WorldWideScience

Sample records for strong-field atomic phenomena

  1. Atomic and free electrons in a strong light field

    CERN Document Server

    Fedorov, Mikhail V

    1997-01-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated bremsstrahlung, free-electron lasers, wave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described too, and their results are compared with those of the existing theoretical models.An extensive ge

  2. Atomic and Free Electrons in a Strong Light Field

    International Nuclear Information System (INIS)

    Fedorov, Mikhail V.

    1998-02-01

    This book presents and describes a series of unusual and striking strong-field phenomena concerning atoms and free electrons. Some of these phenomena are: multiphoton stimulated Bremsstrahlung, free-electron lasers, ave-packet physics, above-threshold ionization, and strong-field stabilization in Rydberg atoms. The theoretical foundations and causes of the phenomena are described in detail, with all the approximations and derivations discussed. All the known and relevant experiments are described oo, and their results are compared with those of the existing theoretical models. An extensive general theoretical introduction gives a good basis for subsequent parts of the book and is an independent and self-sufficient description of the most efficient theoretical methods of the strong-field and multiphoton physics. This book can serve as a textbook for graduate students

  3. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  4. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  5. Steering neutral atoms in strong laser fields

    International Nuclear Information System (INIS)

    Eilzer, S; Eichmann, U

    2014-01-01

    The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)

  6. New reduced-dimensionality models for efficient quantum-mechanical description of ultrafast strong-field phenomena

    International Nuclear Information System (INIS)

    Silaev, A.A.; Ryabikin, M.Yu.; Vvedenskii, N.V.

    2010-01-01

    Complete text of publication follows. The development of theoretical approaches to the description of strong-field phenomena caused by ultrashort laser pulses is optical for studying the interaction of atoms and molecules with intense laser fields. In this work, we address two phenomena which attract much attention and can be observed under similar experimental conditions, namely, when a gas is ionized by ultrashort laser pulse. The first phenomenon is the excitation of high-order harmonics of the driving field frequency in the electron current, which leads to the generation of vacuum ultraviolet and soft X-ray radiation, as well as the attosecond pulse production. The second phenomenon is the excitation of a quasi-dc residual current in the laser-produced plasma, which results in the generation of radiation having a frequency below the laser one, e.g., terahertz waves. We present new one-dimensional (1D) and two-dimensional (2D) quantum-mechanical models for the description of such phenomena for the case a hydrogen (H) atom, and the generalization of these models to the case of various noble-gas atoms. The shape of the electrostatic potential produced by an atomic ion is shown to influence significantly the rates of the processes in the dynamics of atomic electron, and even more, the rates of the tunneling and above-barrier ionization, which is of utmost importance for the considered phenomena. The results of solving the time-dependent Schroedinger equation with the 1D and 2D potentials, which we propose, are compared with the results of the ab initio three-dimensional calculations for the H atom. We find the regions of laser pulse parameters, where the results obtained with proposed models have much better accuracy than the results provided by the models used earlier. Acknowledgements. This work was supported by the Russian Foundation for Basic Research, the Presidential Council on Grants of the Russian Federation, the Ministry of Education and Science of the

  7. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  8. Atomic excitation and acceleration in strong laser fields

    International Nuclear Information System (INIS)

    Zimmermann, H; Eichmann, U

    2016-01-01

    Atomic excitation in the tunneling regime of a strong-field laser–matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results. (paper)

  9. Interaction of strong electromagnetic fields with atoms

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-06-01

    Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt

  10. NATO Advanced Study Institute on Atoms in Strong Fields

    CERN Document Server

    Clark, Charles; Nayfeh, Munir

    1990-01-01

    This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscop...

  11. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  12. Dynamic polarizability of a complex atom in strong laser fields

    International Nuclear Information System (INIS)

    Rapoport, L.P.; Klinskikh, A.F.; Mordvinov, V.V.

    1997-01-01

    An asymptotic expansion of the dynamic polarizability of a complex atom in a strong circularly polarized light field is found for the case of high frequencies. The self-consistent approximation of the Hartree-Fock type for the ''atom+field'' system is developed, within the framework of which a numerical calculation of the dynamic polarizability of Ne, Kr, and Ar atoms in a strong radiation field is performed. The strong field effect is shown to manifest itself not only in a change of the energy spectrum and the character of behavior of the wave functions of atomic electrons, but also in a modification of the one-electron self-consistent potential for the atom in the field

  13. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    Santos, R.R. dos.

    1975-07-01

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt

  14. Atomic processes in strong bichromatic elliptically polarized laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Odžak, S., E-mail: senad.odzak@gmail.com; Hasović, E.; Gazibegović-Busuladžić, A.; Čerkić, A., E-mail: anercerkic@yahoo.com; Fetić, B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegovina); Kramo, A. [BHANSA, Aeronautical Meteorology Department, Kurta Schorka 36, 71000 Sarajevo (Bosnia and Herzegovina); Busuladžić, M. [Medical Faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo (Bosnia and Herzegovina); Milošević, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegovina); Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo (Bosnia and Herzegovina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2016-03-25

    Nonlinear quantum-mechanical phenomena in strong laser fields, such as high-order harmonic generation (HHG) and above-threshold ionization (ATI) are significantly modified if the applied laser field is bichromatic and/or elliptically polarized. Numerical results obtained within the strong-field approximation are presented for two special cases. We show results for HHG by plasma ablation in a bichromatic linearly polarized laser field. We also consider the ATI process in bicircular field which consists of two coplanar counter-rotating circularly polarized fields.

  15. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Liu, Jie

    2014-01-01

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  16. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  17. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  18. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    International Nuclear Information System (INIS)

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-01-01

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  19. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  20. Self field electromagnetism and quantum phenomena

    Science.gov (United States)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  1. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  2. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter

    2007-01-01

    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...

  3. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  4. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    Science.gov (United States)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion

  5. Quantum-orbit theory of high-order atomic processes in strong fields

    International Nuclear Information System (INIS)

    Milosevic, D.B.

    2005-01-01

    Full text: Atoms submitted to strong laser fields can emit electrons and photons of very high energies. These processes find a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits. The quantum-orbit formalism is particularly useful for high-order atomic processes in strong laser fields. For such multi-step processes there is an intermediate step during which the electron is approximately under the influence of the laser field only and can absorb energy from the field. This leads to the appearance of the plateau structures in the emitted electron or photon spectra. Usual examples of such processes are high-order harmonic generation (HHG) and high-order above threshold ionization (HATI). These structures were also observed in high-order above-threshold detachment, laser-assisted x-ray-atom scattering, laser-assisted electron-ion recombination, and electron-atom scattering. We will present high-order strong-field approximation (SFA) and show how the quantum-orbit formalism follows from it. This will be done for various above-mentioned processes. For HHG a classification of quantum orbits will be given [10) and generalized to the presence of a static field. The low-energy part of the HHG spectra and the enhancement of HHG near the channel closings can be explained taking into account a large number of quantum orbits. For HATI we will concentrate on the case of few-cycle laser pulse. The influence of the carrier-envelope relative phase on the HATI spectrum can easily be explained in terms of quantum orbits. The SFA and the quantum-orbit results will be compared with the results obtained by Dieter Bauer using ab initio solutions of the time-dependent Schroedinger equation. It will be shown that the Coulomb effects are important for low-energy electron spectra. Refs. 11 (author)

  6. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  7. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  8. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  9. Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field

    International Nuclear Information System (INIS)

    Movsesyan, A.M.; Fedorov, M.V.

    1989-01-01

    The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration

  10. Photoionization of the hydrogen atom in strong magnetic fields

    Science.gov (United States)

    Potekhin, Aleksandr IU.; Pavlov, George G.

    1993-01-01

    The photoionization of the hydrogen atom in magnetic fields B about 10 exp 11 - 10 exp 13 G typical of the surface layers of neutron stars is investigated analytically and numerically. We consider the photoionization from various tightly bound and hydrogen-like states of the atom for photons with arbitrary polarizations and wave-vector directions. It is shown that the length form of the interaction matrix elements is more appropriate in the adiabatic approximation than the velocity form, at least in the most important frequency range omega much less than omega(B), where omega(B) is the electron cyclotron frequency. Use of the length form yields nonzero cross sections for photon polarizations perpendicular to the magnetic field at omega less than omega(B); these cross sections are the ones that most strongly affect the properties of the radiation escaping from an optically thick medium, e.g., from the atmosphere of a neutron star. The results of the numerical calculations are fitted by simple analytical formulas.

  11. Resonance fluorescence spectra of a three-level atom driven by two strong laser fields

    International Nuclear Information System (INIS)

    Peng Jinsheng.

    1986-12-01

    The resonance fluorescence of a three-level atom interacted with two high-power laser fields is investigated in strong field approximation. The fluorescence distribution is obtained by means of the theory of dressing transformation. (author). 15 refs, 2 figs

  12. Time profile of harmonics generated by a single atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Antoine, P.; Piraux, B.; Maquet, A.

    1995-01-01

    We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of atomic hydrogen with an intense laser pulse

  13. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  14. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  15. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  16. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  17. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  18. Understanding strong-field coherent control: Measuring single-atom versus collective dynamics

    International Nuclear Information System (INIS)

    Trallero-Herrero, Carlos; Weinacht, Thomas; Spanner, Michael

    2006-01-01

    We compare the results of two strong field coherent control experiments: one which optimizes multi-photon population transfer in atomic sodium (from the 3s to the 4s state, measured by spontaneous emission from the 3p-3s transition) with one that optimizes stimulated emission on the 3p-3s transition in an ensemble of sodium atoms. Both experiments make use of intense, shaped ultrafast laser pulses discovered by a Genetic Algorithm inside a learning control loop. Optimization leads to improvements in the spontaneous and stimulated emission yields of about 4 and 10 4 , respectively, over an unshaped pulse. We interpret these results by modeling both the single atom dynamics as well as the stimulated emission buildup through numerical integration of Schroedinger's and Maxwell's equations. Our interpretation leads to the conclusion that modest yields for controlling single quantum systems can lead to dramatic effects whenever an ensemble of such systems acts collectively following controlled impulsive excitation

  19. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  20. Nonadiabatic theory of strong-field atomic effects under elliptical polarization

    International Nuclear Information System (INIS)

    Wang Xu; Eberly, J. H.

    2012-01-01

    Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.

  1. Velocity map imaging of attosecond and femtosecond dynamics in atoms and small molecules in strong laser fields

    International Nuclear Information System (INIS)

    Kling, M.F.; Ni, Yongfeng; Lepine, F.; Khan, J.I.; Vrakking, M.J.J.; Johnsson, P.; Remetter, T.; Varju, K.; Gustafsson, E.; L'Huillier, A.; Lopez-Martens, R.; Boutu, W.

    2005-01-01

    Full text: In the past decade, the dynamics of atomic and small molecular systems in strong laser fields has received enormous attention, but was mainly studied with femtosecond laser fields. We report on first applications of attosecond extreme ultraviolet (XUV) pulse trains (APTs) from high-order harmonic generation (HHG) for the study of atomic and molecular electron and ion dynamics in strong laser fields utilizing the Velocity Map Imaging Technique. The APTs were generated in argon from harmonics 13 to 35 of a 35 fs Ti:sapphire laser, and spatially and temporally overlapped with an intense IR laser field (up to 5x10 13 W/cm 2 ) in the interaction region of a Velocity Map Imaging (VMI) machine. In the VMI setup, electrons and ions that were created at the crossing point of the laser fields and an atomic or molecular beam were accelerated in a dc-electric field towards a two-dimensional position-sensitive detector, allowing to reconstruct the full initial three-dimensional velocity distribution. The poster will focus on results that were obtained for argon atoms. We recorded the velocity distribution of electron wave packets that were strongly driven in the IR laser field after their generation in Ar via single-photon ionization by attosecond XUV pulses. The 3D evolution of the electron wave packets was observed on an attosecond timescale. In addition to earlier experiments with APTs using a magnetic bottle electron time-of-flight spectrometers and with single attosecond pulses, the angular dependence of the electrons kinetic energies can give further insight into the details of the dynamics. Initial results that were obtained for molecular systems like H 2 , D 2 , N 2 , and CO 2 using the same powerful approach will be highlighted as well. We will show, that detailed insight into the dynamics of these systems in strong laser fields can be obtained (e.g. on the alignment, above-threshold ionization, direct vs. sequential two-photon ionization, dissociation, and

  2. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  3. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  4. Strong-field dissociation dynamics

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, Baorui.

    1993-01-01

    The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs

  5. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  6. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  7. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  8. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  9. Manipulating novel quantum phenomena using synthetic gauge fields

    Science.gov (United States)

    Zhang, Shao-Liang; Zhou, Qi

    2017-11-01

    The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.

  10. Atomic systems with one and two active electrons in electromagnetic fields: Ionization and high harmonics generation

    International Nuclear Information System (INIS)

    Ivanov, I A; Kheifets, A S

    2010-01-01

    We describe a theoretical procedure for solving the time-dependent Schroedinger equation (TDSE) for atomic systems with one or two valence electrons. Motion of the valence electrons is described by means of the Hartree-Fock potential including the exchange interaction. We apply the procedure to various physical phenomena occurring in atoms exposed to strong electromagnetic fields. As an illustration, we consider below the processes of high harmonics generation and attosecond pulses production.

  11. Excited neutral atomic fragments in the strong-field dissociation of N2 molecules

    International Nuclear Information System (INIS)

    Nubbemeyer, T; Eichmann, U; Sandner, W

    2009-01-01

    Excited neutral N* fragments with energies between 3 eV and 15 eV have been observed from the dissociation of N 2 molecules in strong laser fields. The kinetic energy spectrum of the excited neutral atoms corresponds to Coulomb explosion processes involving N + ions. This supports the assumption that the production of excited neutral fragments stems from a process in which one of the participating ions in the Coulomb explosion captures an electron into a Rydberg state.

  12. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  13. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  14. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  15. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2008-01-01

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance

  16. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  17. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  18. Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps

    Energy Technology Data Exchange (ETDEWEB)

    Suchowski, H; Natan, A; Bruner, B D; Silberberg, Y [Physics of Complex Systems, Weizmann Institute of Science, Rehovot (Israel)], E-mail: haim.suchowski@weizmann.ac.il

    2008-04-14

    Coherent control of resonant and non-resonant two-photon absorption processes was examined using a spatio-temporal pulse-shaping technique. By utilizing a combination of temporal focusing and femtosecond pulse-shaping techniques, we spatially control multiphoton absorption processes in a completely deterministic manner. Distinctive symmetry properties emerge through two-dimensional mapping of spatio-temporal data. These symmetries break down in the transition to strong fields, revealing details of strong-field effects such as power broadenings and dynamic Stark shifts. We also present demonstrations of chirp-dependent population transfer in atomic rubidium, as well as the spatial separation of resonant and non-resonant excitation pathways in atomic caesium.

  19. Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps

    International Nuclear Information System (INIS)

    Suchowski, H; Natan, A; Bruner, B D; Silberberg, Y

    2008-01-01

    Coherent control of resonant and non-resonant two-photon absorption processes was examined using a spatio-temporal pulse-shaping technique. By utilizing a combination of temporal focusing and femtosecond pulse-shaping techniques, we spatially control multiphoton absorption processes in a completely deterministic manner. Distinctive symmetry properties emerge through two-dimensional mapping of spatio-temporal data. These symmetries break down in the transition to strong fields, revealing details of strong-field effects such as power broadenings and dynamic Stark shifts. We also present demonstrations of chirp-dependent population transfer in atomic rubidium, as well as the spatial separation of resonant and non-resonant excitation pathways in atomic caesium

  20. Imaging process in field ion microscopy from the FEM to the atom-probe

    International Nuclear Information System (INIS)

    Mueller, E.W.

    1976-01-01

    The development of the technique and the interpretations of the imaging mechanism, which involve a number of complex phenomena, are traced from the invention of the field emission microscope and the discovery of field desorption to the first field ion microscope. Subsequent introduction of cryogenic operation and utilization of field evaporation led, prior to 1960, to the attainment of high-quality images with full resolution of the atomic lattice and to fundamental applications in the study of lattice defects and other phenomena of physical metallurgy. Extension to the lower-melting metals by imaging with neon was aided by the availability of image intensification technology. The invention of the atom-probe FIM in 1967, permitting surface analysis with ultimate single-atom sensitivity, also brought the discovery of unexpected effects, such as field adsorption of the noble images gases and the abundant formation of metal-noble gas molecular ions. These phenomena, together with recent results of field desorption microcopy, must be included in a refined interpretation of the imaging process. 16 figs., 115 references

  1. Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.

    Science.gov (United States)

    Courtney, Michael

    1995-01-01

    Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  2. Coherent response of a two-level atom to a signal field with account of suppression of phase relaxation by a strong field

    International Nuclear Information System (INIS)

    Grishanin, B.A.; Shatalova, G.G.

    1984-01-01

    Calculation is made of a coherent part of response to a weak test field of an atom located in a strong resonance field. The latter bads to a suppression of phase relaxation. This response is shown to appear both at a test field freq uency ω and at a combination frequency 2ωsub(l)-ω, where ωsub(l) is a resona nce field frequency. The spectrum of test field absorption by such a system has a symmetric form and consist of two parts, one of which corresponds to a test f ield absorption and another - to its amplification

  3. 5. International workshop on autoionization phenomena in atoms. Abstracts

    International Nuclear Information System (INIS)

    Balashov, V.V.

    1995-01-01

    Summaries of the reports presented at the 5 International Workshop on Autoionization Phenomena in Atoms (Dubna, 12-14 December 1995). The main topics of these 53 reports are the following ones: photoexcitation of autoionizing states in atoms and ions, autoionization in electron-atom collisions, autoionization in heavy particle collisions, coincidence experiments in autoionization studies, investigations of autoionizing states with lasers and wave functions and decay characteristics of autoionizing states

  4. Limitations of the strong field approximation in ionization of the hydrogen atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires

    2008-01-01

    Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution

  5. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    Science.gov (United States)

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  6. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    International Nuclear Information System (INIS)

    Chu, S.-I.; Telnov, D.A.

    2004-01-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  7. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields

    Science.gov (United States)

    Chu, Shih-I.; Telnov, Dmitry A.

    2004-02-01

    The advancement of high-power and short-pulse laser technology in the past two decades has generated considerable interest in the study of multiphoton and very high-order nonlinear optical processes of atomic and molecular systems in intense and superintense laser fields, leading to the discovery of a host of novel strong-field phenomena which cannot be understood by the conventional perturbation theory. The Floquet theorem and the time-independent Floquet Hamiltonian method are powerful theoretical framework for the study of bound-bound multiphoton transitions driven by periodically time-dependent fields. However, there are a number of significant strong-field processes cannot be directly treated by the conventional Floquet methods. In this review article, we discuss several recent developments of generalized Floquet theorems, formalisms, and quasienergy methods, beyond the conventional Floquet theorem, for accurate nonperturbative treatment of a broad range of strong-field atomic and molecular processes and phenomena of current interests. Topics covered include (a) artificial intelligence (AI)-most-probable-path approach (MPPA) for effective treatment of ultralarge Floquet matrix problem; (b) non-Hermitian Floquet formalisms and complex quasienergy methods for nonperturbative treatment of bound-free and free-free processes such as multiphoton ionization (MPI) and above-threshold ionization (ATI) of atoms and molecules, multiphoton dissociation (MPD) and above-threshold dissociation (ATD) of molecules, chemical bond softening and hardening, charge-resonance enhanced ionization (CREI) of molecular ions, and multiple high-order harmonic generation (HHG), etc.; (c) many-mode Floquet theorem (MMFT) for exact treatment of multiphoton processes in multi-color laser fields with nonperiodic time-dependent Hamiltonian; (d) Floquet-Liouville supermatrix (FLSM) formalism for exact nonperturbative treatment of time-dependent Liouville equation (allowing for relaxations and

  8. Atomic hydrogen storage. [cryotrapping and magnetic field strength

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  9. Magnetic-field-driven localization of light in a cold-atom gas.

    Science.gov (United States)

    Skipetrov, S E; Sokolov, I M

    2015-02-06

    We discover a transition from extended to localized quasimodes for light in a gas of immobile two-level atoms in a magnetic field. The transition takes place either upon increasing the number density of atoms in a strong field or upon increasing the field at a high enough density. It has many characteristic features of a disorder-driven (Anderson) transition but is strongly influenced by near-field interactions between atoms and the anisotropy of the atomic medium induced by the magnetic field.

  10. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    Science.gov (United States)

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  11. Hydrogen atom moving across a magnetic field

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Volkov, S.Yu.

    2004-01-01

    A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied

  12. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    Science.gov (United States)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  13. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    Science.gov (United States)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  14. Strongly-correlated ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Dao, Tung-Lam

    2008-01-01

    This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi

  15. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  16. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  17. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  18. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  19. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  20. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  1. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    Science.gov (United States)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  2. Strong interaction effects in hadronic atoms

    International Nuclear Information System (INIS)

    Kaufmann, W.B.

    1977-01-01

    The WKB method is applied to the calculation of strong interaction-induced level widths and shifts of hadronic atoms. The calculation, while elementary enough for undergraduate quantum mechanics students, gives a good account of kaonic and antiprotonic atom data

  3. Resonance properties of a three-level atom with quantized field modes

    International Nuclear Information System (INIS)

    Yoo, H.I.

    1984-01-01

    A system of one three-level atom and one or two quantized electro-magnetic field modes coupled to each other by the dipole interaction, with the rotating wave approximation is studied. All three atomic configurations, i.e., cascade Lambda- and V-types, are treated simultaneously. The system is treated as closed, i.e., no interaction with the external radiation field modes, to reveal the internal structures and symmetries in the system. The general dynamics of the system are investigated under several distinct initial conditions and their similarities and differences with the dynamics of the Jaynes-Cummings model are revealed. Also investigated is the possibility of so-called coherent trapping of the atom in the quantized field modes in a resonator. An atomic state of coherent trapping exists only for limited cases, and it generally requires the field to be in some special states, depending on the system. The discussion of coherent trapping is extended into a system of M identical three-level atoms. The stability of a coherent-trapping state when fluorescence can take place is discussed. The distinction between a system with resonator field modes and one with ideal laser modes is made clear, and the atomic relaxation to the coherent-trapping atomic state when a Lambda-type atom is irradiated by two ideal laser beams is studied. The experimental prospects to observe the collapse-revival phenomena in the atomic occupation probabilities, which is characteristic of a system with quantized resonator field modes is discussed

  4. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  5. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  6. Strong-field spatiotemporal ultrafast coherent control in three-level atoms

    International Nuclear Information System (INIS)

    Bruner, Barry D.; Suchowski, Haim; Silberberg, Yaron; Vitanov, Nikolay V.

    2010-01-01

    Simple analytical approaches for implementing strong field coherent control schemes are often elusive due to the complexity of the interaction between the intense excitation field and the system of interest. Here, we demonstrate control over multiphoton excitation in a three-level resonant system using simple, analytically derived ultrafast pulse shapes. We utilize a two-dimensional spatiotemporal control technique, in which temporal focusing produces a spatially dependent quadratic spectral phase, while a second, arbitrary phase parameter is scanned using a pulse shaper. In the current work, we demonstrate weak-to-strong field excitation of 85 Rb, with a π phase step and the quadratic phase as the chosen control parameters. The intricate dependence of the multilevel dynamics on these parameters is exhibited by mapping the data onto a two-dimensional control landscape. Further insight is gained by simulating the complete landscape using a dressed-state, time-domain model, in which the influence of individual shaping parameters can be extracted using both exact and asymptotic time-domain representations of the dressed-state energies.

  7. The dynamics of highly excited hydrogen atoms in microwave fields: Application of the Floquet picture of quantum mechanics

    International Nuclear Information System (INIS)

    Holthaus, M.

    1990-04-01

    The study of short-time phenomena in strongly interacting quantum systems requires on the theoretical side the development of methods, which are both non-perturbative and 'dynamical', which thus regard the change of outer parameters in the slope of time. For systems with a periodic, fast and a further slow, parametric time dependence both requirements are fulfilled by the Floquet picture of quantum mechanics. This picture, which starts from the adiabatic evolution on effective quasi-energy surfaces, is presented in the first chapter of the present thesis, whereby especially the term of the adiabaticity for periodically time dependent systems is explained. In the second chapter the Floquet theory is applied to the description of microwave experiments with highly excited hydrogen atoms. Here it is shown that the Floquet picture permits to understand a manifold of experimental observations under a unified point of view. Really these microwave experiments offer an ideal possibility for the test of the Floquet picture: On the one hand there is the strength of the outer field of the same order of magnitude as that of the nuclear field, by which the highly excited electron is bound, on the other hand in the experiment an extremely precise control of amplitude, frequency, and pulse shape is possible, so that the conditions for a detailed comparison of theory and experiment are given. The insights, which model calculations yield in the dynamics of highly excited hydrogen atoms in strong alternating fields, allow a prediction of further effects, for which it is to be looked for in new experiments. In the following third chapter some further aspects of these model calculations are discussed, whereby also common properties of the dynamics of excited atoms in microwave fields and that of atoms under the influence of strong laser pulses are discussed. (orig./HSI) [de

  8. Quantum phenomena in gravitational field; Phenomenes quantiques dans le champ gravitationnel

    Energy Technology Data Exchange (ETDEWEB)

    Bourdel, Th. [Laboratoire Charles-Fabry de l' Institut d' Optique, CNRS, Univ. Paris-Sud, Campus Polytechnique RD128, 91127 Palaiseau (France); Doser, M. [CERN, Geneva 23, CH-1211 (Switzerland); Ernest, A.D. [Faculty of Science, Charles Sturt University, Wagga Wagga (Australia); Voronin, A.Y. [Lebedev Institute, 53 Leninskii pr., Moscow, RU-119991 (Russian Federation); Voronin, V.V. [PNPI, Orlova Roscha, Gatchina, RU-188300 (Russian Federation)

    2010-10-15

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  9. Positronium-photon and photon-positronium quantum transitions in strong magnetic fields

    International Nuclear Information System (INIS)

    Leinson, L.B.; Oraevskii, V.N.; Radio-Wave Propagation, Academy of Sciences of the USSR)

    1985-01-01

    The wave functions and energy levels of bound electron-positron pairs in a strong magnetic field H>>α 2 H 0 , where H 0 = m 2 0 c 3 /eh = 4.4 x 10 13 G and α = e 2 /hc, are found in the nonrelativistic approximation. The probabilities of one-photon annihilation of positronium and of the inverse transition from a resonance photon to a positronium atom are calculated. It is shown that in a sufficiently strong magnetic field H∼H 0 , when the probability of one-photon annihilation is considerably greater than the probability of two-photon annihilation of positronium, the lifetime of the decay photon with respect to the inverse transformation to a positronium atom is so small that the decay photon cannot propagate freely in the magnetic field. Therefore, the lifetime of the positronium atom in the case H∼H 0 is determined by the two-photon decay. The possibility of the decay γ→γ 1 +γ 2 via intermediate positronium states in a magnetic field with curved field lines is discussed

  10. Radiative properties of strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1993-11-01

    The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal

  11. Effects of multi-photon interferences from internally generated fields in strongly resonant systems

    International Nuclear Information System (INIS)

    Deng, Lu; Payne, Marvin G.; Garrett, William R.

    2006-01-01

    In studies of various nonlinear optical phenomena, strong resonant features in the atomic or molecular response to multi-photon driven processes have been used to greatly enhance the visibility of otherwise weak higher-order processes. However, there are well defined circumstances where a multi-photon-resonant response of a target system leads to the generation of one or more new electromagnetic fields that can drastically change the overall system response from what would be expected from the imposed laser fields alone. New effects can occur and dominate some aspects of the nonlinear optical response because of the constructive or destructive interference between transition amplitudes along multiple excitation pathways between a given set of optically coupled states, where one of the pathways involve internally generated field(s). Under destructive interference some resonant enhancements can become completely canceled (suppressed). This review focuses on the class of optical interference effects associated with internally generated fields, that have been found to be capable of influencing a very significant number of basic physical phenomena in gas or vapor phase systems. It provides a historical overview of experimental and theoretical developments and a modern understanding of the underlying physics and its various manifestations that include: suppression of multi-photon excitation processes, suppression of stimulated emissions (Raman, hyper-Raman, and optically pumped stimulated emissions), saturation of parametric wave-mixing, pressure and beam-geometry dependent shifting of multi-photon-resonant absorption lines, and the suppression of Autler-Townes splitting and ac-stark shifts. Additionally, optical interference effects in some modern contexts, such as achieving multi-photon induced transparency, establishing single-photon self-interference based induced transparency, and generating entangled single photon states, are reviewed

  12. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  13. Keldysh theory of strong field ionization: history, applications, difficulties and perspectives

    International Nuclear Information System (INIS)

    V Popruzhenko, S

    2014-01-01

    The history and current status of the Keldysh theory of strong field ionization are reviewed. The focus is on the fundamentals of the theory, its most important applications and those aspects which still raise difficulties and remain under discussion. The Keldysh theory is compared with other nonperturbative analytic methods of strong field atomic physics and its important generalizations are discussed. Among the difficulties, the gauge invariance problem, the tunneling time concept, the conditions of applicability and the application of the theory to ionization of systems more complex than atoms, including molecules and dielectrics, are considered. Possible prospects for the future development of the theory are also discussed. (review article)

  14. Formation of Antihydrogen Rydberg atoms in strong magnetic field traps

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.

    2008-01-01

    It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H-bar) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry, is responsible for the observed fast (hot) H-bar atoms. Detailed description of the numerical propagation technique for following extreme close encounters is given. An analytic derivation of the power law behavior of the field ionization spectrum is provided

  15. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  16. Ultracold atoms in a cavity-mediated double-well system

    International Nuclear Information System (INIS)

    Larson, Jonas; Martikainen, Jani-Petri

    2010-01-01

    We study ground-state properties and dynamics of a dilute ultracold atomic gas in a double-well potential. The Gaussian barrier separating the two wells derives from the interaction between the atoms and a quantized field of a driven Fabry-Perot cavity. Due to intrinsic atom-field nonlinearity, several interesting phenomena arise which are the focus of this work. For the ground state, there is a critical pumping amplitude in which the atoms self-organize and the intra-cavity-field amplitude drastically increases. In the dynamical analysis, we show that the Josephson oscillations depend strongly on the atomic density and may be greatly suppressed within certain regimes, reminiscent of self-trapping of Bose-Einstein condensates in double-well setups. This pseudo-self-trapping effect is studied within a mean-field treatment valid for large atom numbers. For small numbers of atoms, we consider the analogous many-body problem and demonstrate a collapse-revival structure in the Josephson oscillations.

  17. Atomic-structure effects in strong-field multiphoton detachment and ionization

    International Nuclear Information System (INIS)

    AAberg, T.; Mu, X.; Ruscheinski, J.; Crasemann, B.

    1994-01-01

    Above-threshold photoelectron detachment and ionization spectra are investigated theoretically in the tunneling and over-barrier regime as a function of wavelength (≥ 1.064 μm) and polarization of the electromagnetic field. It is found that the zeros in the initial-state wave function can drastically affect the shape of the high-energy photoelectron distribution. The phenomenon is not predicted by tunneling and related models and hence can test their validity and reveal whether Keldysh-type theories are in general applicable to strong-field multiphoton dynamics. (orig.)

  18. Virtual detector theory for strong-field atomic ionization

    Science.gov (United States)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  19. Atomic physics of strongly correlated systems

    International Nuclear Information System (INIS)

    Lin, C.D.

    1986-01-01

    This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles

  20. Cooperative fluorescence from a strongly driven dilute cloud of atoms

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Wubs, Martijn; Lodahl, Peter

    2013-01-01

    We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the excited-state population and to the resonance-fluorescence spectrum, which...... both require going beyond the state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to long-range dipole-dipole coupling that vanishes at stronger driving fields. Furthermore, we compute the inelastic component of the light scattered by a cloud...

  1. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    Science.gov (United States)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  2. Robust mesoscopic superposition of strongly correlated ultracold atoms

    International Nuclear Information System (INIS)

    Hallwood, David W.; Ernst, Thomas; Brand, Joachim

    2010-01-01

    We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.

  3. Atomic electron correlations in intense laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Sheehy, B.; Walker, B.; Agostini, P.A.

    1998-01-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear

  4. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  5. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  6. Strong field QED in lepton colliders and electron/laser interactions

    Science.gov (United States)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the

  7. Atom localization via phase and amplitude control of the driving field

    International Nuclear Information System (INIS)

    Ghafoor, Fazal; Qamar, Sajid; Zubairy, M. Suhail

    2002-01-01

    Control of amplitude and phase of the driving field in an atom-field interaction leads towards the strong line narrowing and quenching in the spontaneous emission spectrum. We exploit this fact for the atom localization scheme and achieve a much better spatial resolution in the conditional position probability distribution of the atom. Most importantly the quenching in the spontaneous emission manifests itself in reducing the periodicity in the conditional position probability distribution and hence the uncertainty in a particular position measurement of the single atom by a factor of 2

  8. Aqueous electrolyte surfaces in strong electric fields: molecular insight into nanoscale jets and bridges

    Science.gov (United States)

    Jirsák, Jan; Moučka, Filip; Škvor, Jiří; Nezbeda, Ivo

    2015-04-01

    Exposing aqueous surfaces to a strong electric field gives rise to interesting phenomena, such as formation of a floating water bridge or an eruption of a jet in electrospinning. In an effort to account for the phenomena at the molecular level, we performed molecular dynamics simulations using several protocols on both pure water and aqueous solutions of sodium chloride subjected to an electrostatic field. All simulations consistently point to the same mechanisms which govern the rearrangement of the originally planar surface. The results show that the phenomena are primarily governed by an orientational reordering of the water molecules driven by the applied field. It is demonstrated that, for pure water, a sufficiently strong field yields a columnar structure parallel to the field with an anisotropic arrangement of the water molecules with their dipole moments aligned along the applied field not only in the surface layer but over the entire cross section of the column. Nonetheless, the number of hydrogen bonds per molecule does not seem to be affected by the field regardless of its strength and molecule's orientation. In the electrolyte solutions, the ionic charge is able to overcome the effect of the external field tending to arrange the water molecules radially in the first coordination shell of an ion. The ion-water interaction interferes thus with the water-electric field interaction, and the competition between these two forces (i.e., strength of the field versus concentration) provides the key mechanism determining the stability of the observed structures.

  9. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  10. On tidal phenomena in a strong gravitational field

    International Nuclear Information System (INIS)

    Mashoon, B.

    1975-01-01

    A simple framework based on the concept of quadrupole tidal potential is presented for the calculation of tidal deformation of an extended test body in a gravitational field. This method is used to study the behavior of an initially faraway nonrotating spherical body that moves close to a Schwarzschild or an extreme Kerr black hole. In general, an extended body moving in an external gravitational field emits gravitational radiation due to its center of mass motion, internal tidal deformation, and the coupling between the internal and center of mass motions. Estimates are given of the amount of tidal radiation emitted by the body in the gravitational fields considered. The results reported in this paper are expected to be of importance in the dynamical evolution of a dense stellar system with a massive black hole in its center

  11. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  12. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  13. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  14. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  15. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  16. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  17. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  18. Induced photoassociation in the field of a strong electomagnetic wave

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.; Lyul'ka, V.A.

    1979-01-01

    The quantum-mechanical problem of the stimulated transition of a system in the field of a strong electromagnetic wave from the continuous spectrum to a bound state possessing a finite lifetime is considered. The expressions obtained are employed to calculate stimulated production of mesic atoms and mesic molecules (ddμ). It is demonstrated that in an external electromagnetic field the probability for production of this type may considerably increase

  19. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  20. Strong-field ionization with twisted laser pulses

    Science.gov (United States)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  1. Laser sub-Doppler cooling of atoms in an arbitrarily directed magnetic field

    International Nuclear Information System (INIS)

    Chang, Soo; Kwon, Taeg Yong; Lee, Ho Seong; Minogin, V.G.

    2002-01-01

    We analyze the influence of an arbitrarily directed uniform magnetic field on the laser sub-Doppler cooling of atoms. The analysis is done for a (3+5)-level atom excited by a σ + -σ - laser field configuration. Our analysis shows that the effects of the magnetic field depend strongly on the direction of the magnetic field. In an arbitrarily directed magnetic field the laser cooling configuration produces both the main resonance existing already at zero magnetic field and additional sub-Doppler resonances caused by two-photon and higher-order multiphoton processes. These sub-Doppler resonances are, however, well separated on the velocity scale if the Zeeman shift exceeds the widths of the resonances. This allows one to use the main sub-Doppler resonance for an effective laser cooling of atoms even in the presence of the magnetic field. The effective temperature of the atomic ensemble at the velocity of the main resonance is found to be almost the same as in the absence of the magnetic field. The defined structure of the multiphoton resonances may be of importance for the sub-Doppler laser cooling of atoms, atomic extraction from magneto-optical traps, and applications related to the control of atomic motion

  2. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  3. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  4. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  5. Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields

    International Nuclear Information System (INIS)

    Xu Jun; Hu Xiangming

    2007-01-01

    We propose a scheme of atom localization based on the interaction of the atom in the Λ configuration with a strong bichromatic coupling field and a weak bichromatic probe field with equal frequency difference. One of the bichromatic coupling components is a standing-wave field, which imposes position information on the Rabi frequency. By varying the difference between the relative phases of the two bichromatic fields, the atom is localized in either of the two half-wavelength regions with 50% probability provided the population in the upper state is detected

  6. Collective-field-corrected strong field approximation for laser-irradiated metal clusters

    International Nuclear Information System (INIS)

    Keil, Th; Bauer, D

    2014-01-01

    The strong field approximation (SFA) formulated in terms of so-called ‘quantum orbits’ led to much insight into intense-laser driven ionization dynamics. In plain SFA, the emitted electron is treated as a free electron in the laser field alone. However, with improving experimental techniques and more advanced numerical simulations, it becomes more and more obvious that the plain SFA misses interesting effects even on a qualitative level. Examples are holographic side lobes, the low-energy structure, radial patterns in photoelectron spectra at low kinetic energies and strongly rotated angular distributions. For this reason, increasing efforts have been recently devoted to Coulomb corrections of the SFA. In the current paper, we follow a similar line but consider ionization of metal clusters. It is known that photoelectrons from clusters can be much more energetic than those emitted from atoms or small molecules, especially if the Mie resonance of the expanding cluster is evoked. We develop a SFA that takes the collective field inside the cluster via the simple rigid-sphere model into account. Our approach is based on field-corrected quantum orbits so that the acceleration process (or any other spectral feature of interest) can be investigated in detail. (paper)

  7. Simulating atomic-scale phenomena on surfaces of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, Andreas; Andersen, Brian [Niels Bohr Institute (Denmark); Choubey, Peayush; Hirschfeld, Peter [Univ. of Florida (United States); Berlijn, Tom [CNMS and CSMD, Oak Ridge National Laboratory (United States)

    2016-07-01

    Interest in atomic scale effects in superconductors has increased because of two general developments: First, the discovery of new materials as the cuprate superconductors, heavy fermion and Fe-based superconductors where the coherence length of the cooper pairs is as small to be comparable to the lattice constant, rendering small scale effects important. Second, the experimental ability to image sub-atomic features using scanning-tunneling microscopy which allows to unravel numerous physical properties of the homogeneous system such as the quasi particle excitation spectra or various types of competing order as well as properties of local disorder. On the theoretical side, the available methods are based on lattice models restricting the spatial resolution of such calculations. In the present project we combine lattice calculations using the Bogoliubov-de Gennes equations describing the superconductor with wave function information containing sub-atomic resolution obtained from ab initio approaches. This allows us to calculate phenomena on surfaces of superconductors as directly measured in scanning tunneling experiments and therefore opens the possibility to identify underlying properties of these materials and explain observed features of disorder. It will be shown how this method applies to the cuprate material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and a Fe based superconductor.

  8. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  9. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen

    2012-09-01

    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  10. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  11. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    International Nuclear Information System (INIS)

    Courteille, Ph W; Deh, B; Fortagh, J; Guenther, A; Kraft, S; Marzok, C; Slama, S; Zimmermann, C

    2006-01-01

    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients, the lattice constant can be well below 1 μm. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potentials are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultracold single atoms or degenerate atomic and molecular quantum gases

  12. Multiphoton (e,2e) process of hydrogen atom in strong laser field

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh Deb, S.; Roy, S.; Sinha, C. [Indian Association for the Cultivation of Science, Dept. of Theoretical Physics, Jadavpur, Kolkata (India)

    2009-12-15

    The dynamics of the electron impact multiphoton ionization of a hydrogen atom in the presence of an intense laser field (e, n gamma e) has been studied theoretically for laser polarization parallel and perpendicular to the incident momentum, with a view to comparing (qualitatively) the results with the recent kinematically complete experiments of Hoehr et al. for the He target. Significant laser modifications are noted in the present doubly (DDCS) and the fully differential multiphoton cross sections (TDCS) for both the geometries (parallel and perpendicular). For most of the explored kinematics (chosen in accordance with the experiment), the present binary peak intensity of the laser-assisted multiphoton TDCS is significantly enhanced with respect to the field free ones, in qualitative agreement with the experiment. Importance of the multiphoton effects is also studied. The multiphoton cross sections in the zeroth order approximation of the ejected electron wavefunction (CV) obeys the Kroll Watson sum rule while it does not hold good in the corresponding first order approximation (MCV). (authors)

  13. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-01-01

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field

  14. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    Energy Technology Data Exchange (ETDEWEB)

    Sharapova, P R; Tikhonova, O V [Department of Physics, M.V. Lomonosov Moscow State University (Russian Federation)

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  15. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  16. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  17. Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila; Khandaker, Jahirul Islam; Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Iguchi, Yusuke [Department of Solid State Physics, Debrecen University, 4032 Debrecen (Hungary); Ono, Masao [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan)

    2015-03-28

    To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normal to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.

  18. Quantum incommensurate skyrmion crystals and commensurate to in-commensurate transitions in cold atoms and materials with spin-orbit couplings in a Zeeman field

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-08-01

    In this work, we study strongly interacting spinor atoms in a lattice subject to a two dimensional (2d) anisotropic Rashba type of spin orbital coupling (SOC) and an Zeeman field. We find the interplay between the Zeeman field and the SOC provides a new platform to host rich and novel classes of quantum commensurate and in-commensurate phases, excitations and phase transitions. These commensurate phases include two collinear states at low and high Zeeman field, two co-planar canted states at mirror reflected SOC parameters respectively. Most importantly, there are non-coplanar incommensurate Skyrmion (IC-SkX) crystal phases surrounded by the four commensurate phases. New excitation spectra above all the five phases, especially on the IC-SKX phase are computed. Three different classes of quantum commensurate to in-commensurate transitions from the IC-SKX to its four neighboring commensurate phases are identified. Finite temperature behaviors and transitions are discussed. The critical temperatures of all the phases can be raised above that reachable by current cold atom cooling techniques simply by tuning the number of atoms N per site. In view of recent impressive experimental advances in generating 2d SOC for cold atoms in optical lattices, these new many-body phenomena can be explored in the current and near future cold atom experiments. Applications to various materials such as MnSi, {Fe}}0.5 {Co}}0.5Si, especially the complex incommensurate magnetic ordering in Li2IrO3 are given.

  19. Interference spectra induced by a bichromatic field in the excited state of a three-level atom

    International Nuclear Information System (INIS)

    Mavroyannis, C.

    1998-01-01

    The interference spectra for the excited state of a three-level atom have been considered, where the strong and the weak atomic transitions leading to an electric dipole allowed excited state and to a metastable excited state are driven by resonant and nonresonant laser fields, respectively. In the low intensity limit of the strong laser field, there are two short lifetime excitations, the spontaneous one described by the weak signal field and the one induced by the strong laser field, both of which appear at the same frequency, and a long lifetime excitation induced by the weak laser field. The maximum intensities (heights) of the two peaks describing the short lifetime excitations take equal positive and negative values and, therefore, cancel each other out completely, while the long lifetime excitation dominates. This indicates the disappearance of the short lifetime excitations describing the strong atomic transition for a period equal to the lifetime of the long lifetime excitation, which is roughly equal to half of the lifetime of the metastable state. The computed spectra have been graphically presented and discussed at resonance and for finite detunings. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Isolating strong-field dynamics in molecular systems

    Science.gov (United States)

    Orenstein, Gal; Pedatzur, Oren; Uzan, Ayelet J.; Bruner, Barry D.; Mairesse, Yann; Dudovich, Nirit

    2017-05-01

    Strong-field ionization followed by recollision provides a unique pump-probe measurement which reveals a range of electronic processes, combining sub-Angstrom spatial and attosecond temporal resolution. A major limitation of this approach is imposed by the coupling between the spatial and temporal degrees of freedom. In this paper we focus on the study of high harmonic generation and demonstrate the ability to isolate the internal dynamics—decoupling the temporal information from the spatial one. By applying an in situ approach we reveal the universality of the intrinsic pump-probe measurement and establish its validity in molecular systems. When several orbitals are involved we identify the fingerprint of the transition from the single-channel case into the multiple-channel dynamics, where complex multielectron phenomena are expected to be observed.

  1. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  2. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  3. Observation of resonant symmetry lifting by an effective bias field in a parametrically modulated atomic trap

    International Nuclear Information System (INIS)

    Kim, Yonghee; Heo, Myoung-Sun; Moon, Geol; Kim, Ji-Hyoun; Jhe, Wonho; Noh, Heung-Ryoul

    2010-01-01

    We experimentally demonstrate resonant symmetry lifting in a parametrically modulated magneto-optical trap of cold 85 Rb atoms. This is achieved by applying a weak additional modulation at half the frequency of the strong parametric modulation, which acts as an effective static bias field to the system. We measure the system response by varying the amplitude of the additional fictitious bias as well as the relative phase between the bias and the parametric drive, and the results are in good agreement with theory. The additional modulation provides an additional degree of freedom to control the system, which is useful for investigating system properties such as susceptibility, dynamic response, and related critical phenomena. We also have measured the amplitude of the response to higher harmonics of the additional modulation frequency, which allows more precise understanding of the system dynamics.

  4. Measurement of dipole-moment in atomic transitions under strong external magnetic field

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Kuwako, Akira; Ikehara, Tadashi; Yoshida, Tadashi; Watanabe, Takasi; Yoguchi, Itaru; Suzuki, Kazuhiro.

    1996-01-01

    Obtaining an accurate value of the electric dipole moment μ is essential in the fields of laser application technologies. A direct way of measuring the electric dipole moment μ is to observe the Rabi-oscillation which manifests itself in the coherent photo-excitation behavior of atoms. In the case of the elements which have large angular momenta, identifying the Rabi-oscillation in their excitation behavior becomes rather difficult. We proposed an accurate and straightforward method of determining the electric-dipole moment μ between multi-fold degenerate levels. The point is to remove the degeneracy by applying an external magnetic field with the aid of the Zeeman effect and, then, to realize a degeneration free coherent excitation. As a result, we can observe the Rabi-oscillations explicitly in the excitation υs. laser-fluence curves. The present method provides a reliable basis of experimental determination of μ. As an example, we applied the present method to a transition to 0-17,362 cm -1 level in uranium and obtained the value μ=0.86±0.06 (Debye). (author)

  5. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  6. Report of workshop on vibration related to fluid in atomic energy field. 4

    International Nuclear Information System (INIS)

    1993-01-01

    This is the fourth workshop on the vibration related to fluid in atomic energy field of Yayoi research group. This time, two topics were taken up. One is edgetone phenomena and the liquid surface vibration phenomena due to flow. Another is the introduction of the experience in light water reactors. The workshop was held on August 30 and 31, 1993 at Nuclear Engineering Research Laboratory, University of Tokyo. At the workshop, lectures were given on the mechanism of occurrence of edgetone, the theoretical analysis of edgetone and edgenoise, the self-excited vibration of free liquid surface due to vertical plane jet and vertical cylindrical jet, the research on flow instability phenomena in parallel loop system, the irregular vibration behavior of U-shaped tubes excited by flow, the research on the vibration of cyclindrical weir due to fluid discharge, the examples of the vibration related to fluid in LWRs, the estimation of fatigue phenomena in bearing rings, the vibration of rotary vanes and verifying test, the analysis of flow in isolated phase bus plate vane and the measurement of velocity distribution, flow in piping and the behavior of valve vibration, the condition for the occurrence of flow vibration in the main steam separation valve of BWR, the vibration of piping due to orifice, the analysis of flow in two-dimensional vibrating cascade, and the subjects of fluid vibration assessment in atomic energy. (K.I.)

  7. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  8. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  9. Measurement of strong interaction effects in antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Davies, J.D.; Gorringe, T.P.; Lowe, J.; Nelson, J.M.; Playfer, S.M.; Pyle, G.J.; Squier, G.T.A.

    1984-01-01

    The strong interaction shift and width for the 2 p level and the width for the 3d level have been measured for antiprotonic helium atoms. The results are compared with optical model calculations. The possible existence of strongly bound antiproton states in nuclei is discussed. (orig.)

  10. Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field

    Science.gov (United States)

    Faghihi, M. J.; Tavassoly, M. K.; Bagheri Harouni, M.

    2014-04-01

    In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field-field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately.

  11. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    emission from H 2 by fast ion impact; Fast electron ejection in slow and intermediate velocity ion-atom collisions: Fermi-shuttle type pingpong games in single ionization; Fragmentation of biologically relevant molecules in collisions with ions; Guiding of highly charged ions through insulating nanocapillaries; Theoretical description of the atomic collision processes. Summary: We hope that the present selection provides the reader with a flavor of the atomic collision physics research performed in our Section. It is seen that we have a strong interest in fundamental processes. It is also seen that the research work in the field is developing from the basic study of simple systems to different directions. One of them goes towards a deeper understanding of simple systems and fundamental processes. The other direction is the analysis of complex, sometimes strange phenomena, up to the study of mesoscopic effects governed by atomic collision processes. Moreover, new experimental facilities and possibilities (e.g., the availability of antiparticles) are always a challenge to start into a new direction. Finally, as our community gets better equipped for handling complex problems, we are turning to study systems, which are related to applied sciences and direct applications. We believe that these are all natural ways to find the future of the field of atomic collision physics.

  12. Random walks, critical phenomena, and triviality in quantum field theory

    International Nuclear Information System (INIS)

    Fernandez, R.; Froehlich, J.; Sokal, A.D.

    1992-01-01

    The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)

  13. Electromagnetic processes in strong crystalline fields - NA63 Status Report

    CERN Document Server

    Ugerhoj, Ulrik

    2009-01-01

    Results obtained in the framework of the NA63 experiment cite{Ande05} at CERN are reported. Analysis of the trident production in the strong crystalline fields of single Ge crystals is completed. Yields in the random ('amorphous') orientation are in good agreement with calculations, and in the aligned case the production is enhanced by about a factor 3 compared to a Ge amorphous material. Results on the formation lengths of several microns for the production of GeV photons from ultrarelativistic electrons have been published. In 2008 we performed a measurement of resonance phenomena in structured targets and studied a possible change in restricted energy loss in thin solid state detectors, for sufficiently high values of the Lorentz factor. The plans for 2009 are to study the 'semi-bare electron' from radiation emission in thin targets and to study the spin-flip mechanisms in radiation emission, relevant for beamstrahlung phenomena in future linear colliders such as CLIC.

  14. Kaonic atoms – studies of the strong interaction with strangeness

    Directory of Open Access Journals (Sweden)

    Marton J.

    2014-01-01

    Full Text Available The strong interaction of charged antikaons (K− with nucleons and nuclei in the low-energy regime is a fascinating topic. The antikaon plays a peculiar role in hadron physics due to the strong attraction antikaon-nucleon which is a key question for possible kaonic nuclear bound states. A rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions to low-lying states in light kaonic atoms like kaonic hydrogen and deuterium. After the successful completion of precision measurements on kaonic hydrogen and helium isotopes by SIDDHARTA at DAΦNE/LNF, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2. In the future with kaonic deuterium data the antikaon-nucleon isospin-dependent scattering lengths can be extracted for the first time. An overview of the experimental results of SIDDHARTA and an outlook to future perspectives in the SIDDHARTA2 experiments in this frontier research field will be given.

  15. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  16. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  17. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  18. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment.

    Science.gov (United States)

    Azoury, Doron; Krüger, Michael; Orenstein, Gal; Larsson, Henrik R; Bauch, Sebastian; Bruner, Barry D; Dudovich, Nirit

    2017-11-13

    Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

  19. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  20. Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field

    International Nuclear Information System (INIS)

    Faghihi, M J; Tavassoly, M K; Bagheri Harouni, M

    2014-01-01

    In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field–field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes–Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately. (paper)

  1. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2016-01-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  2. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  3. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  4. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  5. Evolution of the field quantum entropy and entanglement in a system of multimode light field interacting resonantly with a two-level atom through N_j-degenerate N~Σ-photon process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by de-generating the multi-photon process is studied by utilizing the Von Neumann re-duced entropy theory,and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field inter-acting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number,the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is,the weaker the entanglement between the quan-tum field and the atom will be,and when the field is strong enough,the two sub-systems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle,namely,the quantum field and the two-level atom are always in the entangled state,and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic dis-tribution angle is,the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.

  6. Magnetic-field-dependent slow light in strontium atom-cavity system

    Science.gov (United States)

    Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying

    2018-03-01

    Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.

  7. The dynamics of coupled atom and field assisted by continuous external pumping

    International Nuclear Information System (INIS)

    Burlak, G.; Hernandez, J.A.; Starostenko, O.

    2006-01-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  8. The dynamics of coupled atom and field assisted by continuous external pumping

    Energy Technology Data Exchange (ETDEWEB)

    Burlak, G.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma de Morelos, Cuernavaca, Morelos (Mexico); Starostenko, O. [Departamento de Fisica, Electronica, Sistemas y Mecatronica, Universidad de las Americas, 72820 Puebla (Mexico)

    2006-07-01

    The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)

  9. Hydrogen atom in a uniform electromagnetic field as an anharmonic oscillator

    International Nuclear Information System (INIS)

    Kibler, M.; Negadi, T.

    1984-01-01

    This work establishes, by means of the Kustaanheimo-Stiefel transformation, a connection between two branches of theoretical physics which are, in present times, the object of numerous studies: the quantum mechanics of anharmonic oscillators and of the hydrogen atom in a (strong) homogeneous and constant electromagnetic field

  10. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  11. Motion of guiding center drift atoms in the electric and magnetic field of a Penning trap

    International Nuclear Information System (INIS)

    Kuzmin, S.G.; O'Neil, T.M.

    2005-01-01

    The ApparaTus for High precision Experiment on Neutral Antimatter and antihydrogen TRAP collaborations have produced antihydrogen atoms by recombination in a cryogenic antiproton-positron plasma. This paper discusses the motion of the weakly bound atoms in the electric and magnetic field of the plasma and trap. The effective electric field in the moving frame of the atom polarizes the atom, and then gradients in the field exert a force on the atom. An approximate equation of motion for the atom center of mass is obtained by averaging over the rapid internal dynamics of the atom. The only remnant of the atom internal dynamics that enters this equation is the polarizability for the atom. This coefficient is evaluated for the weakly bound and strongly magnetized (guiding center drift) atoms understood to be produced in the antihydrogen experiments. Application of the approximate equation of motion shows that the atoms can be trapped radially in the large space charge field near the edge of the positron column. Also, an example is presented for which there is full three-dimensional trapping, not just radial trapping. Even untrapped atoms follow curved trajectories, and such trajectories are discussed for the important class of atoms that reach a field ionization diagnostic. Finally, the critical field for ionization is determined as an upper bound on the range of applicability of the theory

  12. Information entropy properties of the atoms in the system of coupled Λ-type three-level atoms interacting with coherent field in Kerr medium

    International Nuclear Information System (INIS)

    Li Ke; Ling Weijun

    2011-01-01

    The information entropy properties of the atoms of coupled Λ-type three-level atoms interacting with coherent field are studied by means of quantum theory, and discussed the time evolutions of the information entropy of the atoms via the average photon number, initial state of the atoms, detuning, coupling constant between the atoms and the coefficient of Kerr medium. Numerical calculation results show that the time evolutions of the information entropy properties of the atoms strongly dependent on the initial state of the system and the average photon number. Detuning, coupling constant between the atoms and the Kerr coefficient still make influence on the information entropy of the atoms. (authors)

  13. Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

    Science.gov (United States)

    Herchig, Ryan Christopher

    Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first

  14. Semi-classical description of Rydberg atoms in strong, single-cycle electromagnetic pulses

    International Nuclear Information System (INIS)

    Jensen, R.V.; Sanders, M.M.

    1993-01-01

    Recent experimental measurements of the excitation and ionization of Rydberg atoms by single-cycle, electromagnetic pulses have revealed a variety of novel features. Because many quantum states are strongly coupled by the broadband radiation in the short pulse, the traditional methods of quantum mechanics are inadequate to account for the experimental results. We have therefore developed a semi-classical description of the interaction of both hydrogenic and non-hydrogenic atoms with single-cycle pulses of intense, electromagnetic radiation which is based on the strong correspondence theory of Percival and Richards. This theory, which was originally introduced for the description of strong atomic collisions, accounts for some of the surprising features of the experimental measurements and provides new predictions for future experimental studies

  15. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  16. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  17. Atomic phenomena in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination

  18. Computation of the Arnol close-quote d web for the hydrogen atom in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    von Milczewski, J.; Diercksen, G.H.; Uzer, T.

    1996-01-01

    A Rydberg atom placed in crossed static electric and magnetic fields is presented as a new testbed for phenomena not possible in two degrees of freedom. We compute the Arnol close-quote d web for this system and explore the time scale and the physical consequences of diffusion along this web. copyright 1996 The American Physical Society

  19. Atomic Interference in Standing Wave Fields

    National Research Council Canada - National Science Library

    Berman, Paul

    2001-01-01

    ... on (i) a conical lens that can he used to focus atoms to a single spot, (ii) a multi-color field geometry that can be used to produce high-harmonic, sinusoidal, spatial matter gratings in a single atomic-field interaction zone, (iii...

  20. 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields

    CERN Document Server

    Joachain, Charles; Martellucci, Sergio; Chester, Arthur; Atoms, Solids and Plasmas in Super-intense Laser Fields "Ettore Majorana"

    2000-01-01

    The recent developement of high power lasers, delivering femtosecond pulses of 20 2 intensities up to 10 W/cm , has led to the discovery of new phenomena in laser interactions with matter. At these enormous laser intensities, atoms, and molecules are exposed to extreme conditions and new phenomena occur, such as the very rapid multi photon ionization of atomic systems, the emission by these systems of very high order harmonics of the exciting laser light, the Coulomb explosion of molecules, and the acceleration of electrons close to the velocity of light. These phenomena generate new behaviour of bulk matter in intense laser fields, with great potential for wide ranging applications which include the study of ultra-fast processes, the development of high-frequency lasers, and the investigation of the properties of plasmas and condensed matter under extreme conditions of temperature and pressure. In particular, the concept of the "fast ignitor" approach to inertial confinement fusion (ICF) has been p...

  1. Weak-field asymptotic theory of tunneling ionization: benchmark analytical results for two-electron atoms

    International Nuclear Information System (INIS)

    Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I

    2015-01-01

    The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)

  2. Atomic physics and quantum optics using superconducting circuits.

    Science.gov (United States)

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  3. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  4. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  5. Measurements of sub photon cavity fields by atom interferometry; Mesures de champs au niveau du photon par interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Nussenzveig, P

    1994-07-15

    Two neighbouring levels of a Rydberg atom coupled to a high quality-factor microwave cavity are an excellent tool for the study of matter-wave interactions at the most basic level. The system is so simple (a two-level atom coupled to a single mode of the field) that most phenomena can be described analytically. In this work we study dispersive effects of the non-resonant atom-cavity interaction. We have measured the linear dependence of the atomic energy level-shifts on the average photon number in the cavity. Light shifts induced by an average microwave field intensity weaker than a single photon have been observed. It has also been possible to measure the residual shift of one of the two levels of the atomic transition in the absence of an injected field: a Lamb shift due to a single mode of the field. A sensitive measurement of these energy shifts is performed by an interferometric method: the Ramsey separated oscillatory fields technique. Future experiments, in a situation of very weak field relaxation, are proposed. The quantum behavior of the field will then be dominant and it shall be possible to perform a Quantum Non-Demolition measurement of the photon number: since the interaction is non-resonant, the atoms can neither absorb nor emit photons in the cavity. The performed experiments demonstrate the sensitivity of the apparatus and set the stage for future non-demolition measurements and for the study of 'mesoscopic' Schroedinger cat states of the field, on the boundary between classical and quantum worlds. (author)

  6. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St

    2004-09-01

    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  7. Multidimensional and interference effects in atom trapping by a cavity field

    International Nuclear Information System (INIS)

    Vukics, A; Domokos, P; Ritsch, H

    2004-01-01

    We study the trapping of a driven two-level atom in a strongly coupled single-mode cavity field. The cavity can significantly enhance the cooling in the direction perpendicular to the cavity axis and thus the standard Doppler-cooling scheme together with a transverse high-finesse resonator yields long trapping times up to the range of seconds. By the addition of a weak cavity pump, trapping can be achieved in the direction of the cavity axis as well. The system is sensitive to the relative phase of the atomic and cavity pumps due to the interference of the fields injected and scattered into the cavity mode. Variation of the phase difference leads to a switching between two possible trap positions along the cavity axis

  8. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    International Nuclear Information System (INIS)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-01-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials

  9. Generation of a strong attosecond pulse train with an orthogonally polarized two-color laser field

    International Nuclear Information System (INIS)

    Kim, Chul Min; Kim, I Jong; Nam, Chang Hee

    2005-01-01

    We theoretically investigate the high-order harmonic generation from a neon atom irradiated by an intense two-color femtosecond laser pulse, in which the fundamental field and its second harmonic are linearly polarized and orthogonal to each other. In contrast to usual high-harmonic generation with linearly polarized fundamental field alone, a very strong and clean high-harmonic spectrum, consisting of both odd and even orders of harmonics, can be generated in the orthogonally polarized two-color laser field with proper selection of the relative phase between the fundamental and second-harmonic fields. In time domain, this results in a strong and regular attosecond pulse train. The origin of these behaviors is elucidated by analyzing semiclassical electron paths and by simulating high-harmonic generation quantum mechanically

  10. Stimulated adiabatic passage in a dissipative ensemble of atoms with strong Rydberg-state interactions

    DEFF Research Database (Denmark)

    Petrosyan, David; Molmer, Klaus

    2013-01-01

    We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg exci...... for deterministic creation and, possibly, extraction of Rydberg atoms or ions one at a time. The sympathetic monitoring via decay of ancilla particles may find wider applications for state preparation and probing of interactions in dissipative many-body systems.......We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg...

  11. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  12. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    Science.gov (United States)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  13. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  14. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Priyesh, K. V.; Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin (India)

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  15. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  16. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  17. Light-induced gauge fields for ultracold atoms

    Science.gov (United States)

    Goldman, N.; Juzeliūnas, G.; Öhberg, P.; Spielman, I. B.

    2014-12-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

  18. Light-induced gauge fields for ultracold atoms

    International Nuclear Information System (INIS)

    Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B

    2014-01-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. (review article)

  19. Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?

    Science.gov (United States)

    Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2018-05-01

    Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.

  20. Dynamics of Rydberg atom lattices in the presence of noise and dissipation

    International Nuclear Information System (INIS)

    Abdussalam, Wildan

    2017-01-01

    The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we compare between global and local noise and explore their effect on the number of excitations and the full counting statistics. We find that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg atom lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase. We identify the advantages of Monte Carlo rate equations over mean field predictions. Having studied the dynamics of Rydberg atom lattices, we study an application of the strong interactions in such systems for quantum information processing. We investigate the coherent exchange of a single photon between a superconducting microwave cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric field fluctuations plaguing the cavity surface. We show that despite the increased sensitivity of Rydberg states to

  1. Dynamics of Rydberg atom lattices in the presence of noise and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Abdussalam, Wildan

    2017-08-07

    The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we compare between global and local noise and explore their effect on the number of excitations and the full counting statistics. We find that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg atom lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase. We identify the advantages of Monte Carlo rate equations over mean field predictions. Having studied the dynamics of Rydberg atom lattices, we study an application of the strong interactions in such systems for quantum information processing. We investigate the coherent exchange of a single photon between a superconducting microwave cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric field fluctuations plaguing the cavity surface. We show that despite the increased sensitivity of Rydberg states to

  2. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  3. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    Science.gov (United States)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  4. Quantum averaging and resonances: two-level atom in a one-mode classical laser field

    Directory of Open Access Journals (Sweden)

    M. Amniat-Talab

    2007-06-01

    Full Text Available   We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.

  5. Energy Levels and Spectral Lines of Li Atoms in White Dwarf Strength Magnetic Fields

    Science.gov (United States)

    Zhao, L. B.

    2018-04-01

    A theoretical approach based on B-splines has been developed to calculate atomic structures and discrete spectra of Li atoms in a strong magnetic field typical of magnetic white dwarf stars. Energy levels are presented for 20 electronic states with the symmetries 20+, 20‑, 2(‑1)+, 2(‑1)‑, and 2(‑2)+. The magnetic field strengths involved range from 0 to 2350 MG. The wavelengths and oscillator strengths for the electric dipole transitions relevant to these magnetized atomic states are reported. The current results are compared to the limited theoretical data in the literature. A good agreement has been found for the lower energy levels, but a significant discrepancy is clearly visible for the higher energy levels. The existing discrepancies of the wavelengths and oscillator strengths are also discussed. Our investigation shows that the spectrum data of magnetized Li atoms previously published are obviously far from meeting requirements of analyzing discrete atomic spectra of magnetic white dwarfs with lithium atmospheres.

  6. Health physics manpower in the atomic energy field, 1968-2000

    International Nuclear Information System (INIS)

    Baker, J.G.

    1978-01-01

    The structure of employment, historical trends and projections, of health physics workers in the atomic energy field is examined using U.S. Bureau of Labor Statistics survey data. During the 1968 to 1975 period atomic energy field employment has grown at a rate of 4.6% annually, compared to a rate of 1.8% for the U.S. economy. The majority of the growth has been concentrated in the private sector, while government-owned contractor-operated employment declined from 1968 through 1973. Data indicated that growth in the private sector is strongly correlated to growth in nuclear megawatt capacity. The recent revisions in projected generation capacity have depressed considerably the growth in future health physics worker demand. Using the most recent estimates of future capacity, health physics professional requirements in the field are expected to grow at a rate of 7.0% and technician requirements at a rate of 7.4% annually for the period 1975-1985. These results compare favourably with other published studies, all of which project faster growth for technicians than for professionals. (author)

  7. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  8. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  9. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  10. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  11. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  12. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  13. Experimentally attainable example of chaotic tunneling: The hydrogen atom in parallel static electric and magnetic fields

    International Nuclear Information System (INIS)

    Delande, Dominique; Zakrzewski, Jakub

    2003-01-01

    Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic example: a hydrogen atom placed in parallel, uniform, static electric, and magnetic fields, where tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the latter case, a simple model based on random matrix theory gives the correct distribution

  14. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  15. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  16. Collisional ionization of Na by HBr in weak to strong electric fields

    International Nuclear Information System (INIS)

    Safinya, K.A.; Gallagher, T.F.; Sandner, W.; Gounand, F.

    1985-01-01

    We report the effect of static electric fields on the collisional ionization of highly excited sodium atoms by HBr. The binding energy dependence of the collisional ionization cross section is measured at zero field and in static electric fields up to that point at which the atom field ionizes. The applied electric field lowers the ionization threshold of the atom from its zero field value. Therefore an atom near the ionization threshold in an electric field is of smaller size than a free field atom with the same binding energy. Thus measuring the binding energy dependence of the cross section at different values of the electric field allows us to study the effects of the physical size of the atom on the cross section. The effect of the electric field was to lower the measured ionization cross section. However, the binding energy dependence of the cross section remains unchanged at the level of our measurement accuracy. The measured cross sections are larger for larger atoms, exhibit a drop with increasing binding energy characteristic of rotational to electronic excitation transfer, and are of order 10 -12 --10 -11 cm 2 . A simple calculation based on dipole (J→ J-1) excitation transfer from the molecule to the atom predicts, with good agreement, the binding energy dependence of the cross section. The electric field dependence of the data however, is not shown in the theory

  17. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  18. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  19. Collapse and Revival of an Atomic Beam Interacting with a Coherent State Light Field

    International Nuclear Information System (INIS)

    Ben, Li; Jing-Biao, Chen

    2009-01-01

    We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly et al. [Phys. Rev. Lett. 44 (1980) 1323] are presented in the case of the evolution with time of the population inversion. Here, we study the evolution with coupling strength of population inversion. We define the collapse and revival coupling strengths as characteristic parameters to describe the above collapse and revival. Furthermore, we present the analytic formulas for the population inversion, the collapse and revival coupling strengths

  20. Notes from the Nordic Spring Symposium on atomic inner shell phenomena

    International Nuclear Information System (INIS)

    Hansteen, J.M.; Gundersen, R.

    1978-01-01

    The purpose of the symposium was to bring together scientists from those various fields of physics that involve atomic inner shell processes. Vol. 2 contains the submitted complete lecture notes in chronological order. (JIW)

  1. Rydberg-atom formation in strongly correlated ultracold plasmas

    International Nuclear Information System (INIS)

    Bannasch, G.; Pohl, T.

    2011-01-01

    In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong ∼T -9/2 scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T→0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.

  2. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  4. Strong Anderson localization in cold atom quantum quenches

    OpenAIRE

    Micklitz, T.; Müller, C. A.; Altland, A.

    2013-01-01

    Signatures of strong Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi one-dimensional cloud initially prepared in a well defined momentum state, and expanding for some time in a disorder speckle potential. Anderson localization leads to a formation of a coherence peak in the \\emph{forward} scattering direction (as opposed to the common weak localization backscattering peak). We present a microscopic, and fully time...

  5. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  6. General properties of quantum optical systems in a strong field limit

    Science.gov (United States)

    Chumakov, S. M.; Klimov, Andrei B.

    1994-01-01

    We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.

  7. Phase transitions and pairing signature in strongly attractive Fermi atomic gases

    International Nuclear Information System (INIS)

    Guan, X. W.; Bortz, M.; Batchelor, M. T.; Lee, C.

    2007-01-01

    We investigate pairing and quantum phase transitions in the one-dimensional two-component Fermi atomic gas in an external field. The phase diagram, critical fields, magnetization, and local pairing correlation are obtained analytically via the exact thermodynamic Bethe ansatz solution. At zero temperature, bound pairs of fermions with opposite spin states form a singlet ground state when the external field H c1 . A completely ferromagnetic phase without pairing occurs when the external field H>H c2 . In the region H c1 c2 , we observe a mixed phase of matter in which paired and unpaired atoms coexist. The phase diagram is reminiscent of that of type II superconductors. For temperatures below the degenerate temperature and in the absence of an external field, the bound pairs of fermions form hard-core bosons obeying generalized exclusion statistics

  8. Interaction of an atom subject to an intense laser field with its own radiation field and nonlocality of electromagnetic interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R Kh; Mutygullina, A A

    2009-01-01

    We discuss the interaction of an atom subject to an intense driving laser field with its own radiation field. In contrast to the states of bare atoms, the energy difference between some dressed states with the same total angular momentum, its projection and parity may be very small. The self-interaction of a combined atom-laser system associated with nonradiative transitions between such states is effectively strong. We show that the contribution to the radiative shift of the sidebands of the Mollow spectrum, which comes from such processes, is very significant and may be much larger than the trivial Lamb shift, which is the simple redistribution of the Lamb shifts of the corresponding bare states. In the final part, we discuss the possibility that in the Mollow spectrum nonlocality of electromagnetic interaction, which in other cases is hidden in the regularization and renormalization procedures, can manifest itself explicitly.

  9. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  10. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  11. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  12. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  13. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  14. Cavity electromagnetically induced transparency with Rydberg atoms

    Science.gov (United States)

    Bakar Ali, Abu; Ziauddin

    2018-02-01

    Cavity electromagnetically induced transparency (EIT) is revisited via the input probe field intensity. A strongly interacting Rydberg atomic medium ensemble is considered in a cavity, where atoms behave as superatoms (SAs) under the dipole blockade mechanism. Each atom in the strongly interacting Rydberg atomic medium (87 Rb) follows a three-level cascade atomic configuration. A strong control and weak probe field are employed in the cavity with the ensemble of Rydberg atoms. The features of the reflected and transmitted probe light are studied under the influence of the input probe field intensity. A transparency peak (cavity EIT) is revealed at a resonance condition for small values of input probe field intensity. The manipulation of the cavity EIT is reported by tuning the strength of the input probe field intensity. Further, the phase and group delay of the transmitted and reflected probe light are studied. It is found that group delay and phase in the reflected light are negative, while for the transmitted light they are positive. The magnitude control of group delay in the transmitted and reflected light is investigated via the input probe field intensity.

  15. The behaviour of hydrogen-like atoms in an intense long-wave field

    International Nuclear Information System (INIS)

    Brodsky, A.M.

    1979-01-01

    The equations, which permit the calculation by means of regular operations of multiphoton photoionisation cross sections and the dynamic polarisabilities in an intense classical long-wave electromagnetic field, are considered for a hydrogen atom. The calculations have been performed for a circularly polarised field. A quantitative expression has been derived for the Lamb shift analogue, which can be verified experimentally. Within the framework of the problem the interaction at small distances is self-compensated and reduced to a constant potential. This conclusion is of general interest for the theory of strong interactions. (author)

  16. Study on the fine control of atoms by coherent interaction

    International Nuclear Information System (INIS)

    Han, Jae Min; Rho, S. P.; Park, H. M.; Lee, K. S.; Rhee, Y. J.; Yi, J. H.; Jeong, D. Y.; Ko, K. H.; Lee, J. M.; Kim, M.K.

    2000-01-01

    Study on one dimensional atom cooling and trapping process which is basic to the development of atom manipulation technology has been performed. A Zeeman slower has been designed and manufactured for efficient cooling of atoms. The speed of atoms finally achieved is as slow as 15 m/s with proper cooling conditions. By six circularly-polarized laser beams and quadrupole magnetic field, the atoms which have been slowed down by zeeman slower have been trapped in a small spatial region inside MOT. The higher the intensity of the slowing laser is the more is the number of atoms slowed and the maximum number of atoms trapped has been 10 8 . The atoms of several tens of μK degree have been trapped by controlling the intensity of trapping laser and intensity gradient of magnetic field. EIT phenomena caused by atomic coherent interaction has been studied for the development of atom optical elements. For the investigation of the focusing phenomena induced by the coherent interaction, experimental measurements and theoretical analysis have been performed. Spatial dependency of spectrum and double distribution signal of coupling laser have been obtained. The deflection of laser beams utilizing the EIT effects has also been considered. (author)

  17. Mean-field energy-level shifts and dielectric properties of strongly polarized Rydberg gases

    OpenAIRE

    Zhelyazkova, V.; Jirschik, R.; Hogan, S. D.

    2016-01-01

    Mean-field energy-level shifts arising as a result of strong electrostatic dipole interactions within dilute gases of polarized helium Rydberg atoms have been probed by microwave spectroscopy. The Rydberg states studied had principal quantum numbers n=70 and 72, and electric dipole moments of up to 14 050 D, and were prepared in pulsed supersonic beams at particle number densities on the order of 108 cm−3. Comparisons of the experimental data with the results of Monte Carlo calculations highl...

  18. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  19. Spectral properties of a V-type three-level atom driven by two bichromatic fields

    International Nuclear Information System (INIS)

    Li Peng; Nakajima, Takashi; Ning Xijing

    2006-01-01

    We theoretically investigate the spectral properties of a V-type three-level atom driven by two bichromatic fields with a common frequency difference. By decomposing the master equation using harmonic expansions and invoking quantum regression theorem, fluorescence and probe absorption spectra of the strong atomic transition are numerically calculated under the steady state condition. We find that both fluorescence and absorption spectra exhibit two interesting features, which are equidistant comblike structures and phase-dependent line splittings. In the comblike structures, each fluorescence peak can be made subnatural by manipulating the relative intensities of the coupling fields, while for the absorption lines only the central peak can be narrowed. Line splittings are induced by the relative phase delay between the envelopes of the amplitudes of the two bichromatic fields. Interestingly, we find that the manipulation of the relative phase delay results in the emergence of sharp subnatural dips in the absorption spectra. As a natural consequence of the subnatural absorption dips, absorption spectra in atomic vapors exhibit striking subnatural burning holes for the counterpropagating probe beam geometry

  20. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  1. Atom-field dressed states in slow-light waveguide QED

    Science.gov (United States)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  2. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    Science.gov (United States)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  3. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  4. Strong-field ionization of linear molecules by a bicircular laser field: Symmetry considerations

    Science.gov (United States)

    Gazibegović-Busuladžić, A.; Busuladžić, M.; Hasović, E.; Becker, W.; Milošević, D. B.

    2018-04-01

    Using the improved molecular strong-field approximation, we investigate (high-order) above-threshold ionization [(H)ATI] of various linear polyatomic molecules by a two-color laser field of frequencies r ω and s ω (with integer numbers r and s ) having coplanar counter-rotating circularly polarized components (a so-called bicircular field). Reflection and rotational symmetries for molecules aligned in the laser-field polarization plane, analyzed for diatomic homonuclear molecules in Phys. Rev. A 95, 033411 (2017), 10.1103/PhysRevA.95.033411, are now considered for diatomic heteronuclear molecules and symmetric and asymmetric linear triatomic molecules. There are additional rotational symmetries for (H)ATI spectra of symmetric linear molecules compared to (H)ATI spectra of the asymmetric ones. It is shown that these symmetries manifest themselves differently for r +s odd and r +s even. For example, HATI spectra for symmetric molecules with r +s even obey inversion symmetry. For ATI spectra of linear molecules, reflection symmetry appears only for certain molecular orientation angles ±90∘-j r 180∘/(r +s ) (j integer). For symmetric linear molecules, reflection symmetry appears also for the angles -j r 180∘/(r +s ) . For perpendicular orientation of molecules with respect to the laser-field polarization plane, the HATI spectra are very similar to those of the atomic targets, i.e., both spectra are characterized by the same type of the (r +s )-fold symmetry.

  5. Atomic hydrogen storage method and apparatus

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  6. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  7. Light-induced atomic desorption and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Burchianti, A; Bogi, A; Marinelli, C; Mariotti, E; Moi, L [CNISM and Physics Department, University of Siena, 53100 Siena (Italy)], E-mail: burchianti@unisi.it

    2009-07-15

    We review some recent studies on light-induced atomic desorption (LIAD) from dielectric surfaces. Alkali-metal atoms adsorbed either on organic films or on porous glass are released into the vapor phase under illumination. The measurements were performed in Pyrex resonance cells either coated with siloxane films or containing a porous glass sample. In both cases, the experimental results show that LIAD can be used to produce atomic densities suitable for most atomic physics experiments. Moreover, we find that photoinduced effects, correlated with LIAD, produce reversible formation and evaporation of alkali-metal clusters in porous glass. These processes depend on the light frequency, making the porous glass transmittance controllable by light.

  8. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    Science.gov (United States)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  9. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    International Nuclear Information System (INIS)

    Yuan, MingHu; Xin, PeiPei; Liu, HongPing; Chu, TianShu

    2017-01-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system. (paper)

  10. Light localization in cold and dense atomic ensemble

    International Nuclear Information System (INIS)

    Sokolov, Igor

    2017-01-01

    We report on results of theoretical analysis of possibilities of light strong (Anderson) localization in a cold atomic ensemble. We predict appearance of localization in dense atomic systems in strong magnetic field. We prove that in absence of the field the light localization is impossible. (paper)

  11. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  12. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  13. Nonperturbative theory of single/multiphoton processes in atoms and molecules induced by intense laser fields

    International Nuclear Information System (INIS)

    Lau, A.M.F.

    1975-04-01

    A quantum nonperturbative theory is given for the problem of a general n discrete-level atomic/molecular system interacting with a strong single-mode/multimode radiation field. The atomic/molecular energy-level structures are modified due to interaction with the laser field. These energy level shifts are derived in the rigorous solution to the adiabatic eigenvalue problem of the charge--field system, involving a simple iterative procedure. The task of solution is simplified by recurrence relations between matrices connecting probability amplitudes of successive photon numbers. New formulae for calculating probability of single/multiphoton transitions between three resonant shifted levels and between some cases of two near-resonant shifted levels are derived. This general formalism can be applied to calculate transition probabilities of various atomic/molecular photo processes of interest. Numerical values are obtained for the inelastic cross section of the slow-collisional process Li + H and for dissociation cross section of LiH molecule. The transition probabilities of Na (3s → 5s by absorption of two photon of lambda = 0.60233μ -- 0.602396 μ) and of Li (2s → 3s by absorption of eight photons of lambda = 2.9406 μ -- 2.945 μ) irradiated by a strong pulse are calculated. Finally, a parametric study is carried out for the process where a molecular system is interacting with two intense radiation fields of different wavelengths. Owing to potential barrier shift due to the much more intense field, the molecular system penetrates into an otherwise inaccessible region in the potential level where it is allowed to radiate to a lower level by emitting photons at a second wavelength. (12 figures, 6 tables) (U.S.)

  14. Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

    Directory of Open Access Journals (Sweden)

    Luis Amilca Andrade-Morales

    2016-09-01

    Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.

  15. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions

    Science.gov (United States)

    Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.

    2018-02-01

    Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.

  16. Prediction of transport phenomena in near and far field: interaction solid phase/fluid phase

    International Nuclear Information System (INIS)

    Mingarro, E.

    1995-01-01

    The prediction of transport phenomena in near and far field is presented in the present report. The study begins with the analysis of solid phases stability: solubility of storage waste: UO 2 and solubility of radionuclides the redox and sorption-desorption conditions are the last aspects studied to predict the transport phenomena

  17. Strong Anderson localization in cold atom quantum quenches.

    Science.gov (United States)

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  18. Fundamentals of tribology at the atomic level

    Science.gov (United States)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  19. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  20. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  1. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  2. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  3. Research on evaluation of coupled thermo-hydro-mechanical phenomena in the near-field

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Imai, Hisashi; Fukutome, Kazuhito; Kayukawa, Koji; Sasaki, Hajime; Moro, Yoshiji

    2004-02-01

    After emplacement of the engineered barrier system (EBS), it is expected that the near-field environment will be impacted by phenomena such as heat dissipation by conduction and other heat transfer mechanisms, infiltration of groundwater from the surrounding rock in the engineered barrier system, stress imposed by the overburden pressure and generation of swelling pressure in the buffer due to water infiltration. In order to recognize and evaluate these coupled thermo-hydro-mechanical (THM) phenomena, it is necessary to make a confidence of the mathematical models and computer codes. Evaluating these coupled THM phenomena is important in order to clarify the initial transient behavior of the EBS within the near field. DECOVALEX project is an international co-operative project for the DEvelopment of COupled models and their VALidation against EXperiments in nuclear waste isolation and it is significance to participate this project and to apply the code for the validation. Therefore, we tried to apply the developed numerical code against the subjects of DECOVALEX. We carried out the simulation against the Task 1 (simulation of FEBEX in-situ full-scale experiment), Task 3 BMT1 (Bench Mark Test against the near field coupling phenomena) and Task 3 BMT2 (Bench Mark Test against the up-scaling of fractured rock mass). This report shows the simulation results against these tasks. Furthermore, technical investigations about the in-situ full-scale experiment (called Prototype Repository Project) in Aespoe HRL facility by SKB of Sweden were performed. In order to evaluate the coupled phenomena in the engineered barrier, we use the new swelling model based on the theoretical approach. In this paper, we introduce the modeling approach and applicability about the new model. (author)

  4. Lasing by driven atoms-cavity system in collective strong coupling regime.

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  5. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    Science.gov (United States)

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  6. Multiphoton processes for atoms in intense electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.A.; Abdallah, J.; Csanak, G.

    1995-12-31

    Lasers from table-top to giant ICF facilities that produce intense electromagnetic fields (10{sup 14}-10{sup 21} W/cm{sup 2}) have become important tools in probing the intricate nature of matter-radiation interactions. At such intensities, the laser field equals or exceeds that which binds electrons to an atom or molecule, and a new realm of physics opens in which perturbation theory may no longer suffice. We are developing several sophisticated techniques for treating atoms in such a regime, concentrating on two-photon X-ray absorption in intermediate-weight atoms and on laser-assisted electron-atom collisions. We perform most calculations in a time-independent frame in which field-free scattering formalisms can be invoked. We also investigate time-dependent methods in order to study transient effects. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  7. Theory and applications of atomic and ionic polarizabilities

    International Nuclear Information System (INIS)

    Mitroy, J; Safronova, M S; Clark, Charles W

    2010-01-01

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  8. Theory and applications of atomic and ionic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Mitroy, J [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Safronova, M S [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Clark, Charles W, E-mail: jxm107@rsphysse.anu.edu.a, E-mail: msafrono@udel.ed, E-mail: charles.clark@nist.go [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, MD 20899-8410 (United States)

    2010-10-28

    Atomic polarization phenomena impinge upon a number of areas and processes in physics. The dielectric constant and refractive index of any gas are examples of macroscopic properties that are largely determined by the dipole polarizability. When it comes to microscopic phenomena, the existence of alkaline-earth anions and the recently discovered ability of positrons to bind to many atoms are predominantly due to the polarization interaction. An imperfect knowledge of atomic polarizabilities is presently looming as the largest source of uncertainty in the new generation of optical frequency standards. Accurate polarizabilities for the group I and II atoms and ions of the periodic table have recently become available by a variety of techniques. These include refined many-body perturbation theory and coupled-cluster calculations sometimes combined with precise experimental data for selected transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index measurements in microwave cavities, ab initio calculations of atomic structures using explicitly correlated wavefunctions, interferometry with atom beams and velocity changes of laser cooled atoms induced by an electric field. This review examines existing theoretical methods of determining atomic and ionic polarizabilities, and discusses their relevance to various applications with particular emphasis on cold-atom physics and the metrology of atomic frequency standards. (topical review)

  9. Quantum dynamical phenomena of independent electrons in semiconductor superlattices subject to a uniform electric field

    International Nuclear Information System (INIS)

    Bouchard, A.M.

    1994-01-01

    This report discusses the following topics: Bloch oscillations and other dynamical phenomena of electrons in semiconductor superlattices; solvable dynamical model of an electron in a one-dimensional aperiodic lattice subject to a uniform electric field; and quantum dynamical phenomena of electrons in aperiodic semiconductor superlattices

  10. Electron-atom collisions in a laser field

    International Nuclear Information System (INIS)

    Ehlotzky, F.

    1998-01-01

    The present work is a report on recent progress made in our understanding of electron-atom collisions in a laser field. To some extent it is a continuation of a previous review covering a somewhat larger subject (Can. J. Phys. 63 (1985)). We shall discuss the present status of investigations in this field from the theoretical as well as experimental point of view but most of the report will be devoted to an analysis of the various approximation schemes used at present in this field to describe the different aspects of laser-assisted electron-atom interactions. As the table of contents shows, most of the work done so far is treating the atom as a spectator, described by a potential and only very little has been achieved over the years to include the atomic structure into consideration since the inclusion of these structure effects poses considerable computational problems. Since, for example, multiphoton ionization and its inverse process laser-assisted recombination may be considered as one half of a scattering process, it is quite natural that some of the theoretical techniques described here are also of interest for the treatment of other multiphoton processes not considered here since there are several other recent reviews available on these topics. (orig.)

  11. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  12. Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Qi Chunchao; Chen Aixi

    2006-01-01

    We investigate the features of the spontaneous emission spectra in a coherently driven cold five-level atomic system by means of a radio frequency (rf) or microwave field driving a hyperfine transition within the ground state. It is shown that a few interesting phenomena such as spectral-line narrowing, spectral-line enhancement, spectral-line suppression, and spontaneous emission quenching can be realized by modulating the frequency and intensity of the rf-driving field in our system. In the dressed-state picture of the coupling and rf-driving fields, we find that this coherently driven atomic system has three close-lying levels so that multiple spontaneously generated coherence (SGC) arises. Our considered atomic model can be found in real atoms, such as rubidium or sodium, so a corresponding experiment can be done to observe the expected phenomena related to SGC reported by Fountoulakis et al. [Phys. Rev. A 73, 033811 (2006)], since no rigorous conditions are required

  13. Generalized quantum mean-field systems and their application to ultracold atoms

    International Nuclear Information System (INIS)

    Trimborn-Witthaut, Friederike Annemarie

    2011-01-01

    Strongly interacting many-body systems consisting of a large number of indistinguishable particles play an important role in many areas of physics. Though such systems are hard to deal with theoretically since the dimension of the respective Hilbert space increases exponentially both in the particle number and in the number of system modes. Therefore, approximations are of considerable interest. The mean-field approximation describes the behaviour in the macroscopic limit N→∞, which leads to an effective nonlinear single-particle problem. Although this approximation is widely used, rigorous results on the applicability and especially on finite size corrections are extremely rare. One prominent example of strongly interacting many-body systems are ultracold atoms in optical lattices, which are a major subject of this thesis. Typically these systems consist of a large but well-defined number of particles, such that corrections to the mean-field limit can be systematically studied. This thesis is divided into two parts: In the first part we study generalized quantum mean-field systems in a C * -algebraic framework. These systems are characterized by their intrinsic permutation symmetry. In the limit of infinite system size, N→∞, the intensive observables converge to the commutative algebra of weak * -continuous functions on the single particle state space. To quantify the deviations from the meanfield prediction for large but finite N, we establish a differential calculus for state space functions and provide a generalized Taylor expansion around the mean-field limit. Furthermore, we introduce the algebra of macroscopic fluctuations around the mean-field limit and prove a quantum version of the central limit theorem. On the basis of these results, we give a detailed study of the finite size corrections to the ground state energy and establish bounds, for both the quantum and the classical case. Finally, we restrict ourselves to the subspace of Bose

  14. Strong field interaction of laser radiation

    International Nuclear Information System (INIS)

    Pukhov, Alexander

    2003-01-01

    The Review covers recent progress in laser-matter interaction at intensities above 10 18 W cm -2 . At these intensities electrons swing in the laser pulse with relativistic energies. The laser electric field is already much stronger than the atomic fields, and any material is instantaneously ionized, creating plasma. The physics of relativistic laser-plasma is highly non-linear and kinetic. The best numerical tools applicable here are particle-in-cell (PIC) codes, which provide the most fundamental plasma model as an ensemble of charged particles. The three-dimensional (3D) PIC code Virtual Laser-Plasma Laboratory runs on a massively parallel computer tracking trajectories of up to 10 9 particles simultaneously. This allows one to simulate real laser-plasma experiments for the first time. When the relativistically intense laser pulses propagate through plasma, a bunch of new physical effects appears. The laser pulses are subject to relativistic self-channelling and filamentation. The gigabar ponderomotive pressure of the laser pulse drives strong currents of plasma electrons in the laser propagation direction; these currents reach the Alfven limit and generate 100 MG quasistatic magnetic fields. These magnetic fields, in turn, lead to the mutual filament attraction and super-channel formation. The electrons in the channels are accelerated up to gigaelectronvolt energies and the ions gain multi-MeV energies. We discuss different mechanisms of particle acceleration and compare numerical simulations with experimental data. One of the very important applications of the relativistically strong laser beams is the fast ignition (FI) concept for the inertial fusion energy (IFE). Petawatt-class lasers may provide enough energy to isochorically ignite a pre-compressed target consisting of thermonuclear fuel. The FI approach would ease dramatically the constraints on the implosion symmetry and improve the energy gain. However, there is a set of problems to solve before the FI

  15. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  16. Analytical relativistic self-consistent-field calculations for atoms

    International Nuclear Information System (INIS)

    Barthelat, J.C.; Pelissier, M.; Durand, P.

    1980-01-01

    A new second-order representation of the Dirac equation is presented. This representation which is exact for a hydrogen atom is applied to approximate analytical self-consistent-field calculations for atoms. Results are given for the rare-gas atoms from helium to radon and for lead. The results compare favorably with numerical Dirac-Hartree-Fock solutions

  17. The H+ molecule in strong magnetic fields

    International Nuclear Information System (INIS)

    Melo, L.C. de; Das, T.K.; Ferreira, R.; Miranda, L.C.M.; Brandi, H.S.

    1976-01-01

    A LCAO-MO treatment of the H 2 + based on hydrogen-like atomic orbitals is described. Trial wave functions to calculate binding energy and potential curves of H 2 + in the presence of magnetic fields in the range 10 8 G 10 G, are used [pt

  18. Hydrogen atom in intense magnetic field.

    Science.gov (United States)

    Canuto, V.; Kelly, D. C.

    1972-01-01

    The structure of a hydrogen atom situated in an intense magnetic field is investigaged. Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field strength, H sub a approximately equal to 5 x 10 to the 9th G. Fields in excess of H sub a are intense in that they are able to modify the characteristic atomic scales of length and binding energy. A second approach solves the Schrodinger equation by a combination of variational methods and perturbation theory. It yields analytic expressions for the wave functions and energy eigenvalues. A third approach determines the energy eigenvalues by reducing the Schrodinger equation to a one-dimensional wave equation, which is then solved numerically. Energy eigenvalues are tabulated for field strengths of 2 x 10 to the 10th G and 2 x 10 to the 12th G. It is found that at 2 x 10 to the 12th G the lowest energy eigenvalue is changed from -13.6 to about -180 eV in agreement with previous variational computations.

  19. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  20. Phenomena of charged particles transport in variable magnetic fields

    International Nuclear Information System (INIS)

    Savane, Sy Y.; Faza Barry, M.; Vladmir, L.; Diaby, I.

    2002-11-01

    This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock. (author)

  1. The numerical multiconfiguration self-consistent field approach for atoms; Der numerische Multiconfiguration Self-Consistent Field-Ansatz fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Stiehler, Johannes

    1995-12-15

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  2. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  3. Atom Wavelike Nature Solved Mathematically

    Science.gov (United States)

    Sven, Charles

    2010-03-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  4. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 2. SU(2) gauge theory in (2+1) dimensions

    International Nuclear Information System (INIS)

    Dahmen, B.

    1994-12-01

    A recently proposed method for a strong coupling analysis of scattering phenomena in hamiltonian lattice field theories is applied to the SU(2) Yang-Mills model in (2 + 1) dimensions. The calculation is performed up to second order in the hopping parameter. All relevant quantities that characterize the collision between the lightest glueballs in the elastic region - cross section, phase shifts, resonance parameters - are determined. (orig.)

  5. Ionization dynamics of a xenon atom in super-strong laser fields

    International Nuclear Information System (INIS)

    Yamakawa, Koichi; Akahane, Yutaka; Fukuda, Yuji; Aoyama, Makoto; Inoue, Norihiro; Ueda, Hideki; Utsumi, Takayuki

    2003-12-01

    We report on detailed investigations of ionization dynamics of a xenon atom exposed to intense 800-nm pulses of 20-fs duration in the extensive intensity range from 10 13 to 10 18 W/cm 2 . Ion yields of Xe + to Xe 20+ were observed as a function of laser intensity and compared with the results from a single active electron (SAE) based Ammosov-Delone-Krainov (ADK) model. Unexpected ionization probabilities for lower charge states and also no interplay between the inner- and outer-shells by screening are inferred. Suppression of nonsequential ionization towards higher intensity and few optical cycle regimes is also proved. (author)

  6. Data relative to (e, argon) and (e, ethane) interactions necessary for strong field transport calculations

    International Nuclear Information System (INIS)

    Florent, J.J.

    1988-01-01

    Collisions between electrons and argon atoms and ethane molecules are studied in order to better understand phenomena occurring at each stage of detection in gas detectors used in nuclear and high energy physics. Elastic collisions between an electron and argon, those producing an electronic excitation of the atom, and those leading to its ionisation are reviewed. For the ethane collisions, vibrational excitation is considered. Photoionisation of argon and ethane is also examined. Total or partial cross sections, and differential cross sections are presented [fr

  7. Dynamics of atom-field entanglement for Tavis-Cummings models

    Science.gov (United States)

    Bashkirov, Eugene K.

    2018-04-01

    An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity- dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is shown. Conditions and times of disentanglement are derived.

  8. Influence of the virtual photon field on the squeezing properties of an atom laser

    International Nuclear Information System (INIS)

    Jian-Gang, Zhao; Chang-Yong, Sun; Ling-Hua, Wen; Bao-Long, Liang

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose–Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser

  9. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs

  10. Atomic cluster physics: new challenges for theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Walter [Frankfurt Institute for Advanced Studies, Max-von-Laue Str. 1, Frankfurt am Main 60438 (Germany); Solov' yov, Andrey [Frankfurt Institute for Advanced Studies, Max-von-Laue Str. 1, Frankfurt am Main 60438 (Germany)

    2005-08-01

    A brief introduction to atomic cluster physics, the inter-disciplinary field, which developed fairly successfully during last years, is presented. A review of recent achievements in the detailed ab initio description of structure and properties of atomic clusters and complex molecules is given. The main trends of development in the field are discussed and some of its new focuses are outlined. Particular attention is devoted to the role of quantum and many-body phenomena in the formation of complex multi-atomic systems and the methods of theoretical investigation of their specific properties. The role of the simplified model approaches accurately developed from the fundamental physical principles is stressed. Various illustrations are made for sodium, magnesium clusters, fullerenes and clusters of noble gas atoms.

  11. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    Science.gov (United States)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  12. Natural phenomena evaluation of the Department of Energy-field office Oak Ridge office buildings

    International Nuclear Information System (INIS)

    Rucker, R.W.; Fricke, K.E.; Hunt, R.J.

    1991-01-01

    The Department of Energy - Field Office Oak Ridge (DOE-OR) is performing natural phenomena evaluations of existing office buildings located in the city of Oak Ridge, Tennessee. The natural phenomena considered are earthquake, wind, and flood. The evaluations are being performed to determine if the facilities are in compliance with DOE General Design Criteria 6430.IA. This paper presents results of the evaluations for three of the office buildings

  13. Near resonant absorption by atoms in intense, fluctuating fields: [Progress report

    International Nuclear Information System (INIS)

    1989-01-01

    During the present grant period preparations for photon echo studies of the role of phase fluctuations of an optical driving field resonant with the 1 S 0 - 3 P 1 transition in 174 Yb are moving forward. This experimental study emphasizes the role of fluctuations as a decorrelating mechanism on a phased array of excited atoms. Improvements in laser stabilization and in the quality of the fluctuation spectrum have been carried out and the first spectroscopic measurements will be carried out during this grant year. In response to an important recent theoretical study we have also applied the phase fluctuation synthesizing capability to the study of the atomic sodium resonance fluorescence line profile, driven by a phase fluctuating laser. The measured fluctuations in the fluorescence, characterized in terms of the standard deviation of the fluorescence intensity, have an unexpected and strong dependence on detuning of the driving laser

  14. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  15. A hybrid polarization-selective atomic sensor for radio-frequency field detection with a passive resonant-cavity field amplifier

    OpenAIRE

    Anderson, David A.; Paradis, Eric G.; Raithel, Georg

    2018-01-01

    We present a hybrid atomic sensor that realizes radio-frequency electric field detection with intrinsic field amplification and polarization selectivity for robust high-sensitivity field measurement. The hybrid sensor incorporates a passive resonator element integrated with an atomic vapor cell that provides amplification and polarization selectivity for detection of incident radio-frequency fields. The amplified intra-cavity radio-frequency field is measured by atoms using a quantum-optical ...

  16. The odd Voigt effect under a strong electric field in semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Shon.

    1991-08-01

    The high frequency conductivity tensor σ ik (ω) in the linear approximation of magnetic field H and in the quadratic approximation of external dc electric field is derived by solving Boltzmann equation. The magneto-optical phenomena in the Voigt configuration (when a probe electro-magnetic wave propagates across a magnetic field) are investigated. It is shown that the birefringence and dichroism have a component that is odd (linear) in the magnetic fields and predominate over the even effect in the weak magnetic field. (author). 8 refs

  17. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  18. Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system.

    Science.gov (United States)

    Jiang, Xiangqian; Li, Jinjiang; Sun, Xiudong

    2017-12-11

    We study two-dimensional sub-wavelength atom localization based on the microwave coupling field controlling and spontaneously generated coherence (SGC) effect. For a five-level M-type atom, introducing a microwave coupling field between two upper levels and considering the quantum interference between two transitions from two upper levels to lower levels, the analytical expression of conditional position probability (CPP) distribution is obtained using the iterative method. The influence of the detuning of a spontaneously emitted photon, Rabi frequency of the microwave field, and the SGC effect on the CPP are discussed. The two-dimensional sub-half-wavelength atom localization with high-precision and high spatial resolution is achieved by adjusting the detuning and the Rabi frequency, where the atom can be localized in a region smaller thanλ/10×λ/10. The spatial resolution is improved significantly compared with the case without the microwave field.

  19. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 1. The (d+1)-dimensional Ising model

    International Nuclear Information System (INIS)

    Dahmen, Bernd

    1994-01-01

    A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))

  20. Production and detection of atomic hexadecapole at Earth's magnetic field.

    Science.gov (United States)

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  1. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  2. Doppleron resonances in the diffraction of atoms by an evanescent field

    International Nuclear Information System (INIS)

    Murphy, J.E.; Hollenberg, L.C.L.; Smith, A.E.

    1994-01-01

    The diffracted intensities of sodium atoms by a standing evanescent light wave near the three doppleron resonance are calculated using a multi-slice technique. This calculation predicts a sharp dip in the reflected intensity of the specular beam for a detuning slightly below resonance. Such phenomena has been observed experimentally and can be understood using the dressed state picture. 4 refs., 2 tabs., 3 figs

  3. Strong field laser physics

    CERN Document Server

    2008-01-01

    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  4. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  5. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  6. Chaotic scattering from hydrogen atoms in a circularly polarized laser field

    International Nuclear Information System (INIS)

    Okon, Elias; Parker, William; Chism, Will; Reichl, Linda E.

    2002-01-01

    We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of chaos in the dynamics of the atom-field system

  7. Calculation of back-reflected intensities of a Na-atom beam by standing evanescent E-M field

    International Nuclear Information System (INIS)

    Murphy, J.; Goodman, P.; Smith, A.

    1992-01-01

    A method is described for the computation of the back-scattered intensities of atomic beams, diffracted from the evanescent field generated outside an optical plate by internal counter-propagating laser beams. The method derives from a procedure developed for the similar but importantly differing problem of Low Energy Electron Diffraction, (Lynch and Smith, 1983). Modifications to that theory required for the present problem bring the equations closer to the RHEED solution proposed by Ichimiya (1983). Results from multi-slicing from the same narrow field depth (2 Aangstroems) in this strong field case show the success and also limitations of the program in its present form. Computation to greater depth in the strong field leads to numerical instabilities due to the incorporation of very large tunnelling terms. This requires the application of boundary conditions at each slice rather than the end of the multi-slice calculation. 7 refs., 3 figs

  8. Coherence and fluctuations in the interaction between moving atoms and a quantum field

    International Nuclear Information System (INIS)

    Hu, B.L.; Raval, A.

    1998-01-01

    Mesoscopic physics deals with three fundamental issues: quantum coherence, fluctuations and correlations. Here we analyze these issues for atom optics, using a simplified model of an assembly of atoms (or detectors, which are particles with some internal degree of freedom) moving in arbitrary trajectories in a quantum field. Employing the influence functional formalism, we study the self-consistent effect of the field on the atoms, and their mutual interactions via coupling to the field. We derive the coupled Langevin equations for the atom assemblage and analyze the relation of dissipative dynamics of the atoms (detectors) with the correlation and fluctuations of the quantum field. This provides a useful theoretical framework for analysing the coherent properties of atom-field systems. (author)

  9. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  10. Quantitative compositional analysis and field-evaporation behavior of ordered Ni4Mo on an atomic plane-by-plane basis: an atom-probe field-ion microscope study. MSC report No. 4802

    International Nuclear Information System (INIS)

    Yamamoto, M.; Seidman, D.N.

    1982-10-01

    The (211) fundamental and (101) superlattice planes, of the bct lattice, were analysed chemically on an atomic plane-by-plane basis. It was demonstrated that the composition of each individual plane can be determined as a function of depth without any ambiguity. The overall average Mo concentration was measured to be 17.1 at. % for the (211) fundamental plane. Details of the field evaporation behavior of the (211) fundamental and (101) superlattice planes were studied. The field-evaporation behavior is described in terms of the field-evaporation rate, the order of the field evaporated ions, etc. Each individual atomic plane field evaporated on an atomic plane-by-plane basis for the (211) fundamental plane. While for (101) superlattice plane a group of planes consisting of one plane of Mo atoms and four planes of Ni atoms field-evaporated as a unit. An abnormal increase in the number of Mo atoms was found in the central portion of the (211) fundamental plane. Possible mechanisms for the abnormal field evaporation rate are discussed. It is concluded that the atom probe technique can be used to follow the physics and chemistry of the field-evaporation process and the chemistry of the alloy as a function of position, on a subnanometer scale, throughout the specimen. 13 figures

  11. The Closed-Orbit Theory for General Rydberg Atoms in External Fields

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    The photoabsorption spectra of hydrogen Rydberg atoms, as well of model Rydberg atoms in pure magnetic or electric fields have been successfully calculated using the semiclassical closed-orbit theory. The theory relates the resonances of the spectra to closed classical orbits of the excited electron. The dynamics of multielectron atoms is more complicated than the hydrogenic one; additionally, when the atoms are in the presence of perpendicular magnetic and electric fields becomes more complex than when they are in pure fields, due to the fact that the Hamiltonian is non-separable in three degrees of freedom, instead of two non-separable degrees of freedom. In this work, I present an extension of the closed-orbit theory to three degrees of freedom, considering arbitrary quantum defects, i.e., general atoms. (Author) [es

  12. Quantum field model of strong-coupling binucleon

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.

    1996-01-01

    The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru

  13. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  15. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  16. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    Science.gov (United States)

    Saenz, A.

    2008-07-01

    peculiar molecular strong-field effects and the possibility of strong-field control mechanisms will be demonstrated. This includes phenomena like enhanced ionization and bond softening as well as the creation of vibrational wavepacket in the non-ionized electronic ground state of H_2 by creating a Schrodinger-cat state between the ionized and the non-ionized molecules. The latter, theoretically predicted phenomenon was very recently experimentally observed and lead to the real-time observation of the so far fastest molecular motion.

  17. Atomic motion in a high-intensity standing wave laser field

    International Nuclear Information System (INIS)

    Saez Ramdohr, L.F.

    1987-01-01

    This work discusses the effect of a high-intensity standing wave laser field on the motion of neutral atoms moving with a relatively high velocity. The analysis involves a detailed calculation of the force acting on the atoms and the calculation of the diffusion tensor associated with the fluctuations of the quantum force operator. The high-intensity laser field limit corresponds to a Rabi frequency much greater than the natural rate of the atom. The general results are valid for any atomic velocity. Results are then specialized to the case of slow and fast atoms where the Doppler shift of the laser frequency due to the atomic motion is either smaller or larger than the natural decay rate of the atom. The results obtained for the force and diffusion tensor are applied to a particular ideal experiment that studies the evolution of a fast atomic beam crossing a high-intensity laser beam. The theories developed previously, for a similar laser configuration, discuss only the low atomic velocities case and not the more realistic case of fast atoms. Here, an approximate solution of the equation for the distribution is obtained. Starting from the approximate distribution function, the deflection angle and dispersion angle for the atomic beam with respect to the free motion are calculated

  18. Manipulating beams of ultra-cold atoms with a static magnetic field

    International Nuclear Information System (INIS)

    Rowlands, W.J.; Lau, D.C.; Opat, G.I.; Sidorov, A.I.; McLean, R.J.; Hannaford, P.

    1996-01-01

    The preliminary results on the deflection of a beam of ultra-cold atoms by a static magnetic field are presented. Caesium atoms trapped in a magneto-optical trap (MOT) are cooled using optical molasses, and then fall freely under gravity to form a beam of ultra-cold atoms. The atoms pass through a static inhomogeneous magnetic field produced by a single current-carrying wire, and are deflected by a force dependent on the magnetic substate of the atom. A schematical diagram of the experimental layout for laser trapping and cooling of cesium atom is given. The population of atoms in various magnetic substates can be altered by using resonant laser radiation to optically pump the atoms. The single-wire deflection experiment described can be considered as atomic reflexion from a cylindrical magnetic mirror; the underlying principles and techniques being relevant to the production of atomic mirrors and diffraction gratings. 16 refs., 10 figs

  19. Beta decay and other processes in strong electromagnetic fields

    International Nuclear Information System (INIS)

    Akhmedov, E. Kh.

    2011-01-01

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear β decay as an example, we study the weak- and strong-field limits, as well as the field-induced β decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear β decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total β-decay rates are unobservably small.

  20. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    International Nuclear Information System (INIS)

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  1. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  2. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  3. Diffusive phenomena and pseudoelasticity in Cu-Al-Be single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sade, M., E-mail: sade@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Pelegrina, J.L., E-mail: jlp201@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Yawny, A., E-mail: yawny@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); CONICET (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Lovey, F.C., E-mail: lovey@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA), Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, Av. E. Bustillo km. 9500, 8400 S.C. de Bariloche (Argentina)

    2015-02-15

    Highlights: • Diffusive phenomena occurring under load were analyzed in Cu-Al-Be single crystals. • Stabilization of stress induced martensite was detected in a range of temperatures. • Ageing the austenite under load shifts the austenite/martensite stability field. • A free energy model is proposed considering interchanges between Cu and Be atoms. • Different kinetics for the recovery of the austenite are rationalized. - Abstract: Cu-Al-Be single crystals show pseudoelasticity and the shape memory effect in a well-defined composition range. The β{sub 3}-18R martensitic transition is the origin of these phenomena. The transformation temperatures and the critical stresses to induce the martensitic transition are affected by diffusive phenomena taking place both in the parent phase and in martensite. Pseudoelastic cycles were used to obtain quantitative data concerning the effect of diffusive phenomena like stabilization of martensite, ordering of the parent phase under load and recovery of this phase on the critical stresses to transform. Information was then obtained on changes in the relative phase stability. A model is presented to explain those changes taking place in the parent phase aged under load and in the martensitic 18R structure. Experimental data on the kinetics of diffusive phenomena is also presented and analyzed.

  4. Elucidation of complicated phenomena in nuclear power field by computation science techniques

    International Nuclear Information System (INIS)

    Takahashi, Ryoichi

    1996-01-01

    In this crossover research, the complicated phenomena treated in nuclear power field are elucidated, and for connecting them to engineering application research, the development of high speed computer utilization technology and the large scale numerical simulation utilizing it are carried out. As the scale of calculation, it is aimed at to realize the three-dimensional numerical simulation of the largest scale in the world of about 100 million mesh and to develop the results into engineering research. In the nuclear power plants of next generation, the further improvement of economical efficiency is demanded together with securing safety, and it is important that the design window is large. The work of confirming quantitatively the size of design window is not easy, and it is very difficult to separate observed phenomena into elementary events. As the method of forecasting and reproducing complicated phenomena and quantifying design window, large scale numerical simulation is promising. The roles of theory, experiment and computation science are discussed. The system of executing this crossover research is described. (K.I.)

  5. Quantum electrodynamics in strong external fields

    International Nuclear Information System (INIS)

    Mueller, B.; Rafelski, J.; Kirsch, J.

    1981-05-01

    We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)

  6. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  7. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  8. Sub-half-wavelength atom localization via two standing-wave fields

    International Nuclear Information System (INIS)

    Jin Luling; Sun Hui; Niu Yueping; Gong Shangqing

    2008-01-01

    We propose a scheme for sub-half-wavelength atom localization in a four-level ladder-type atomic system, which is coupled by two classical standing-wave fields. We find that one of the standing-wave fields can help in enhancing the localization precision, and the other is of crucial importance in increasing the detecting probability and leading sub-half-wavelength localization

  9. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  10. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  11. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  12. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  13. Trapping of Rydberg atoms in tight magnetic microtraps

    NARCIS (Netherlands)

    Boetes, A.Q.G.; Skannrup, R.V.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2018-01-01

    We explore the possibility to trap Rydberg atoms in tightly confining magnetic microtraps. The trapping frequencies for Rydberg atoms are expected to be influenced strongly by magnetic-field gradients. We show that there are regimes where Rydberg atoms can be trapped. Moreover, we show that

  14. 2D atom localization in a four-level tripod system in laser fields

    OpenAIRE

    Ivanov, Vladimir; Rozhdestvensky, Yuri

    2012-01-01

    We propose a scheme for two-dimensional (2D) atom localization in a four-level tripod system under an influence of two orthogonal standing-wave fields. Position information of the atom is retained in the atomic internal states by an additional probe field either of a standing or of a running wave. It is shown that the localization factors depend crucially on the atom-field coupling that results in such spatial structures of populations as spikes, craters and waves. We demonstrate a high-preci...

  15. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    Science.gov (United States)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  16. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  17. Electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Itzykson, C.

    1985-05-01

    We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited

  18. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  19. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  20. Atom probe field ion microscopy and related topics: A bibliography 1991

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  1. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    Science.gov (United States)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  2. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-22

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  3. Strong terahertz field generation, detection, and application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Yong [Univ. of Maryland, College Park, MD (United States)

    2016-05-15

    This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-driven extremely nonlinear phenomena in a university laboratory.

  4. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  5. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  6. On the atomic displacement fields of small interstitial dislocation loops

    International Nuclear Information System (INIS)

    Zhou, Z.; Dudarev, S.L.; Jenkins, M.L.; Sutton, A.P.; Kirk, M.A.

    2005-01-01

    The atomic displacement fields of dislocation loops of size 1-5 nm formed by self-interstitial atoms in α-Fe have been calculated using isotropic elasticity theory and anisotropic elasticity theory, and compared with atomic simulations for loops formed by 43-275 self-interstitial atoms. The atomic displacements predicted by anisotropic elasticity theory were in good agreement with those given by the atomistic simulations at distances greater than 3 nm from the loop plane, but the displacements predicted by isotropic elasticity theory showed significant discrepancies at distances up to 15 nm

  7. D. C. electric field behavior of high lying states in atomic uranium

    International Nuclear Information System (INIS)

    Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.

    1976-01-01

    The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs

  8. 2010 Atomic & Molecular Interactions Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  9. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  10. Strong field physics and QED experiments with ELI-NP 2×10PW laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Turcu, I. C. E., E-mail: Edmond.Turcu@eli-np.ro; Balascuta, S., E-mail: Edmond.Turcu@eli-np.ro; Negoita, F., E-mail: Edmond.Turcu@eli-np.ro [National Institute for Physics and Nuclear Engineering, ELI-NP, Str. Reactorului, nr. 30, P.O.Box MG-6, Bucharest-Magurele (Romania); Jaroszynski, D.; McKenna, P. [University of Strathclyde, Scottish Universities Physics Alliance (SUPA), Glasgow G4 0NG, Scotland (United Kingdom)

    2015-02-24

    The ELI-NP facility will focus a 10 PW pulsed laser beam at intensities of ∼10{sup 23} W/cm{sup 2} for the first time, enabling investigation of the new physical phenomena at the interfaces of plasma, nuclear and particle physics. The electric field in the laser focus has a maximum value of ∼10{sup 15} V/m at such laser intensities. In the ELI-NP Experimental Area E6, we propose the study of Radiation Reaction, Strong Field Quantum Electrodynamics (QED) effects and resulting production of Ultra-bright Sources of Gamma-rays which could be used for nuclear activation. Two powerful, synchronized 10 PW laser beams will be focused in the E6 Interaction Chamber on either gas or solid targets. One 10 PW beam is the Pump-beam and the other is the Probe-beam. The focused Pump beam accelerates the electrons to relativistic energies. The accelerated electron bunches interact with the very high electro-magnetic field of the focused Probe beam. The layout of the experimental area E6 will be presented with several options for the experimental configurations.

  11. Theoretical studies of atomic and quasiatomic excitations by electron and ion impact

    International Nuclear Information System (INIS)

    Kam, K.F.

    1999-09-01

    Electron emission from ion induced excitations of Ca, Sc, Ti and V metal surfaces and from electron impact on transition metal oxides CoO and TiO 2 has been studied in this thesis. Both the autoionising emission from sputtered atoms and the 3p→3d and 3s→3d excitations in the oxides reveal strong atomic features. The work has involved explaining these spectra in an atomic approach, via the use of atomic structure calculations, cross section studies and empirical/semi-empirical analyses. The other aspect of this work involves extension of current theories of electron-atom scattering in the high electron energy impact regime. Overall it is shown that much can be learned about some solid-state spectra by relating them to atomic phenomena. (author)

  12. Photoionization of Rydberg hydrogen atom in a magnetic field

    International Nuclear Information System (INIS)

    Wang, Dehua; Cheng, Shaohao; Chen, Zhaohang

    2015-01-01

    Highlights: • The ionization of Rydberg hydrogen atom in a magnetic field has been studied. • Oscillatory structures appear in the electron probability density distributions. • This study can guide the experimental research on the photoionization microscopy. - Abstract: The ionization of Rydberg hydrogen atom in a magnetic field has been studied on the basis of a semiclassical analysis of photoionization microscopy. The photoionization microscopy interference patterns of the photoelectron probability density distribution on a given detector plane are calculated at different scaled energies. We find that due to the interference effect of different types of electron trajectories arrived at a given point on the detector plane, oscillatory structures appear in the electron probability density distributions. The oscillatory structure of the interference pattern, which contains the spatial component of the electronic wave function, evolves sensitively on the scaled energy, through which we gain a deep understanding on the probability density distribution of the electron wave function. This study provides some reference values for the future experiment research on the photoionization microscopy of the Rydberg atom in the presence of magnetic field

  13. Spontaneous dressed-state polarization in the strong driving regime of cavity QED.

    Science.gov (United States)

    Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo

    2009-10-23

    We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.

  14. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  15. Study of multi-level atomic systems with the application of magnetic field

    Science.gov (United States)

    Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.

    2018-04-01

    The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.

  16. Coupled-cluster treatment of molecular strong-field ionization

    Science.gov (United States)

    Jagau, Thomas-C.

    2018-05-01

    Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.

  17. Precise calibration of few-cycle laser pulses with atomic hydrogen

    Science.gov (United States)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  18. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  19. Transport, atom blockade, and output coupling in a Tonks-Girardeau gas

    International Nuclear Information System (INIS)

    Rutherford, L.; McCann, J. F.; Goold, J.; Busch, Th.

    2011-01-01

    Recent experiments have demonstrated how quantum-mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M. Koehl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a phenomenological model to simulate such an output coupler for a Tonks-Girardeau gas that shows qualitative agreement with the experimental results for atom transport and output coupling. Our model allows us to explore nonequilibrium transport phenomena in ultracold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localized in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.

  20. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  1. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.

    2016-10-21

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  2. Line shapes and time dynamics of the Förster resonances between two Rydberg atoms in a time-varying electric field

    KAUST Repository

    Yakshina, E. A.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Andreeva, C.; Cinins, A.; Markovski, A.; Iftikhar, Z.; Ekers, Aigars; Ryabtsev, I. I.

    2016-01-01

    The observation of the Stark-tuned Förster resonances between Rydberg atoms excited by narrowband cw laser radiation requires usage of a Stark-switching technique in order to excite the atoms first in a fixed electric field and then to induce the interactions in a varied electric field, which is scanned across the Förster resonance. In our experiments with a few cold Rb Rydberg atoms, we have found that the transients at the edges of the electric pulses strongly affect the line shapes of the Förster resonances, since the population transfer at the resonances occurs on a time scale of ∼100 ns, which is comparable with the duration of the transients. For example, a short-term ringing at a certain frequency causes additional radio-frequency-assisted Förster resonances, while nonsharp edges lead to asymmetry. The intentional application of the radio-frequency field induces transitions between collective states, whose line shape depends on the interaction strengths and time. Spatial averaging over the atom positions in a single interaction volume yields a cusped line shape of the Förster resonance. We present a detailed experimental and theoretical analysis of the line shape and time dynamics of the Stark-tuned Förster resonances Rb(nP3/2)+Rb(nP3/2)→Rb(nS1/2)+Rb([n+1]S1/2) for two Rb Rydberg atoms interacting in a time-varying electric field.

  3. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  4. Report of workshop on vibration related to fluid in atomic energy field. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Because of the nonlinearity of the equation that governs flow, sometimes vibration occurs in an unexpected system, and it causes trouble. This 7th workshop on vibration related to fluid in atomic energy field was held at Nuclear Engineering Research Laboratory of University of Tokyo on August 25 and 26, 1997. Two themes were ``Vibration of liquid surface by flow`` and ``Numerical analysis of coupled vibration of fluid-structures``. The former is related to the problem in the development of a demonstration FBR, and the latter is related to the numerical analysis technology such as the handling of boundary conditions and the method of taking position, moving velocity and acceleration into account. This workshop aims at thoroughly discussing a small number of themes, and deepening the understanding. In this report, the summaries of 17 papers are collected, of which the titles are as follows. Liquid surface self-exciting vibration by flow, vibration of upper plenum liquid surface of fast reactor, stability analysis of multiple liquid surfaces, flow instability phenomena of multi-loop system, sloshing in a vessel in which fluid flows, the mechanism of occurrence of self-exciting sloshing in a vessel elucidated by numerical analysis, numerical analysis of manometer vibration excited by flow, numerical analysis of flutter phenomena of aircraft, numerical analysis of aerodynamic elastic problem, mechanism of in-line excitation, numerical analysis of hydrodynamic elastic vibration of tube nest and so on. (K.I.)

  5. Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.

    Science.gov (United States)

    Irwin, Benedict W J; Huggins, David J

    2018-05-08

    We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.

  6. Computational strong-field quantum dynamics. Intense light-matter interactions

    International Nuclear Information System (INIS)

    Bauer, Dieter

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  7. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  8. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  9. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  10. Entropy squeezing of the field interacting with a nearly degenerate V-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    Zhou Qing-Chun; Zhu Shi-Ning

    2005-01-01

    The position- and momentum-entopic squeezing properties of the optical field in the system of a nearly degenerate three-level atom interacting with a single-mode field are investigated. Calculation results indicate that when the field is initially in the vacuum state, it may lead to squeezing of the position entropy or the momentum entropy of the field if the atom is prepared properly. The effects of initial atomic state and the splitting of the excited levels of the atom on field entropies are discussed in this case. When the initial field is in a coherent state, we find that position-entropy squeezing of the field is present even if the atom is prepared in the ground state. By comparing the variance squeezing and entropy squeezing of the field we confirm that entropy is more sensitive than variance in measuring quantum fluctuations.

  11. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields

    International Nuclear Information System (INIS)

    Wei Qi; Kais, Sabre; Moiseyev, Nimrod

    2006-01-01

    Singly charged negative atomic ions exist in the gas phase and are of fundamental importance in atomic and molecular physics. However, theoretical calculations and experimental results clearly exclude the existence of any stable doubly-negatively-charged atomic ion in the gas phase, only one electron can be added to a free atom in the gas phase. In this report, using the high-frequency Floquet theory, we predict that in a linear superintense laser field one can stabilize multiply charged negative atomic ions in the gas phase. We present self-consistent field calculations for the linear superintense laser fields needed to bind extra one and two electrons to form He - , He 2- , and Li 2- , with detachment energies dependent on the laser intensity and maximal values of 1.2, 0.12, and 0.13 eV, respectively. The fields and frequencies needed for binding extra electrons are within experimental reach. This method of stabilization is general and can be used to predict stability of larger multiply charged negative atomic ions

  12. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  13. Molecules in strong laser fields. In depth study of H2 molecule

    International Nuclear Information System (INIS)

    Awasthi, Manohar

    2009-01-01

    A method for solving the time-dependent Schroedinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like H 2 , fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. The H 2 molecule is the testing ground for the implementation of both the methods. The reliability of the configuration interaction (CI) based method for the solution of TDSE (CI-TDSE) is tested by comparing results in the low-intensity regime to the prediction of lowest-order perturbation theory. Another test for the CI-TDSE method is in the united atom limit for the H 2 molecule. By selecting a very small value of the internuclear distance close to zero for the H 2 molecule, Helium atom is obtained. Once the functionality and the reliability of the method is established, it is used for obtaining accurate results for molecular hydrogen exposed to intense laser fields. The results for the standard 800 nm Titanium-Sapphire laser and its harmonics at 400 nm and 266 nm are shown. The results for a scan over a wide range of incident photon energies as well as dependence on the internuclear distance are presented. The photoelectron spectra including above

  14. Holding molecular dications together in strong laser fields

    International Nuclear Information System (INIS)

    Guo Chunlei

    2006-01-01

    Metastable channel of doubly ionized carbon monoxide, CO 2+ , was scantly seen in previous strong-field experiments at the visible wavelength region, but was commonly observed using single high-energy photon or electron excitation. For the first time with near-IR ultrashort-pulse radiation, we observe an abundance of CO 2+ . We show that CO 2+ results from nonsequential double ionization, while its dissociation counterpart, C + +O + , results from sequential processes, and CO 2+ can be obtained through either single high-energy photon or electron excitation or multiphoton ionization with ultrashort pulses before a critical internuclear distance is reached. Our study demonstrates the experimental conditions to converge the outcomes from two vastly different regimes, namely, multiphoton excitation and ionization in strong fields and single high-energy photon or electron excitation and ionization in weak fields

  15. Resonance fluorescence spectra of three-level atoms in a squeezed vacuum

    International Nuclear Information System (INIS)

    Ferguson, M.R.; Ficek, Z.; Dalton, B.J.

    1996-01-01

    The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly driven three-level atoms in Λ, V, and cascade configurations in which one of the two one-photon transitions is coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by a degenerate parameter oscillator. Details are only given for the Λ configuration. The extension to the V and cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the two-photon transition between the ground and the most excited states and now generated by a nondegenerate parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions, all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields modifies transition rates between the dressed states, which results in the selective phase dependence of the spectral features. copyright 1996 The American Physical Society

  16. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  17. Muonic atoms in super-intense laser fields

    International Nuclear Information System (INIS)

    Shahbaz, Atif

    2009-01-01

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent γ-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  18. Strong field control of predissociation dynamics.

    Science.gov (United States)

    Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis

    2013-01-01

    Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.

  19. Pentacene Excitons in Strong Electric Fields.

    Science.gov (United States)

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  1. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    Science.gov (United States)

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  2. Current ideas on ion-atom collisions

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1975-09-01

    A survey is given of recent developments in the understanding of ion-atom collisions, with particular emphasis on processes leading to ion-induced X-rays. The inner-shell Coulomb ionization phenomena are discussed at some length, with stress on the near-quantitative picture that appears to emerge from simple-minded models. The phenomenon of Pauli excitations and the formation of quasi-molecules leading to united atom phenomena are qualitatively reviewed together with a brief mention of target recoil effects and electron capture processes. Selected background phenomena of importance in interpreting experiments are touched upon, such as various types of bremsstrahlung production. Implications of the recently-discovered interplay between Coulomb-induced processes and united atom phenomena are especially mentioned. It is suggested that this branch of collision physics is now (1975) reaching a point where new notions and more advanced and unifying models are greatly needed. (auth)

  3. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  4. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  5. Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

    Science.gov (United States)

    Basharov, A. M.

    2018-03-01

    The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

  6. The numerical multiconfiguration self-consistent field approach for atoms

    International Nuclear Information System (INIS)

    Stiehler, Johannes

    1995-12-01

    The dissertation uses the Multiconfiguration Self-Consistent Field Approach to specify the electronic wave function of N electron atoms in a static electrical field. It presents numerical approaches to describe the wave functions and introduces new methods to compute the numerical Fock equations. Based on results computed with an implemented computer program the universal application, flexibility and high numerical precision of the presented approach is shown. RHF results and for the first time MCSCF results for polarizabilities and hyperpolarizabilities of various states of the atoms He to Kr are discussed. In addition, an application to interpret a plasma spectrum of gallium is presented. (orig.)

  7. Phase-sensitive atomic dynamics in quantum light

    Science.gov (United States)

    Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.

  8. Wiebel instability of microwave gas discharge in strong linear and circular pulsed fields

    International Nuclear Information System (INIS)

    Shokri, B.; Ghorbanalilu, M.

    2004-01-01

    Being much weaker than the atomic fields, the gas breakdown produced by high-power pulsed microwave fields is investigated in the nonrelativistic case. The distribution function of the electrons produced by the interaction with intense linearly and circularly polarized microwave fields is obtained and it is shown that it is in a nonequilibrium state and anisotropic. The discharge mechanism for the gas atoms is governed by electron-impact avalanche ionization. By analyzing the instability of the system and by finding its growth rate, it is shown that the instability which is governed by the anisotropic property of the distribution function is Wiebel instability

  9. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  10. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  11. Wigner functions for fermions in strong magnetic fields

    Science.gov (United States)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  12. Strong coupling in a gauge invariant field theory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)

    1963-01-15

    I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.

  13. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  14. Coopetition and manipulation of quantum correlations in Rydberg atoms

    International Nuclear Information System (INIS)

    Fan, Chu-Hui; Yan, Dong; Liu, Yi-Mou; Wu, Jin-Hui

    2017-01-01

    We study the steady-state quantum correlations arising from the atom–field and interatomic interplays in two-level Rydberg atoms coherently driven by an external laser field. Three kinds of quantum correlations, i.e., atom–atom correlation, atom–field entanglement and photon–photon correlation, are simultaneously examined by considering dipole–dipole interactions (DDI) for pairwise Rydberg atoms. They are shown to be closely linked with single and double Rydberg excitations, which can be modulated to work in the blockade or antiblockade regime depending on the driving field frequency, the DDI strength and the Rydberg decay rate. As a result, we obtain strongly correlated atoms and highly antibunching photons (indispensable resources in applications of quantum information processing) intermediated with robust atom–field entanglement. (paper)

  15. Schroedinger cat states and multilevel atoms

    International Nuclear Information System (INIS)

    Shore, B.W.; Knight, P.L.

    1993-01-01

    We demonstrate that the generalization of the two-level Jaynes-Cummings model (JCM) to an N-level atom leads to the creation of up to N macroscopically distinct field states. These field states are Schmidt-orthogonalized superpositions of Fock states. They correspond to macroscopic states of the field, attainable with large mean photon numbers. Unlike the situation with a two-level atom and a coherent-state field, which evolves into a macroscopic coherent superposition state (a Schrodinger cat), we find that when the additional levels participate strongly in the excitation (e.g all transitions are resonant with equal dipole moments) then the system does not evolve into a pure state. We will present some examples of special cases, giving insight into the behavior of three-level atoms and the two-level two-photon JCM

  16. Study of luminous phenomena observed on contaminated metallic surfaces submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The RF field emission from a sample subjected to high RF fields in a copper cavity has been investigated. The study is focused on the luminous emissions occurring on the RF surface simultaneously with the electron emission. The optical apparatus attached to the cavity permits to observe the evolution of the emitters and the direct effects of the surface conditioning. Also, the parameters of the emitted radiation (intensity, glowing duration, spectral distribution) may provide additional informations on the field emission phenomena. Some results concerning samples intentionally contaminated with particles (metallic or dielectric) are presented. (K.A.)

  17. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  18. Propagation and storing of light in optically modified atomic media

    International Nuclear Information System (INIS)

    Zaremba, Jaroslaw

    2010-01-01

    Coherent interactions of laser light with atomic ensembles allow one to modify dispersive properties of a medium and lead to new optical phenomena. Studies of the controlled light propagation and storing in such media have recently become a dynamically developing field of research motivated both by the fundamental character of the processes and by potential applications. This article briefly reviews basic theoretical approach to the dynamics of the propagation of laser pulses in optically modified media. The method and the physical processes are discussed that allow one to slow down the group velocity of laser pulse to zero (stopping of light), to transfer the state of a light pulse to atomic coherences and to restore the pulse. The interpretation of these phenomena in the formalism of dark-state polaritons is presented. Examples of possible coherent manipulations on a stored light are also discussed.

  19. Propagation and storing of light in optically modified atomic media

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Jaroslaw, E-mail: zaremba@fizyka.iomk.p [Institute of Physics Nicolaus Copernicus University ul. Grudziadzka 5/7 87 100 Torun (Poland)

    2010-03-01

    Coherent interactions of laser light with atomic ensembles allow one to modify dispersive properties of a medium and lead to new optical phenomena. Studies of the controlled light propagation and storing in such media have recently become a dynamically developing field of research motivated both by the fundamental character of the processes and by potential applications. This article briefly reviews basic theoretical approach to the dynamics of the propagation of laser pulses in optically modified media. The method and the physical processes are discussed that allow one to slow down the group velocity of laser pulse to zero (stopping of light), to transfer the state of a light pulse to atomic coherences and to restore the pulse. The interpretation of these phenomena in the formalism of dark-state polaritons is presented. Examples of possible coherent manipulations on a stored light are also discussed.

  20. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  1. Resonance fluorescence from an atom in a squeezed vacuum

    Science.gov (United States)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  2. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  3. Suppression of cooling by strong magnetic fields in white dwarf stars.

    Science.gov (United States)

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  4. Nanometer-scale isotope analysis of bulk diamond by atom probe tomography

    NARCIS (Netherlands)

    Schirhagl, R.; Raatz, N.; Meijer, J.; Markham, M.; Gerstl, S. S. A.; Degen, C. L.

    2015-01-01

    Atom-probe tomography (APT) combines field emission of atoms with mass spectrometry to reconstruct three-dimensional tomograms of materials with atomic resolution and isotope specificity. Despite significant recent progress in APT technology, application to wide-bandgap materials with strong

  5. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  6. Studies of the wavelength dependence of non-sequential double ionization of xenon in strong fields

    International Nuclear Information System (INIS)

    Kaminski, P.; Wiehle, R.; Kamke, W.; Helm, H.; Witzele, B.

    2005-01-01

    Full text: The non-sequential double ionization of noble gases in strong fields is still a process which is not completely understood. The most challenging question is: what is the dominant physical process behind the knee structure in the yield of doubly charged ions which are produced in the focus of an ultrashort laser pulse in dependence of the intensity? Numerous studies can be explained with the so-called rescattering model, where an electron is freed by the strong laser field and then driven back to its parent ion due to the oscillation of the field. Through this backscattering process it is possible to kick out a second electron. However in the low intensity or multiphoton (MPI) region this model predicts that the first electron can not gain enough energy in the oscillating electric field to further ionize or excite the ion. We present experimental results for xenon in the MPI region which show a significant contribution of doubly charged ions. A Ti:sapphire laser system (800 nm, 100 fs) is used to ionize the atoms. The coincident detection of the momentum distribution of the photoelectrons with an imaging spectrometer and the time of flight spectrum of the ions allows a detailed view into the ionization process. For the first time we also show a systematic study of the wavelength dependence (780-830 nm and 1180-1550 nm) on the non-sequential double ionization. The ratio Xe 2+ /Xe + shows a surprising oscillatory behavior with varying wavelength. Ref. 1 (author)

  7. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  8. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  9. Atom-probe field-ion-microscope mass spectrometer

    International Nuclear Information System (INIS)

    Nishikawa, Osamu

    1983-01-01

    The titled analyzer, called simply atom-probe, has been developed by combining a field ion microscope (FIM) and a mass spectrometer, and is divided into the time-of-flight type, magnetic sector type, and quadrupole type depending on the types of mass spectrometers. In this paper, the author first describes on the principle and construction of a high resolution, time-of-flight atom-probe developed and fabricated in his laboratory. The feature of the atom-probe lies in the analysis of atoms and molecules in hyper-fine structure region one by one utilizing the high resolution of FIM. It also has the advantages of directly determining the composition by a ratio of the numbers of respective ions because of a constant detection sensitivity regardless of mass numbers, of the resolution as high as single atom layer in depth direction, and of detecting the positional relationship among detected ions by the order of detection in a sample. To determine the composition in a hyperfine structure region, the limited small number of atoms and molecules in the region must be identified distinctly one by one. In the analyzed result of Ni-silicide formed by heating Si evaporated on a Ni tip at 1000 K for 5 minutes, each isotope was not only clearly separated, but also their abundance ratio was very close to the natural abundance ratio. The second half of the paper reports on the analysis of TiC promising for a cold cathode material, adsorption of CO and alcohol, and the composition and structure of silicides, as a few application examples. (Wakatsuki, Y.)

  10. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  11. Radiation, photon orbits, and torsion in strongly curved spacetimes

    International Nuclear Information System (INIS)

    Sandberg, V.D.

    1975-01-01

    Four topics on the strong field aspects of general relativity are presented. These are the role of constraining forces for ultrarelativistic particle motion as a source of gravitational radiation, the study of electromagnetic radiation due to space-time oscillations, the light scattering properties of a class of naked singularities, and the relation of gravitation theories with torsion to general relativity. The astrophysical implications and unusual physical phenomena associated with very intense gravitational fields are discussed for these four topics

  12. Intermittency in Hall-magnetohydrodynamics with a strong guide field

    OpenAIRE

    Imazio, P. Rodriguez; Martin, L. N.; Dmitruk, P.; Mininni, P. D.

    2013-01-01

    We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure funct...

  13. Ultracold atoms and the Functional Renormalization Group

    International Nuclear Information System (INIS)

    Boettcher, Igor; Pawlowski, Jan M.; Diehl, Sebastian

    2012-01-01

    We give a self-contained introduction to the physics of ultracold atoms using functional integral techniques. Based on a consideration of the relevant length scales, we derive the universal effective low energy Hamiltonian describing ultracold alkali atoms. We then introduce the concept of the effective action, which generalizes the classical action principle to full quantum status and provides an intuitive and versatile tool for practical calculations. This framework is applied to weakly interacting degenerate bosons and fermions in the spatial continuum. In particular, we discuss the related BEC and BCS quantum condensation mechanisms. We then turn to the BCS-BEC crossover, which interpolates between both phenomena, and which is realized experimentally in the vicinity of a Feshbach resonance. For its description, we introduce the Functional Renormalization Group approach. After a general discussion of the method in the cold atoms context, we present a detailed and pedagogical application to the crossover problem. This not only provides the physical mechanism underlying this phenomenon. More generally, it also reveals how the renormalization group can be used as a tool to capture physics at all scales, from few-body scattering on microscopic scales, through the finite temperature phase diagram governed by many-body length scales, up to critical phenomena dictating long distance physics at the phase transition. The presentation aims to equip students at the beginning PhD level with knowledge on key physical phenomena and flexible tools for their description, and should enable to embark upon practical calculations in this field.

  14. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    Science.gov (United States)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  15. Energy-dispersed ions in the plasma sheet boundary layer and associated phenomena: Ion heating, electron acceleration, Alfvén waves, broadband waves, perpendicular electric field spikes, and auroral emissions

    Directory of Open Access Journals (Sweden)

    A. Keiling

    2006-10-01

    Full Text Available Recent Cluster studies reported properties of multiple energy-dispersed ion structures in the plasma sheet boundary layer (PSBL that showed substructure with several well separated ion beamlets, covering energies from 3 keV up to 100 keV (Keiling et al., 2004a, b. Here we report observations from two PSBL crossings, which show a number of identified one-to-one correlations between this beamlet substructure and several plasma-field characteristics: (a bimodal ion conics (<1 keV, (b field-aligned electron flow (<1 keV, (c perpendicular electric field spikes (~20 mV/m, (d broadband electrostatic ELF wave packets (<12.5 Hz, and (e enhanced broadband electromagnetic waves (<4 kHz. The one-to-one correlations strongly suggest that these phenomena were energetically driven by the ion beamlets, also noting that the energy flux of the ion beamlets was 1–2 orders of magnitude larger than, for example, the energy flux of the ion outflow. In addition, several more loosely associated correspondences were observed within the extended region containing the beamlets: (f electrostatic waves (BEN (up to 4 kHz, (g traveling and standing ULF Alfvén waves, (h field-aligned currents (FAC, and (i auroral emissions on conjugate magnetic field lines. Possible generation scenarios for these phenomena are discussed. In conclusion, it is argued that the free energy of magnetotail ion beamlets drove a variety of phenomena and that the spatial fine structure of the beamlets dictated the locations of where some of these phenomena occurred. This emphasizes the notion that PSBL ion beams are important for magnetosphere-ionosphere coupling. However, it is also shown that the dissipation of electromagnetic energy flux (at altitudes below Cluster of the simultaneously occurring Alfvén waves and FAC was larger (FAC being the largest than the dissipation of beam kinetic energy flux, and thus these two energy carriers contributed more to the energy transport on PSBL field lines

  16. Hydrogen atoms in the presence of a homogeneous magnetic field

    International Nuclear Information System (INIS)

    Brandi, H.S.; Koiller, B.

    1978-01-01

    A variational scheme to obtain the spectrum of the hydrogen atom in the presence of an external homogeneous magnetic field is proposed. Two different sets of basis function to diagonalize the Hamiltonian describing the system are used, namely the eigenfunctions of the free hydrogen atom and of the three-dimensional harmonic oscillator; both having their radial coordinates properly scaled by a variational parammeter. Because of its characteristics, the present approach is suitable to describe the ground state as well as an infinite number of excited states also for a wide range of magnetic field strengths [pt

  17. State-selective imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.

    2008-01-01

    Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We

  18. Molecules in strong laser fields. In depth study of H{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Manohar

    2009-10-29

    A method for solving the time-dependent Schroedinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like H{sub 2}, fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. The H{sub 2} molecule is the testing ground for the implementation of both the methods. The reliability of the configuration interaction (CI) based method for the solution of TDSE (CI-TDSE) is tested by comparing results in the low-intensity regime to the prediction of lowest-order perturbation theory. Another test for the CI-TDSE method is in the united atom limit for the H{sub 2} molecule. By selecting a very small value of the internuclear distance close to zero for the H{sub 2} molecule, Helium atom is obtained. Once the functionality and the reliability of the method is established, it is used for obtaining accurate results for molecular hydrogen exposed to intense laser fields. The results for the standard 800 nm Titanium-Sapphire laser and its harmonics at 400 nm and 266 nm are shown. The results for a scan over a wide range of incident photon energies as well as dependence on the internuclear distance are presented. The photoelectron spectra including

  19. Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jørgensen, L V; Kerrigan, S J; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-01-01

    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom.

  20. Eletromagnetivity: the mainspring for the understanding of all the phenomena

    International Nuclear Information System (INIS)

    Sousa, Clessio Alves

    2013-01-01

    Full text: In the present article, we present the unification of the four fundamental forces (strong force, electroweak, electromagnetic and gravitational) of Nature; demonstrating that, three of them, are just different manifestations of the intensity of a single force - Gravity. Done that, through the unified force, it is explained the mechanism of cohesion of the atomic nucleus, the cause of the Pioneer anomaly, the origin of inertia, the mechanism of the red shift because of a gravitational field and it is demonstrated, through the formula of centrifugal force the reality of the Machs Principle. Moreover, the cause of phenomena already known are explained; such as the superfluidity of helium II, the nature of the escape velocity, the nature of matter and dark energy, the formation mechanism of black holes in the galactic center, the mechanism of gravitational interaction, the variation of energy that must be added to the terms of the total mechanical energy of a system and the retrograde motion of Venus. Furthermore, by the present theory, it is unified the general relativity to the quantum mechanics into a single theoretical body; after establishing the ratio between small and large scales in the universe, proving the applicability of the same physical laws in both situations. (author)

  1. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  2. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    Science.gov (United States)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  3. A strong electroweak phase transition from the inflaton field

    Energy Technology Data Exchange (ETDEWEB)

    Tenkanen, Tommi; Tuominen, Kimmo [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Vaskonen, Ville [Helsinki Institute of Physics, P.O. Box 64, FI-00014, Helsinki (Finland); Department of Physics, University of Jyvaskyla, P.O.Box 35 (YFL), FI-40014 University of Jyvaskyla (Finland)

    2016-09-22

    We study a singlet scalar extension of the Standard Model. The singlet scalar is coupled non-minimally to gravity and assumed to drive inflation, and also couple sufficiently strongly with the SM Higgs field in order to provide for a strong first order electroweak phase transition. Requiring the model to describe inflation successfully, be compatible with the LHC data, and yield a strong first order electroweak phase transition, we identify the regions of the parameter space where the model is viable. We also include a singlet fermion with scalar coupling to the singlet scalar to probe the sensitivity of the constraints on additional degrees of freedom and their couplings in the singlet sector. We also comment on the general feasibility of these fields to act as dark matter.

  4. Identifying the Tunneling Site in Strong-Field Ionization of H_{2}^{+}.

    Science.gov (United States)

    Liu, Kunlong; Barth, Ingo

    2017-12-15

    The tunneling site of the electron in a molecule exposed to a strong laser field determines the initial position of the ionizing electron and, as a result, has a large impact on the subsequent ultrafast electron dynamics on the polyatomic Coulomb potential. Here, the tunneling site of the electron of H_{2}^{+} ionized by a strong circularly polarized (CP) laser pulse is studied by numerically solving the time-dependent Schrödinger equation. We show that the electron removed from the down-field site is directly driven away by the CP field and the lateral photoelectron momentum distribution (LPMD) exhibits a Gaussian-like distribution, whereas the corresponding LPMD of the electron removed from the up-field site differs from the Gaussian shape due to the Coulomb focusing and scattering by the down-field core. Our current study presents the direct evidence clarifying a long-standing controversy over the tunneling site in H_{2}^{+} and raises the important role of the tunneling site in strong-field molecular ionization.

  5. Electron impact phenomena and the properties of gaseous ions

    CERN Document Server

    Field, F H; Massey, H S W; Brueckner, Keith A

    1970-01-01

    Electron Impact Phenomena and the Properties of Gaseous Ions, Revised Edition deals with data pertaining to electron impact and to molecular gaseous ionic phenomena. This book discusses electron impact phenomena in gases at low pressure that involve low-energy electrons, which result in ion formation. The text also describes the use of mass spectrometers in electron impact studies and the degree of accuracy obtained when measuring electron impact energies. This book also reviews relatively low speed electrons and the transitions that result in the ionization of the atomic system. This text the

  6. Correlated motion of two atoms trapped in a single-mode cavity field

    International Nuclear Information System (INIS)

    Asboth, Janos K.; Domokos, Peter; Ritsch, Helmut

    2004-01-01

    We study the motion of two atoms trapped at distant positions in the field of a driven standing-wave high-Q optical resonator. Even without any direct atom-atom interaction the atoms are coupled through their position dependent influence on the intracavity field. For sufficiently good trapping and low cavity losses the atomic motion becomes significantly correlated and the two particles oscillate in their wells preferentially with a 90 deg. relative phase shift. The onset of correlations seriously limits cavity cooling efficiency, raising the achievable temperature to the Doppler limit. The physical origin of the correlation can be traced back to a cavity mediated crossfriction, i.e., a friction force on one particle depending on the velocity of the second particle. Choosing appropriate operating conditions allows for engineering these long range correlations. In addition this cross-friction effect can provide a basis for sympathetic cooling of distant trapped clouds

  7. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  8. Association of atoms into universal dimers using an oscillating magnetic field.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2015-03-13

    In a system of ultracold atoms near a Feshbach resonance, pairs of atoms can be associated into universal dimers by an oscillating magnetic field with a frequency near that determined by the dimer binding energy. We present a simple expression for the transition rate that takes into account many-body effects through a transition matrix element of the contact. In a thermal gas, the width of the peak in the transition rate as a function of the frequency is determined by the temperature. In a dilute Bose-Einstein condensate of atoms, the width is determined by the inelastic scattering rates of a dimer with zero-energy atoms. Near an atom-dimer resonance, there is a dramatic increase in the width from inelastic atom-dimer scattering and from atom-atom-dimer recombination. The recombination contribution provides a signature for universal tetramers that are Efimov states consisting of two atoms and a dimer.

  9. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    Science.gov (United States)

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  10. Engineering a spin-fet: spin-orbit phenomena and spin transport induced by a gate electric field

    OpenAIRE

    Cardoso, J. L.; Hernández-Saldaña, H.

    2012-01-01

    In this work, we show that a gate electric field, applied in the base of the field-effect devices, leads to inducing spin-orbit interactions (Rashba and linear Dresselhauss) and confines the transport electrons in a two-dimensional electron gas. On the basis of these phenomena we solve analytically the Pauli equation when the Rashba strength and the linear Dresselhaus one are equal, for a tuning value of the gate electric field $\\mathcal{E}_g^*$. Using the transfer matrix approach, we provide...

  11. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  12. Dynamics of moving interacting atoms in a laser radiation field and optical size resonances

    International Nuclear Information System (INIS)

    Gadomskii, O.N.; Glukhov, A.G.

    2005-01-01

    The forces acting on interacting moving atoms exposed to resonant laser radiation are calculated. It is shown that the forces acting on the atoms include the radiation pressure forces as well as the external and internal bias forces. The dependences of the forces on the atomic spacing, polarization, and laser radiation frequency are given. It is found that the internal bias force associated with the interaction of atomic dipoles via the reemitted field may play an important role in the dynamics of dense atomic ensembles in a light field. It is shown that optical size resonances appear in the system of interacting atoms at frequencies differing substantially from transition frequencies in the spectrum of atoms. It is noted that optical size resonances as well as the Doppler frequency shift in the spectrum of interacting atoms play a significant role in the processes of laser-radiation-controlled motion of the atoms

  13. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  14. One-atom detection and statistical studies with resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.; Hurst, G.S.

    1982-01-01

    To learn how to take matter apart atom-by-atom and to count each atom according to its type, regardless of its initial chemical or physical state, is presumably a worthy goal in scientific research. The advent of the laser created real hope that these aspirations will be realized. The counting of atoms is not merely an intellectual exercise set apart from real-world applications. On the contrary, even though the capability is scarcely more than five years old, practical applications have been made in many fields of chemistry, physics, the environment, and industry. In this lecture we wish to review how the laser made possible the counting of atoms and how this capability has been put to use in situations where atoms are free to react chemically as they diffuse through a medium. Fluctuation phenomena and statistical mechanics can also be examined in these situations

  15. Strong-Field Control of Laser Filamentation Mechanisms

    Science.gov (United States)

    Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan

    2008-05-01

    The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.

  16. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  17. Probing the quantum analog of chaos with atoms in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Gay, J C; Delande, D

    1987-01-01

    For a few years, considerable interest arose in the problem of the quantum analog of classical chaos for hamiltonian system. Among several other simple atomic physics systems, the atom in a magnetic field turns out to be the most promising prototype for tackling such questions. The classical and quantum motions are now well understood. The experimental study is possible in high Rydberg states of atoms. Throughout the study of some aspects of this problem, the authors demonstrate that the quantum analog of chaos presents a two-fold aspect. While the spectral properties at short range are conveniently described by Random matrix theories, a long-range order still exist in the quantum dynamics which indicates the existence of scars of symmetries. This in turn is quite clearly exhibited in the experimental data on Rydberg atoms. Finally the authors indicate how to generalize the notions to any situation involving the Coulomb field and perturbing potentials. 21 refs.; 8 figs.

  18. Seventh international seminar on ion-atom collisions (ISIAC VII): summary

    International Nuclear Information System (INIS)

    1981-01-01

    The scientific program was structured into eight symposia representing seven important research areas. The subject matter was expanded to include ion-molecule collisions as one of the eight symposia. The symposia were: (1) collisions involving strong binding phenomena and nuclear effects; (2) low-energy, high charge state collisions; (3) Rydberg states; (4) an Open Session; (5) ion-molecule collisions; (6) laser applications to atomic and molecular collisions; (7) collision spectroscopy; and (8) polarization, alignment and correlation

  19. General Atomic's superconducting toroidal field coil concept

    International Nuclear Information System (INIS)

    Alcorn, J.; Purcell, J.

    1978-01-01

    General Atomic's concept for a superconducting toroidal field coil is presented. The concept is generic for large tokamak devices, while a specific design is indicated for a 3.8 meter (major radius) ignition/burn machine. The concept utilizes bath cooled NbTi conductor to generate a peak field of 10 tesla at 4.2 K. The design is simple and straightforward, requires a minimum of developmental effort, and draws extensively upon the perspective of past experience in the design and construction of large superconducting magnets for high energy physics. Thus, the primary emphasis is upon economy, reliability, and expeditious construction scheduling. (author)

  20. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    Science.gov (United States)

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere.

  1. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  2. Electron dynamics in metals and semiconductors in strong THz fields

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2017-01-01

    Semiconductors and metals respond to strong electric fields in a highly nonlinear fashion. Using single-cycle THz field transients it is possible to investigate this response in regimes not accessible by transport-based measurements. Extremely high fields can be applied without material damage...

  3. Properties of the localized field emitted from degenerate Λ-type atoms in photonic crystals

    International Nuclear Information System (INIS)

    Foroozani, N.; Golshan, M. M.; Mahjoei, M.

    2007-01-01

    The spontaneous emission from a degenerate Λ-type three-level atom, embedded in a photonic crystal, is studied. The emitted field, as a function of time and position, is calculated by solving the three coupled differential equations governing the amplitudes. We show that the spontaneously emitted field is characterized by three components (as in the case of two-level and V-type atoms): a localized part, a traveling part, and a t -3/2 decaying part. Our calculations indicate that under specific conditions the atoms do not emit propagating fields, while the localized field, having shorter localization length and time, is intensified. As a consequence, the population of the upper level, after a short period of oscillations, approaches a constant value. It is also shown that this steady value, under the same conditions, is much larger than its counterpart in V-type atoms

  4. Modulation of periodic field on the atomic current in optical lattices with Landau–Zener tunneling considered

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jie-Yun, E-mail: jyyan@bupt.edu.cn; Wang, Lan-Yu, E-mail: lan_yu_wang@163.com

    2016-09-01

    We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau–Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau–Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau–Zener tunneling probability has almostly become a constant.

  5. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  6. Advances in the study of far-field phenomena affecting repository performance

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1991-01-01

    Studies of far-field phenomena affecting repository performance have focussed on the role of fractures and other heterogeneities in the potential transport of radioactive solutes from the repository to the biosphere. The present paper summarizes two recent advances in the subject: the channeling model for the understanding and analysis tracer transport in variable-aperture fractures and the modeling of coupled thermo-hydro-mechanical processes in geologic formation around a repository. The paper concludes with remarks on the need for duality in the approach to performance assessment. One line of the duality is fundamental studies and the other, goal-oriented assessment to satisfy regulatory requirements. 15 refs., 10 figs., 1 tab

  7. Capture of muons in atoms

    International Nuclear Information System (INIS)

    Vogel, P.

    1978-01-01

    A lecture is given on the general theoretical framework developed for the description of the formation of mesic atom and the initial part of the atomic cascade. Some of the observable phenomena are also discussed. 16 references

  8. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  9. STRONG FIELD EFFECTS ON PULSAR ARRIVAL TIMES: GENERAL ORIENTATIONS

    International Nuclear Information System (INIS)

    Wang Yan; Creighton, Teviet; Price, Richard H.; Jenet, Frederick A.

    2009-01-01

    A pulsar beam passing close to a black hole can provide a probe of very strong gravitational fields even if the pulsar itself is not in a strong field region. In the case that the spin of the hole can be ignored, we have previously shown that all strong field effects on the beam can be understood in terms of two 'universal' functions: F(φ in ) and T(φ in ) of the angle of beam emission φ in ; these functions are universal in that they depend only on a single parameter, the pulsar/black hole distance from which the beam is emitted. Here we apply this formalism to general pulsar-hole-observer geometries, with arbitrary alignment of the pulsar spin axis and arbitrary pulsar beam direction and angular width. We show that the analysis of the observational problem has two distinct elements: (1) the computation of the location and trajectory of an observer-dependent 'keyhole' direction of emission in which a signal can be received by the observer; and (2) the determination of an annulus that represents the set of directions containing beam energy. Examples of each are given along with an example of a specific observational scenario.

  10. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields

    Science.gov (United States)

    Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

  11. Rapid Transition of the Hole Rashba Effect from Strong Field Dependence to Saturation in Semiconductor Nanowires

    Science.gov (United States)

    Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex

    2017-09-01

    The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.

  12. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    International Nuclear Information System (INIS)

    Ding Chunling; Li Jiahua; Yang Xiaoxue; Zhan Zhiming; Liu Jibing

    2011-01-01

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  13. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  14. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Science.gov (United States)

    Ongonwou, F.; Tetchou Nganso, H. M.; Ekogo, T. B.; Kwato Njock, M. G.

    2016-12-01

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  15. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon); Ekogo, T.B., E-mail: tekogo@yahoo.fr [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Kwato Njock, M.G., E-mail: mkwato@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)

    2016-12-15

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  16. The photonics collapse-revival's of intensity-dependent coupling of lambda atoms and fields

    International Nuclear Information System (INIS)

    Hajivandi, J.; Golshan, M. M.

    2007-01-01

    In this paper, we extend the intensity-dependent coupling of the interaction of two-level atoms and an electromagnetic field, originated by Sivakumar, to that of Λ-type atoms. In addition, we assume that the interaction occurs in a Kerr medium. In the present model we allow the Λ-type atom to interact with two quantized electromagnetic fields, one of which is initially coherent while the other one is not. We thus report the effect of such coupling and the medium on the collapse-revival's of the photonic mean numbers.

  17. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  18. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  19. Quantum dynamics of atoms in a resonator-generated optical lattice

    International Nuclear Information System (INIS)

    Maschler, C.; Ritsch, H.

    2005-01-01

    Full text: We investigate the quantum motion of coherently driven ultracold atoms in the field of a damped high-Q optical cavity mode. The laser field is chosen far detuned from the atomic transition but close to a cavity resonance, so that spontaneous emission is strongly suppressed but a coherent field builds up in the resonator by stimulated scattering. On one hand the shape of the atomic wave function determines the field dynamics via the magnitude of the scattering and the effective refractive index the atoms create for the mode. The mode intensity on the other hand determines the optical dipole force on the atoms.The system shows rich atom-field dynamics including self organization, self-trapping, cooling or heating. In the limit of deep trapping we are able to derive a system of closed, coupled equations for a finite set of atomic expectation values and the field. This allows us to determine the self-consistent ground state of the system as well as the eigenfrequencies and damping rates for excitations. To treat several atoms in more detail we introduce the Bose-Hubbard model. This allows us to investigate several aspects of the quantum motion of the atoms inside the cavity. (author)

  20. Examination of employment in the atomic energy field

    International Nuclear Information System (INIS)

    Baker, J.G.

    1978-02-01

    This study, which focuses on the years 1968--1975, singles out important employment trends in the atomic energy field and develops causal explanations for these trends. The study also provides a descriptive profile of employment in the field. Employment in the atomic energy field has grown from 138,519 in 1963 to 197,466 in 1975, an annual rate of 3.0 percent. The deployment of scientists, engineers, and technicians in the government-owned, contractor-operated (GOCO) sector changed little from 1968 to 1975. Private sector deployment altered considerably, with a large increase. Within the scientist group, the GOCO sector employment by field has changed little from 1968 to 1975. Private sector scientists have seen considerable alteration of their employment. There has been little change in the employment shares of engineering fields in the GOCO sector for the 1968 to 1975 period. Private sector engineers have seen much greater change, with civil engineers increasing their share 6% to 11%. Of all GOCO technicians, physical science technicians have increased their employment share from 12% to 17%. Of all private sector technicians, draftsmen have increased their share from 29% to 37% and reactor operators from 4% to 7%. Total employment in the field is shifting toward smaller firms. Employment by region has changed considerably in the private sector from 1968 to 1975. GOCO regional employment has also changed. The percentage of scientists and engineers involved in research and development has declined from 68% in 1968 to 39% in 1975. Three private sector industrial segments--reactor design and manufacturing, nuclear facilities design and engineering, and operation and maintenance of reactors--have experienced tremendous growth from 1968 to 1975. 8 figures, 32 tables

  1. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  2. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  3. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    Science.gov (United States)

    Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.

    2015-05-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.

  4. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    International Nuclear Information System (INIS)

    Shanenko, A A; Aguiar, J Albino; Vagov, A; Croitoru, M D; Milošević, M V

    2015-01-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D–2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin–Wagner–Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri–Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg–Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields. (paper)

  5. Behaviour of tunnelling transition rate of argon atom exposed to ...

    Indian Academy of Sciences (India)

    in the strong laser field ionization of atoms and molecules. ... state in the discrete spectrum and the final state in the continuum of a quantum system in ... In this paper we used the ADK model to describe the tunnel ionization of atoms and.

  6. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  7. Large orders in strong-field QED

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Schroeder, Oliver [Science-Computing ag, Hagellocher Weg 73, D-72070 Tuebingen (Germany)

    2006-09-15

    We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarization tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 82 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarization tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields.

  8. Atomic quasi-Bragg-diffraction in a magnetic field

    NARCIS (Netherlands)

    Domen, K.F.E.M.; Jansen, M.A.H.M.; Dijk, van W.; Leeuwen, van K.A.H.

    2009-01-01

    We report on a technique to split an at. beam coherently with an easily adjustable splitting angle. In our expt. metastable helium atoms in the |{1s2s}3S1 M=1 state diffract from a polarization gradient light field formed by counterpropagating .sigma.+ and .sigma.- polarized laser beams in the

  9. Slow collisions between identical atoms in a laser field: Application of the Born and Markov approximations to the system of moving atoms

    International Nuclear Information System (INIS)

    Trippenbach, M.; Gao, B.; Cooper, J.; Burnett, K.

    1992-01-01

    We have derived reduced-density-matrix equations of motion for a pair of two identical atoms moving in the radiation field as the first step in establishing a theory of collisional redistribution of light from neutral-atom traps. We use the Zwanzig projection-operator technique to average over spontaneous field modes and establish the conditions under which Born and Markov approximations can be applied to the system of moving atoms. It follows from these considerations that when these conditions hold, the reduced-density-matrix equation for moving atoms has the same form as that for the stationary case: time dependence is introduced into the decay rates and interaction potentials by making the substitution R=R(t)

  10. Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields

    OpenAIRE

    Lee, Jaehak; Park, Jiyong; Lee, Sang Min; Lee, Hai-Woong; Khosa, Ashfaq H.

    2008-01-01

    We propose a cavity-QED-based scheme of generating entanglement between atoms. The scheme is scalable to an arbitrary number of atoms, and can be used to generate a variety of multipartite entangled states such as the Greenberger-Horne-Zeilinger, W, and cluster states. Furthermore, with a role switching of atoms with photons, the scheme can be used to generate entanglement between cavity fields. We also introduce a scheme that can generate an arbitrary multipartite field graph state.

  11. Creation and recovery of a W(111) single atom gas field ion source

    International Nuclear Information System (INIS)

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-01-01

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  12. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    Science.gov (United States)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  13. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  14. Production of antihydrogen at reduced magnetic field for anti-atom trapping

    CERN Document Server

    Andresen, G.B.; Boston, A.; Bowe, P.D.; Cesar, C.L.; Chapman, S.; Charlton, M.; Chartier, M.; Deutsch, A.; Fajans, J.; Fujiwara, M.C.; Funakoshi, R.; Gill, D.R.; Gomberoff, K.; Hangst, J.S.; Hayano, R.S.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R.D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We have demonstrated production of antihydrogen in a 1$,$T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3$,$T) and ATRAP (5$,$T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3$,$T, and then mix the antiprotons with positrons at 1$,$T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed.

  15. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  16. Light-induced phenomena in polymeric thin films

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Pospíšil, Jan

    2005-01-01

    Roč. 7, č. 3 (2005), s. 1157-1168 ISSN 1454-4164 R&D Projects: GA MŠk ME 700 Institutional research plan: CEZ:AV0Z40500505 Keywords : Light-induced phenomena * photodegradation * photochromism Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.138, year: 2005

  17. Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.

  18. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies.

    Science.gov (United States)

    Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek

    2018-07-24

    Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.

  19. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  20. Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    International Nuclear Information System (INIS)

    Lee, J. Y.; Guan, X. W.; Batchelor, M. T.; Lee, C.

    2009-01-01

    We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H c1 ; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m F =1> when the external magnetic field exceeds the upper critical field H c2 ; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H c1 c2 . At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m F =1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

  1. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  2. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  3. Strong equivalence, Lorentz and CPT violation, anti-hydrogen spectroscopy and gamma-ray burst polarimetry

    International Nuclear Information System (INIS)

    Shore, Graham M.

    2005-01-01

    The strong equivalence principle, local Lorentz invariance and CPT symmetry are fundamental ingredients of the quantum field theories used to describe elementary particle physics. Nevertheless, each may be violated by simple modifications to the dynamics while apparently preserving the essential fundamental structure of quantum field theory itself. In this paper, we analyse the construction of strong equivalence, Lorentz and CPT violating Lagrangians for QED and review and propose some experimental tests in the fields of astrophysical polarimetry and precision atomic spectroscopy. In particular, modifications of the Maxwell action predict a birefringent rotation of the direction of linearly polarised radiation from synchrotron emission which may be studied using radio galaxies or, potentially, gamma-ray bursts. In the Dirac sector, changes in atomic energy levels are predicted which may be probed in precision spectroscopy of hydrogen and anti-hydrogen atoms, notably in the Doppler-free, two-photon 1s-2s and 2s-nd (n∼10) transitions

  4. Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields

    International Nuclear Information System (INIS)

    Yuan Lin; Zhou Ben-Hu; Zhao Yun-Hui; Xu Jun; Hai Wen-Hua

    2012-01-01

    A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions

  5. Control of one- and two-photon absorption in a four-level atomic system by changing the amplitude and phase of a driving microwave field

    International Nuclear Information System (INIS)

    Hou, B P; Wang, S J; Yu, W L; Sun, W L

    2005-01-01

    We consider the one- and two-photon absorption spectra of a four-level Y-type atom with the two highest lying levels driven by a microwave field. We found that in the one-photon absorption case, the microwave field can lead to the probe gain, and the absorption and gain spectral structures depend strongly on the microwave field amplitude. For the two-photon absorption case, the strong microwave field can enhance the absorption. When the microwave field amplitude is reduced to a certain value, the single absorption peak in the two-photon spectrum changes into a structure of two-peak structure with different magnitudes. Moreover, the one- and two-photon absorption spectra can be modulated by the phase of the microwave field which produces a closed-loop configuration. Finally, we use the analytic solutions in terms of dressed-state basis to explain the results from our numerical calculation

  6. Observation of self-assembled fluorescent beads by scanning near-field optical microscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Kim, Min-Gon; Kyu Park, Hyun; Hyun Chung, Bong

    2006-01-01

    Optical response and topography of fluorescent latex beads both on flat self-assembled monolayer and on a micron-patterned surface with poly(dimethylsiloxane) are studied. Scanning near-field optical microscopy and atomic force microscopy were utilized together for detecting fluorescence and imaging topography of the patterned latex beads, respectively. As a result, the micro-patterned latex beads where a specific chemical binding occurred show a strong signal, whereas no signals are observed in the case of nonspecific binding. With fluorescein isothiocyanate (FITC), it is convenient to measure fluorescence signal from the patterned beads allowing us to monitor the small balls of fluorescent latex

  7. Lattice fields and strong interactions

    International Nuclear Information System (INIS)

    Creutz, M.

    1989-06-01

    I review the lattice formulation of gauge theories and the use of numerical methods to investigate nonperturbative phenomena. These methods are directly applicable to studying hadronic matter at high temperatures. Considerable recent progress has been made in numerical algorithms for including dynamical fermions in such calculations. Dealing with a nonvanishing baryon density adds new unsolved challenges. 33 refs

  8. Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ding Chunling; Li Jiahua; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhan Zhiming [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Liu Jibing, E-mail: clding2006@126.com, E-mail: huajia_li@163.com [Department of Physics, Hubei Normal University, Huangshi 435002 (China)

    2011-07-28

    A scheme of two-dimensional atom localization based on a coherence-controlled absorption spectrum in an N-tripod-type five-level system is proposed, in which the atom interacts with a weak probe field and three standing-wave fields. Position information of the atom can be achieved by measuring the probe absorption. It is found that the localization properties are significantly improved due to the interaction of dark resonances. It is also shown that the localization factors depend strongly on the system parameters that lead to such spatial structures of localization as chain-like, wave-like, '8'-like, spike-like, crater-like and heart-like patterns. By properly adjusting the system parameters, we can achieve a high-precision and high-resolution atom localization under certain conditions.

  9. Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions

    International Nuclear Information System (INIS)

    Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.

    2000-01-01

    COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'

  10. Unraveling the physics of nanofluidic phenomena at the single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    Despite groundbreaking potential in a broad application space, several nanofluidic phenomena remain poorly understood. Toward advancing the understanding of fluid behavior under nanoscale confinement, we developed a novel, ideal platform for fundamental molecular transport studies, in which the fluidic channel is a single carbon nanotube (CNT). CNTs offer the advantage of simple chemistry and structure, which can be synthetically tuned with nanometer precision and accurately modeled. With combined experimental and computational approaches, we demonstrated that CNT pores with 1-5 nm diameters conduct giant ionic currents that follow an unusual sublinear electrolyte concentration dependence. The large magnitude of the ionic conductance appears to originate from a strong electro-osmotic flow in smooth CNT pores. First-principle simulations suggest that electro-osmotic flow arises from localized negative polarization charges on carbon atoms near a potassium (K+) ion and from the strong cation-graphitic wall interactions, which drive K+ ions much closer to the wall than chlorides (Cl-). Single-molecule translocation studies reveal that charged molecules may be distinguished from neutral species on the basis of the sign of the transient current change during their passage through the nanopore. Together with shedding light on a few controversial questions in the CNT nanofluidics area, these results may benefit LLNL’s Security Mission by providing the foundation for the development of advanced single-molecule detection system for bio/chem/explosive analytes. In addition, these experimental and computational platforms can be applied to advance fundamental knowledge in other fields, from energy storage and membrane separation to superfluid physics.

  11. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1982-01-01

    An attempt is made to introduce the reader to the basic physical ideas involved in the field-ion and atom-probe field-ion microscope techniques, and to the applications of these techniques to the study of defects and radiation damage in solids. The final section discusses, in precise form, the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He atoms in tungsten. The paper is heavily referenced so that the reader can pursue his specific research interest in detail

  12. Entanglement for a Bimodal Cavity Field Interacting with a Two-Level Atom

    International Nuclear Information System (INIS)

    Liu Jia; Chen Ziyu; Bu Shenping; Zhang Guofeng

    2009-01-01

    Negativity has been adopted to investigate the entanglement in a system composed of a two-level atom and a two-mode cavity field. Effects of Kerr-like medium and the number of photon inside the cavity on the entanglement are studied. Our results show that atomic initial state must be superposed, so that the two cavity field modes can be entangled. Moreover, we also conclude that the number of photon in the two cavity mode should be equal. The interaction between modes, namely, the Kerr effect, has a significant negative contribution. Note that the atom frequency and the cavity frequency have an indistinguishable effect, so a corresponding approximation has been made in this article. These results may be useful for quantum information in optics systems.

  13. High-efficiency one-dimensional atom localization via two parallel standing-wave fields

    International Nuclear Information System (INIS)

    Wang, Zhiping; Wu, Xuqiang; Lu, Liang; Yu, Benli

    2014-01-01

    We present a new scheme of high-efficiency one-dimensional (1D) atom localization via measurement of upper state population or the probe absorption in a four-level N-type atomic system. By applying two classical standing-wave fields, the localization peak position and number, as well as the conditional position probability, can be easily controlled by the system parameters, and the sub-half-wavelength atom localization is also observed. More importantly, there is 100% detecting probability of the atom in the subwavelength domain when the corresponding conditions are satisfied. The proposed scheme may open up a promising way to achieve high-precision and high-efficiency 1D atom localization. (paper)

  14. Magnetohydrodynamic free convection in a strong cross field

    NARCIS (Netherlands)

    Kuiken, H.K.

    1970-01-01

    The problem of magnetohydrodynamic free convection of an electrically conducting fluid in a strong cross field is investigated. It is solved by using a singular perturbation technique. The solutions presented cover the range of Prandtl numbers from zero to order one. This includes both the important

  15. Maxwell fields in the vicinity of an atom: are they essentially classical

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1984-01-01

    Multipolar formalism is commonly used as the starting point in quantum optics, and the coupling between the radiation field and atoms is taken to be in the lowest order, namely the electric dipole interaction. In the present work, the authors use the Heisenberg picture to describe the Maxwell fields and the charge fields evolving together as a coupled system. The basic electromagnetic fields are calculated as power series in the transition moments of the atom. At t = 0, the time when the different pictures are chosen to agree, the Maxwell operators act in the photon occupation space only and the electron field operators act solely in the fermion space. However, for t > O, the Heisenberg operators act in the composite space so that the electromagnetic fields are complicated functions of the annihilation and creation operators for both electrons and photons. The explicit forms of the first few terms of the series for the displacement vector and magnetic fields are presented

  16. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  17. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  18. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  19. Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances

    International Nuclear Information System (INIS)

    Pustelny, S.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    In this work, a sensitivity of the rate of relaxation of ground-state atomic coherences to magnetic-field inhomogeneities is studied. Such coherences give rise to many interesting phenomena in light-atom interactions, and their lifetimes are a limiting factor for achieving better sensitivity, resolution, or contrast in many applications. For atoms contained in a vapor cell, some of the coherence-relaxation mechanisms are related to magnetic-field inhomogeneities. We present a simple model describing relaxation due to such inhomogeneities in a buffer-gas-free antirelaxation-coated cell. A relation is given between relaxation rate and magnetic-field inhomogeneities including the dependence on cell size and atomic species. Experimental results, which confirm predictions of the model, are presented. Different regimes, in which the relaxation rate is equally sensitive to the gradients in any direction and in which it is insensitive to gradients transverse to the bias magnetic field, are predicted and demonstrated experimentally

  20. A scheme for teleporting Schrdinger-cat states via the dispersive atom-cavity-field interaction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A proposal is presented for teleporting Schrding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field and on the singlet atomic states are used.