WorldWideScience

Sample records for strong quadrupole light-molecule

  1. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  2. Electrodynamical forbiddance of a strong quadrupole interaction in surface enhanced optical processes. Experimental confirmation of the existence in fullerene C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Polubotko, A. M., E-mail: alex.marina@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Chelibanov, V. P., E-mail: Chelibanov@gmail.com [State University of Information Technologies, Mechanics and Optics (Russian Federation)

    2017-02-15

    It is demonstrated that in the SERS and SEIRA spectra of the fullerene C{sub 60}, the lines, which are forbidden in usual Raman and IR spectra and allowed in SERS and SEIRA, are absent. In addition the enhancement SERS coefficient in a single molecule detection regime is ~10{sup 8} instead of the value 10{sup 14}–10{sup 15}, characteristic for this phenomenon. These results are explained by the existence of so-called electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which arises because of belonging of C{sup 60} to the icosahedral symmetry group and due to the electrodynamical law divE = 0.

  3. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  4. Analytical applications of ion/molecule reactions in a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Kinter, M.T.

    1986-01-01

    The development of triple quadrupole mass spectrometers as a means of performing tandem mass spectrometry has provided a versatile instrument on which the ion/molecule reactions of a mass selected ion can be studied. This dissertation details the application of ion/molecule reactions in a triple quadrupole to two analytical problems. Part I. Ion/Molecule Reactions of Ammonia with Translationally Excited C 2 H 5 O + /Ions. The ability to impart low center-of-mass translational energies, which upon collision are converted into internal energy, allows the observation of reactions that require energy input. In addition, the systematic variation of the ion kinetic energy, often referred to as energy-resolved mass spectrometer, adds another dimension to the mass spectrum and can allow the observation of thresholds for reactions requiring energy input. This investigation develops methods for determining these thresholds. Part 2. The Use of Ion/Molecule Reactions in selected Reaction Monitoring GC/MSD/MS Analyses. An approach to improving the selectivity of an analysis is to improve the selectivity of the detection method. In GC/MS, one method has been to monitor a selected fragmentation reaction, either metastable or collisionally activated, in a selected reaction monitoring (SRM) analysis. This develops the use of ion/molecule reactions for selected reaction monitoring analyses

  5. Communication: General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules

    Science.gov (United States)

    Yachmenev, Andrey; Küpper, Jochen

    2017-10-01

    A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3). The method extends the general variational approach TROVE [J. Mol. Spectrosc. 245, 126-140 (2007)] by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH143. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2 states and the rovibrational transitions in the ν1, ν3, 2ν4, and ν1 + ν3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation.

  6. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  7. Final 6D Muon Ionization Colling using Strong Focusing Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Hart, T. L. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2016-11-15

    Abstract Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future exper- imenters. A muon beam normalized emittance of ax,y,z = (280, 280, 1570)µm has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 µm and complete 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam transversely. Equilibrium transverse emittance is linearly proportional to the transverse betatron function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 µm at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, ssband overlap, quadrupole acceptance, and staying in phase with RF.

  8. The Erez–Rosen metric and the role of the quadrupole on light propagation

    International Nuclear Information System (INIS)

    Bini, Donato; Crosta, Mariateresa; Vecchiato, Alberto; De Felice, Fernando; Geralico, Andrea

    2013-01-01

    The gravitational field of a static body with the quadrupole moment is described by an exact solution found by Erez and Rosen. Here, we investigate the role of the quadrupole in the motion, deflection and lensing of a light ray in the above metric. The standard lensing observables such as image positions and magnification have been explicitly obtained in the weak-field and small-quadrupole limit. In this limit, the spacetime metric appears as the natural generalization to quadrupole corrections of the metric form adopted also in current astrometric models. Hence, the corresponding analytical solution of the inverse ray tracing problem and the consistency with other approaches are also discussed. (paper)

  9. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  10. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  11. Quadrupole corrections to matrix elements of transitions in resonant reactions of muonic molecule formation

    International Nuclear Information System (INIS)

    Faifman, M.P.; Strizh, T.A.; Armour, E.A.G.; Harston, M.R.

    1996-01-01

    The calculated resonant formation rates of the muonic molecules DDμ and DTμ are presented. The approach developed earlier for calculating the transition matrix elements in the dipole approximation has been extended to include the quadrupole terms in the multipole expansion of the interaction operator. The calculated dependence of the DTμ formation rates on the energies of the incident Tμ muonic atoms shows that the effect of including the quadrupole correction is to reduce the magnitude of the peak rates by about 20-30% at the different temperatures, compared to those calculated in the dipole approximation. The dependence on temperature for the DDμ formation rates is obtained with the differences between the presented and previous calculations being less than 5%. (orig.)

  12. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  13. X-ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser

    DEFF Research Database (Denmark)

    Küpper, Jochen; Stern, Stephan; Holmegaard, Lotte

    2014-01-01

    We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive...... imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e. g., structural......-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules....

  14. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    Directory of Open Access Journals (Sweden)

    Y Yousefi

    2018-02-01

    Full Text Available Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3 generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons. For this SMM, it is established that the use of quadrupole excitation (g dependence changes not only the location of the quenching points, but also the number of these points. Also, these quenching points are the steps in hysteresis loops of this SMM. If dipole and quadrupole excitations in classical energy considered, the number of these steps equals to the number that obtained from experimental data.

  15. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    Science.gov (United States)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  16. Measurement of the quadrupole moments of the strongly deformed nuclei 18173Ta108 and 18375Re108 by hyperfine interaction in metals

    International Nuclear Information System (INIS)

    Netz, G.

    1974-01-01

    The quadrupole moments of two single particle proton states were measured in the strongly deformed nuclei region. Both measurements are independent of model because the field gradient is known in a rhenium lattice as well as at the nucleus site of a rhenium atom and also at the nucleus site of an incorporated tantalum atom. The quadrupole moments could thus be directly extracted from the quadrupole interaction frequency, the product of quadrupole moment and field gradient. For the 482 keV state (I = 5/2 + ) in 181 73 Ta 108 one obtains a quadrupole moment of: Q (5/2) = 2.5 +- 0.2 barn. For the 496 keV state (I = 9/2 - ) in 183 75 Re 108 , a quadrupole moment of: Q (0/2) = 3.6 +- 0.4 barn is found. This value agrees well with other experimental data within the framework of the collective model. (orig./LH) [de

  17. The quadrupole moment and strong interaction parameters from muonic and pionic X-ray studies of 237Np

    International Nuclear Information System (INIS)

    Laat, C.T.A.M. de; Taal, A.; Duinker, W.; Konijn, J.; Petitjean, C.; Reist, H.W.; Mueller, W.; Commission of the European Communities, Geel

    1987-01-01

    The X-ray spectrum of muonic and pionic 237 Np has been investigated with muons and pions stopped in a NpO 2 target. The nuclear spectroscopic quadrupole moment was determined to be Q=3.886±0.006 b from the splittings of the muonic 5g→4f hyperfine complexes. The B(E2)↓-values for the first and second excited states were evaluated as 3.17±0.08 and 2.77±0.10 e 2 b 2 , respectively. A comparison between the muonic and pionic 5g→4f hyperfine complexes yields the strong interaction parameter for the pionic 4f state. For the first time a change of sign as function of Z for the strong interaction quadrupole shift ε 2 (4f) has been observed. The standard optical model predictions agree reasonably well with the measured strong interaction monopole shift, ε 0 (4f), and width, Γ 0 (4f), while they disagree with the experimental value for ε 2 . A stronger s-wave repulsion in the optical potential could explain this effect. (orig.)

  18. Luminescence of Rubrene and DCJTB molecules in organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Department of Display Engineering, Hoseo University, Sechul-Ri 160, Baebang, Asan, Chung-Nam 336-795 (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7 (Canada); Song, Wook; Meng, Mei; Kim, Nam Ho; Yoon, Ju-An [Department of Display Engineering, Hoseo University, Sechul-Ri 160, Baebang, Asan, Chung-Nam 336-795 (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Display Engineering, Hoseo University, Sechul-Ri 160, Baebang, Asan, Chung-Nam 336-795 (Korea, Republic of); Wood, Richard; Mascher, Peter [Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada L8S4L7 (Canada)

    2014-02-15

    We investigated the optical properties of light emission based on the resonance energy transfer mechanism between two molecules in the host–dopant systems. For this purpose, we fabricated the organic light-emitting devices with the different doped emissive layers. The host matrices were made of 4,4′,4″-tris(carbasol-l-nyl)triphenylamine (TCTA) and 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) molecules and the doped molecules were 5,6,11,12-tetraphenylnaphtacene (Rubrene) and 4-(Dicyanomethylene)-2-tert-butyl-6- (1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB). The concentrations of the doped molecules were 0.1%, 0.3%, 0.5%, and 0.8%. Through spectroscopic analysis using multi-peak fits with a Gaussian function to the emission spectra, we obtained the relative light intensity of the two dopants according to the doping concentrations and examined the relations between the molecular excited energy states and the nature of energy transfer in the host and dopant systems. We show that the luminous efficiency of the devices has a strong correlation between the energy transfer owing to the individual molecular intrinsic properties and the electrical characteristics associated with the bulky properties in the devices. -- Highlights: • Fabrication and characterization of the OLEDs with a host–dopant system in the emissive layer. • Investigation of the optical properties of light emission based on the resonance energy transfer mechanism between the dopant molecules. • EL and PL spectroscopic study for the structure of the molecular energy levels in the dopant molecules.

  19. Analytical calculation of spin tunneling effect in single molecule magnet Fe8 with considering quadrupole excitation

    OpenAIRE

    Y Yousefi; H Fakhari; K Muminov; M R Benam

    2018-01-01

    Spin tunneling effect in Single Molecule Magnet Fe8 is studied by instanton calculation technique using SU(3) generalized spin coherent state in real parameter as a trial function. For this SMM, tunnel splitting arises due to the presence of a Berry like phase in action, which causes interference between tunneling trajectories (instantons). For this SMM, it is established that the use of quadrupole excitation (g dependence) changes not only the location of the quenching points, but also the n...

  20. High-Resolution State-Selected Ion-Molecule Reaction Studies Using Pulsed Field Ionization Photoelectron-Secondary Ion Coincidence Method

    National Research Council Canada - National Science Library

    Qian, X

    2003-01-01

    We have developed an octopole-quadrupole photoionization apparatus at the Advanced Light Source for absolute integral cross-section measurements of rovibrational-state-selected ion-molecule reactions...

  1. Electric quadrupole moments and strong interaction effects in pionic atoms of 165Ho, 175Lu, 176Lu, 179Hf and 181Ta

    International Nuclear Information System (INIS)

    Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.

    1981-05-01

    The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)

  2. Quadrupole moment and a proton halo structure in 17F (Iπ = 5/2+)

    International Nuclear Information System (INIS)

    Zhou Dongmei; Zheng Yongnan; Yuan Daqing; Xizhen, Zhang; Zuo Yi; Minamisono, T; Matsuta, M; Fukuda, M; Mihara, M; Zhang Chunlei; Zhiqiang, Wang; Du Enpeng; Luo Hailong; Xu Guoji; Zhu Shengyun

    2007-01-01

    The quadrupole moment of light nuclei 17 F in the ground state (I π = 5/2 + ) is measured by the β-NMR method. The effective charge of the last proton in a d 5/2 orbit for 17 F is extracted from the measured quadrupole moment Q( 17 F) divided by the quadrupole moment Q sp calculated with a single particle model. A proton effective charge of e eff p = 1.12 ± 0.07e is obtained, which is in agreement with that given by a particle-vibration coupling model calculation within the experimental error. The present value of the proton effective charge is strong evidence for the existence of a proton skin in 17 F (I π = 5/2 + )

  3. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  4. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  5. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    Science.gov (United States)

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  6. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  7. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2018-01-01

    This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...

  8. Controlling the alignment of neutral molecules by a strong laser field

    DEFF Research Database (Denmark)

    Sakai, H.; Hilligsøe, Karen Marie; Hald, K.

    1999-01-01

    by lowering the initial rotational energy of the molecules or by increasing the laser intensity. The alignment is measured by photodissociating the molecules with a femtosecond laser pulse and detecting the direction of the photofragments by imaging techniques. The strongest degree of alignment observed......A strong nonresonant nanosecond laser pulse is used to align neutral iodine molecules. The technique, applicable to both polar and nonpolar molecules, relies on the interaction between the strong laser field and the induced dipole moment of the molecules. The degree of alignment is enhanced...

  9. Strong quadrupole interaction in electron paramagnetic resonance. Study of the indium hexacyanide (III) in KCl irradiated with electrons

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1973-08-01

    The radiation effects in ]Ir III (CN) 6 ] 3- diamagnetic complexe inserted in the KCl lattice and irradiated with electrons of 2MeV by electron spin resonance (ESR) are analysed. Formulas for g and A tensors in the ligand field approximation, are derivated to calculate non coupling electron density in the metal. The X polarization field of inner shells is positive, indicating a 6s function mixture in the non coupling electron molecular orbital. The observed hyperfine structure is assigned to 4 equivalent nitrogen and one non equivalent nitrogen. This hypothesis is verified by experience of isotope substitution with 15 N. The s and p spin density in ligands are calculated and discussed in terms of molecular obitals. The effects of strong quadrupole interaction into the EPR spectra of ]Ir II (CN) 5 ] 3- complex are analysed by MAGNSPEC computer program to diagonalize the Spin Hamiltonian of the system. Empiric rules for EPR espectrum interpretation with strong quadrupole interaction. A review of EPR technique and a review of main concepts of crystal-field and ligand field theories, are also presented. (M.C.K.) [pt

  10. Dispersion interaction between an atom and linear molecule

    International Nuclear Information System (INIS)

    Carvalho, I.L. de

    1987-01-01

    The Jacobi-Csanak method is adapted to the calculation of the dipole-dipole, dipole-quadrupole, quadrupole-dipole, and quadrupole-quadrupole terms of the dispersion energy of an atom-linear molecule system. The angle-dependent parts of the Born amplitudes for the linear molecule are represented by real spherical harmonics. The dispersion energy is finite at all distances and reproduces the usual expression in the asymptotic region (R≥4.7 (angstrom)). In the intermediary region (2.4(angstrom) ≤ R [pt

  11. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  12. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  13. Beam-based alignment of C-shaped quadrupole magnets

    International Nuclear Information System (INIS)

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm

  14. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  15. The beam based alignment technique for the measurements of beam position monitors offsets and beam offsets from quadrupoles in the Pohang Light Source

    International Nuclear Information System (INIS)

    Kim, K.H.; Huang, J.Y.; Ko, I.S.

    1999-01-01

    The beam based alignment (BBA) technique is applied to the 2-GeV storage ring of the Pohang Light Source to measure the offsets of beam position monitors. This measurement is particularly necessary for beam position monitors (BPMs) plugged into a long (∼10 m) aluminum chamber, since the mechanical deformation of the vacuum chamber is experienced after repeated heating for the outgassing process, and the BPM positions are changed accordingly. A part of the excitation current of each quadrupole magnet is shunted through an electronic shunt circuit. Then, the closed orbit receives a perturbation due to the current reduction. Using two quadrupole magnets, we can measure the offset of each BPM. Also, the BBA technique is applied to measure the beam offsets from the center of quadrupole magnets, and gives information to the survey team about which quadrupole magnets should be aligned mostly. In this process, we introduce the merit function to reduce various errors such as BPM characteristic changes and the lattice imperfection. By minimizing the merit function, we can get the beam offset as the maximized expectation value. This paper presents the BBA technique used and experimental results taken from the 2-GeV Pohang Light Source (PLS) storage ring. When the BPM offset is measured, it is observed that a 3% of the shunt current is suitable. (author)

  16. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps.

    Science.gov (United States)

    Nomura, Yurika; Ito, Shota; Teranishi, Miwako; Ono, Hikaru; Inoue, Keiichi; Kandori, Hideki

    2018-01-31

    Light-driven H + , Na + and Cl - pumps have been found in eubacteria, which convert light energy into a transmembrane electrochemical potential. A recent mutation study revealed asymmetric functional conversion between the two pumps, where successful functional conversions are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Although this fact suggests that the essential structural mechanism of an ancestral function is retained even after gaining a new function, questions regarding the essential structural mechanism remain unanswered. Light-induced difference FTIR spectroscopy was used to monitor the presence of strongly hydrogen-bonded water molecules for all eubacterial H + , Na + and Cl - pumps, including a functionally converted mutant. This fact suggests that the strongly hydrogen-bonded water molecules are maintained for these new functions during evolution, which could be the reason for successful functional conversion from Na + to H + , and from Cl - to H + pumps. This also explains the successful conversion of the Cl - to the H + pump only for eubacteria, but not for archaea. It is concluded that water-containing hydrogen-bonding networks constitute one of the essential structural mechanisms in eubacterial light-driven ion pumps.

  17. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  18. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten; Luka-Guth, Katharina; Wieser, Matthias; Lokamani; Wolf, Jannic Sebastian; Helm, Manfred; Gemming, Sibylle; Kerbusch, Jochen; Scheer, Elke; Huhn, Thomas; Erbe, Artur

    2015-01-01

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  19. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  20. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  1. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    Science.gov (United States)

    Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.

    2017-07-01

    Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  2. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krüger, T.P.J., E-mail: tjaart.kruger@up.ac.za [Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028 (South Africa); Grondelle, R. van [Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  3. Variable Permanent Magnet Quadrupole

    International Nuclear Information System (INIS)

    Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC

    2007-01-01

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments

  4. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  5. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    Science.gov (United States)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  6. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kellö, Vladimir [Department of Physical Chemistry, Comenius University, SK-842 15 Bratislava (Slovakia)

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  7. Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields

    International Nuclear Information System (INIS)

    Lv Hang; Zhang Jun-Feng; Zuo Wan-Long; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2015-01-01

    Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields. (paper)

  8. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  9. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  10. Full Alignment of Molecules Using Elliptically Polarized Light

    DEFF Research Database (Denmark)

    Larsen, Jakob Juul; Hald, Kasper; Seideman, Tamar

    When a molecule with an anisotropic polarizability is placed in a strong nonresonant laser field the interaction occurs through the induced dipole moment. The outcome is that the molecule experiences an angular dependent potential energy. It is now well established that a linearly polarized laser...... field can be used to align molecules along their axis of highest polarizability. Here we demonstrate, theoretically and experimentally, that an elliptically polarized laser field can be used to simultaneously force two axes of a molecule into alignment through the same mechanism. Due to the rigidity...

  11. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  12. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  13. Molecules in strong laser fields. In depth study of H2 molecule

    International Nuclear Information System (INIS)

    Awasthi, Manohar

    2009-01-01

    -threshold-ionization peaks is also demonstrated. The CI-TDSE results for H 2 are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H 2 molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B 1 Σ u + of H 2 is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H 2 molecule, the results for larger molecules like N 2 , O 2 and C 2 H 2 in the DFT-SAE framework are presented. (orig.)

  14. Measurements of quadrupole magnets

    International Nuclear Information System (INIS)

    Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.

    1987-01-01

    Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)

  15. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    Science.gov (United States)

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  16. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  17. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  18. Effect of dipole polarizability on positron binding by strongly polar molecules

    International Nuclear Information System (INIS)

    Gribakin, G F; Swann, A R

    2015-01-01

    A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)

  19. Determination of the effective quadrupole moment in $^{181}$Ta with pionic x-rays

    CERN Document Server

    Beetz, R; Fransson, K; Konijn, J; Panman, J; Tauscher, Ludwig; Tibell, G

    1978-01-01

    From the hyperfine splitting of the 5g to 4f and the 6g to 4f pionic X-rays in /sup 181/Ta, an effective quadrupole moment of Q/sub eff /=3.58+or-0.03 b was determined. The strong interaction monopole shift epsilon /sub 0/ and the width Gamma /sub 0/ of the 4f level were measured to be epsilon /sub 0/=540+or-100 eV and Gamma /sub 0 /=225+or-57 eV, in good agreement with the values obtained with the standard optical potential description of the pion-nucleus interaction. Estimating the influence of the finite nuclear size, the deformation induced through the strong interaction between the pion and the finite nucleus, and the relative magnitude between the strong and the electromagnetic quadrupole coupling constants values for the spectroscopic quadrupole moment of Q=3.30+or-0.06 b, and for the intrinsic quadrupole moment of Q/sub 0/=7.06+or-0.12 b are obtained. (28 refs).

  20. Quadrupole interactions in pionic and muonic tantalum and rhenium

    International Nuclear Information System (INIS)

    Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.

    1981-01-01

    The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)

  1. Molecules in strong laser fields. In depth study of H{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Awasthi, Manohar

    2009-10-29

    above-threshold-ionization peaks is also demonstrated. The CI-TDSE results for H{sub 2} are used for testing the validity of SAE approximation. In strong field physics, there are models based on the SAE approximation. Most popular are the Ammosov-Delone-Krainov (ADK) model, a molecular version of the ADK model called MO-ADK (MO stands for molecular orbital) and the strong field approximation (SFA). The validity of the second method for the solution of TDSE in SAE approximation is investigated by applying it to H{sub 2} molecule where the exact two-electron results were already calculated using CI-TDSE. The SAE method uses density-functional-theory (DFT) for the description of field-free eigenstates and is thus abbreviated as DFT-SAE-TDSE. Since DFT is used for the calculation of field-free states, different functionals were also tested. The validity of MO-ADK model is also investigated. After establishing the DFT-SAE-TDSE method, the first excited state B{sup 1}{sigma}{sub u}{sup +} of H{sub 2} is studied over a large range of laser parameters. The effect of the closely lying excited states on ionization and excitation is studied. After successful testing of DFT-SAE-TDSE method on H{sub 2} molecule, the results for larger molecules like N{sub 2}, O{sub 2} and C{sub 2}H{sub 2} in the DFT-SAE framework are presented. (orig.)

  2. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.; Samuel, I. D. W., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk; Turnbull, G. A., E-mail: idws@st-andrews.ac.uk, E-mail: gat@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS (United Kingdom); Rajbhandari, S. [School of Computing, Electronics and Mathematics, Coventry University, Coventry, West Midlands CV1 2JH (United Kingdom); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Chun, H.; Faulkner, G.; O' Brien, D. C. [Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom); Orofino, C.; Cortizo-Lacalle, D.; Findlay, N. J.; Skabara, P. J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Kanibolotsky, A. L. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Institute of Physical-Organic Chemistry and Coal Chemistry, 02160 Kyiv (Ukraine)

    2016-07-04

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ∼15 cm.

  3. Free and binary rotation of polyatomic molecules

    International Nuclear Information System (INIS)

    Konyukhov, V K

    2003-01-01

    A modification of the quantum-mechanical theory of rotation of polyatomic molecules (binary rotation) is proposed, which is based on the algebra and representations of the SO(4) group and allows the introduction of the concept of parity, as in atomic spectroscopy. It is shown that, if an asymmetric top molecule performing binary rotation finds itself in a spatially inhomogeneous electric field, its rotational levels acquire the additional energy due to the quadrupole moment. The existence of the rotational states of polyatomic molecules that cannot transfer to the free rotation state is predicted. In particular, the spin isomers of a water molecule, which corresponds to such states, can have different absolute values of the adsorption energy due to the quadrupole interaction of the molecule with a surface. The difference in the adsorption energies allows one to explain qualitatively the behaviour of the ortho- and para-molecules of water upon their adsorption on the surface of solids in accordance with experimental data. (laser applications and other topics in quantum electronics)

  4. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    International Nuclear Information System (INIS)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti; Wu, Chih-I

    2013-01-01

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts

  5. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  6. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  7. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  8. On the theoretical description of nuclear quadrupole coupling in Π states of small molecules

    Czech Academy of Sciences Publication Activity Database

    Fišer, J.; Polák, Rudolf

    2013-01-01

    Roč. 425, NOV 2013 (2013), s. 126-133 ISSN 0301-0104 Institutional support: RVO:61388955 Keywords : Π States * Nuclear quadrupole coupling constant * Electric dipole moment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.028, year: 2013

  9. Deterioration of the Skew Quadrupole Moment in Tevatron Dipoles Over Time

    CERN Document Server

    Syphers, Michael J

    2005-01-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by t...

  10. Two-pulse and stimulated nuclear-quadrupole-resonance echoes in YAlO3:Pr3+

    International Nuclear Information System (INIS)

    Erickson, L.E.

    1991-01-01

    The dephasing of trivalent praseodymium dilute in yttrium aluminum oxide (YAlO 3 ) in the ground electronic state 3 H 4 state is evaluated using an optically detected method, to measure two-rf-pulse- and three-rf-pulse-stimulated nuclear quadrupole echoes. The magnitude of the echo is obtained by detecting the weak Raman optical field generated by the interaction of the magnetic moment of the echo and a light beam resonant with the 3 H 4 (0 cm 1 ) to 1 D 2 (16 374 cm -1 ) optical transition. This same light beam is used as an optical pump (37-ms duration) prior the rf-pulse sequence to increase the population difference of the hyperfine energy levels, thereby improving the echo signal. The light is turned off 9 ms before the rf-pulse sequence and remains off until the echo to avoid optical-pumping effects on the measured nuclear-quadrupole-resonance (NQR) echo lifetime. The dephasing time T 2 from two-pulse nuclear-quadrupole-echo measurement is found to be 366±29 μs

  11. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    Science.gov (United States)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  12. Study and optimal correction of a systematic skew quadrupole field in the Tevatron

    International Nuclear Information System (INIS)

    Snopok, Pavel; Johnstone, Carol; Berz, Martin; Ovsyannikov, Dmitry A.; Ovsyannikov, Alexander D.

    2006-01-01

    Increasing demands for luminosity in existing and future colliders have made lattice design and error tolerance and correction critical to achieving performance goals. The current state of the Tevatron collider is an example, with a strong skew quadrupole error present in the operational lattice. This work studies the high-order performance of the Tevatron and the strong nonlinear behavior introduced when a significant skew quadrupole error is combined with conventional sextupole correction, a behavior still clearly evident after optimal tuning of available skew quadrupole circuits. An optimization study is performed using different skew quadrupole families, and, importantly, local and global correction of the linear skew terms in maps generated by the code COSY INFINITY [M. Berz, COSY INFINITY version 8.1 user's guide and reference manual, Department of Physics and Astronomy MSUHEP-20704, Michigan State University (2002). URL http://cosy.pa.msu.edu/cosymanu/index.html]. Two correction schemes with one family locally correcting each arc and eight independent correctors in the straight sections for global correction are proposed and shown to dramatically improve linearity and performance of the baseline Tevatron lattice

  13. Exotic behavior of molecules in intense laser light fields. New research directions

    Energy Technology Data Exchange (ETDEWEB)

    Yamanouchi, Kaoru [Tokyo Univ., Department of Chemistry, Tokyo (Japan)

    2002-08-01

    The recent investigation of the dynamical behavior of molecules and clusters in intense laser fields has afforded us invaluable opportunities to understand fundamentals of the interaction between molecular species and light fields as well as to manipulate molecules and their dynamical pathways by taking advantage of characteristics of coherent ultrashort laser light fields. In the present report, new directions of this rapidly growing interdisciplinary research fields called molecular science in intense laser fields are discussed by referring to our recent studies. (author)

  14. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  15. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    Science.gov (United States)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh

    2018-01-30

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  16. Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.

    2007-01-01

    Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field

  17. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    Science.gov (United States)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  18. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...... the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  19. Optimization of an electrostatic quadrupole doublet focusing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Oday A., E-mail: oah@sc.nahrainuniv.edu.iq [Department of Physics, College of Science, Al-Nahrain University, Baghdad (Iraq); Sise, Omer [Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta (Turkey)

    2017-05-15

    Highlights: • The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. • The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. • The imaging properties of are very sensitive to the lunching angle of the electron-beam. - Abstract: The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. The optical properties as: Magnifications, spot sizes in the image plane and aberration figures were discussed. The results showed that the focusing of the lens was strong in the xy-plane in comparison with the focusing in the xz-plane. The distortion of the image was greater when the image position will be close to the lens in comparison with object position. Also, the imaging properties were very sensitive to the lunching angle of the electron-beam.

  20. Light incoupling in small molecule organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Allinger, Nikola; Meiss, Jan; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, 01069 Dresden (Germany); Gnehr, Wolf-Michael [Heliatek GmbH, Liebigstrasse 26, 01187 Dresden (Germany)

    2008-07-01

    Light incoupling is an essential topic for optimization of organic solar cells. In our group, we examine light incoupling of different kinds of transparent contacting materials as well as external dielectric coatings, using optical simulation of thin film systems and experimental methods. Thin films of small molecules are prepared by thermal evaporation in a multi-chamber UHV system. Complex refraction indices of various materials are calculated from reflection and transmission measurements of monolayers. For modelling of optical properties of thin film systems, we developed a numerical simulation program based on the transfer matrix method. The cell structures investigated consist of nanolayers of small molecules, using ZnPc/C60 as an acceptor-donor heterojunction. As contact materials, we compare the expensive standard material indium tin oxide (ITO) with more cost-efficient alternatives like thin Ag layers or spin-coated layers of the polymer PEDOT:PSS, and discuss the resulting cell properties. Additional dielectric layers of varying materials, like tris(8-hydroxy-quinolinate)-aluminum (Alq3) or N,N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), are deposited on top of the stack and their influence on cell efficiencies is investigated.

  1. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  2. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  3. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    International Nuclear Information System (INIS)

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-01-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  4. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  5. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  6. Strong-field ionization of linear molecules by a bicircular laser field: Symmetry considerations

    Science.gov (United States)

    Gazibegović-Busuladžić, A.; Busuladžić, M.; Hasović, E.; Becker, W.; Milošević, D. B.

    2018-04-01

    Using the improved molecular strong-field approximation, we investigate (high-order) above-threshold ionization [(H)ATI] of various linear polyatomic molecules by a two-color laser field of frequencies r ω and s ω (with integer numbers r and s ) having coplanar counter-rotating circularly polarized components (a so-called bicircular field). Reflection and rotational symmetries for molecules aligned in the laser-field polarization plane, analyzed for diatomic homonuclear molecules in Phys. Rev. A 95, 033411 (2017), 10.1103/PhysRevA.95.033411, are now considered for diatomic heteronuclear molecules and symmetric and asymmetric linear triatomic molecules. There are additional rotational symmetries for (H)ATI spectra of symmetric linear molecules compared to (H)ATI spectra of the asymmetric ones. It is shown that these symmetries manifest themselves differently for r +s odd and r +s even. For example, HATI spectra for symmetric molecules with r +s even obey inversion symmetry. For ATI spectra of linear molecules, reflection symmetry appears only for certain molecular orientation angles ±90∘-j r 180∘/(r +s ) (j integer). For symmetric linear molecules, reflection symmetry appears also for the angles -j r 180∘/(r +s ) . For perpendicular orientation of molecules with respect to the laser-field polarization plane, the HATI spectra are very similar to those of the atomic targets, i.e., both spectra are characterized by the same type of the (r +s )-fold symmetry.

  7. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  8. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.

    1996-05-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model

  9. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    International Nuclear Information System (INIS)

    Wang, L.

    2011-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the

  10. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  11. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.

    1997-01-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics

  12. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  13. Complex organic molecules in strongly UV-irradiated gas

    Science.gov (United States)

    Cuadrado, S.; Goicoechea, J. R.; Cernicharo, J.; Fuente, A.; Pety, J.; Tercero, B.

    2017-07-01

    We investigate the presence of complex organic molecules (COMs) in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre (mm) line survey using the IRAM 30 m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5'' resolution maps of the H2CO JKa,Kc = 51,5 → 41,4 and C18O J = 3 → 2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, H213CO, and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. The inferred column densities are in the 1011-1013 cm-2 range. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-thermodynamic equilibrium excitation analysis for molecules with known collisional rate coefficients suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150-250 K and Td≳ 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40-50 K). The non-detection of HDCO towards the PDR edge is consistent with the

  14. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  15. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  16. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    the relative overbinding at N=82 and N=126 neutron-shell closures in mean-field models. (vii) Charge radii are also found to be sensitive to the quadrupole correlations. Static quadrupole deformations lead to a significant improvement of the overall systematics of charge radii. The dynamical correlations improve the local systematics of radii, in particular around shell closures. Although the dynamical correlations might reduce the charge radii for specific nuclei, they lead to an overall increase of radii when included, in particular in light nuclei

  17. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    Science.gov (United States)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2018-03-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  18. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    International Nuclear Information System (INIS)

    Poleshchuk, O. K.; Branchadell, V.; Ritter, R. A.; Fateev, A. V.

    2008-01-01

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  19. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    Energy Technology Data Exchange (ETDEWEB)

    Poleshchuk, O. K., E-mail: poleshch@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation); Branchadell, V. [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Ritter, R. A.; Fateev, A. V. [Tomsk State Pedagogical University (Russian Federation)

    2008-01-15

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  20. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  1. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    Science.gov (United States)

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  3. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  4. Analytical modeling of light transport in scattering materials with strong absorption.

    Science.gov (United States)

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  5. A molecule with small rotational constants containing an atom with a large nuclear quadrupole moment: The microwave spectrum of trans-1-iodoperfluoropropane

    Science.gov (United States)

    Dewberry, C. T.; Grubbs, G. S.; Cooke, S. A.

    2009-09-01

    Using pulsed jet chirped-pulse, and cavity-based Fourier transform microwave spectroscopies over 900 transitions have been recorded for the title molecule in the 1-4 GHz and 8-18 GHz regions. The C,C and C carbon-13 species have been observed in natural abundance allowing a substitution structure for the CCC backbone to be determined. Nearly all the transitions observed were either a-type R branches or b-type Q branches. No c-type transitions were observed consistent with only the trans conformer being present under our experimental conditions. The χaa,χbb,χcc and χab components of the iodine nuclear quadrupole coupling tensor have been determined. Of note, several forbidden, ΔJ±2 transitions, and one ΔJ±3 transition were observed with quite reasonable intensity. These observations have been rationalized through considerations of near degeneracies between energy levels connected via a large χab value (≈1 GHz).

  6. Centering of quadrupole family

    International Nuclear Information System (INIS)

    Pinayev, Igor

    2007-01-01

    A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed

  7. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  8. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    Science.gov (United States)

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  9. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields

    Science.gov (United States)

    Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.

    2017-12-01

    The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.

  10. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime

  11. Quadrupole moments of wobbling excitations in 163Lu

    International Nuclear Information System (INIS)

    Goergen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Hagemann, G.B.; Sletten, G.; Huebel, H.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of 163 Lu have been measured with the Gammasphere spectrometer using the Doppler-shift attenuation method. The bands have been interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments are extracted for the zero-phonon yrast band and, for the first time, for the one-phonon wobbling band. The very similar results found for the two bands suggest a similar intrinsic structure and support the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the ratio of the interband to the in-band transition strengths remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared

  12. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  13. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  14. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  15. Torques on quadrupoles

    OpenAIRE

    Torres del Castillo, G.F; Méndez Garrido, A

    2006-01-01

    Making use of the fact that a 2l-pole can be represented by means of l vectors of the same magnitude, the torque on a quadrupole in an inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The conditions for rotational equilibrium are also expressed in terms of these vectors. Haciendo uso de que un multipolo de orden 2l puede representarse mediante l vectores de la misma magnitud, la torca sobre un cuadripolo...

  16. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  17. Molecular near-field antenna effect in resonance hyper-Raman scattering: Intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Rintaro; Hamaguchi, Hiro-o, E-mail: hhama@nctu.edu.tw [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (China)

    2014-05-28

    We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by more than 5 orders of magnitude under the presence of β-carotene. We have called this phenomenon the molecular-near field effect. Resonance HR spectra of β-carotene in benzene, deuterated benzene, cyclohexane, and deuterated cyclohexane have been measured precisely for a quantitative analysis of this effect. The assignments of the observed peaks are made by referring to the infrared, Raman, and HR spectra of neat solvents. It has been revealed that infrared active and some Raman active vibrations are active in the HR molecular near-field effect. The observed spectra in the form of difference spectra (between benzene/deuterated benzene and cyclohexane/deuterated cyclohexane) are quantitatively analyzed on the basis of the extended vibronic theory of resonance HR scattering. The theory incorporates the coupling of excited electronic states of β-carotene with the vibrations of a proximate solvent molecule through solute–solvent dipole–dipole and dipole–quadrupole interactions. It is shown that the infrared active modes arise from the dipole–dipole interaction, whereas Raman active modes from the dipole–quadrupole interaction. It is also shown that vibrations that give strongly polarized Raman bands are weak in the HR molecular near-field effect. The observed solvent HR spectra are simulated with the help of quantum chemical calculations for various orientations and distances of a solvent molecule with respect to the solute. The observed spectra are best simulated with random orientations of the solvent molecule at an intermolecular distance of 10 Å.

  18. Solution-processed white organic light-emitting devices based on small-molecule materials

    International Nuclear Information System (INIS)

    Wang Dongdong; Wu Zhaoxin; Zhang Xinwen; Wang Dawei; Hou Xun

    2010-01-01

    We investigated solution-processed films of 4,4'-bis(2,2-diphenylvinyl)-1,1'-bibenyl (DPVBi) and its blends with N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) by atomic force microscopy (AFM). The AFM result shows that the solution-processed films are pin-free and their morphology is smooth enough to be used in OLEDs. We have developed a solution-processed white organic light-emitting device (WOLEDs) based on small-molecules, in which the light-emitting layer (EML) was formed by spin-coating the solution of small-molecules on top of the solution-processed hole-transporting layer. This WOLEDs, in which the EML consists of co-host (DPVBi and TPD), the blue dopant (4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl) and the yellow dye (5,6,11,12-tetraphenylnaphtacene), has a current efficiency of 6.0 cd/A at a practical luminance of 1000 cd/m 2 , a maximum luminance of 22500 cd/m 2 , and its color coordinates are quite stable. Our research shows a possible approach to achieve efficient and low-cost small-molecule-based WOLEDs, which avoids the complexities of the co-evaporation process of multiple dopants and host materials in vacuum depositions.

  19. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  20. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRβ1*0101 interactions

    International Nuclear Information System (INIS)

    Cardenas, Constanza; Villaveces, Jose Luis; Bohorquez, Hugo; Llanos, Eugenio; Suarez, Carlos; Obregon, Mateo; Patarroyo, Manuel Elkin

    2004-01-01

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRβ1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1 >> Pocket 4 > Pocket 9 ∼ Pocket 7 > Pocket 6. Variations produced by 'ideal' amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions

  1. Point-particle limit and the far-zone quadrupole formula in general relativity

    International Nuclear Information System (INIS)

    Futamase, T.

    1985-01-01

    Strong internal gravity is incorporated in a divergent-free post-Newtonian approximation scheme by introducing a body-zone limit. When incorporated into the notion of sequences of solutions, this provides the first rigorous point-particle limit in general relativity. The scheme is applied to construct an asymptotic approximation to a binary system composed of two rotating neutron stars. The lowest-order calculation is carried out in the near and far zones, giving Newton's equations of motion and the far-zone quadrupole formula. The quadrupole moment of the system is expressed in terms of a mass integral over each compact star. The same mass appears in Newton's equations of motion. The mass is indeed the Arnowitt-Deser-Misner mass the compact star would have if it were isolated. Thus the equivalence principle for strong gravity is confirmed, even for gravitational radiation: gravitational potential energy radiates the same amount of gravitational waves as any other form of energy does

  2. Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions

    CERN Document Server

    Rowe, D J

    1998-01-01

    Complete rotation-vibrational spectra and electromagnetic transition rates are obtained for Hamiltonians of diatomic molecules and nuclei with Davidson interactions. Analytical results are derived by dynamical symmetry methods for diatomic molecules and a liquid-drop model of the nucleus. Numerical solutions are obtained for a many-particle nucleus with quadrupole Davidson interactions within the framework of the microscopic symplectic model. (author)

  3. Nondipole effects in the photoionization of Xe 4d: Evidence for quadrupole satellites

    International Nuclear Information System (INIS)

    Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D.W.; Rolles, D.; Cheng, K.T.; Johnson, W.R.; Zhou, H.L.; Manson, S.T.

    2004-01-01

    Full text: We measured the nondipole parameters for the spin-orbit depletes Xe 4d 5/2 and Xe 4d 3/2 over a photonenergy range from 100 eV to 250 eV at beamline 8.0.1.3 of the Advanced Light Source at the Lawrence Berkeley National Laboratory. Significant nondipole effects are found at relatively low energies as a result of Cooper minima in dipole channels and interchannel coupling in quadrupole channels. Most importantly, sharp disagreement between experiment and theory, when otherwise excellent agreement was expected, has provided the first evidence of satellite two-electron quadrupole photoionization transitions, along with their crucial importance for a quantitatively accurate theory

  4. Quadrupole to BPM offset determination in Indus-2

    International Nuclear Information System (INIS)

    Jena, Saroj; Ghodke, A.D.; Singh, G.

    2009-01-01

    A feasibility of finding the quadrupole to BPM offset using beam based alignment (BBA) technique in Indus-2 has been studied. The measurements of the offsets between BPM and quadrupoles could be performed by using quadratic fitting for the minima of the orbit response w. r. t. changes in the quadrupole strengths. These offsets will be integrated to the orbit data during closed orbit correction. There are 72 quadrupoles and 56 BPMs in Indus-2. However the assessment of Quad-BPM offsets is not feasible in some cases due to non-availability of BPM adjacent to quadrupole and also in some cases because of a large phase advance between quadrupole and nearby BPM. Here single corrector method is used to obtain these offsets and assumed the current of each quadrupole can be varied independently. A graphical user interface (GUI) is developed in MATLAB for the use of BBA in Indus-2. (author)

  5. A Superstrong Adjustable Permanent Magnet for the Final Focus Quadrupole in a Linear Collider

    International Nuclear Information System (INIS)

    Mihara, T.

    2004-01-01

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. The final focus quadrupole of a linear collider needs a variable focal length. This can be obtained by slicing the magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied. A ''double ring structure'' can ease these effects. A second prototype PMQ, containing thermal compensation materials and with a double ring structure, has been fabricated. Worm gear is selected as the mechanical rotating scheme because the double ring structure needs a large torque to rotate magnets. The structure of the second prototype PMQ is shown

  6. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  7. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  8. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    International Nuclear Information System (INIS)

    Walker, M.; Will, C.M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluate the appropriate asymptotic quantities by matching along the correct space-time light cones

  9. The gravitational polarization in general relativity: solution to Szekeres' model of quadrupole polarization

    International Nuclear Information System (INIS)

    Montani, Giovanni; Ruffini, Remo; Zalaletdinov, Roustam

    2003-01-01

    A model for the static weak-field macroscopic medium is analysed and the equation for the macroscopic gravitational potential is derived. This is a biharmonic equation which is a non-trivial generalization of the Poisson equation of Newtonian gravity. In the case of strong gravitational quadrupole polarization, it essentially holds inside a macroscopic matter source. Outside the source the gravitational potential fades away exponentially. The equation is equivalent to a system of the Poisson equation and the non-homogeneous modified Helmholtz equations. The general solution to this system is obtained by using the Green function method and it is not limited to Newtonian gravity. In the case of insignificant gravitational quadrupole polarization, the equation for macroscopic gravitational potential becomes the Poisson equation with the matter density renormalized by a factor including the value of the quadrupole gravitational polarization of the source. The general solution to this equation obtained by using the Green function method is limited to Newtonian gravity

  10. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  11. Giant 4p-quadrupole resonances in the Rare Earths

    International Nuclear Information System (INIS)

    Matthew, J.A.D.; Netzer, F.P.; Clark, C.W.; Morar, J.F.

    1987-01-01

    X-ray absorption of Ce obtained by partial secondary yield, is compared with previously obtained electron-energy loss measurements in reflection mode. The absence of a strong feature below 4p 3/2 threshold in photon absorption provides confirmation that the peak in EELS is nondipole in character. Theoretical analysis supports interpretation in terms of a p-f giant quadrupole resonance, a result which broadens the analogy between giant resonances in atomic and nuclear physics

  12. Excited neutral atomic fragments in the strong-field dissociation of N2 molecules

    International Nuclear Information System (INIS)

    Nubbemeyer, T; Eichmann, U; Sandner, W

    2009-01-01

    Excited neutral N* fragments with energies between 3 eV and 15 eV have been observed from the dissociation of N 2 molecules in strong laser fields. The kinetic energy spectrum of the excited neutral atoms corresponds to Coulomb explosion processes involving N + ions. This supports the assumption that the production of excited neutral fragments stems from a process in which one of the participating ions in the Coulomb explosion captures an electron into a Rydberg state.

  13. The Role of Molecules in Low Temperature Plasmas for Lighting

    International Nuclear Information System (INIS)

    Lapatovich, Walter P.

    2007-01-01

    High intensity discharge (HID) lamps are low temperature (∼0.5eV), weakly ionized plasmas sustained in a refractory but light transmissive envelope for the purpose of converting electrical power into visible radiation. For commercial applications this conversion must occur with good efficiency and with sufficient spectral content throughout the visible (380-780nm) to permit the light so generated to render colors in a fashion comparable to natural sunlight. These goals are often achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, chemical compounds containing the desired metals, and having higher vapor pressures are used to introduce the material into the basic discharge. Complexing agents which further improve the vapor pressure are used to enhance the amount of metals in the discharge. The metal compound and complexes are usually polyatomic species which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Under the approximation of local thermodynamic equilibrium (LTE) the particles are in equilibrium, but not with the radiation Held. Strong thermal (106K/m) and density gradients are sustained in the discharge. Atomic and molecular radiation produced in the high temperature core transits through colder gas regions before exiting the lamp. In these regions where the complex molecular species exists in an undissociated state, bound-free transitions can result in energy being effectively converted from light radiation into heat in the mantle. Bound-bound transitions In Identifiable molecules can result in modification of the spectral output in unpredictable and counter-intuitive ways. Examples of completing agents and their effect on the spectral output of typical rare-earth containing HID lamps will be given. The melt composition and the complexing agents themselves may change with time, as chemical reactions in the lamp occur, and their benefit

  14. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  15. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  16. Generation of atto-second pulses in atoms and molecules

    International Nuclear Information System (INIS)

    Haessler, St.

    2009-12-01

    When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually re-collide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent X-UV light and the macroscopic gas medium then becomes a source of X-UV light pulses of atto-second (1 as equals 10 -18 s) duration. This is the natural time-scale of electron dynamics in atoms and molecules. The largest part of this thesis deals with experiments where molecules are the harmonic generation medium and the re-colliding electron wave packet acts as a 'self-probe'. In several experiments, we demonstrate the potential of this scheme to observe or image ultra-fast intra-molecular electronic and nuclear dynamics. In particular, we have performed the first phase measurements of the high harmonic emission from aligned molecules and we have extracted the recombination dipole matrix element. This observable contains signatures of quantum interference between the continuum and bound parts of the total electronic wavefunction. It is shown how this quantum interference can be utilized to shape the atto-second light emission from the molecules. In a second part of this thesis, we use the well characterized coherent X-UV light emitted by rare gas atoms to photo-ionize molecules. Measuring the ejected photoelectron wave packet then allows to extract information on the photoionization process itself, and possibly about the initial bound and final continuum states of the electron. The last chapter of this manuscript describes studies of high harmonic and atto-second light pulse generation in a different medium: ablation plasmas. (author)

  17. Electrostatic quadrupoles for heavy-ion fusion

    International Nuclear Information System (INIS)

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed

  18. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  19. Experimental studies of laser-generated translationally hot atoms and molecules

    International Nuclear Information System (INIS)

    Cousins, L.M.

    1989-01-01

    An important determinant of the outcome of a chemical interaction is the relative translational energy of the partners. This thesis focuses on the generation of translationally energetic atoms and molecules and the role of translational energy in chemical interactions. One set of studies examines the competitive pathways of reactions and energy transfer in hyperthermal collisions of fast H or D atoms with HF. The vibrational excitation of HF or DF is measured using a time- and wavelength-resolved infrared emission technique. The results suggest that different collision geometries can lead to markedly different mechanisms for vibrational excitation. Another set of experiments is performed with a goal to generate a repetitively pulsed source of molecules or atoms with translational energies in the 0.1-10 eV range. A pulsed UV laser is used to excite a molecular film, vaporizing a number of molecules near the surface of the film. The composition and velocity of these molecules are measured by their time-of-flight to a quadrupole mass spectrometer. Kinetic energies in the range of 0.1-10 eV are observed; the energies are continuously variable and the molecules can be repetitively and reproducibly generated. To establish the dynamics of the vaporization, the internal distributions of fast 0.1-0.7 eV NO molecules are measured using a laser multiphoton detection technique. These studies indicate that the translationally hot molecules are ejected rotationally cold, i.e. typically with only 3% of the energy in rotational excitation. The large disequilibrium between translation and rotation suggests that the vaporization occurs by a transient, nonequilibrium heating mechanism coupled with an adiabatic expansion. The result is additionally promising in light of the desire to produce fast beams of molecules with characterizable and narrow internal energy distributions

  20. Static quadrupole moment of the Kπ = 14+ isomer in 176W

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Bucurescu, D.; Brandolini, F.; Lenzi, S. M.; Pavan, P.; Rossi Alvarez, C.; Marginean, N.; Medina, N.H.; Ribas, R.V.; De Poli, M.; Napoli, D. R.; Podolyak, Zs.; Ur, C. A.

    2001-01-01

    The investigation of high-K isomeric states in the deformed nuclei of the A∼180 region has found renewed interest in recent years. Much experimental and theoretical work was devoted to understand the mechanisms which govern their decay to lower-lying states, particularly the anomalous strong decays to low-K states. Other questions of great importance are the quenching of the pairing correlations and the shape polarization effects in the high-seniority multi-quasiparticle excitations. Our interest focused on the 41 ns K π =14 + 3746 keV isomeric state with anomalous decay in 176 W. On the basis of a precise g-factor measurement we assigned to this isomer a pure four-quasiparticle configuration, composed by two protons in the 7/2 + [404] and 9/2 - [514] orbitals and two neutrons in the 7/2 + [633] and 5/2 - [512] orbitals. In the present work the measurement of its static quadrupole moment has been performed. Prior to our experiment, static quadrupole moments have been measured only for three high-K isomeric states of seniority ≥ 4 in the A∼180 region: 16 + in 178 Hf, 35/2 - in 179 W and 25 + in 182 Os. A deformation very similar to that of the ground state has been deduced for the 16 + isomer in 178 Hf, while for the high-K isomers in 179 W and 182 Os significantly smaller deformations were reported. The quadrupole interaction of the 14 + isomeric state in 176 W has been investigated in the electric field gradient (EFG) of the polycrystalline lattice of metallic Tl by applying the time-differential perturbed angular distribution method. For W impurities in Tl host the EFG strength and its temperature dependence have been recently reported. The isomer was populated in the 164 Dy( 16 O,4n) 176 W reaction using a 83 MeV 16 O pulsed beam (pulse width 1.5 ns, repetition period 800 ns) delivered by the XTU-Tandem of Laboratori Nazionali di Legnaro. The target consisted of 0.5 mg/cm 2 metallic 164 Dy on thick Tl backing in which both the recoiling 176 W nuclei and

  1. High-Energy Gun-Injected Toroidal Quadrupole

    International Nuclear Information System (INIS)

    Hammel, J.E.; Henins, I.; Kewish, R.W. Jr.; Marshall, J.; Sherwood, A.R.

    1971-01-01

    A quadrupole device is being used to investigate the trapping and containment of an energetic gun plasma. The quadrupole is designed to contain a peak density of 5 x 10 13 cm -3 at 2.5 keV within the MHD-stable region. At design field there are 5 gyro-radii for 2. 5-keV protons from the separatrix to the ψ crit . The interior conductors are directly driven with a 0.8-MJ capacitor bank. The current to the coils is fed through a single pair of dipole-guarded conductors to each coil. The coils are also supported from the current feed, The dipole guard is in a force-free configuration with 5 gyro-radii for 2. 5-keV protons from the separatrix (between the dipole and quadrupole fields) to the dipole surface. The dipole is designed so that loss of plasma from the dipole region will be directed away from the interior conductors. This feature is necessary for the prevention of contamination by secondary gas produced by plasma lost at the dipole guard. Experiments at one-half design value of magnetic field have shown that the kilovolt energy gun plasma is trapped by depolarization currents around the coils, and that a very high percentage (>50%) of the gun output can be trapped. The plasma density is measured by a unique Michelson interferometer using CO 2 laser light. The energy of the plasma is derived from magnetic pickup loops placed outside the containment region. The leak caused by the dipole guard Held has been examined by double electric probe measurements. The plasma drift thus inferred is an order of magnitude less than that predicted by a model of Meade's or by calculations by us. This casts doubt upon the validity of any such simple model and emphasizes the necessity of further experimental investigation of the matter. New coils which are being built to operate at full design magnetic field strength will allow a check on the containment time of the device for kilovolt energy plasma. (author)

  2. Manipulating ultracold polar molecules with microwave radiation: The influence of hyperfine structure

    International Nuclear Information System (INIS)

    Aldegunde, J.; Hutson, Jeremy M.; Ran Hong

    2009-01-01

    We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.

  3. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  4. Vibrationally induced nuclear quadrupole coupling in the v3 = 1 state of 189OsO4

    International Nuclear Information System (INIS)

    Scappini, F.; Kreiner, W.A.; Frye, J.M.; Oka, T.

    1987-01-01

    Electric nuclear quadrupole hyperfine structure arising from a quadrupolar nucleus at the center of tetrahedral molecules, such as 189 OsO 4 , is symmetry forbidden. However, through vibration--rotation distortion a small nuclear quadrupole coupling is induced. The hyperfine structure due to the vibrationally induced eqQ has been measured for a number of P- and R-branch transitions in the ν 3 fundamental of 189 OsO 4 , by using inverse Lamb dip spectroscopy. Microwave modulation sidebands of CO 2 laser lines have been used as the tunable infrared radiation. From the analysis of the observed hyperfine structure patterns, the values of the scalar and tensor coupling constants have been determined to be chi/sup V//sub s/ = -4.103 +- 0.048 MHz and chi/sup V//sub t/ = -3.090 +- 0.059 MHz

  5. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  6. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    Science.gov (United States)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  7. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  8. Dynamic Aperture Optimization for Low Emittance Light Sources

    CERN Document Server

    Kramer, Stephen L

    2005-01-01

    State of the art low emittance light source lattices, require small bend angle dipole magnets and strong quadrupoles. This in turn creates large chromaticity and small value of dispersion in the lattice. To counter the high chromaticity strong sextupoles are required which limit the dynamic aperture. Traditional methods for expanding the dynamic aperture use harmonic sextupoles to counter the tune shift with amplitude. This has been successful up to now, but is non-deterministic and limited as the sextupole strength increases, driving higher order nonlinearities. We have taken a different approach that makes use of the tune flexibility of a TBA lattice to minimize the lowest order nonlinearities, freeing the harmonic sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the NSLS-II lattice.

  9. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules

    Science.gov (United States)

    Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas

    2018-06-01

    Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.

  10. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Oliveros, S. J. [Mississippi U.; Summers, D. J. [Mississippi U.; Neuffer, D. V. [Fermilab

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.

  11. High-order above-threshold dissociation of molecules

    Science.gov (United States)

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-03-01

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.

  12. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  13. Design of permanent magnet quadrupole for LEHIPA DTL

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2011-01-01

    The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)

  14. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  15. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  16. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  17. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  18. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  19. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  20. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  1. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  2. The quadrupole moments of Cd and Zn isotopes - an apology

    Science.gov (United States)

    Haas, H.; Barbosa, M. B.; Correia, J. G.

    2016-12-01

    In 2010 we presented an update of the nuclear quadrupole moments (Q) for the Cd and Zn isotopes, based essentially on straightforward density functional (DF) calculations (H. Haas and J.G. Correia, Hyperfine Interact 198, 133-137 (2010)). It has been apparent for some years that the standard DF procedure obviously fails, however, to reproduce the known electric-field gradient (EFG) for various systems, typical cases being Cu2O, As and Sb, and the solid halogens. Recently a cure for this deficiency has been found in the hybrid DF technique. This method is now applied to solid Cd and Zn, and the resultant quadrupole moments are about 15 % smaller than in our earlier report. Also nuclear systematics, using the recently revised values of Q for the long-lived 11/2 isomers in111Cd to129Cd, together with earlier PAD data for107,109Cd, leads to the same conclusion. In addition, EFG calculations for the cadmium dimethyl molecule further support the new values: Q(111Cd, 5/2+) = .683(20) b, Q(67Zn, gs) = .132(5) b. This implies, that the value for the atomic EFG in the 3it {P}1 state of Zn must be revised, as it has been for Cd.

  3. Generator coordinate method for triaxial quadrupole collective dynamics in strontium isotopes

    International Nuclear Information System (INIS)

    Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P.H.

    1991-01-01

    We discuss the algebraic structure of the generator coordinate method for triaxial quadrupole collective motion. The collective solutions are classified according to the representations of the permutation group of the intrinsic axes. Our method amounts to an approximate angular momentum projection. We apply it to a study of the spherical to deformed shape transition in light even strontium isotopes 78-88 Sr. We find that triaxial configurations play a significant role in explaining the structure of the transitional isotopes 80-82 Sr

  4. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.

    Science.gov (United States)

    Korobenko, A; Milner, V

    2016-05-06

    We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

  5. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    Directory of Open Access Journals (Sweden)

    M. Spieker

    2016-01-01

    Full Text Available We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR in Sn isotopes, where complementary probes were used. In this study, (α,α′γ and (γ,γ′ experiments were performed on 124Sn. In both reactions, Jπ=2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ,γ′ experiment, while the (α,α′γ experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM. The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR. This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  6. Strong coupling effects between a meta-atom and MIM nanocavity

    Directory of Open Access Journals (Sweden)

    San Chen

    2012-09-01

    Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.

  7. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.

  8. Atomic wavefunctions probed through strong-field light-matter interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mairesse, Y; Villeneuve, D M; Corkum, P B; Dudovich, N [Natl Res Council Canada, Ottawa, ON K1A 0R6 (Canada); Shafir, D; Dudovich, N [Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, (Israel); Mairesse, Y [Univ Bordeaux 1, CELIA, CNRS, UMR 5107, CEA, F-33405 Talence (France)

    2009-07-01

    Strong-field light-matter interactions can encode the spatial properties of the electronic wavefunctions that contribute to the process. In particular, the broadband harmonic spectra, measured for a series of molecular alignments, can be used to create a tomographic reconstruction of molecular orbitals. Here, we present an extension of the tomography approach to systems that cannot be naturally aligned. We demonstrate this ability by probing the two-dimensional properties of atomic wavefunctions. By manipulating an electron-ion re-collision process, we are able to resolve the symmetry of the atomic wavefunction with high contrast. (authors)

  9. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    International Nuclear Information System (INIS)

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-01-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  10. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  11. Molecular multipole moments of water molecules in ice Ih

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1998-01-01

    We have used an induction model including dipole, dipole endash quadrupole, quadrupole endash quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments to study the electric field in ice. The self-consistent induction calculations gave an average total dipole moment of 3.09 D, a 67% increase over the dipole moment of an isolated water molecule. A previous, more approximate induction model study by Coulson and Eisenberg [Proc. R. Soc. Lond. A 291, 445 (1966)] suggested a significantly smaller average value of 2.6 D. This value has been used extensively in recent years as a reference point in the development of various polarizable interaction potentials for water as well as for assessment of the convergence of water cluster properties to those of bulk. The reason for this difference is not due to approximations made in the computational scheme of Coulson and Eisenberg but rather due to the use of less accurate values for the molecular multipoles in these earlier calculations. copyright 1998 American Institute of Physics

  12. Electrostatic quadrupole array for focusing parallel beams of charged particles

    International Nuclear Information System (INIS)

    Brodowski, J.

    1982-01-01

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators

  13. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  14. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  15. Light in Condensed Matter in the Upper Atmosphere as the Origin of Homochirality: Circularly Polarized Light from Rydberg Matter

    Science.gov (United States)

    Holmlid, Leif

    2009-08-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  16. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    Science.gov (United States)

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  17. Nature of isomerism of solid isothiourea salts, inhibitors of nitric oxide synthases, as studied by 1H-14N nuclear quadrupole double resonance, X-ray, and density functional theory/quantum theory of atoms in molecules.

    Science.gov (United States)

    Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z

    2012-02-09

    Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.

  18. Strong white light emission from a processed porous silicon and its photoluminescence mechanism

    International Nuclear Information System (INIS)

    Karacali, T.; Cicek, K.

    2011-01-01

    We have prepared various porous silicon (PS) structures with different surface conditions (any combination of oxidation, carbonization as well as thermal annealing) to increase the intensity of photoluminescence (PL) spectrum in the visible range. Strong white light (similar to day-light) emission was achieved by carrying out thermal annealing at 1100 deg. C after surface modification with 1-decene of anodic oxidized PS structures. Temperature-dependent PL measurements were first performed by gradually increasing the sample temperature from 10 to 300 K inside a cryostat. Then, we analyzed the measured spectrum of all prepared samples. After the analysis, we note that throughout entire measured spectrum, only two main peaks corresponding to blue and green-orange emission lines (which can be interpreted by quantum size effect and/or configuration coordinate model) were seem to be predominant for all temperature range. To further reveal and analysis these peaks, finally, measured data were inputted into the formula of activation energy of thermal excitation. We found that activation energies of blue and green-orange lines were approximately 49.3 and 44.6 meV, respectively. - Highlights: →Light emitting devices based on silicon technology are of great interest in illumination and display applications. → We have achieved strong white light (similar to day-light) emission from porous silicon. → The most important impact of carbonization on porous silicon and post annealing is the enhancement of room temperature luminescence.

  19. Compact quadrupole triplet for the S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, C.; Eichhorn, R.; Enders, J.; Hessler, C.; Poltoratska, Y. [Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Ackermann, W.; Mueller, W.F.O.; Steiner, B.; Weiland, T. [Inst. fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany)

    2007-07-01

    An ultra compact quadrupole triplet for the S-DALINAC Polarized Electron Injector SPIN has been developed. This development is due to limiting spatial restrictions. Each individual quadrupole has a length of 8 mm, affixed by two 2 mm aluminum plates, resulting in a length of only 12 mm per quadrupole. The gaps between each quadrupole are set to 18 mm, therefore the complete triplet has a total length of only 72 mm. The quadrupole design includes a large aperture, suitable for CF 35 beam pipes. As fringe fields reach far info neighboring yokes, the assembly requires simulation by a beam dynamics tool for optimal weighting of the current excitation. Measurement of the magnetic field distribution is compared to numerical values and the quadrupole strength is calculated. (orig.)

  20. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules

    Science.gov (United States)

    Nishikitani, Y.; Takeuchi, H.; Nishide, H.; Uchida, S.; Yazaki, S.; Nishimura, S.

    2015-12-01

    The authors present white polymer light-emitting electrochemical cells (PLECs) fabricated with polymer blend films of poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated triphenylamine molecules. The PLECs have bulk heterojunction structures composed of van der Waals interfaces between the PFD segments and the amine molecules. White-light electroluminescence (EL) can be achieved via light-mixing of the blue exciton emission from PFD and long-wavelength exciplex emission from excited complexes consisting of PFD segments (acceptors (As)) and the amine molecules (donors (Ds)). Precise control of the distances between the PFD and the amine molecules, affected through proper choice of the concentrations of PFD, amine molecules, and polymeric solid electrolytes, is critical to realizing white emission. White PLECs can be fabricated with PFD and amine molecules whose highest occupied molecular orbital (HOMO) levels range from -5.3 eV to -5.0 eV. Meanwhile, PLECs fabricated with amine molecules whose HOMO levels are lower than -5.6 eV cannot produce exciplex emission. The distances between the PFD and amine molecules of the exciplexes appear to be larger than 0.4 nm. These experimental data are explained by perturbation theory using the charge-transfer state ( A - D + ), the locally excited state ( A * D ), which is assumed to be the locally excited acceptor state in which there is no interaction with the donor molecule; and the energy gap between the HOMO levels of the PFD and the amine molecules. Color-stable white PLECs were fabricated using 4,4',4″-tris[N-(2-naphthyl)-N-phenylamino]-triphenylamine, which has a HOMO level of -5.2 eV, as the amine molecule, and the color stability of the device is a function of the fact that PFD forms exciplexes with these molecules.

  1. Spontaneous structural distortion of the metallic Shastry-Sutherland system Dy B4 by quadrupole-spin-lattice coupling

    Science.gov (United States)

    Sim, Hasung; Lee, Seongsu; Hong, Kun-Pyo; Jeong, Jaehong; Zhang, J. R.; Kamiyama, T.; Adroja, D. T.; Murray, C. A.; Thompson, S. P.; Iga, F.; Ji, S.; Khomskii, D.; Park, Je-Geun

    2016-11-01

    Dy B4 has a two-dimensional Shastry-Sutherland (Sh-S) lattice with strong Ising character of the Dy ions. Despite the intrinsic frustrations, it undergoes two successive transitions: a magnetic ordering at TN=20 K and a quadrupole ordering at TQ=12.5 K . From high-resolution neutron and synchrotron x-ray powder diffraction studies, we have obtained full structural information on this material in all phases and demonstrate that structural modifications occurring at quadrupolar transition lead to the lifting of frustrations inherent in the Sh-S model. Our paper thus provides a complete experimental picture of how the intrinsic frustration of the Sh-S lattice can be lifted by the coupling to quadrupole moments. We show that two other factors, i.e., strong spin-orbit coupling and long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in metallic Dy B4 , play an important role in this behavior.

  2. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  3. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    Energy Technology Data Exchange (ETDEWEB)

    Delcorte, Arnaud, E-mail: arnaud.delcorte@uclouvain.be [Institute of Condensed Matter and Nanosciences - Bio and Soft Matter, Universite catholique de Louvain, Croix du Sud, 1 bte 3, B-1348 Louvain-la-Neuve (Belgium); Garrison, Barbara J. [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)

    2011-07-15

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C{sub 60} to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to {approx}70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  4. Desorption of large molecules with light-element clusters: Effects of cluster size and substrate nature

    International Nuclear Information System (INIS)

    Delcorte, Arnaud; Garrison, Barbara J.

    2011-01-01

    This contribution focuses on the conditions required to desorb a large hydrocarbon molecule using light-element clusters. The test molecule is a 7.5 kDa coil of polystyrene (PS61). Several projectiles are compared, from C 60 to 110 kDa organic droplets and two substrates are used, amorphous polyethylene and mono-crystalline gold. Different aiming points and incidence angles are examined. Under specific conditions, 10 keV nanodrops can desorb PS61 intact from a gold substrate and from a soft polyethylene substrate. The prevalent mechanism for the desorption of intact and 'cold' molecules is one in which the molecules are washed away by the projectile constituents and entrained in their flux, with an emission angle close to ∼70 deg. The effects of the different parameters on the dynamics and the underlying physics are discussed in detail and the predictions of the model are compared with other published studies.

  5. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  6. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  7. Photodissociation and excitation of interstellar molecules

    International Nuclear Information System (INIS)

    Dishoeck, E.F. van.

    1984-01-01

    Apart from a rather long introduction containing some elementary astrophysics, quantum chemistry and spectroscopy and an incomplete, historical review of molecular observations, this thesis is divided into three sections. In part A, a rigorous quantum chemical and dynamical study is made of the photodissociation processes in the OH and HCl molecules. In part B, the cross sections obtained in part A are used in various astrophysical problems such as the study of the abundances of the OH and HCl molecules in interstellar clouds, the use of the OH abundance as a measure of the cosmic ray ionization rate, the lifetime of the OH radical in comets and the abundance of OH in the solar photosphere. Part C discusses the excitation of the C 2 molecule under interstellar conditions, its use as a diagnostic probe of the temperature, density and strength of the radiation field in interstellar clouds. Quadrupole moments and oscillator strengths are analyzed. (Auth.)

  8. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  9. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  10. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    Science.gov (United States)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  11. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  12. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth.

    Science.gov (United States)

    Clark, Ryan L; McGinley, Laura L; Purdy, Hugh M; Korosh, Travis C; Reed, Jennifer L; Root, Thatcher W; Pfleger, Brian F

    2018-03-27

    Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO 2 , light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    International Nuclear Information System (INIS)

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size

  14. Strong Light Localization and a Peculiar Feature of Light Leakage in the Negative Curvature Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Andrey D. Pryamikov

    2017-11-01

    Full Text Available In this paper we would like to continue a discussion started in our previous work and devoted to the mechanism of light localization in hollow core microstructured fibers with a noncircular core-cladding boundary. It has been shown in many works that, for waveguide microstructures with different types of core-cladding boundary shape, the positions of the transmission bands’ edges can be predicted by applying the well-known anti–resonant reflecting optical waveguide (ARROW model. At the same time, the ARROW model cannot explain the strong light localization and guiding at high material loss inside the transmission bands which are observed in negative curvature hollow core fibers, for example. In this paper we want to clarify our previous findings and consider the light localization process from another point of view, namely, by comparing the light leakage process in waveguide microstructures with different shapes of the core-cladding boundary. The results are discussed based on the ARROW model and a new approach associated with the consideration of spatial dispersion occurring under the interaction of the air core mode with the core-cladding boundary.

  15. Final Report: Cooling Molecules with Laser Light

    International Nuclear Information System (INIS)

    Di Rosa, Michael D.

    2012-01-01

    Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

  16. Strong constraints on self-interacting dark matter with light mediators

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Walia, Parampreet

    2017-04-01

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  17. Strong constraints on self-interacting dark matter with light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Walia, Parampreet [Oslo Univ. (Norway). Dept. of Physics; Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-04-15

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  18. Variable-field permanent-magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1994-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use in the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum of 4.3 T by a 90 degree rotation of the outer ring of iron and magnet material

  19. Variable-field permanent magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90 degrees rotation of the outer ring of iron and magnet material

  20. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  1. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  2. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  3. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  4. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  5. Theoretical investigation of flute modes in a magnetic quadrupole

    International Nuclear Information System (INIS)

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L 0 for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described

  6. Light emission probing quantum shot noise and charge fluctuations at a biased molecular junction

    DEFF Research Database (Denmark)

    Schneider, N.L.; Lu, Jing Tao; Brandbyge, M.

    2012-01-01

    The emission of plasmonic light from a single C60 molecule on Cu(111) is probed in a scanning tunneling microscope from the weak-coupling, tunneling range to strong coupling of the molecule to the electrodes at contact. At positive sample voltage the photon yield decreases owing to shot...

  7. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin

    2012-10-25

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  8. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin; Furumaki, Shu; Yang, Jaesung; Lee, Ji-Eun; Chung, Heejae; Oba, Tatsuya; Kobayashi, Hiroyuki; Rybtchinski, Boris; Wilson, Thea M.; Wasielewski, Michael R.; Vacha, Martin; Kim, Dongho

    2012-01-01

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  9. Reversible switching of ultrastrong light-molecule coupling

    DEFF Research Database (Denmark)

    Schwartz, T; Hutchison, J A; Genet, C

    2011-01-01

    We demonstrate that photochromic molecules enable switching from the weak- to ultrastrong-coupling regime reversibly, by using all-optical control. This switch is achieved by photochemically inducing conformational changes in the molecule. Remarkably, a Rabi splitting of 700 meV is measured at room...

  10. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  11. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    Science.gov (United States)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  12. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  13. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  14. Decay of the giant quadrupoles resonance and higher excitation states in 40Ca

    International Nuclear Information System (INIS)

    Alamanos, N.; Fernandez, B.; Gillibert, A.

    1991-01-01

    Light charged particles have been measured in coincidence with inelastically scattered fragments from the 40 Ca + 40 Ca reaction at 50 MeV/N. Such a measurement allows to unravel the different reaction mechanisms contributing to the inelastic spectrum: pick-up break-up reactions, knock out and inelastic excitations. The giant quadrupole resonance in 40 Ca is shown to present a 30% non statistical decay branch. A prominent structure at 34 MeV is attributed to target excitation, the decay of this structure is studied

  15. Progress in the development of superconducting quadrupoles for heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-01-01

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported

  16. Progress in the development of superconducting quadrupoles for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  17. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  18. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields.

    Science.gov (United States)

    Dong, Fulong; Tian, Yiqun; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun

    2015-07-13

    We investigate the polarization properties of below-threshold harmonics from aligned molecules in linearly polarized laser fields numerically and analytically. We focus on lower-order harmonics (LOHs). Our simulations show that the ellipticity of below-threshold LOHs depends strongly on the orientation angle and differs significantly for different harmonic orders. Our analysis reveals that this LOH ellipticity is closely associated with resonance effects and the axis symmetry of the molecule. These results shed light on the complex generation mechanism of below-threshold harmonics from aligned molecules.

  19. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  20. Fe/sup 57/ polarimetry based on quadrupole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gonser, U; Sakai, H; Keune, W [Universitaet des Saarlandes, Saarbruecken (F.R. Germany). Fachbereich Angewandte Physik

    1976-01-01

    A quadrupole Fe/sup 57/ polarimeter consisting of single crystals of LiNbO/sub 3/:Co/sup 57/ as source (polarizer) and of FeCO/sub 3/ (siderite) as absorber (analyzer) is described. The quadrupole interactions of the two materials are nearly equal in magnitude but opposite in sign and in addition the asymmetry parameter eta equal approximately 0.

  1. Molecular-beam spectroscopy of interhalogen molecules

    International Nuclear Information System (INIS)

    Sherrow, S.A.

    1983-08-01

    A molecular-beam electric-resonance spectrometer employing a supersonic nozzle source has been used to obtain hyperfine spectra of 79 Br 35 Cl. Analyses of these spectra and of microwave spectra published by other authors have yielded new values for the electric dipole moment and for the nuclear quadrupole coupling constants in this molecule. The new constants are significantly different from the currently accepted values. Van der Waals clusters containing chlorine monofluoride have been studied under various expansion conditions by the molecular-beam electric-deflection method. The structural possibilities indicated by the results are discussed, and cluster geometries are proposed

  2. Measurement of the sign of the spectroscopic quadrupole moment for the 2$_{1}^{+}$ state in $^{70}$Se no evidence for oblate shape

    CERN Document Server

    Hurst, A M

    2007-01-01

    Using a method whereby molecular and atomic ions are independently selected, an isobarically pure beam of 70Se ions was postaccelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording deexcitation γ rays in the highly segmented MINIBALL γ-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the first 2+ state is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for the first 2+ state in 70Se, reopening the question over whether there are, as reported earlier, deformed oblate shapes near to the ground state in the light selenium isotopes.

  3. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $Nb_3Sn$ Quadrupole for the High-Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Stoynev, S.; et al.

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.

  4. The development of magnetic field measurement system for drift-tube linac quadrupole

    Science.gov (United States)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  5. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  6. RAMAN LIGHT SCATTERING IN PSEUDOSPIN-ELECTRON MODEL AT STRONG PSEUDOSPIN-ELECTRON INTERACTION

    Directory of Open Access Journals (Sweden)

    T.S.Mysakovych

    2004-01-01

    Full Text Available Anharmonic phonon contributions to Raman scattering in locally anharmonic crystal systems in the framework of the pseudospin-electron model with tunneling splitting of levels are investigated. The case of strong pseudospin-electron coupling is considered. Pseudospin and electron contributions to scattering are taken into account. Frequency dependences of Raman scattering intensity for different values of model parameters and for different polarization of scattering and incident light are investigated.

  7. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  8. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)

    2017-06-10

    Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  9. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  10. Ab initio and Gordon--Kim intermolecular potentials for two nitrogen molecules

    International Nuclear Information System (INIS)

    Ree, F.H.; Winter, N.W.

    1980-01-01

    Both ab initio MO--LCAO--SCF and the electron-gas (or Gordon--Kim) methods have been used to compute the intermolecular potential (Phi) of N 2 molecules for seven different N 2 --N 2 orientations. The ab initio calculations were carried out using a [4s3p] contracted Gaussian basis set with and without 3d polarization functions. The larger basis set provides adequate results for Phi>0.002 hartree or intermolecular separations less than 6.5--7 bohr. We use a convenient analytic expression to represent the ab initio data in terms of the intermolecular distance and three angles defining the orientations of the two N 2 molecules. The Gordon--Kim method with Rae's self-exchange correction yields Phi, which agrees reasonably well over a large repulsive range. However, a detailed comparison of the electron kinetic energy contributions shows a large difference between the ab initio and the Gordon--Kim calculations. Using the ab initio data we derive an atom--atom potential of the two N 2 molecules. Although this expression does not accurately fit the data at some orientations, its spherical average agrees with the corresponding average of the ab initio Phi remarkably well. The spherically averaged ab initio Phi is also compared with the corresponding quantities derived from experimental considerations. The approach of the ab initio Phi to the classical quadrupole--quadrupole interaction at large intermolecular separation is also discussed

  11. Quadrupole magnets for IR-FEL at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  12. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  13. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  14. Study of Nb3Sn cables for superconducting quadrupoles

    International Nuclear Information System (INIS)

    Otmani, R.

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  15. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  16. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    Science.gov (United States)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  17. Radiation response of hydrated urea evaluated using 14N nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Hintenlang, D.E.

    1992-01-01

    In this paper Nitrogen-14 nuclear quadrupole resonance is utilized to detect radiation-induced changes in urea over the 0- to 300-Gy dose range. The spin-spin relaxation time exhibits a consistent change as a function of delivered dose in hydrated urea under exposure to 60 Co gamma radiation. No changes to the spin-spin relaxation time are observed in urea samples that were not hydrated. The radiation-induced changes are attributed to indirect radiation interactions with the water surrounding the urea molecules and are explained by the formation of subtle changes in the electron bonding configurations surrounding the 14 N nuclei, not major structural rearrangements. These subtle changes may provide additional insight into the effects of ionizing radiation on biological systems

  18. NMR of dielectrically oriented molecules

    International Nuclear Information System (INIS)

    Ruessink, B.H.

    1986-01-01

    General information on experimental aspects of EFNMR is given. It is shown that the complete 14 N quadrupole tensor (qct) of pyridine and pyrimidine in the liquid state is accessible to EFNMR. Information obtained about 17 O qct in liquid nitromethane, is compared with results from other techniques. The 33 S qct in liquid sulfolane is investigated. The EFNMR results, combined with those from spin-lattice relaxation time measurements and from Hartree-Fock-Slater MO calculations, allowed the complete assignment of the 33 S qct. The quadrupole coupling of both 10 B and 11 B in a carborane compound is investigated and, together with the results of spin-lattice relaxation time measurements, detailed information about the assignment of the boron qct's could be derived. EFNMR studies of apolar molecules are described. A limitation in EFNMR is the inhomogeneity (delta B) of the magnetic field, which is introduced by the use of non-spinning sample cells. A way out is the detection of zero quantum transitions, their widths being independent of delta B. The results and prospectives of this approach are shown for the simple three spin 1/2 system of acrylonitrile in which the small dipolar proton-proton couplings could be revealed via zero quantum transitions. (Auth.)

  19. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene

    International Nuclear Information System (INIS)

    Jing, Yu; Tang, Qing; He, Peng; Zhou, Zhen; Shen, Panwen

    2015-01-01

    Systematical computations on the density functional theory were performed to investigate the adsorption of three typical organic molecules, tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF), on the surface of phosphorene monolayers and thicker layers. There exist considerable charge transfer and strong non-covalent interaction between these molecules and phosphorene. In particular, the band gap of phosphorene decreases dramatically due to the molecular modification and can be further tuned by applying an external electric field. Meanwhile, surface molecular modification has proven to be an effective way to enhance the light harvesting of phosphorene in different directions. Our results predict a flexible method toward modulating the electronic and optical properties of phosphorene and shed light on its experimental applications. (paper)

  20. Quadrupole moments of highly deformed structures in the A ∼ 135 region: Probing the single-particle motion in a rotating potential

    International Nuclear Information System (INIS)

    Laird, R.W.; Riley, M.A.; Brown, T.B.; Pfohl, J.; Sheline, R.K.; Kondev, F.G.; Archer, D.E.; Clark, R.M.; Fallon, P.; Devlin, M.; LaFosse, D.R.; Sarantites, D.G.; Hartley, D.J.; Hibbert, I.M.; O'Brien, N.J.; Wadsworth, R.; Joss, D.T.; Nolan, P.J.; Paul, E.S.; Shepherd, S.L.

    2002-01-01

    The latest generation γ-ray detection system, GAMMASPHERE, coupled with the Microball charged-particle detector, has made possible a new class of nuclear lifetime measurement. For the first time differential lifetime measurements free from common systematic errors for over 15 different nuclei (>30 rotational bands in various isotopes of Ce, Pr, Nd, Pm, and Sm) have been extracted at high spin within a single experiment. This comprehensive study establishes the effective single-particle transition quadrupole moments in the A∼135 light rare-earth region. Detailed comparisons are made with theoretical calculations using the self-consistent cranked mean-field theory which convincingly demonstrates the validity of the additivity of single-particle quadrupole moments in this mass region

  1. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  2. Synthesis, X-ray Structure, Optical, and Electrochemical Properties of a White-Light-Emitting Molecule

    Directory of Open Access Journals (Sweden)

    Jiun-Wei Hu

    2016-01-01

    Full Text Available A new white-light-emitting molecule (1 was synthesized and characterized by NMR spectroscopy, high resolution mass spectrometry, and single-crystal X-ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pnma, with a = 12.6814(6, b = 7.0824(4, c = 17.4628(9 Å, α = 90°, β = 90°, γ = 90°. In the crystal, molecules are linked by weak intermolecular C-H···O hydrogen bonds, forming an infinite chain along [100], generating a C(10 motif. Compound 1 possesses an intramolecular six-membered-ring hydrogen bond, from which excited-state intramolecular proton transfer (ESIPT takes place from the phenolic proton to the carbonyl oxygen, resulting in a tautomer that is in equilibrium with the normal species, exhibiting a dual emission that covers almost all of the visible spectrum and consequently generates white light. It exhibits one irreversible one-electron oxidation and two irreversible one-electron reductions in dichloromethane at modest potentials. Furthermore, the geometric structures, frontier molecular orbitals (MOs, and the potential energy curves (PECs for 1 in the ground and the first singlet excited state were fully rationalized by density functional theory (DFT and time-dependent DFT calculations. The results demonstrate that the forward and backward ESIPT may happen on a similar timescale, enabling the excited-state equilibrium to be established.

  3. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    NARCIS (Netherlands)

    Stoll, M.; Bakker, J. M.; Steimle, T. C.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer- gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 10(6) cm(-3) at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20- fold lifetime enhancement with respect to the

  4. Quadrupole photoionization of endohedral Xe-C60

    International Nuclear Information System (INIS)

    Govil, Karan; Deshmukh, P C

    2009-01-01

    The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.

  5. High and ulta-high gradient quadrupole magnets

    International Nuclear Information System (INIS)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%

  6. Quadrupole formula for Kaluza-Klein modes in the braneworld

    International Nuclear Information System (INIS)

    Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko

    2005-01-01

    The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources

  7. Sensitivity of (α,α') cross sections to excited-state quadrupole moments

    International Nuclear Information System (INIS)

    Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.

    1977-01-01

    Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2

  8. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  9. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  10. CESAR, 2 MeV electron storage ring; construction period; quadrupole.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    One of the 24 quadrupoles. They were made of massive (non-laminated) soft iron, which at the low field-strength (35 G on the pole-tips) presented problems. Later they were fitted with shims on all 4 poles, to correct the quadrupole and sextupole components.

  11. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  12. Excitation of giant monopole and quadrupole resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.

  13. Puzzle of the 6Li Quadrupole Moment: Steps toward Solving It

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-01-01

    The problem of the origin of the quadrupole deformation in the 6 Li ground state is investigated with allowance for the three-deuteron component of the 6 Li wave function. Two long-standing puzzles related to the tensor interaction in the 6 Li nucleus are known: that of an anomalous smallness of the 6 Li quadrupole moment (being negative, it is smaller in magnitude than the 7 Li quadrupole moment by a factor of 5) and that of an anomalous behavior of the tensor analyzing power T 2q in the scattering of polarized 6 Li nuclei on various targets. It is shown that a large (in magnitude) negative exchange contribution to the 6 Li quadrupole moment from the three-deuteron configuration cancels almost completely the 'direct' positive contribution due to the αd folding potential. As a result, the total quadrupole moment proves to be close to zero and highly sensitive to fine details of the tensor nucleon-nucleon interaction in the 4 He nucleus and of its wave function

  14. The 1.5 post-Newtonian radiative quadrupole moment in the context of a nonlocal field theory of gravity

    Science.gov (United States)

    Dirkes, Alain

    2018-04-01

    We recently suggested a nonlocal modification of Einstein’s field equations in which Newton’s constant G was promoted to a covariant differential operator G_Λ(\\Box_g) . The latter contains two independent contributions which operate respectively in the infrared (IR) and ultraviolet (UV) energy regimes. In the light of the recent direct gravitational radiation measurements we aim to determine the UV-modified 1.5 post-Newtonian radiative quadrupole moment of a generic n-body system. We eventually use these preliminary results in the context of a binary system and observe that in the limit vanishing UV parameters we precisely recover the corresponding general relativistic results. Moreover we notice that the leading order deviation of the UV-modified radiative quadrupole moment numerically coincides with findings obtained in the framework of calculations performed previously in the context of the perihelion precession of Mercury.

  15. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)

  16. Designing, Probing, and Stabilizing Exotic Fabry-Perot Cavities for Studying Strongly Correlated Light

    Science.gov (United States)

    Ryou, Albert

    Synthetic materials made of engineered quasiparticles are a powerful platform for studying manybody physics and strongly correlated systems due to their bottom-up approach to Hamiltonian modeling. Photonic quasiparticles called polaritons are particularly appealing since they inherit fast dynamics from light and strong interaction from matter. This thesis describes the experimental demonstration of cavity Rydberg polaritons, which are composite particles arising from the hybridization of an optical cavity with Rydberg EIT, as well as the tools for probing and stabilizing the cavity. We first describe the design, construction, and testing of a four-mirror Fabry-Perot cavity, whose small waist size on the order of 10 microns is comparable to the Rydberg blockade radius. By achieving strong coupling between the cavity photon and an atomic ensemble undergoing electromagnetically induced transparency (EIT), we observe the emergence of the dark-state polariton and characterize its single-body properties as well as the single-quantum nonlinearity. We then describe the implementation of a holographic spatial light modulator for exciting different transverse modes of the cavity, an essential tool for studying polariton-polariton scattering. For compensating optical aberrations, we employ a digital micromirror device (DMD), combining beam shaping with adaptive optics to produce diffraction-limited light. We quantitatively measure the purity of the DMD-produced Hermite-Gauss modes and confirm up to 99.2% efficiency. One application of the technique is to create Laguerre-Gauss modes, which have been used to probe synthetic Landau levels for photons in a twisted, nonplanar cavity. Finally, we describe the implementation of an FPGA-based FIR filter for stabilizing the cavity. We digitally cancel the acoustical resonances of the feedback-controlled mechanical system, thereby demonstrating an order-of-magnitude enhancement in the feedback bandwidth from 200 Hz to more than 2 k

  17. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  18. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.

    Science.gov (United States)

    Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R

    2018-02-22

    Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

  19. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    Science.gov (United States)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  20. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  1. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    Science.gov (United States)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  2. Quadrupole moment of the superdeformed band in 131Ce

    International Nuclear Information System (INIS)

    He, Y.; Godfrey, M.J.; Jenkins, I.; Kirwan, A.J.; Nolan, P.J.

    1990-01-01

    A mean lifetime measurement has been carried out on the states in the superdeformed band found in 131 Ce using the Doppler shift attenuation method (DSAM). The measured intrinsic nuclear quadrupole moment is Q o approx= 6 eb, assuming constant deformation, which corresponds to a quadrupole deformation β 2 approx= 0.35. This is considerably smaller than the value deduced for 132 Ce. (author)

  3. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  4. Realization and utilization of a harmonic light scattering experiment to select new molecules with great optical nonlinearity

    International Nuclear Information System (INIS)

    Dhenaut, Christophe

    1995-01-01

    Conception of new organic materials for nonlinear optics is generally driven by a molecular engineering approach. The usual technique for determining the quadratic hyper polarizability of designed molecules is the electric field induced second harmonic (EFISH) experiment. However this technique is limited to neutral molecules with a permanent dipole moment. We have realized an harmonic light scattering (HLS) experiment which allow the measurement of any kind of molecules, polar or non polar, neutral or ionic. Using this technique we have been able to demonstrate experimentally the validity of the octupole concept (molecules without dipole moment) which has been proposed recently. We have studied molecules corresponding to various octupolar geometries. Nonlinearities are found to be comparable to those of the best dipolar compounds. We have also investigated other molecular families with different symmetry such as polyenes, sub-phthalocyanines and phthalocyanines by EFISH and HLS techniques. We have confronted results obtained by the two experiments. It appears that these results are not easy to compare, the tensorial components accessible by each experiment being different. The two experiments seems complementary. HLS experiments allow the observation of a quadratic hyper polarizability for centrosymmetric molecules. This surprising observation could be explained by the contribution of a vibration al part to the hyper polarizability measured by HLS (but not present in EFISH). Interpretation of this dynamic process is still in progress. (author) [fr

  5. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy

    International Nuclear Information System (INIS)

    Bernadotte, Stephan; Atkins, Andrew J.; Jacob, Christoph R.

    2012-01-01

    For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.

  6. Development of LHC-IR model quadrupoles in the US

    CERN Document Server

    Sabbi, G

    2007-01-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 1035 cm-2 s-1 at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb$_{3}$Sn in order to operate at high field and with sufficient temperature margin. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper reports on the development od model quadrupoles and outlines the long-term goals of the program.

  7. Single-molecule spectroscopy reveals that individual low-light LH2 complexes from Rhodopseudomonas palustris 2.1.6. have a heterogeneous polypeptide composition.

    Science.gov (United States)

    Brotosudarmo, Tatas H P; Kunz, Ralf; Böhm, Paul; Gardiner, Alastair T; Moulisová, Vladimíra; Cogdell, Richard J; Köhler, Jürgen

    2009-09-02

    Rhodopseudomonas palustris belongs to the group of purple bacteria that have the ability to produce LH2 complexes with unusual absorption spectra when they are grown at low-light intensity. This ability is often related to the presence of multiple genes encoding the antenna apoproteins. Here we report, for the first time to our knowledge, direct evidence that individual low-light LH2 complexes have a heterogeneous alphabeta-apoprotein composition that modulates the site energies of Bchl a molecules, producing absorption bands at 800, 820, and 850 nm. The arrangement of the Bchl a molecules in the "tightly coupled ring" can be modeled by nine alphabeta-Bchls dimers, such that the Bchls bound to six alphabeta-pairs have B820-like site energies and the remaining Bchl a molecules have B850-like site energies. Furthermore, the experimental data can only be satisfactorily modeled when these six alphabeta-pairs with B820 Bchl a molecules are distributed such that the symmetry of the assembly is reduced to C(3). It is also clear from the measured single-molecule spectra that the energies of the electronically excited states in the mixed B820/850 ring are mainly influenced by diagonal disorder.

  8. Summary of Test Results of MQXFS1—The First Short Model 150 mm Aperture Nb$_3$Sn Quadrupole for the High-Luminosity LHC Upgrade

    CERN Document Server

    Stoynev, S; Anerella, M; Bossert, R; Cavanna, E; Cheng, D; Dietderich, D; DiMarco, J; Felice, H; Ferracin, P; Chlachidze, G; Ghosh, A; Grosclaude, P; Guinchard, M; Hafalia, A R; Holik, E; Izquierdo Bermudez, S; Krave, S; Marchevsky, M; Nobrega, F; Orris, D; Pan, H; Perez, J C; Prestemon, S; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Vallone, G; Velev, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    The development of $Nb_3Sn$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb$_{3}$Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also sum...

  9. High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used in vacuum processes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Hyong-Jun, E-mail: hkim@kongju.ac.kr [Department of Chemical Engineering, Kongju National University, Cheonan, 330-717 (Korea, Republic of)

    2012-09-30

    High efficiency phosphorescent organic light emitting diodes (OLEDs) are realized by inkjet printing based on small molecules commonly used in vacuum processes in spite of the limitation of the limited solubility. The OLEDs used the inkjet printed 5 wt.% tris(2-phenylpyridine)iridium(III) (Ir(ppy){sub 3}) doped in 4,4 Prime -Bis(carbazol-9-yl)biphenyl (CBP) as the light emitting layer on various small molecule based hole transporting layers, which are widely used in the fabrication of OLEDs by vacuum processes. The OLEDs resulted in the high power and the external quantum efficiencies of 29.9 lm/W and 11.7%, respectively, by inkjet printing the CBP:Ir(ppy){sub 3} on a 40 nm thick 4,4 Prime ,4 Double-Prime -tris(carbazol-9-yl)triphenylamine layer. The performance was very close to a vacuum deposited device with a similar structure. - Highlights: Black-Right-Pointing-Pointer Effective inkjet printed organic light emitting diode (OLED) technique is explored. Black-Right-Pointing-Pointer Solution process on commonly used hole transporting material (HTM) is demonstrated. Black-Right-Pointing-Pointer Triplet energy overlap of HTM and emitting material is the key to the performance. Black-Right-Pointing-Pointer Simple inkjet printed OLED provides the high current efficiency of 40 cd/A.

  10. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    Science.gov (United States)

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  11. Calculation of the quadrupole-lense fringing field

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1978-01-01

    With the aim of decreasing the scattering field effect at electrode edge or quadrupole lens poles with conformal transformations the scattering fields of electric quadrupole lens, two-electrode lens with the electrodes in a hyperbola form, as well as magnetic lens with hyperbolic poles are calculated. For the two-electrode system with kappa=0.1 (kappa - is coefficient, characterizing the rate of field intensity change in the lens) field distortion equals 1.8%. The comparison of experimental data with the calculation data has shown that with a rather high accuracy the scattering field effect in electric and magnetic lenses with hyperbolic poles may be taken into account

  12. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  13. Quadrupole moment in the excited 2Psub(1/2) state

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Yakhontov, V.L.

    1984-01-01

    Computation of the quadrupole moment values in the 2Psub(1/2) states of hydrogen and meso-hydrogen is carried out. It is shown that allowance for the hyperfine interaction of the electron with the proton in the first order of perturbation theory results in giant values of the quadrupole moment of the atoms. (author)

  14. Strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2013-01-01

    . With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought...... and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current...

  15. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  16. Stability of the coherent quadrupole oscillations excited by the beam-beam interaction

    International Nuclear Information System (INIS)

    Kamiya, Y.; Chao, A.W.

    1983-10-01

    We study the coherent quadrupole motion in the presence of beam-beam interaction, using a linear approximation to the beam-beam force. The corresponding beam-beam limit is determined by evaluating the eigenvalues of a system of linear equations describing the coherent quadrupole motion. We find that the stability of the quadrupole motions imposes severe limits on the beam current, as is the case for the dipole instability. Preliminary results of this study have appeared elsewhere

  17. Observing Structure and Motion in Molecules with Ultrafast Strong Field and Short Wavelength Laser Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bucksbaum, Philip H

    2011-04-13

    The term "molecular movie" has come to describe efforts to track and record Angstrom-scale coherent atomic and electronic motion in a molecule. The relevant time scales for this range cover several orders of magnitude, from sub-femtosecond motion associated with electron-electron correlations, to 100-fs internal vibrations, to multi-picosecond motion associated with the dispersion and quantum revivals of molecular reorientation. Conventional methods of cinematography do not work well in this ultrafast and ultrasmall regime, but stroboscopic "pump and probe" techniques can reveal this motion with high fidelity. This talk will describe some of the methods and recent progress in exciting and controlling this motion, using both laboratory lasers and the SLAC Linac Coherent Light Source x-ray free electron laser, and will further try to relate the date to the goal of molecular movies.

  18. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  19. On quantum quadrupole radiation

    International Nuclear Information System (INIS)

    Fonda, L.; Mankoc-Borstnik, N.

    1981-02-01

    In this paper it is shown that for the electromagnetic decay of a quantum system in a coherent rotational state the total quadrupole radiation is proportional to (d 5 Q/dt 5 )(dQ/dt)sup(*)+c.c. For the radiation flux out of a sphere of large radius a different quantity, closer to the classical expression (d 3 Q/dt 3 ) 2 , is found. (author)

  20. From Animaculum to single molecules: 300 years of the light microscope

    Science.gov (United States)

    Wollman, Adam J. M.; Nudd, Richard; Hedlund, Erik G.; Leake, Mark C.

    2015-01-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632–1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term ‘biologists’). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503–519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants. PMID:25924631

  1. Hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Zhou, J.P., Jones, C.

    1993-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the initial two composite molecule/semiconductor devices will be reported. Consequently, light sensors based on dye-coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor microbridges will be discussed. Moreover, molecule/superconductor energy and electron transfer phenomena will be illustrated also for the first time

  2. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  3. LIGHT ECHOES FROM η CARINAE'S GREAT ERUPTION: SPECTROPHOTOMETRIC EVOLUTION AND THE RAPID FORMATION OF NITROGEN-RICH MOLECULES

    International Nuclear Information System (INIS)

    Prieto, J. L.; Knapp, G. R.; Rest, A.; Walborn, N. R.; Bianco, F. B.; Matheson, T.; Smith, N.; Hsiao, E. Y.; Campillay, A.; Contreras, C.; González, C.; Morrell, N.; Phillips, M. M.; Chornock, R.; Paredes Álvarez, L.; James, D.; Smith, R. C.; Kunder, A.; Margheim, S.; Welch, D. L.

    2014-01-01

    We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ∼0.9 mag in ∼1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ∼300 days after peak brightness, the spectra show strong molecular transitions of CN at ≳ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula

  4. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  5. Mechanical Design of a Second Generation LHC IR Quadrupole

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2003-01-01

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS

  6. Study on pulsed-operation of the drift tube quadrupole magnets

    International Nuclear Information System (INIS)

    Mutou, M.

    1982-01-01

    The heavy ion linac for NUMATRON project is designed not only as a injector for a synchrotron but also as a supplier of heavy ion beams for experiments with linac beam. In one repetition cycle of the synchrotron (1sec), the linac injects nearly 25 beam pulses with pulse width of 300 μsec and pulse interval of 30 msec. And the ion species can be varied every repetition. On the other hand, when it is off duty of injection to the synchrotron, the linac accelerates the beams that are directly used for the experiments. Also in this case, the ion species should be varied according to the requests of the experiments, for instance every 1 sec. Therefore, the quadrupole magnets installed in the drift tubes of the linac must be excited with pulse mode. The power supply of the quadrupole magnets will consists of two parts, namely pulse-excitation and dc-excitation power sources. The report describes the posibilities on the pulse-operation of the quadrupole magnets with the field gradient of asymptotically equals 10 KG/cm, and the analysis of the power supply of the quadrupole magnets. (author)

  7. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  8. BEAM TRANSPORT AND STORAGE WITH COLD NEUTRAL ATOMS AND MOLECULES

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter L. [Los Alamos National Laboratory

    2012-05-15

    A large class of cold neutral atoms and molecules is subject to magnetic field-gradient forces. In the presence of a field, hyperfine atomic states are split into several Zeeman levels. The slopes of these curves vs. field are the effective magnetic moments. By means of optical pumping in a field, Zeeman states of neutral lithium atoms and CaH molecules with effective magnetic moments of nearly {+-} one Bohr magneton can be selected. Particles in Zeeman states for which the energy increases with field are repelled by increasing fields; particles in states for which the energy decreases with field are attracted to increasing fields. For stable magnetic confinement, field-repelled states are required. Neutral-particle velocities in the present study are on the order of tens to hundreds of m/s and the magnetic fields needed for transport and injection are on the order of in the range of 0.01-1T. Many of the general concepts of charged-particle beam transport carry over into neutral particle spin-force optics, but with important differences. In general, the role of bending dipoles in charged particle optics is played by quadrupoles in neutral particle optics; the role of quadrupoles is played by sextupoles. The neutralparticle analog of charge-exchange injection into storage rings is the use of lasers to flip the state of particles from field-seeking to field-repelled. Preliminary tracking results for two neutral atom/molecule storage ring configurations are presented. It was found that orbit instabilities limit the confinment time in a racetrack-shaped ring with discrete magnetic elements with drift spaces between them; stable behavior was observed in a toroidal ring with a continuous sextupole field. An alternative concept using a linear sextupole or octupole channel with solenoids on the ends is presently being considered.

  9. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Utaja

    2003-01-01

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  10. Theoretical analysis of bimetallic nanorod dimer biosensors for label-free molecule detection

    Science.gov (United States)

    Das, Avijit; Talukder, Muhammad Anisuzzaman

    2018-02-01

    In this work, we theoretically analyze a gold (Au) core within silver (Ag) shell (Au@Ag) nanorod dimer biosensor for label-free molecule detection. The incident light on an Au@Ag nanorod strongly couples to localized surface plasmon modes, especially around the tip region. The field enhancement around the tip of a nanorod or between the tips of two longitudinally aligned nanorods as in a dimer can be exploited for sensitive detection of biomolecules. We derive analytical expressions for the interactions of an Au@Ag nanorod dimer with the incident light. We also study the detail dynamics of an Au@Ag nanorod dimer with the incident light computationally using finite difference time domain (FDTD) technique when core-shell ratio, relative position of the nanorods, and angle of incidence of light change. We find that the results obtained using the developed analytical model match well with that obtained using FDTD simulations. Additionally, we investigate the sensitivity of the Au@Ag nanorod dimer, i.e., shift in the resonance wavelength, when a target biomolecule such as lysozyme (Lys), human serum albumin (HSA), anti-biotin (Abn), human catalase (CAT), and human fibrinogen (Fb) protein molecules are attached to the tips of the nanorods.

  11. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  12. Nuclear quadrupole interactions in ferroelectric compounds of HF/sup 181/

    Energy Technology Data Exchange (ETDEWEB)

    Kunzler, J V

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO/sub 3/, SnhfO/sub 3/, CaHfO/sub 3/ e SrHfO/sub 3/ have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians per second was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory.

  13. Superconducting Quadrupole for the ISR High Luminosity insertion:end view

    CERN Multimedia

    1977-01-01

    Connection end view of the prototype quadrupole before insertion of the inner vacuum chamber with inbedded 6-pole windings. The main components of the structure can be seen: (from inside outwards) the superconducting quadrupole coils surrounded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702690X, 7702307, 7702308, 7812604X.

  14. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    OpenAIRE

    Stoll, M.; Bakker, J.; Steimle, T.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106 cm−3 at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the 3He buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule-3He collision cross sections of 1.6×10−18 and 3.1×10−17 cm2 are extracted for CrH and MnH, respec...

  15. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    Science.gov (United States)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  16. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single-molecule

  17. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  18. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  19. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei

    International Nuclear Information System (INIS)

    Smirnova, N.A.; Van Isacker, P.; Smirnova, N.A; Pietralla, N.; Yale Univ., New Haven, CT; Mizusaki, T.

    2000-01-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 + 1 state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the γ-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei 142 Ce and 94 Mo. (authors)

  20. Interrelation between the isoscalar octupole phonon and the proton-neutron mixed-symmetry quadrupole phonon in near-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics

    2000-07-01

    The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)

  1. Passivation of boron in silicon by hydrogen and muonium: calculation of electric field gradients, quadrupole resonance frequencies and cross relaxation functions

    International Nuclear Information System (INIS)

    Maric, Dj.M.; Meier, P.F.; Vogel, S.; Davis, E.A.

    1991-01-01

    The possibility of studying impurity passivation complexes in semiconductors by quadrupole resonance spectroscopy is examined. The problem is illustrated for the case of boron in silicon passivated with hydrogen or, equivalently, with muonium, since the radioactive light isotope in principle offers a greater sensitivity for detection of the spectra. Ab initio calculations on suitable cluster models of the passivation complexes provide estimates of the electric field gradients at the quadrupolar nuclei, and thereby predictions of the quadrupole resonance frequencies. Detection via cross-relaxation techniques is proposed, notably muon level crossing resonance (μLCR), and illustrated by calculation of the time dependence of the muon polarization function. Possible reasons for the absence of quadrupolar resonances in μLCR spectra recorded in exploratory experiments are discussed; these include the existence of a local tunnelling mode for the lighter isotope. (author)

  2. Construction and Qualification of the Pre-Series MQM Superconducting Quadrupoles for the LHC Insertions

    CERN Document Server

    Ostojic, R; Lucas, J; Venturini-Delsolaro, W; Landgrebe, D

    2004-01-01

    The LHC insertions will be equipped with individually powered MQM superconducting quadrupoles, produced in three versions with magnetic lengths of 2.4 m, 3.4 m, and 4.8 m. The quadrupoles feature a 56 mm aperture coil, designed on the basis of an 8.8 mm wide Rutherford-type NbTi cable for a nominal gradient of 200 T/m at 1.9 K and 5390 A. A total of 96 quadrupoles are in production in Tesla Engineering, UK. In this report we describe the construction of the pre-series MQM quadrupoles and present the results of the qualification tests.

  3. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  4. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  5. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  6. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    International Nuclear Information System (INIS)

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  7. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  8. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  9. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    Science.gov (United States)

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  10. Quadrupole collectivity in {sup 128}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Boenig, Esther Sabine

    2014-07-07

    The regions around shell closures, especially around doubly magic nuclei, are of major interest in nuclear structure physics, as they provide a perfect test for nuclear structure theory. The neutron-rich Cd isotopes in the region of {sup 132}Sn are only two protons away from the shell closure at Z=50 and in close proximity to the N=82 magic number. Nevertheless they show an irregular behaviour regarding the excitation energy of the first excited 2{sup +} state. This is not reproduced by shell model calculations, which is astonishing due to the proximity of the shell closures. In order to shed light on the much discussed region around doubly magic {sup 132}Sn, a Coulomb excitation experiment of {sup 128}Cd has been performed at REX-ISOLDE, CERN. The reduced transition strength B(E2;0{sup +}{sub gs} → 2{sup +}{sub 1}), which is a measure of collectivity, and the spectroscopic quadrupole moment Q{sub s}(2{sup +}{sub 1}) as a measure of deformation could be determined for the first time. The results are shown as the continuation of already measured neutron-rich Cd isotopes and are compared to both beyond mean field and shell model calculations, which give different predictions for these observables.

  11. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  12. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  13. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  14. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  15. Magnetic field in the end region of the SSC quadrupole magnet

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-06-01

    Recent advances in methods of computing magnetic fields have made it possible to study the field in the end region of the SS quadrupole magnet in detail. The placement of conductor in the straight section, away from the ends, was designed to produce a practically pure quadrupole field in the two-dimensional sense. The ends of the coils were designed to produce a practically pure quadrupole field in the integral sense using a method that ignores the presence of the iron yoke. Subsequently, the effect of presence of the yoke on the field was analyzed. The paper presents the end configuration together with the computed integrated multipole components, local multipole components, and local field components. A comparison with measurements is included. 5 refs., 5 figs., 1 tab

  16. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    International Nuclear Information System (INIS)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.

    2006-01-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest

  17. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.; /Fermilab

    2006-08-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest.

  18. Status of the CAMD Light Source

    CERN Document Server

    Suller, Victor P; Fedurin, Mikhail; Jines, Paul; Launey, Daren; Miller, Toby; Wang, Yanshan

    2005-01-01

    With the increasing diversity of its research program, the CAMD Light Source has improved its beam brightness and quality. Using a well calibrated model of the lattice, the ring optic has been refined to generate a lower beam emittance of 150 nm.rad and this has been confirmed by measuring the beta values with the modulated quadrupole shunt system. The beam sizes have also been measured with an X-ray pinhole camera and compared to the calculated emittance. The beam orbit is corrected to a standard position referenced to the quadrupole centers to a precision better than 0.5 mm, using a suite of well localized bumps which can also flexibly steer the user photon beams to their requirements. Beam reliability has been improved by bringing into use a VME control system for the energy ramp.

  19. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  20. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  1. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    Science.gov (United States)

    Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim

    2008-09-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.

  2. Fabrication and test of prototype ring magnets for the ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Tanabe, J.; Avery, R.; Caylor, R.; Green, M.I.; Hoyer, E.; Halbach, K.; Hernandez, S.; Humphries, D.; Kajiyama, Y.; Keller, R.; Low, W.; Marks, S.; Milburn, J.; Yee, D.

    1989-03-01

    Prototype Models for the Advanced Light Source (ALS) Booster Dipole, Quadrupole and Sextupole and the Storage Ring Gradient Magnet, Quadrupole and Sextupole have been constructed. The Booster Magnet Prototypes have been tested. The Storage Ring Magnets are presently undergoing tests and magnetic measurements. This paper reviews the designs and parameters for these magnets, briefly describes features of the magnet designs which respond to the special constraints imposed by the requirements for both accelerator rings, and reviews some of the results of magnet measurements for the prototype. 13 refs., 7 figs., 1 tab

  3. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  4. Energies and transition probabilities from the full solution of nuclear quadrupole-octupole model

    International Nuclear Information System (INIS)

    Strecker, M.; Lenske, H.; Minkov, N.

    2013-01-01

    A collective model of nuclear quadrupole-octupole vibrations and rotations, originally restricted to a coherent interplay between quadrupole and octupole modes, is now developed for application beyond this restriction. The eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in the basis of the analytic solution obtained in the case of the coherent-mode assumption. Within this scheme the yrast alternating-parity band is constructed by the lowest eigenvalues having the appropriate parity at given angular momentum. Additionally we include the calculation of transition probabilities which are fitted with the energies simultaneously. As a result we obtain a unique set of parameters. The obtained model parameters unambiguously determine the shape of the quadrupole-octupole potential. From the resulting wave functions quadrupole deformation expectation values are calculated which are found to be in agreement with experimental values. (author)

  5. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  6. Design and construction of superconducting quadrupole magnets for ion beam fusion

    International Nuclear Information System (INIS)

    Wang, S.T.; Ludwig, H.; Turner, L.R.

    1978-01-01

    A high gradient superconducting quadrupole has been designed and developed as the heavy ion beam focussing element in the low velocity portions of an rf linac for the Argonne Ion Beam Fusion Reactor. The quadrupole magnets will require an extremely short magnet coil length (approximately 20 cm to 30 cm) and extremely high central gradients (approximately 100 T/m to 200 T/m). The useful warm bore will be about 4 to 6 cm and the integral gradient homogeneity should be constant to +-5% over the useful warm bore. Special techniques have been developed which are especially suitable for multilayer coil winding and coil assembly with high average current density over the coil cross section. A 5-layer quadrupole with 9 cm winding bore has been built and tested to the full performance of about 100 T/m with little training. The achieved average current density is 22,000 A/cm 2 at a peak field in conductor of about 5.0 T. An 8-layer quadrupole is under construction for a design gradient of 140 T/m over 9 cm winding bore. The peak field will be about 7.2 T

  7. A superconducting quadrupole array for transport of multiple high current beams

    International Nuclear Information System (INIS)

    Faltens, A.; Shuman, D.

    1999-01-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them

  8. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  9. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts

    International Nuclear Information System (INIS)

    Wang, Kun; Zhou, Jianfeng; Hamill, Joseph M.; Xu, Bingqian

    2014-01-01

    The contact effects of single-molecule break junctions on rectification behaviors were experimentally explored by a systematic control of anchoring groups of 1,4-disubstituted benzene molecular junctions. Single-molecule conductance and I-V characteristic measurements reveal a strong correlation between rectifying effects and the asymmetry in contacts. Analysis using energy band models and I-V calculations suggested that the rectification behavior is mainly caused by asymmetric coupling strengths at the two contact interfaces. Fitting of the rectification ratio by a modified Simmons model we developed suggests asymmetry in potential drop across the asymmetric anchoring groups as the mechanism of rectifying I-V behavior. This study provides direct experimental evidence and sheds light on the mechanisms of rectification behavior induced simply by contact asymmetry, which serves as an aid to interpret future single-molecule electronic behavior involved with asymmetric contact conformation

  10. Light ion fusion experiment (L.I.F.E.) concept validation studies. Final report, July 1979-May 1980

    International Nuclear Information System (INIS)

    Christensen, T.E.; Orthel, J.L.; Thomson, J.J.

    1980-12-01

    This report reflects the considerable advances made for the objectives of the contractual program, validating by detailed anaytical studies the concept of a new Light Ion Fusion Experiment for Inertial Confinement Fusion. The studies have produced an analytical design of a novel electrostatic accelerator based on separate function and strong channel focusing principles, to launch 3 to 10 MeV, 23 kA, He + neutralized beams in 400 ns pulses, delivering on a 5 mm radius target located 10 m downstream, 50 kJ of implosion energy in approx. 20 ns impact times The control, stability and focusing of beams is made by electrostatic quadrupoles, producing overall beam normalized emittance of approx. 3 x 10 -5 m-rad

  11. Quadrupole terms in the Maxwell equations: Debye-Hückel theory in quadrupolarizable solvent and self-salting-out of electrolytes.

    Science.gov (United States)

    Slavchov, Radomir I

    2014-04-28

    If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.

  12. Structures and Nuclear Quadrupole Coupling Tensors of a Series of Chlorine-Containing Hydrocarbons

    Science.gov (United States)

    Dikkumbura, Asela S.; Webster, Erica R.; Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.; Seifert, Nathan A.; Pate, Brooks

    2016-06-01

    Rotational spectra for gauche-1,2-dichloroethane (12DCE), gauche-1-chloro-2-fluoroethane (1C2FE) and both anti- and gauche-2,3-dichloropropene (23DCP) have been observed using chirped-pulse Fourier-transform microwave (FTMW) spectroscopy in the 6-18 GHz region. Although the anti conformers for all three species are predicted to be more stable than the gauche forms, they are nonpolar (12DCE) or nearly nonpolar (predicted dipole components for anti-1C2FE: μ_a = 0.11 D, μ_b = 0.02 D and for anti-23DCP: μ_a = 0.25 D, μ_b = 0.02 D); nevertheless, it was also possible to observe and assign the spectrum of anti-23DCP. Assignments of parent spectra and 37Cl and 13C substituted isotopologues utilized predictions at the MP2/6-311++G(2d,2p) level and Pickett's SPCAT/SPFIT programs. For the weak anti-23DCP spectra, additional measurements also utilized a resonant-cavity FTMW spectrometer. Full chlorine nuclear quadrupole coupling tensors for gauche-12DCE and both anti- and gauche-23DCP have been diagonalized to allow comparison of coupling constants. Kraitchman's equations were used to determine r_s coordinates of isotopically substituted atoms and r_0 structures were also deduced for gauche conformers of 12DCE and 1C2FE. Structural details and chlorine nuclear quadrupole coupling constants of all three molecules will be compared, and effects of differing halogen substitution and carbon chain length on molecular properties will be evaluated.

  13. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Strong reduction of spectral heterogeneity in gold bipyramids for single-particle and single-molecule plasmon sensing.

    Science.gov (United States)

    Peters, S M E; Verheijen, M A; Prins, M W J; Zijlstra, P

    2016-01-15

    Single metal nanoparticles are attractive biomolecular sensors. Binding of analyte to a functional particle results in a plasmon shift that can be conveniently monitored in a far-field optical microscope. Heterogeneities in spectral properties of individual particles in an ensemble affect the reliability of a single-particle plasmon sensor, especially when plasmon shifts are monitored in real-time using a fixed irradiation wavelength. We compare the spectral heterogeneity of different plasmon sensor geometries (gold nanospheres, nanorods, and bipyramids) and correlate this to their size and aspect-ratio dispersion. We show that gold bipyramids exhibit a strongly reduced heterogeneity in aspect ratio and plasmon wavelength compared to commonly used gold nanorods. We show that this translates into a significantly improved homogeneity of the response to molecular binding without compromising single-molecule sensitivity.

  15. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  16. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  17. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Fermilab; Brookhaven; LBL, Berkeley; Texas A-M

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  18. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  19. Nonlinearity of the refractive index due to an excitonic molecule resonance state in CdS

    International Nuclear Information System (INIS)

    Baumert, R.; Broser, I.; Buschick, K.

    1986-01-01

    The authors report the observation of an intensity-dependent refractive-index nonlinearity in CdS due to a resonance state where an excitonic molecule is created by induced absorption of light. The refractive index n as a function of the incident laser photon energy E is measured directly by light refraction in thin crystal prisms. A renormalized dielectric function describes the measured n(E) spectra well. This strong refractive-index nonlinearity is well suited to produce an optical bistability and to further strengthen the evidence of CdS to be an important material for laser-induced dynamic gratings

  20. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    International Nuclear Information System (INIS)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  1. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-01-01

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling

  2. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    Science.gov (United States)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  3. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  4. The puzzle of the 6Li quadrupole moment: steps toward the solution

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-01-01

    The problem of origin of the ground-state 6 Li quadrupole deformation has been investigated with account of the three-deuteron component of this nucleus wave function. two long-standing puzzles related to the tensor interaction in 6 Li are known. The first one lies in the anomalously small value of the 6 Li quadrupole moment which, being negative, is in absolute magnitude smaller by the factor of 5 than that of 6 Li. The second puzzle consists in the anomalous behavior of the tensor analyzing power T 2q in scattering of polarized 6 Li nuclei from various targets. It is shown that the large (in absolute magnitude) negative contribution to the 6 Li quadrupole moment resulting from the three-deuteron configuration cancels almost completely the direct positive contribution due to the folding αd-potential. As a result, the total quadrupole moment turns out to be close to zero and highly sensitive to fine details of the tensor NN interaction and of the 4 He wave function [ru

  5. Ions and light

    CERN Document Server

    Bowers, Michael T

    2013-01-01

    Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar

  6. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  7. Test Results of the LARP Nb$_3$Sn Quadrupole HQ03a

    CERN Document Server

    DiMarco, J; Anerella, M; Bajas, H; Chlachidze, G; Borgnolutti, F; Bossert, R; Cheng, D W; Dietderich, D; Felice, H; Pan, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Marchevsky, M; Orris, D; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Wanderer, P; Wang, X R; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) has been developing $Nb_3Sn$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D; phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. This paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.

  8. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes

    Science.gov (United States)

    Bryant, Donald A.; Canniffe, Daniel P.

    2018-02-01

    Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light

  9. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets

    International Nuclear Information System (INIS)

    Ponomarev, A.G.; Melnik, K.I.; Miroshnichenko, V.I.; Storizhko, V.E.; Sulkio-Cleff, B.

    2003-01-01

    Over the past decade, in MeV ion beam microanalysis efforts to achieve a spatial resolution better than 0.1 μm with a beam current of ∼100 pA have been connected with microprobes of new generation where the probe is formed by means of separated magnetic quadrupole lens structures . However, as was pointed out in , no dramatic improvements in spatial resolution have been produced so far. For better understanding of the situation the authors carried out theoretical studies of multiparameter sets of probe-forming systems based on separated triplets and quadruplets of magnetic quadrupole lenses. Comparisons were made between the highest current values attained at different systems for a given beam spot size. The maximum parasitic sextupole and octupole field components were found whose contributions to spot broadening are tolerable. It is shown that the use of modern electrostatic accelerators and precision magnetic quadrupole lenses makes it possible to eliminate the effect of chromatic aberrations and second- and third-order parasitic aberrations resulting from distortions of the quadrupole lens symmetry. Therefore probe-forming systems with triplets and quadruplets of magnetic quadrupole lenses have a lower theoretical spatial resolution limit which is restricted mainly by intrinsic spherical third-order aberrations in state-of-the-art microprobes

  10. Slowing techniques for loading a magneto-optical trap of CaF molecules

    Science.gov (United States)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  11. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  12. The team responsible for testing and measuring the LHC insertion quadrupoles

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The LHC main magnet system includes about 600 superconducting quadrupoles for beam focusing. Superconducting Matching Quadrupole Magnets (MQMs) are just one of several varieties of quadrupole; they will be installed in the accelerator´s eight ´insertion zones´, four of which are also experimental areas, where the beams will intersect to produce proton-proton collisions. The first MQM, built by the UK firm Tesla Engineering, has passed its acceptance tests. The team responsible for the tests is pictured here with the 3.5-metre-long magnet. Photo 01: Bottom row, left to right, Michäel Ky, Antoine Dias Goncalves, Gilles Rittaud, Yannick Riva; middle row, left to right, Vladimir Bretin, Noël Dalexandro, Bert Lust, Patrick Viret; top row, left to right, Christian Giloux, Ranko Ostojic, Walter Venturini Delsolaro, Lassaâd Gharsallah.

  13. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  14. Raman scattering signatures of the unusual vibronic interaction of molecules in liquid helium-3

    Energy Technology Data Exchange (ETDEWEB)

    Tehver, I., E-mail: imbi.tehver@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Benedek, G. [Donostia International Physics Center (DIPC) and University of the Basque Country (EHU), Paseo de Lardizabal 4, 20018 Donostia/San Sebastian (Spain); Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2015-10-16

    Highlights: • Theory of resonance Raman scattering (RRS) of molecules in {sup 3}He liquid is proposed. • Fermi excitations give essential contribution to RRS. • RRS spectra of glyoxal molecule in {sup 3}He droplets are calculated. - Abstract: Light scattering in quantum liquid helium-3 may involve a unique mechanism – the creation and annihilation of atom excitations across the Fermi level. The density of states of particle–hole excitations in the low-energy limit is strongly enhanced as compared to that of collective excitations of phonons in helium-3. This makes possible to directly observe Fermi excitations in the resonant Raman scattering (RRS) by {sup 3}He droplets doped by impurity molecules. The RRS spectra essentially depend on the excitation frequency. In case of excitation in the anti-Stokes side of absorption the first order RRS is directly determined by the particle–hole excitations in the vicinity of the impurity molecule and the contribution of phonons mainly given by the localized spherical vibration. The calculations are made for a {sup 3}He droplet doped by a glyoxal molecule.

  15. Preliminary proposal of a Nb3Sn quadrupole model for the low β insertions of the LHC

    International Nuclear Information System (INIS)

    Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G.

    1995-09-01

    In recent years Nb 3 Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb 3 Sn technology is progressing fast, increasing both technical reliability and availability. The Nb 3 Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb 3 Sn cable for a second generation IR inner triplet low β quadrupoles, for the Large Hadron Collider at CERN. The low β quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: 1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; 2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC

  16. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    Science.gov (United States)

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  18. Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles

    Directory of Open Access Journals (Sweden)

    S. Becker

    2009-10-01

    Full Text Available The application of quadrupole devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to 500  T m^{-1} at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the Mainz Microtron MAMI.

  19. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    International Nuclear Information System (INIS)

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  20. The First Quantum Theory of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    rotational energies of diatomic molecules. That theory was ... resent the intensity of light emitted by a black body as a function of ... by the vibrational motion of its parts”. Bjerrum was .... −1/4; despite the fact that no molecule is a rigid rotor,.

  1. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  2. Gas-phase ion-molecule reactions and high-pressure mass spectrometer, 1

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo

    1977-01-01

    The reasons for the fact that the research in gas-phase ion-molecule reactions, to which wide interest is shown, have greatly contributed to the physical and chemical fields are that, first it is essential in understanding general phenomena concerning ions, second, it can furnish many unique informations in the dynamics of chemical reactions, and third, usefulness of '' chemical ionization'' methods has been established as its application to chemical analysis. In this review, the history and trend of studies and equipments in gas-phase ion-molecule reactions are surveyed. The survey includes the chemical ionization mass spectrometer for simultaneously measuring the positive and negative ions utilizing a quadrupole mass spectrometer presented by Hunt and others, flowing afterglow method derived from the flowing method which traces neutral chemical species mainly optically, ion cyclotron resonance mass spectrometer, trapped ion mass spectrometer and others. Number of reports referred to ion-molecule reactions issued during the last one year well exceeds the total number of reports concerning mass spectrometers presented before 1955. This truly shows how active the research and development are in this field. (Wakatsuki, Y.)

  3. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-01-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  4. Molecules to Materials

    Indian Academy of Sciences (India)

    evolved as a new line of thinking wherein a single molecule or perhaps a collection .... In photonic communication processes, laser light has to be modulated and .... The author wishes to thank G Rajaram for a critical reading of the manuscript.

  5. Measurement of time dependent fields in high gradient superconducting quadrupoles for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Coulter, K.; Gourlay, S.; Jaffery, T.S.

    1990-10-01

    Magnetic field measurements have been performed on prototype and production magnets from two high gradient superconducting quadrupoles designs. One design is a double shell quadrupole with 36 strand Rutherford cable. The other design is a single shell quadrupole with 5 individually monolithic strands connected in series. These magnets have similar bore diameters and cable dimensions. However, there are significant differences between the two designs, as well as differences between prototype and production magnets within each design, with regard to Cu to superconductor ratio, filament diameter and filament spacing to strand diameter. The time dependence of fixed currents of the measured magnetic fields is discussed. 9 refs., 6 figs., 1 tab

  6. Effect of tilted anisotropy on spin states of strongly anisotropic 2D film

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.

    2012-01-01

    The spin states of a 2D film with a strong easy-plane anisotropy and single-ion tilted anisotropy, the axis of which forms a certain angle with the normal to the film plane are investigated. In this system, an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase can be formed; the realization of these states noticeably depends on the degree of tilted anisotropy.

  7. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  8. Angular-momentum-assisted dissociation of CO in strong optical fields

    Science.gov (United States)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  9. Applications of the quasi-elastic light scattering to the study of dynamic properties of charged macro-molecules

    International Nuclear Information System (INIS)

    Gouesin-Menez, Renee

    1979-01-01

    The object of this research thesis is to study the modifications of dynamic properties of a macromolecule under the influence of variations of its medium, by using a frequency analysis of the spectrum of light scattered by a solution of particles. Thus, an important part of this thesis addresses the study and development of the scattering method and of its analysis by 'photon pulses', and the development and adjustment of an electrophoretic device to study light scattering by molecules submitted to an electric field. Then, hydrodynamic characteristics of some macromolecules have been measured with or without electric field. The studied molecular systems have been: calibrated spheres of latex polystyrene, a globular protein (bovine serum albumin), a polysaccharide (under the form of a rigid short stick), a flexible linear polyelectrolyte (polymethacrylate), and two DNA samples

  10. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  11. Infrared Spectroscopy of Gas-Phase M+(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    Science.gov (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M + (CO 2 ) n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO 2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO 2 asymmetric stretch around 2350 cm -1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO 2 , consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M + (CO 2 ) 2 ] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  12. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail: Christoph.Reich@tu-berlin.de; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  13. PREFACE: Light element atom, molecule and radical behaviour in the divertor and edge plasma regions

    Science.gov (United States)

    Braams, Bastiaan J.; Chung, Hyun-Kung

    2015-01-01

    This volume of Journal of Physics: Conference Series contains contributions by participants in an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on "Light element atom, molecule and radical behaviour in the divertor and edge plasma regions" (in magnetic fusion devices). Light elements are the dominant impurity species in fusion experiments and in the near-wall plasma they occur as atoms or ions and also as hydrides and other molecules and molecular ions. Hydrogen (H or D, and T in a reactor) is the dominant species in fusion experiments, but all light elements He - O and Ne are of interest for various reasons. Helium is a product of the D+T fusion reaction and is introduced in experiments for transport studies. Lithium is used for wall coating and also as a beam diagnostic material. Beryllium is foreseen as a wall material for the ITER experiment and is used on the Joint European Torus (JET) experiment. Boron may be used as a coating material for the vessel walls. Carbon (graphite or carbon-fiber composite) is often used as the target material for wall regions subject to high heat load. Nitrogen may be used as a buffer gas for edge plasma cooling. Oxygen is a common impurity in experiments due to residual water vapor. Finally, neon is another choice as a buffer gas. Data for collisional and radiative processes involving these species are important for plasma modelling and for diagnostics. The participants in the CRP met 3 times over the years 2009-2013 for a research coordination meeting. Reports and presentation materials for these meetings are available through the web page on coordinated research projects of the (IAEA) Atomic and Molecular Data Unit [1]. Some of the numerical data generated in the course of the CRP is available through the ALADDIN database [2]. The IAEA takes the opportunity to thank the participants in the CRP for their dedicated efforts in the course of the CRP and for their contributions to this volume. The IAEA

  14. Pulling cylindrical particles using a soft-nonparaxial tractor beam

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Ding, Weiqiang; Wang, Maoyan

    2017-01-01

    In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate the nonparaxi......In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate...... the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45 degrees and even to 30 degrees for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed to the interaction of magnetic dipole and magnetic quadrupole moments...... and sorting of targeted particles....

  15. Exotic helium molecules

    International Nuclear Information System (INIS)

    Portier, M.

    2007-12-01

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range 4 He 2 (2 3 S 1 -2 3 P 0 ) molecule, or a 4 He 2 (2 3 S 1 -2 3 S 1 ) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 ± 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range 4 He 2 (2 3 S 1 -2 3 S 1 ) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime τ = (1.4 ± 0.3) μs is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  16. The LHC Main Quadrupoles during Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Payn, A; Rossi, L; Schellong, B; Schmidt, P; Simon, F; Schirm, K-M; Todesco, E

    2006-01-01

    By the end of August 2005 about 320 of the 400 main LHC quadrupole magnets have been fabricated and about 220 of them assembled into their cold masses, together with corrector magnets. About 130 of them have been cold tested in their cryostats and most of the quadrupoles exceeded their nominal excitation, i.e. 12,000 A, after no more than two training quenches. During this series fabrication, the quality of the magnets and cold masses was thoroughly monitored by means of warm magnetic field measurements, of strict geometrical checking, and of various electrical verifications. A number of modifications were introduced in order to improve the magnet fabrication, mainly correction of the coil geometry for achieving the specified field quality and measures for avoiding coil insulation problems. Further changes concern the electrical connectivity and insulation of instrumentation, and of the corrector magnets inside the cold masses. The contact resistances for the bus-bar connections to the quench protection diode...

  17. Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-08-01

    This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.

  18. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193

    Science.gov (United States)

    Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.

    2011-01-01

    The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  19. Collective Quadrupole Excitations of Transactinide Nuclei

    CERN Document Server

    Zajac, K; Pomorski, K; Rohozinski, S G; Srebrny, J

    2003-01-01

    The quadrupole excitations of transuranic nuclei are described in the frame of the microscopic Bohr Hamiltonian modified by adding the coupling with the collective pairing vibrations. The energies of the states from the ground-state bands in U to No even-even isotopes as well as the B(E2) transition probabilities are reproduced within the model containing no adjustable parameters.

  20. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  1. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei; Wang, Ching-Chiun; Juang, Fuh-Shyang; Lai, Shih-Hsiang; Lin, Yang-Ching

    2016-01-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm"2, luminance of 1062 cd/m"2, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  2. BaSnF4 fast ion conductor: Variations versus the method of preparation and anomalous temperature variation of the quadrupole splitting

    International Nuclear Information System (INIS)

    Hantash, Jamil; Bartlett, Alan; Denes, Georges; Muntasar, Abdualhafeed; Oldfield, Philip

    2005-01-01

    A new method of preparation of high performance fluoride ion conductor, BaSnF 4 , by water leaching of newly discovered barium tin(II) chloride fluorides, has been designed, and the materials have been studied and compared to the solid prepared by the usual dry method. The unit-cell parameters and crystallite dimensions were found to vary with the method of preparation. In addition, the crystallite dimensions were found to be highly anisotropic for the samples obtained by the wet method. The Moessbauer spectrum is made of a large tin(II) quadrupole doublet, and a broad tin(IV) oxide peak due to surface oxidation. The tin(II) spectrum is in agreement with covalently bonded tin(II) having a strongly stereoactive lone pair. An unusually high dependence of the quadrupole splitting at low temperatures was observed (5.8 times larger than for α-SnF 2 ).

  3. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  4. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented

  5. Development and test of LARP technological quadrupole (TQC) magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  6. Development and test of LARP technological quadrupole (TQC) magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2006-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented

  7. Nuclear quadrupole resonance of arsenolite

    International Nuclear Information System (INIS)

    Madarazo, R.

    1988-01-01

    A pulsed Nuclear Quadrupole Resonance (NQR) spectrometer was constructed using imported Matec units. Peripherical components were specially assembled and tested for the implantation of the spin-echo technique in the Laboratorio de Centros de Cor of IFUSP. The R.F. operation range is from 50 to 1 ) and spin-spin (T 2 ) relaxation times were carried out at room temperature in arsenolite. The 75 As NQR frequency measured at room temperature is 116.223 MHz. (author) [pt

  8. Muonium substituted molecules

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1990-12-01

    The manner in which Muon Spin Rotation and Level Crossing Resonance are used to characterise muonium substituted organic radicals is described, and illustrated with spectra for the ethyl radical and related species. Comparison with electron spin resonance data for the unsubstituted radicals reveals significant structural and hyperfine isotope effects which can be traced to the effects of zero point motion. The first comparable results for a diamagnetic species, exhibiting a quadrupole isotope effect by comparison with conventional nuclear quadrupole resonance data, are presented and discussed. (author)

  9. Relativistic Quadrupole Polarizability for the Ground State of Hydrogen-Like Ions

    International Nuclear Information System (INIS)

    Zhang Yong-Hu; Zhang Xian-Zhou; Tang Li-Yan; Shi Ting-Yun; Mitroy Jim

    2012-01-01

    The static quadrupole polarizabilities for hydrogen-like ions from Z = 1 to Z = 100 in the 1S 1/2 ground state are calculated to high precision by solving the Dirac equation using the B-spline Galerkin method. The results are consistent with the expression of Kaneko [J. Phys. B 10 (1977) 3347] at low Z. The quadrupole oscillator strength sum Σ n f (2) gn is computed to be zero to a very high degree of precision. (atomic and molecular physics)

  10. Laser based imaging of time depending microscopic scenes with strong light emission

    Science.gov (United States)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  11. Preliminary proposal of a Nb{sub 3}Sn quadrupole model for the low {beta} insertions of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G; Ametrano, F; Bellomo, G; Broggi, F; Rossi, L; Volpini, G [Milan Univ. (Italy). Dip. di Fisica; [INFN, Sezione di Milano (Italy). Laboratorio Acceleratori e Superconduttivita` Applicata

    1995-09-01

    In recent years Nb{sub 3}Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb{sub 3}Sn technology is progressing fast, increasing both technical reliability and availability. The Nb{sub 3}Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb{sub 3}Sn cable for a second generation IR inner triplet low {beta} quadrupoles, for the Large Hadron Collider at CERN. The low {beta} quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: (1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; (2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC.

  12. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)

    2014-01-28

    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  13. Effect of quadrupole fringe fields on the tune of Indus-2

    International Nuclear Information System (INIS)

    Kant, Pradeep; Husain, Riyasat; Ghodke, A.D.; Singh, Gurnam

    2009-01-01

    Being an unavoidable part in a real magnet design, fringe fields of different kind of magnets have various effects on the beam parameters of the storage ring. The fringe field of a bending magnet (dipole) generates closed orbit distortion and disturbs the dispersion function whereas the fringe field of a quadrupole affects other parameters of the ring like tune values and twiss functions. The fringe field pattern of the quadrupoles of Indus-2 was measured by the Magnet Group. The measurements were performed along the various radial tracks in a quadrupole from -30 to 30 mm in steps of 5 mm at various excitation current levels. The pattern of the gradient at these different current levels was obtained by a line fit of the magnetic field at each point. The data was used to get the effect on the tune of Indus-2. The paper describes the results of the effect on the tune. (author)

  14. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  15. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-01-01

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  16. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  17. The effect and correction of coupling generated by the RHIC triplet quadrupoles

    International Nuclear Information System (INIS)

    Pilat, F.; Peggs, S.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1995-01-01

    This study explores the possibility of operating the nominal RHIC coupling correction system in local decoupling mode, where a subset of skew quadrupoles are independently set by minimizing the coupling as locally measured by beam position monitors. The goal is to establish a correction procedure for the skew quadrupole errors in the interaction region triplets that does not rely on a priori knowledge of the individual errors. After a description of the present coupling correction scheme envisioned for RHIC, the basics of the local decoupling method will be briefly recalled in the context of its implementation in the TEAPOT simulation code as well as operationally. The method is then applied to the RHIC lattice: a series of simple tests establish that single triplet skew quadrupole errors can be corrected by local decoupling. More realistic correction schemes are then studied in order to correct distributed sources of skew quadrupole errors: the machine can be decoupled either by pure local decoupling or by a combination of global (minimum tune separation) and local decoupling. The different correction schemes are successively validated and evaluated by standard RHIC simulation runs with the complete set of errors and corrections. The different solutions and results are finally discussed together with their implications for the hardware

  18. A prototype storage ring for neutral molecules

    NARCIS (Netherlands)

    Crompvoets, F. M. H.; Bethlem, H. L.; Jongma, R.T.; Meijer, G.

    2001-01-01

    The ability to cool and manipulate atoms with light has yielded atom interferometry, precision spectroscopy, Bose-Einstein condensates and atom lasers. The extension of controlled manipulation to molecules is expected to be similarly rewarding, but molecules are not as amenable to manipulation by

  19. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  20. Rotations as coherent states of SU(6) quadrupole phonons in the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Paar, V [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Rio de Janeiro Univ. (Brazil). Inst. de Fisica)

    1981-06-18

    Analytic expressions for the wavefunctions of the ground-state rotational band for even and odd nuclei are derived in terms of spherical quadrupole phonons truncated at N(max) phonons. For N(max) ..-->.. infinite the Bohr-Mottelson rotational states are generated as an asymptotic gaussian distribution of quadrupole phonons.

  1. Decay of Polarons and Molecules in a Strongly Polarized Fermi Gas

    DEFF Research Database (Denmark)

    Bruun, Georg; Massignan, P.

    2010-01-01

    , and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our...

  2. Cold guided beams of polar molecules

    International Nuclear Information System (INIS)

    Motsch, Michael

    2010-01-01

    This thesis reports on experiments characterizing cold guided beams of polar molecules which are produced by electrostatic velocity filtering. This filtering method exploits the interaction between the polar molecules and the electric field provided by an electrostatic quadrupole guide to extract efficiently the slow molecules from a thermal reservoir. For molecules with large and linear Stark shifts such as deuterated ammonia (ND 3 ) or formaldehyde (H 2 CO), fluxes of guided molecules of 10 10 -10 11 molecules/s are produced. The velocities of the molecules in these beams are in the range of 10-200 m/s and correspond to typical translational temperatures of a few Kelvin. The maximum velocity of the guided molecules depends on the Stark shift, the molecular mass, the geometry of the guide, and the applied electrode voltage. Although the source is operated in the near-effusive regime, the number density of the slowest molecules is sensitive to collisions. A theoretical model, taking into account this velocity-dependent collisional loss of molecules in the vicinity of the nozzle, reproduces the density of the guided molecules over a wide pressure range. A careful adjustment of pressure allows an increase in the total number of molecules, whilst yet minimizing losses due to collisions of the sought-for slow molecules. This is an important issue for future applications. Electrostatic velocity filtering is suited for different molecular species. This is demonstrated by producing cold guided beams of the water isotopologs H 2 O, D 2 O, and HDO. Although these are chemically similar, they show linear and quadratic Stark shifts, respectively, when exposed to external electric fields. As a result, the flux of HDO is larger by one order of magnitude, and the flux of the individual isotopologs shows a characteristic dependence on the guiding electric field. The internal-state distribution of guided molecules is studied with a newly developed diagnostic method: depletion

  3. The effect of quadrupole fields on particle confinement in a field-reversed mirror

    International Nuclear Information System (INIS)

    McColl, D.B.; Berk, H.L.; Hammer, J.; Morse, E.C.

    1982-01-01

    A particle simulation code has been modified to simulate particle loss caused by quadrupole magnetic fields on a field-reversed mirror plasma device. Since analytic fields are chosen for the equilibrium, the numerical algorithm is highly accurate for long-time integrations of particle orbits. The resultant particle loss due to the quadrupole fields can be competitive with collisional loss in the device

  4. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  5. Deformation inside and outside the nuclear molecules

    International Nuclear Information System (INIS)

    Cseh, J.; Algora, A.; Antonenko, N.V.; Jolos, R.V.; Hess, P.O.

    2006-01-01

    Complete text of publication follows. Clusterization is an important phenomenon both in light and in heavy nuclei. The two basic natural laws governing the clusterization (just like the composition of nuclei from nucleons) are the energy-minimum principle, and the Pauli-exclusion principle. In a fully microscopic description of clusterization both aspects are taken into account. This kind of description, however, is limited to the territory of light nuclei. Many interesting aspects of the clusterization, like e.g. the appearance of exotic cluster configurations, show up only in heavy nuclei. Phenomenologic approaches are applied both to light and to heavy nuclei, on an equal footing, but these models do not really contain the effects of the antisymmetrization, or it is not under control, what aspects of the exclusion principle is incorporated. Recently we have developed an approach, which involves both the energetic preference and the exclusion principle [?]. The antisymmetrization is not carried out explicitly, it is treated in an approximate way, but it is done microscopically in a well-controlled manner, and consistency-check measures, how effective it is. We calculate the energetic preference of different clusterizations both on the basis of simple binding-energy-arguments [?], and from the Dinuclear System Model (DNS) [?], including Coulomb as well as nuclear interactions. The potential energy is calculated both for the usual pole-to-pole configuration, and for those more compact configurations, which turn out to be allowed from the microscopic viewpoint. The exclusion principle is treated by the application of a selection rule, related to the microscopic structure. For light nuclei it is based on the real U(3) symmetry [?], and it is exact to the extent to which the leading term representation is valid. In heavy nuclei it is based on the quasidynamical, or effective U(3) symmetry [?]. Its validity is shown by the consistency of the quadrupole deformation of

  6. Quantum transport through organic molecules

    International Nuclear Information System (INIS)

    Maiti, Santanu K.

    2007-01-01

    We investigate the electronic transport for the model of benzene-1, 4-dithiolate (BDT) molecule and some other geometric models of benzene molecule attached with two semi-infinite metallic electrodes by the use of Green's function technique. An analytic approach for the electronic transport through the molecular bridges is presented, based on the tight-binding model. Transport of electrons in such molecular bridges is strongly affected by the geometry of the molecules and their coupling strength with the electrodes. Conductance (g) shows resonance peaks associated with the molecular energy eigenstates. In the weak molecule-to-electrodes coupling limit current (I) passing through the molecules shows staircase-like behavior with sharp steps, while, it varies quite continuously in the limit of strong molecular coupling with the applied bias voltage (V). In presence of the transverse magnetic field conductance gives oscillatory behavior with flux φ, threaded by the molecular ring, showing φ 0 ( = ch/e) flux-quantum periodicity. Though conductance changes with the application of transverse magnetic field, but the current-voltage characteristics remain same in presence of this magnetic field for these molecular bridge systems

  7. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  8. A Mott-like State of Molecules

    International Nuclear Information System (INIS)

    Duerr, S.; Volz, T.; Syassen, N.; Bauer, D. M.; Hansis, E.; Rempe, G.

    2006-01-01

    We prepare a quantum state where each site of an optical lattice is occupied by exactly one molecule. This is the same quantum state as in a Mott insulator of molecules in the limit of negligible tunneling. Unlike previous Mott insulators, our system consists of molecules which can collide inelastically. In the absence of the optical lattice these collisions would lead to fast loss of the molecules from the sample. To prepare the state, we start from a Mott insulator of atomic 87Rb with a central region, where each lattice site is occupied by exactly two atoms. We then associate molecules using a Feshbach resonance. Remaining atoms can be removed using blast light. Our method does not rely on the molecule-molecule interaction properties and is therefore applicable to many systems

  9. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    Science.gov (United States)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  10. Double-valence-fluctuating molecules and superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Scalapino, D.J.

    1985-01-01

    We discuss the possibility of ''double-valence-fluctuating'' molecules, having two ground-state configurations differing by two electrons. We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature

  11. Quadrupole collective correlations and termination of the superdeformed bands in mercury

    International Nuclear Information System (INIS)

    Bonche, P.; Heenen, P.H.; Krieger, S.J.; Weiss, M.S.; Meyer, J.

    1990-03-01

    Fully self-consistent Generator Coordinate Method calculations have been performed on a basis of quadrupole constrained Hartree-Fock plus BCS wave functions for the five even mercury isotopes 190-198 Hg. The GCM results support conclusions drawn from previous HF+BCS calculations. The predicted evolution of superdeformed band head (shape isomer) properties as a function of the neutron number is consistent with the data. Using calculated transition matrix elements, we evaluate in-band versus out-of-band quadrupole decay and explain the sudden termination of the superdeformed band

  12. Fringe fields modeling for the high luminosity LHC large aperture quadrupoles

    CERN Document Server

    Dalena, B; Payet, J; Chancé, A; Brett, D R; Appleby, R B; De Maria, R; Giovannozzi, M

    2014-01-01

    The HL-LHC Upgrade project relies on large aperture magnets (mainly the inner Triplet and the separation dipole D1). The beam is much more sensitive to non-linear perturbations in this region, such as those induced by the fringe fields of the low-beta quadrupoles. Different tracking models are compared in order to provide a numerical estimate of the impact of fringe fields for the actual design of the inner triplet quadrupoles. The implementation of the fringe fields in SixTrack, to be used for dynamic apertures studies, is also discussed.

  13. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    International Nuclear Information System (INIS)

    Kolinko, S.V.; Ponomarev, A.G.

    2016-01-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and “Russian quadruplet” with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  14. Polarization of very cold neutron using a permanent magnet quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Tamaki, E-mail: tyosioka@post.kek.j [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Muto, Suguru; Morishima, Takahiro; Shimizu, Hirohiko M. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Oku, Takayuki; Suzuki, Junichi; Shinohara, Takenao; Sakai, Kenji [Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie [RIKEN, Saitama 351-0198 (Japan); Kitaguchi, Masaaki; Hino, Masahiro [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Seki, Yoshichika [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Iwashita, Yoshihisa; Yamada, Masako [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Ichikawa, Masahiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    For the future fundamental physics experiments by using cold neutrons, we are developing a device which can measure the neutron polarization degree by accuracy significantly below 10{sup -3}. A quadrupole magnet is one of the promising candidate to measure the neutron polarization degree by such extremely high precision. We have performed a polarization experiment by using the quadrupole magnets at the Very Cold Neutron (VCN) port of the PF-2 in the Institute Laue-Langevin (ILL). As a result, we obtained the polarization degree P with very high accuracy P=0.9994{+-}0.0001(stat.){+-}0.0003(syst.), which meet our requirement significantly.

  15. 3D-Printed Beam Splitter for Polar Neutral Molecules

    Science.gov (United States)

    Gordon, Sean D. S.; Osterwalder, Andreas

    2017-04-01

    We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.

  16. Assembly of the first model of MQXFS quadrupole magnet for Hi-Lumi

    CERN Multimedia

    AUTHOR|(CDS)2086825

    2016-01-01

    Building 927. Assembly of the first model of MQXFS quadrupole magnet for Hi-Lumi. The MQXF models are about 1.5 m long and are used to validate the design before start building the first long prototype. Two types of insertion quadrupoles will be built and installed in the LHC tunnel during LS3. LARP (US collaboration) will built MQXFA type (4.2 meters long) and MQXFB magnets (around 7 m long) will be built at CERN.

  17. The development of compact magnetic quadrupoles for ILSE

    International Nuclear Information System (INIS)

    Faltens, A.; Mukherjee, S.; Brady, V.

    1990-08-01

    Magnetic focussing is selected for the 4 MeV to 10 MeV section of the Induction Linac Systems Experiments (ILSE) to study the transport of magnetically focussed spacecharge-dominated beams and to explore the engineering problems in accurate positioning of the magnetic fields in an array of quadrupoles. A prototype development program for such magnets is currently under way. A compact design was selected to decrease the overall accelerator diameter and its cost. The design evolved from a cosine 2θ current distribution, corrected for end effects. Current-dominated magnets are used in a pulsed mode to allow higher current densities compared to standard dc water-cooled conductors. The POISSON and MAFCO codes were used in the design of the magnets. The construction of the quadrupoles is aimed at achieving location accuracy of the magnetic center to within 1 mil (2.54 x 10 -5 m) of the mechanical center

  18. A high gradient quadrupole magnet for the SSC

    International Nuclear Information System (INIS)

    Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.

    1987-01-01

    A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil I.D. is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped space in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coil using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented. The quadrupole magnets proposed for the main SSC rings have a design gradient of 230 T/m. For one proposed 60 degree lattice cell, each 3-m long quad is separated by five 17-m long dipole magnets

  19. A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials

    CERN Document Server

    Denby, P M

    2000-01-01

    A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased.

  20. A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials

    Energy Technology Data Exchange (ETDEWEB)

    Denby, P.M.; Eastham, D.A. E-mail: d.a.eastham@dl.ac.uk

    2000-03-01

    A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased.

  1. A large-aperture, low-resolution quadrupole separator for producing deposited cluster materials

    International Nuclear Information System (INIS)

    Denby, P.M.; Eastham, D.A.

    2000-01-01

    A wide-aperture, low-resolution quadrupole separator for metal clusters is described. Its performance has been evaluated by numerical calculations of the trajectories of clusters. Operating in the frequency range from 5 to 100 KHz allows one to separate clusters in the mass range from 30000 to 300000 AMU and by suitable choice of the AC and DC voltages one can obtain a resolution of 0.15. At this resolution the transmission of clusters from a source is 100% over the selected mass range. By biasing the quadrupole it has been possible to obtain a very sharp cut-off between the transmitted clusters and those outside the selected range. Trajectory calculation for clusters deposited onto a biased 2 cm diameter substrate show that it is possible to keep the deposition energy below 25 eV for 90% of the clusters when the quadrupole is itself biased

  2. Design of the PEP-II Interaction Region Septum Quadrupole

    Science.gov (United States)

    Osborn, J.; Tanabe, J.; Yee, D.; Younger, F.

    1997-05-01

    The PEP-II QF2 magnet is one of the final focus quadrupoles for the Low-Energy Ring (LER) and utilizes a septum aperture to accommodate the adjacent High-Energy Ring (HER) beamline. The LER lattice design specification calls for an extremely high field quality for this magnet. A conventional water-cooled copper coil and laminated steel core design was selected to allow adjustment in the excitation. The close proximity between the LER and HER beamlines and the required integrated quadrupole strength result in a moderately high current density septum design. The QF2 magnets are imbedded in a confined region at each end of the BaBar detector, thus requiring a small magnet core cross section. Pole face windings are included in the QF2 design to buck the skew octupole term induced by the solenoidal fringe field that leaks out of the detector. Back-leg windings are included to buck a small dipole component induced by the lack of perfect quadrupole symmetry in this septum design. 2D pole contour optimization and 3D end chamfers are used to minimize harmonic errors; a separate permanent-magnet Harmonic Corrector Ring compensates for remaining field errors. The design methods and approach, 2D and 3D analyses, and the resulting expected magnet performance are described in this paper.

  3. Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.

    Science.gov (United States)

    Webb, Ian K; Londry, Frank A; McLuckey, Scott A

    2011-09-15

    Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD). Copyright © 2011 John Wiley & Sons, Ltd.

  4. Design and fabrication of the prototype superconducting quadrupole for the CERN LHC project

    International Nuclear Information System (INIS)

    Baze, J.M.; Cacaut, D.; Jacquemin, J.P.; Lyraud, C.; Michez, C.; Pabot, Y.; Perot, J.; Rifflet, J.M.; Toussaint, J.C.; Vedrine, P.

    1992-01-01

    Within the framework of the LHC R and D program, CERN and CEA/Saclay have established a collaboration to carry out, amongst others, the design, building and testing of a superconducting LHC prototype quadrupole at the Saclay laboratory. The cold mass of this quadrupole is presently under construction at Saclay. The quadrupole design features a twin aperture configuration, a gradient design features a twin aperture configuration, a gradient of 250T/m, a length of 3m and a free coil aperture of 56mm. European industries participate in this project by delivering components and fabrication the tooling according to specifications prepared by Saclay. This paper gives details of the magnet design and construction. Coil winding will start in summer 1991 and the first prototype should be assembled and ready for testing by mid 1992

  5. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: Jieliu@aps.anl.gov; Jaski, M., E-mail: jaski@aps.anl.gov; Borland, M., E-mail: borland@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL60439 (United States); Jain, A., E-mail: jain@bnl.gov [Superconducting Magnet Division, Brookhaven National Laboratory, P.O. Box 5000. Upton, NY 11973-5000 (United States)

    2016-07-27

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based on the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.

  6. Tolerance analyses of a quadrupole magnet for advanced photon source upgrade

    International Nuclear Information System (INIS)

    Liu, J.; Jaski, M.; Borland, M.; Jain, A.

    2016-01-01

    Given physics requirements, the mechanical fabrication and assembly tolerances for storage ring magnets can be calculated using analytical methods [1, 2]. However, this method is not easy for complicated magnet designs [1]. In this paper, a novel method is proposed to determine fabrication and assembly tolerances consistent with physics requirements, through a combination of magnetic and mechanical tolerance analyses. In this study, finite element analysis using OPERA is conducted to estimate the effect of fabrication and assembly errors on the magnetic field of a quadrupole magnet and to determine the allowable tolerances to achieve the specified magnetic performances. Based on the study, allowable fabrication and assembly tolerances for the quadrupole assembly are specified for the mechanical design of the quadrupole magnet. Next, to achieve the required assembly level tolerances, mechanical tolerance stackup analyses using a 3D tolerance analysis package are carried out to determine the part and subassembly level fabrication tolerances. This method can be used to determine the tolerances for design of other individual magnets and of magnet strings.

  7. Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb

    CERN Document Server

    Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S

    2011-01-01

    The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.

  8. Performance of the LHC Arc Superconducting Quadrupoles Towards the End of their Series Fabrication

    CERN Document Server

    Tortschanoff, Theodor; Durante, M; Hagen, P; Klein, U; Krischel, D; Modena, M; Payn, A; Rossi, L; Sanfilippo, S; Schellong, B; Schirm, KM; Schmidt, P; Simon, F; Todesco, E; Wildner, E

    2006-01-01

    The fabrication of the 408 main arc quadrupole magnets and their cold masses will come to an end in summer 2006. A rich collection of measurement and test data has been accumulated and their analysis is presented in this paper. These data cover the fabrication and the efficiency in the use of the main components, the geometrical measurements and the achieved dimensional precision, the warm magnetic measurements in the factory and the performance at cold conditions, especially the training behaviour. The scrap rate of the Nb-Ti/Cu conductor as well as that of other components turned out to be acceptably low and the quench performance measured was in general very good. Most quadrupoles measured so far exceeded the operating field gradient with one or no quench. The multipole content at cold was measured for a limited number of quadrupoles in order to verify the warm-to-cold correlation. From the point of view of field quality, all quadrupoles could be accepted for the machine. The measures taken to overcome the...

  9. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    International Nuclear Information System (INIS)

    Meglinskii, I V

    2001-01-01

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  10. Beam determination of quadrupole misalignments and beam position monitor biases in the SLC linac

    International Nuclear Information System (INIS)

    Lavine, T.L.; Seeman, J.T.; Atwood, W.B.; Himel, T.M.; Petersen, A.; Adolphsen, C.E.

    1988-09-01

    Misalignments of magnetic quadrupoles and biases in beam position monitors (BPMs) in the Stanford Linear Collider (SLC) linac can lead to a situation in which the beam is off-center in the disk-loaded waveguide accelerator structure. The off-center beam produces wakefields which can limit SLC performance by causing unacceptably large emittance growth. We present a general method for determining quadrupole misalignments and BPM biases in the SLC linac by using beam trajectory measurements. The method utilizes both electron and positron beams on opposite rf cycles in the same linac lattice to determine simultaneously magnetic quadrupole misalignments and BPM biases. The two-beam trajectory data may be acquired without interrupting SLC colliding beam operations. 2 refs., 5 figs

  11. Simulation of a quadrupole resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kleindienst, Raphael [Helmholtz Zentrum Berlin (Germany)

    2013-07-01

    Modern particle accelerators often rely on superconducting radio frequency (SRF) technology for accelerating cavities. In particular in CW operation, very high quality factors up into the high range are desirable, since one of the main cost drivers of such an accelerator, the cryogenic refrigeration plant, is inversely proportional to Q{sub 0}. Present day superconducting cavities are generally made of solid Niobium. A possibility to increase the quality factor as well as accelerating fields is to use thin film coated cavities. Apart from Niobium thin films, other superconducting materials, such as MgB{sub 2}, NbN and Nb{sub 3}Sn are promising candidates. Measuring and understanding the RF-properties of superconducting thin films, specifically the surface resistance, is needed to drive forward this development. Currently only few facilities exist capable of measuring the surface resistance of thin films samples with a resolution in the nano-ohm range at the operating frequency of typical cavities(e.g. L-band). A dedicated test stand consisting of a quadrupole resonator is therefore being constructed at the Helmholtz Zentrum Berlin. This system is based on the 400 MHz quadrupole resonator at CERN, with the design adapted to 433 MHz (making available the higher harmonic mode at 1.3 GHz) and optimized with respect to resolution and maximum achievable fields using simulation data obtained with CST Microwave Studio as well as ANSYS. The simulated design is being manufactured. An outlook for future physics runs is given.

  12. LHC interaction region quadrupole cryostat design

    International Nuclear Information System (INIS)

    Nicol, T.H.; Darve, Ch.; Huang, Y.; Page, T.M.

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems

  13. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br

    Science.gov (United States)

    Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun

    2017-12-01

    Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.

  14. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  15. Description of surface quadrupole oscillations of heated spherical nuclei in the Brownian-motion approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    The Brownian motion of a quadrupole quantum oscillator is considered as a model of surface quadrupole oscillations of heated spherical nuclei. The integrals of the motion related to energy and angular momentum conservation are constructed and the wave functions are obtained for states with definite values of these integrals of the motion in the phonon representation

  16. Neutron-proton ratios of collective quadrupole matrix elements in even Fe and Cr isotopes

    International Nuclear Information System (INIS)

    Antalik, R.

    1989-01-01

    M n /M p ratios are investigated within the QRPA framework for the low-lying quadrupole states and for isoscalar giant quadrupole resonances in 54,56,58 Fe and 50,52,54 Cr. Theoretical results for 2 l ? + states are in good agreement with empirical ones obtained from recent proton and pion inelastic scattering studies. 16 refs.; 3 tabs

  17. Development of a totally computer-controlled triple quadrupole mass spectrometer system

    International Nuclear Information System (INIS)

    Wong, C.M.; Crawford, R.W.; Barton, V.C.; Brand, H.R.; Neufeld, K.W.; Bowman, J.E.

    1983-01-01

    A totally computer-controlled triple quadrupole mass spectrometer (TQMS) is described. It has a number of unique features not available on current commercial instruments, including: complete computer control of source and all ion axial potentials; use of dual computers for data acquisition and data processing; and capability for self-adaptive control of experiments. Furthermore, it has been possible to produce this instrument at a cost significantly below that of commercial instruments. This triple quadrupole mass spectrometer has been constructed using components commercially available from several different manufacturers. The source is a standard Hewlett-Packard 5985B GC/MS source. The two quadrupole analyzers and the quadrupole CAD region contain Balzers QMA 150 rods with Balzers QMG 511 rf controllers for the analyzers and a Balzers QHS-511 controller for the CAD region. The pulsed-positive-ion-negative-ion-chemical ionization (PPINICI) detector is made by Finnigan Corporation. The mechanical and electronics design were developed at LLNL for linking these diverse elements into a functional TQMS as described. The computer design for total control of the system is unique in that two separate LSI-11/23 minicomputers and assorted I/O peripherals and interfaces from several manufacturers are used. The evolution of this design concept from totally computer-controlled instrumentation into future self-adaptive or ''expert'' systems for instrumental analysis is described. Operational characteristics of the instrument and initial results from experiments involving the analysis of the high explosive HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazacyclooctane) are presented

  18. Development of formulation Q1As method for quadrupole noise prediction around a submerged cylinder

    Directory of Open Access Journals (Sweden)

    Yo-Seb Choi

    2017-09-01

    Full Text Available Recent research has shown that quadrupole noise has a significant influence on the overall characteristics of flow-induced noise and on the performance of underwater appendages such as sonar domes. However, advanced research generally uses the Ffowcs Williams–Hawkings analogy without considering the quadrupole source to reduce computational cost. In this study, flow-induced noise is predicted by using an LES turbulence model and a developed formulation, called the formulation Q1As method to properly take into account the quadrupole source. The noise around a circular cylinder in an underwater environment is examined for two cases with different velocities. The results from the method are compared to those obtained from the experiments and the permeable FW–H method. The results are in good agreement with the experimental data, with a difference of less than 1 dB, which indicates that the formulation Q1As method is suitable for use in predicting quadrupole noise around underwater appendages.

  19. MQXFS1 Quadrupole Fabrication Report

    CERN Document Server

    Ambrosio, G; Bossert, R; Cavanna, E; Cheng, D; Chlachidize, G; Cooley, L D; Dietderich, D; Felice, H; Ferracin, P; Ghosh, A; Hafalia, R; Holik, E F; Izquierdo Bermudez, S; Juchno, M; Krave, S; Marchevsky, M; Muratore, J; Nobrega, F; Pan, H; Perez, J C; Pong, I; Prestemon, S; Ravaioli, E; Sabbi, G L; Santini, C; Schmalzle, J; Schmalzle, J; Stoynev, S; Strauss, T; Vallone, G; Wanderer, P; Wang, X; Yu, M

    2017-01-01

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  20. MQXFS1 Quadrupole Fabrication Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Anerella, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bossert, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cavanna, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cheng, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chlachidize, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dietderich, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Felice, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Ghosh, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hafalia, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holik, E. F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bermudez, S. Izquierdo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Juchno, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Krave, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchevsky, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muratore, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nobrega, F. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Perez, J. C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pong, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ravaioli, E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Santini, C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Schmalzle, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stoynev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Strauss, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vallone, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, X. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-07-16

    This report presents the fabrication and QC data of MQXFS1, the first short model of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. It describes the conductor, the coils, and the structure that make the MQXFS1 magnet. Qualification tests and non-conformities are also presented and discussed. The fabrication of MQXFS1 was started before the finalization of conductor and coil design for MQXF magnets. Two strand design were used (RRP 108/127 and RRP 132/169). Cable and coil cross-sections were “first generation”.

  1. Series fabrication of the main quadrupole cold masses for the LHC begins

    CERN Multimedia

    2003-01-01

    Three hundred and sixty main quadrupole (MQ) magnets will perform the principal beam focusing around the 27 km LHC ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry.The German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the cold masses together with various combinations of corrector magnets produced by other European manufacturers. Here we see the first of the cold masses containing the MQ magnet of the machine arcs together with two types of corrector magnet ready for shipping to CERN. Pictured with this first unit, delivered o...

  2. Theory of enhanced second-harmonic generation by the quadrupole-dipole hybrid exciton

    International Nuclear Information System (INIS)

    Roslyak, Oleksiy; Birman, Joseph L

    2008-01-01

    We report calculated substantial enhancement of the second-harmonic generation (SHG) in cuprous oxide crystals, resonantly hybridized with an appropriate organic material (DCM2:CA:PS 'solid state solvent'). The quadrupole origin of the inorganic part of the quadrupole-dipole hybrid provides inversion symmetry breaking and the organic part contributes to the oscillator strength of the hybrid. We show that the enhancement of the SHG, compared to the bulk cuprous oxide crystal, is proportional to the ratio of the DCM2 dipole moment and the effective dipole moment of the quadrupole transitions in the cuprous oxide. It is also inversely proportional to the line-width of the hybrid and bulk excitons. The enhancement may be regulated by adjusting the organic blend (mutual concentration of the DCM2 and CA part of the solvent) and pumping conditions (varying the angle of incidence in the case of optical pumping or populating the minimum of the lower branch of the hybrid in the case of electrical pumping)

  3. Radiative ΩQ∗→ΩQγ and ΞQ∗→ΞQ′γ transitions in light cone QCD

    International Nuclear Information System (INIS)

    Aliev, T. M.; Azizi, K.; Sundu, H.

    2015-01-01

    We calculate the magnetic dipole and electric quadrupole moments associated with the radiative Ω Q ∗ →Ω Q γ and Ξ Q ∗ →Ξ Q ′ γ transitions with Q=b or c in the framework of light cone QCD sum rules. It is found that the corresponding quadrupole moments are negligibly small, while the magnetic dipole moments are considerably large. A comparison of the results of the considered multipole moments as well as corresponding decay widths with the predictions of the vector dominance model is performed

  4. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  5. Magnetic and Engineering Analysis of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C

    2005-01-01

    Magnetic and engineering analyses used in the design of an adjustable strength permanent magnet quadrupole will be reported. The quadrupole designed has a pole length of 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) of 68.7Tesla. Analyses of magnetic strength, field quality, magnetic centerline, temperature compensation and dynamic eddy currents induced during field adjustments will be presented. Magnet sorting strategies, pole positioning sensitivity, component forces, and other sensitivity analyses will be presented. Engineering analyses of stress, deflection and thermal effects as well as compensation strategies will also be shown.

  6. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, David J. [IKOtech, LLC, 3130 Highland Avenue, 3rd Floor, Cincinnati, OH 45219-2374 (United States)]. E-mail: David.Kennedy@IKOtech.com; Todd, Paul [SHOT, Inc., Greenville, IN (United States); Logan, Sam [SHOT, Inc., Greenville, IN (United States); Becker, Matthew [SHOT, Inc., Greenville, IN (United States); Papas, Klearchos K. [Diabetes Institute for Immunology and Transplantation, University of Minnesota, Minneapolis, MN (United States); Moore, Lee R. [Biomedical Engineering Department, Cleveland Clinic Foundation, Cleveland, OH (United States)

    2007-04-15

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 {mu}m) to the isolation of pancreatic islets (150-350 {mu}m) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  7. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    International Nuclear Information System (INIS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-01-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation

  8. Static quadrupole moment of the first excited state of 24Mg

    International Nuclear Information System (INIS)

    Fewell, M.P.; Hinds, S.; Kean, D.C.; Zabel, T.H.

    1979-01-01

    The static quadrupole moment Qsub(2+) and the B(E2;0 + → 2 + ) value for the first excited state of 24 Mg have been determined using the reorientation effect in Coulomb excitation. Surface barrier detectors at 90 0 and 172 0 were used to detect 24 Mg ions scattered from 208 Pb. It is found that Qsub(2+) = -18.1 +- 1.3 e.fm 2 , suggesting that, contrary to most previous experimental evidence, the quadrupole moment is in agreement with theoretical predictions. For B(E2;0 + → 2 + ) the value 443 +- 24 e 2 . fm 4 was obtained

  9. An effect of nuclear electric quadrupole moments in thermonuclear fusion plasmas

    Science.gov (United States)

    De, B. R.; Srnka, L. J.

    1978-01-01

    Consideration of the nuclear electric quadrupole terms in the expression for the fusion Coulomb barrier suggests that this electrostatic barrier may be substantially modified from that calculated under the usual plasma assumption that the nuclei are electric monopoles. This effect is a result of the nonspherical potential shape and the spatial quantization of the nuclear spins of the fully stripped ions in the presence of a magnetic field. For monopole-quadrupole fuel cycles like p-B-11, the fusion cross-section may be substantially increased at low energies if the protons are injected at a small angle relative to the confining magnetic field.

  10. ISR Superconducting Quadrupole Prototype:preparing the first test

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    The photo shows the first prototype quadrupole (still with an adjustable stainless steel shrinking cylinder) being lifted to be inserted in a vertical cryostat for testing. It attained the design field gradient without any quench.The persons are Pierre Rey and Michel Bouvier. See also 7702690X.

  11. Laboratory Anion Chemistry: Implications for the DIBs, and a Potential Formation Mechanism for a Known Interstellar Molecule

    Science.gov (United States)

    Eichelberger, B.; Barckholtz, C.; Stepanovic, M.; Bierbaum, V.; Snow, T.

    2002-01-01

    Due to recent interest in molecular anions as possible interstellar species, we have carried out several laboratory studies of anion chemistry. The reactions of the series C(sub n)(sup -); and C(sub n)H(sup -) with H and H2 were studied to address the viability of such species in the diffuse interstellar medium and to address their ability to be carriers of the diffuse interstellar bands (DIBs). These same molecules were also reacted with N and O to show possible heteroatomic products. C(sub m)N(sup - was a particularly stable product from the reaction of C(sub n)(sup -) + N. C3N(sup -) was further reacted with H to study chemistry that could produce HC3N, a known interstellar species. The reactions were done in a flowing afterglow selected ion flow tube apparatus (FA-SIFT). The anions were generated in an electron impact or cold cathode discharge source and the anion of interest was then selected by a quadrupole mass filter. The selected ion was then reacted with the atomic or molecular species in the flow tube and products were detected by another quadrupole. While the C(sub n)(sup -) species do not appear to be viable DIB carriers, their possible presence could provide a mechanism for the formation of known heteroatomic neutral molecules detected in the interstellar medium (ISM).

  12. Dynamics of Molecular Gyroscopes Created by Strong Optical Fields

    Science.gov (United States)

    Mullin, Amy

    2015-03-01

    We explore the behavior of molecules in ultra-high angular momentum states prepared in an optical centrifuge and detected with transient IR absorption spectroscopy. In the optical centrifuge, the polarizable electron cloud of molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. The centrifuge pulse is generated by combining oppositely chirped pulsed of light. Trapped molecules are driven into high angular momentum states that are spatially oriented with the optical field and have energies far above the average at 300 K. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for the super-rotors. Polarization-dependent studies show that the initial angular momentum orientation persists for many collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. Time-dependent population and energy profiles for individual J- states give information about the dynamics of super-rotors. Research support provided by NSF and the University of Maryland.

  13. Spinterface between tris(8-hydroxyquinoline)metal(III) molecules and magnetic surfaces: a first-principles study

    Science.gov (United States)

    Jiang, W.; Wang, Jingying; Dougherty, Daniel; Liu, Feng; Feng Liu Team; Daniel Dougherty Team

    Using first-principles calculations, we have systematically investigated the hybridization between tris(8-hydroxyquinoline)metal(III) (Mq3, M = Fe, Cr, Al) molecules and magnetic substrates (Co and Cr). Mq3 with different central metal elements but the same organic framework has dramatically different interaction with different magnetic substrates, which affect the interface state significantly. AFM coupling was observed between magnetic Mq3 molecules and ferromagnetic (Co) as well as antiferromagnetic (Cr) substrate, manifested with a superexchange and direct exchange interaction, respectively. Such strong magnetic interfacial coupling may open a gap around the Fermi level and significantly change interface transport properties. Nonmagnetic Alq3 molecule was found to enhance the interface spin polarization due to hybridization between the lowest unoccupied molecular orbitals (LUMO) of Alq3 and metallic surface state. These findings will help better understand spinterface and shed new light on future application of Mq3 molecules in spintronics devices. This work was support by NSF-MRSEC (DMR-1121252) and DOE-BES (DE-FG02-04ER46148).

  14. Adjustable permanent quadrupoles for the next linear collider

    International Nuclear Information System (INIS)

    Volk, James T.

    2001-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype

  15. Performance of an Adjustable Strength Permanent Magnet Quadrupole

    CERN Document Server

    Gottschalk, Stephen C; Kangas, Kenneth; Spencer, Cherrill M; Volk, James T

    2005-01-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic centerline and field quality made using an air bearing rotating coil system. The magnetic centerline stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic centerline. Calibration procedures as well as centerline measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  16. Adjustable Permanent Quadrupoles for the Next Linear Collider

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2001-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to - 20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype

  17. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  18. Design, fabrication, and calibration of a cryogenic search-coil array for harmonic analysis of quadrupole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Barale, P.J.; Hassenzahl, W.V.; Nelson, D.H.; O'Neill, J.W.; Schafer, R.V.; Taylor, C.E.

    1987-09-01

    A cryogenic search-coil array has been fabricated at LBL for harmonic error analysis of SSC model quadrupoles. It consists of three triplets of coils; the center-coil triplet is 10 cm long, and the end coil triplets are 70 cm long. Design objectives are a high bucking ratio for the dipole and quadrupole signals and utility at cryogenic operating currents (∼6 kA) with sufficient sensitivity for use at room-temperature currents (∼10 A). the design and fabrication are described. Individual coils are mechanically measured to +-5 μm, and their magnetic areas measured to 0.05%. A computer program has been developed to predict the quadrupole and dipole bucking ratios from the mechanical and magnetic measurements. The calibration procedure and accuracy of the array are specified. Results of measurements of SSC model quadrupoles are presented. 1 ref., 4 figs

  19. Coherent control of atto-second emission from aligned molecules

    Energy Technology Data Exchange (ETDEWEB)

    Boutu, W; Haessler, S; Merdji, H; Breger, P; Monchicourt, P; Carre, B; Salieres, P [CEA Saclay, DSM, Serv Photons Atomes Mol, F-91191 Gif Sur Yvette, (France); Waters, G [Univ Reading, JJ Thomson Phys Lab, Reading RG6 6AF, Berks, (United Kingdom); Stankiewicz, M [Jagiellonian Univ, Inst Phys, PL-30059 Krakow, (Poland); Frasinski, L J [Univ London Imperial Coll Sci Technol and Med, Blackett Lab, London SW7 2BW, (United Kingdom); Taieb, R; Caillat, J; Maquet, A [Univ Paris 06, UMR 7614, Lab Chim Phys Matiere Rayonnement, F-75231 Paris 05, (France); Taieb, R; Caillat, J; Maquet, A [LCPMR, UMR 7614, CNRS, F-75005 Paris, (France)

    2008-07-01

    Controlling atto-second electron wave packets and soft X-ray pulses represents a formidable challenge of general implication to many areas of science. A strong laser field interacting with atoms or molecules drives ultrafast intra-atomic/molecular electron wave packets on a sub femtosecond timescale, resulting in the emission of atto-second bursts of extreme-ultraviolet light. Controlling the intra-atomic/molecular electron dynamics enables steering of the atto-second emission. Here, we carry out a coherent control in linear molecules, where the interaction of the laser-driven electron wave packet with the core leads to quantum interferences. We demonstrate that these interferences can be finely controlled by turning the molecular axis relative to the laser polarization, that is, changing the electron re-collision angle. The wave-packet coulombic distortion modifies the spectral phase jump measured in the extreme-ultraviolet emission. Our atto-second control of the interference results in atto-second pulse shaping, useful for future applications in ultrafast coherent control of atomic and molecular processes. (authors)

  20. Quadrupole moments of the 12+ isomers in 188Hg and 190Hg

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lonnroth, T.; Vajda, S.; Dafni, E.; Schatz, G.

    1984-01-01

    The electric quadrupole interaction of the 12 + isomers in 188 Hg and 190 Hg has been measured in solid Hg. The quadrupole moments deduced, vertical strokeQ[ 188 Hg(12 + )]vertical stroke = 91(11) e fm 2 and vertical strokeQ[ 190 Hg(12 + )]vertical stroke = 117(14) e fm 2 suggest a possible change in γ-deformation due to the rotation alignment of the isub(13/2) quasi-neutrons. The temperature dependence of the electric field gradient tensor in Hg was also determined. (orig.)

  1. Fabrication and study of hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Jurbergs, D.; Riley, D.R.; Zhao, J.; Zhou, J.P.; Lo, K.; Grassi, J.; Jones, C.

    1994-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the first two classes of composite molecule/superconductor devices are reported. Consequently, light sensors based on organic dye-coated superconductor junctions as well as molecular switches fashioned from organic conductive polymer-coated superconductor microbridges are discussed. Moreover, the initial results related to the study of molecule/superconductor energy and electron transfer phenomena are reported

  2. From strong to ultrastrong coupling in circuit QED architectures

    Energy Technology Data Exchange (ETDEWEB)

    Niemczyk, Thomas

    2011-08-10

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  3. From strong to ultrastrong coupling in circuit QED architectures

    International Nuclear Information System (INIS)

    Niemczyk, Thomas

    2011-01-01

    The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)

  4. The role of the ion-molecule and molecule-molecule interactions in the formation of the two-ion average force interaction potential

    CERN Document Server

    Ajrian, E A; Sidorenko, S N

    2002-01-01

    The effect of the ion-molecule and intermolecular interactions on the formation of inter-ion average force potentials is investigated within the framework of a classical ion-dipole model of electrolyte solutions. These potentials are shown to possess the Coulomb asymptotics at large distances while in the region of mean distances they reveal creation and disintegration of solvent-shared ion pairs. The calculation results provide a qualitatively authentic physical picture which is experimentally observed in strong electrolytes solutions. In particular, an increased interaction between an ion and a molecule enhances formation of ion pairs in which the ions are separated by one solvent molecule

  5. Blinking effect and the use of quantum dots in single molecule spectroscopy

    International Nuclear Information System (INIS)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M.P.; Pardo, Julian; Gräber, P.; Galvez, E.M.

    2013-01-01

    Highlights: ► It is possible to eliminate the blinking effect of a water-soluble QD. ► We provide a direct method to study protein function and dynamics at the single level. ► QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the “on”/“off” states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein–protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  6. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  7. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    International Nuclear Information System (INIS)

    Wang, Lanfa

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  8. Optimization on the end-shaping of a quadrupole magnet

    International Nuclear Information System (INIS)

    Kumada, M.; Sasaki, H.; Someya, H.; Sakai, I.

    1983-01-01

    In order to achieve the widest possible aperture of accelerator magnets, end-shaping is a well known method. To do this one has to deal with the three-dimensional fringe field inherent to each geometry. This may be done experimentally by a cut-and-try method or theoretically by a three-dimensional computer code. In any case, considerable time has to be consumed if one wants to get a conclusion which is as general as possible and which is useful in designing magnets. Fringe field optimization on the end-shaping of the conventional quadrupole magnet was done by a cut-and-try method, where a very simple geometry of the end pole was chosen to get a general conclusion. The 'cut-out ratio diagram' given as a conclusion is useful to designers of the conventional quadrupole magnet. (orig.)

  9. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  10. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  11. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules

    International Nuclear Information System (INIS)

    Tuveson, R.W.; Larson, R.A.; Kagan, J.

    1988-01-01

    Genes controlling carotenoid synthesis were cloned from Erwinia herbicola and expressed in an Escherichia coli strain. Carotenoids protect against high fluences of near-UV (NUV; 320 to 400 nm) but not against far-UV (200-300 nm). Protection of E. coli cells was not observed following treatment with either psoralen or 8-methoxypsoralen plus NUV. However, significant protection of cells producing carotenoids was observed with three photosensitizing molecules activated by NUV (alpha-terthienyl, harmine, and phenylheptatriyne) which are thought to have the membrane as an important lethal target. Protection of carotenoid-producing cells against inactivation was not observed with acridine orange plus visible light but was seen with toluidine blue O plus visible light

  12. Shape coexistence in krypton and selenium light isotopes studied through Coulomb excitation of radioactive ions beams; Etude de la coexistence de formes dans les isotopes legers du krypton et du selenium par excitation Coulombienne de faisceaux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E

    2006-06-15

    The light krypton isotopes show two minima in their potential energy corresponding to elongated (prolate) and compressed (oblate) quadrupole deformation. Both configuration are almost equally bound and occur within an energy range of less than 1 MeV. Such phenomenon is called shape coexistence. An inversion of the ground state deformation from prolate in Kr{sup 78} to oblate in Kr{sup 72} with strong mixing of the configurations in Kr{sup 74} and Kr{sup 76} was proposed based on the systematic of isotopic chain. Coulomb excitation experiments are sensitive to the quadrupole moment. Coulomb excitation experiments of radioactive Kr{sup 74} and Kr{sup 76} beam were performed at GANIL using the SPIRAL facility and the EXOGAM spectrometer. The analysis of these experiments resulted in a complete description of the transition strength and quadrupole moments of the low-lying states. They establish the prolate character of the ground state and an oblate excited state. A complementary lifetime measurement using a 'plunger' device was also performed. Transition strength in neighboring nuclei were measured using the technique of intermediate energy Coulomb excitation at GANIL. The results on the Se{sup 68} nucleus show a sharp change in structure with respects to heavier neighboring nuclei. (author)

  13. Study of impurities in Aditya Tokamak during different conditions using quadrupole mass analyzer

    International Nuclear Information System (INIS)

    Bhatt, S.B.; Jadeja, K.A.; Patel, K.M.; Patel, N.D.; Raval, M.K.; Ghosh, J.

    2015-01-01

    In fusion devices, e.g., Tokamak, the presence of the impurities, i.e. gas species other than the fuel gas, deteriorates plasma and makes confinement difficult. The gas molecules tend to get adsorbed on the surfaces of the solid state materials of the vessel wall during discharges. A Residual Gas Analyzer (RGA) is the most commonly useful instrument to measure the presence and quantity of the various gases in a vacuum system. Quadrupole Mass Analyzer (QMA) is installed on Aditya Tokamak to measure the concentrations of various gas species present in Aditya vacuum system. It is also used to monitor impurities generated during various phases of discharges in Aditya Tokamak. The impurities are reduced by various types of discharge cleaning and in-situ coatings. Presence of residual gas concentration in vacuum system creates limitation for achievement of ultrahigh vacuum and also affects plasma performance. The presence of residual gases is due to different reasons like atmospheric concentration, contamination of the wall materials, outgassing from the exposed materials, permeation, real and virtual leaks

  14. Stabilization of N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine thin film morphology with UV light

    Energy Technology Data Exchange (ETDEWEB)

    Tomović, A.Ž.; Markešević, N. [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Scarpellini, M.; Bovio, S. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Lucenti, E. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Institute of Molecular Science and Technology of CNR, via Golgi 19, 20133 Milan (Italy); Milani, P. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy); Zikic, R. [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Jovanović, V.P., E-mail: vladimir.jovanovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade (Serbia); Srdanov, V.I. [Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA), Università di Milano, Via Celoria 16, 20133 Milan (Italy)

    2014-07-01

    Owing to their low glass transition temperature, T{sub g}, amorphous thin films of N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)benzidine (TPD) undergo morphological changes even at room temperature. It has been noticed previously that exposure to UV light can increase apparent T{sub g} of TPD films and thus stabilize their morphology. However, the reason behind increase in structural stability was not examined at the time. Here we present evidence that TPD molecules undergo photo-oxidation in air when exposed to λ ≈ 350 nm radiation and that less than 5% of the photo-oxidized species are needed to prevent dewetting of thin TPD films. We propose that photo-oxidized TPD species bind strongly to both ordinary TPD molecules and to terminal hydroxyl groups at the substrate surface, which decreases mobility of TPD molecules and makes thin TPD film less prone to morphology changes. - Highlights: • We made variable thickness TPD films and exposed them to UV light under ambient conditions. • Mass spectroscopy and proton NMR measurements of irradiated and pristine TPD films • TPD molecules undergo oxidation process under UV light irradiation. • Dipole–dipole interactions may be responsible for stabilization of morphological changes.

  15. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    Science.gov (United States)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  16. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H. E-mail: m.breese@surrey.ac.uk; Grime, G.W.; Linford, W.; Harold, M

    1999-09-02

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations.

  17. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    International Nuclear Information System (INIS)

    Breese, M.B.H.; Grime, G.W.; Linford, W.; Harold, M.

    1999-01-01

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations

  18. Quadrupole Moments And Gamma Deformation Of Wobbling Excitations In 163Ln

    International Nuclear Information System (INIS)

    Goergen, A.; Hagemann, G.B.; Sletten, G.; Hamamoto, I.; Bengtsson, R.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Huebel, H.

    2005-01-01

    Wobbling is an excitation mode unique to triaxial nuclei. Even though it is a general consequence of triaxiality in nuclei, it has so far only been observed in the odd-mass Lu isotopes around 163Lu. The principal evidence for the wobbling mode is based on the pattern of rotational bands characterized and described by a wobbling phonon number and the decay between different bands belonging to the same family. A new measurement revealed lifetimes of states in an excited wobbling band for the first time and gave access to absolute transition probabilities for both in-band and interband transitions. A general recipe how to derive quadrupole moments for triaxial nuclei from experimental data is discussed. The results show a remarkable similarity of the quadrupole moments for the different bands, further supporting the wobbling scenario. A decrease of the quadrupole moments is observed with increasing spin. This is attributed to an increase in triaxiality with spin, which can at the same time explain the dependence of the interband transitions on spin. Such an increase in triaxiality is qualitatively reproduced by cranking calculations to which the experimental results are compared

  19. Mesoporous TiO{sub 2} aggregate photoanode with high specific surface area and strong light scattering for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunhui; Luo, Yanhong; Guo, Xiaozhi; Li, Dongmei [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Mi, Jianli; So, Lasse; Hald, Peter [Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus (Denmark); Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Iversen, Bo B., E-mail: bo@chem.au.dk [Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus (Denmark)

    2012-12-15

    Phase-pure anatase TiO{sub 2} nanocrystallite aggregates synthesized by a continuous supercritical fluid process have been first used for fabricating mesoporous photoanodes of dye-sensitized solar cells (DSCs). Due to the small size (11 nm) of the TiO{sub 2} nanocrystallites in the aggregates, the mesoporous photoanode provides a high specific surface area, 80 m{sup 2}/g, which ensures high dye loading. At the same time, the submicrometer-sized aggregates endow the mesoporous photoanode with strong light scattering effect. Therefore, the light harvesting efficiency of the photoanode is increased. With an improved short-circuit current density, a high overall power conversion efficiency of 8.65% (100 mW/cm{sup 2}, AM 1.5) is achieved without additional scattering layers, 12% enhanced compared with the DSCs fabricated from commercial Degussa P25 with exactly the same procedures. In addition, this supercritical fluid process is scalable and rapid (less than one minute) for TiO{sub 2} aggregates synthesis, which will push the commercialization of DSCs in the future. - Graphical abstract: Due to the special morphology and structure, the photoanode of DSCs provides high specific surface area and strong light scattering at the same time, which results in high conversion efficiencies of the DSCs. Table of contents: Thanks to the synchronous realization of high specific surface area and strong light scattering, a high efficiency of 8.65% was achieved based on a novel mesoporous TiO{sub 2} aggregates photoanode for DSCs. Highlights: Black-Right-Pointing-Pointer The TiO{sub 2} aggregate photoanode provides a possible route for highly efficient DSCs. Black-Right-Pointing-Pointer Photoanode with high dye loading and light scattering is successfully fabricated. Black-Right-Pointing-Pointer TiO{sub 2} synthesized by a supercritical fluid process is first applied to DSCs. Black-Right-Pointing-Pointer The synthesis method and high efficiency will push the commercialization of DSCs.

  20. A comparison of ray-tracing software for the design of quadrupole microbeam systems

    International Nuclear Information System (INIS)

    Incerti, S.; Smith, R.W.; Merchant, M.; Grime, G.W.; Meot, F.; Serani, L.; Moretto, Ph.; Touzeau, C.; Barberet, Ph.; Habchi, C.; Nguyen, D.T.

    2005-01-01

    For many years the only ray-tracing software available with sufficient precision for the design of quadrupole microbeam focusing systems has been OXRAY and its successor TRAX, developed at Oxford in the 1980s. With the current interest in pushing the beam diameter into the nanometre region, this software has become dated and more importantly the precision at small displacements may not be sufficient and new simulation tools are required. Two candidates for this are Zgoubi, developed at CEA as a general beam line design tool and the CERN simulation program Geant in its latest version Geant4. In order to use Geant4 new quadrupole field modules have been developed and implemented. In this paper the capabilities of the three codes TRAX, Zgoubi and Geant4 are reviewed. Comparisons of ray-tracing calculations in a high demagnification quadrupole probe-forming system for the sub-micron region are presented

  1. Unraveling the physics of nanofluidic phenomena at the single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-13

    Despite groundbreaking potential in a broad application space, several nanofluidic phenomena remain poorly understood. Toward advancing the understanding of fluid behavior under nanoscale confinement, we developed a novel, ideal platform for fundamental molecular transport studies, in which the fluidic channel is a single carbon nanotube (CNT). CNTs offer the advantage of simple chemistry and structure, which can be synthetically tuned with nanometer precision and accurately modeled. With combined experimental and computational approaches, we demonstrated that CNT pores with 1-5 nm diameters conduct giant ionic currents that follow an unusual sublinear electrolyte concentration dependence. The large magnitude of the ionic conductance appears to originate from a strong electro-osmotic flow in smooth CNT pores. First-principle simulations suggest that electro-osmotic flow arises from localized negative polarization charges on carbon atoms near a potassium (K+) ion and from the strong cation-graphitic wall interactions, which drive K+ ions much closer to the wall than chlorides (Cl-). Single-molecule translocation studies reveal that charged molecules may be distinguished from neutral species on the basis of the sign of the transient current change during their passage through the nanopore. Together with shedding light on a few controversial questions in the CNT nanofluidics area, these results may benefit LLNL’s Security Mission by providing the foundation for the development of advanced single-molecule detection system for bio/chem/explosive analytes. In addition, these experimental and computational platforms can be applied to advance fundamental knowledge in other fields, from energy storage and membrane separation to superfluid physics.

  2. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  3. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient supperconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  4. Hydrogen isotope analysis by quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Ellefson, R.E.; Moddeman, W.E.; Dylla, H.F.

    1981-03-01

    The analysis of isotopes of hydrogen (H, D, T) and helium ( 3 He, 4 He) and selected impurities using a quadrupole mass spectrometer (QMS) has been investigated as a method of measuring the purity of tritium gas for injection into the Tokamak Fusion Test Reactor (TFTR). A QMS was used at low resolution, m/Δm 3 He, and 4 He in HT/D 2

  5. Biomimetic light-harvesting funnels for re-directioning of diffuse light.

    Science.gov (United States)

    Pieper, Alexander; Hohgardt, Manuel; Willich, Maximilian; Gacek, Daniel Alexander; Hafi, Nour; Pfennig, Dominik; Albrecht, Andreas; Walla, Peter Jomo

    2018-02-14

    Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.

  6. Direct trace analysis of metals and alloys in a quadrupole ion-trap mass spectrometer

    CERN Document Server

    Song, K S; Yang, M; Cha, H K; Lee, J M; Lee, G H

    1999-01-01

    An ion-trap mass spectrometer adopting a quadrupole ion-trap and laser ablation/ionization method was constructed. The developed system was tested for composition analysis of some metals (Cu, stainless), and alloys (hastalloy C, mumetal) by mass spectrometry. Samples were analyzed by using laser ablation from a sample probe tip followed by a mass analysis with the quadrupole ion-trap. The quadrupole ion-trap was modified to enable laser ablation by a XeCl excimer laser pulse that passed radially through the ring electrode. A mass scan of the produced ions was performed in the mass selective instability mode wherein trapped ions were successively detected by increasing the rf voltage through the ring electrode. Factors affecting the mass resolution, such as pressure of buffer gas and ablation laser power, are discussed.

  7. Drive Beam Quadrupoles for the CLIC Project: a Novel Method of Fiducialisation and a New Micrometric Adjustment System

    CERN Document Server

    AUTHOR|(SzGeCERN)411678; Duquenne, Mathieu; Sandomierski, Jacek; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    This paper presents a new method of fiducialisation applied to determine the magnetic axis of the Drive Beam quadrupole of the CLIC project with respect to external alignment fiducials, within a micrometric accuracy and precision. It introduces also a new micrometric adjustment system along 5 Degrees of Freedom, developed for the same Drive Beam quadrupole. The combination of both developments opens very interesting perspectives to get a more simple and accurate alignment of the quadrupoles.

  8. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    Science.gov (United States)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  9. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  10. Series fabrication of the main quadrupole cold masses for the LHC begins

    CERN Multimedia

    2003-01-01

    Three hundred and sixty main quadrupole (MQ) magnets will perform the principal beam focusing around the 27 km LHC ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry.The German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the cold masses together with various combinations of corrector magnets produced by other European manufacturers. Here we see the first of the cold masses containing the MQ magnet of the machine arcs together with two types of corrector magnet ready for shipping to CERN. This first unit was delivered on 12 Februa...

  11. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  12. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; Linde, Frank; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  13. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment

    Science.gov (United States)

    Tao, Ming-Jie; Ai, Qing; Deng, Fu-Guo; Cheng, Yuan-Chung

    2016-06-01

    The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex had long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent modified Redfield theory and non-Markovian quantum jump method to simulate EET dynamics. This scheme provides a practical approach of detecting the realistic EET pathway in BChl complexes with currently available experimental technology. And it may assist optimizing design of artificial light-harvesting devices.

  14. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    International Nuclear Information System (INIS)

    Gražulevičiūtė, I; Garejev, N; Majus, D; Tamošauskas, G; A Dubietis; Jukna, V

    2016-01-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space–time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45–2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse. (paper)

  15. Filamentation and light bullet formation dynamics in solid-state dielectric media with weak, moderate and strong anomalous group velocity dispersion

    Science.gov (United States)

    Gražulevičiūtė, I.; Garejev, N.; Majus, D.; Jukna, V.; Tamošauskas, G.; Dubietis, A.

    2016-02-01

    We present a series of measurements, which characterize filamentation dynamics of intense ultrashort laser pulses in the space-time domain, as captured by means of three-dimensional imaging technique in sapphire and fused silica, in the wavelength range of 1.45-2.25 μm, accessing the regimes of weak, moderate and strong anomalous group velocity dispersion (GVD). In the regime of weak anomalous GVD (at 1.45 μm), pulse splitting into two sub-pulses producing a pair of light bullets with spectrally shifted carrier frequencies in both nonlinear media is observed. In contrast, in the regimes of moderate (at 1.8 μm) and strong (at 2.25 μm) anomalous GVD we observe notably different transient dynamics, which however lead to the formation of a single self-compressed quasistationary light bullet with an universal spatiotemporal shape comprised of an extended ring-shaped periphery and a localized intense core that carries the self-compressed pulse.

  16. Design and fabrication of the prototype superconducting tuning quadrupole and octupole correction winding for the LHC project

    International Nuclear Information System (INIS)

    Perin, R.; Siegel, N.; Bidaurrazaga, H.; Garcia Tabares, L.

    1992-01-01

    CERN is preparing for the construction of the Large Hadron Collider (LHC) to be installed in the LEP tunnel. The magnetic lattice of the LHC will consist of a ring of twin aperture dipoles and quadrupoles, connected electrically in series. To adjust the working point of the machine, so called tuning quadrupoles will be installed in pairs in each regular cell, next to the main quadrupoles. Also, to correct multipolar field errors in the LHC, an octupole correction winding is required near each lattice quadrupole. A nested construction of these two magnets is foreseen. As part of the LHC R and D program, CERN and ACICA (a group of five Spanish industries: Abengoz, Canzler, Indar, Cenemesa and AME; since June 1990 Cenemesa is part of ABB Spain), signed a common development agreement for the design, fabrication and testing of a prototype tuning quadrupole and octupole corrector. This paper describes the design of these magnets, giving details of magnetic and mechanical calculations, including results from existing and specially developed computer codes, and model work. Further, the construction procedures are described, including the facilities and tooling developed by ACICA for this work

  17. Polarized light modulates light-dependent magnetic compass orientation in birds

    Science.gov (United States)

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  18. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    NARCIS (Netherlands)

    Yang, Hsiang Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; Van Grondelle, Rienk; Moerner, W. E.

    2015-01-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and

  19. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  20. Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider.

    CERN Document Server

    Spencer, C M

    2002-01-01

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENC...