-06-07

    The magnetic properties of copper ferrite (CuFe2O4) nanoparticles prepared via sol-gel auto combustion and facile solvothermal method are studied focusing on the effect of nanoparticle arrangement. Randomly oriented CuFe2O4 nanoparticles (NP) are obtained from the sol-gel auto combustion method, while the solvothermal method allows us to prepare iso-oriented uniform spherical ensembles of CuFe2O4 nanoparticles (NS). X-ray diffractometry (XRD), atomic absorption spectroscopy (AAS), infra-red (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), (57)Fe Mössbauer spectroscopy and vibrating sample magnetometer (VSM) are used to investigate the composition, microstructure and magnetic properties of as-prepared ferrite nanoparticles. The field-dependent magnetization measurement for the NS sample at low temperature exhibits a step-like rectangular hysteresis loop (M(R)/M(S) ~ 1), suggesting cubic anisotropy in the system, whereas for the NP sample, typical features of uniaxial anisotropy (M(R)/M(S) ~ 0.5) are observed. The coercive field (HC) for the NS sample shows anomalous temperature dependence, which is correlated with the variation of effective anisotropy (K(E)) of the system. A high-temperature enhancement of H(C) and K(E) for the NS sample coincides with a strong spin-orbit coupling in the sample as evidenced by significant modification of Cu/Fe-O bond distances. The spherical arrangement of nanocrystals at mesoscopic scale provokes a high degree of alignment of the magnetic easy axis along the applied field leading to a step-like rectangular hysteresis loop. A detailed study on the temperature dependence of magnetic anisotropy of the system is carried out, emphasizing the influence of the formation of spherical iso-oriented assemblies.

  13. Effect of plastic deformation on the magnetic properties of selected austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Tatiana Oršulová

    2017-04-01

    Full Text Available Austenitic stainless steels are materials, that are widely used in various fields of industry, architecture and biomedicine. Their specific composition of alloying elements has got influence on their deformation behavior. The main goal of this study was evaluation of magnetic properties of selected steels, caused by plastic deformation. The samples were heat treated in different intervals of temperature before measuring. Then the magnetic properties were measured on device designed for measuring of magnetism. From tested specimens, only AISI 304 confirmed effect of plastic deformation on the magnetic properties. Magnetic properties changed with increasing temperature.

  14. Magnetic properties of ball-milled TbFe2 and TbFe2B

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 27; Issue 2. Magnetic properties of ball-milled ... Keywords. Amorphous materials; intermetallic compounds; magnetic materials; magnetic properties. ... This is explained on the basis of a charge transfer between the boron atoms and the 3d band of Fe. The anisotropy of ...

  15. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; De Teresa, J. M.; Morellon, L.; Blasco, J.; Magen, C.; Prokhnenko, Olexandr; Kamarád, Jiří; Ritter, C.

    2005-01-01

    Roč. 17, - (2005), S3035-S3055 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * intermetallic compounds * magnetic properties * magnetic phase transitions * magnetotransport properties * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  16. Mechanical and magnetic properties of nanostructured CoNiP films

    Indian Academy of Sciences (India)

    creases with increase in current density. The magnetic properties of films revealed. Table 2. Effect of current density and time of deposition on the thickness and magnetic properties of CoNiP film electro-deposited from solution A. Current. Time of. Thickness. Magnetic density deposition of deposit saturation. Remanent.

  17. The magnetic-resonance properties study of nanostructures for spintronics by FMR

    International Nuclear Information System (INIS)

    Kupriyanova, G; Zyubin, A; Astashonok, A; Orlova, A; Prokhorenko, E

    2011-01-01

    In this work we report the study of the magnetic-resonance properties such as magnetic anisotropy, magnetic damping, and interlayer exchange coupling between ferromagnetic layers separated by a nonmagnetic spacer by FMR to assess their applicability in a functional magnetic tunnel junction.

  18. The effects of the addition of ferrite powder on magnetic properties of cold pressed Nd-Fe-B bonded magnets

    International Nuclear Information System (INIS)

    Rodrigues, D.; Landgraf, F.J.G.; Emura, M.

    1998-01-01

    This paper investigates the effects of strontium ferrite powder addition on magnetic properties of cold pressed isotropic NdFeB bonded magnets. Bonded magnets are polymer composites based on a mixture of a hard magnetic powder(s) and an organic component. This mixture can be processed as a traditional powder metallurgy material, i.e., cold pressed, or it can be processed like a thermoplastic material, i.e., by injection molding. The polymeric phase to a large extent determines the mechanical properties of this composite, while magnetic powder determines its magnetic properties. They are less expensive and easier to produce, especially in the case of high complexity parts. The mixture of ferrite and Nd-Fe-B to produce hybrid bonded magnets creates the possibility to produce magnets with properties and cost between Nd-Fe-B and ferrite magnets. The cold pressed NdFeB bonded magnets were manufactured here with melt spun flakes (MQPA) mixed with strontium ferrite powder and polyester resin. Eight different compositions, between 0 wt.% and 80 wt.% of ferrite, were investigated. The most important result analyzed was the shape of demagnetization curves and the values of coercivity and intrinsic coercivity. (orig.)

  19. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    Science.gov (United States)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro.

  20. Complex structure of triangular graphene: electronic, magnetic and electromechanical properties.

    Science.gov (United States)

    Ezawa, Motohiko

    2012-01-01

    We have investigated electronic and magnetic properties of graphene nanodisks (nanosize triangular graphene) as well as electromechanical properties of graphene nanojunctions. Nanodisks are nanomagnets made of graphene, which are robust against perturbation such as impurities and lattice defects, where the ferromagnetic order is assured by Lieb's theorem. We can generate a spin current by spin filter, and manipulate it by a spin valve, a spin switch and other spintronic devices made of graphene nanodisks. We have analyzed nanodisk arrays, which have multi-degenerate perfect flat bands and are ferromagnet. By connecting two triangular graphene corners, we propose a nanomechanical switch and rotator, which can detect a tiny angle rotation by measuring currents between the two corners. By making use of the strain induced Peierls transition of zigzag nanoribbons, we also propose a nanomechanical stretch sensor, in which the conductance can be switched off by a nanometer scale stretching.

  1. Growth and magnetic properties dependence of the Co–Cu/Cu films electrodeposited under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Franczak, Agnieszka, E-mail: agnieszka.franczak@mtm.kuleuven.be [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Department of Materials Science (MTM), KU Leuven, Kasteelpark Arenberg 44, 3001 Haverlee (Leuven) (Belgium); Levesque, Alexandra [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); Zabinski, Piotr [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Li, Donggang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, 314 Box, 110004 Shenyang (China); Czapkiewicz, Maciej [Department of Electronics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Kowalik, Remigiusz [Laboratory of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30059 Krakow (Poland); Bohr, Frédéric [Laboratoire d’Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, UFR Sciences et Naturelles, Bat. 6, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France); and others

    2015-07-15

    The present work is focused on the investigations of magnetic properties dependence on microstructure of Co–Cu/Cu films electrodeposited under superimposed high magnetic field. The experimental results indicate a strong effect of an external magnetic field on the morphology of deposited films, more precisely on the Co:Cu ratio that determines the film growth. It is shown that the Co–Cu/Cu films electrodeposited without superimposed magnetic field consisted of two clearly visible features: compact film with incorporated granular particles. Under a superimposed external high magnetic field the privilege growth of the particles was induced. As a consequence, development of the well-defined branched structure of Co–Cu/Cu film was observed. In contrary, the phase compositional investigations do not reveal any changes in the phase formation during electrodeposition under magnetic field conditions. Thus, it is assumed that a strong growth of Co–Cu/Cu films in (111) direction under magnetic or non-magnetic electrodeposition conditions is related with the growth of Cu (111) plane and embedded into it some of the Co fcc atoms of same (111) orientation, as well as the Co hcp atoms that grows in the (002) direction. This non-equilibrium growth of Co–Cu/Cu films under magnetic deposition conditions affects strongly the magnetic properties of deposited films, revealing that films obtained under magnetic fields higher than 3 T were no more magnetic materials. - Highlights: • Co–Cu/Cu electrodeposits were obtained at elevated temperature under HMFs. • The effects of HMFs on microstructure and magnetic properties were investigated. • Interesting morphological changes due to HMFs has been observed. • Changes in Co:Cu ratio due to HMFs modified the magnetic properties of deposits.

  2. Avian magnetic compass: Its functional properties and physical basis

    Directory of Open Access Journals (Sweden)

    Roswitha WILTSCHKO, Wolfgang WILTSCHKO

    2010-06-01

    Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].

  3. Cryogenic properties of austenitic stainless steels for superconducting magnet

    International Nuclear Information System (INIS)

    Nohara, K.; Kato, T.; Ono, Y.; Sasaki, T.; Suzuki, S.

    1983-01-01

    The present study examines the magnetic and mechanical properties of a variety of austenitic stainless steels and high maganese steel which are candidate materials for the superconducting magnet attached to high energy particle accelerators. The effect of a specified heat treatment for the precipitation of intermetallic compound Nb3Sn to be used as superconductor on ductility and toughness are especially examined. It is found that nitrogen-strengthened austenitic stainless steels have high strength and good ductility and toughness, but that these are destroyed by precipitation treatment. The poor ductility and toughness after precipitation are caused by a weakening of the grain boundaries due to the agglomerated chromium carbide percipitates. The addition of vanadium suppresses this effect by refining the grain. Austenitic steels are found to have low magnetic permeabilities and Neel temperatures, and show serrated flow in traction test due to strained martensitic transformation. High manganese steel has extremely low permeability, a Neel temperature about room temperature, and has a serrated flow in traction test due to adiabatic deformation at liquid helium temperature

  4. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires

    Science.gov (United States)

    Zhukova, V.; Korchuganova, O. A.; Aleev, A. A.; Tcherdyntsev, V. V.; Churyukanova, M.; Medvedeva, E. V.; Seils, S.; Wagner, J.; Ipatov, M.; Blanco, J. M.; Kaloshkin, S. D.; Aronin, A.; Abrosimova, G.; Orlova, N.; Zhukov, A.

    2017-07-01

    We studied the magnetic properties and domain wall (DW) dynamics of Fe47.4Ni26.6Si11B13C2 and Fe77.5Si7.5B15 microwires. Both samples present rectangular hysteresis loop and fast magnetization switching. Considerable enhancement of DW velocity is observed in Fe77.5Si7.5B15, while DW velocity of samples Fe47.4Ni26.6Si11B13C2 is less affected by annealing. The other difference is the magnetic field range of the linear region on dependence of domain wall velocity upon magnetic field: in Fe47.4Ni26.6Si11B13C2 sample is considerably shorter and drastically decreases after annealing. We discussed the influence of annealing on DW dynamics considering different magnetoelastic anisotropy of studied microwires and defects within the amorphous state in Fe47.4Ni26.6Si11B13C2. Consequently we studied the structure of Fe47.4Ni26.6Si11B13C2 sample using X-ray diffraction and the atom probe tomography. The results obtained using the atom probe tomography supports the formation of the B-depleted and Si-enriched precipitates in the metallic nucleus of Fe-Ni based microwires.

  5. Magnetic and structural properties of iron phosphate-phenolic soft magnetic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taghvaei, A.H. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Shokrollahi, H. [Materials Science and Engineering Department, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of)], E-mail: shokrollahi@sutech.ac.ir; Janghorban, K. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2009-12-15

    This work focuses on the effect of phosphate modification on the magnetic and surface properties of iron-phenolic soft magnetic composite materials. Fourier transform infrared (FTIR) spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. Magnetic measurements show that phosphating treatment decreases the loss factor, imaginary part of permeability, increases the electrical resistivity and operating frequencies by decreasing the effective particle size. The operating frequency increases from 200 kHz for uncoated-powders samples to 1 MHz for phosphated-powders samples at optimum concentration. Phosphated iron powders that are covered by 0.7 wt% of phenolic resin exhibits lower magnetic loss and higher frequency stability. The minimum loss factor and maximum permeability at each frequency can be obtained for 0.01 g/ml orthophosphoric acid concentration in comparison with other concentrations including 0.005 and 0.04 g/ml.

  6. Mimicking the magnetic properties of rare earth elements using superatoms.

    Science.gov (United States)

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  7. Magnetic-resonance-based electrical properties tomography: a review.

    Science.gov (United States)

    Zhang, Xiaotong; Liu, Jiaen; He, Bin

    2014-01-01

    Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g., tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced specific absorption rate (SAR), which is a major safety concern in high- and ultrahigh-field magnetic resonance imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced electrical properties tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and noninvasively with a spatial resolution of a few millimeters or less. This paper reviews the EPT approach from its basic theory in electromagnetism to the state-of-the-art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed.

  8. Chemical reaction due to stronger Ramachandran interaction

    Indian Academy of Sciences (India)

    The origin of a chemical reaction between two reactant atoms is associated with the activation energy, on the assumption that, high-energy collisions between these atoms, are the ones that overcome the activation energy. Here, we show that a stronger attractive van der Waals (vdW) and electron-ion Coulomb interactions ...

  9. Magnetic and structural properties of ferrihydrite/hematite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, N.; Camacho-Aguilar, K.I.; Ramos-González, R. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Martinez, Arturo I., E-mail: mtz.art@gmail.com [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Herrera-Trejo, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Coahuila 25900 (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Río de Janeiro 22290-180 (Brazil)

    2016-05-15

    A rich variety of ferrihydrite/hematite nanocomposites (NCs) with specific size, composition and properties were obtained in transformation reactions of 2-line ferrihydrite. Transmission electron microscopy (TEM) observations showed that the NCs consist of clusters of strongly aggregated nanoparticles (NPs) similarly to a “plum pudding”, where hematite NPs “raisins” are surrounded by ferrihydrite “pudding”. Magnetic measurements of the NCs correlate very well with TEM results; i.e., higher coercive fields correspond to greater hematite crystallite size. First order reversal curve (FORC) measurements were used for the characterization of the magnetic components of the NCs. FORC diagrams revealed that the NCs prepared at short times are composed by single domains with low coercivity, and NCs prepared at times larger than 60 min exhibited elongated distribution along the Hc axis. It suggested that these samples consist of mixtures of different kinds of hematite particles, ones with low coercivity and others with coercivity greater than 600 Oe. For NCs prepared at times larger than 60 min, Mossbauer spectroscopy revealed the presence of two sextets, which one was assigned to fine hematite particles and other to hematite particles with hyperfine parameters near to bulk hematite. The correlation of the structural and magnetic properties of the ferrihydrite/hematite NCs revealed important characteristics of these materials which have not been reported elsewhere. - Highlights: • Ferrihydrite/hematite nanocomposites were prepared. • The “plum pudding” morphology of the ferrihydrite/hematite nanocomposites was found. • The FORC diagrams of ferrihydrite/hematite nanocomposites have been measured.

  10. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  11. Correlation between magnetic properties and nuclear magnetic resonance observations in Sr2FeMoO6 double perovskite

    International Nuclear Information System (INIS)

    Colis, S.; Pourroy, G.; Panissod, P.; Meny, C.; Dinia, A.

    2004-01-01

    We present the influence of the sintering temperature on the magnetic properties of Sr 2 FeMoO 6 double perovskite, on the basis of magnetization and nuclear magnetic resonance (NMR) measurements. Interestingly, the saturation magnetization originating mainly from the Fe moments is correlated with the amount of Mo magnetic moments observed by NMR measurements. We show that there is an optimum temperature of 1000 deg. C for which the reaction leading to the double perovskite becomes more advanced and/or the number of antisite defects is minimum

  12. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Casadei, Cecilia [Univ. of Pavia (Italy)

    2011-01-01

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr8 antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr3+ ion with diamagnetic Cd2+ (Cr7Cd) and with Ni2+ (Cr7Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both 53Cr-NMR and 19F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant 19F - M+ where M+ = Cr3+, Ni2+ in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  13. Color-tunable magnetic and luminescent hybrid nanoparticles: Synthesis, optical and magnetic properties

    International Nuclear Information System (INIS)

    Lou Lei; Yu Ke; Wang Yiting; Zhu Ziqiang

    2012-01-01

    A facile method for synthesizing color-tunable magnetic and luminescent hybrid bifunctional nanoparticles is presented. A series of CdSe/ZnS core-shell quantum dots (QDs) with different sizes were successfully fabricated and self-assembled to Fe 3 O 4 magnetic nanoparticles (MNP), which were subsequently coated with a polyethyleneimine (PEI) layer to prevent large aggregates. The hydrophobic QDs capped with trioctylphosphine oxide (TOPO) formed a coating surrounding MNP, and were transferred into hydrophilic phase by PEI with high efficiency. The samples were characterized by TEM, FT-IR, XRD, EDS, UV-vis spectrophotometer, fluorescent spectrophotometer and PPMS. Results show that the original properties of the nanoparticles were well-preserved in the hybrid structure. All MNP-QDs hybrid nanoparticles showed paramagnetic behavior and the nanocomposites were still highly luminescent with no shift in the PL peak position.

  14. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens

    International Nuclear Information System (INIS)

    Konvalina, I.; Muellerova, I.

    2011-01-01

    The cathode lens is an electron optical element in an emission electron microscope accelerating electrons from the sample, which serves as a source for a beam of electrons. Special application consists in using the cathode lens first for retardation of an illuminating electron beam and then for acceleration of reflected as well as secondary electrons, made in the directly imaging low energy electron microscope or in its scanning version discussed here. In order to form a real image, the cathode lens has to be combined with a focusing magnetic lens or a focusing immersion-magnetic lens, as used for objective lenses of some commercial scanning electron microscopes. These two alternatives are compared with regards to their optical properties, in particular with respect to predicted aberration coefficients and the spot size, as well as the optimum angular aperture of the primary beam. The important role of the final aperture size on the image resolution is also presented.

  15. Effects of time on the magnetic properties of terbium-doped LaMnO3

    International Nuclear Information System (INIS)

    Liu Weibin; Zhang Yingtang; Guan Wen; Kinsman, William; Yuan Xinqiang; Chen Ziyu

    2012-01-01

    The magnetic properties of the perovskite form of LaMnO 3 have been shown strong interest in recent years due to its high potential for use in magnetic devices. In this paper, the magnetic properties of a 30% terbium-doped LaMnO 3 (LMTO) perovskite manganite synthesized by a conventional solid-state reaction were investigated. Data on these properties was recorded periodically via SQUID and VSM to reveal it to be best described magnetically as a spin glass system. Thus, the time effect must be taken into consideration in instantaneously determining this material’s spin glass state as well as the overall magnetic properties in the absence of a magnetic field. The results of this paper point to a more in-depth understanding of the change in magnetic properties associated with doped LaMnO 3 .

  16. A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism

    Science.gov (United States)

    Li, Jinhua; Ge, Kunpeng; Pan, Yongxin; Williams, Wyn; Liu, Qingsong; Qin, Huafeng

    2013-10-01

    Single-domain magnetite particles produced by magnetotactic bacteria (magnetosomes) and aligned in chains are of great interest in the biosciences and geosciences. Here, we investigated angular variation of magnetic properties of aligned Magnetospirillum magneticum AMB-1 cells, each of which contains one single fragmental chain of magnetosomes. With measurements at increasing angles from the chain direction, we observed that (i) the hysteresis loop gradually changes from nearly rectangular to a ramp-like shape (e.g., Bc and remanence decrease), (ii) the acquisition and demagnetization curves of IRM shift toward higher fields (e.g., Bcr increases), and (iii) the FORC diagram shifts toward higher coercivity fields (e.g., Bc,FORC increases). For low-temperature results, compared to unoriented samples, the samples containing aligned chains have a much lower remanence loss of field-cooled (δFC) and zero-field-cooled (δZFC) remanence upon warming through the Verwey transition, higher δ-ratio (δ = δFC/δZFC) for the measurement parallel to the chain direction, and lower δ-ratio, larger δFC and δZFC values for the perpendicular measurement. Micromagnetic simulations confirm the experimental observations and reveal that the magnetization reversal of magnetosome chain appears to be noncoherent at low angles and coherent at high angles. The simulations also demonstrate that the angular dependence of magnetic properties is related to the dispersion degree of individual chains, indicating that effects of anisotropy need to be accounted for when using rock magnetism to identify magnetosomes or magnetofossils once they have been preserved in aligned chains. Additionally, this study experimentally demonstrates an empirical correspondence of the parameter Bc,FORC to Bcr rather than Bc, at least for magnetite chains with strong shape anisotropy. This suggests FORC analysis is a good discriminant of magnetofossils in sediments and rocks.

  17. Magnetic properties of novel dynamic self-assembled structures generated on the liquid/air interface

    International Nuclear Information System (INIS)

    Snezhko, A.; Aranson, I.S.

    2007-01-01

    We report on experimental and theoretical studies of magnetic properties of recently discovered dynamic multi-segment self-organized structures ('magnetic snakes'). Magnetic order and response of such snakes are determined by a novel unconventional mechanism provided by a self-induced surface wave. It gives rise to a nontrivial magnetic order: the segments of the snake exhibit long-range antiferromagnetic order mediated by the surface waves, while each segment is composed of ferromagnetically aligned chains of microparticles. Magnetic properties of the snakes are probed by in-plane magnetic field. A phenomenological model is proposed to explain the experimental observations

  18. Fe-based magnetic nanomaterials: Wet chemical synthesis, magnetic properties and exploration on applications

    Science.gov (United States)

    Xiaoliang, Hong

    Even though the start of research based on Fe-based magnetic nanomaterials could be dated back to hundreds years ago, the considerably large amount of emerging fields for their applications, including spintronic structures in information storage, biomedical and environmental applications, magnetic sensors, magnetic energy harvesters, has spurred renewed interest on the application-related properties of Fe-based nanomaterial in both the nanoparticle and film forms. Besides, an exploration of a simple, wide, effective technique that can be used for growth of high-quality Fe-based magnetic nanoparticles and films is of great importance for better materialization of these potential Fe-based devices. This thesis mainly focuses on fabricating different magnetic Fe-based materials (ferrites and ferrous alloys, nanoparticle and film) with wet chemical method, investigating their growth mechanism and magnetic and electrical properties. In addition, the possible applications of as-fabricated Fe-based nanoparticles and films are studied. The contribution of the work is summarized as below: (1) Investigation indicated that the external magnetic field plays an important role in determining the microstructure, magnetic properties of the Fe3O4 nanoparticles. The magnetic field can promote the change of Fe3O4 nanocuboctahedrons to nanocubes. Compared the hyperthermia property of as-fabricated nanocuboctahedrons and nanocubes Fe3O4, the intrinsic loss power (ILP) of the Fe3O4 nanocubes was much higher than that of nanocuboctahedrons due to the surface magnetic effect. (2) A general and facile method for broadly deposition of thick Fe 3O4 film and other ferrites has been demonstrated. It had been found that the epitaxial high-quality Fe3O4 film could be deposited either on MgO substrates directly or Si substrates with Fe3O4 seed layer deposited by PLD. As-deposited Fe 3O4 film could be easily patterned and shows potential applications for microwave and MEMS supercapacitor. Besides

  19. Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method

    International Nuclear Information System (INIS)

    Afzal, A.M.; Umair, M.; Dastgeer, G.; Rizwan, M.; Yaqoob, M.Z.; Rashid, R.; Munir, H.S.

    2016-01-01

    Bismuth ferrite is a multiferroic material which shows high magnetization and polarization at room temperature. In present work, the effect of Oxygen (O) vacancies on magnetic properties of bismuth ferrite nanoparticles is studied. Bismuth ferrite nanoparticles (BiFeO 3 ) were synthesized by solution evaporation method (SEM) at room temperature. The sample was annealed under two different atmospheres such as in air and oxygen, to check the effect of O-vacancies on magnetic properties. The average crystallite size of Bismuth ferrite nanoparticles (NPs) as calculated by X-ray diffraction (XRD) falls in the range of 23–32 nm and 26–39 nm for the case of air and oxygen respectively. The crystallite size of bismuth ferrite nanoparticles increases as the temperature was varied from 450 °C to 650 °C. Further the influence of annealing temperature on the magnetic properties of the bismuth ferrite nanoparticles was also observed. It was concluded that the magnetic properties of Bismuth ferrite nanoparticles are directly interconnected to annealing atmosphere and annealing temperature. The magnetic properties were increased in the case of oxygen annealing, which actually leads in our case to an improvement of the crystallinity. - Highlights: • Bismuth ferrite was synthesized by solution evaporation method. • The effect of different annealing atmosphere on magnetic properties was studied. • The magnetic properties dramatically increased in case of Oxygen annealing. • The influence of crystalline size on magnetic properties was studied. • The magnetization was decreased as the temperature and crystallite size increased.

  20. Magnetic properties of rare earth oxides with perovskite structure

    International Nuclear Information System (INIS)

    Hinatsu, Yukio

    2008-01-01

    A perovskite composite oxide is represented by the general formula of ABO 3 . Cations at the B site characterize magnetic properties of the oxide. Many studies have been accumulated for transition metal elements at the B sites. In this report the studies of rare earth elements at the B sites are reviewed. In rare elements, tetravalent ions such as Ce 4+ , Pr 4+ and Tb 4+ can occupy the B sites with Ba and Sr ions at the A sites. Both the SrTbO 3 and BaTbO 3 have an orthorhombic structure and show the antiferromagnetic transition at about 33 K, which is originated from terbium ions coupled antiferromagnetically with the six neighboring terbium ions. A tetravalent praseodymium perovskite SrPrO 3 shows no existence of the magnetic ordering down to 2.0 K. This is in contrast to the result of isomorphous BaPrO 3 , which shows an antiferromagnetic transition at 11.5 K. A double perovskite structure is represented by the formula A 2 LnMO 6 (A=Ba, Sr, Ca; M=Ru, Ir). In a double perovskite compound Ba 2 PrRuO 6 , the Pr 3+ and Ru 5+ ions are arranged with regularity over the six-coordinate B sites. This compound transforms to an antiferromagnetic state below 117 K. Antiferromagnetic transition temperatures T N for isomorphous Sr and Ca show a clear tendency, T N (A=Ba)>T N (Sr)>T N (Ca), in the compounds with the same rare earth elements (Ln). The 6H-perovskite structure Ba 3 LnRu 2 O 9 consists of linkages between LnO 6 octahedra and Ru 2 O 9 dimers made from face-shared RuO 6 octahedra. The 6H-perovskite structure Ba 3 MRu 2 O 9 (M=Sc, Y, La, Nd-Gd, Dy-Lu) have the valence state of Ba 3 M 3+ Ru 2 4.5+ O 9 . The magnetic susceptibilities show a broad maximum at 135-370 K. This magnetic behavior is ascribed to the antiferromagnetic coupling between two Ru ions in a Ru 2 O 9 dimer and to the magnetic interaction between the Ru 2 O 9 dimers. (author)

  1. Magnetic properties of nickel halide hydrates including deuteration effects

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Van Dongen, M.J.; Hampton, A.S.; Komatsu, C.H.; Trowell, K.T.; Havas, K.C.; Davis, C.M.; DeSanto, C.L. [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Hays, K.; Wagner, M.J. [Chemistry Department, George Washington University, Washington, DC, 20052 United States (United States)

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, T{sub max} and χ{sub max}, ordering temperatures T{sub c}, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that T{sub max} of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD{sub 2}O (n=1 or 2) deuterates exhibit lesser T{sub max} than do nH{sub 2}O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O. This provides some rationale for the difference in magnetic properties between these. - Highlights: • The magnetism of Ni(II) chloride and bromide dihydrates and monohydrates is studied. • Effects of replacing H{sub 2}O by D{sub 2}O are examined for both hydration states and both halides. • Exchange interactions in bromides are weaker than in corresponding chlorides. • Exchange interactions are weaker in D{sub 2}O than in corresponding H{sub 2}O containing systems. • The unit cell of NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O.

  2. High magnetic field properties of Fe-pnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz

    2015-11-20

    The recent discovery of high-temperature superconductivity in Fe-based materials triggered worldwide efforts to investigate their fundamental properties. Despite a lot of similarities to cuprates and MgB{sub 2}, important differences like near isotropic behaviour in contrast to cuprates and the peculiar pairing symmetry of the order parameter (OP) have been reported. The OP symmetry of Fe-based superconductors (FBS) was theoretically predicted to be of so-called s± state prior to various experimental works. Still, most of the experimental results favour the s± scenario; however, definitive evidence has not yet been reported. Although no clear understanding of the superconducting mechanisms yet exists, potential applications such as high-field magnets and Josephson devices have been explored. Indeed, a lot of reports about FBS tapes, wires, and even SQUIDs have been published to this date. In this thesis, the feasibility of high-field magnet applications of FBS is addressed by studying their transport properties, involving doped BaFe{sub 2}As{sub 2} (Ba-122) and LnFeAs(O,F) [Ln=Sm and Nd]. Particularly, it is important to study physical properties in a sample form (i.e. thin films) that is close to the conditions found in applications. However, the realisation of epitaxial FBS thin films is not an easy undertaking. Recent success in growing epitaxial FBS thin films opens a new avenue to delve into transport critical current measurements. The information obtained through this research will be useful for exploring high-field magnet applications. This thesis consists of 7 chapters: Chapter 1 describes the motivation of this study, the basic background of superconductivity, and a brief summary of the thin film growth of FBS. Chapter 2 describes experimental methods employed in this study. Chapter 3 reports on the fabrication of Co-doped Ba-122 thin films on various substrates. Particular emphasis lies on the discovery of fluoride substrates to be beneficial for

  3. Investigation of the electronic, magnetic and optical properties of newest carbon allotrope

    Science.gov (United States)

    Kazemi, Samira; Moradian, Rostam

    2018-05-01

    We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.

  4. Magnetic and electronic properties of NpCo.sub.2./sub.: Evidence for long-range magnetic order

    Czech Academy of Sciences Publication Activity Database

    Sanchez, J.-P.; Griveau, J.C.; Javorský, P.; Colineau, E.; Eloirdi, R.; Boulet, P.; Rebizant, J.; Wastin, F.; Shick, Alexander; Caciuffo, R.

    2013-01-01

    Roč. 87, č. 13 (2013), "134410-1"-"134410-7" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : magnetic properties * electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013 http://link. aps .org/doi/10.1103/PhysRevB.87.134410

  5. Magnetic Vortices in Nanodisks: What are the implications in macroscopic magnetic properties?

    Science.gov (United States)

    Gelvez Pedroza, Ciro Fernando; Patino, Edgar J.; Superconductivity; Nanodevices Laboratory Team

    The study of nanodevices is of great importance nowadays. In particular nanodisks present extraordinary properties when varying their size, shape and materials. One of the most interesting ones has been the presence of magnetic vortices which are normally not present in continuous films or bulk materials. For that reason, these constitute of great interest in potential applications such as data storage, binary logic gates or nano-plasmonics. Although there are many high cost methods for fabrication we have chosen a low cost technique based on Colloidal Lithography. Using Polystyrene Nanoparticles (100nm) nanodisks of about 180 nm in diameter have been grown using Electron Beam evaporation. The fabrication technique requires a number of steps such as spin coating, oxygen plasma and Ion Beam Etching. The samples obtained with this method were Ti/Co/Nb nanodisks with various thickness of the Co layer. Micromagnetic simulations were carried out in OOMMF giving magnetic domain structure and hysteresis loops which were later compared with those obtained experimentally using Vibrating Sample Magnetometry. Simulation results suggest a critical thickness for the appearance of magnetic vortices, revealed by hysteresis loops with substantially lower coercive fields. Facultad de Ciencias,Vicerrectoria de Investigaciones - Universidad de los Andes.

  6. Unusual magnetic properties of mixed-valence system: multiconfigurational method theoretical study on Mn2+ cation.

    Science.gov (United States)

    Wang, Bingwu; Chen, Zhida

    2005-10-01

    The geometry structure, dissociation energy, vibrational frequencies, and low-lying spin-state energy spectrum of Mn2+ are investigated by using ab initio CASSCF/ECP10MDF, complete active space self-consistent field/atomic natural orbital basis sets (CASSCF/ANO-s), CASPT2/ECP10MDF, and second-order perturbation theory with CASSCF reference function/atomic natural orbital basis sets (CASPT2/ANO-s) levels of theory. For the ground state the dissociation energy of 1.397 eV calculated at the CASPT2/ANO-s level supports Jarrlod's experimental value of 1.39 eV. The equilibrium bond length and vibrational frequency are 2.940 A calculated at the CASPT2/ANO-s level of theory and 214.4 cm-1 calculated at the CASSCF/ANO-s level of theory, respectively. On the basis of the mixed-valence model, the Heisenberg exchange constant J(-71.2 cm-1) and the double-exchange constant B(647.7 cm-1) are extracted explicitly from the low-lying energy spectrum calculated at the higher levels of theory. The magnetic competition between the weaker Heisenberg exchange interactions and the stronger double-exchange interactions makes the ground state a 12Sigmag+ state, consistent with electron paramagnetic resonance experimental observation, which explains unusual magnetic properties of Mn2+, quite different from the antiferromagnetic ground state of Mn2 and Cr2. On the other hand, the results calculated at the higher levels of theory show the consistent antiferromagnetic Heisenberg exchange interactions between 3d-3d for Cr2, Mn2+, and Mn2.

  7. Magnetic properties of Pr ions in perovskite-type oxides

    International Nuclear Information System (INIS)

    Sekizawa, K.; Kitagawa, M.; Takano, Y.

    1998-01-01

    Magnetic properties of Pr ions with the controlled valence on the A and B sites of perovskite-type oxides (ABO 3 ) were investigated for two systems. PrSc 1-x Mg x O 3 and BaPr 1-x Bi x O 3 . From the magnetic susceptibility χ versus temperature T curves of PrSc 1-x Mg x O 3 , the χ-T curve for molar Pr 3+ ions on the A site and that of Pr 4+ ions were obtained. The 1/χ-T curves for both ions exhibit the crystalline electric field (CEF) effect and the effective magneticmoment μ eff above 100 K is 3.41 μ B for Pr 3- and 2.58 μ B for Pr 4+ , respectively. The χ-T curve of PrSc 0.8 Mg 0.2 O 3 is similar to that of PrBa 2 Cu 3 O y . In the BaPr 1-x Bi x O 3 system, only one intermediate phase BaPr 0.5 Bi 0.5 O 3 exists, in which Pr and Bi take an ordered arrangement on the B site. The magnetic susceptibility χ for Pr 4+ and that of Pr 3+ in the ordered arrangement with Bi 5- on the B site are much smaller than those for the A site, reflecting the strong CEF effect on the B site. Experimental χ-T curves can be well reproducedby the numerical calculation for Pr 3+ or Pr 4+ ions in the molecular field and the CEF with proper respective parameters. (orig.)

  8. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: s_yuhua@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China)

    2013-11-15

    Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  9. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  10. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    International Nuclear Information System (INIS)

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-01-01

    We present a study on the magnetic properties of naked and silica-coated Fe 3 O 4 nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO 2 shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO 2 functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe 3 O 4 nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  11. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires

    International Nuclear Information System (INIS)

    Zhukova, V.; Korchuganova, O.A.; Aleev, A.A.; Tcherdyntsev, V.V.; Churyukanova, M.; Medvedeva, E.V.; Seils, S.; Wagner, J.; Ipatov, M.; Blanco, J.M.; Kaloshkin, S.D.; Aronin, A.; Abrosimova, G.; Orlova, N.

    2017-01-01

    Highlights: • High domain wall mobility of Fe-Ni-based microwires. • Enhancement of domain wall velocity and mobility in Fe-rich microwires after annealing. • Observation of areas enriched by Si and depleted by B after annealing. • Phase separation in annealed Fe-Ni based microwires in metallic nucleus and near the interface layer. - Abstract: We studied the magnetic properties and domain wall (DW) dynamics of Fe 47.4 Ni 26.6 Si 11 B 13 C 2 and Fe 77.5 Si 7.5 B 15 microwires. Both samples present rectangular hysteresis loop and fast magnetization switching. Considerable enhancement of DW velocity is observed in Fe 77.5 Si 7.5 B 15 , while DW velocity of samples Fe 47.4 Ni 26.6 Si 11 B 13 C 2 is less affected by annealing. The other difference is the magnetic field range of the linear region on dependence of domain wall velocity upon magnetic field: in Fe 47.4 Ni 26.6 Si 11 B 13 C 2 sample is considerably shorter and drastically decreases after annealing. We discussed the influence of annealing on DW dynamics considering different magnetoelastic anisotropy of studied microwires and defects within the amorphous state in Fe 47.4 Ni 26.6 Si 11 B 13 C 2 . Consequently we studied the structure of Fe 47.4 Ni 26.6 Si 11 B 13 C 2 sample using X-ray diffraction and the atom probe tomography. The results obtained using the atom probe tomography supports the formation of the B-depleted and Si-enriched precipitates in the metallic nucleus of Fe-Ni based microwires.

  12. ORION’S VEIL: MAGNETIC FIELD STRENGTHS AND OTHER PROPERTIES OF A PDR IN FRONT OF THE TRAPEZIUM CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Troland, T. H. [Physics and Astronomy Department, University of Kentucky, Lexington, KY 40506 (United States); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Brogan, C. L. [National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville, VA 22903 (United States); Crutcher, R. M. [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Roberts, D. A., E-mail: troland@pa.uky.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL 60208 (United States)

    2016-07-01

    We present an analysis of physical conditions in the Orion Veil, an atomic photon-dominated region (PDR) that lies just in front (≈2 pc) of the Trapezium stars of Orion. This region offers an unusual opportunity to study the properties of PDRs, including the magnetic field. We have obtained 21 cm H i and 18 cm (1665 and 1667 MHz) OH Zeeman effect data that yield images of the line-of-sight magnetic field strength B {sub los} in atomic and molecular regions of the Veil. We find B {sub los} ≈ −50 to −75 μ G in the atomic gas across much of the Veil (25″ resolution) and B {sub los} ≈ −350 μ G at one position in the molecular gas (40″ resolution). The Veil has two principal H i velocity components. Magnetic and kinematical data suggest a close connection between these components. They may represent gas on either side of a shock wave preceding a weak-D ionization front. Magnetic fields in the Veil H i components are 3–5 times stronger than they are elsewhere in the interstellar medium where N (H) and n (H) are comparable. The H i components are magnetically subcritical (magnetically dominated), like the cold neutral medium, although they are about 1 dex denser. Comparatively strong fields in the Veil H i components may have resulted from low-turbulence conditions in the diffuse gas that gave rise to OMC-1. Strong fields may also be related to magnetostatic equilibrium that has developed in the Veil since star formation. We also consider the location of the Orion-S molecular core, proposing a location behind the main Orion H{sup +} region.

  13. Effect of {gamma}-ray irradiation on the magnetic properties of NdFeB and Fe-Cr-Co permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.S. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: zhenl@hit.edu.cn; Li, G.A. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2006-07-15

    The effect of {gamma}-ray irradiation on the magnetic properties of NdFeB and Fe-Cr-Co permanent magnets has been investigated. The magnetic flux loss of two kinds of magnets before and after irradiation was measured. Results show that the effect of {gamma}-ray irradiation on the magnetic properties of sintered NdFeB is not so obvious as that on Fe-Cr-Co magnet. Irradiation-induced damage from {gamma}-ray for the Fe-Cr-Co magnets was characterized for the first time. The decline of permanent magnetic properties of Fe-Cr-Co magnet induced by {gamma}-ray irradiation is reversible except for the maximum energy product (BH){sub max}. The difference of coercivity mechanism between these two kinds of permanent magnets is responsible for the different dependence of magnetic properties loss induced by {gamma}-ray irradiation.

  14. Magnetic properties of hexaferrite nanosized powders produced via mechanoactivation

    Directory of Open Access Journals (Sweden)

    Naiden E.P.

    2005-01-01

    Full Text Available A study of the relationship between structural parameters and principal magnetic characteristics of nanosized powders of hexagonal ferrimagnetics produced via mechanoactivation has been carried out. The models describing the influence of the size effects on temperatures of magnetic phase transformations, saturation magnetization and magnetic anisotropy of similar materials are discussed.

  15. Optical properties of semiconductor nanostructures in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Grochol, M.

    2007-04-03

    In this work, the near bandgap linear optical properties of semiconductor quantum structures under applied magnetic field are investigated. First, the exciton theory is developed starting with the one-electron Hamiltonian in a crystal, continuing with the Luttinger and Bir-Pikus Hamiltonian, and ending with the exciton Hamiltonian in the envelope function approximation. Further, concentrating on the quantum well and thus assuming strong confinement in the growth direction, the motion parallel and perpendicular to the xy-plane is factorized leading to the well-known single sublevel approximation. A magnetic field perpendicular to the xy-plane is applied, and a general theorem describing the behavior of the energy eigenvalues is derived. The strain calculation within the isotropic elasticity approach is described in detail. The Schroedinger equation is solved numerically for both the full model and the factorization with artificially generated disorder potentials. Furthermore the statistical properties of the disorder in a real quantum well have been analyzed. In particular, temperature dependent photoluminescence spectra and diamagnetic shift statistics, have been compared with the experimental ones and very good agreement has been found. The second part of this thesis deals predominantly with highly symmetrical structures embedded in the quantum well: namely quantum rings and dots. First, adopting an ansatz for the wave function, the Hamiltonian matrix is derived discussing which matrix elements are non-zero according to the symmetry of the potential. Additionally, the expectation values of the current and magnetization operators are evaluated. Then, concentrating on the case of the highest (circular) symmetry, the model of zero width ring is introduced. Within this model the close relation between the oscillatory component of the exciton energy (exciton Aharonov-Bohm effect) and the persistent current is revealed. Examples for different material systems follow

  16. Optical and magnetic properties of ZnO/ZnFe{sub 2}O{sub 4} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza, E-mail: reza.zamiri@tdt.edu.vn [Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Salehizadeh, S.A. [Physics Department (I3N), University of Aveiro, Campus Universitario de Santiago, Aveiro (Portugal); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Shabani, Mehdi; Rebelo, Avito [Department of Materials and Ceramic Engineering (DEMaC), University of Aveiro, Campus Santiago, Aveiro, 3810-193 (Portugal); Suresh Kumar, J.; Soares, M.J.; Valente, M.A. [Physics Department (I3N), University of Aveiro, Campus Universitario de Santiago, Aveiro (Portugal); Ferreira, J.M.F. [Department of Materials and Ceramic Engineering (DEMaC), University of Aveiro, Campus Santiago, Aveiro, 3810-193 (Portugal)

    2017-05-01

    ZnO/ZnFe{sub 2}O{sub 4} nanocomposite was prepared by a simple and low cost chemical precipitation method. The prepared composite was characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX), Raman and Fourier Transform infrared spectroscopy (FTIR). The morphology of the prepared sample was studied by scanning electron microscopy (SEM). Photoluminescence (PL) emission of the sample has been investigated at different temperatures (10–300 K) in order to determine the effect of temperature on emission properties of the prepared composite. It was found that at low temperature, the samples show stronger emissions than those at room temperature. Magnetic properties of ZnO/ZnFe{sub 2}O{sub 4} nanocomposite was discussed in temperature range of 5–300 K using VSM measurement. The effective anisotropy constant K{sub eff}, extracted from the magnetization vs. magnetic field, M(B), experimental curve obtained at 5 K and using the law of saturation magnetization, was found to be 2.3 × 10{sup 6} erg/cm{sup 3}. The high value of anisotropy constant is attributed to the existence of uncompensated surface spin in our sample as well as the magnetocrystalline contribution (which depends on the inversion degree in ZnFe{sub 2}O{sub 4}). By using of a modified Langevin equation, the contribution of the surface spins was quantitatively calculated in different temperature higher than T{sub B}. It was found that as the temperature increases from 100 K to 300 K, the surface spins contribution in the total magnetization increases from 44% to 68%. - Highlights: • Fabrication of ZnO/ZnFe{sub 2}O{sub 4} nanocomposite by a simple and low cost method. • The sample show stronger emissions at low temperature than at room temperature. • The effective anisotropy constant K{sub eff}, was found to be 2.3 × 10{sup 6} erg/cm{sup 3}. • By increasing temperature from 100 K to 300 K, the surface spins contribution increases.

  17. Magnetic properties of FeCo nanoparticles for information storage

    Directory of Open Access Journals (Sweden)

    S. A. Sebt

    2006-06-01

    Full Text Available   Submicron FeCo magnetic grains with different percents of cobalt were grown in the presence of magnetic field. After omitting the excess ions and oxygen, heat treatment was performed and some samples were oriented in a polymer background in the presence of a magnetic field. The results of SEM, XRD, and magnetic measurements confirm the existence of induced magnetic anisotropy. As the strength of the magnetic field during the growth of Fe0.7Co0.3 grains increases, the coercively increases from 820 to 1600 Oe. Measurements of magnetization time variation of the samples show a linear correspondence between magnetic stability factor and coercivity. The magnetization of the oriented samples increases by 25%. Raising the coercivity of the medium is the main factor for increasing the capacity of magnetic information storage.

  18. Magnetic properties of (Co, Ni, Mn3O4 spinels

    Directory of Open Access Journals (Sweden)

    Durán, P.

    2004-06-01

    Full Text Available Magnetic properties of new materials, based on the general formula CoxNiyMnzO4 (x+y+z= 3, have been investigated as a function of magnetic field and temperature. The behavior observed in the paramagnetic regime (220 K ≤ T ≤ 400 K shows a direct correlation with the nominal cation concentration. The paramagnetic-ferrimagnetic transition which takes place at T = Tc depends on the overall composition, going from Tc = 120 K (for Co0.2NiMn1.8O4 up to Tc = 210 K (for Co1.2Ni0.3Mn1.5O4. A second transition is observed at lower temperatures, corresponding to a second ordered magnetic sublattice. This second transition takes place at about 60 K (for Co0.6NiMn1.4O4, increasing with the cobalt content up to about 160 K. Under an external magnetic field, both transitions merge into a single one, with a characteristic temperature Tmax, which rapidly decreases with increasing field. Magnetization loops M(H obtained at 5 K show a typical behavior of soft magnetic materials, with low coercive fields. Low conductivity values were observed at room‑temperature, increasing by a factor of 200-1000 at high temperatures (400 C, which make these compounds to be very interesting materials for potential applications as NTCR thermistors.Se han investigado las propiedades magnéticas de materiales de fórmula CoxNiyMnzO4 (x+y+z+ = 3, en función del campo magnético aplicado y de la temperatura. El comportamiento observado en el régimen paramagnético (220 K ≤ T ≤ 400 K está en relación directa con la concentración catiónica nominal. Se observa una transición paramagnética-ferrimagnética a T = Tc, cuyo valor depende de la composición global del compuesto, variando entre Tc = 120 K (Co0.2NiMn1.8O4 y Tc = 210 K (Co1.2Ni0.3Mn1.5O4. Se ha observado una segunda transición a una temperatura inferior, relacionada con una segunda subred magnéticamente ordenada. Esta segunda transición ocurre a T = 60 K (Co0.6NiMn1.4O4, aumentando progresivamente con la

  19. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  20. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  1. Theoretical approach to the magnetic properties of Mn(II), Cr(III), and ...

    Indian Academy of Sciences (India)

    Srimath

    ions in the newly reported. 12- and 15-membered macrocyclic complexes are analysed by a theoretical approach. The calculated magnetic moment and magnetic anisotropy for various situations, especially for Cu(II) ion, suggest that the magnetic properties may lead to a better interpretation about the geometry. It is also ...

  2. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  3. Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model

    DEFF Research Database (Denmark)

    Kinch, K.M.; Merrison, J.P.; Gunnlaugsson, H.P.

    2006-01-01

    Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory...

  4. Magnetic Properties Experiments on the Mars exploration Rover Spirit at Gusev crater

    DEFF Research Database (Denmark)

    Bertelsen, Pernille; Goetz, W.; Madsen, M.B.

    2004-01-01

    The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere...

  5. Low-temperature magnetic properties of greigite (Fe3S4)

    Czech Academy of Sciences Publication Activity Database

    Chang, L.; Roberts, A. P.; Rowan, Ch. J.; Tang, Y.; Pruner, Petr; Chen, Q.; Horng, C. S.

    2009-01-01

    Roč. 10, JAN 29 (2009), Q01Y04-Q01Y04 ISSN 1525-2027 Institutional research plan: CEZ:AV0Z30130516 Keywords : greigite * domain state * low-temperature magnetic properties * marine-sediments * rock magnetism * paleomagnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.626, year: 2009

  6. Influence of abrasive waterjet cutting on the magnetic properties of non-oriented electrical steels

    International Nuclear Information System (INIS)

    Schoppa, A.; Louis, H.; Pude, F.; Rad, Ch. von

    2003-01-01

    The laminations for magnetic cores used in electric motors, generators, ballasts are manufactured by punching, mechanical cutting or cutting by laser of coils of electrical steels. The magnetic material close to the cutting edge is essentially influenced by these processes. Compared with these methods the deterioration of the magnetic properties after the waterjet cutting of electrical steels is very low

  7. Influence of abrasive waterjet cutting on the magnetic properties of non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Schoppa, A. E-mail: schoppa.andreas@ebg.thyssen.com; Louis, H.; Pude, F.; Rad, Ch. von

    2003-01-01

    The laminations for magnetic cores used in electric motors, generators, ballasts are manufactured by punching, mechanical cutting or cutting by laser of coils of electrical steels. The magnetic material close to the cutting edge is essentially influenced by these processes. Compared with these methods the deterioration of the magnetic properties after the waterjet cutting of electrical steels is very low.

  8. Mechanical properties, microstructure and magnetic properties of composite magnet base on SrO.6Fe2O3 (SRM)-thermoplastic and thermoset polymer

    International Nuclear Information System (INIS)

    Grace Tj Sulungbudi; Aloma Karo Karo; Mujamilah; Sudirman

    2010-01-01

    The use of magnets in industrial applications do not always require high magnetic properties. Therefore, the use of polymer as a matrix that serves as a binder can be applied to obtain lightweight, flexible and cheap composite magnet. This report discuss composite magnet base on SrO.6Fe 2 O 3 (SRM)-thermoplastic and thermoset polymer. Thermoplastic polymer consist of polypropylene (PP) type of PP2 and PP10 and polyethylene (PE) type of LDPE were used. For thermoset polymer, epoxy and polyester were used. Synthesis of composite magnet based on thermoplastic polymer (PP2, PP10, LDPE) were carried using the blending method, while the thermoset composites magnet using casting method. Thermoplastic composite magnets were prepared with compositions of 50, 41, 38, 33 and 29 % weight of SRM with the blending temperature of 160 °C for LDPE and 180 °C for PP2 and PP10. For thermoset composite magnets, the compositions were 30, 40, 50 and 60 % by weight of SRM. The mechanical test conducted include tensile strength and elongation at break. Microstructure on the surface of the composite materials were observed using SEM (Scanning Electron Microscope) and the magnetic properties were measured using VSM (Vibrating Sample Magnetometer). The SEM results showed the formation of flat shape powder particle with size of 1.6 µm. In general, the mechanical properties of polypropylene polymer composite magnet are better than that using polyethylene (LDPE) binder. For polypropylene binder PP10 is better than PP2. Magnetic properties are not significantly affected by the change of polymer or binder types. (author)

  9. Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler

    International Nuclear Information System (INIS)

    Stepanov, G.V.; Chertovich, A.V.; Kramarenko, E.Yu.

    2012-01-01

    Viscoelastic and deformational behavior of soft magnetic elastomers with hard magnetic fillers under the influence of a magnetic field is studied by different experimental techniques. The magnetic elastomers used in this work were synthesized on the basis of silicone rubber filled with FeNdB particles and were magnetized in a field of 3 and 15 kOe. We have shown that due to high residual magnetization the materials demonstrate well pronounced non-elastic behavior already in the absence of any external magnetic field. In particular, in contrast to magnetic elastomers based on soft magnetic fillers their elastic modulus is strain-dependent. Under the influence of external magnetic field the storage and loss moduli of magnetic elastomers with hard magnetic filler can both increase and decrease tremendously.

  10. Magnetic properties of Co–N thin films deposited by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C., E-mail: cpsilva@fc.ul.pt [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Vovk, A. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Silva, R.C. da [IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); CFNUL, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Strichovanec, P. [INA, University of Zaragoza, 50018 Zaragoza (Spain); Algarabel, P.A. [ICMA, University of Zaragoza—CSIC, Facultad de Ciencias, Zaragoza 50009 (Spain); Gonçalves, A.P. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, E.N.10, 2686-953 Sacavém (Portugal); Borges, R.P.; Godinho, M.; Cruz, M.M. [CFMC, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Dep. Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal)

    2014-04-01

    Co–N thin films with thickness of 80 nm were deposited using direct current magnetron sputtering at different N{sub 2} partial pressures (PP). The composition, structure and magnetic properties were characterized using Rutherford Backscattering Spectrometry, X-ray Diffraction, Atomic Force Microscopy and Magnetometry. The magnetic properties vary with the nitrogen content of the film, determined by the N{sub 2} PP used for deposition, and are correlated with the cobalt content of the film. The magnetic phases Co{sub 4+x}N and Co{sub 3}N were identified as responsible for the variation of the magnetization values. - Highlights: • Phases Co{sub 4}N and Co{sub 3}N were obtained in the films prepared by reactive sputtering. • Magnetization decreases with the nitrogen content of the film. • Magnetic results in good agreement with theoretical calculations for expected phases • Differences in magnetic properties reported for thicker films.

  11. Magnetic properties of magnetic Co1-xMgxFe2O4 spinel by HTSE method

    International Nuclear Information System (INIS)

    Hamedoun, M.; Benyoussef, A.; Bousmina, M.

    2011-01-01

    Magnetic properties and exchange-coupling interactions of diluted magnetic spinels A 1-x A' x B 2 X 4 , where A and B are magnetic ions, namely Co 1-x Mg x Fe 2 O 4 , were investigated using the high-temperature series expansion method (HTSE) and the distribution method of magnetic cations in the range 0≤x≤1. The magnetic phase diagram and transition temperature versus dilution x were determined using the Pade approximants method along with HTSE. The critical exponent associated with the magnetic susceptibility γ was then deduced. The obtained results are in good agreement with experimental results and critical exponent values are consistent with those suggested by the universality hypothesis.

  12. Properties of a new magnetic material: Sr2FeMoO6

    Indian Academy of Sciences (India)

    Unknown

    applied magnetic fields. We review these investigations, detailing the microscopic mechanism controlling the electronic and magnetic properties of this system. ... are (i) the CMR property is present in the undoped parent compound, Sr2FeMoO6, unlike manganites, (ii) electron–phonon coupling does not appear to be crucial ...

  13. Structural and magnetic properties of Gd/Fe multilayers grown by pulsed laser deposition

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Bahl, Christian Robert Haffenden; Pryds, Nini

    2010-01-01

    This work investigates the structural and the magnetic properties of Gd/Fe multilayered thin films grown by pulsed laser deposition onto Si (001) substrates at room temperature. he Fe layer thickness is varied from 70 to 150 nm and its effect on the structural and magnetic properties of Fe/Gd/Fe ...

  14. Influence of the manufacturing process on the magnetic properties of non-oriented electrical steels

    International Nuclear Information System (INIS)

    Schoppa, A.; Schneider, J.; Wuppermann, C.-D.

    2000-01-01

    The optimal use of an appropriate material for a given application requires some considerations concerning the influence of the manufacturing conditions on the properties of magnetic components. The paper presents the general trends of the influence of manufacturing processes on the magnetic properties of non-oriented fully processed electrical steels

  15. Magnetic transitions and thermomagnetic properties of GdCu6

    International Nuclear Information System (INIS)

    Chattopadhyay, M.K.; Arora, P.; Mondal, P.; Roy, S.B.

    2010-01-01

    We report results of dc magnetization and specific heat studies focusing on the paramagnetic to antiferromagnetic transition in GdCu 6 . These results clearly reveal the evidences of multiple magnetic transitions in GdCu 6 . In addition, a marked thermomagnetic irreversibility is observed in the temperature dependence of magnetization in low ( 6 is quite large in the temperature regime below 20 K, which indicates to the potential of GdCu 6 as a magnetic regenerator material for cryocooler related applications. Isothermal magnetic entropy change estimated from the results of magnetization and specific heat measurements shows a change in sign at the antiferromagnetic ordering temperature.

  16. Synthesis and magnetic properties of strontium hexaferrite from celestite ore

    Energy Technology Data Exchange (ETDEWEB)

    Hessien, M.M. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt)], E-mail: hessienmahmoud@yahoo.com; Rashad, M.M.; Hassan, M.S.; El-Barawy, K. [Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt)

    2009-05-12

    Nanocrystalline strontium hexaferrite (SrFe{sub 12}O{sub 19}) powders have been synthesized from Egyptian celestite ore (SrSO{sub 4}), as a source of strontium, via co-precipitation route. The raw celestite ore was first dissolved in hydrochloric acid to remove about 10% CaO and the acid soluble impurities associated with the ore. Then, the treated celestite was washed and dried followed by a reduction with carbon to give acid-water soluble strontium sulfide SrS. The ferrite precursors were obtained from a precipitation of the produced SrS dissolved in dil. HCl and pure ferric chloride at pH 10 using 5 M sodium hydroxide. These precursors were annealed at 1000 deg. C for constant time 2 h in open atmosphere. The effect of Fe{sup 3+}/Sr{sup 2+} mole ratio on the formation, crystallite size, morphology and magnetic properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and VSM, respectively. The results obtained showed that the single phase SrFe{sub 12}O{sub 19} powders was achieved at the Fe{sup 3+}/Sr{sup 2+} mole ratios 8.57 and 8.00 at annealing temperature 1000 deg. C for 2 h. The maximum saturation magnetization (74.15 emu/g) was achieved at the Fe{sup 3+}/Sr{sup 2+} mole ratio to 8.57 and annealing temperature 1000 deg. C due to the formation of a uniform-like hexagonal shape structure. Moreover, wide coercivities can be obtained at different synthesis conditions (2011-3504 Oe)

  17. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid.

    Science.gov (United States)

    Park, SungJun; Park, Hye Hun; Kim, Sung Yeon; Kim, Su Jung; Woo, Kyoungja; Ko, GwangPyo

    2014-04-01

    Silver nanoparticles (AgNPs) are considered to be a potentially useful tool for controlling various pathogens. However, there are concerns about the release of AgNPs into environmental media, as they may generate adverse human health and ecological effects. In this study, we developed and evaluated a novel micrometer-sized magnetic hybrid colloid (MHC) decorated with variously sized AgNPs (AgNP-MHCs). After being applied for disinfection, these particles can be easily recovered from environmental media using their magnetic properties and remain effective for inactivating viral pathogens. We evaluated the efficacy of AgNP-MHCs for inactivating bacteriophage ΦX174, murine norovirus (MNV), and adenovirus serotype 2 (AdV2). These target viruses were exposed to AgNP-MHCs for 1, 3, and 6 h at 25°C and then analyzed by plaque assay and real-time TaqMan PCR. The AgNP-MHCs were exposed to a wide range of pH levels and to tap and surface water to assess their antiviral effects under different environmental conditions. Among the three types of AgNP-MHCs tested, Ag30-MHCs displayed the highest efficacy for inactivating the viruses. The ΦX174 and MNV were reduced by more than 2 log10 after exposure to 4.6 × 10(9) Ag30-MHCs/ml for 1 h. These results indicated that the AgNP-MHCs could be used to inactivate viral pathogens with minimum chance of potential release into environment.

  18. Effects of biocompatible coating of nanoparticles on acoustics property of the magnetic fluid

    International Nuclear Information System (INIS)

    Jozefczak, A.; Skumiel, A.; Labowski, M.

    2005-01-01

    Potential medical applications of ferromagnetic fluids whose nanoparticles are coated with biological substances, has stimulated the search for magnetic fluids of new properties. In this study the effects of double biocompatible coating of ferromagnetic nanoparticles on the properties of the ferrofluid subjected to an external magnetic field have been studied by the ultrasound method. The ultrasound wave absorption coefficient values measured have proved a good structural stability of dextran and polyethylene glycol magnetic fluids with its particles covered with two surfactant layers

  19. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    OpenAIRE

    Sedlačík, Michal; Pavlínek, Vladimír; Peer, Petra; Filip, Petr

    2014-01-01

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating...

  20. Theoretical investigations of magnetic properties of MRI contrast agents and carbon nanostructures

    OpenAIRE

    Yazyev, Oleg; Helm, Lothar

    2008-01-01

    The phenomenon of magnetism is one of the key components of today's technological progress. Magnetic interactions and magnetic materials are essential for the scientific disciplines of physics, chemistry and biology, making this subject truly multidisciplinary. This thesis is devoted to magnetic properties of two classes of substances. The first class represents the complexes of the ions of paramagnetic metals, primarily of the gadolinium(III) ion. These molecular compounds have an important ...

  1. Magnetic properties of glasses from geothite industrial wastes recycling (FeOOH)

    International Nuclear Information System (INIS)

    Romero, M.; Rincon, J.M.; Esparza, M.; Gonzalez-Oliver, C.

    1997-01-01

    It has been carried out the magnetic properties determination for high iron oxide content glasses series obtained from a geothite red mud waste from the zinc hydrometallurgy and dolomite and glass cullet as main raw materials. It has been determined the magnetic susceptibility and magnetization values for the glasses here investigated. The results suggest that the magnetic behaviour are depending on the glass chemical composition, so that glasses can be differently classified like ferrimagnetic, ferromagnetic, superparamagnetic and paramagnetic. (Author) 6 refs

  2. Magnetic and structural properties of yellow europium oxide compound and Eu(OH)3

    International Nuclear Information System (INIS)

    Lee, Dongwook; Seo, Jiwon; Valladares, Luis de los Santos; Avalos Quispe, O.; Barnes, Crispin H.W.

    2015-01-01

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH) 3 . The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH) 3 were also examined. Although Eu 3+ is present in Eu(OH) 3 , a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH) 3 ) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened

  3. Improved magnetic properties and thermal stabilities of Pr-Nd-Fe-B sintered magnets by Hf addition

    Science.gov (United States)

    Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Quan, Qichen; Zhang, Lili; Liu, Renhui; Hu, Xianjun; He, Lunke; Qi, Zhiqi; Ju, Zhihua; Zhong, Minglong; Ma, Shengcan; Zhong, Zhenchen

    2018-05-01

    Nd2Fe14B-type permanent magnets have been widely applied in various fields such as wind power, voice coil motors, and medical instruments. The large temperature dependence of coercivity, however, limits their further applications. We have systematically investigated the magnetic properties, thermal stabilities and coercivity mechanisms of the (Pr0.2Nd0.8)13Fe81-xB6Hfx (x=0, 0.5) nanocrystalline magnets fabricated by a spark plasma sintering (SPS) technique. The results indicate that the influence of Hf addition is significant on magnetic properties and thermal stabilities of the (PrNd)2Fe14B-type sintered magnets. It is shown that the sample with x = 0.5 at 300 K has much higher coercivity and remanent magnetization than those counterparts without Hf. The temperature coefficients of remanence (α) and coercivity (β) of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets are improved significantly from -0.23 %/K, -0.57 %/K for the sample at x = 0 to -0.17 %/K, -0.49 %/K for the sample at x = 0.5 in the temperature range of 300-400 K. Furthermore, it is found out that the domain wall pinning mechanism is more likely responsible for enhancing the coercivity of the (Pr0.2Nd0.8)13Fe81-xB6Hfx magnets.

  4. Effect of pressure on magnetic properties of hexacyanochromates

    Czech Academy of Sciences Publication Activity Database

    Mitróová, Z.; MaŤaš, S.; Mihalik, M.; Zentková, M.; Arnold, Zdeněk; Kamarád, Jiří

    2008-01-01

    Roč. 113, č. 1 (2008), s. 469-472 ISSN 0587-4246 R&D Projects: GA AV ČR IAA100100632 Institutional research plan: CEZ:AV0Z10100521 Keywords : saturation moments and magnet ic susceptibilities * antiferromagnetics * molecular magnet Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 0.321, year: 2008

  5. Magnetic properties of a URhSi single crystal

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Andreev, Alexander V.; Sechovský, V.; Prokeš, K.

    329-333, - (2003), s. 486-488 ISSN 0921-4526 R&D Projects: GA ČR GA202/02/0739 Keywords : URhSi * magnetization * magnetic susceptibility * specific heat Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.908, year: 2003

  6. Effect of cobalt substitution on magnetic and transport properties of ...

    Indian Academy of Sciences (India)

    The magnetic behaviour can be accounted on the basis of simultaneous presence of different magnetic phases and evolution of one phase at the expense of other with tem- perature variation. The samples with x = 0·3 and 0·5 presu- mably contain coexisting A- and CE-type of magnetic phases which are different from the ...

  7. Effect of alloying on the electronic structure and magnetic properties ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Magnetism; alloys. 1. Introduction. Recently there have been several studies on the magne- tism of thin overlayers of transition metals like Fe on noble metal substrates (Blügel 1997; Mookerjee et al. 2000). It was noted that the magnetic moment on a sur- face 'magnetic' atom depended sensitively on both the.

  8. Overview of Planar Magnetic Technology — Fundamental Properties

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    advantages and disadvantages in the use of planar magnetics for high frequency power converters are covered, and publications on planar magnetics are reviewed. A detailed survey of winding conduction loss, leakage inductance and winding capacitance for planar magnetics is presented so power electronics...

  9. Developments in the processing and properties of NdFeb-type permanent magnets

    International Nuclear Information System (INIS)

    Brown, David; Ma, B.-M.; Chen Zhongmin

    2002-01-01

    The composition, microstructure and processing of NdFeB-type permanent magnets are all critical factors for the successful production of high performance magnet components. Three common fabrication routes can be used to categorize these NdFeB-based bulk magnets: sintering, polymer bonding and hot deformation. Generally, the former type of magnet has a high-energy product (30-50 MGOe), full density and a relatively simple shape. Bonded magnets have intermediate energy products (10-18 MGOe), lower density and can be formed into intricate net-shapes. Hot deformed magnets possess full density, intermediate to high-energy products (15-46 MGOe), isotropic or anisotropic properties and have the potential to be formed into net shapes. This article discusses the critical issues of improved magnetic performance, environmental stability, net-shape formability and magnetization behavior for the main categories of NdFeB magnets

  10. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    Science.gov (United States)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  11. Effect of annealing on magnetic properties and structure of Fe-Ni based magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Zhukova, V. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018 San Sebastian (Spain); Dpto. de Física Aplicada, EUPDS, UPV/EHU, 20018 San Sebastian (Spain); Korchuganova, O.A.; Aleev, A.A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation); Tcherdyntsev, V.V.; Churyukanova, M. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences 620016 Yekaterinburg (Russian Federation); Seils, S.; Wagner, J. [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Ipatov, M. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018 San Sebastian (Spain); Dpto. de Física Aplicada, EUPDS, UPV/EHU, 20018 San Sebastian (Spain); Blanco, J.M. [Dpto. de Física Aplicada, EUPDS, UPV/EHU, 20018 San Sebastian (Spain); Kaloshkin, S.D. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Aronin, A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Insitute of Solid State Physics, Moscow Region, 142432 Chernogolovka (Russian Federation); Abrosimova, G.; Orlova, N. [Insitute of Solid State Physics, Moscow Region, 142432 Chernogolovka (Russian Federation); and others

    2017-07-01

    Highlights: • High domain wall mobility of Fe-Ni-based microwires. • Enhancement of domain wall velocity and mobility in Fe-rich microwires after annealing. • Observation of areas enriched by Si and depleted by B after annealing. • Phase separation in annealed Fe-Ni based microwires in metallic nucleus and near the interface layer. - Abstract: We studied the magnetic properties and domain wall (DW) dynamics of Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} and Fe{sub 77.5}Si{sub 7.5}B{sub 15} microwires. Both samples present rectangular hysteresis loop and fast magnetization switching. Considerable enhancement of DW velocity is observed in Fe{sub 77.5}Si{sub 7.5}B{sub 15}, while DW velocity of samples Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} is less affected by annealing. The other difference is the magnetic field range of the linear region on dependence of domain wall velocity upon magnetic field: in Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} sample is considerably shorter and drastically decreases after annealing. We discussed the influence of annealing on DW dynamics considering different magnetoelastic anisotropy of studied microwires and defects within the amorphous state in Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2}. Consequently we studied the structure of Fe{sub 47.4}Ni{sub 26.6}Si{sub 11}B{sub 13}C{sub 2} sample using X-ray diffraction and the atom probe tomography. The results obtained using the atom probe tomography supports the formation of the B-depleted and Si-enriched precipitates in the metallic nucleus of Fe-Ni based microwires.

  12. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  13. Effects of magnetic correlation on the electric properties in multiferroic materials

    International Nuclear Information System (INIS)

    Zhai, Liang-Jun; Wang, Huai-Yu

    2015-01-01

    The effects of magnetic correlation on the electric properties in the multiferroic materials are studied, where the phase transition temperature of the magnetic subsystem T m is lower than that of the electric subsystem T e . A Heisenberg-type Hamiltonian and a transverse Ising model are employed to describe the ferromagnetic and ferroelectric subsystems, respectively. We find that the magnetic correlation can influence the electric properties above the T m , and magnetic transverse and longitudinal correlations have opposite functions. In the curves of temperature dependence of polarization, kinks appear at T m which is dominated by the sharp change of decreasing rate of the magnetic correlation. The kinks can be eliminated by an external magnetic field. The magnetic transverse and longitudinal correlations play contrary roles on the manipulation of polarization by the external magnetic field. - Highlights: • Both magnetic longitudinal and transverse correlations can influence the electric subsystem through magnetoelectric (ME) coupling at any temperature. • The magnetic longitudinal and transverse correlations have contrary effects in influencing the phase transition temperature of electric subsystem. • The electric phase transition temperature decrease with the ME coupling strength, while it was not so by mean-field theory. • An external field can make the influence smoother around the transition point, and can enhance the electric polarization. • Magnetic longitudinal and transverse correlations have contrary effects on the manipulation of polarization by magnetic field at temperature above the magnetic phase transition point

  14. Effect of Fe and Co substitution on the martensitic stability and the elastic, electronic, and magnetic properties of Mn2NiGa : Insights from ab initio calculations

    Science.gov (United States)

    Kundu, Ashis; Ghosh, Sheuly; Ghosh, Subhradip

    2017-11-01

    We investigate the effects of Fe and Co substitutions on the phase stability of the martensitic phase and mechanical, electronic, and magnetic properties of the magnetic shape memory system Mn2NiGa by first-principles density functional theory calculations. The evolution of these aspects upon substitution of Fe and Co at different crystallographic sites is investigated by computing the electronic structure, mechanical properties (tetragonal shear constant, Pugh ratio, and Cauchy pressure), and magnetic exchange parameters. We find that the austenite phase of Mn2NiGa gradually stabilizes with increase in concentration of Fe/Co due to the weakening of the minority spin hybridization of Ni and Mn atoms occupying crystallographically equivalent sites. The interplay between relative structural stability and the compositional changes is understood from the variations in the elastic moduli and electronic structures. We find that like in the Ni2MnGa -based systems, the elastic shear modulus C' can be considered as a predictor of composition dependence of martensitic transformation temperature Tm in substituted Mn2NiGa , thus singling it out as the universally acceptable predictor for martensitic transformation in Ni-Mn-Ga compounds over a wide composition range. The magnetic properties of Mn2NiGa are found to be greatly improved by the substitutions due to stronger ferromagnetic interactions in the compounds. The gradually weaker (stronger) Jahn-Teller distortion (covalent bonding) in the minority spin densities of states due to substitutions leads to a half-metallic-like gap in these compounds resulting in materials with high spin polarization when the substitutions are complete. The substitutions at the Ga site result in the two compounds Mn2NiFe and Mn2NiCo with very high magnetic moments and Curie temperatures. Thus, our work indicates that although the substitutions destroy the martensitic transformation and thus the possibility of realization of shape memory

  15. Synthesis, characterization and magnetic properties of Fe-Al nanopins

    International Nuclear Information System (INIS)

    Zhang, W.S.; Brueck, E.; Li, W.F.; Si, P.Z.; Geng, D.Y.; Zhang, Z.D.

    2005-01-01

    We report the synthesis of Fe-Al nanopins using arc discharge. The morphology and chemical composition of the Fe-Al nanopins were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). The nanopins are composed of a spherical base of about 20-100 nm and a needle-like tip of about several hundred nanometers. EDX and HRTEM studies indicate that the spherical base is mainly composed of α-Fe and FeAl core coated with a thin Al 2 O 3 layer, while the needle-like part contains only Al and O and corresponds to Al 2 O 3 . The formation mechanism of the nanopins is suggestive of a vapor-liquid-solid (VLS) growth process. The as-prepared Fe-Al nanopins show ferromagnetic properties. The temperature dependence of the magnetization at high temperatures indicates the existence of some phase transformations

  16. Electric and magnetic properties of contrast agents for thermoacoustic imaging

    Science.gov (United States)

    Ogunlade, Olumide; Beard, Paul

    2014-03-01

    The endogenous contrast in thermoacoustic imaging is due to the water and ionic content in tissue. This results in poor tissue speci city between high water content tissues. As a result, exogenous contrast agents have been employed to improve tissue speci city and also increase the SNR. An investigation into the sources of contrast produced by several exogenous contrast agents is described. These include three gadolinium based MRI contrast agents, iron oxide particles, single wall carbon nanotubes, saline and sucrose solutions. Both the dielectric and magnetic properties of contrast agents at 3GHz have been measured using microwave resonant cavities. The DC conductivity of the contrast agents were also measured. It is shown that the measured increase in dielectric contrast, relative to water, is due to dipole rotational loss of polar non electrolytes, ionic loss of electrolytes or a combination of both. It is shown that for the same dielectric contrast, electrolytes make better thermoacoustic contrast agents than non-electrolytes, for thermoacoustic imaging.

  17. Synthesis, crystallographic and magnetic properties of protactinium pnictides

    International Nuclear Information System (INIS)

    Hery, Yves.

    1979-03-01

    From a theoretical point of view, protactinium lies in a very important place in the periodic system for it seems to be the first element of the actinide series where the 5f state is occupied. We have studied protactinium pnictides, particularly arsenides and antimonides. PaAs 2 , Pa 3 As 4 , PaSb 2 and Pa 3 Sb 4 were synthetized and their crystallographic properties were determined and discussed. We have measured the magnetic susceptibilities of PaC, PaAs 2 and PaSb 2 . Protactinium exhibits a dual character. In its monocarbide, which is a weakly diamagnet, it behaves as a transition element while in the temperature independent paramagnets PaAs 2 and PaSb 2 , it behaves like a 'f' element. This 'f' element character increases with increasing metal-metal distances. Furthermore the radial expansion of the protactinium 5f orbital seems to be more important than the Uranium one, and consequently the corresponding protactinium 5f electrons are less localized. In addition, some protactinium chalcogenides (βPaS 2 , γPaSe 2 and PaOSe) have been identified [fr

  18. The role of the nature of pillars in the structural and magnetic properties of magnetic pillared vlays

    DEFF Research Database (Denmark)

    Bachir, Cherifa; Lan, Yanhua; Mereacre, Valeriu

    2011-01-01

    of pillared clays by examining in detail the influence of the calcination temperature and the nature of different pillared clays on these properties. Magnetic layered systems from different pillared clays were prepared and characterized. Firstly, Ti-, Al-, and Zr-pillared clays (Ti-PILCs, Al-PILCs, and Zr......-PILCs, respectively) were produced at different calcination temperatures and then magnetic pillared clays (Ti-M-PILCs, Al-M-PILCs, and Zr-M-PILCs) were prepared at ambient temperature. The synthesis involves a reduction in aqueous solution of the original Fe-exchanged pillared clay using NaBH4. The structural....... Similar experiments with Al- and Zr-pillars have been discussed. A correlation between the XRF data, porosity, FF calculation, and magnetic properties led to the conclusion that the sample Al-M-PILC previously calcined at 500 degrees C was the most stable material after the magnetization process. The same...

  19. Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Valencia, V.H.; Quintero, D.L.; Pineda-Gomez, P.; Gomez, M.

    2006-01-01

    The thermal, magnetic and structural properties of amorphous magnetic Fe 73.5-x Cr x Nb 3 Cu 1 Si 13.5 B 9 alloy ribbons, with x=0, 2, 4, 6, 8, and 10, were studied by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), magneto-impedance measurements and X-ray diffraction (XRD). The ribbons exhibit ultrasoft magnetic behavior, especially giant magneto-impedance effect, GMI. A three-peak behavior was observed in GMI curves. Particular attention has been given to observation of crystallization kinetics via DSC and TGA. The primary crystallization T pcr , and Curie T c , temperatures were determined from DSC and TGA data, respectively. The effect of partial substitution of iron by Cr on the thermal and magnetic properties is discussed

  20. Self-consistent model of a solid for the description of lattice and magnetic properties

    International Nuclear Information System (INIS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2017-01-01

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  1. Preparation of magnetic rubber with high mechanical properties by latex compounding method

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chunlin [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051 (China); College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Gao, Li; Yu, Hailing [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051 (China); Sun, Youyi, E-mail: syyi@pku.edu.cn [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051 (China); College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Yao, Junru; Zhao, Guizhe [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051 (China); Liu, Yaqing, E-mail: lyqzgz2010@163.com [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan 030051 (China); College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China)

    2016-06-01

    the magnetic rubber based on Fe{sub 3}O{sub 4} nanoparticles and nature rubber were prepared by latex compounding method, in which stable Fe{sub 3}O{sub 4} aqueous solutions were mixed with natural rubber latex and additives. This process was fast, versatile, reliable, safe, environmentally friendly and inexpensive. What’s more, it was found that the magnetic and mechanical properties of magnetic rubber increased together with increase in doping content of Fe{sub 3}O{sub 4} nanoparticles. Especially, it was demonstrated that the tensile strength (25.0 Mpa) of magnetic rubber was improved to be 478.0% comparing to neat natural rubber (5.2 Mpa), which was 5 times higher than maximal value reported in previous work. At the same time, the magnetic rubber revealed better thermal stability and solvent resistance comparing to the neat natural rubber, too. The work dose not only provides a new way to environmentally friendly preparation of magnetic rubber at low temperature, but also improve the mechanical and magnetic properties of magnetic rubber applied in industry. - Highlights: • The magnetic rubber was prepared by a latex compounding method. • The magnetic rubber exhibited high mechanical properties. • The mechanism of high mechanical properties was investigated by the NMR.

  2. Self-consistent model of a solid for the description of lattice and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, T., E-mail: t_balcerzak@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź (Poland); Szałowski, K., E-mail: kszalowski@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź (Poland); Jaščur, M. [Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Šáfárik University, Park Angelinum 9, 041 54 Košice (Slovakia)

    2017-03-15

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  3. Influence of External Static Magnetic Fields on Properties of Metallic Functional Materials

    Directory of Open Access Journals (Sweden)

    Xiaowei Zuo

    2017-12-01

    Full Text Available Influence of external static magnetic fields on solidification, solid phase transformation of metallic materials have been reviewed in terms of Lorentz force, convection, magnetization, orientation, diffusion, and so on. However, the influence of external static magnetic fields on properties of metallic functional materials is rarely reviewed. In this paper, the effect of static magnetic fields subjected in solidification and/or annealing on the properties of Fe–Ga magnetostrictive material, high strength high conductivity Cu-based material (Cu–Fe and Cu–Ag alloys, and Fe–Sn magnetic material were summarized. Both the positive and negative impacts from magnetic fields were found. Exploring to maximize the positive influence of magnetic fields is still a very meaningful and scientific issue in future.

  4. The anisotropic magnetic property and Faraday rotation in Er3Ga5O12 under high magnetic field

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xijuan; Liu Gongqiang

    2005-01-01

    A theoretical investigation on the anisotropic magnetic property and Faraday rotation in Er 3 Ga 5 O 12 (ErGaG) is presented. With particular consideration of the anisotropy of the exchange interaction between rare-earth ions (Er 3+ ), the magnetization, based on the quantum theory, in ErGaG under high magnetic field (HMF) is calculated. Theoretical calculations show that the appropriate choice of the crystal field (CF) parameters is of great importance. A novel three-level model is presented, and in terms of this model the Faraday rotation under HMF is calculated. In addition, it is demonstrated that the Faraday rotation (θ) depends not only on the magnetization (M) but also on the magnetic field (H e ). The theory is in good agreement with the experiment

  5. A Solid State Nanopore Device for Investigating the Magnetic Properties of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    SangYoon Park

    2013-05-01

    Full Text Available In this study, we explored magnetic nanoparticles translocating through a nanopore in the presence of an inhomogeneous magnetic field. By detecting the ionic current blockade signals with a silicon nitride nanopore, we found that the translocation velocity that is driven by magnetic and hydrodynamic forces on a single magnetic nanoparticle can be accurately determined and is linearly proportional to the magnetization of the magnetic nanoparticle. Thus, we obtained the magneto-susceptibility of an individual nanoparticle and the average susceptibility over one hundred particles within a few minutes.

  6. Electronic and Magnetic Properties of Double Perovskite Ca2CrSbO6

    International Nuclear Information System (INIS)

    Zhao Yuan; Ni Guangxin; Liu Huiping; Yi Lin

    2010-01-01

    First-principles calculations have been performed for the study of the electronic hand structure and ferromagnetic properties of double perovskite Ca 2 CrSbO 6 . The density of states, total energy, spin magnetic moment, and charge density were calculated and analyzed in details. It is found that Ca 2 CrSbO 6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is about 2.99μ B . The chromium contributes the most in the total magnetic moments. The results indicate that Ca 2 CrSbO 6 is half-metallic. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  8. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    International Nuclear Information System (INIS)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander; Adamski, Paweł; Moszyński, Dariusz

    2016-01-01

    Four nanocomposites containing mixed phases of Co 3 Mo 3 N and Co 2 Mo 3 N doped with chromium have been prepared. A linear fit is found for relation between Co 2 Mo 3 N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2–300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping. - Highlights: • A new chromium doped mixed Co-Mn-N nanocomposites were synthesized. • Surface ferromagnetism was detected in a wide temperature range. • Core-shell model was applied to explain nanocomposites magnetism.

  9. Transport properties and magnetic disorder/order transition in FexAg100-x films

    International Nuclear Information System (INIS)

    Bisero, D.; Angeli, E.; Pizzo, L.; Spizzo, F.; Vavassori, P.; Ronconi, F.

    2003-01-01

    We have studied the magnetic disorder/order transition in Fe x Ag 100-x films, with x varying from 10 to 30, focusing our attention on the interplay between transport and magnetic properties. The samples have been deposited by DC magnetron co-sputtering and analyzed by magneto-optic Kerr effect and magnetoresistance measurements, with external magnetic field applied both in and out of the film plane. Magnetization and magnetoresistive results indicate that for low Fe content (x<20) the system can be described as a granular isotropic superparamagnet. In the high concentration range (20< x≤30) the effect of local magnetic ordering emerges and the films can no longer be considered as granular. The presence of magnetic coherence on different length scales in this regime is discussed and related to coalescence of magnetic particles and clusters formation, with increasing Fe concentration above 20%. This value appears as a critical iron content around which the magnetic disorder/order transition occurs

  10. Structural, electronic and magnetic properties of Fen-C60 and Fen-C80 (n=2-7) endohedral metallofullerene nano-cages: First principles study

    International Nuclear Information System (INIS)

    Bezi Javan, M.; Tajabor, N.

    2012-01-01

    We studied the structural, electronic and magnetic properties of small Fe n clusters (n=2-7) endohedrally doped in icosahedral C 60 and C 80 fullerenes using first principles calculations based on the density functional theory. It is found that the encapsulated Fe n clusters inside icosahedral C 80 are energetically favorable while Fe n -C 60 metallofullerene nano-cages are not. The binding energies of the Fe n encapsulated in C 60 are positive and increase with the number of iron atoms (n) while those of the Fe n -C 80 are negative and their absolute values increase up to n=6. The encapsulation does not significantly change the enclosed cluster structure, but the total magnetic moment of the larger clusters reduces due to a stronger Fe-C hybridization. - Highlights: → Encapsulated Fe n clusters inside C 80 cage are energetically favorable while Fe n -C 60 nano-cages are not. → Encapsulation does not significantly change the enclosed cluster structure. → Total magnetic moment of the larger clusters reduces due to a stronger Fe-C hybridization.

  11. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practical......-field-cooled magnetization and isothermal remanence decay, is influenced by interactions and strongly dependent on the applied magnetic field....

  12. Magnetic property based characterization of rust on weathering steels

    International Nuclear Information System (INIS)

    Mizoguchi, T.; Ishii, Y.; Okada, T.; Kimura, M.; Kihira, H.

    2005-01-01

    The characterization of rusts on weathering steels is important in understanding the origin of their corrosion resistance. Rust consists of several phases, e.g. α-, β- and γ-FeOOH, which are anti-ferromagnetic with different Neel temperatures. Rust on so-called advanced weathering steel containing 3 wt.% Ni [H. Kihira, A. Usami, K. Tanabe, M. Ito, G. Shigesato, Y. Tomita, T. Kusunoki, T. Tsuzuki, S. Ito, T. Murata, in: Proc. Symp. on Corrosion and Corrosion Control in Saltwater Environments, Honolulu, 1999, The Electrochemical Soc., pp. 127-136] contains in addition a ferrimagnetic spinel phase [M. Kimura, H. Kihira, Y. Ishii, T. Mizoguchi, in: Proc. 13th Asian-Pacific Corrosion Control Conference, Osaka, 2003; M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, T. Senuma, Corros. Sci., this volume; M. Kimura, N. Ohta, H. Kihira, Mater. Trans. JIM, in press]. The nanostructure of real rust cannot be elucidated satisfactorily only with conventional analytical methods such as X-ray diffraction, because of the complex mixture of phases with fine and imperfect crystallites. Because of the short range of the super-exchange coupling between Fe ions in a solid, the magnetic properties can give information on local configurations even in the absence of perfect crystalline coherence. Therefore, the magnetic properties of rust samples were investigated in detail using a Superconducting Quantum Interference Device (SQUID) magnetometer and Moessbauer spectroscopy. SQUID magnetometry is effective to determine the quantity of the ferrimagnetic phase. The temperature dependence of the Moessbauer spectrum gives information about not only the fractions of the phases but also the distribution of grain volume, V, in each phase according to the super-paramagnetic relaxation effect. This approach has been applied to rust of conventional [T. Okada, Y. Ishii, T. Mizoguchi, I. Tamura, Y. Kobayashi, Y. Takagi, S. Suzuki, H. Kihira, M. Ito, A. Usami, K. Tanabe, K. Masuda, Jpn. J. Appl. Phys. 39

  13. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  14. Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles

    Directory of Open Access Journals (Sweden)

    Srinivasa Saranu

    2011-06-01

    Full Text Available Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media.

  15. Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles.

    Science.gov (United States)

    Saranu, Srinivasa; Selve, Sören; Kaiser, Ute; Han, Luyang; Wiedwald, Ulf; Ziemann, Paul; Herr, Ulrich

    2011-01-01

    Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media.

  16. Influence of the structural properties on the pseudocritical magnetic behavior of single-wall ferromagnetic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Enriquez, C.D. [PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion Gplus, Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2012-04-15

    In this work we address the influence of the crystalline structure, concretely when the system under study is formed by square or hexagonal unit cells, upon the magnetic properties and pseudocritical behavior of single-wall ferromagnetic nanotubes. We focus not only on the effect of the geometrical shape of the unit cell but also on their dimensions. The model employed is based on the Monte Carlo method, the Metropolis dynamics and a nearest neighbors classical Heisenberg Hamiltonian. Magnetization per magnetic site, magnetic susceptibility, specific heat and magnetic energy were computed. These properties were computed varying the system size, unit cell dimension and temperature. The dependence of the nearest neighbor exchange integral on the nanotubes geometrical characteristics is also discussed. Results revealed a strong influence of the system topology on the magnetic properties caused by the difference in the coordination number between square and hexagonal unit cell. Moreover, the nanotubes diameter influence on magnetic properties is only observed at very low values, when the distance between atoms is less than it, presented by the 2D sheet. On the other hand, it was concluded that the surface-related finite-size effects do not influence the magnetic nanotubes properties, contrary to the case of other nano-systems as thin films and nanoparticles among others. - Highlights: Black-Right-Pointing-Pointer Unit cell geometry has strong influence on the magnetic properties in ferromagnetic nanotubes. Black-Right-Pointing-Pointer The nanotube diameter increase produces a decrease of interaction between nearest neighbor. Black-Right-Pointing-Pointer Surface-related finite-size effects do not influence the magnetic nanotubes properties.

  17. Magnetic properties of 2D nano-islands II: Ising spin model with out-of-plane magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abou Ghantous, M., E-mail: michel.aboughantous@qatar.tamu.edu [Department of Physics, Texas A and M University at Qatar, Education City, PO Box 23874, Doha (Qatar); Khater, A. [Laboratoire de Physique de L' Etat Condense, UMR 6087, Universite du Maine, 72085 Le Mans (France)

    2011-10-15

    An Ising effective field theory model is presented to calculate the magnetic properties of 2D nano-islands on a nonmagnetic substrate, subject to an externally out-of-plane applied magnetic field. The system Hamiltonian contains nearest neighbor exchange interactions, single-atom magnetic anisotropies, and the Zeeman term. The calculations yield, in particular, the single site spin correlations, the magnetizations, and the isothermal susceptibilities, for the core and periphery domains of the nano-island. The choice of a spin S=1 for the atoms of the system permits the analysis of local spin fluctuations via the single site spin correlations. We investigate in this respect the effects due to the different magnetocrystalline anisotropies and reduced dimensionalities, for the core and periphery domains, and in particular the critical influence of the applied magnetic field. Detailed theoretical results are presented for the square and hexagonal lattice symmetries, with numerical applications for the 2D monolayer Co nano-islands on a Pt substrate. It is shown that the remarkable differences between the magnetic properties of the core and periphery domains in zero field are washed out when an out-of-plane field is applied. The applied field also provokes critical discontinuities for the spin correlations and magnetization reversals, for the core and periphery domains, which are especially evident for the hexagonal lattice nano-island in the range of fields of interest. The discontinuities and magnetization reversals occur over elementary temperature widths, and shift to lower temperatures with increasing field. The field-dependant isothermal susceptibilities show new features very different from those for the susceptibilities in zero field. The present Ising model does not show any blocking temperature transition to superparamagnetism. - Highlights: > An EFT model is presented to calculate the magnetic properties of 2D nano-islands. > The Hamiltonian contains n

  18. Magnetic properties of FeCo nanoparticles encapsulated in carbon

    Czech Academy of Sciences Publication Activity Database

    Maryško, Miroslav; Fajgar, Radek; Šubrt, Jan; Murafa, Nataliya; Knížek, Karel

    2010-01-01

    Roč. 200, č. 7 (2010), 072065/1-072065/5 ISSN 1742-6588 R&D Projects: GA ČR GA203/07/0546 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : magnetic nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces ca...

  20. Magnetic properties of single crystalline UFeSi

    Czech Academy of Sciences Publication Activity Database

    Andreev, Alexander V.; Honda, F.; Sechovský, V.; Diviš, M.; Izmaylov, N.; Chernyavski, O.; Homma, Y.; Shiokawa, Y.

    2002-01-01

    Roč. 335, - (2002), s. 91-94 ISSN 0925-8388 R&D Projects: GA ČR GA202/99/0184 Institutional research plan: CEZ:AV0Z1010914 Keywords : actinide compounds * electrical transport * magnetic measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2002

  1. Structures, energetics and magnetic properties of AunSFem and ...

    African Journals Online (AJOL)

    Bheema

    bond length would have increased the magnetic moment of the Fe atom, but due to the hybridization of Au and Fe orbitals, ... the cluster stability is increased on the addition of a single sulfur atom to the AunFem clusters. A special stability is ...... Localization of 3d and 4d Electrons in Small Clusters: The. "roots" of magnetism.

  2. Processing, properties and some novel applications of magnetic ...

    Indian Academy of Sciences (India)

    Abstract. Magnetic nanoparticles have been prepared by various soft chemical methods including self-assembly. The bare or surface-modified particles find applications in areas such as hyperthermia treatment of cancer and magnetic field-assisted radioactive chemical separation. We present here some of the salient ...

  3. Effect of annealing process of iron powder on magnetic properties ...

    Indian Academy of Sciences (India)

    Administrator

    The amplitude permeability and magnetic loss of the cores reached the maximum and minimum values, respectively. The magnetic loss of the cores was separated into hysteresis loss and eddy current loss by Stoppels Method which were decreased by the annealing process. Keywords. Reduced iron powders; annealing ...

  4. Effect of high magnetic field on structure and magnetic properties of evaporated crystalline and amorphous Fe-Sm thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guojian [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China); Li, Mengmeng; Wang, Jianhao; Du, Jiaojiao; Wang, Kai [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China)

    2017-02-01

    Crystalline and amorphous Fe-Sm thin films have been fabricated by using molecular beam vapor deposition method. Then, the effects of both variation of Sm content and application of high magnetic field during film growth on the structure and magnetic properties of the Fe-Sm films have been explored. The results show that bcc structure of the Fe-Sm films with 5.8% Sm transforms to amorphization with 33.0% Sm. Meanwhile, nanocrystallite is formed in the amorphous Fe-Sm films. However, no Fe-Sm compound exists with the change of Sm content and with the application of high magnetic field. Nevertheless, high magnetic field decreases interplanar spacing. The structural evolution has a significant effect on magnetic properties. Saturation magnetization decreases 290% from 1456 emu/cm{sup 3} to 373 emu/cm{sup 3} with the increase of Sm content from 5.8% to 33.0%. The coercivity increases 1225% from 20 Oe to 265 Oe. Meanwhile, both the saturation magnetization and coercivity of the films decrease with the application of high magnetic field. The reason has been discussed. - Highlights: • Bcc structure of Fe-Sm film with 5.8% Sm transforms to amorphization with 33.0% Sm. • M{sub S} decreases 290% to 373 emu/cm{sup 3} with increasing Sm content from 5.8% to 33.0%. • Coercivity increases 1225% to 265 Oe when bcc structure transforms to amorphization. • Both M{sub S} and coercivity are decreased with the application of high magnetic field.

  5. Magnetic and magnetocaloric properties of DyMn{sub 2}Si{sub 2} compound with multiple magnetic phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Reis, D.C. dos; França, E.L.T. [Centro de Ciências Sociais Saúde e Tecnologia (CCSST), Universidade Federal do Maranhão – UFMA R. Urbano Santos, s/n, 65900-410 Imperatriz, Maranhão (Brazil); Paula, V.G. de [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas – UNICAMP, R. Sérgio Buarque de Holanda, 777, 13083-859 Campinas, São Paulo (Brazil); Santos, A.O. dos [Centro de Ciências Sociais Saúde e Tecnologia (CCSST), Universidade Federal do Maranhão – UFMA R. Urbano Santos, s/n, 65900-410 Imperatriz, Maranhão (Brazil); Coelho, A.A.; Cardoso, L.P. [Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas – UNICAMP, R. Sérgio Buarque de Holanda, 777, 13083-859 Campinas, São Paulo (Brazil); Silva, L.M. da, E-mail: luzeli.moreira@ufma.br [Centro de Ciências Sociais Saúde e Tecnologia (CCSST), Universidade Federal do Maranhão – UFMA R. Urbano Santos, s/n, 65900-410 Imperatriz, Maranhão (Brazil)

    2017-02-15

    Structural, magnetic and magnetocaloric properties of the ternary intermetallic compound DyMn{sub 2}Si{sub 2} are studied by X-ray diffraction and magnetization measurements. It is found that DyMn{sub 2}Si{sub 2} crystalizes with tetragonal ThCr{sub 2}S{sub 2}-type structure and exhibits four successive magnetic transitions at low temperature, around 20 K, 31 K, 38 K and 82 K, named respectively as T{sub 1}, T{sub 2}, T{sub 3} and T{sub 4} transitions. Large values of magnetic field (>35 kOe) favor antiferromagnetic clusters and give rise to exchange bias effect. The different responses of T{sub 2} and T{sub 3} to field change, induces two non-identical isothermal entropy change (-ΔS{sub M}) peaks. The maximum values of -ΔS{sub M} occur in temperatures around T{sub 3} and reaches 8.2 J/kgK, for a magnetic field change of 50 kOe. Also, the presence of transitions T{sub 2} and T{sub 3} close to each other induces a table-like magnetocaloric effect (MCE) in a wide temperature range. Thus, the peculiar magnetic properties observed for DyMn{sub 2}Si{sub 2} compound are interesting for low temperature magnetic refrigeration. - Highlights: • The ternary intermetallic compound DyMn{sub 2}Si{sub 2} is proposed as magnetocaloric material. • Four magnetic phase transitions were identified for DyMn{sub 2}Si{sub 2} at low temperatures. • H >35 kOe favor antiferromagnetic clusters and give rise to exchange bias effect. • Two successive magnetic phase transitions induce a large table like EMC.

  6. Magnetic properties of the austenitic stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tsuchiya, K.; Itoh, K.; Kobayashi, S.

    2002-01-01

    The magnetization was measured for the austenitic stainless steel of SUS304, SUS304L, SUS316, and SUS316L with the temperature from 5K to 300K and the magnetic field from 0T to 10T. The field dependences of the magnetizations changed at about 0.7T and 4T. The dependence was analyzed with ranges of 0-0.5T, 1-3T, and 5-10T. There was not so much difference between those stainless steels for the usage at small fields and 300 K. The SUS316 and SUS316L samples showed large non-linearity at high fields and 5K. Therefore, SUS304 was recommended for usage at high fields and low temperatures to design superconducting magnets with the linear approximation of the field dependence of magnetization

  7. Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties

    Science.gov (United States)

    Becker, T. I.; Zimmermann, K.; Borin, D. Yu.; Stepanov, G. V.; Storozhenko, P. A.

    2018-03-01

    Smart materials like magnetic hybrid elastomers (MHEs) are based on an elastic composite with a complex hybrid filler of magnetically hard and soft particles. Due to their unique magnetic field depending characteristics, these elastomers offer great potential for designing sensor systems with a complex adaptive behaviour and operating sensitivity. The present paper deals with investigations of the material properties and motion behaviour displayed by synthesised MHE beams in the presence of a uniform magnetic field. The distribution and structure formation of the magnetic components inside the elastic matrix depending on the manufacturing conditions are examined. The specific magnetic features of the MHE material during the magnetising process are revealed. Experimental investigations of the in-plane free vibrational behaviour displayed by the MHE beams with the fixed-free end conditions are performed for various magnitudes of an imposed uniform magnetic field. For the samples pre-magnetised along the length axis, it is demonstrated that the deflection of the beam can be identified unambiguously by magnetic field distortion measurements. It is shown that the material properties of the vibrating MHE element can be specifically adjusted by means of an external magnetic field control. The dependence of the first eigenfrequency of free bending vibrations of the MHE beams on the strength of an imposed uniform magnetic field is obtained. The results are aimed to assess the potential of MHEs to design acceleration sensor systems with an adaptive magnetically controllable sensitivity range.

  8. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianglong, E-mail: 215454278@qq.com; Liu, Zhenyu, E-mail: zyliu@mail.neu.edu.cn; Li, Haoze; Wang, Guodong

    2017-07-01

    Highlights: • The experimental materials used in the study are based on strip casting. • Magnetic properties between warm rolled and cold rolled sheets are investigated. • Cold rolled 6.5% Si sheet has better magnetic properties than warm rolled sheet. • The γ and λ-fiber recrystallization textures can be optimized after cold rolling. • Cold rolling should be more suitable for fabricating 6.5% Si steel thin sheets. - Abstract: 6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (<1 1 1>//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1}<1 1 2> component at surface layer and {1 1 1}<1 1 0> component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  9. Functionalization of carbon nanotubes with magnetic nanoparticles: general nonaqueous synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Zhang Hui; Du Ning; Wu Ping; Chen Bingdi; Yang Deren

    2008-01-01

    A novel approach has been developed to synthesize magnetic nanoparticle and carbon nanotube (CNT) core-shell nanostructures, such as CoO/CNTs and Mn 3 O 4 /CNTs, by the nonaqueous solvothermal treatment of metal carbonyl on CNT templates using hexane as the solvent. The morphological and structural characterizations indicate that numerous cubic CoO or tetragonal Mn 3 O 4 nanoparticles are deposited on the surfaces of the CNTs to form CNT-based core-shell nanostructures. It is revealed that the hydrophobic interaction between nanoparticles and CNTs in hexane plays the critical role for the formation of CNT-based core-shell nanostructures. A physical property measurement system (PPMS-9, Quantum Design) analysis indicates that the CoO/CNT core-shell nanostructures show weak ferromagnetic performance at 300 K due to the ferromagnetic Co clusters and the uncompensated surface spin states, while the Mn 3 O 4 /CNT core-shell nanostructures display ferromagnetic behavior at low temperature (34.5 K), which transforms into paramagnetic behavior with increasing temperature

  10. Preparation and Magnetic Properties of MnBi-based Hard/Soft Composite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yilong; Liu, Xubo; Gandha, Kinjal; Vuong, Nguyen V.; Yang, Y. B.; Yang, Jinbo; Poudyal, Narayan; Cui, Jun; Liu, J.Ping

    2014-05-07

    Bulk anisotropic composite magnets based on MnBi/Co(Fe) exhibiting the different morphology of the soft magnetic phase were prepared by powder metallurgy processing. First, single-phase MnBi bulk magnets were produced using a maximum energy product [(BH)m] of 6.3 MGOe at room temperature. The nanoscale soft phase with the different morphology was then added to form a composite magnet. It was observed that addition of magnetic soft-phase nanoparticles and nanoflakes causes a dramatic coercivity reduction. However, the addition of soft magnetic phase nanowires enhanced the composite magnetization without sacrificing the coercivity. Nevertheless, a kink was still observed on the demagnetization curves and the coercivity decreased when the soft-phase content was larger than 10 wt. %, which was caused by the agglomeration of the soft phase nanowires that also led to a decreased degree of texture.

  11. A quantum explanation of the magnetic properties of Mn-doped graphene

    International Nuclear Information System (INIS)

    Lei Tian-Min; Liu Jia-Jia; Zhang Yu-Ming; Guo Hui; Zhang Zhi-Yong

    2013-01-01

    Mn-doped graphene is investigated using first-principles calculations based on the density functional theory (DFT). The magnetic moment is calculated for systems of various sizes, and the atomic populations and the density of states (DOS) are analyzed in detail. It is found that Mn doped graphene-based diluted magnetic semiconductors (DMS) have strong ferromagnetic properties, the impurity concentration influences the value of the magnetic moment, and the magnetic moment of the 8×8 supercell is greatest for a single impurity. The graphene containing two Mn atoms together is more stable in the 7×7 supercell. The analysis of the total DOS and partial density of states (PDOS) indicates that the magnetic properties of doped graphene originate from the p—d exchange, and the magnetism is given a simple quantum explanation using the Ruderman—Kittel—Kasuya—Yosida (RKKY) exchange theory

  12. Magnetic properties of double perovskite La2BMnO6 (B = Ni or Co) nanoparticles.

    Science.gov (United States)

    Mao, Yuanbing; Parsons, Jason; McCloy, John S

    2013-06-07

    Double perovskite La2BMnO6 (B = Ni and Co) nanoparticles with average particle size of ~50 nm were synthesized using a facile, environmentally friendly, and scalable molten-salt reaction at 700 °C in air. Their structural and morphological properties were characterized by X-ray diffraction and transmission electron microscopy. Their magnetic properties were evaluated and compared using dc magnetic M-T and M-H, and ac magnetic susceptibility versus frequency, temperature, and field for the first time. The dc magnetization curves show paramagnetic-ferromagnetic transitions at TC∼ 275 and 220 K for La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) nanoparticles, respectively. ac susceptibility revealed that the LCMO nanoparticles had a single magnetic transition indicative of Co(2+)-O(2-)-Mn(4+) ordering, whereas the LNMO nanoparticles showed more complex magnetic behaviors suggesting a re-entrant spin glass.

  13. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weihang; Nakamura, Daisuke [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Wang, Yu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (China); Mochizuki, Toshimitsu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiike-dai, Koriyama, Fukushima 963-0215 (Japan); Akiyama, Hidefumi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-09-15

    Magnetic field effect on enzymatic reactions is under intensive study in the past decades. Recently, it was reported that firefly bioluminescence was suppressed and red-shifted significantly when exposed to external magnetic field. However in this work, by means of selective excitation, we confirmed that emission properties of firefly light emitter “oxyluciferin” are completely immune to external magnetic field of up to 53 T. These findings pose strong contrast to existing relevant results. Potential reasons for the discrepancies found and the underlying physics towards the understanding of firefly bioluminescence were discussed. - Highlights: • Effect of ultra-high magnetic field on the optical properties of firefly light emitter oxyluciferin was reported. • Emission properties of oxyluciferin were confirmed to be immune to external high magnetic fields up to 53 T. • .Potential reasons for the discrepancies between our results and previous reports and the underlying physics were discussed.

  14. Association between magnetic properties and element concentrations of Liverpool street dust and its implications

    Science.gov (United States)

    Xie, Shanju; Dearing, John A.; Boyle, John F.; Bloemendal, Jan; Morse, Andrew P.

    2001-09-01

    Ninety-seven street dust samples were collected in a sampling period and 19 sites were revisited. Comparison between 97 sites and 19 revisited sites, using t-test and one-way analysis of variance (ANOVA), suggests that representative magnetic properties, and mean values of some element concentrations and the organic matter content may be obtained with a small number of samples from a sampling period of one or several days. Correlation analysis and factor analysis were applied to investigate associations between magnetic properties and between magnetic properties and element concentrations. The results suggest mixed contributions of magnetic material from urban and natural sources, probably mainly urban sources. Finally, this study may suggest a possible approach for source identification of magnetic material in pollution studies.

  15. Effect of Cr Content on the Properties of Magnetic Field Processed Cr-Doped ZnO-Diluted Magnetic Semiconductors

    Directory of Open Access Journals (Sweden)

    Shiwei Wang

    2012-01-01

    Full Text Available Cr-doped ZnO-diluted magnetic semiconductor (DMS nanocrystals with various Cr contents were synthesized by hydrothermal method under high magnetic field. The result indicated that both the amount of Cr contents and high magnetic field significantly influenced crystal structure, morphology, and magnetic property of Cr-doped ZnO DMSs. When the Cr contents increased from 1 at% to 5 at%, the morphology of grains sequentially changed from flower-like to rod-like and then to the flake-like form. All the samples remained hexagonal wurtzite structure after Cr ions were doped into the ZnO crystal lattice. The Cr doping led to the increasing amount of defects and even enhanced the magnetic property of the matrix materials. All the Cr-doped ZnO DMSs obtained under high magnetic field exhibited obvious ferromagnetic behavior at room temperature. The results have also shown the successful substitution of the Cr3+ ions for the Zn2+ ions in the crystal lattice.

  16. The effect of magnetic annealing on crystallographic texture and magnetic properties of Fe-2.6% Si

    Science.gov (United States)

    Salih, M. Z.; Uhlarz, M.; Pyczak, F.; Brokmeier, H.-G.; Weidenfeller, B.; Al-hamdany, N.; Gan, W. M.; Zhong, Z. Y.; Schell, N.

    2015-05-01

    The effect of magnetic annealing on crystallographic texture, microstructure, defects density and magnetic properties of a Fe-2.6% Si steel has been analyzed. After two stage cold rolling (75% and 60% cold rolled) with intermediate annealing process at (600 °C/1 h) the sample annealed at 600 °C for one hour during which different magnetic field of 0, 7 and 14 T were applied has been investigated. The effect of defects density after cold rolling process on the recrystallization texture and magnetic properties was characterized. Heat treatments under a high external field of 14 T show a drastic improvement of the magnetic properties such as significantly increased permeability. Neutron diffraction measurements were preferred for measurement of the bulk sample texture so that sufficient grain statistics were obtained. Because of its small wavelength (0.05-0.2 Å) Synchrotron diffraction with high photon energy was used to evaluate the defects density by a modified Williamson-Hall plot.

  17. Magnetic properties of a diluted transverse spin-1 Ising nanocube with a longitudinal crystal-field

    Science.gov (United States)

    El Hamri, M.; Bouhou, S.; Essaoudi, I.; Ainane, A.; Ahuja, R.

    2016-12-01

    In the present work, the effective field theory with correlations based on the probability distribution technique has been used to investigate the effect of the surface shell longitudinal cristal field on the magnetic properties of a diluted antiferromagnetic spin-1 Ising nanocube particle. This effect has also been studied on the hysteresis loops of the system. It is found that this parameter has a strong effect on the magnetization profiles, compensation temperature, coercive field and remanent magnetization.

  18. Procedures for measuring the electrical properties of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1986-01-01

    There are three important electrical properties associated with the superconductor used to fabricate accelerator magnets. The most important is the critical current since this determines the performance potential of the magnet. The normal state resistivity and the volume magnetization are the other principal electrical parameters. In this report methods for measuring these parameters are presented and procedures for including self field effect and magnetoresistance are discussed

  19. Magnetic properties of ordered Perovskite Ba2FeMoO6

    International Nuclear Information System (INIS)

    Han, H.; Kim, C.S.; Lee, B.W.

    2003-01-01

    Magnetic properties have been investigated for ordered perovskite Ba 2 FeMoO 6 . Saturation magnetization is 3.7 μ B /f.u. which is consistent with the Fe/Mo ordering of 97% estimated from X-ray refinement. Magnetization could be interpreted as a mixture of ferromagnetic and paramagnetic components. The paramagnetic component has been found to increase substantially with increasing temperature from 21% at 20 K to 55% at room temperature

  20. Influence of Fe2O3 on alloying and magnetic properties of Fe–Al

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Zitovski, O.; Cuda, J.

    2014-01-01

    Roč. 186, AUG (2014), s. 73-78 ISSN 0921-5107 R&D Projects: GA ČR(CZ) GAP108/11/1350; GA MŠk 7AMB12SK009 Institutional support: RVO:68081723 Keywords : Fe–Al alloy * Mechanical alloy ing * Microstructure * Intergrain interaction * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UFM-A) Impact factor: 2.169, year: 2014

  1. Magnetic Properties and Structure of Non-Oriented Electrical Steel Sheets after Different Shape Processing

    Czech Academy of Sciences Publication Activity Database

    Bulín, Tomáš; Švábenská, Eva; Hapla, Miroslav; Ondrůšek, Č.; Schneeweiss, Oldřich

    2017-01-01

    Roč. 131, č. 4 (2017), s. 819-821 ISSN 0587-4246. [CSMAG 2016 - Czech and Slovak Conference on Magnetism /16./. Košice, 13.06.2016-17.06.2016] R&D Projects: GA TA ČR(CZ) TE02000232 Institutional support: RVO:68081723 Keywords : Magnetic properties * Silicon steel * Steel sheet Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  2. Low-temperature magnetic properties of Fe3C/iron oxide nanocomposite

    Czech Academy of Sciences Publication Activity Database

    David, Bohumil; Schneeweiss, Oldřich; Mašláň, M.; Šantavá, Eva; Morjan, I.

    2007-01-01

    Roč. 316, č. 2 (2007), s. 422-425 ISSN 0304-8853. [Joint European Magnetic Symposia /3./ (JEMS´06). San Sebastian, 26.06.2006-30.06.2006] R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10100520 Keywords : Nanopowder * Fe3C * Mossbauer spectroscopy * Magnetic properties * AC susceptibility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  3. Magnetic properties of cherts from the Basque-Cantabrian basin and surrounding regions: archeological implications

    Science.gov (United States)

    Larrasoaña, Juan; Beamud, Elisabet; Olivares, Maitane; Murelaga, Xabier; Tarriño, Andoni; Baceta, Juan; Etxebarria, Nestor

    2016-04-01

    We present the first rock magnetic study of archeologically-relevant chert samples from the Basque-Cantabrian basin (BCB) and surrounding regions, which was conducted in order to test the usefulness of non-destructive magnetic properties for assessing chert quality, distinguishing source areas, and identifying heated samples in the archeological record. Our results indicate that the studied BCB cherts are diamagnetic and have very low amounts of magnetic minerals. The only exception is the chert of Artxilondo, which has a mean positive magnetic susceptibility associated with larger concentrations of magnetic minerals. But even in this case, the magnetic susceptibility is within the lower range of other archeologically-relevant cherts elsewhere, which indicates that the studied BCB cherts can be considered as flint. The similar mean values for all magnetic properties, along with their associated large standard deviations, indicates that rock magnetic methods are of limited use for sourcing different types of flint except in some specific contexts involving the Artxilondo flint. With regards to the identification of chert heating in the archeological record, our results indicate only a minor magnetic enhancement of BCB natural flint samples upon heating, which we attribute to the low amount of non-silica impurities. In any case, the diamagnetic behavior of most BCB natural flints, along with the local use only of the Artxilondo type, suggests that any flint tool within the core of the BCB with positive magnetic susceptibility values is likely to have been subjected to heating for improving its knapping properties. Further studies are necessary to better identify the type, origin and grain size of magnetic minerals in BCB natural flints, and to apply non-destructive magnetic properties to flint tools in order to identify the use of heat treatment in the BCB archeological record.

  4. Magnetic properties of cherts from the Basque-Cantabrian basin and surrounding regions: archeological implications

    Directory of Open Access Journals (Sweden)

    Juan Cruz Larrasoaña

    2016-04-01

    Full Text Available We present the first rock magnetic study of archeologically-relevant chert samples from the Basque-Cantabrian basin (BCB and surrounding regions, which was conducted in order to test the usefulness of non-destructive magnetic properties for assessing chert quality, distinguishing source areas, and identifying heated samples in the archeological record. Our results indicate that the studied BCB cherts are diamagnetic and have very low amounts of magnetic minerals. The only exception is the chert of Artxilondo, which has a mean positive magnetic susceptibility associated with larger concentrations of magnetic minerals. But even in this case, the magnetic susceptibility is within the lower range of other archeologically-relevant cherts elsewhere, which indicates that the studied BCB cherts can be considered as flint. The similar mean values for all magnetic properties, along with their associated large standard deviations, indicates that rock magnetic methods are of limited use for sourcing different types of flint except in some specific contexts involving the Artxilondo flint. With regards to the identification of chert heating in the archeological record, our results indicate only a minor magnetic enhancement of BCB natural flint samples upon heating, which we attribute to the low amount of non-silica impurities. In any case, the diamagnetic behavior of most BCB natural flints, along with the local use only of the Artxilondo type, suggests that any flint tool within the core of the BCB with positive magnetic susceptibility values is likely to have been subjected to heating for improving its knapping properties. Further studies are necessary to better identify the type, origin and grain size of magnetic minerals in BCB natural flints, and to apply non-destructive magnetic properties to flint tools in order to identify the use of heat treatment in the BCB archeological record.

  5. Study of the influence of zirconium and gallium on the magnetic properties and microstructures of praseodymium-based permanent magnets

    International Nuclear Information System (INIS)

    Fusco, Alexandre Giardini

    2006-01-01

    In this work was studied the influence of the addition of 0.5 at. % of zirconium and gallium on praseodymium-based HD sintered magnets obtained using a mixture of alloys. The alloys used in this study were: Pr 12.6 Fe 68.3 Co 11.6 B 6 Zr 0.5 Ga 1 , Pr 16 Fe 75.5 B 8 Zr 0.5 , Pr 13 Fe 80.5 B 6 Zr 0.5 . The investigation started by measuring the magnetic properties and observing the microstructure of the magnets. After that, the magnets were annealed at 1000 deg C for 2 hours followed by rapid cooling, in a total of 10 hours. This heat treatment was followed by 5 hours at the same temperature up to a total of 35 hours. Changes in the microstructure were compared to the change in the magnetic properties aiming at a proper understanding of the role of each added element in relation to the magnetically hard phase (phase Φ). It has been shown that gallium and zirconium act as grain refiners of the matrix phase Φ. Gallium acts in the grain and favoring of the shape stability and improvement of the magnetic properties. For the Pr 14.3 Fe 71.9 Co 5.8 B 7 Zr 0.5 Ga 0.5 sintered magnet the evolution of the magnetic properties after 15 hours heat treatment was: remanence from (1.25±0.02) T to (1.30±0.02) T, intrinsic coercivity from (1.11±0.02) T to (0.87±0.02) T, squareness factor from (0.68±0.02) to (0.82±0.02) and energy product from (285±5) kJ/m 3 to (317±5) kJ/m 3 . Zirconium has two effects on the sintered magnets. Firstly, avoiding random grain growth and enhancing anisotropy. However, by concentrating on the grain boundaries, yield reverse domains and is detrimental to the intrinsic coercivity. For the sintered Pr 14.5 Fe 78 B 7 Zr 0.5 magnet the evolution of the magnetic properties achieved after a heat treatment of 15 hours was: remanence from (1.19±0.02) T to (1.25±0.02) T, coercivity from (0.74±0.02) T to (0.94±0.02) T, squareness factor from (0.88±0.02) to (0,85±0.02) and energy product from (258±5) kJ/m 3 to (291±5) kJ/m 3 . For the Pr 16 Fe 75

  6. A measurement method of the magnetic properties of magnetic sheet by means of a single sheet tester at audio frequency

    Energy Technology Data Exchange (ETDEWEB)

    Takara, Yusuke; Fujiwara, Koji; Ishihara, Yoshiyuki [Department of Electrical Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Todaka, Toshiyuki [Department of Electrical Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan)], E-mail: yishihar@mail.doshisha.ac.jp

    2008-10-15

    A single sheet tester (SST) for audio frequency of 400 Hz-10 kHz was made experimentally and the magnetizing winding can get the nearly uniform distribution of flux density of a specimen in the longitudinal direction at the frequency up to 10 kHz. The flux densities at various positions of strips measured by the Epstein method were detected by search coils wound on strips at 400 Hz and 1.0 T. They have large discrepancy. However, the magnetic properties obtained from both methods have a little discrepancy. Although the uniformity of flux distribution in the Epstein frame is not sufficient, the average is fairly effective because the magnetic properties can be assumed to be locally linear within the small deviation of flux density.

  7. Magnetic properties of MnCr2O4 nanoparticle

    International Nuclear Information System (INIS)

    Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2010-01-01

    The exchange interactions and the magnetic exchange energies are calculated by using the mean field theory and the probability law of Zn 1-x Mn x Cr 2 O 4 nanoparticles. The high-temperature series expansions have been applied in the spinels Zn 1-x Mn x Cr 2 O 4 systems, combined with the Pade approximants method, to determine the magnetic phase diagram, i.e. T C versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. The obtained value of γ is insensitive to the dilution ratio x and may be compared with other theoretical results based on the 3D Heisenberg model.

  8. Structures, energetics and magnetic properties of (NiSn)n clusters ...

    Indian Academy of Sciences (India)

    com. MS received 11 December 2008; revised 12 May 2009; accepted 11 June 2009. Abstract. We report the results of calculations which were performed to investigate equilibrium structures, electronic and magnetic properties of stoichiometric ...

  9. Structural and magnetic properties of size-controlled Mn0.5Zn0 ...

    Indian Academy of Sciences (India)

    5Fe2O4) because its magnetic properties can be modified significantly ei- ther with size or with different site occupancy. Three different sized particles were prepared by controlling synthesis parameters. 2. Methodology. In inverse spinel Fe3+.

  10. Enhanced viscoelastic property of iron oxide nanoparticle decorated organoclay fluid under magnetic field

    Science.gov (United States)

    Son, You-Hwan; Jung, Youngsoo; Roh, Heesuk; Lee, Jung-Kun

    2017-08-01

    Stable hydrophobic nanocomposites of magnetic nanoparticles and clay are prepared by the self-assembly of magnetite (Fe3O4) nanoparticles on surfaces of exfoliated clay platelets. Due to the attractive interaction between hydrophobic groups, oleic acid coated nanoparticles are strongly attached to the surface of cetyl trimethylammonium cation coated clay platelets in organic media. Crystal structure and magnetic property of composite particles are examined using electron microscopy, x-ray diffractometer and vibration sample magnetometer. In addition, composite particles are dispersed in mineral oil and rheological properties of composite particle suspensions are characterized using steady-state and oscillatory measurements. Magnetite nanoparticle decorated organoclay forms a tunable network in mineral oil. When a magnetic field is applied, the composite particle fluid exhibits higher storage modulus and maintains a solid-like property at larger strain. Our results show that the viscoelastic property of the magnetite nanoparticle decorated organoclay fluid is controlled by applying external magnetic field.

  11. Magnetic and Mechanical Properties of Deformed Iron Nitride γ′-Fe4N

    Directory of Open Access Journals (Sweden)

    Chin-Hsiang Cheng

    2015-01-01

    Full Text Available The present study is aimed at magnetic and mechanical properties of iron nitride (γ′-Fe4N with elastic deformation. Electronic structure and thermal properties of the iron nitride are also studied to have a comprehensive understanding of the characteristics of γ′-Fe4N. This study is focused on the variation of the magnetic and the mechanical properties of iron nitride with a change in crystal size represented by lattice constant. As the lattice constant is altered with deformation, magnetic moment of Fe-II atoms is appreciably elevated, while that of Fe-I atoms is nearly unchanged. Dependence of the magnetic moment and the bulk modulus on the lattice constant is examined. Meanwhile, chemical bonds between Fe atoms and N atoms formed across the crystal have been visualized by delocalization of atomic charge density in electron density map, and thermodynamic properties, including entropy, enthalpy, free energy, and heat capacity, are evaluated.

  12. The effect of neodymium substitution on the structural and magnetic properties of nickel ferrite

    Czech Academy of Sciences Publication Activity Database

    Sabikoglu, I.; Parali, L.; Malina, O.; Novák, P.; Kašlík, J.; Tuček, J.; Pechoušek, J.; Navařík, J.; Schneeweiss, Oldřich

    2015-01-01

    Roč. 25, č. 3 (2015), s. 215-221 ISSN 1002-0071 Institutional support: RVO:68081723 Keywords : NiFe2O4 * Neodymium * Solid-state reaction * Magnetic properties * Mössbauer spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.753, year: 2015

  13. Magnetic and dielectric properties of hexagonal InMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Belik, A.A.; Kamba, Stanislav; Savinov, Maxim; Nuzhnyy, Dmitry; Tachibana, M.; Takayama-Muromachi, E.; Goian, Veronica

    2009-01-01

    Roč. 79, č. 5 (2009), 054411/1-054411/7 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetoelectric multiferroics * phase transitions * dielectric spectroscopy * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  14. Effect of Bi and Sr doping on morphological and magnetic properties ...

    Indian Academy of Sciences (India)

    Finally, using the vibrating sample magnetometer the room temperature magnetic behaviour of compounds was studied and it was observed that ... Investigating spin magnetic properties of perovskites is an in- teresting research as the .... and dissolved in conc. nitric acid and deionized water. The solution was stirred and ...

  15. Optical and magnetic properties of Yb ion-doped cobalt-based ZnO ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 5. Optical and magnetic properties of Yb ... Magnetic characterizations have shown that the sample with 1% Yb co-doped ZnO: Co nanoparticles exhibited a clear ferromagnetic (FM) behaviour at room temperature. The X-ray photoelectron spectral peaks for ...

  16. Magnetic properties of floodplain deposits along the banks of the Morava River (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav; Diehl, J. F.

    2005-01-01

    Roč. 5, č. 3 (2005), s. 2-3 R&D Projects: GA AV ČR(CZ) IAA3013201 Institutional research plan: CEZ:AV0Z30130516 Keywords : rock magnetic properties * floodplain deposits * Morava River Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  17. Magnetic Properties and Structure of Chromium Niobium Oxide and Iron Tantalum Oxide

    DEFF Research Database (Denmark)

    Nørlund Christensen, A.; Johansson, T.; Lebech, Bente

    1976-01-01

    Crystal structures were obtained from X-ray powder patterns. The magnetic properties were investigated between 4.2 and 300K by magnetization measurements and neutron diffraction. Both compounds show spin-glass transitions at low temperatures. In CrNbO4, the cusp in the susceptibility is observed ...

  18. Estimation of electronic and structural influence on the thermal magnetic properties of clusters

    DEFF Research Database (Denmark)

    Lindgård, P.-A.; Hendriksen, P.V.

    1994-01-01

    , and of magnetic surface anisotropy have been studied. Very small effects are found on the thermal magnetic properties relative to those predicted for the simple nearest-neighbor Heisenberg model by Hendriksen, Linderoth, and Lindgard [J. Phys. C 31, 5675 (1993); Phys. Rev. B 48, 7259 (1993)]....

  19. Structural and magnetic properties of size-controlled Mn0.5Zn0 ...

    Indian Academy of Sciences (India)

    nanomaterials is the fact that their microscopic structure – which results from the synthesis method – largely affects the macroscopic properties, giving rise to a wide variety of new phenomena. Among various physical and magnetic proper- ties of nanoferrites, high value of room-temperature magnetization and low Curie.

  20. Study of Cu-doping effects on magnetic properties of Fe-doped ZnO ...

    Indian Academy of Sciences (India)

    Administrator

    CPA). We show that the total magnetic moment ... in Zn0∙975–xFe0∙025CuxO. Keywords. (Fe, Cu)-doped ZnO; diluted magnetic semiconductors; DOS. ... play an important role in the physical properties. From II–. VI compound semiconductors ...

  1. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Kapička, Aleš; Jordanova, Neli; Borůvka, L.

    2001-01-01

    Roč. 48, č. 2 (2001), s. 12-136 ISSN 0926-9851 R&D Projects: GA ČR GA205/96/0260 Institutional research plan: CEZ:AV0Z3012916 Keywords : magnetic properties * alluvial soil * heavy metals Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.390, year: 2001

  2. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior...

  3. Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion

    International Nuclear Information System (INIS)

    Zakinyan, Arthur R.; Dikansky, Yuri I.

    2017-01-01

    The magnetic fluid emulsions with low interfacial tension have been studied experimentally. The shape deformation of the dispersed phase microdrops under the action of comparatively weak magnetic field has been observed. The effect of microdrops deformation on the macroscopic properties of the emulsion has been investigated. The anisotropic character of emulsion properties in the presence of external magnetic field has been demonstrated. The emulsion dielectric permeability has been measured as a function of the magnetic field strength, the emulsion concentration, and the angle between electrical and magnetic fields. The influence of the droplets deformation under the magnetic field on the rheological behavior of the emulsion has been observed. The obtained results have been analyzed and discussed. - Highlights: • The dispersed phase drops of emulsion studied can be deformed by magnetic field. • The emulsion becomes anisotropic under the action of external field. • The emulsion electrical properties depends on magnetic field strength and direction. • The emulsion rheological behavior can be controlled by external magnetic field.

  4. Fabrication, morphological, structural and magnetic properties of electrodeposited Fe{sub 3}Pt nanowires and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Adeela, N. [Centre for High Energy Physics, University of the Punjab, Lahore 54000 (Pakistan); Li, Wenjing; Irfan, M.; Javed, K.; Riaz, S. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Han, X.F., E-mail: xfhan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-02-15

    Highly ordered Fe{sub 3}Pt nanowires (NWs) and nanotubes (NTs) embedded in anodic aluminum oxide (AAO) template have been fabricated by dc electrodeposition method. Response of heat treatment on structural and magnetic properties of the samples has been studied with and without the presence of magnetic field (1 T). X-Ray Diffraction analysis shows chemically ordered L1{sub 2} face centered cubic (FCC) as the dominant phase for Fe{sub 3}Pt NWs and heat treatment improves crystallinity with retained its phase. Whereas, Fe{sub 3}Pt NTs show amorphous behavior with and without magnetic field annealing. Furthermore, magnetic properties of the samples have been investigated by vibrating sample magnetometer (VSM). Magnetic parameters of Fe{sub 3}Pt including magnetic coercivity, saturation magnetization, squareness and shape of MH-loops have been investigated as a result of simple and MF annealing. - Highlights: • Fe{sub 3}Pt NWs and NTs embedded into anodic alumina templates have been synthesized by dc electrodeposition method. • Structural analysis (XRD) confirmed the formation of fcc structure. • Magnetic properties have been measured as a function of simple and magnetic field annealing.

  5. Magnetic properties of Sm-Fe-N anisotropic magnets produced by magnetic-field-assisted spark plasma sintering

    International Nuclear Information System (INIS)

    Saito, Testuji

    2010-01-01

    Sm-Fe-N magnets were successfully produced at temperatures below 773 K by magnetic-field-assisted spark plasma sintering. The resultant magnets had high densities of 88.7-92.5%. Although partial decomposition of the Sm 2 Fe 17 N 3 phase was observed in the Sm-Fe-N magnets, the decomposition was significantly lowered by the addition of a small amount of Zn powder to the Sm-Fe-N powder. The resultant Sm-Fe-N magnets containing 5 wt.% Zn and 10 wt.% Zn exhibited higher coercivity than the Sm-Fe-N magnets. X-ray diffraction studies and magnetic measurements confirmed that the Sm-Fe-N magnets and those containing 5 wt.% Zn and 10 wt.% Zn were magnetically anisotropic. A high value of 158 kJ/m 3 was achieved for the maximum energy product when Sm-Fe-N powder containing 5 wt.% Zn was sintered at 723 K by magnetic-field-assisted spark plasma sintering.

  6. States agree on stronger physical protection regime

    International Nuclear Information System (INIS)

    2005-01-01

    Full text: Delegates from 89 countries agreed on 8 July to fundamental changes that will substantially strengthen the Convention on the Physical Protection of Nuclear Material (CPPNM). IAEA Director General Mohamed ElBaradei welcomed the agreement in saying 'This new and stronger treaty is an important step towards greater nuclear security by combating, preventing, and ultimately punishing those who would engage in nuclear theft, sabotage or even terrorism. It demonstrates that there is indeed a global commitment to remedy weaknesses in our nuclear security regime.' The amended CPPNM makes it legally binding for States Parties to protect nuclear facilities and material in peaceful domestic use, storage as well as transport. It will also provide for expanded cooperation between and among States regarding rapid measures to locate and recover stolen or smuggled nuclear material, mitigate any radiological consequences of sabotage, and prevent and combat related offences. The original CPPNM applied only to nuclear material in international transport. Conference President Dr. Alec Baer said 'All 89 delegations demonstrated real unity of purpose. They put aside some very genuine national concerns in favour of the global interest and the result is a much improved convention that is better suited to addressing the nuclear security challenges we currently face.' The new rules will come into effect once they have been ratified by two-thirds of the 112 States Parties of the Convention, expected to take several years. 'But concrete actions are already taking place around the world. For more than 3 years, the IAEA has been implementing a systematic Nuclear Security plan, including physical protection activities designed to prevent, detect and respond to malicious acts,' said Anita Nillson, Director of the IAEA's Office of Nuclear Security. The Agency's Nuclear Security Fund, set up after the events of 9/11, has delivered $19.5 million in practical assistance to 121 countries

  7. Monte Carlo study of the magnetic properties of the 3D Hubbard model

    OpenAIRE

    Campos, Isabel; Davenport, James W.

    2001-01-01

    We investigate numerically the magnetic properties of the 3D Isotropic and Anisotropic Hubbard model at half-filling. The behavior of the transition temperature as a function of the anisotropic hopping parameter is qualitatively described. In the Isotropic model we measure the scaling properties of the susceptibility finding agreement with the magnetic critical exponents of the 3D Heisenberg model. We also describe several particularities concerning the implementation of our simulation in a c...

  8. Effect of microstrain on the magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Mocherla, Pavana S. V.; Karthik, C.; Ubic, R.; Ramachandra Rao, M. S.; Sudakar, C.

    2014-09-01

    We report on size induced microstrain-dependent magnetic properties of BiFeO3 nanoparticles. The microstrain is found to be high (ɛ > 0.3%) for smaller crystallite sizes (d cycloid length for BiFeO3, due to a decrease in rhombohedral distortion with crystallite size. We also observe a similar trend in the TN with respect to size indicating that the microstrain plays a significant role in controlling the magnetic property of BiFeO3.

  9. Effect of substrate temperature on electrical and magnetic properties ...

    Indian Academy of Sciences (India)

    . Figure 1. The temperature dependence of resistivity for LPMO films grown at different substrate temperatures (solid and open circles are the data in zero and 1 T magnetic field). The inset shows the variation of magnetoresistance with ...

  10. Properties of a Bound Polaron under a Perpendicular Magnetic Field

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Xiao Jinglin; Huo Shufen

    2007-01-01

    We investigate the influence of a perpendicular magnetic field on a bound polaron near the interface of a polar-polar semiconductor with Rashba effect. The external magnetic field strongly changes the ground state binding energy of the polaron and the Rashba spin-orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splits the ground state binding energy of the bound polaron. In this paper, we have shown how the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity, the wave vector of the electron and the electron areal density, taking into account the SO coupling. Due to the presence of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the bound polaron are more stable, and we find that in the condition of week magnetic field, the Zeeaman effect can be neglected.

  11. The properties and origin of magnetic fields in white dwarfs

    Science.gov (United States)

    Kawka, A.

    2018-01-01

    A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of their magnetic field. The number of white dwarfs with variable fields as a function of their rotation phase have revealed a large field structure diversity, from a simple offset dipole to structures with spots or multipoles. A review of the current challenges in modelling white dwarf atmospheres in the presence of a magnetic field is presented, and the proposed scenarios for the formation of magnetic fields in white dwarfs are examined.

  12. Magnetic properties of Ising thin films with cubic lattices

    Science.gov (United States)

    Laosiritaworn, Y.; Poulter, J.; Staunton, J. B.

    2004-09-01

    We have used Monte Carlo simulations and mean-field analysis to observe the magnetic behavior of Ising thin films with cubic lattice structures as a function of temperature and thickness, especially in the critical region. Magnetization and magnetic susceptibility, including layer variation, are investigated. We find that the magnetic behavior changes from two-dimensional to three-dimensional character with increasing film thickness. Both the crossover of the critical temperature from a two-dimensional to a bulk value and the shift exponent are observed. Nevertheless, with support from a scaling function, the simulations show that the effective critical exponents for films with large enough layer extents only vary a little from their two-dimensional values. This, in particular, provides an indication of two-dimensional universality in the thin films.

  13. Magnetic properties engineering of nanopatterned cobalt antidot arrays

    International Nuclear Information System (INIS)

    Kaidatzis, Andreas; Niarchos, Dimitrios; Del Real, Rafael P; Vázquez, Manuel; Alvaro, Raquel; Anguita, José; García-Martín, José Miguel; Luis Palma, Juan; Escrig, Juan

    2016-01-01

    We report on the study of arrays of 60 nm wide cobalt antidots, nanopatterned using focused ion beam milling. Square and hexagonal symmetry arrays have been studied, with varying antidot densities and lattice constant from 150 up to 300 nm. We find a strong increase of the arrays’ magnetic coercivity with respect to the unpatterned film, which is monotonic as the antidot density increases. Additionally, there is a strong influence of the array symmetry to the in-plane magnetic anisotropy: square arrays exhibit fourfold symmetry and hexagonal arrays exhibit sixfold symmetry. The above findings are corroborated by magnetic imaging and micromagnetic modeling, which show the magnetic structure of the arrays to depend strongly on the array morphology. (paper)

  14. Electronic and Magnetic Properties of Trans-Polyacetylene

    Science.gov (United States)

    Cruz-Cruz, Luis R.

    In the first part of this work we present a study of the stability of soliton and polaron excitations in a single strand of trans-polyacetylene. We proceed by first solving exactly the continuum version of the SSH Hamiltonian for the single particle states that arise when n-doped electrons are added to a single polymer chain. The role of on-site (U), nearest-neighbor (V), and bond repulsion (W) Coulomb interactions are obtained from a first-order perturbative calculation with the exact single-particle states. By minimizing the total energy we show that, at a fixed doping level, a polaron lattice is favored over a soliton configuration provided that U and V exceed critical values. However, as the doping level is increased, we show that these critical values increase beyond experimentally -accepted estimates. Our work then supports the view of a soliton lattice that persists into the metallic phase of polyacetylene. In addition, we show that the bound state soliton levels merge to fill the gap sufficiently that the magnetic susceptibility becomes non-zero and comparable to the corresponding experimental values. This picture also accounts for the onset of a Pauli susceptibility at a doping level of 6% in terms of the rate of closure of the gap. In the second part, the transport properties in the highly doped regime are analyzed considering the density of states of an impurity in the chain. It is calculated as a function of the atomic impurity level and the hybridization energy. The inclusion of a gap in the spectrum of the chain takes into account the remaining charge alternation pattern observed in this high doping regime. It is shown that a Kondo-like resonance exists at the top of the gap and that a logT behavior should be exhibited in the resistivity of the sample, as experiments have revealed. It is shown that in order to observe the Kondo resonance, the gap must be smaller than the Kondo Temperature of the system without the gap. (Copies available exclusively

  15. Magnetic properties of Fe20Ag80 granular films

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Mørup, Steen; Jonsson, T.

    1997-01-01

    Fe20Ag80 granular films prepared by ion-beam cosputtering have been investigated by Mossbauer spectrocopy and dc susceptibility measurements. The as-sputtered Fe20Ag80 films consist of small magnetic particles embedded in the Ag matrix. The system is in a superparamagnetic state at temperatures a...... above 30 K. Below 30 K, the films begins to show slow magnetic relaxation and by further lowering the temperature, a super-spin-glass phase is formed around 20 K....

  16. Classification of analysis methods for characterization of magnetic nanoparticle properties

    DEFF Research Database (Denmark)

    Posth, O.; Hansen, Mikkel Fougt; Steinhoff, U.

    2015-01-01

    The aim of this paper is to provide a roadmap for the standardization of magnetic nanoparticle (MNP) characterization. We have assessed common MNP analysis techniques under various criteria in order to define the methods that can be used as either standard techniques for magnetic particle...... characterization or those that can be used to obtain a comprehensive picture of a MNP system. This classification is the first step on the way to develop standards for nanoparticle characterization....

  17. Structure and magnetic properties of chromium doped cobalt molybdenum nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Guskos, Niko; Żołnierkiewicz, Grzegorz; Typek, Janusz; Guskos, Aleksander [Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Piastów 48, 70-311 Szczecin (Poland); Adamski, Paweł; Moszyński, Dariusz [Institute of Inorganic Chemical Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pułaskiego 10, 70-322 Szczecin (Poland)

    2016-09-15

    Four nanocomposites containing mixed phases of Co{sub 3}Mo{sub 3}N and Co{sub 2}Mo{sub 3}N doped with chromium have been prepared. A linear fit is found for relation between Co{sub 2}Mo{sub 3}N and chromium concentrations. The magnetization in ZFC and FC modes at different temperatures (2–300 K) and in applied magnetic fields (up to 70 kOe) have been investigated. It has been detected that many magnetic characteristics of the studied four nanocomposites correlate not with the chromium concentration but with nanocrystallite sizes. The obtained results were interpreted in terms of magnetic core-shell model of a nanoparticle involving paramagnetic core with two magnetic sublattices and a ferromagnetic shell related to chromium doping. - Highlights: • A new chromium doped mixed Co-Mn-N nanocomposites were synthesized. • Surface ferromagnetism was detected in a wide temperature range. • Core-shell model was applied to explain nanocomposites magnetism.

  18. Magnetically-tunable rebound property for variable elastic devices made of magnetic elastomer and polyurethane foam

    Science.gov (United States)

    Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu

    2017-12-01

    A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress–strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.

  19. Magnetic properties in BaFe12O19 nanoparticles prepared under a magnetic field

    International Nuclear Information System (INIS)

    Wang Jun; Chen Qianwang; Che Shan

    2004-01-01

    It was observed that the nanocrystallites of BaFe 12 O 19 formed at 140 deg. C under a 0.25 T magnetic field exhibited a higher saturation magnetization (6.1 emu/g at room temperature) than that of the sample (1.1 emu/g) obtained under zero magnetic field. Both of the two approaches yielded plain-like particles with an average particle size of 12 nm. However, the Curie temperature (T c ), a direct measuring of the strength of superexchange interaction of Fe 3+ -O 2- -Fe 3+ , increased from 410 deg. C for the nanoparticles prepared without an external field applied to 452 deg. C for the particles formed under a 0.25 T magnetic field, which indicates that external magnetic fields can improve the occupancy of magnetic ions and then increase the superexchange interaction. This was confirmed by electron paramagnetic resonance and Moessbauer spectrum analysis. The results present in this paper suggest that in addition to oxygen defects, surface non-magnetic layer and a fraction of finer particles in the superparamagnetic range, cation vacancies should be responsible for the decreasing of saturation magnetization in magnetic nanoparticles

  20. THE PREPARATION OF MAGNETICALLY MODIFIED SYNTHETETIC AND NATURAL ZEOLITES AND COMPARISON OF THEIR SOME PHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Zafer DİKMEN

    2013-06-01

    Full Text Available In this study, magnetically modified zeolites (MMZ has been produced and their adsorption, ion-exchange and magnetic properties have been studied. In this study, natural zeolite mineral, clinoptilolite, which belongs to Gördes (Manisa regions and synthetic 13X zeolite, which has been produced by Sigma-Aldrich firm have been used. In order to modify the surface of these minerals, magnetite sample which belongs to Divriği (Sivas region has been used. The engagement of magnetite particles on zeolite particles has been studied. For this reason, measuring, visualization and analysis techniques as DTA-TG, XRD, XRF, SEM and EDX have been used. As a result of these procedures, it has been observed that magnetite particles get engaged on the surface of zeolite particles and magnetite contribu-tion on MMZ has changed adsorption, ion-exchange and magnetic properties.In order to determine how magnetite contribution affects adsorption, ion exchange and magnetic properties of MMZ, weightily magnetite contribution ratio (zeolite/magnetite has been applied in three different forms (1/1, 1/2, 1/3.As a result of nitrogen adsorption of MMZ, it has been observed that as the weightily magnetite contribution ratio goes up, specific surface area goes down and average pore diameter rises. It has been identified that total cation exchange capacity rises as the weightily magnetite contribution ratio goes up. It has been observed that pure zeolites, which have no magnetic properties, as a result of magnetically modification process, they have got magnetically character, and they change their magnetic properties positively as the weightily magnetite contribution goes up. It has been determined that as a result of magnetic measurements; the optimum value of applied outer magnetic field is 0.5T.

  1. Magnetic and structural properties of yellow europium oxide compound and Eu(OH){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwook, E-mail: dongwookleedl324@gmail.com [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom); Seo, Jiwon, E-mail: jiwonseo@yonsei.ac.kr [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Valladares, Luis de los Santos [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom); Avalos Quispe, O. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima, Perú (Peru); Barnes, Crispin H.W. [Cavendish Laboratory, University of Cambridge, J. J Thomson Av., Cambridge CB3 0HE (United Kingdom)

    2015-08-15

    A new material based on a yellow europium oxide compound was prepared from europium oxide in a high vacuum environment. The structural and magnetic properties of the material were investigated. Owing to the absence of a crystal structure, the material exhibited a disordered magnetic behavior. In a reaction with deionized (DI) water without applied heat, the compound assumed a white color as soon as the DI water reached the powder, and the structure became polycrystalline Eu(OH){sub 3}. The magnetic properties, such as the thermal hysteresis, disappeared after the reaction with DI water, and the magnetic susceptibility of the yellow oxide compound weakened. The magnetic properties of Eu(OH){sub 3} were also examined. Although Eu{sup 3+} is present in Eu(OH){sub 3}, a high magnetic moment due to the crystal field effect was observed. - Graphical abstract: (top left) Optical image of the yellow europium oxide compound. (top right) Optical image of the product of DI water and yellow europium oxide. (bottom) Magnetization curves as a function of temperature measured in various magnetic field. - Highlights: • We prepared a new material based on a yellow europium oxide compound from europium oxide. • We characterized the magnetic properties of the material which exhibits a disordered magnetic behavior such as thermal hysteresis. • The compound turned white (Eu(OH){sub 3}) as soon as the DI water reached the powder. • The thermal hysteresis disappeared after the reaction with DI water and the magnetic susceptibility of the yellow oxide compound weakened.

  2. Physical and magnetic properties, microstructure of bonded magnet NdFeB prepared by using synthesis rubber

    International Nuclear Information System (INIS)

    Suprapedi; Sardjono, P.; Muljadi

    2016-01-01

    The magnet permanent has been made by using NdFeB (NQP-B) powder with purity 99.90% and polymer rubber with purity 90%. This research was done to determine the effect of the polymer (rubber) composition as binder in the manufacture of bonded magnet NdFeB on physical properties, microstructure and magnetic properties. Bonded magnets are magnet material made from a mixture of magnetic powder as a filler and the polymer as a matrix material or as binder to bind the magnetic particles. The NdFeB (NQP-B) powder fractions of bonded magnets NdFeB investigated were as follows: a) 97 wt.% of NdFeB (NQP-B) and 3 wt.% of rubber,b) 95wt.% of NdFeB (NQP-B) and 5 wt.% of rubber, c) 93 wt.% of NdFeB (NQP-B) and 7 wt.% of rubber, d) 91 wt.% of NdFeB (NQP-B) and 9 wt.% of rubber. Both raw materials were mixed by using mixer until homogen with total weight about 16 g for each sample, then added 0.3 ml of catalyst and mixed again and put in dies mould and compacted at pressure 30 MPa, then dried for 2 hours at room temperature. The dried samples was characterized such as: bulk density measurement and magnetic properties by using BH-curve permeagraph. The bulk density values of the sample bonded NdFeB magnets using the binder 3% wt. and 5% wt. rubber are respectively 4,70 g/cm 3 and 4.88 g/cm 3 . The result from BH- curve shows that the highest value of remanence (Br = 5.12 kGauss) is at sample with 3% wt. of rubber, but sample with 5% wt. of rubber has lowest value of remanance (Br = 4.40 kGauss). Based on the observation of the SEM photograph shown that the rubber material has been successfully covered the whole surface of the grain and fill some of the voids that are in the grain boundary. (paper)

  3. Physical and magnetic properties, microstructure of bonded magnet NdFeB prepared by using synthesis rubber

    Science.gov (United States)

    Suprapedi; Sardjono, P.; Muljadi

    2016-11-01

    The magnet permanent has been made by using NdFeB (NQP-B) powder with purity 99.90% and polymer rubber with purity 90%. This research was done to determine the effect of the polymer (rubber) composition as binder in the manufacture of bonded magnet NdFeB on physical properties, microstructure and magnetic properties. Bonded magnets are magnet material made from a mixture of magnetic powder as a filler and the polymer as a matrix material or as binder to bind the magnetic particles. The NdFeB (NQP-B) powder fractions of bonded magnets NdFeB investigated were as follows: a) 97 wt.% of NdFeB (NQP-B) and 3 wt.% of rubber,b) 95wt.% of NdFeB (NQP-B) and 5 wt.% of rubber, c) 93 wt.% of NdFeB (NQP-B) and 7 wt.% of rubber, d) 91 wt.% of NdFeB (NQP-B) and 9 wt.% of rubber. Both raw materials were mixed by using mixer until homogen with total weight about 16 g for each sample, then added 0.3 ml of catalyst and mixed again and put in dies mould and compacted at pressure 30 MPa, then dried for 2 hours at room temperature. The dried samples was characterized such as: bulk density measurement and magnetic properties by using BH-curve permeagraph. The bulk density values of the sample bonded NdFeB magnets using the binder 3% wt. and 5% wt. rubber are respectively 4,70 g/cm3 and 4.88 g/cm3. The result from BH- curve shows that the highest value of remanence (Br = 5.12 kGauss) is at sample with 3% wt. of rubber, but sample with 5% wt. of rubber has lowest value of remanance (Br = 4.40 kGauss). Based on the observation of the SEM photograph shown that the rubber material has been successfully covered the whole surface of the grain and fill some of the voids that are in the grain boundary.

  4. Structural and magnetic properties of Fe2P-type R6TTe2 compounds (R = Tb, Dy, Ho, Er, T = Fe, Co, Ru): Magnetic properties and specific features of magnetic entropy change

    Science.gov (United States)

    Morozkin, A. V.; Genchel, V. K.; Knotko, A. V.; Yapaskurt, V. O.; Yao, Jinlei; Quezado, S.; Malik, S. K.

    2018-02-01

    The magnetic properties and magnetic entropy changes of the Fe2P-type Ho6FeTe2, Ho6CoTe2, Er6CoTe2, Tb6RuTe2, Dy6RuTe2 and Ho6RuTe2 (space group P-62m, N 189, hP9) have been studied by means of bulk magnetization and heat capacity measurements. Also, the tentative magnetic entropy change ΔSm* = (∂M / ∂T) × H was used for characterization of magnetic ordering. Ho6FeTe2, Ho6CoTe2, Er6CoTe2, Tb6RuTe2, Dy6RuTe2 and Ho6RuTe2 exhibit complex field sensitive ferro-antiferromagnetic ordering. The correlation between the isothermal magnetic entropy change and the magnetic ordering of these compounds have been studied.

  5. Macroscopic behavior and microscopic magnetic properties of nanocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Lähderanta, E., E-mail: Erkki.Lahderanta@lut.fi [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Ryzhov, V.A. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lashkul, A.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Galimov, D.M. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); South Ural State University, 454080 Chelyabinsk (Russian Federation); Titkov, A.N. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Matveev, V.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Saint-Petersburg State University, Saint-Petersburg 198504 (Russian Federation); Mokeev, M.V. [Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg (Russian Federation); Kurbakov, A.I. [Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lisunov, K.G. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Institute of Applied Physics ASM, Academiei Str., 5, MD 2028 Kishinev (Moldova, Republic of)

    2015-06-01

    Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1–7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below ~50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, B{sub c} (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, M{sub s}, and the blocking temperature, T{sub b}, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of B{sub c} and M{sub s} are noticeably increased. - Highlights: • We have investigated powder and glassy samples with carbon nanoparticles. • They include an undoped sample and those doped with Ag, Au and Co. • Neutron diffraction study reveals amorphous structure of Au- and Co-doped samples. • Composition and molecular structure of Au-doped sample was investigated with NMR. • Magnetic behavior is typical of an assembly of partially blocked magnetic nanoparticles.

  6. Magnetic properties of three pseudobinary RCo5 alloy systems

    International Nuclear Information System (INIS)

    Heinrich, J.P.

    1976-01-01

    The field dependence of the magnetization was measured in the magnetically easy and hard directions as a function of composition and temperature in the pseudobinary systems Pr/sub x-/ Sm/sub 1-x/Co 5 , Y/sub x/Nd/sub 1-x/Co 5 , and Gd/sub x/Nd/sub 1-x/Co 5 . The saturation magnetization was determined and the anisotropy constants K 1 and K 2 were calculated from hard direction magnetization data. It was assumed that the net magnetization and anisotropy of the alloys could be divided into components representing the cobalt-cobalt, rare earth-cobalt, and rare earth-rare earth interactions. Data on YCo 5 was employed to account for the effect of the first interaction and the remaining two interactions were separated by means of some simple and physically reasonable assumptions. The resulting rare earth-rare earth magnetization and anisotropy data was then tested to see if it could be described by the single ion model. It was concluded that the single ion model did not describe the rare earth-rare earth interaction well in these alloys. This conclusion is in agreement with published results on light rare earth metals and alloys. It was further observed that some of the characteristics of the rare earth-rare earth interaction could be accounted for by assuming the existence of a band-type interaction between the rare earth atoms. All the alloys which contained Nd were found to exhibit low-temperature magnetization anomalies which were thought to be due to the existence of relatively strong basal plane anisotropy in these alloys

  7. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials

    Directory of Open Access Journals (Sweden)

    Qingbo Sun

    2011-12-01

    Full Text Available Transition metal ions doped indium oxide nanomaterials were potentially used as a kind of diluted magnetic semiconductors in transparent spintronic devices. In this paper, the influences of Ni2+ doped contents and rhombohedral or cubic crystalline structures of indium oxide on magnetic properties were investigated. We found that the magnetic properties of Ni2+ doped indium oxide could be transferred from room temperature ferromagnetisms to paramagnetic properties with increments of doped contents. Moreover, the different crystalline structures of indium oxide also greatly affected the room temperature ferromagnetisms due to different lattice constants and almost had no effects on their paramagnetic properties. In addition, both the ferromagnetic and paramagnetic properties were demonstrated to be intrinsic and not caused by impurities.

  9. Structural and magnetic properties of Gd(Cosub(x)Irsub(1-x))2

    International Nuclear Information System (INIS)

    Chiu, L.B.; Elliston, P.R.; Stewart, A.M.; Taylor, K.N.R.

    1979-01-01

    The crystal structure and magnetic properties of the pseudobinary system Gd(Cosub(x)Irsub(1-x)) 2 are reported. The compounds crystallise in the C15 Laves phase with a sudden lattice contraction at x = 0.4. Magnetic measurements indicate that Co develops a magnetic moment for x > 0.4. The onset of this moment is coincident with a sudden contraction of the lattice. Electron spin resonance measurements of g shift and linewidth also show sharp increases at x = 0.4. The correlated changes in the various properties are interpreted as due to a movement of the Fermi level as Co is substituted for Ir. (author)

  10. Magnetic properties of ND Rich Melt-Spun ND-FE-B alloy

    Directory of Open Access Journals (Sweden)

    Grujić Aleksandar

    2005-01-01

    Full Text Available As a part of these experimental investigations of melt-spun Nd-Fe-B alloy with Nd rich content in relation to Nd2Fe14B prepared by rapid quenching process for optimally selected cooling rate and heat treatment, the influence of the chosen chemical composition on magnetic properties was observed. The results of X-ray diffraction, Mössbauer spectroscopy phase analysis and magnetic measurement of investigated melt-spun Nd14.5Fe78.5B7 alloy are presented to bring some new information concerning the relation between their structure and magnetic properties.

  11. Effect of magnetic field on the mechanical properties of magnetostrictive iron-gallium nanowires

    International Nuclear Information System (INIS)

    Downey, Patrick R.; Flatau, Alison B.; McGary, Patrick D.; Stadler, Bethanie J. H.

    2008-01-01

    This study experimentally investigates the elastic properties of individual iron-gallium nanowires with and without an applied magnetic bias field. The experiments were conducted with a custom manipulator stage designed for use within a scanning electron microscope, where nanowires were mechanically tested both statically and dynamically. Experiments were also performed in the presence of a 20 Oe dc magnetic field in order to identify any variation in wire properties. The results suggest that iron-gallium nanowires possess an elastic modulus very similar to the macroscale value, tensile strengths of more than double the bulk material, and minor magnetic field induced stiffening at low stresses

  12. Shape and edge dependent electronic and magnetic properties of silicene nano-flakes

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Brij, E-mail: brijmohanhpu@yahoo.com; Pooja,; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla-171005 (India); Kumar, Ashok [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2015-06-24

    We performed first-principle study of the geometric, electronic and magnetic properties of arm-chair and zigzag edge silicene nano-flakes of triangular and hexagonal shapes. Electronic properties of silicene nano-flakes show strong dependence on their edge structure and shape. The considered nanostructures shows energy gap ranging ∼ 0.4 – 1.0 eV. Zigzag edged triangular nano-flake is magnetic and semiconducting in nature with 4.0 µ{sub B} magnetic moment and ∼ 0.4 eV energy gap.

  13. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  14. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  15. Electronic and magnetic properties of Mn{sub 12} single-molecule magnets on the Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Soenke; Burgert, Michael; Fonin, Mikhail; Groth, Ulrich; Ruediger, Ulrich [Universitaet Konstanz (Germany); Michaelis, Christian; Brihuega, Ivan; Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Dedkov, Yury S. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany)

    2008-07-01

    The paramount interest in single-molecule magnets (SMMs) like Mn{sub 12}-acetate and its derivatives was inspired by numerous experimental and theoretical insights indicating the feasibility of addressing quantum effects of magnetism on a molecular scale. Due to its relatively high blocking temperature ({proportional_to}3 K) combined with the ability to identify well-defined spin states, Mn{sub 12} still remains the most favoured SMM possibly allowing the detection of magnetic fingerprints in transport properties of a single molecule. In this work, the electronic properties of Mn{sub 12} molecules chemically grafted on Au(111) surfaces have been studied by means of low temperature as well as room temperature scanning tunneling microscopy and spectroscopy (STS), X-ray absorption spectroscopy and photoelectron spectroscopy. The results revealed signatures from most probably intact Mn{sub 12} molecules while STS measurements in magnetic fields indicate the possibility to identify magnetic fingerprints in scanning tunneling spectra. The results will be discussed with respect to previous attempts to perform transport measurements on Mn{sub 12} SMMs.

  16. Magnetic properties of screen-printed (Y0.5Sm0.5)Co5 magnet arrays

    International Nuclear Information System (INIS)

    Bueno-Baques, D.; Maldonado-Chavez, L.; Hidalgo-Gonzalez, J.L.; Matutes-Aquino, J.A.; Corral-Flores, V.

    2007-01-01

    (Y 0.5 Sm 0.5 )Co 5 magnet arrays of square μdots of 300 μm were prepared by screen printing. A well controlled paste like ink prepared with the (Y 0.5 Sm 0.5 )Co 5 nanoparticles and a mixture of organic solvent and polymer was used to print different pattern arrays. (Y 0.5 Sm 0.5 )Co 5 nanoparticles were obtained by mechanical milling starting from arc melted ingots and heat treated in Ar atmosphere. Two different heat treatment were considered, resulting in powders with different magnetic properties. The microstructure of the magnet arrays was studied by scanning electron microscopy (SEM). An isotropic homogeneous distribution of the nanoparticles inside the μdots was observed. The final shape of the μdots in the array was found to be highly dependent on the squeeze pressure and speed over the mesh. Magnetic properties were studied by pulsed field magnetometry and vibrating sample magnetometry at room temperature. The micro size arrays showed lower saturation magnetization and a slightly increase in the coercive field. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...

  18. Magnetic properties of crystalline and amorphous phase-change materials doped with 3d impurities.

    Science.gov (United States)

    Zhang, Wei; Ronneberger, Ider; Li, Yan; Mazzarello, Riccardo

    2012-08-22

    First-principles study of the structural and magnetic properties of cubic and amorphous phase-change materials doped with 3d impurities. We find that Co- and Ni-doped Ge(2) Sb(2) Te(5) is non-magnetic, whereas Cr- and Mn-doped Ge(2) Sb(2) Te(5) is magnetic and exhibits a significant magnetic contrast between the two phases in the ferromagnetic configuration. These results are explained in terms of differences in local structure and hybridization of the impurity d-orbitals with the host states. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Local Structure and Magnetic Properties of Fe 50 Cr 40 Si 10 Nanocrystalline Alloys

    Science.gov (United States)

    Tarigan, K.; Sebayang, D.; Yu, S. C.; Yang, D. S.

    2018-03-01

    The structural and the magnetic properties of nanocrystalline Fe 50 Cr 40 Si 10 alloys were prepared via mechanical alloying by using Fe, Cr, and Si elements with 1- to 24 hrs milling times. Structural analysis based on X-ray diffraction and Extended X-ray absorption fine structure spectroscopy. Concerning the magnetic behavior, the data obtained from a vibrating sample magnetometer at 300 K shows that both the magnetic saturation and the coercivity are dependent strongly on the milling time and the crystallite size. By adjusting the milling time, both appropriate structural transformation and magnetization values are obtained.

  20. Magnetic Properties Experiments on the Mars exploration Rover Spirit at Gusev crater

    DEFF Research Database (Denmark)

    Bertelsen, Pernille; Goetz, W.; Madsen, M.B.

    2004-01-01

    The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere...... must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of similar to2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit....