Strong ground motion prediction using virtual earthquakes.
Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C
2014-01-24
Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.
Levy, R.; Mcginness, H.
1976-01-01
Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.
Is It Possible to Predict Strong Earthquakes?
Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.
2015-07-01
The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.
Prediction of the occurrence of related strong earthquakes in Italy
International Nuclear Information System (INIS)
Vorobieva, I.A.; Panza, G.F.
1993-06-01
In the seismic flow it is often observed that a Strong Earthquake (SE), is followed by Related Strong Earthquakes (RSEs), which occur near the epicentre of the SE with origin time rather close to the origin time of the SE. The algorithm for the prediction of the occurrence of a RSE has been developed and applied for the first time to the seismicity data of the California-Nevada region and has been successfully tested in several regions of the World, the statistical significance of the result being 97%. So far, it has been possible to make five successful forward predictions, with no false alarms or failures to predict. The algorithm is applied here to the Italian territory, where the occurrence of RSEs is a particularly rare phenomenon. Our results show that the standard algorithm is successfully directly applicable without any adjustment of the parameters. Eleven SEs are considered. Of them, three are followed by a RSE, as predicted by the algorithm, eight SEs are not followed by a RSE, and the algorithm predicts this behaviour for seven of them, giving rise to only one false alarm. Since, in Italy, quite often the series of strong earthquakes are relatively short, the algorithm has been extended to handle such situation. The result of this experiment indicates that it is possible to attempt to test a SE, for the occurrence of a RSE, soon after the occurrence of the SE itself, performing timely ''preliminary'' recognition on reduced data sets. This fact, the high confidence level of the retrospective analysis, and the first successful forward predictions, made in different parts of the World, indicates that, even if additional tests are desirable, the algorithm can already be considered for routine application to Civil Defence. (author). Refs, 3 figs, 7 tabs
Enhanced Wireless Power Transmission Using Strong Paramagnetic Response.
Ahn, Dukju; Kiani, Mehdi; Ghovanloo, Maysam
2014-03-01
A method of quasi-static magnetic resonant coupling has been presented for improving the power transmission efficiency (PTE) in near-field wireless power transmission, which improves upon the state of the art. The traditional source resonator on the transmitter side is equipped with an additional resonator with a resonance frequency that is tuned substantially higher than the magnetic field excitation frequency. This additional resonator enhances the magnetic dipole moment and the effective permeability of the power transmitter, owing to a phenomenon known as the strong paramagnetic response. Both theoretical calculations and experimental results show increased PTE due to amplification of the effective permeability. In measurements, the PTE was improved from 57.8% to 64.2% at the nominal distance of 15 cm when the effective permeability was 2.6. The power delivered to load was also improved significantly, with the same 10 V excitation voltage, from 0.38 to 5.26 W.
Power spectrum of dark matter substructure in strong gravitational lenses
Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora
2018-01-01
Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.
Prediction of strong earthquake motions on rock surface using evolutionary process models
International Nuclear Information System (INIS)
Kameda, H.; Sugito, M.
1984-01-01
Stochastic process models are developed for prediction of strong earthquake motions for engineering design purposes. Earthquake motions with nonstationary frequency content are modeled by using the concept of evolutionary processes. Discussion is focused on the earthquake motions on bed rocks which are important for construction of nuclear power plants in seismic regions. On this basis, two earthquake motion prediction models are developed, one (EMP-IB Model) for prediction with given magnitude and epicentral distance, and the other (EMP-IIB Model) to account for the successive fault ruptures and the site location relative to the fault of great earthquakes. (Author) [pt
Strong Presidents, Robust Democracies? Separation of Powers and Rule of Law in Latin America
Directory of Open Access Journals (Sweden)
Marcus Melo
2009-06-01
Full Text Available The received wisdom on Latin America in the 1980s and 1990s was that countries where presidents enjoyed strong constitutional powers and where multiparty coalitions prevailed would be doomed to instability and institutional crises, while countries boasting weak presidents and strong parties were expected to consolidate democratic rule. After almost two decades, it is now widely acknowledged that this prediction failed. Recent re-conceptualizations of presidentalism have partly corrected the flaws in the established diagnosis but left unexplained the role of checks and balances and of the rule of law in containing presidential abuse and guaranteeing governability. The paper argues that the key to solving the paradox of strong presidents and robust democracies is that democratic stability in Latin American countries is a function of an extended system of checks and balances. These are ultimately generated by power fragmentation at the time of the constitutional choices over their institutional design and political competition sustaining their effective functioning.
Staying Power of Churn Prediction Models
Risselada, Hans; Verhoef, Peter C.; Bijmolt, Tammo H. A.
In this paper, we study the staying power of various churn prediction models. Staying power is defined as the predictive performance of a model in a number of periods after the estimation period. We examine two methods, logit models and classification trees, both with and without applying a bagging
Quantitative prediction of strong motion for a potential earthquake fault
Directory of Open Access Journals (Sweden)
Shamita Das
2010-02-01
Full Text Available This paper describes a new method for calculating strong motion records for a given seismic region on the basis of the laws of physics using information on the tectonics and physical properties of the earthquake fault. Our method is based on a earthquake model, called a «barrier model», which is characterized by five source parameters: fault length, width, maximum slip, rupture velocity, and barrier interval. The first three parameters may be constrained from plate tectonics, and the fourth parameter is roughly a constant. The most important parameter controlling the earthquake strong motion is the last parameter, «barrier interval». There are three methods to estimate the barrier interval for a given seismic region: 1 surface measurement of slip across fault breaks, 2 model fitting with observed near and far-field seismograms, and 3 scaling law data for small earthquakes in the region. The barrier intervals were estimated for a dozen earthquakes and four seismic regions by the above three methods. Our preliminary results for California suggest that the barrier interval may be determined if the maximum slip is given. The relation between the barrier interval and maximum slip varies from one seismic region to another. For example, the interval appears to be unusually long for Kilauea, Hawaii, which may explain why only scattered evidence of strong ground shaking was observed in the epicentral area of the Island of Hawaii earthquake of November 29, 1975. The stress drop associated with an individual fault segment estimated from the barrier interval and maximum slip lies between 100 and 1000 bars. These values are about one order of magnitude greater than those estimated earlier by the use of crack models without barriers. Thus, the barrier model can resolve, at least partially, the well known discrepancy between the stress-drops measured in the laboratory and those estimated for earthquakes.
Conditional prediction intervals of wind power generation
DEFF Research Database (Denmark)
Pinson, Pierre; Kariniotakis, Georges
2010-01-01
A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....
Prediction of strongly-heated internal gas flows
International Nuclear Information System (INIS)
McEligot, D.M.; Shehata, A.M.; Kunugi, Tomoaki
1997-01-01
The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions
Freud, Adler, and Women: Powers of the "Weak" and "Strong."
DeVitis, Joseph L.
1985-01-01
This article discusses Freud's original psychoanalytic notions on women and morality and their influence on constructions of personality, power, culture, and socioeducational change. Also discussed is Freudian critic Alfred Adler's use of a larger external lens to focus women's lives in a wider context of "social interest" and social…
Composable and Predictable Power Management
Nelson, A.T.
2014-01-01
The functionality of embedded systems is ever growing. The computational power of embedded systems is growing to match this demand, with embedded multiprocessor systems becoming more common. The limitations of embedded systems are not always related to chip size but are commonly due to energy and/or
Wind Power Prediction using Ensembles
DEFF Research Database (Denmark)
Giebel, Gregor; Badger, Jake; Landberg, Lars
2005-01-01
offshore wind farm and the whole Jutland/Funen area. The utilities used these forecasts for maintenance planning, fuel consumption estimates and over-the-weekend trading on the Leipzig power exchange. Othernotable scientific results include the better accuracy of forecasts made up from a simple...... superposition of two NWP provider (in our case, DMI and DWD), an investigation of the merits of a parameterisation of the turbulent kinetic energy within thedelivered wind speed forecasts, and the finding that a “naïve” downscaling of each of the coarse ECMWF ensemble members with higher resolution HIRLAM did...
Wind Power Prediction Considering Nonlinear Atmospheric Disturbances
Directory of Open Access Journals (Sweden)
Yagang Zhang
2015-01-01
Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.
Short-term wind power prediction
DEFF Research Database (Denmark)
Joensen, Alfred K.
2003-01-01
, and to implement these models and methods in an on-line software application. The economical value of having predictions available is also briefly considered. The summary report outlines the background and motivation for developing wind power prediction models. The meteorological theory which is relevant......The present thesis consists of 10 research papers published during the period 1997-2002 together with a summary report. The objective of the work described in the thesis is to develop models and methods for calculation of high accuracy predictions of wind power generated electricity...
Simulators predict power plant operation
Energy Technology Data Exchange (ETDEWEB)
Peltier, R.
2002-07-01
Mix the complexity of a new construction or major retrofit project with today's 'do more with less', a pinch of 'personnel inexperience,' and a dash of 'unintended consequences', and you have got a recipe for insomnia. Advanced simulation tools, however, can help you wring out your design train your operators before the first wire is terminated and just may be get a good night's rest. The article describes several examples of uses of simulation tools. Esscor recently completed a simulation project for a major US utility exploring the potential for furnace/duct implosion that could result from adding higher volumetric flow induced-draft fans and selective catalytic reduction to a 650-MW coal-fired plant. CAF Electronics Inc. provided a full-scope simulator for Alstom's KA24-1 combined-cycle power plant in Paris, France. Computational fluid dynamics (CFD) tools are being used by the Gas Technology Institute to simulate the performance of the next generation of pulverized coal combustors. 5 figs.
Improved techniques for predicting spacecraft power
International Nuclear Information System (INIS)
Chmielewski, A.B.
1987-01-01
Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance
International Nuclear Information System (INIS)
Berge-Thierry, C.
2007-05-01
The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)
Using machine learning to predict wind turbine power output
International Nuclear Information System (INIS)
Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P
2013-01-01
Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)
The wind power prediction research based on mind evolutionary algorithm
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Uncertainties in predicting solar panel power output
Anspaugh, B.
1974-01-01
The problem of calculating solar panel power output at launch and during a space mission is considered. The major sources of uncertainty and error in predicting the post launch electrical performance of the panel are considered. A general discussion of error analysis is given. Examples of uncertainty calculations are included. A general method of calculating the effect on the panel of various degrading environments is presented, with references supplied for specific methods. A technique for sizing a solar panel for a required mission power profile is developed.
Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes
DEFF Research Database (Denmark)
Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.
2009-01-01
In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...
International Nuclear Information System (INIS)
Yoshimura, Shinobu; Kawai, Hiroshi; Sugimoto, Shin'ichiro; Hori, Muneo; Nakajima, Norihiro; Kobayashi, Kei
2010-01-01
Recently importance of nuclear energy has been recognized again due to serious concerns of global warming and energy security. In parallel, it is one of critical issues to verify safety capability of ageing nuclear power plants (NPPs) subjected to strong earthquake. Since 2007, we have been developing the multi-scale and multi-physics based numerical simulator for quantitatively predicting actual quake-proof capability of ageing NPPs under operation or just after plant trip subjected to strong earthquake. In this paper, we describe an overview of the simulator with some preliminary results. (author)
Prediction of future dispute concerning nuclear power generation
International Nuclear Information System (INIS)
1981-04-01
This investigation is the third research on the public acceptance of nuclear power generation by the National Congress on Social Economics. In this study, how the energy dispute including that concerning nuclear power generation will develop in 1980s and 1990s, how the form of dispute and the point of controversy will change, were predicted. Though the maintenance of the concord of groups strongly regulates the behavior of people, recently they have become to exercise individual rights frequently. The transition to the society of dispute is the natural result of the modernization of society and the increase of richness. The proper prediction of social problems and the planning and execution of proper countermeasures are very important. The background, objective, basic viewpoint, range and procedure of this investigation, the change of social dispute, the history of the dispute concerning nuclear power generation, the basic viewpoint in the prediction of the dispute concerning nuclear power generation, the social situation in 1980s, the prediction and avoidance of the dispute in view of social and energy situations, and the fundamental strategy for seeking a clue to the solution in 1980s and 1990s are described. The establishment of neutral mediation organs and the flexible technologies of nuclear reactors are necessary. (Kako, I.)
Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind
International Nuclear Information System (INIS)
Borovsky, Joseph E.
2010-01-01
Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.
Feature Selection and ANN Solar Power Prediction
Directory of Open Access Journals (Sweden)
Daniel O’Leary
2017-01-01
Full Text Available A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers. These new participants in the energy market, prosumers, require new artificial neural network (ANN performance tuning techniques to create accurate ANN forecasts. Input masking, an ANN tuning technique developed for acoustic signal classification and image edge detection, is applied to prosumer solar data to improve prosumer forecast accuracy over traditional macrogrid ANN performance tuning techniques. ANN inputs tailor time-of-day masking based on error clustering in the time domain. Results show an improvement in prediction to target correlation, the R2 value, lowering inaccuracy of sample predictions by 14.4%, with corresponding drops in mean average error of 5.37% and root mean squared error of 6.83%.
International Nuclear Information System (INIS)
Fridman, A M
2008-01-01
The theory and the experimental discovery of extremely strong hydrodynamic instabilities are described, viz. the Kelvin-Helmholtz, centrifugal, and superreflection instabilities. The discovery of the last two instabilities was predicted and the Kelvin-Helmholtz instability in real systems was revised by us. (reviews of topical problems)
Prediction of strong ground motion based on scaling law of earthquake
International Nuclear Information System (INIS)
Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.
1991-01-01
In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)
WHY WE CANNOT PREDICT STRONG EARTHQUAKES IN THE EARTH’S CRUST
Directory of Open Access Journals (Sweden)
Iosif L. Gufeld
2011-01-01
Full Text Available In the past decade, earthquake disasters caused multiple fatalities and significant economic losses and challenged the modern civilization. The wellknown achievements and growing power of civilization are backstrapped when facing the Nature. The question arises, what hinders solving a problem of earthquake prediction, while longterm and continuous seismic monitoring systems are in place in many regions of the world. For instance, there was no forecast of the Japan Great Earthquake of March 11, 2011, despite the fact that monitoring conditions for its prediction were unique. Its focal zone was 100–200 km away from the monitoring network installed in the area of permanent seismic hazard, which is subject to nonstop and longterm seismic monitoring. Lesson should be learned from our common fiasco in forecasting, taking into account research results obtained during the past 50–60 years. It is now evident that we failed to identify precursors of the earthquakes. Prior to the earthquake occurrence, the observed local anomalies of various fields reflected other processes that were mistakenly viewed as processes of preparation for largescale faulting. For many years, geotectonic situations were analyzed on the basis of the physics of destruction of laboratory specimens, which was applied to the lithospheric conditions. Many researchers realize that such an approach is inaccurate. Nonetheless, persistent attempts are being undertaken with application of modern computation to detect anomalies of various fields, which may be interpreted as earthquake precursors. In our opinion, such illusory intentions were smashed by the Great Japan Earthquake (Figure 6. It is also obvious that sufficient attention has not been given yet to fundamental studies of seismic processes.This review presents the authors’ opinion concerning the origin of the seismic process and strong earthquakes, being part of the process. The authors realize that a wide discussion is
Strong enhancement of streaming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system
Strong enhancement of straeming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly enhanced by the use of two phase flow. Injection of gas bubbles into a liquid-filled channel increases both the maximum output power and the energy conversion efficiency. In single-phase
International Nuclear Information System (INIS)
Moldoveanu, C.L.; Novikova, O.V.; Panza, G.F.; Radulian, M.
2003-06-01
The preparation process of the strong subcrustal events originating in Vrancea region, Romania, is monitored using an intermediate-term medium-range earthquake prediction method - the CN algorithm (Keilis-Borok and Rotwain, 1990). We present the results of the monitoring of the preparation of future strong earthquakes for the time interval from January 1, 1994 (1994.1.1), to January 1, 2003 (2003.1.1) using the updated catalogue of the Romanian local network. The database considered for the CN monitoring of the preparation of future strong earthquakes in Vrancea covers the period from 1966.3.1 to 2003.1.1 and the geographical rectangle 44.8 deg - 48.4 deg N, 25.0 deg - 28.0 deg E. The algorithm correctly identifies, by retrospective prediction, the TJPs for all the three strong earthquakes (Mo=6.4) that occurred in Vrancea during this period. The cumulated duration of the TIPs represents 26.5% of the total period of time considered (1966.3.1-2003.1.1). The monitoring of current seismicity using the algorithm CN has been carried out since 1994. No strong earthquakes occurred from 1994.1.1 to 2003.1.1 but the CN declared an extended false alarm from 1999.5.1 to 2000.11.1. No alarm has currently been declared in the region (on January 1, 2003), as can be seen from the TJPs diagram shown. (author)
Safety prediction technique for nuclear power plants
International Nuclear Information System (INIS)
Henry, C.D. III; Anderson, R.T.
1985-01-01
This paper presents a safety prediction technique (SPT) developed by Reliability Technology Associates (RTA) for nuclear power plants. It is based on a technique applied by RTA to assess the flight safety of US Air Force aircraft. The purpose of SPT is to provide a computerized technique for objective measurement of the effect on nuclear plant safety of component failure or procedural, software, or human error. A quantification is determined, called criticality, which is proportional to the probability that a given component or procedural-human action will cause the plant to operate in a hazardous mode. A hazardous mode is characterized by the fact that there has been a failure/error and the plant, its operating crew, and the public are exposed to danger. Whether the event results in an accident, an incident, or merely the exposure to danger is dependent on the skill and reaction of the operating crew as well as external influences. There are three major uses of SPT: (a) to predict unsafe situations so that corrective action can be taken before accidents occur, (b) to quantify the impact of equipment malfunction or procedural, software, or human error on safety and thereby establish priorities for proposed modifications, and (c) to provide a means of evaluating proposed changes for their impact on safety prior to implementation and to provide a method of tracking implemented changes
Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days
International Nuclear Information System (INIS)
Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd
2016-01-01
Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.
Cerrai, D.; Anagnostou, E. N.; Wanik, D. W.; Bhuiyan, M. A. E.; Zhang, X.; Yang, J.; Astitha, M.; Frediani, M. E.; Schwartz, C. S.; Pardakhti, M.
2016-12-01
The overwhelming majority of human activities need reliable electric power. Severe weather events can cause power outages, resulting in substantial economic losses and a temporary worsening of living conditions. Accurate prediction of these events and the communication of forecasted impacts to the affected utilities is necessary for efficient emergency preparedness and mitigation. The University of Connecticut Outage Prediction Model (OPM) uses regression tree models, high-resolution weather reanalysis and real-time weather forecasts (WRF and NCAR ensemble), airport station data, vegetation and electric grid characteristics and historical outage data to forecast the number and spatial distribution of outages in the power distribution grid located within dense vegetation. Recent OPM improvements consist of improved storm classification and addition of new predictive weather-related variables and are demonstrated using a leave-one-storm-out cross-validation based on 130 severe extratropical storms and two hurricanes (Sandy and Irene) in the Northeast US. We show that it is possible to predict the number of trouble spots causing outages in the electric grid with a median absolute percentage error as low as 27% for some storm types, and at most around 40%, in a scale that varies between four orders of magnitude, from few outages to tens of thousands. This outage information can be communicated to the electric utility to manage allocation of crews and equipment and minimize the recovery time for an upcoming storm hazard.
Low power predictable memory and processing architectures
Chen, Jiaoyan
2013-01-01
Great demand in power optimized devices shows promising economic potential and draws lots of attention in industry and research area. Due to the continuously shrinking CMOS process, not only dynamic power but also static power has emerged as a big concern in power reduction. Other than power optimization, average-case power estimation is quite significant for power budget allocation but also challenging in terms of time and effort. In this thesis, we will introduce a methodology to support mo...
A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances
Directory of Open Access Journals (Sweden)
Xuezhe Wei
2014-07-01
Full Text Available Strongly coupled magnetic resonance (SCMR, proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.
Research of Smart Payment System of Power Grid Using Strongly Sub-feasible SQP Algorithm
Directory of Open Access Journals (Sweden)
Yang Fang
2017-01-01
Full Text Available With the continuous development and perfection of “Internet + Electricity”, the regional grid operation has gradually realized the Internet-based automation. In order to improve the smart level of regional grid operation, this paper analyzes the status quo of power grid terminal in Fujian local power (group company, and introduces the strongly sub-feasible sequence quadratic programming (SQP. The smart payment system based on strongly sub-feasible SQP algorithm is described by its structure, function and implementation process. Through the information technology to improve the efficiency of the service, so that payment staff and smart terminal of self-service payment system has been information between the interactive mode, the actual operation effect is good.
Power load prediction based on GM (1,1)
Wu, Di
2017-05-01
Currently, Chinese power load prediction is highly focused; the paper deeply studies grey prediction and applies it to Chinese electricity consumption during the recent 14 years; through after-test test, it obtains grey prediction which has good adaptability to medium and long-term power load.
Self-channeling of high-power laser pulses through strong atmospheric turbulence
Peñano, J.; Palastro, J. P.; Hafizi, B.; Helle, M. H.; DiComo, G. P.
2017-07-01
We present an unusual example of truly long-range propagation of high-power laser pulses through strong atmospheric turbulence. A form of nonlinear self-channeling is achieved when the laser power is close to the self-focusing power of air and the transverse dimensions of the pulse are smaller than the coherence diameter of turbulence. In this mode, nonlinear self-focusing counteracts diffraction, and turbulence-induced spreading is greatly reduced. Furthermore, the laser intensity is below the ionization threshold so that multiphoton absorption and plasma defocusing are avoided. Simulations show that the pulse can propagate many Rayleigh lengths (several kilometers) while maintaining a high intensity. In the presence of aerosols, or other extinction mechanisms that deplete laser energy, the pulse can be chirped to maintain the channeling.
Prediction of North Pacific Height Anomalies During Strong Madden-Julian Oscillation Events
Kai-Chih, T.; Barnes, E. A.; Maloney, E. D.
2017-12-01
The Madden Julian Oscillation (MJO) creates strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data (MERRA and ERA-Interim) and ECMWF ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anoma- lies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits. Furthermore, we also examine the phase dependency of teleconnection robustness by using Linear Baroclinic Model (LBM) and the result is consistent with the ensemble hindcasts : the anomalous heating of MJO phase 2 (phase 6) can consistently generate positive (negative) geopotential height anomalies around the extratropical Pacific with a lead of 15-20 days, while other phases are more sensitive to the variaion of the mean state.
Sludge pipe flow pressure drop prediction using composite power ...
African Journals Online (AJOL)
Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...
CN earthquake prediction algorithm and the monitoring of the future strong Vrancea events
International Nuclear Information System (INIS)
Moldoveanu, C.L.; Radulian, M.; Novikova, O.V.; Panza, G.F.
2002-01-01
The strong earthquakes originating at intermediate-depth in the Vrancea region (located in the SE corner of the highly bent Carpathian arc) represent one of the most important natural disasters able to induce heavy effects (high tool of casualties and extensive damage) in the Romanian territory. The occurrence of these earthquakes is irregular, but not infrequent. Their effects are felt over a large territory, from Central Europe to Moscow and from Greece to Scandinavia. The largest cultural and economical center exposed to the seismic risk due to the Vrancea earthquakes is Bucharest. This metropolitan area (230 km 2 wide) is characterized by the presence of 2.5 million inhabitants (10% of the country population) and by a considerable number of high-risk structures and infrastructures. The best way to face strong earthquakes is to mitigate the seismic risk by using the two possible complementary approaches represented by (a) the antiseismic design of structures and infrastructures (able to support strong earthquakes without significant damage), and (b) the strong earthquake prediction (in terms of alarm intervals declared for long, intermediate or short-term space-and time-windows). The intermediate term medium-range earthquake prediction represents the most realistic target to be reached at the present state of knowledge. The alarm declared in this case extends over a time window of about one year or more, and a space window of a few hundreds of kilometers. In the case of Vrancea events the spatial uncertainty is much less, being of about 100 km. The main measures for the mitigation of the seismic risk allowed by the intermediate-term medium-range prediction are: (a) verification of the buildings and infrastructures stability and reinforcement measures when required, (b) elaboration of emergency plans of action, (c) schedule of the main actions required in order to restore the normality of the social and economical life after the earthquake. The paper presents the
Feature Selection and ANN Solar Power Prediction
O’Leary, Daniel; Kubby, Joel
2017-01-01
A novel method of solar power forecasting for individuals and small businesses is developed in this paper based on machine learning, image processing, and acoustic classification techniques. Increases in the production of solar power at the consumer level require automated forecasting systems to minimize loss, cost, and environmental impact for homes and businesses that produce and consume power (prosumers). These new participants in the energy market, prosumers, require new artificial neural...
Testing the Predictive Power of Coulomb Stress on Aftershock Sequences
Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.
2009-12-01
Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.
Quantitative accuracy of the simplified strong ion equation to predict serum pH in dogs.
Cave, N J; Koo, S T
2015-01-01
Electrochemical approach to the assessment of acid-base states should provide a better mechanistic explanation of the metabolic component than methods that consider only pH and carbon dioxide. Simplified strong ion equation (SSIE), using published dog-specific values, would predict the measured serum pH of diseased dogs. Ten dogs, hospitalized for various reasons. Prospective study of a convenience sample of a consecutive series of dogs admitted to the Massey University Veterinary Teaching Hospital (MUVTH), from which serum biochemistry and blood gas analyses were performed at the same time. Serum pH was calculated (Hcal+) using the SSIE, and published values for the concentration and dissociation constant for the nonvolatile weak acids (Atot and Ka ), and subsequently Hcal+ was compared with the dog's actual pH (Hmeasured+). To determine the source of discordance between Hcal+ and Hmeasured+, the calculations were repeated using a series of substituted values for Atot and Ka . The Hcal+ did not approximate the Hmeasured+ for any dog (P = 0.499, r(2) = 0.068), and was consistently more basic. Substituted values Atot and Ka did not significantly improve the accuracy (r(2) = 0.169 to <0.001). Substituting the effective SID (Atot-[HCO3-]) produced a strong association between Hcal+ and Hmeasured+ (r(2) = 0.977). Using the simplified strong ion equation and the published values for Atot and Ka does not appear to provide a quantitative explanation for the acid-base status of dogs. Efficacy of substituting the effective SID in the simplified strong ion equation suggests the error lies in calculating the SID. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Power Admission Control with Predictive Thermal Management in Smart Buildings
DEFF Research Database (Denmark)
Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan
2015-01-01
This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...
Development and design of photovoltaic power prediction system
Wang, Zhijia; Zhou, Hai; Cheng, Xu
2018-02-01
In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.
Introducing Model Predictive Control for Improving Power Plant Portfolio Performance
DEFF Research Database (Denmark)
Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon
2008-01-01
This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...
International Nuclear Information System (INIS)
Stevenson, J.D.
1995-11-01
Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included
Prediction and design of first super-strong liquid-crystalline polymers
International Nuclear Information System (INIS)
Dowell, F.
1989-01-01
This paper presents the details of the theoretical prediction and design (atom by atom, bond by bond) of the molecule chemical structures of the first candidate super-strong liquid-crystalline polymers (SS LCPs). These LCPs are the first LCPs designed to have good compressive strengths, as well as to have tensile strengths and tensile moduli significantly larger than those of existing strong LCPs (such as Kevlar). The key feature of this new class of LCPs is that the exceptional strength is three dimensional on a microscopic, molecular level (thus, on a macroscopic level), in contrast to present LCPs (such as Kevlar) with their one-dimensional exceptional strength. These SS LCPs also have some solubility and processing advantages over existing strong LCPs. These SS LCPs are specially-designed combined LCPs such that the side chains of a molecule interdigitate with the side chains of other molecules. This paper also presents other essential general and specific features required for SS LCPs. Considerations in the design of SS LCPs include the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and side chains, the degree of polymerization, the length of the side chains, the regularity of spacing of the side chains along the backbone, the interdigitation of side chains in submolecular strips, the packing of the side chains on one or two sides of the backbone, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and side chains for easy alignment
Gussakovsky, Daniel; Neustaeter, Haley; Spicer, Victor; Krokhin, Oleg V
2017-11-07
The development of a peptide retention prediction model for strong cation exchange (SCX) separation on a Polysulfoethyl A column is reported. Off-line 2D LC-MS/MS analysis (SCX-RPLC) of S. cerevisiae whole cell lysate was used to generate a retention dataset of ∼30 000 peptides, sufficient for identifying the major sequence-specific features of peptide retention mechanisms in SCX. In contrast to RPLC/hydrophilic interaction liquid chromatography (HILIC) separation modes, where retention is driven by hydrophobic/hydrophilic contributions of all individual residues, SCX interactions depend mainly on peptide charge (number of basic residues at acidic pH) and size. An additive model (incorporating the contributions of all 20 residues into the peptide retention) combined with a peptide length correction produces a 0.976 R 2 value prediction accuracy, significantly higher than the additive models for either HILIC or RPLC. Position-dependent effects on peptide retention for different residues were driven by the spatial orientation of tryptic peptides upon interaction with the negatively charged surface functional groups. The positively charged N-termini serve as a primary point of interaction. For example, basic residues (Arg, His, Lys) increase peptide retention when located closer to the N-terminus. We also found that hydrophobic interactions, which could lead to a mixed-mode separation mechanism, are largely suppressed at 20-30% of acetonitrile in the eluent. The accuracy of the final Sequence-Specific Retention Calculator (SSRCalc) SCX model (∼0.99 R 2 value) exceeds all previously reported predictors for peptide LC separations. This also provides a solid platform for method development in 2D LC-MS protocols in proteomics and peptide retention prediction filtering of false positive identifications.
Predicting High-Power Performance in Professional Cyclists.
Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K
2017-03-01
To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.
Alpha Power Predicts Persistence of Bistable Perception
Piantoni, Giovanni; Romeijn, Nico; Gomez-Herrero, German; Van Der Werf, Ysbrand D; Van Someren, Eus J W
2017-01-01
Perception is strongly affected by the intrinsic state of the brain, which controls the propensity to either maintain a particular perceptual interpretation or switch to another. To understand the mechanisms underlying the spontaneous drive of the brain to explore alternative interpretations of
Model predictive control for wind power gradients
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp
2015-01-01
We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....
Magnetic storm effects in electric power systems and prediction needs
Albertson, V. D.; Kappenman, J. G.
1979-01-01
Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.
Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Matjaz Rozman
2017-04-01
Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.
Getting data for prediction of electricity generation from photovoltaic power plants
International Nuclear Information System (INIS)
Majer, V.; Hejtmankova, P.
2012-01-01
This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)
Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion
Hirata, N.; Sato, H.; Koketsu, K.; Umeda, Y.; Iwata, T.; Kasahara, K.
2003-12-01
Introduction: After the 1995 Kobe earthquake, the Japanese government increased its focus and funding of earthquake hazards evaluation, studies of man-made structures integrity, and emergency response planning in the major urban centers. A new agency, the Ministry of Education, Science, Sports and Culture (MEXT) has started a five-year program titled as Special Project for Earthquake Disaster Mitigation in Urban Areas (abbreviated to Dai-dai-toku in Japanese) since 2002. The project includes four programs: I. Regional characterization of the crust in metropolitan areas for prediction of strong ground motion. II. Significant improvement of seismic performance of structure. III. Advanced disaster management system. IV. Investigation of earthquake disaster mitigation research results. We will present the results from the first program conducted in 2002 and 2003. Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion: A long-term goal is to produce map of reliable estimations of strong ground motion. This requires accurate determination of ground motion response, which includes a source process, an effect of propagation path, and near surface response. The new five-year project was aimed to characterize the "source" and "propagation path" in the Kanto (Tokyo) region and Kinki (Osaka) region. The 1923 Kanto Earthquake is one of the important targets to be addressed in the project. The proximity of the Pacific and Philippine Sea subducting plates requires study of the relationship between earthquakes and regional tectonics. This project focuses on identification and geometry of: 1) Source faults, 2) Subducting plates and mega-thrust faults, 3) Crustal structure, 4) Seismogenic zone, 5) Sedimentary basins, 6) 3D velocity properties We have conducted a series of seismic reflection and refraction experiment in the Kanto region. In 2002 we have completed to deploy seismic profiling lines in the Boso peninsula (112 km) and the
Power Load Prediction Based on Fractal Theory
Jian-Kai, Liang; Cattani, Carlo; Wan-Qing, Song
2015-01-01
The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and...
Long-term predictability of regions and dates of strong earthquakes
Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey
2016-04-01
Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation
International Nuclear Information System (INIS)
Taniguchi, Yuji; Sakuragi, Futoshi; Hamada, Seiichi
2014-01-01
Development of equipment reliability(ER) process, specifically for predictive maintenance (PdM) technologies integrated condition based maintenance (CBM) process, at Hamaoka Nuclear Power Station is introduced in this paper. Integration of predictive maintenance technologies such as vibration, oil analysis and thermo monitoring is more than important to establish strong maintenance strategies and to direct a specific technical development. In addition, a practical example of CBM is also presented to support the advantage of the idea. (author)
VT Predicted Mean Wind Power - 50 meter height
Vermont Center for Geographic Information — (Link to Metadata) Wind power predictions at 50m are generated by a numerical model that simulates weather conditions over a 15-year period, taking into account...
Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method
Energy Technology Data Exchange (ETDEWEB)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit
2016-05-02
This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.
Deane, R. P.; Obreschkow, D.; Heywood, I.
2015-09-01
Strong gravitational lensing provides some of the deepest views of the Universe, enabling studies of high-redshift galaxies only possible with next-generation facilities without the lensing phenomenon. To date, 21-cm radio emission from neutral hydrogen has only been detected directly out to z ˜ 0.2, limited by the sensitivity and instantaneous bandwidth of current radio telescopes. We discuss how current and future radio interferometers such as the Square Kilometre Array (SKA) will detect lensed H I emission in individual galaxies at high redshift. Our calculations rely on a semi-analytic galaxy simulation with realistic H I discs (by size, density profile and rotation), in a cosmological context, combined with general relativistic ray tracing. Wide-field, blind H I surveys with the SKA are predicted to be efficient at discovering lensed H I systems, increasingly so at z ≳ 2. This will be enabled by the combination of the magnification boosts, the steepness of the H I luminosity function at the high-mass end, and the fact that the H I spectral line is relatively isolated in frequency. These surveys will simultaneously provide a new technique for foreground lens selection and yield the highest redshift H I emission detections. More near term (and existing) cm-wave facilities will push the high-redshift H I envelope through targeted surveys of known lenses.
WPPT, a tool for on-line wind power prediction
Energy Technology Data Exchange (ETDEWEB)
Skov Nielsen, T. [Dept. of Mathematical Modelling (IMM-DTU), Kgs. Lyngby (Denmark); Madsen, H. [Dept. of Mathematical Modelling (IMM-DTU) Kgs. Lyngby (Denmark); Toefting, J. [Elsam, Fredericia (Denmark)
2004-07-01
This paper dsecribes VPPT (Wind Power Prediction Tool), an application for assessing the future available wind power up to 36 hours ahead in time. WPPT has been installed in the Eltra/Elsam central dispatch center since October 1997. The paper describes the prediction model used, the actual implementation of WPPT as well as the experience gained by the operators in the dispatch center (au)
Prediction of Wind Energy Resources (PoWER) Users Guide
2016-01-01
ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER
Evaluation of peak power prediction equations in male basketball players.
Duncan, Michael J; Lyons, Mark; Nevill, Alan M
2008-07-01
This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.
Wind Power Plant Prediction by Using Neural Networks: Preprint
Energy Technology Data Exchange (ETDEWEB)
Liu, Z.; Gao, W.; Wan, Y. H.; Muljadi, E.
2012-08-01
This paper introduces a method of short-term wind power prediction for a wind power plant by training neural networks based on historical data of wind speed and wind direction. The model proposed is shown to achieve a high accuracy with respect to the measured data.
Hybrid robust predictive optimization method of power system dispatch
Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY
2011-08-02
A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.
Skill forecasting from ensemble predictions of wind power
DEFF Research Database (Denmark)
Pinson, Pierre; Nielsen, Henrik Aalborg; Madsen, Henrik
2009-01-01
Optimal management and trading of wind generation calls for the providing of uncertainty estimates along with the commonly provided short-term wind power point predictions. Alternative approaches for the use of probabilistic forecasting are introduced. More precisely, focus is given to prediction...... risk indices aiming to give a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the spread of ensemble forecasts (i.e. a set...... of alternative scenarios for the coming period) for a single prediction horizon or over a took-ahead period. It is shown on the test case of a Danish offshore wind farm how these prediction risk indices may be related to several levels of forecast uncertainty (and potential energy imbalances). Wind power...
Site-specific strong ground motion prediction using 2.5-D modelling
Narayan, J. P.
2001-08-01
An algorithm was developed using the 2.5-D elastodynamic wave equation, based on the displacement-stress relation. One of the most significant advantages of the 2.5-D simulation is that the 3-D radiation pattern can be generated using double-couple point shear-dislocation sources in the 2-D numerical grid. A parsimonious staggered grid scheme was adopted instead of the standard staggered grid scheme, since this is the only scheme suitable for computing the dislocation. This new 2.5-D numerical modelling avoids the extensive computational cost of 3-D modelling. The significance of this exercise is that it makes it possible to simulate the strong ground motion (SGM), taking into account the energy released, 3-D radiation pattern, path effects and local site conditions at any location around the epicentre. The slowness vector (py) was used in the supersonic region for each layer, so that all the components of the inertia coefficient are positive. The double-couple point shear-dislocation source was implemented in the numerical grid using the moment tensor components as the body-force couples. The moment per unit volume was used in both the 3-D and 2.5-D modelling. A good agreement in the 3-D and 2.5-D responses for different grid sizes was obtained when the moment per unit volume was further reduced by a factor equal to the finite-difference grid size in the case of the 2.5-D modelling. The components of the radiation pattern were computed in the xz-plane using 3-D and 2.5-D algorithms for various focal mechanisms, and the results were in good agreement. A comparative study of the amplitude behaviour of the 3-D and 2.5-D wavefronts in a layered medium reveals the spatial and temporal damped nature of the 2.5-D elastodynamic wave equation. 3-D and 2.5-D simulated responses at a site using a different strike direction reveal that strong ground motion (SGM) can be predicted just by rotating the strike of the fault counter-clockwise by the same amount as the azimuth of
Operational results from a physical power prediction model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L [Risoe National Lab., Meteorology and Wind Energy Dept., Roskilde (Denmark)
1999-03-01
This paper will describe a prediction system which predicts the expected power output of a number of wind farms. The system is automatic and operates on-line. The paper will quantify the accuracy of the predictions and will also give examples of the performance for specific storm events. An actual implementation of the system will be described and the robustness demonstrated. (au) 11 refs.
Local Geomagnetic Indices and the Prediction of Auroral Power
Newell, P. T.; Gjerloev, J. W.
2014-12-01
As the number of magnetometer stations and data processing power increases, just how auroral power relates to geomagnetic observations becomes a quantitatively more tractable question. This paper compares Polar UVI auroral power observations during 1997 with a variety of geomagnetic indices. Local time (LT) versions of the SuperMAG auroral electojet (SME) are introduced and examined, along with the corresponding upper and lower envelopes (SMU and SML). Also, the East-West component, BE, is investigated. We also consider whether using any of the local indices is actually better at predicting local auroral power than a single global index. Each index is separated into 24 LT indices based on a sliding 3-h MLT window. The ability to predict - or better reconstruct - auroral power varies greatly with LT, peaking at 1900 MLT, where about 75% of the variance (r2) can be predicted at 1-min cadence. The aurora is fairly predictable from 1700 MLT - 0400 MLT, roughly the region in which substorms occur. Auroral power is poorly predicted from auroral electrojet indices from 0500 MLT - 1500 MLT, with the minima at 1000-1300 MLT. In the region of high predictability, the local variable which works best is BE, in contrast to long-standing expectations. However using global SME is better than any local variable. Auroral power is best predicted by combining global SME with a local index: BE from 1500-0200 MLT, and either SMU or SML from 0300-1400 MLT. In the region of the diffuse aurora, it is better to use a 30 min average than the cotemporaneous 1-min SME value, while from 1500-0200 MLT the cotemporaneous 1-min SME works best, suggesting a more direct physical relationship with the auroral circuit. These results suggest a significant role for discrete auroral currents closing locally with Pedersen currents.
Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2009-07-01
Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.
Prediction of lacking control power in power plants using statistical models
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Mataji, B.; Stoustrup, Jakob
2007-01-01
Prediction of the performance of plants like power plants is of interest, since the plant operator can use these predictions to optimize the plant production. In this paper the focus is addressed on a special case where a combination of high coal moisture content and a high load limits the possible...... plant load, meaning that the requested plant load cannot be met. The available models are in this case uncertain. Instead statistical methods are used to predict upper and lower uncertainty bounds on the prediction. Two different methods are used. The first relies on statistics of recent prediction...... errors; the second uses operating point depending statistics of prediction errors. Using these methods on the previous mentioned case, it can be concluded that the second method can be used to predict the power plant performance, while the first method has problems predicting the uncertain performance...
A new ensemble model for short term wind power prediction
DEFF Research Database (Denmark)
Madsen, Henrik; Albu, Razvan-Daniel; Felea, Ioan
2012-01-01
As the objective of this study, a non-linear ensemble system is used to develop a new model for predicting wind speed in short-term time scale. Short-term wind power prediction becomes an extremely important field of research for the energy sector. Regardless of the recent advancements in the re-search...... of prediction models, it was observed that different models have different capabilities and also no single model is suitable under all situations. The idea behind EPS (ensemble prediction systems) is to take advantage of the unique features of each subsystem to detain diverse patterns that exist in the dataset...
Testing the predictive power of nuclear mass models
International Nuclear Information System (INIS)
Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.
2008-01-01
A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool
Potentiality Prediction of Electric Power Replacement Based on Power Market Development Strategy
Miao, Bo; Yang, Shuo; Liu, Qiang; Lin, Jingyi; Zhao, Le; Liu, Chang; Li, Bin
2017-05-01
The application of electric power replacement plays an important role in promoting the development of energy conservation and emission reduction in our country. To exploit the potentiality of regional electric power replacement, the regional GDP (gross domestic product) and energy consumption are taken as potentiality evaluation indicators. The principal component factors are extracted with PCA (principal component analysis), and the integral potentiality analysis is made to the potentiality of electric power replacement in the national various regions; a region is taken as a research object, and the potentiality of electric power replacement is defined and quantified. The analytical model for the potentiality of multi-scenario electric power replacement is developed, and prediction is made to the energy consumption with the grey prediction model. The relevant theoretical research is utilized to realize prediction analysis on the potentiality amount of multi-scenario electric power replacement.
International Nuclear Information System (INIS)
Trifunac, M.D.
1977-09-01
The purpose of this report is to summarize the results of the work on characterization of strong earthquake ground motion. The objective of this effort has been to initiate presentation of simple yet detailed methodology for characterization of strong earthquake ground motion for use in licensing and evaluation of operating Nuclear Power Plants. This report will emphasize the simplicity of the methodology by presenting only the end results in a format that may be useful for the development of the site specific criteria in seismic risk analysis, for work on the development of modern standards and regulatory guides, and for re-evaluation of the existing power plant sites
Analysis of impact of “strong DC and weak AC” on receiving-end power system
Wang, Qiang; Li, Tianran; Yang, Pengcheng
2018-02-01
The rapid development of UHVDC transmission project has brought abundant power supply to the receiving-end power system area, but also many security and stability problems. This paper summarizes four elements that affect the strength of AC system, and then simulates the most basic two-terminal single-pole UHV transmission system by MATLAB/Simulink. It analyses the impact of receiving-end AC power system strength on real-time power, frequency and voltage. Finally, in view of operation risk of “strong DC and weak AC”, this paper puts forward three countermeasures.
Predicting Harmonic Distortion of Multiple Converters in a Power System
Directory of Open Access Journals (Sweden)
P. M. Ivry
2017-01-01
Full Text Available Various uncertainties arise in the operation and management of power systems containing Renewable Energy Sources (RES that affect the systems power quality. These uncertainties may arise due to system parameter changes or design parameter choice. In this work, the impact of uncertainties on the prediction of harmonics in a power system containing multiple Voltage Source Converters (VSCs is investigated. The study focuses on the prediction of harmonic distortion level in multiple VSCs when some system or design parameters are only known within certain constraints. The Univariate Dimension Reduction (UDR method was utilized in this study as an efficient predictive tool for the level of harmonic distortion of the VSCs measured at the Point of Common Coupling (PCC to the grid. Two case studies were considered and the UDR technique was also experimentally validated. The obtained results were compared with that of the Monte Carlo Simulation (MCS results.
On the universality of power laws for tokamak plasma predictions
Garcia, J.; Cambon, D.; Contributors, JET
2018-02-01
Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.
International Nuclear Information System (INIS)
Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S.; Lee, C. Y.
2016-01-01
The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system
Energy Technology Data Exchange (ETDEWEB)
Chung, Y. D.; Lee, S. Y.; Lee, T. W.; Kim, J. S. [Suwon Science College, Suwon (Korea, Republic of); Lee, C. Y. [Korea Railroad Institute, Uiwang (Korea, Republic of)
2016-03-15
The technology of supplying the electric power by wireless power transfer (WPT) is expected for the next generation power feeding system since it can supply the power to portable devices without any connectors through large air gap. As such a technology based on strongly coupled electromagnetic resonators is possible to deliver the large power and recharge them seamlessly; it has been considered as a noble option to wireless power charging system in the various power applications. Recently, various HTS wires have now been manufactured for demonstrations of transmission cables, motors, MAGLEV, and other electrical power components. However, since the HTS magnets have a lower index n value intrinsically, they are required to be charged from external power system through leads or internal power system. The portable area is limited as well as the cryogen system is bulkier. Thus, we proposed a novel design of wireless power charging system for superconducting HTS magnet (WPC4SM) based on resonance coupling method. As the novel system makes possible a wireless power charging using copper resonance coupled coils, it enables to portable charging conveniently in the superconducting applications. This paper presented the conceptual design and operating characteristics of WPC4SM using different shapes' copper resonance coil. The proposed system consists of four components; RF generator of 370 kHz, copper resonance coupling coils, impedance matching (IM) subsystem and HTS magnet including rectifier system.
Wind power prediction based on genetic neural network
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Directory of Open Access Journals (Sweden)
Laura Cornejo-Bueno
2017-11-01
Full Text Available Wind Power Ramp Events (WPREs are large fluctuations of wind power in a short time interval, which lead to strong, undesirable variations in the electric power produced by a wind farm. Its accurate prediction is important in the effort of efficiently integrating wind energy in the electric system, without affecting considerably its stability, robustness and resilience. In this paper, we tackle the problem of predicting WPREs by applying Machine Learning (ML regression techniques. Our approach consists of using variables from atmospheric reanalysis data as predictive inputs for the learning machine, which opens the possibility of hybridizing numerical-physical weather models with ML techniques for WPREs prediction in real systems. Specifically, we have explored the feasibility of a number of state-of-the-art ML regression techniques, such as support vector regression, artificial neural networks (multi-layer perceptrons and extreme learning machines and Gaussian processes to solve the problem. Furthermore, the ERA-Interim reanalysis from the European Center for Medium-Range Weather Forecasts is the one used in this paper because of its accuracy and high resolution (in both spatial and temporal domains. Aiming at validating the feasibility of our predicting approach, we have carried out an extensive experimental work using real data from three wind farms in Spain, discussing the performance of the different ML regression tested in this wind power ramp event prediction problem.
Active Control of Power Exhaust in Strongly Heated ASDEX Upgrade Plasmas
Dux, Ralph; Kallenbach, Arne; Bernert, Matthias; Eich, Thomas; Fuchs, Christoph; Giannone, Louis; Herrmann, Albrecht; Schweinzer, Josef; Treutterer, Wolfgang
2012-10-01
Due to the absence of carbon as an intrinsic low-Z radiator, and tight limits for the acceptable power load on the divertor target, ITER will rely on impurity seeding for radiative power dissipation and for generation of partial detachment. The injection of more than one radiating species is required to optimise the power removal in the main plasma and in the divertor region, i.e. a low-Z species for radiation in the divertor and a medium-Z species for radiation in the outer core plasma. In ASDEX Upgrade, a set of robust sensors, which is suitable to feedback control the radiated power in the main chamber and the divertor as well as the electron temperature at the target, has been developed. Different feedback schemes were applied in H-mode discharges with a maximum heating power of up to 23,W, i.e. at ITER values of P/R (power per major radius) to control all combinations of power flux into the divertor region, power flux onto the target or electron temperature at the target through injection of nitrogen as the divertor radiator and argon as the main chamber radiator. Even at the highest heating powers the peak heat flux density at the target is kept at benign values. The control schemes and the plasma behaviour in these discharges will be discussed.
Introducing Model Predictive Control for Improving Power Plant Portfolio Performance
DEFF Research Database (Denmark)
Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon
2008-01-01
This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...
Prediction of power-ramp defects in CANDU fuel
International Nuclear Information System (INIS)
Gillespie, P.; Wadsworth, S.; Daniels, T.
2010-01-01
Power ramps result in fuel pellet expansion and can lead to fuel sheath failures by fission product induced stress corrosion cracking (SCC). Historically, empirical models fit to experimental test data were used to predict the onset of power-ramp failures in CANDU fuel. In 1988, a power-ramped fuel defect event at PNGS-1 led to the refinement of these empirical models. This defect event has recently been re-analyzed and the empirical model updated. The empirical model is supported by a physically based model which can be used to extrapolate to fuel conditions (density, burnup) outside of the 1988 data set. (author)
Thermal Storage Power Balancing with Model Predictive Control
DEFF Research Database (Denmark)
Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik
2013-01-01
The method described in this paper balances power production and consumption with a large number of thermal loads. Linear controllers are used for the loads to track a temperature set point, while Model Predictive Control (MPC) and model estimation of the load behavior are used for coordination....... The total power consumption of all loads is controlled indirectly through a real-time price. The MPC incorporates forecasts of the power production and disturbances that influence the loads, e.g. time-varying weather forecasts, in order to react ahead of time. A simulation scenario demonstrates...
A model to predict the power output from wind farms
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper will describe a model that can predict the power output from wind farms. To give examples of input the model is applied to a wind farm in Texas. The predictions are generated from forecasts from the NGM model of NCEP. These predictions are made valid at individual sites (wind farms) by applying a matrix calculated by the sub-models of WASP (Wind Atlas Application and Analysis Program). The actual wind farm production is calculated using the Riso PARK model. Because of the preliminary nature of the results, they will not be given. However, similar results from Europe will be given.
Predictive Smart Grid Control with Exact Aggregated Power Constraints
DEFF Research Database (Denmark)
Trangbæk, K; Petersen, Mette Højgaard; Bendtsen, Jan Dimon
2012-01-01
of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The load variations on the grid arise on one hand from varying......This chapter deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high-level MPC controller, a second level of so-called aggregators,which reduces the computational and communication related load on the high-level control, and a lower level...... consumption, and on the other hand from natural variations in power production from e.g. wind turbines. The consumers represent energy-consuming units such as heat pumps, car batteries etc. These units obviously have limits on how much power and energy they can consume at any given time, which impose...
Energy Technology Data Exchange (ETDEWEB)
Men, Ke-Pei [Nanjing Univ. of Information Science and Technology (China). College of Mathematics and Statistics; Cui, Lei [California Univ., Santa Barbara, CA (United States). Applied Probability and Statistics Dept.
2013-05-15
The the Jiangsu-South Yellow Sea region is one of the key seismic monitoring defence areas in the eastern part of China. Since 1846, M {>=} 6 strong earthquakes have showed an obvious commensurability and orderliness in this region. The main orderly values are 74 {proportional_to} 75 a, 57 {proportional_to} 58 a, 11 {proportional_to} 12 a, and 5 {proportional_to} 6 a, wherein 74 {proportional_to} 75 a and 57 {proportional_to} 58 a with an outstanding predictive role. According to the information prediction theory of Wen-Bo Weng, we conceived the M {>=} 6 strong earthquake ordered network structure in the South Yellow Sea and the whole region. Based on this, we analyzed and discussed the variation of seismicity in detail and also made a trend prediction of M {>=} 6 strong earthquakes in the future. The results showed that since 1998 it has entered into a new quiet episode which may continue until about 2042; and the first M {>=} 6 strong earthquake in the next active episode will probably occur in 2053 pre and post, with the location likely in the sea area of the South Yellow Sea; also, the second and the third ones or strong earthquake swarm in the future will probably occur in 2058 and 2070 pre and post. (orig.)
Overall, Nickola C.; Hammond, Matthew D.; McNulty, James K.; Finkel, Eli J.
2016-01-01
When does power in intimate relationships shape important interpersonal behaviors, such as psychological aggression? Five studies tested whether possessing low relationship power was associated with aggressive responses, but (1) only within power-relevant relationship interactions when situational power was low, and (2) only by men because masculinity (but not femininity) involves the possession and demonstration of power. In Studies 1 and 2, men lower in relationship power exhibited greater aggressive communication during couples’ observed conflict discussions, but only when they experienced low situational power because they were unable to influence their partner. In Study 3, men lower in relationship power reported greater daily aggressive responses toward their partner, but only on days when they experienced low situational power because they were either (a) unable to influence their partner or (b) dependent on their partner for support. In Study 4, men who possessed lower relationship power exhibited greater aggressive responses during couples’ support-relevant discussions, but only when they had low situational power because they needed high levels of support. Study 5 provided evidence for the theoretical mechanism underlying men’s aggressive responses to low relationship power. Men who possessed lower relationship power felt less manly on days they faced low situational power because their partner was unwilling to change to resolve relationship problems, which in turn predicted greater aggressive responses to their partner. These results demonstrate that fully understanding when and why power is associated with interpersonal behavior requires differentiating between relationship and situational power. PMID:27442766
Model output statistics applied to wind power prediction
Energy Technology Data Exchange (ETDEWEB)
Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)
1999-03-01
Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.
Skill forecasting from different wind power ensemble prediction methods
International Nuclear Information System (INIS)
Pinson, Pierre; Nielsen, Henrik A; Madsen, Henrik; Kariniotakis, George
2007-01-01
This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the dispersion of ensemble members for a single prediction horizon, or over a set of successive look-ahead times. It is shown on the test case of a Danish offshore wind farm how prediction risk indices may be related to several levels of forecast uncertainty (and energy imbalances). Wind power ensemble predictions are derived from the transformation of ECMWF and NCEP ensembles of meteorological variables to power, as well as by a lagged average approach alternative. The ability of risk indices calculated from the various types of ensembles forecasts to resolve among situations with different levels of uncertainty is discussed
Prediction of the Midlatitude Response to Strong Madden-Julian Oscillation Events on S2S Time Scales
Tseng, K.-C.; Barnes, E. A.; Maloney, E. D.
2018-01-01
The Madden-Julian Oscillation (MJO) forces strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal (S2S) prediction. In particular, certain MJO phases are characterized by a consistent modulation of geopotential height in the North Pacific and adjacent regions across different MJO events. Until recently, only limited research has examined the relationship between these robust MJO tropical-extratropical teleconnections and model prediction skill. In this study, reanalysis data and numerical forecast model ensemble hindcasts are used to demonstrate that robust teleconnections in specific MJO phases and time lags are also characterized by excellent agreement in the prediction of geopotential height anomalies across model ensemble members at forecast leads of up to 3 weeks. These periods of enhanced prediction capabilities extend the possibility for skillful extratropical weather prediction beyond traditional 10-13 day limits.
Electrical predictive maintenance at Trillo I Nuclear Power Plant
International Nuclear Information System (INIS)
Vicente, L. R.; Fernandez de la Mata, R.; Cano Gonzalez, J. C.
1998-01-01
An electrical predictive maintenance plan is currently being put into effect at Trillo I Nuclear Power Plant which is initially being applied to three types of equipment: motors, transformers and motor-driven valves. This paper describes the different phases considered in the implementation of the Predictive Maintenance Plan: study of existing techniques for such equipment (tangoδ, spectral analysis of stator current, chromatographic analysis of gases, spectral analysis of the axial stray magnetic flux, etc), study of the special characteristics of the electrical equipment at Trillo NPP, analysis of applicable techniques (characteristic parameters, alert-alarm values, experience with such techniques, etc), analysis of machine history records, study of the optimum preventive-predictive case, study of applicable frequencies and definition of the computerised predictive maintenance management tool. With the exception of the computerised predictive maintenance management applications which are presently being implemented, all the activities described above have been carried out on the three types of equipment mentioned. (Author)
Forecasting Electricity Spot Prices Accounting for Wind Power Predictions
DEFF Research Database (Denmark)
Jónsson, Tryggvi; Pinson, Pierre; Nielsen, Henrik Aalborg
2013-01-01
A two-step methodology for forecasting of electricity spot prices is introduced, with focus on the impact of predicted system load and wind power generation. The nonlinear and nonstationary influence of these explanatory variables is accommodated in a first step based on a nonparametric and time...
Model predictive control for Z-source power converter
DEFF Research Database (Denmark)
Mo, W.; Loh, P.C.; Blaabjerg, Frede
2011-01-01
This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...
Departures from predicted type II behavior in dirty strong-coupling superconductors
International Nuclear Information System (INIS)
Park, J.C.; Neighbor, J.E.; Shiffman, C.A.
1976-01-01
Calorimetric measurements of the Ginsburg-Landau parameters for Pb-Sn and Pb-Bi alloys show good agreement with the calculations of Rainer and Bergmann for kappa 1 (t)/kappa 1 (1). However, the calculations of Rainer and Usadel for kappa 2 (t)/kappa 2 (1) substantially underestimate the enhancements due to strong-coupling. (Auth.)
Predictive power of the grace score in population with diabetes.
Baeza-Román, Anna; de Miguel-Balsa, Eva; Latour-Pérez, Jaime; Carrillo-López, Andrés
2017-12-01
Current clinical practice guidelines recommend risk stratification in patients with acute coronary syndrome (ACS) upon admission to hospital. Diabetes mellitus (DM) is widely recognized as an independent predictor of mortality in these patients, although it is not included in the GRACE risk score. The objective of this study is to validate the GRACE risk score in a contemporary population and particularly in the subgroup of patients with diabetes, and to test the effects of including the DM variable in the model. Retrospective cohort study in patients included in the ARIAM-SEMICYUC registry, with a diagnosis of ACS and with available in-hospital mortality data. We tested the predictive power of the GRACE score, calculating the area under the ROC curve. We assessed the calibration of the score and the predictive ability based on type of ACS and the presence of DM. Finally, we evaluated the effect of including the DM variable in the model by calculating the net reclassification improvement. The GRACE score shows good predictive power for hospital mortality in the study population, with a moderate degree of calibration and no significant differences based on ACS type or the presence of DM. Including DM as a variable did not add any predictive value to the GRACE model. The GRACE score has an appropriate predictive power, with good calibration and clinical applicability in the subgroup of diabetic patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Predictive Maintenance: One key to improved power plant availability
International Nuclear Information System (INIS)
Mobley; Allen, J.W.
1986-01-01
Recent developments in microprocessor technology has provided the ability to routinely monitor the actual mechanical condition of all rotating and reciprocating machinery and process variables (i.e. pressure, temperature, flow, etc.) of other process equipment within an operating electric power generating plant. This direct correlation between frequency domain vibration and actual mechanical condition of machinery and trending process variables of non-rotating equipment can provide the ''key'' to improving the availability and reliability, thermal efficiency and provide the baseline information necessary for developing a realistic plan for extending the useful life of power plants. The premise of utilizing microprocessor-based Predictive Maintenance to improve power plant operation has been proven by a number of utilities. This paper provides a comprehensive discussion of the TEC approach to Predictive Maintenance and examples of successful programs
Model Predictive Control of Integrated Gasification Combined Cycle Power Plants
Energy Technology Data Exchange (ETDEWEB)
B. Wayne Bequette; Priyadarshi Mahapatra
2010-08-31
The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.
Effect of accuracy of wind power prediction on power system operator
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
Using meteorological forecasts in on-line predictions of wind power
DEFF Research Database (Denmark)
Nielsen, Torben Skov; Nielsen, Henrik Aalborg; Madsen, Henrik
1999-01-01
This report describes a model investigation into wind power prediction model as well as a tool for predicting the power production from wind turbines in an area - the Wind Power Prediction Tool (WPPT). The predictions are based on on-line measurements of power production for a selected set...
Ryvkin, Boris S.; Avrutin, Eugene A.; Kostamovaara, Juha T.
2017-12-01
An analytical model for internal optical losses at high power in a 1.5 μm laser diode with strong n-doping in the n-side of the optical confinement layer is created. The model includes intervalence band absorption by holes supplied by both current flow and two-photon absorption (TPA), as well as the direct TPA effect. The resulting losses are compared with those in an identical structure with a weakly doped waveguide, and shown to be substantially lower, resulting in a significant improvement in the output power and efficiency in the structure with a strongly doped waveguide.
Predicting Power Output of Upper Body using the OMNI-RES Scale
Directory of Open Access Journals (Sweden)
Bautista Iker J.
2014-12-01
Full Text Available The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males ( voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94 between rating of perceived exertion (RPE and mean bar velocity (Velmean. The Pearson correlation analysis between real power output (PotReal and estimated power (PotEst showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.
Predicting Power Output of Upper Body using the OMNI-RES Scale.
Bautista, Iker J; Chirosa, Ignacio J; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E; Chirosa, Luis J; Robertson, Robert J
2014-12-09
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.
Empirical Information Metrics for Prediction Power and Experiment Planning
Directory of Open Access Journals (Sweden)
Christopher Lee
2011-01-01
Full Text Available In principle, information theory could provide useful metrics for statistical inference. In practice this is impeded by divergent assumptions: Information theory assumes the joint distribution of variables of interest is known, whereas in statistical inference it is hidden and is the goal of inference. To integrate these approaches we note a common theme they share, namely the measurement of prediction power. We generalize this concept as an information metric, subject to several requirements: Calculation of the metric must be objective or model-free; unbiased; convergent; probabilistically bounded; and low in computational complexity. Unfortunately, widely used model selection metrics such as Maximum Likelihood, the Akaike Information Criterion and Bayesian Information Criterion do not necessarily meet all these requirements. We define four distinct empirical information metrics measured via sampling, with explicit Law of Large Numbers convergence guarantees, which meet these requirements: Ie, the empirical information, a measure of average prediction power; Ib, the overfitting bias information, which measures selection bias in the modeling procedure; Ip, the potential information, which measures the total remaining information in the observations not yet discovered by the model; and Im, the model information, which measures the model’s extrapolation prediction power. Finally, we show that Ip + Ie, Ip + Im, and Ie — Im are fixed constants for a given observed dataset (i.e. prediction target, independent of the model, and thus represent a fundamental subdivision of the total information contained in the observations. We discuss the application of these metrics to modeling and experiment planning.
Power system dynamic state estimation using prediction based evolutionary technique
International Nuclear Information System (INIS)
Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan
2016-01-01
In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.
STRAP Is a Strong Predictive Marker of Adjuvant Chemotherapy Benefit in Colorectal Cancer
Buess, Martin; Terracciano, Luigi; Reuter, Jurgen; Ballabeni, Pierluigi; Boulay, Jean-Louis; Laffer, Urban; Metzger, Urs; Herrmann, Richard; Rochlitz, Christoph
2004-01-01
BACKGROUND: Molecular predictors for the effectiveness of adjuvant chemotherapy in colorectal cancer are of considerable clinical interest. To this aim, we analyzed the serine threonine receptor-associated protein (STRAP), an inhibitor of TGF-βsignaling, with regard to prognosis and prediction of adjuvant 5-FU chemotherapy benefit. i The gene copy status of STRAP was determined using quantitative realtime polymerase chain reaction in 166 colorectal tumor biopsies, which had been collected fro...
Discussion of fostering strong nuclear safety culture in nuclear power plants in China
International Nuclear Information System (INIS)
Jiang Fuming
2011-01-01
This paper described the most recent development of nuclear safety culture in the world nuclear industry. Focus areas are recommended to foster a strong nuclear safety culture (SNSC) in Chinese nuclear industry with the view of our current development, aiming to accelerate the formation of SNSC. (author)
DEFF Research Database (Denmark)
Hibino, Y.; Ichinose, T.; Costa, J.L.D.
2009-01-01
A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1....... The efficiency of the procedure is verified by dynamic response analyses using elasto-plastic model....
Applying model predictive control to power system frequency control
Ersdal, AM; Imsland, L; Cecilio, IM; Fabozzi, D; Thornhill, NF
2013-01-01
16.07.14 KB Ok to add accepted version to Spiral Model predictive control (MPC) is investigated as a control method which may offer advantages in frequency control of power systems than the control methods applied today, especially in presence of increased renewable energy penetration. The MPC includes constraints on both generation amount and generation rate of change, and it is tested on a one-area system. The proposed MPC is tested against a conventional proportional-integral (PI) cont...
Pre-stimulus thalamic theta power predicts human memory formation.
Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D
2016-09-01
Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.
An adaptive predictive controller and its applications in power stations
Energy Technology Data Exchange (ETDEWEB)
Yang Zhiyuan; Lu Huiming; Zhang Xinggao [North China Electric Power University, Beijing (China); Song Chunping [Tsinghua University, Beijing (China). Dept. of Thermal Energy Engineering
1999-07-01
Based on the objective function in the form of integration of generalized model error, a globally convergent model reference adaptive predictive control algorithm (MRAPC) containing inertia-time compensators is presented in this paper. MRAPC has been successfully applied to control important thermal process of more than 20 units in many Chinese power stations. In this paper three representative examples are described. Continual operation results for years demonstrate that MRAPC is a successful attempt for the practical applications of adaptive control techniques. (author)
Power and Stability: Promises and Perils of an Economically Strong China
2010-05-21
child policy implemented in the 1970s under Mao and the Chinese bias toward male offspring which often results in sex - selective abortions . 311 Ibid...Japanese.58 The six major powers Henry Kissinger identified for the twenty-first century – the United States, Europe, China, Japan, Russia, and India ...taken are directed at them when they actually are not. During the India -Pakistan in 1971, the United States sent a carrier task force near the Bay
Error analysis of short term wind power prediction models
International Nuclear Information System (INIS)
De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco
2011-01-01
The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)
Error analysis of short term wind power prediction models
Energy Technology Data Exchange (ETDEWEB)
De Giorgi, Maria Grazia; Ficarella, Antonio; Tarantino, Marco [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via per Monteroni, 73100 Lecce (Italy)
2011-04-15
The integration of wind farms in power networks has become an important problem. This is because the electricity produced cannot be preserved because of the high cost of storage and electricity production must follow market demand. Short-long-range wind forecasting over different lengths/periods of time is becoming an important process for the management of wind farms. Time series modelling of wind speeds is based upon the valid assumption that all the causative factors are implicitly accounted for in the sequence of occurrence of the process itself. Hence time series modelling is equivalent to physical modelling. Auto Regressive Moving Average (ARMA) models, which perform a linear mapping between inputs and outputs, and Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), which perform a non-linear mapping, provide a robust approach to wind power prediction. In this work, these models are developed in order to forecast power production of a wind farm with three wind turbines, using real load data and comparing different time prediction periods. This comparative analysis takes in the first time, various forecasting methods, time horizons and a deep performance analysis focused upon the normalised mean error and the statistical distribution hereof in order to evaluate error distribution within a narrower curve and therefore forecasting methods whereby it is more improbable to make errors in prediction. (author)
Predicting Output Power for Nearshore Wave Energy Harvesting
Directory of Open Access Journals (Sweden)
Henock Mamo Deberneh
2018-04-01
Full Text Available Energy harvested from a Wave Energy Converter (WEC varies greatly with the location of its installation. Determining an optimal location that can result in maximum output power is therefore critical. In this paper, we present a novel approach to predicting the output power of a nearshore WEC by characterizing ocean waves using floating buoys. We monitored the movement of the buoys using an Arduino-based data collection module, including a gyro-accelerometer sensor and a wireless transceiver. The collected data were utilized to train and test prediction models. The models were developed using machine learning algorithms: SVM, RF and ANN. The results of the experiments showed that measurements from the data collection module can yield a reliable predictor of output power. Furthermore, we found that the predictors work better when the regressors are combined with a classifier. The accuracy of the proposed prediction model suggests that it could be extremely useful in both locating optimal placement for wave energy harvesting plants and designing the shape of the buoys used by them.
Schmidt, Julien; Guillaume, Philippe; Dojcinovic, Danijel; Karbach, Julia; Coukos, George; Luescher, Immanuel
2017-07-14
Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by in silico algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted in silico the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8 + T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by in silico algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of in silico -predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving in silico predictions of peptide immunogenicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Prediction of Chiller Power Consumption: An Entropy Generation Approach
Saththasivam, Jayaprakash
2016-06-21
Irreversibilities in each component of vapor compression chillers contribute to additional power consumption in chillers. In this study, chiller power consumption was predicted by computing the Carnot reversible work and entropy generated in every component of the chiller. Thermodynamic properties namely enthalpy and entropy of the entire refrigerant cycle were obtained by measuring the pressure and temperature at the inlet and outlet of each primary component of a 15kW R22 water cooled scroll chiller. Entropy generation of each component was then calculated using the First and Second Laws of Thermodynamics. Good correlation was found between the measured and computed chiller power consumption. This irreversibility analysis can be also effectively used as a performance monitoring tool in vapor compression chillers as higher entropy generation is anticipated during faulty operations.
Predicting the emissive power of hydrocarbon pool fires
International Nuclear Information System (INIS)
Munoz, Miguel; Planas, Eulalia; Ferrero, Fabio; Casal, Joaquim
2007-01-01
The emissive power (E) of a flame depends on the size of the fire and the type of fuel. In fact, it changes significantly over the flame surface: the zones of luminous flame have high emittance, while those covered by smoke have low E values. The emissive power of each zone (that is, the luminous or clear flame and the non-luminous or smoky flame) and the portion of total flame area they occupy must be assessed when a two-zone model is used. In this study, data obtained from an experimental set-up were used to estimate the emissive power of fires and its behaviour as a function of pool size. The experiments were performed using gasoline and diesel oil as fuel. Five concentric circular pools (1.5, 3, 4, 5 and 6 m in diameter) were used. Appropriate instruments were employed to determine the main features of the fires. By superimposing IR and VHS images it was possible to accurately identify the luminous and non-luminous zones of the fire. Mathematical expressions were obtained that give a more accurate prediction of E lum , E soot and the average emissive power of a fire as a function of its luminous and smoky zones. These expressions can be used in a two-zone model to obtain a better prediction of the thermal radiation. The value of the radiative fraction was determined from the thermal flux measured with radiometers. An expression is also proposed for estimating the radiative fraction
COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM
Energy Technology Data Exchange (ETDEWEB)
Kwan, Juliana; Heitmann, Katrin; Habib, Salman; Frontiere, Nicholas; Pope, Adrian [High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Padmanabhan, Nikhil [Department of Physics, Yale University, 260 Whitney Ave., New Haven, CT 06520 (United States); Lawrence, Earl [Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Finkel, Hal [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439 (United States)
2015-09-01
The halo occupation distribution (HOD) approach has proven to be an effective method for modeling galaxy clustering and bias. In this approach, galaxies of a given type are probabilistically assigned to individual halos in N-body simulations. In this paper, we present a fast emulator for predicting the fully nonlinear galaxy–galaxy auto and galaxy–dark matter cross power spectrum and correlation function over a range of freely specifiable HOD modeling parameters. The emulator is constructed using results from 100 HOD models run on a large ΛCDM N-body simulation, with Gaussian Process interpolation applied to a PCA-based representation of the galaxy power spectrum. The total error is currently ∼1% in the auto correlations and ∼2% in the cross correlations from z = 1 to z = 0, over the considered parameter range. We use the emulator to investigate the accuracy of various analytic prescriptions for the galaxy power spectrum, parametric dependencies in the HOD model, and the behavior of galaxy bias as a function of HOD parameters. Additionally, we obtain fully nonlinear predictions for tangential shear correlations induced by galaxy–galaxy lensing from our galaxy–dark matter cross power spectrum emulator. All emulation products are publicly available at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.
Acute post cessation smoking. A strong predictive factor for metabolic syndrome among adult Saudis
International Nuclear Information System (INIS)
AlDaghri, Nasser M.
2009-01-01
To determine the influence of tobacco exposure in the development of metabolic syndrome (MS) in the adult Saudi population. Six hundred and sixty-four adults (305 males and 359 females) aged 25-70 years were included in this cross-sectional study conducted at the King Abdul Aziz University Hospital, between June 2006 and May 2007. We classified the participants into non-smokers, smokers, and ex-smokers (defined as complete cessation for 1-2 years). All subjects were screened for the presence of MS using the modified American Heart Association/National Heart, Lung and Blood Institute (AHA/NHLBI), International Diabetes Federation (IDF) and World Health Organization (WHO) definitions. Metabolic syndrome was highest among ex-smokers regardless of definition used. Relative risk for ex-smokers (95% CI: 2.23, 1.06-4.73) was more than twice in harboring MS as compared to non-smokers (95% CI: 2.78, 1.57-4.92) (p=0.009). Acute post-cessation smoking is a strong predictor for MS among male and female Arabs. Smoking cessation programs should include a disciplined lifestyle and dietary intervention to counteract the MS-augmenting side-effect of smoking cessation. (author)
Synapse:neural network for predict power consumption: users guide
Energy Technology Data Exchange (ETDEWEB)
Muller, C; Mangeas, M; Perrot, N
1994-08-01
SYNAPSE is forecasting tool designed to predict power consumption in metropolitan France on the half hour time scale. Some characteristics distinguish this forecasting model from those which already exist. In particular, it is composed of numerous neural networks. The idea for using many neural networks arises from past tests. These tests showed us that a single neural network is not able to solve the problem correctly. From this result, we decided to perform unsupervised classification of the 24 consumption curves. From this classification, six classes appeared, linked with the weekdays: Mondays, Tuesdays, Wednesdays, Thursdays, Fridays, Saturdays, Sundays, holidays and bridge days. For each class and for each half hour, two multilayer perceptrons are built. The two of them forecast the power for one particular half hour, and for a day including one of the determined class. The input of these two network are different: the first one (short time forecasting) includes the powers for the most recent half hour and relative power of the previous day; the second (medium time forecasting) includes only the relative power of the previous day. A process connects the results of every networks and allows one to forecast more than one half-hour in advance. In this process, short time forecasting networks and medium time forecasting networks are used differently. The first kind of neural networks gives good results on the scale of one day. The second one gives good forecasts for the next predicted powers. In this note, the organization of the SYNAPSE program is detailed, and the user`s menu is described. This first version of synapse works and should allow the APC group to evaluate its utility. (authors). 6 refs., 2 appends.
Lai, Ying-Cheng; Harrison, Mary Ann F; Frei, Mark G; Osorio, Ivan
2004-09-01
Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system's sensitive dependence on initial conditions. For more than a decade, it has been claimed that the exponents computed from electroencephalogram (EEG) or electrocorticogram (ECoG) signals can be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are employed. (1) We present qualitative arguments suggesting that the Lyapunov exponents generally are not useful for seizure prediction. (2) We construct a two-dimensional, nonstationary chaotic map with a parameter slowly varying in a range containing a crisis, and test whether this critical event can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be regarded as a "control test" for the claimed predictive power of the exponents for seizure. We find that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents due to finite time computation and noise from the time series. We show that increasing the amount of data in a moving window will not improve the exponents' detective power for characteristic system changes, and that the presence of small noise can ruin completely the predictive power of the exponents. (3) We report negative results obtained from ECoG signals recorded from patients with epilepsy. All these indicate firmly that, the use of Lyapunov exponents for seizure prediction is practically impossible as the brain dynamical system generating the ECoG signals is more complicated than low-dimensional chaotic systems, and is noisy. Copyright 2004 American Institute of Physics
Directory of Open Access Journals (Sweden)
Jaroslav Jaroš
2015-01-01
Full Text Available We consider \\(n\\-dimensional cyclic systems of second order differential equations \\[(p_i(t|x_{i}'|^{\\alpha_i -1}x_{i}'' = q_{i}(t|x_{i+1}|^{\\beta_i-1}x_{i+1},\\] \\[\\quad i = 1,\\ldots,n, \\quad (x_{n+1} = x_1 \\tag{\\(\\ast\\}\\] under the assumption that the positive constants \\(\\alpha_i\\ and \\(\\beta_i\\ satisfy \\(\\alpha_1{\\ldots}\\alpha_n \\gt \\beta_1{\\ldots}\\beta_n\\ and \\(p_i(t\\ and \\(q_i(t\\ are regularly varying functions, and analyze positive strongly increasing solutions of system (\\(\\ast\\ in the framework of regular variation. We show that the situation for the existence of regularly varying solutions of positive indices for (\\(\\ast\\ can be characterized completely, and moreover that the asymptotic behavior of such solutions is governed by the unique formula describing their order of growth precisely. We give examples demonstrating that the main results for (\\(\\ast\\ can be applied to some classes of partial differential equations with radial symmetry to acquire accurate information about the existence and the asymptotic behavior of their radial positive strongly increasing solutions.
Predicting Power Outages Using Multi-Model Ensemble Forecasts
Cerrai, D.; Anagnostou, E. N.; Yang, J.; Astitha, M.
2017-12-01
Power outages affect every year millions of people in the United States, affecting the economy and conditioning the everyday life. An Outage Prediction Model (OPM) has been developed at the University of Connecticut for helping utilities to quickly restore outages and to limit their adverse consequences on the population. The OPM, operational since 2015, combines several non-parametric machine learning (ML) models that use historical weather storm simulations and high-resolution weather forecasts, satellite remote sensing data, and infrastructure and land cover data to predict the number and spatial distribution of power outages. A new methodology, developed for improving the outage model performances by combining weather- and soil-related variables using three different weather models (WRF 3.7, WRF 3.8 and RAMS/ICLAMS), will be presented in this study. First, we will present a performance evaluation of each model variable, by comparing historical weather analyses with station data or reanalysis over the entire storm data set. Hence, each variable of the new outage model version is extracted from the best performing weather model for that variable, and sensitivity tests are performed for investigating the most efficient variable combination for outage prediction purposes. Despite that the final variables combination is extracted from different weather models, this ensemble based on multi-weather forcing and multi-statistical model power outage prediction outperforms the currently operational OPM version that is based on a single weather forcing variable (WRF 3.7), because each model component is the closest to the actual atmospheric state.
Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir
2017-10-12
This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.
Czech Academy of Sciences Publication Activity Database
Eben, Kryštof; Juruš, Pavel; Resler, Jaroslav; Pelikán, Emil; Krč, Pavel
2011-01-01
Roč. 8, - (2011), EMS2011-667-4 [EMS Annual Meeting /11./ and European Conference on Applications of Meteorology /10./. 12.09.2011-16.09.2011, Berlin] Institutional research plan: CEZ:AV0Z10300504 Keywords : photovoltaic power prediction * NWP * numerical model parameterization Subject RIV: DG - Athmosphere Sciences, Meteorology
International Nuclear Information System (INIS)
Ezato, Koichiro; Kunugi, Tomoaki; Shehata, A.M.; McEligot, D.M.
1997-03-01
Previous numerical simulation for the laminarization due to heating of the turbulent flow in pipe were assessed by comparison with only macroscopic characteristics such as heat transfer coefficient and pressure drop, since no experimental data on the local distributions of the velocity and temperature in such flow situation was available. Recently, Shehata and McEligot reported the first measurements of local distributions of velocity and temperature for turbulent forced air flow in a vertical circular tube with strongly heating. They carried out the experiments in three situations from turbulent flow to laminarizing flow according to the heating rate. In the present study, we analyzed numerically the local transitional features of turbulent flow evolving laminarizing due to strong heating in their experiments by using the advanced low-Re two-equation turbulence model. As the result, we successfully predicted the local distributions of velocity and temperature as well as macroscopic characteristics in three turbulent flow conditions. By the present study, a numerical procedure has been established to predict the local characteristics such as velocity distribution of the turbulent flow with large thermal-property variation and laminarizing flow due to strong heating with enough accuracy. (author). 60 refs
International Nuclear Information System (INIS)
Baek, Seong Gu; Park, Seung O.
2003-01-01
This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions
Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W
2012-03-01
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.
Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.
1975-01-01
The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)
Model Predictive Voltage Control of Wind Power Plants
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei
2018-01-01
the efficacy of the proposed WFVC, two case scenarios were designed: the wind farm is under normal operating conditions and the internal wind power fluctuation is considered; and besides internal power fluctuation, the impact of the external grid on the wind farm is considered.......This chapter proposes an autonomous wind farm voltage controller (WFVC) based on model predictive control (MPC). It also introduces the analytical expressions for the voltage sensitivity to tap positions of a transformer. The chapter then describes the discrete models for the wind turbine...... generators (WTGs) and static var compensators (SVCs)/static var generators (SVGs). Next, it describes the implementation of the on‐load tap changing (OLTC) in the MPC. Furthermore, the chapter examines the cost function as well as the constraints of the MPC‐based WFVC for both control modes. In order to test...
Power flow prediction in vibrating systems via model reduction
Li, Xianhui
This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.
A mathematical look at a physical power prediction model
Energy Technology Data Exchange (ETDEWEB)
Landberg, L. [Riso National Lab., Roskilde (Denmark)
1997-12-31
This paper takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations, and to give guidelines as to where the simplifications can be made and where they can not. This paper shows that there is a linear dependence between the geostrophic wind and the wind at the surface, but also that great care must be taken in the selection of the models since physical dependencies play a very important role, e.g. through the dependence of the turning of the wind on the wind speed.
A mathematical look at a physical power prediction model
DEFF Research Database (Denmark)
Landberg, L.
1998-01-01
This article takes a mathematical look at a physical model used to predict the power produced from wind farms. The reason is to see whether simple mathematical expressions can replace the original equations and to give guidelines as to where simplifications can be made and where they cannot....... The article shows that there is a linear dependence between the geostrophic wind and the local wind at the surface, but also that great care must be taken in the selection of the simple mathematical models, since physical dependences play a very important role, e.g. through the dependence of the turning...
Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System
DEFF Research Database (Denmark)
Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller
2018-01-01
Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how...
Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field
International Nuclear Information System (INIS)
Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.
1975-01-01
The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of
Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System
Directory of Open Access Journals (Sweden)
Anders Hedegaard Hansen
2018-03-01
Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.
Swarm Intelligence-Based Hybrid Models for Short-Term Power Load Prediction
Directory of Open Access Journals (Sweden)
Jianzhou Wang
2014-01-01
Full Text Available Swarm intelligence (SI is widely and successfully applied in the engineering field to solve practical optimization problems because various hybrid models, which are based on the SI algorithm and statistical models, are developed to further improve the predictive abilities. In this paper, hybrid intelligent forecasting models based on the cuckoo search (CS as well as the singular spectrum analysis (SSA, time series, and machine learning methods are proposed to conduct short-term power load prediction. The forecasting performance of the proposed models is augmented by a rolling multistep strategy over the prediction horizon. The test results are representative of the out-performance of the SSA and CS in tuning the seasonal autoregressive integrated moving average (SARIMA and support vector regression (SVR in improving load forecasting, which indicates that both the SSA-based data denoising and SI-based intelligent optimization strategy can effectively improve the model’s predictive performance. Additionally, the proposed CS-SSA-SARIMA and CS-SSA-SVR models provide very impressive forecasting results, demonstrating their strong robustness and universal forecasting capacities in terms of short-term power load prediction 24 hours in advance.
International Nuclear Information System (INIS)
Stevenson, J.D.
1985-01-01
The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing
Epileptic seizure prediction based on a bivariate spectral power methodology.
Bandarabadi, Mojtaba; Teixeira, Cesar A; Direito, Bruno; Dourado, Antonio
2012-01-01
The spectral power of 5 frequently considered frequency bands (Alpha, Beta, Gamma, Theta and Delta) for 6 EEG channels is computed and then all the possible pairwise combinations among the 30 features set, are used to create a 435 dimensional feature space. Two new feature selection methods are introduced to choose the best candidate features among those and to reduce the dimensionality of this feature space. The selected features are then fed to Support Vector Machines (SVMs) that classify the cerebral state in preictal and non-preictal classes. The outputs of the SVM are regularized using a method that accounts for the classification dynamics of the preictal class, also known as "Firing Power" method. The results obtained using our feature selection approaches are compared with the ones obtained using minimum Redundancy Maximum Relevance (mRMR) feature selection method. The results in a group of 12 patients of the EPILEPSIAE database, containing 46 seizures and 787 hours multichannel recording for out-of-sample data, indicate the efficiency of the bivariate approach as well as the two new feature selection methods. The best results presented sensitivity of 76.09% (35 of 46 seizures predicted) and a false prediction rate of 0.15(-1).
Energy Technology Data Exchange (ETDEWEB)
Kaneda, Y; Ejiri, J [Obayashi Corp., Tokyo (Japan)
1996-10-01
This paper describes simulation results of strong acceleration motion with varying uncertain fault parameters mainly for a fault model of Hyogo-ken Nanbu earthquake. For the analysis, based on the fault parameters, the strong acceleration motion was simulated using the radiation patterns and the breaking time difference of composite faults as parameters. A statistic waveform composition method was used for the simulation. For the theoretical radiation patterns, directivity was emphasized which depended on the strike of faults, and the maximum acceleration was more than 220 gal. While, for the homogeneous radiation patterns, the maximum accelerations were isotopically distributed around the fault as a center. For variations in the maximum acceleration and the predominant frequency due to the breaking time difference of three faults, the response spectral value of maximum/minimum was about 1.7 times. From the viewpoint of seismic disaster prevention, underground structures including potential faults and non-arranging properties can be grasped using this simulation. Significance of the prediction of strong acceleration motion was also provided through this simulation using uncertain factors, such as breaking time of composite faults, as parameters. 4 refs., 4 figs., 1 tab.
Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.
2017-12-01
We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.
Zafarani, H.; Luzi, Lucia; Lanzano, Giovanni; Soghrat, M. R.
2018-01-01
A recently compiled, comprehensive, and good-quality strong-motion database of the Iranian earthquakes has been used to develop local empirical equations for the prediction of peak ground acceleration (PGA) and 5%-damped pseudo-spectral accelerations (PSA) up to 4.0 s. The equations account for style of faulting and four site classes and use the horizontal distance from the surface projection of the rupture plane as a distance measure. The model predicts the geometric mean of horizontal components and the vertical-to-horizontal ratio. A total of 1551 free-field acceleration time histories recorded at distances of up to 200 km from 200 shallow earthquakes (depth < 30 km) with moment magnitudes ranging from Mw 4.0 to 7.3 are used to perform regression analysis using the random effects algorithm of Abrahamson and Youngs (Bull Seism Soc Am 82:505-510, 1992), which considers between-events as well as within-events errors. Due to the limited data used in the development of previous Iranian ground motion prediction equations (GMPEs) and strong trade-offs between different terms of GMPEs, it is likely that the previously determined models might have less precision on their coefficients in comparison to the current study. The richer database of the current study allows improving on prior works by considering additional variables that could not previously be adequately constrained. Here, a functional form used by Boore and Atkinson (Earthquake Spect 24:99-138, 2008) and Bindi et al. (Bull Seism Soc Am 9:1899-1920, 2011) has been adopted that allows accounting for the saturation of ground motions at close distances. A regression has been also performed for the V/H in order to retrieve vertical components by scaling horizontal spectra. In order to take into account epistemic uncertainty, the new model can be used along with other appropriate GMPEs through a logic tree framework for seismic hazard assessment in Iran and Middle East region.
Bayesian calibration of power plant models for accurate performance prediction
International Nuclear Information System (INIS)
Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der
2014-01-01
Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions
Characterizing and predicting the robustness of power-law networks
International Nuclear Information System (INIS)
LaRocca, Sarah; Guikema, Seth D.
2015-01-01
Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-generated power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells. - Highlights: • Examine relationship between network topology and robustness to failures. • Relationship is statistically significant for scale-free networks. • Use statistical models to estimate robustness to failures for real-world networks
Directory of Open Access Journals (Sweden)
D. W. Hardekopf
2008-03-01
Full Text Available Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase in temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period.
Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.
2017-04-01
Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.
Monte Carlo simulation techniques for predicting annual power production
International Nuclear Information System (INIS)
Cross, J.P.; Bulandr, P.J.
1991-01-01
As the owner and operator of a number of small to mid-sized hydroelectric sites, STS HydroPower has been faced with the need to accurately predict anticipated hydroelectric revenues over a period of years. The typical approach to this problem has been to look at each site from a mathematical deterministic perspective and evaluate the annual production from historic streamflows. Average annual production is simply taken to be the area under the flow duration curve defined by the operating and design characteristics of the selected turbines. Minimum annual production is taken to be a historic dry year scenario and maximum production is viewed as power generated under the most ideal of conditions. Such an approach creates two problems. First, in viewing the characteristics of a single site, it does not take into account the probability of such an event occurring. Second, in viewing all sites in a single organization's portfolio together, it does not reflect the varying flow conditions at the different sites. This paper attempts to address the first of these two concerns, that being the creation of a simulation model utilizing the Monte Carlo method at a single site. The result of the analysis is a picture of the production at the site that is both a better representation of anticipated conditions and defined probabilistically
Geometrical prediction of maximum power point for photovoltaics
International Nuclear Information System (INIS)
Kumar, Gaurav; Panchal, Ashish K.
2014-01-01
Highlights: • Direct MPP finding by parallelogram constructed from geometry of I–V curve of cell. • Exact values of V and P at MPP obtained by Lagrangian interpolation exploration. • Extensive use of Lagrangian interpolation for implementation of proposed method. • Method programming on C platform with minimum computational burden. - Abstract: It is important to drive solar photovoltaic (PV) system to its utmost capacity using maximum power point (MPP) tracking algorithms. This paper presents a direct MPP prediction method for a PV system considering the geometry of the I–V characteristic of a solar cell and a module. In the first step, known as parallelogram exploration (PGE), the MPP is determined from a parallelogram constructed using the open circuit (OC) and the short circuit (SC) points of the I–V characteristic and Lagrangian interpolation. In the second step, accurate values of voltage and power at the MPP, defined as V mp and P mp respectively, are decided by the Lagrangian interpolation formula, known as the Lagrangian interpolation exploration (LIE). Specifically, this method works with a few (V, I) data points instead most of the MPP algorithms work with (P, V) data points. The performance of the method is examined by several PV technologies including silicon, copper indium gallium selenide (CIGS), copper zinc tin sulphide selenide (CZTSSe), organic, dye sensitized solar cell (DSSC) and organic tandem cells’ data previously reported in literatures. The effectiveness of the method is tested experimentally for a few silicon cells’ I–V characteristics considering variation in the light intensity and the temperature. At last, the method is also employed for a 10 W silicon module tested in the field. To testify the preciseness of the method, an absolute value of the derivative of power (P) with respect to voltage (V) defined as (dP/dV) is evaluated and plotted against V. The method estimates the MPP parameters with high accuracy for any
Training for vigilance: using predictive power to evaluate feedback effectiveness.
Szalma, James L; Hancock, Peter A; Warm, Joel S; Dember, William N; Parsons, Kelley S
2006-01-01
We examined the effects of knowledge of results (KR) on vigilance accuracy and report the first use of positive and negative predictive power (PPP and NPP) to assess vigilance training effectiveness. Training individuals to detect infrequent signals among a plethora of nonsignals is critical to success in many failure-intolerant monitoring technologies. KR has been widely used for vigilance training, but the effect of the schedule of KR presentation on accuracy has been neglected. Previous research on training for vigilance has used signal detection metrics or hits and false alarms. In this study diagnosticity measures were applied to augment traditional analytic methods. We examined the effects of continuous KR and a partial-KR regimen versus a no-KR control on decision diagnosticity. Signal detection theory (SDT) analysis indicated that KR induced conservatism in responding but did not enhance sensitivity. However, KR in both forms equally enhanced PPP while selectively impairing NPP. There is a trade-off in the effectiveness of KR in reducing false alarms and misses. Together, SDT and PPP/NPP measures provide a more complete portrait of performance effects. PPP and NPP together provide another assessment technique for vigilance performance, and as additional diagnostic tools, these measures are potentially useful to the human factors community.
Replicability and 40-Year Predictive Power of Childhood ARC Types
Chapman, Benjamin P.; Goldberg, Lewis R.
2011-01-01
We examined three questions surrounding the Undercontrolled, Overcontrolled, and Resilient--or Asendorpf-Robins-Caspi (ARC)--personality types originally identified by Block (1971). In analyses of the teacher personality assessments of over 2,000 children in 1st through 6th grade in 1959-1967, and follow-up data on general and cardiovascular health outcomes in over 1,100 adults recontacted 40 years later, we found: (1) Bootstrapped internal replication clustering suggested that Big Five scores were best characterized by a tripartite cluster structure corresponding to the ARC types; (2) this cluster structure was fuzzy, rather than discrete, indicating that ARC constructs are best represented as gradients of similarity to three prototype Big Five profiles; and (3) ARC types and degrees of ARC prototypicality showed associations with multiple health outcomes 40 years later. ARC constructs were more parsimonious, but neither better nor more consistent predictors than the dimensional Big Five traits. Forty-year incident cases of heart disease could be correctly identified with 68% accuracy by personality information alone, a figure approaching the 12-year accuracy of a leading medical cardiovascular risk model. Findings support the theoretical validity of ARC constructs, their treatment as continua of prototypicality rather than discrete categories, and the need for further understanding the robust predictive power of childhood personality traits for mid-life health. PMID:21744975
International Nuclear Information System (INIS)
2008-08-01
The International Workshop on Lessons Learned from Strong Earthquake was held at Kashiwazaki civic plaza, Kashiwazaki, Niigata-prefecture, Japan, for three days in June 2008. Kashiwazaki-Kariwa NPP (KK-NPP) is located in the city of Kashiwazaki and the village of Kariwa, and owned and operated by Tokyo Electric Power Company Ltd. (TEPCO). After it experienced the Niigata-ken Chuetsu-oki earthquake in July 2007, IAEA dispatched experts' missions twice and held technical discussions with TEPCO. Through such activities, the IAEA secretariat and experts obtained up-dated information of plant integrity, geological and seismological evaluation and developments of the consultation in the regulatory framework of Japan. Some of the information has been shared with the member states through the reports on findings and lessons learned from the missions to Japan. The international workshop was held to discuss and share the information of lessons learned from strong earthquakes in member states' nuclear installations. It provided the opportunity for participants from abroad to share the information of the recent earthquake and experience in Japan and to visit KK-NPP. And for experts in Japan, the workshop provided the opportunity to share the international approach on seismic-safety-related measures and experiences. The workshop was organised by the IAEA as a part of an extra budgetary project, in cooperation with OECD/NEA, hosted by Japanese organisations including Nuclear and Industrial Safety Agency (NISA), Nuclear Safety Commission (NSC), and Japan Nuclear Energy Safety Organization (JNES). The number of the workshop participants was 70 experts from outside Japan, 27 countries and 2 international organisations, 154 Japanese experts and 81 audience and media personnel, totalling to 305 participants. The three-day workshop was open to the media including the site visit, and covered by NHK (the nation's public broadcasting corporation) and nation-wide and local television
Analysis of variability and predictability challenges of wind and solar power
Haan, de J.E.S.; Virag, A.; Kling, W.L.
2013-01-01
In power systems, reserves are essential to ensure system security, certainly when challenges of predictability (inaccurate forecast) and variability (imperfect correlation of renewable generation and system load) are causing power imbalances. Different techniques can be used to size and allocate
International Nuclear Information System (INIS)
Sato, Hiroaki
2009-01-01
This report addresses a methodology of deep subsurface structure modeling in Niigata plain, Japan to estimate site amplification factor in the broadband frequency range for broadband strong motion prediction. In order to investigate deep S-wave velocity structures, we conduct microtremor array measurements at nine sites in Niigata plain, which are important to estimate both long- and short-period ground motion. The estimated depths of the top of the basement layer agree well with those of the Green tuff formation as well as the Bouguer anomaly distribution. Dispersion characteristics derived from the observed long-period ground motion records are well explained by the theoretical dispersion curves of Love wave group velocities calculated from the estimated subsurface structures. These results demonstrate the deep subsurface structures from microtremor array measurements make it possible to estimate long-period ground motions in Niigata plain. Moreover an applicability of microtremor array exploration for inclined basement structure like a folding structure is shown from the two dimensional finite difference numerical simulations. The short-period site amplification factors in Niigata plain are empirically estimated by the spectral inversion analysis from S-wave parts of strong motion data. The resultant characteristics of site amplification are relative large in the frequency range of about 1.5-5 Hz, and decay significantly with the frequency increasing over about 5 Hz. However, these features can't be explained by the calculations from the deep subsurface structures. The estimation of site amplification factors in the frequency range of about 1.5-5 Hz are improved by introducing a shallow detailed structure down to GL-20m depth at a site. We also propose to consider random fluctuation in a modeling of deep S-wave velocity structure for broadband site amplification factor estimation. The Site amplification in the frequency range higher than about 5 Hz are filtered
Power capability prediction for lithium-ion batteries based on multiple constraints analysis
International Nuclear Information System (INIS)
Pan, Rui; Wang, Yujie; Zhang, Xu; Yang, Duo; Chen, Zonghai
2017-01-01
Highlights: • Multiple constraints for peak power capability prediction are deeply analyzed. • Multi-limited method is proposed for the peak power capability prediction of LIBs. • The EKF is used for the model based peak power capability prediction. • The FUDS and UDDS profiles are executed to evaluate the proposed method. - Abstract: The power capability of the lithium-ion battery is a key performance indicator for electric vehicle, and it is intimately correlated with the acceleration, regenerative braking and gradient climbing power requirements. Therefore, an accurate power capability or state-of-power prediction is critical to a battery management system, which can help the battery to work in suitable area and prevent the battery from over-charging and over-discharging. However, the power capability is easily affected by dynamic load, voltage variation and temperature. In this paper, three different constraints in power capability prediction are introduced, and the advantages and disadvantages of the three methods are deeply analyzed. Furthermore, a multi-limited approach for the power capability prediction is proposed, which can overcome the drawbacks of the three methods. Subsequently, the extended Kalman filter algorithm is employed for model based state-of-power prediction. In order to verify the proposed method, diverse experiments are executed to explore the efficiency, robustness, and precision. The results indicate that the proposed method can improve the precision and robustness obviously.
International Nuclear Information System (INIS)
Gomes, Karina P.; Farias, R.L.S.; Pinto, M.B.; Krein, G.
2013-01-01
Full text: Recently much attention is dedicated to understand the effects of an external magnetic field on the QCD phase diagram. Actually there is a contradiction in the literature: while effective models of QCD like the Nambu-Jona- Lasinio model (NJL) and linear sigma model predict an increase of the critical temperature of chiral symmetry restoration a function of the magnetic field, recent lattice results shows the opposite behavior. The NJL model is nonrenormalizable; then the high momentum part of the model has to be regularized in a phenomenological way. The common practice is to regularize the divergent loop amplitudes with a three-dimensional momentum cutoff, which also sets the energy-momentum scale for the validity of the model. That is, the model cannot be used for studying phenomena involving momenta running in loops larger than the cutoff. In particular, the model cannot be used to study quark matter at high densities. One of the symptoms of this problem is the prediction of vanishing superconducting gaps at high baryon densities, a feature of the model that is solely caused by the use of a regularizing momentum cutoff of the divergent vacuum and also in finite loop integrals. In a renormalizable theory all the dependence on the cutoff can be removed in favor of running physical parameters, like the coupling constants of QED and QCD. The running is given by the renormalization group equations of the theory and is controlled by an energy scale that is adjusted to the scale of the experimental conditions under consideration. In a recent publication, Casalbuoni et al. have introduced the concept of a running coupling constant for the NJL model to extend the applicability of the model to high density. Their arguments are based on making the cutoff density dependent, using an analogy with the natural cutoff of the Debye frequency of phonon oscillations in an ordinary solid. In the present work we follow such an approach introducing a magnetic field
Multiple Model Predictive Hybrid Feedforward Control of Fuel Cell Power Generation System
Directory of Open Access Journals (Sweden)
Long Wu
2018-02-01
Full Text Available Solid oxide fuel cell (SOFC is widely considered as an alternative solution among the family of the sustainable distributed generation. Its load flexibility enables it adjusting the power output to meet the requirements from power grid balance. Although promising, its control is challenging when faced with load changes, during which the output voltage is required to be maintained as constant and fuel utilization rate kept within a safe range. Moreover, it makes the control even more intractable because of the multivariable coupling and strong nonlinearity within the wide-range operating conditions. To this end, this paper developed a multiple model predictive control strategy for reliable SOFC operation. The resistance load is regarded as a measurable disturbance, which is an input to the model predictive control as feedforward compensation. The coupling is accommodated by the receding horizon optimization. The nonlinearity is mitigated by the multiple linear models, the weighted sum of which serves as the final control execution. The merits of the proposed control structure are demonstrated by the simulation results.
Rainfall prediction using fuzzy inference system for preliminary micro-hydro power plant planning
Suprapty, B.; Malani, R.; Minardi, J.
2018-04-01
East Kalimantan is a very rich area with water sources, in the form of river streams that branch to the remote areas. The conditions of natural potency like this become alternative solution for area that has not been reached by the availability of electric energy from State Electricity Company. The river water in selected location (catchment area) which is channelled to the canal, pipeline or penstock can be used to drive the waterwheel or turbine. The amount of power obtained depends on the volume/water discharge and headwater (the effective height between the reservoir and the turbine). The water discharge is strongly influenced by the amount of rainfall. Rainfall is the amount of water falling on the flat surface for a certain period measured, in units of mm3, above the horizontal surface in the absence of evaporation, run-off and infiltration. In this study, the prediction of rainfall is done in the area of East Kalimantan which has 13 watersheds which, in principle, have the potential for the construction of Micro Hydro Power Plant. Rainfall time series data is modelled by using AR (Auto Regressive) Model based on FIS (Fuzzy Inference System). The FIS structure of the training results is then used to predict the next two years rainfall.
Amsallem, Myriam; Sweatt, Andrew J; Aymami, Marie C; Kuznetsova, Tatiana; Selej, Mona; Lu, HongQuan; Mercier, Olaf; Fadel, Elie; Schnittger, Ingela; McConnell, Michael V; Rabinovitch, Marlene; Zamanian, Roham T; Haddad, Francois
2017-06-01
Right ventricular (RV) end-systolic dimensions provide information on both size and function. We investigated whether an internally scaled index of end-systolic dimension is incremental to well-validated prognostic scores in pulmonary arterial hypertension. From 2005 to 2014, 228 patients with pulmonary arterial hypertension were prospectively enrolled. RV end-systolic remodeling index (RVESRI) was defined by lateral length divided by septal height. The incremental values of RV free wall longitudinal strain and RVESRI to risk scores were determined. Mean age was 49±14 years, 78% were female, 33% had connective tissue disease, 52% were in New York Heart Association class ≥III, and mean pulmonary vascular resistance was 11.2±6.4 WU. RVESRI and right atrial area were strongly connected to the other right heart metrics. Three zones of adaptation (adapted, maladapted, and severely maladapted) were identified based on the RVESRI to RV systolic pressure relationship. During a mean follow-up of 3.9±2.4 years, the primary end point of death, transplant, or admission for heart failure was reached in 88 patients. RVESRI was incremental to risk prediction scores in pulmonary arterial hypertension, including the Registry to Evaluate Early and Long-Term PAH Disease Management score, the Pulmonary Hypertension Connection equation, and the Mayo Clinic model. Using multivariable analysis, New York Heart Association class III/IV, RVESRI, and log NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) were retained (χ 2 , 62.2; P right heart metrics, RVESRI demonstrated the best test-retest characteristics. RVESRI is a simple reproducible prognostic marker in patients with pulmonary arterial hypertension. © 2017 American Heart Association, Inc.
International Nuclear Information System (INIS)
Stevenson, J.D.
1995-11-01
Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds
ELMO model predicts the price of electric power
International Nuclear Information System (INIS)
Antila, H.
2001-01-01
Electrowatt-Ekono has developed a new model, by which it is possible to make long-term prognoses on the development of electricity prices in the Nordic Countries. The ELMO model can be used as an analysis service of the electricity markets and estimation of the profitability of long-term power distribution contracts with different scenarios. It can also be applied for calculation of technical and economical fundamentals for new power plants, and for estimation of the effects of different taxation models on the emissions of power generation. The model describes the whole power generation system, the power and heat consumption and transmission. The Finnish power generation system is based on the Electrowatt-Ekono's boiler database by combining different data elements. Calculation is based on the assumption that the Nordic power generation system is used optimally, and that the production costs are minimised. In practise the effectively operated electricity markets ensure the optimal use of the production system. The market area to be described consists of Finland and Sweden. The spot prices have long been the same. Norway has been treated as a separate market area. The most potential power generation system, the power consumption and the power transmission system are presumed for the target year during a normal rainfall situation. The basic scenario is calculated on the basis of the preconditional data. The calculation is carried out on hourly basis, which enables the estimation of the price variation of electric power between different times during the day and seasons. The system optimises the power generation on the basis of electricity and heat consumption curves and fuel prices. The result is an hourly limit price for electric power. Estimates are presented as standard form reports. Prices are presented as average annuals, in the seasonal base, and in hourly or daily basis for different seasons
Johnson, Timothy J; Youmans, Bonnie P; Noll, Sally; Cardona, Carol; Evans, Nicholas P; Karnezos, T Peter; Ngunjiri, John M; Abundo, Michael C; Lee, Chang-Won
2018-04-06
Defining the baseline bacterial microbiome is critical towards understanding its relationship with health and disease. In broiler chickens, the core microbiome and its possible relationships with health and disease have been difficult to define due to high variability between birds and flocks. Presented are data from a large, comprehensive microbiota-based study in commercial broilers. The primary goals of this study included understanding what constitutes the core bacterial microbiota in the broiler gastrointestinal, respiratory, and barn environments; how these core players change across age, geography, and time; and which bacterial taxa correlate with enhanced bird performance in antibiotic-free flocks. Using 2,309 samples from 37 different commercial flocks within a vertically integrated broiler system, and metadata from these and an additional 512 flocks within that system, the baseline bacterial microbiota was defined using 16S rRNA gene sequencing. The effects of age, sample type, flock, and successive flock cycles were compared, and results indicate a consistent, predictable, age-dependent bacterial microbiota, irrespective of flock. The tracheal bacterial microbiota of broilers was comprehensively defined, and Lactobacillus was the dominant bacterial taxa in the trachea. Numerous bacterial taxa were identified which were strongly correlated with broiler chicken performance, across multiple tissues. While many positively correlated taxa were identified, negatively associated potential pathogens were also identified in the absence of clinical disease, indicating subclinical dynamics occurring that impact performance. Overall, this work provides necessary baseline data for the development of effective antibiotic alternatives, such as probiotics, for sustainable poultry production. Importance Multidrug resistant bacterial pathogens are perhaps the greatest medical challenge we will face in the 21 st century and beyond. Antibiotics are necessary in animal
International Nuclear Information System (INIS)
Ouchen, Sabir; Betka, Achour; Abdeddaim, Sabrina; Menadi, Abdelkrim
2016-01-01
Highlights: • An implementation on dSPACE 1104 of a double stage grid connected photovoltaic system, associated with an active power filter. • A fuzzy logic controller for maximum power point tracking of photovoltaic generator using a boost converter. • Predictive direct power control almost eliminates the effect of harmonics under a unite power factor. • The robustness of control strategies was examined in different irradiance level conditions. - Abstract: The present paper proposes a real time implementation of an optimal operation of a double stage grid connected photovoltaic system, associated with a shunt active power filter. On the photovoltaic side, a fuzzy logic based maximum power point taking control is proposed to track permanently the optimum point through an adequate tuning of a boost converter regardless the solar irradiance variations; whereas, on the grid side, a model predictive direct power control is applied, to ensure both supplying a part of the load demand with the extracted photovoltaic power, and a compensation of undesirable harmonic contents of the grid current, under a unity power factor operation. The implementation of the control strategies is conducted on a small scale photovoltaic system, controlled via a dSPACE 1104 single card. The obtained experimental results show on one hand, that the proposed Fuzzy logic based maximum power taking point technique provides fast and high performances under different irradiance levels while compared with a sliding mode control, and ensures 1.57% more in efficiency. On the other hand, the predictive power control ensures a flexible settlement of active power amounts exchanges with the grid, under a unity power functioning. Furthermore, the grid current presents a sinusoidal shape with a tolerable total harmonic distortion coefficient 4.71%.
Energy Technology Data Exchange (ETDEWEB)
Berge-Thierry, C
2007-05-15
The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)
Energy Technology Data Exchange (ETDEWEB)
Berge-Thierry, C
2007-05-15
The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [FCFM, Universidad de Chile, Departamento de Fisica, Santiago (Chile); Gulshan, Faiza [Lahore Leads University, Department of Mathematics, Lahore (Pakistan)
2017-05-15
In the present work, we study the consequences of considering a new family of single-field inflation models, called power-law plateau inflation, in the warm inflation framework. We consider the inflationary expansion is driven by a standard scalar field with a decay ratio Γ having a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T given by Γ(φ,T) = C{sub φ}(T{sup a})/(φ{sup a-1}). Assuming that our model evolves according to the strong dissipative regime, we study the background and perturbative dynamics, obtaining the most relevant inflationary observable as the scalar power spectrum, the scalar spectral index and its running and the tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to the strong dissipative regime and the 2015 Planck results through the n{sub s}-r plane. For completeness, we study the predictions in the n{sub s}-dn{sub s}/d ln k plane. The model is consistent with a strong dissipative dynamics and predicts values for the tensor-to-scalar ratio and for the running of the scalar spectral index consistent with current bounds imposed by Planck and we conclude that the model is viable. (orig.)
International Nuclear Information System (INIS)
Jawad, Abdul; Videla, Nelson; Gulshan, Faiza
2017-01-01
In the present work, we study the consequences of considering a new family of single-field inflation models, called power-law plateau inflation, in the warm inflation framework. We consider the inflationary expansion is driven by a standard scalar field with a decay ratio Γ having a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T given by Γ(φ,T) = C_φ(T"a)/(φ"a"-"1). Assuming that our model evolves according to the strong dissipative regime, we study the background and perturbative dynamics, obtaining the most relevant inflationary observable as the scalar power spectrum, the scalar spectral index and its running and the tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to the strong dissipative regime and the 2015 Planck results through the n_s-r plane. For completeness, we study the predictions in the n_s-dn_s/d ln k plane. The model is consistent with a strong dissipative dynamics and predicts values for the tensor-to-scalar ratio and for the running of the scalar spectral index consistent with current bounds imposed by Planck and we conclude that the model is viable. (orig.)
Short-term wind power prediction based on LSSVM–GSA model
International Nuclear Information System (INIS)
Yuan, Xiaohui; Chen, Chen; Yuan, Yanbin; Huang, Yuehua; Tan, Qingxiong
2015-01-01
Highlights: • A hybrid model is developed for short-term wind power prediction. • The model is based on LSSVM and gravitational search algorithm. • Gravitational search algorithm is used to optimize parameters of LSSVM. • Effect of different kernel function of LSSVM on wind power prediction is discussed. • Comparative studies show that prediction accuracy of wind power is improved. - Abstract: Wind power forecasting can improve the economical and technical integration of wind energy into the existing electricity grid. Due to its intermittency and randomness, it is hard to forecast wind power accurately. For the purpose of utilizing wind power to the utmost extent, it is very important to make an accurate prediction of the output power of a wind farm under the premise of guaranteeing the security and the stability of the operation of the power system. In this paper, a hybrid model (LSSVM–GSA) based on the least squares support vector machine (LSSVM) and gravitational search algorithm (GSA) is proposed to forecast the short-term wind power. As the kernel function and the related parameters of the LSSVM have a great influence on the performance of the prediction model, the paper establishes LSSVM model based on different kernel functions for short-term wind power prediction. And then an optimal kernel function is determined and the parameters of the LSSVM model are optimized by using GSA. Compared with the Back Propagation (BP) neural network and support vector machine (SVM) model, the simulation results show that the hybrid LSSVM–GSA model based on exponential radial basis kernel function and GSA has higher accuracy for short-term wind power prediction. Therefore, the proposed LSSVM–GSA is a better model for short-term wind power prediction
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
Energy Technology Data Exchange (ETDEWEB)
Melin, Alexander M. [ORNL; Olama, Mohammed M. [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science
2017-09-01
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed to estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.
Modelling of physical properties - databases, uncertainties and predictive power
DEFF Research Database (Denmark)
Gani, Rafiqul
in the estimated/predicted property values, how to assess the quality and reliability of the estimated/predicted property values? The paper will review a class of models for prediction of physical and thermodynamic properties of organic chemicals and their mixtures based on the combined group contribution – atom......Physical and thermodynamic property in the form of raw data or estimated values for pure compounds and mixtures are important pre-requisites for performing tasks such as, process design, simulation and optimization; computer aided molecular/mixture (product) design; and, product-process analysis...
Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Lau, M.
2013-01-01
The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...
Optimization of maintenance for power system equipment using a predictive health model
Bajracharya, G.; Koltunowicz, T.; Negenborn, R.R.; Papp, Z.; Djairam, D.; Schutter, B.D. de; Smit, J.J.
2009-01-01
In this paper, a model-predictive control based framework is proposed for modeling and optimization of the health state of power system equipment. In the framework, a predictive health model is proposed that predicts the health state of the equipment based on its usage and maintenance actions. Based
Sludge pipe flow pressure drop prediction using composite power ...
African Journals Online (AJOL)
2011-09-30
Sep 30, 2011 ... 3Department of Chemical Engineering, IIT Kanpur, India. Abstract. When predicting pressure gradients for the flow of sludges in pipes, the rheology of the fluid ..... implicit in the stability analysis of Ryan and Johnson (1959).
Fuzzy model predictive control algorithm applied in nuclear power plant
International Nuclear Information System (INIS)
Zuheir, Ahmad
2006-01-01
The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)
A study on the characteristics, predictions and policies of China’s eight main power grids
International Nuclear Information System (INIS)
Wang, Jianzhou; Dong, Yao; Jiang, He
2014-01-01
Highlights: • Indian blackout is analyzed as a warning for China’s power system. • Issues and recommendations of China’s eight power grids are presented. • Five models are employed for scenario analysis on power generation and consumption. • The optimized combined model outperforms other models. • Methods towards balancing power generation and environmental impacts are proposed. - Abstract: Electricity is an indispensable energy source for modern social and economic development. However, large-scale blackouts can cause incalculable loss to society. In 2012, three major Indian power grids collapsed, resulting in the interruption of the electricity supply to over 600 million people. To avoid an event like that, China needs to forecast the power generation and consumption of eight power grids effectively. This paper first analyzes the characteristics of eight power grids and then proposes a combined model based on three improved grey models optimized by a differential evolution algorithm to predict electricity production and consumption of each power grid. The optimized combined forecasting model provides a better prediction than other models, and it is also the most workable and satisfactory model. Experiment results show electricity production and consumption would increase. In consideration of the real situation and existing problems, some suggestions are proposed. The government could decrease thermal power and exploit renewable energy power, like hydroelectric power, wind power and solar power, to ensure the safe and reliable operation of China’s major power grids and protect environment
Energy Technology Data Exchange (ETDEWEB)
Dobschinski, Jan; Wessel, Arne; Lange, Bernhard; Bremen, Lueder von [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany)
2009-07-01
In electricity systems with large penetration of wind power, the limited predictability of the wind power generation leads to an increase in reserve and balancing requirements. At first the present study concentrates on the capability of dynamic day-ahead prediction intervals to reduce the wind power induced reserve and balancing requirements. Alternatively the reduction of large forecast errors of the German wind power generation by using advanced shortest-term predictions has been evaluated in a second approach. With focus on the allocation of minute reserve power the aim is to estimate the maximal remaining uncertainty after trading activities on the intraday market. Finally both approaches were used in a case study concerning the reserve requirements induced by the total German wind power expansion in 2007. (orig.)
Locke, Kenneth D; Heller, Sonja
2017-01-01
Seven studies involving 1,343 participants showed how circumplex models of social motives can help explain individual differences in preferences for status (having others' admiration) versus power (controlling valuable resources). Studies 1 to 3 and 7 concerned interpersonal motives in workplace contexts, and found that stronger communal motives (to have mutual trust, support, and cooperation) predicted being more attracted to status (but not power) and achieving more workplace status, while stronger agentic motives (to be firm, decisive, and influential) predicted being more attracted to and achieving more workplace power, and experiencing a stronger connection between workplace power and job satisfaction. Studies 4 to 6 found similar effects for intergroup motives: Stronger communal motives predicted wanting one's ingroup (e.g., country) to have status-but not power-relative to other groups. Finally, most people preferred status over power, and this was especially true for women, which was partially explained by women having stronger communal motives.
Lifetime prediction of high-power press-pack IGBTs in wind power applications
DEFF Research Database (Denmark)
Busca, Cristian
The Wind Turbine (WT) industry is advancing at a rapid pace and the power rating of new WTs is continuously growing. The next generation large WTs are likely to be realized with full-scale power converters due to the advantages they offer in terms of grid code compliance, power density and decoup......The Wind Turbine (WT) industry is advancing at a rapid pace and the power rating of new WTs is continuously growing. The next generation large WTs are likely to be realized with full-scale power converters due to the advantages they offer in terms of grid code compliance, power density...... and decoupling of the generator and grid sides. Press-Pack (PP) Insulated Gate Bipolar Transistors (IGBTs) are promising semiconductor devices for the next generation large WTs due to the advantages they offer in terms of power capability, power density and thermal cycling capability. PP IGBTs require proper...
Power maximization of a point absorber wave energy converter using improved model predictive control
Milani, Farideh; Moghaddam, Reihaneh Kardehi
2017-08-01
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory
International Nuclear Information System (INIS)
Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei
2007-01-01
For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)
International Nuclear Information System (INIS)
Saguchi, Koichiro; Masaki, Kazuaki; Irikura, Kojiro
2009-01-01
Very strong ground motions (maximum acceleration 993 cm/s 2 in the borehole seismometer point of -255m in depth) were observed in the Kashiwazaki Kariwa Nuclear Power Plant during the Niigataken Chuetsu-oki Earthquake on July 16, 2007. In this study, we tried to develop new method, which can simulate waveforms on free rock surface by using the bore hole records. We identified the underground structure model at the Service Hall from aftershock records observed in vertical array, using the simulated annealing method (Ingber(1989)). Based on numerical experiments it is identified that S-wave velocity and Q values of individual layers are inverted very well. Strong motion records of main shock observed by the bore hole seismometers were simulated by using one-dimensional multiple reflection method. In this study, non-linear effect is considered by introducing non-linear coefficient c(f) for under coming wave from surface. The maximum acceleration and phase characteristics in simulated waveforms are similar to the observed one. It means that our method is useful for simulate strong motion in non-linear region. Finally, strong motions on the free rock surface at the Service Hall during the main shock are simulated. The maximum acceleration of EW component on free rock surface is estimated to be 1,207 cm/s 2 . (author)
Basic study on dynamic reactive-power control method with PV output prediction for solar inverter
Directory of Open Access Journals (Sweden)
Ryunosuke Miyoshi
2016-01-01
Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.
International Nuclear Information System (INIS)
Stevenson, J.D.
1995-02-01
This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems
Boyce, Christopher J.; Wood, Alex M.; Powdthavee, Nattavudh
2013-01-01
Personality is the strongest and most consistent cross-sectional predictor of high subjective well-being. Less predictive economic factors, such as higher income or improved job status, are often the focus of applied subjective well-being research due to a perception that they can change whereas personality cannot. As such there has been limited…
International Nuclear Information System (INIS)
Bolinger, Mark; Wiser, Ryan
2009-01-01
The amount of wind power capacity being installed globally is surging, with the United States the world leader in terms of annual market share for three years running (2005-2007). The rapidly growing market for wind has been a double-edged sword, however, as the resulting supply-demand imbalance in wind turbines, along with the rising cost of materials and weakness in the US dollar, has put upward pressure on wind turbine costs, and ultimately, wind power prices. Two mitigating factors-reductions in the cost of equity provided to wind projects and improvements in project-level capacity factors-have helped to relieve some of the upward pressure on wind power prices over the last few years. Because neither of these two factors can be relied upon to further cushion the blow going forward, policymakers should recognize that continued financial support may be necessary to sustain the wind sector at its current pace of development, at least in the near term. Though this article emphasizes developments in the US market for wind power, those trends are similar to, and hold implications for, the worldwide wind power market
Energy Technology Data Exchange (ETDEWEB)
Kilic, Tomislav; Milun, Stanko; Petrovic, Goran [FESB University of Split, Faculty of Electrical Engineering, Machine Engineering and Naval Architecture, R. Boskovica bb, 21000, Split (Croatia)
2007-02-15
The shunt active power filters are used to attenuate the harmonic currents in power systems by injecting equal but opposite compensating currents. Successful control of the active filters requires an accurate current reference. In this paper the current reference determination based on predictive filtering structure is presented. Current reference was obtained by taking the difference of load current and its fundamental harmonic. For fundamental harmonic determination with no time delay a combination of digital predictive filter and low pass filter is used. The proposed method was implemented on a laboratory prototype of a three-phase active power filter. The algorithm for current reference determination was adapted and implemented on DSP controller. Simulation and experimental results show that the active power filter with implemented predictive filtering structure gives satisfactory performance in power system harmonic attenuation. (author)
Improving nuclear power plant reliability through predictive maintenance
International Nuclear Information System (INIS)
Geilhausen, R.; Kunze, U.
1996-01-01
Maintenance strategies can be assigned to one of three categories: failure maintenance, periodic maintenance or condition-oriented maintenance. The optimum maintenance scheme can be selected on the basis of a cost-benefit analysis but the safety of life and limb or the political climate for NPP can hardly expressed in numbers. The implementation of preventive maintenance needs two preconditions: high-performance instrumentation in the form of stationary and mobile monitoring systems for the determination of the condition of the nuclear power plant components and provision of a tool that can handle both the organization of the work and the evaluation of the results obtained. (authors)
THE PREDICTIVE POWER OF RELIGIOUS ORIENTATION TYPES ON AMBIVALENT SEXISM
Directory of Open Access Journals (Sweden)
Fatih Ozdemir
2016-07-01
Full Text Available The purpose of the present study was to predict ambivalent sexism (including hostile sexism and benevolent sexism with religious orientation types as intrinsic religiosity, extrinsic religiosity and quest religiosity. In addition, the effect of demographic variables (including age, gender, education on sexist attitudes was tested. 583 (N_female= 318; N_male= 265 university students who study in different universities of Ankara/Turkey (M_age= 22.10; SD = 2.33 completed Ambivalent Sexism Inventory, and Religious Orientation Scale. Findings indicated significant gender differences on study variables and significant associations between ambivalent sexism and religious orientation types within university students sample in Turkey.
On-line test of power distribution prediction system for boiling water reactors
International Nuclear Information System (INIS)
Nishizawa, Y.; Kiguchi, T.; Kobayashi, S.; Takumi, K.; Tanaka, H.; Tsutsumi, R.; Yokomi, M.
1982-01-01
A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer
The predictive power of Japanese candlestick charting in Chinese stock market
Chen, Shi; Bao, Si; Zhou, Yu
2016-09-01
This paper studies the predictive power of 4 popular pairs of two-day bullish and bearish Japanese candlestick patterns in Chinese stock market. Based on Morris' study, we give the quantitative details of definition of long candlestick, which is important in two-day candlestick pattern recognition but ignored by several previous researches, and we further give the quantitative definitions of these four pairs of two-day candlestick patterns. To test the predictive power of candlestick patterns on short-term price movement, we propose the definition of daily average return to alleviate the impact of correlation among stocks' overlap-time returns in statistical tests. To show the robustness of our result, two methods of trend definition are used for both the medium-market-value and large-market-value sample sets. We use Step-SPA test to correct for data snooping bias. Statistical results show that the predictive power differs from pattern to pattern, three of the eight patterns provide both short-term and relatively long-term prediction, another one pair only provide significant forecasting power within very short-term period, while the rest three patterns present contradictory results for different market value groups. For all the four pairs, the predictive power drops as predicting time increases, and forecasting power is stronger for stocks with medium market value than those with large market value.
DEFF Research Database (Denmark)
Relano-Iborra, Helia; May, Tobias; Zaar, Johannes
A powerful tool to investigate speech perception is the use of speech intelligibility prediction models. Recently, a model was presented, termed correlation-based speechbased envelope power spectrum model (sEPSMcorr) [1], based on the auditory processing of the multi-resolution speech-based Envel...
Blickle, Gerhard; Witzki, Alexander H.; Schneider, Paula B.
2009-01-01
Career success of early employees was analyzed from a power perspective and a developmental network perspective. In a predictive field study with 112 employees mentoring support and mentors' power were assessed in the first wave, employees' networking was assessed after two years, and career success (i.e. income and hierarchical position) and…
The prediction and prevention of voltage collapse in the Finnish power system
Energy Technology Data Exchange (ETDEWEB)
Bastman, J; Lakervi, E [Tampere Univ. of Tech. (Finland); Hirvonen, R; Kuronen, P; Hagman, E [IVO Group (Finland)
1994-12-31
The Finnish power system is a part of the Nordic power system (NORDEL), which includes Finland, Sweden, Norway and the eastern part of Denmark. In NORDEL the transmission distances are long, which implies that the power transmission capacities are determined by stability criteria . The methods to prevent and predict the voltage collapse during severe disturbances are studied using advances simulation program. Results are presented. (author) 10 figs., 1 tab.
Directory of Open Access Journals (Sweden)
G. A. Papadopoulos
2006-01-01
Full Text Available The seismic sequence of October–November 2005 in the Samos area, East Aegean Sea, was studied with the aim to show how it is possible to establish criteria for (a the rapid recognition of both the ongoing foreshock activity and the mainshock, and (b the rapid discrimination between the foreshock and aftershock phases of activity. It has been shown that before the mainshock of 20 October 2005, foreshock activity is not recognizable in the standard earthquake catalogue. However, a detailed examination of the records in the SMG station, which is the closest to the activated area, revealed that hundreds of small shocks not listed in the standard catalogue were recorded in the time interval from 12 October 2005 up to 21 November 2005. The production of reliable relations between seismic signal duration and duration magnitude for earthquakes included in the standard catalogue, made it possible to use signal durations in SMG records and to determine duration magnitudes for 2054 small shocks not included in the standard catalogue. In this way a new catalogue with magnitude determination for 3027 events was obtained while the standard catalogue contains 1025 events. At least 55 of them occurred from 12 October 2005 up to the occurrence of the two strong foreshocks of 17 October 2005. This implies that foreshock activity developed a few days before the strong shocks of 17 October 2005 but it escaped recognition by the routine procedure of seismic analysis. The onset of the foreshock phase of activity is recognizable by the significant increase of the mean seismicity rate which increased exponentially with time. According to the least-squares approach the b-value of the magnitude-frequency relation dropped significantly during the foreshock activity with respect to the b-value prevailing in the declustered background seismicity. However, the maximum likelihood approach does not indicate such a drop of b. The b-value found for the aftershocks that
Emotion dysregulation and social competence: stability, change and predictive power.
Berkovits, L D; Baker, B L
2014-08-01
Social difficulties are closely linked to emotion dysregulation among children with typical development (TD). Children with developmental delays (DD) are at risk for poor social outcomes, but the relationship between social and emotional development within this population is not well understood. The current study examines the extent to which emotion dysregulation is related to social problems across middle childhood among children with TD or DD. Children with TD (IQ ≥ 85, n = 113) and children with DD (IQ ≤ 75, n = 61) participated in a longitudinal study. Annual assessments were completed at ages 7, 8 and 9 years. At each assessment, mothers reported on children's emotion dysregulation, and both mothers and teachers reported on children's social difficulties. Children with DD had higher levels of emotion dysregulation and social problems at each age than those with TD. Emotion dysregulation and social problems were significantly positively correlated within both TD and DD groups using mother report of social problems, and within the TD group using teacher report of social problems. Among children with TD, emotion dysregulation consistently predicted change in social problems from one year to the next. However, among children with DD, emotion dysregulation offered no unique prediction value above and beyond current social problems. Results suggested that the influence of emotion regulation abilities on social development may be a less salient pathway for children with DD. These children may have more influences, beyond emotion regulation, on their social behaviour, highlighting the importance of directly targeting social skill deficits among children with DD in order to ameliorate their social difficulties. © 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
International Nuclear Information System (INIS)
Pousinho, H.M.I.; Mendes, V.M.F.; Catalao, J.P.S.
2011-01-01
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
Energy Technology Data Exchange (ETDEWEB)
Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)
2011-01-15
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches. (author)
Synchrophasor-Assisted Prediction of Stability/Instability of a Power System
Saha Roy, Biman Kumar; Sinha, Avinash Kumar; Pradhan, Ashok Kumar
2013-05-01
This paper presents a technique for real-time prediction of stability/instability of a power system based on synchrophasor measurements obtained from phasor measurement units (PMUs) at generator buses. For stability assessment the technique makes use of system severity indices developed using bus voltage magnitude obtained from PMUs and generator electrical power. Generator power is computed using system information and PMU information like voltage and current phasors obtained from PMU. System stability/instability is predicted when the indices exceeds a threshold value. A case study is carried out on New England 10-generator, 39-bus system to validate the performance of the technique.
Directory of Open Access Journals (Sweden)
Guo Jiuwang
2015-01-01
Full Text Available Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF wind power generation system with doubly fed induction generators (DFIG, traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy.
THE PREDICTIVE POWER OF RELIGIOUS ORIENTATION TYPES ON AMBIVALENT SEXISM
Directory of Open Access Journals (Sweden)
Gul Ulubayram
2016-07-01
Full Text Available Objective: The purpose of this study is to examine stress and stress related factors in tuberculosis patients. In addition, to determine the impact of socio-demographic variables such as age, gender and educational level over stress symptoms hereby comprises a further objective of this study. Method: The study included totally 129 tuberculosis patients and 161 non-patients (normal group participants. Tuberculosis patients registered in Ankara Tuberculosis Dispensary No.4, and Atatürk Chest Diseases and Chest Surgery Hospital. There are 75 Pulmonary Tuberculosis (AC TB and 54 Extra- Pulmonary Tuberculosis (AD TB patients. As regards data collection tools; Demographic Information Form, Brief Symptom Inventory, Stress Symptoms Scale, Stress Vulnerability Scale, and Stress Coping Scale were used. Results: Within the context of diagnosis groups; it was found that; stress symptoms of tuberculosis patients are higher than the normal group, they use their ineffective coping ways more and their life satisfactions are lower. There exists no gender and diagnosis group main effect in terms of the psychological symptoms of stress, however “gender x diagnosis group” interaction effect draws attention herein. In tuberculosis patients, ineffective coping the stress and relation pleasure variables are confronted as joint variables which are predicting both the psychological and physical health. Another point which draws attention in regression analyzes is that; “education” variable takes place among the variables which predict the psychological symptoms of stress in tuberculosis patients. Conclusion: Under the light of these findings, tuberculosis patients, during their treatment processes, may be encouraged to attend various training programs prepared for stress management and effective dealing strategies with stress. By increasing the patients’ motivation towards the treatment, these programs may provide supplementary benefits to the treatment by
ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-01-01
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability
Directory of Open Access Journals (Sweden)
Milos Bogdanovic
2013-08-01
Full Text Available Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.
ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-08-15
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.
A new wind power prediction method based on chaotic theory and Bernstein Neural Network
International Nuclear Information System (INIS)
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Fan, Xiaochao
2016-01-01
The accuracy of wind power prediction is important for assessing the security and economy of the system operation when wind power connects to the grids. However, multiple factors cause a long delay and large errors in wind power prediction. Hence, efficient wind power forecasting approaches are still required for practical applications. In this paper, a new wind power forecasting method based on Chaos Theory and Bernstein Neural Network (BNN) is proposed. Firstly, the largest Lyapunov exponent as a judgment for wind power system's chaotic behavior is made. Secondly, Phase Space Reconstruction (PSR) is used to reconstruct the wind power series' phase space. Thirdly, the prediction model is constructed using the Bernstein polynomial and neural network. Finally, the weights and thresholds of the model are optimized by Primal Dual State Transition Algorithm (PDSTA). The practical hourly data of wind power generation in Xinjiang is used to test this forecaster. The proposed forecaster is compared with several current prominent research findings. Analytical results indicate that the forecasting error of PDSTA + BNN is 3.893% for 24 look-ahead hours, and has lower errors obtained compared with the other forecast methods discussed in this paper. The results of all cases studying confirm the validity of the new forecast method. - Highlights: • Lyapunov exponent is used to verify chaotic behavior of wind power series. • Phase Space Reconstruction is used to reconstruct chaotic wind power series. • A new Bernstein Neural Network to predict wind power series is proposed. • Primal dual state transition algorithm is chosen as the training strategy of BNN.
A variable capacitance based modeling and power capability predicting method for ultracapacitor
Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang
2018-01-01
Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.
Directory of Open Access Journals (Sweden)
Dongmyung Kim
2018-05-01
Full Text Available Wind turbine generators are eco-friendly generators that produce electric energy using wind energy. In this study, wind turbine generator efficiency is examined using a powertrain combination and annual power generation prediction, by employing an analysis model. Performance testing was conducted in order to analyze the efficiency of a hydraulic pump and a motor, which are key components, and so as to verify the analysis model. The annual wind speed occurrence frequency for the expected installation areas was used to predict the annual power generation of the wind turbine generators. It was found that the parallel combination of the induction motors exhibited a higher efficiency when the wind speed was low and the serial combination showed higher efficiency when wind speed was high. The results of predicting the annual power generation considering the regional characteristics showed that the power generation was the highest when the hydraulic motors were designed in parallel and the induction motors were designed in series.
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
Energy Technology Data Exchange (ETDEWEB)
Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.
Energy Technology Data Exchange (ETDEWEB)
Abbas, Nikhar; Tom, Nathan
2017-09-01
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.
Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants
International Nuclear Information System (INIS)
Senior, C.L.; Helble, J.J.; Sarofim, A.F.
2000-01-01
Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants
International Nuclear Information System (INIS)
Houze, M.
2002-12-01
Thermoelectric power measurement (TEP) is a very potential non destructive evaluation method considered to follow ageing under neutron irradiation of pressure vessel steel of nuclear reactor. Prior to these problems, the aim of this study is to establish correlations between TEP variations and microstructural evolutions of pressure vessel steels during heat treatments. Different steels, permitting to simulate heterogeneities of pressure vessel steels and to deconvoluate main metallurgical phenomenons effects were studied. This work allowed to emphasize effect on TEP of: austenitizing and cooling conditions and therefore of microstructure, metallurgical transformations during tempering (recovery, precipitation of alloying elements), and particularly molybdenum precipitation associated to secondary hardening, residual austenite amount or partial austenitizing. (author)
International Nuclear Information System (INIS)
Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.
1988-01-01
The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index
Critical power prediction by CATHARE2 of the OECD/NRC BFBT benchmark
Energy Technology Data Exchange (ETDEWEB)
Lutsanych, Sergii, E-mail: s.lutsanych@ing.unipi.it [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, 56122, San Piero a Grado, Pisa (Italy); Sabotinov, Luben, E-mail: luben.sabotinov@irsn.fr [Institut for Radiological Protection and Nuclear Safety (IRSN), 31 avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); D’Auria, Francesco, E-mail: francesco.dauria@dimnp.unipi.it [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, 56122, San Piero a Grado, Pisa (Italy)
2015-03-15
Highlights: • We used CATHARE code to calculate the critical power exercises of the OECD/NRC BFBT benchmark. • We considered both steady-state and transient critical power tests of the benchmark. • We used both the 1D and 3D features of the CATHARE code to simulate the experiments. • Acceptable prediction of the critical power and its location in the bundle is obtained using appropriate modelling. - Abstract: This paper presents an application of the French best estimate thermal-hydraulic code CATHARE 2 to calculate the critical power and departure from nucleate boiling (DNB) exercises of the International OECD/NRC BWR Fuel Bundle Test (BFBT) benchmark. The assessment activity is performed comparing the code calculation results with available in the framework of the benchmark experimental data from Japanese Nuclear Power Engineering Corporation (NUPEC). Two-phase flow calculations on prediction of the critical power have been carried out both in steady state and transient cases, using one-dimensional and three-dimensional modelling. Results of the steady-state critical power tests calculation have shown the ability of CATHARE code to predict reasonably the critical power and its location, using appropriate modelling.
Using data-driven approach for wind power prediction: A comparative study
International Nuclear Information System (INIS)
Taslimi Renani, Ehsan; Elias, Mohamad Fathi Mohamad; Rahim, Nasrudin Abd.
2016-01-01
Highlights: • Double exponential smoothing is the most accurate model in wind speed prediction. • A two-stage feature selection method is proposed to select most important inputs. • Direct prediction illustrates better accuracy than indirect prediction. • Adaptive neuro fuzzy inference system outperforms data mining algorithms. • Random forest performs the worst compared to other data mining algorithm. - Abstract: Although wind energy is intermittent and stochastic in nature, it is increasingly important in the power generation due to its sustainability and pollution-free. Increased utilization of wind energy sources calls for more robust and efficient prediction models to mitigate uncertainties associated with wind power. This research compares two different approaches in wind power forecasting which are indirect and direct prediction methods. In indirect method, several times series are applied to forecast the wind speed, whereas the logistic function with five parameters is then used to forecast the wind power. In this study, backtracking search algorithm with novel crossover and mutation operators is employed to find the best parameters of five-parameter logistic function. A new feature selection technique, combining the mutual information and neural network is proposed in this paper to extract the most informative features with a maximum relevancy and minimum redundancy. From the comparative study, the results demonstrate that, in the direct prediction approach where the historical weather data are used to predict the wind power generation directly, adaptive neuro fuzzy inference system outperforms five data mining algorithms namely, random forest, M5Rules, k-nearest neighbor, support vector machine and multilayer perceptron. Moreover, it is also found that the mean absolute percentage error of the direct prediction method using adaptive neuro fuzzy inference system is 1.47% which is approximately less than half of the error obtained with the
Energy Technology Data Exchange (ETDEWEB)
More, Anupreeta; Oguri, Masamune; More, Surhud [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, Chiba 277-8583 (Japan); Suyu, Sherry H. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Lee, Chien-Hsiu, E-mail: anupreeta.more@ipmu.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North Aohoku Place, Hilo, HI 96720 (United States)
2017-02-01
We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but places a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.
Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2013-01-01
Full Text Available Considering the load frequency control (LFC of large-scale power system, a robust distributed model predictive control (RDMPC is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints (GRC is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem is formulated as convex optimization problem with linear matrix inequalities (LMI that can be solved efficiently. It minimizes an upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness in the presence of power system dynamic uncertainties.
Dedes, I.; Dudek, J.
2018-03-01
We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.
PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Altab Hossain
2009-01-01
Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.
PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC
Directory of Open Access Journals (Sweden)
Altab Md. Hossain
2009-12-01
Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.
K-Line Patterns’ Predictive Power Analysis Using the Methods of Similarity Match and Clustering
Directory of Open Access Journals (Sweden)
Lv Tao
2017-01-01
Full Text Available Stock price prediction based on K-line patterns is the essence of candlestick technical analysis. However, there are some disputes on whether the K-line patterns have predictive power in academia. To help resolve the debate, this paper uses the data mining methods of pattern recognition, pattern clustering, and pattern knowledge mining to research the predictive power of K-line patterns. The similarity match model and nearest neighbor-clustering algorithm are proposed for solving the problem of similarity match and clustering of K-line series, respectively. The experiment includes testing the predictive power of the Three Inside Up pattern and Three Inside Down pattern with the testing dataset of the K-line series data of Shanghai 180 index component stocks over the latest 10 years. Experimental results show that (1 the predictive power of a pattern varies a great deal for different shapes and (2 each of the existing K-line patterns requires further classification based on the shape feature for improving the prediction performance.
Kiciński, Jan
2018-01-01
The paper presents the results of the analysis of the dynamic performance of the rotor being a component of the ORC turbine set with the net electrical output of 100 kW and the nominal speed of 9000 rpm. The research was conducted using tools capable of performing the necessary simulation of the system operating under highly unstable conditions, i.e., in a strongly nonlinear regime. In this regard, the author of the paper followed the subsequent phases of whirl/whip formation manifested in the fluid film. Constructional solutions within the scope of the bearing were examined with non-conventional lubricating mediums (low boiling mediums). On the basis of those scientific studies, the decision to build a working prototype of the machine was taken. Such a prototype has already been manufactured, having regard to the outcome of the conducted analyses. The research presented herein produced interesting results showing that, under the conditions of hydrodynamic instability, the phenomena taking place inside the lubricating gap of the slide bearing are not recurrent for each individual rotor revolution, notwithstanding the fact that the external excitation forces acting on the system are fully repeatable. The research tools were presented that allow a detailed qualitative and quantitative description of such phenomena.
Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte
2017-10-01
We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Wang, Guo Xu; Wu, Jie; Zeng, Bifan; Wu, Wangqiang; Ma, Xiao Qian [School of Electric Power, South China University of Technology, Guangzhou (China); Xu, Zhibin [Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou (China)
2017-02-15
A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.
A novel method for predicting the power outputs of wave energy converters
Wang, Yingguang
2018-03-01
This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.
Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm
Directory of Open Access Journals (Sweden)
Qunli Wu
2015-12-01
Full Text Available Given the stochastic nature of wind, wind power grid-connected capacity prediction plays an essential role in coping with the challenge of balancing supply and demand. Accurate forecasting methods make enormous contribution to mapping wind power strategy, power dispatching and sustainable development of wind power industry. This study proposes a bat algorithm (BA–least squares support vector machine (LSSVM hybrid model to improve prediction performance. In order to select input of LSSVM effectively, Stationarity, Cointegration and Granger causality tests are conducted to examine the influence of installed capacity with different lags, and partial autocorrelation analysis is employed to investigate the inner relationship of grid-connected capacity. The parameters in LSSVM are optimized by BA to validate the learning ability and generalization of LSSVM. Multiple model sufficiency evaluation methods are utilized. The research results reveal that the accuracy improvement of the present approach can reach about 20% compared to other single or hybrid models.
Model predictive control for power flows in networks with limited capacity
DEFF Research Database (Denmark)
Biegel, Benjamin; Stoustrup, Jakob; Bendtsen, Jan Dimon
2012-01-01
this problem can be formulated as an optimization problem, leading directly to the design of a model predictive controller. Using this scheme, we are able to incorporate predictions of future consumption and exploit knowledge of link limitations such that the intelligent consumers are utilized ahead of time......We consider an interconnected network of consumers powered through an electrical grid of limited capacity. A subset of the consumers are intelligent consumers and have the ability to store energy in a controllable fashion; they can be filled and emptied as desired under power and capacity...... limitations. We address the problem of maintaining power balance between production and consumption using the intelligent consumers to ensure smooth power consumption from the grid. Further, certain capacity limitations to the links interconnecting the consumers must be honored. In this paper, we show how...
Automatic Power Control for Daily Load-following Operation using Model Predictive Control Method
Energy Technology Data Exchange (ETDEWEB)
Yu, Keuk Jong; Kim, Han Gon [KH, Daejeon (Korea, Republic of)
2009-10-15
Under the circumstances that nuclear power occupies more than 50%, nuclear power plants are required to be operated on load-following operation in order to make the effective management of electric grid system and enhanced responsiveness to rapid changes in power demand. Conventional reactors such as the OPR1000 and APR1400 have a regulating system that controls the average temperature of the reactor core relation to the reference temperature. This conventional method has the advantages of proven technology and ease of implementation. However, this method is unsuitable for controlling the axial power shape, particularly the load following operation. Accordingly, this paper reports on the development of a model predictive control method which is able to control the reactor power and the axial shape index. The purpose of this study is to analyze the behavior of nuclear reactor power and the axial power shape by using a model predictive control method when the power is increased and decreased for a daily load following operation. The study confirms that deviations in the axial shape index (ASI) are within the operating limit.
Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control
DEFF Research Database (Denmark)
Errouissi, Rachid; Al-Durra, Ahmed; Muyeen, S.M.
2017-01-01
This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current...... is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded...... into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers...
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
Directory of Open Access Journals (Sweden)
Ali Thaeer Hammid
2018-03-01
Full Text Available In developing countries, the power production is properly less than the request of power or load, and sustaining a system stability of power production is a trouble quietly. Sometimes, there is a necessary development to the correct quantity of load demand to retain a system of power production steadily. Thus, Small Hydropower Plant (SHP includes a Kaplan turbine was verified to explore its applicability. This paper concentrates on applying on Artificial Neural Networks (ANNs by approaching of Feed-Forward, Back-Propagation to make performance predictions of the hydropower plant at the Himreen lake dam-Diyala in terms of net turbine head, flow rate of water and power production that data gathered during a research over a 10 year period. The model studies the uncertainties of inputs and output operation and there's a designing to network structure and then trained by means of the entire of 3570 experimental and observed data. Furthermore, ANN offers an analyzing and diagnosing instrument effectively to model performance of the nonlinear plant. The study suggests that the ANN may predict the performance of the plant with a correlation coefficient (R between the variables of predicted and observed output that would be higher than 0.96. Keywords: Himreen Lake Dam, Small Hydropower plants, Artificial Neural Networks, Feed forward-back propagation model, Generation system's prediction
Åkerberg, Ludvig
2017-01-01
The expansion of wind power for electrical energy production has increased in recent years and shows no signs of slowing down. This unpredictable source of energy has contributed to destabilization of the electrical grid causing the energy market prices to vary significantly on a daily basis. For energy producers and consumers to make good investments, methods have been developed to make predictions of wind power production. These methods are often based on machine learning were historical we...
Modeling and Model Predictive Power and Rate Control of Wireless Communication Networks
Directory of Open Access Journals (Sweden)
Cunwu Han
2014-01-01
Full Text Available A novel power and rate control system model for wireless communication networks is presented, which includes uncertainties, input constraints, and time-varying delays in both state and control input. A robust delay-dependent model predictive power and rate control method is proposed, and the state feedback control law is obtained by solving an optimization problem that is derived by using linear matrix inequality (LMI techniques. Simulation results are given to illustrate the effectiveness of the proposed method.
Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M
2011-12-01
This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.
International Nuclear Information System (INIS)
Yesilbudak, Mehmet; Sagiroglu, Seref; Colak, Ilhami
2017-01-01
Highlights: • An accurate wind power prediction model is proposed for very short-term horizon. • The k-nearest neighbor classifier is implemented based on the multi-tupled inputs. • The variation of wind power prediction errors is evaluated in various aspects. • Our approach shows the superior prediction performance over the persistence method. - Abstract: With the growing share of wind power production in the electric power grids, many critical challenges to the grid operators have been emerged in terms of the power balance, power quality, voltage support, frequency stability, load scheduling, unit commitment and spinning reserve calculations. To overcome such problems, numerous studies have been conducted to predict the wind power production, but a small number of them have attempted to improve the prediction accuracy by employing the multidimensional meteorological input data. The novelties of this study lie in the proposal of an efficient and easy to implement very short-term wind power prediction model based on the k-nearest neighbor classifier (kNN), in the usage of wind speed, wind direction, barometric pressure and air temperature parameters as the multi-tupled meteorological inputs and in the comparison of wind power prediction results with respect to the persistence reference model. As a result of the achieved patterns, we characterize the variation of wind power prediction errors according to the input tuples, distance measures and neighbor numbers, and uncover the most influential and the most ineffective meteorological parameters on the optimization of wind power prediction results.
Prediction of reflood behavior for tests with differing axial power shapes using WCOBRA/TRAC
International Nuclear Information System (INIS)
Bajorek, S.M.; Hochreiter, L.E.
1991-01-01
The rector core power shape can vary over the fuel cycle due to load follow, control rod movement, burnup effects and Xenon transients. a best estimate thermal-hydraulic code must be able to accurately predict the reflooding behavior for different axial power shapes in order to find the power shapes effects on the loss-of-coolant peak cladding temperature. Several different reflood heat transfer experiments have been performed at the same or similar PWR reflood conditions with different axial power shapes. These experiments have different rod diameters, were full length, 3.65 m (12 feet) in height, and had simple egg crate grids. The WCOBRA/TRAC code has been used to model several different tests from these three experiments to examine the code's capability to predict the reflood transient for different power shapes, with a consistent model and noding scheme. This paper describes these different experiments, their power shapes, and the test conditions. The WCOBRA/TRAC code is described as well as the noding scheme, and the calculated results will be compared in detail with the test data rod temperatures. An overall assessment of the code's predictions of these experiments is presented
DEFF Research Database (Denmark)
Zong, Yi; Kullmann, Daniel; Thavlov, Anders
2012-01-01
management. It also presents in detail how to implement a thermal model predictive controller (MPC) for the heaters' power consumption prediction in the PowerFlexHouse. It demonstrates that this MPC strategy can realize load shifting, and using good predictions in MPC-based control, a better matching...
Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant
Directory of Open Access Journals (Sweden)
Xiangjie Liu
2014-01-01
Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.
Directory of Open Access Journals (Sweden)
Jiangang Liu
Full Text Available Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of genes with no obvious functional relevance to the biological effect the model intends to predict that can make it challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power Estimation Algorithm (PPEA, which estimates the predictive power of each individual transcript through an iterative two-way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies that: (1 PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small number of iterations, (2 the top ranked transcripts tend to be functionally related to the phenotype they are intended to predict, (3 using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as qRT-PCR as a biomarker, and (4 more importantly, we were able to demonstrate that a small number of genes identified from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and drug responses.
Scholl, Annika; Sassenrath, Claudia; Sassenberg, Kai
2015-01-01
Depending on their motivation, individuals prefer different group contexts for social interactions. The present research sought to provide more insight into this relationship. More specifically, we tested how challenge/threat and a promotion/prevention focus predict attraction to groups with high- or low-power. As such, we examined differential outcomes of threat and prevention focus as well as challenge and promotion focus that have often been regarded as closely related. According to regulatory focus, individuals should prefer groups that they expect to “feel right” for them to join: Low-power groups should be more attractive in a prevention (than a promotion) focus, as these groups suggest security-oriented strategies, which fit a prevention focus. High-power groups should be more attractive in a promotion (rather than a prevention) focus, as these groups are associated with promotion strategies fitting a promotion focus (Sassenberg et al., 2007). In contrast, under threat (vs. challenge), groups that allow individuals to restore their (perceived) lack of control should be preferred: Low-power groups should be less attractive under threat (than challenge) because they provide low resources which threatened individuals already perceive as insufficient and high-power groups might be more attractive under threat (than under challenge), because their high resources allow individuals to restore control. Two experiments (N = 140) supported these predictions. The attractiveness of a group often depends on the motivation to engage in what fits (i.e., prefer a group that feels right in the light of one’s regulatory focus). However, under threat the striving to restore control (i.e., prefer a group allowing them to change the status quo under threat vs. challenge) overrides the fit effect, which may in turn guide individuals’ behavior in social interactions. PMID:25904887
Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.
Rehabilitation after stroke: predictive power of Barthel Index versus a cognitive and a motor index
DEFF Research Database (Denmark)
Engberg, A; Bentzen, L; Garde, B
1995-01-01
The aim of the present study was to investigate the predictive power of ratings of Barthel Index at Day 40 post stroke, compared with and/or combined with simultaneous ratings from a mobility scale (EG motor index) and a rather simple cognitive test scale (CT50). The parameter to be individually...... predicted was the need for special living facilities and support at discharge from a rehabilitation hospital, as well as six months later; 53 stroke patients with age median 68 years were included in this prospective study. It was shown that a combination of Barthel Index and CT50 had a stronger predictive...
Prediction of requirements on labor force in the fuel and power generation sector
International Nuclear Information System (INIS)
Kaveckova, R.
1990-01-01
One of the aspects of socio-economic assessment of development is quantification of the expected requirements on the number of personnel. Predictions are discussed for the period before the year 2005 for solid fuel mining and treatment, gas production and bitumen mining, power and heat generation and also for the production of electricity and heat by nuclear power plants. They are based on an analysis of past development and the present state, on presumed implementation of various concept variants, on the type structure of nuclear power plants, on the rules of the electric power supply system, and also on foreign materials. It is expected that in 2005, nuclear power will employ 15,654 personnel. (M.D.). 4 tabs., 16 refs
Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao
2018-02-01
Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.
Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.
Wooliver, Rachel C; Marion, Zachary H; Peterson, Christopher R; Potts, Brad M; Senior, John K; Bailey, Joseph K; Schweitzer, Jennifer A
2017-08-01
Increasing rates of anthropogenic nitrogen (N) enrichment to soils often lead to the dominance of nitrophilic plant species and reduce plant diversity in natural ecosystems. Yet, we lack a framework to predict which species will be winners or losers in soil N enrichment scenarios, a framework that current literature suggests should integrate plant phylogeny, functional tradeoffs, and nutrient co-limitation. Using a controlled fertilization experiment, we quantified biomass responses to N enrichment for 23 forest tree species within the genus Eucalyptus that are native to Tasmania, Australia. Based on previous work with these species' responses to global change factors and theory on the evolution of plant resource-use strategies, we hypothesized that (1) growth responses to N enrichment are phylogenetically structured, (2) species with more resource-acquisitive functional traits have greater growth responses to N enrichment, and (3) phosphorus (P) limits growth responses to N enrichment differentially across species, wherein P enrichment increases growth responses to N enrichment more in some species than others. We built a hierarchical Bayesian model estimating effects of functional traits (specific leaf area, specific stem density, and specific root length) and P fertilization on species' biomass responses to N, which we then compared between lineages to determine whether phylogeny explains variation in responses to N. In concordance with literature on N limitation, a majority of species responded strongly and positively to N enrichment. Mean responses ranged three-fold, from 6.21 (E. pulchella) to 16.87 (E. delegatensis) percent increases in biomass per g N·m -2 ·yr -1 added. We identified a strong difference in responses to N between two phylogenetic lineages in the Eucalyptus subgenus Symphyomyrtus, suggesting that shared ancestry explains variation in N limitation. However, our model indicated that after controlling for phylogenetic non
Alves, Pedro; Liu, Shuang; Wang, Daifeng; Gerstein, Mark
2018-01-01
Machine learning is an integral part of computational biology, and has already shown its use in various applications, such as prognostic tests. In the last few years in the non-biological machine learning community, ensembling techniques have shown their power in data mining competitions such as the Netflix challenge; however, such methods have not found wide use in computational biology. In this work, we endeavor to show how ensembling techniques can be applied to practical problems, including problems in the field of bioinformatics, and how they often outperform other machine learning techniques in both predictive power and robustness. Furthermore, we develop a methodology of ensembling, Multi-Swarm Ensemble (MSWE) by using multiple particle swarm optimizations and demonstrate its ability to further enhance the performance of ensembles.
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
Research Design and the Predictive Power of Measures of Self-Efficacy
Moriarty, Beverley
2014-01-01
The purpose of this enquiry was to examine how research design impacts on the predictive power of measures of self-efficacy. Three cautions for designing research into self-efficacy drawn from the seminal work of Albert Bandura (1986) and a further caution proposed by the current author together form the analytical framework for this enquiry. For…
Analyzing power in pp scattering at low energies: the Paris potential predictions
International Nuclear Information System (INIS)
Cote, J.; Pires, P.; Tourreil, R. de; Lacombe, M.; Loiseau, B.; Vinh Mau, R.
1979-12-01
Predictions of the Paris potential for the analyzing power in pp scattering at low energies are compared with recent high precision measurements at 6.14MeV and earlier measurements at 10 and 16MeV. Phase shift values are also presented and discussed in view of previous analyses
Ilhan, Tahsin
2012-01-01
This study examined the predictive power of sex roles and attachment styles on loneliness. A total of 188 undergraduate students (114 female, and 74 male) from Gazi University completed the Bem Sex Role Inventory, UCLA Loneliness Scale, and Relationship Scales Questionnaire. Hierarchic Multiple Regression analysis and t-test were used to test…
Rehabilitation after stroke: predictive power of Barthel Index versus a cognitive and a motor index
DEFF Research Database (Denmark)
Engberg, A; Bentzen, L; Garde, B
1995-01-01
The aim of the present study was to investigate the predictive power of ratings of Barthel Index at Day 40 post stroke, compared with and/or combined with simultaneous ratings from a mobility scale (EG motor index) and a rather simple cognitive test scale (CT50). The parameter to be individually...
Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter
DEFF Research Database (Denmark)
Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro
2009-01-01
A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...
Model Predictive Control for Flexible Power Consumption of Large-Scale Refrigeration Systems
DEFF Research Database (Denmark)
Shafiei, Seyed Ehsan; Stoustrup, Jakob; Rasmussen, Henrik
2014-01-01
A model predictive control (MPC) scheme is introduced to directly control the electrical power consumption of large-scale refrigeration systems. Deviation from the baseline of the consumption is corresponded to the storing and delivering of thermal energy. By virtue of such correspondence...
DEFF Research Database (Denmark)
Relaño-Iborra, Helia; May, Tobias; Zaar, Johannes
2016-01-01
A speech intelligibility prediction model is proposed that combines the auditory processing front end of the multi-resolution speech-based envelope power spectrum model [mr-sEPSM; Jørgensen, Ewert, and Dau (2013). J. Acoust. Soc. Am. 134(1), 436–446] with a correlation back end inspired by the sh...
Achievement Motivation Revisited: New Longitudinal Data to Demonstrate Its Predictive Power
Hustinx, Paul W. J.; Kuyper, Hans; van der Werf, Margaretha P. C.; Dijkstra, Pieternel
2009-01-01
During recent decades, the classical one-dimensional concept of achievement motivation has become less popular among motivation researchers. This study aims to revive the concept by demonstrating its predictive power using longitudinal data from two cohort samples, each with 20,000 Dutch secondary school students. Two measures of achievement…
Achievement motivation revisited : New longitudinal data to demonstrate its predictive power
Hustinx, P.W.J.; Kuyper, H.; Van der Werf, M.P.C.; Dijkstra, Pieternel
2009-01-01
During recent decades, the classical one-dimensional concept of achievement motivation has become less popular among motivation researchers. This study aims to revive the concept by demonstrating its predictive power using longitudinal data from two cohort samples, each with 20,000 Dutch secondary
DEFF Research Database (Denmark)
Jiang, Hao; Lin, Jin; Song, Yonghua
2016-01-01
Model predictive control (MPC), that can consider system constraints, is one of the most advanced control technology used nowadays. In power systems, MPC is applied in a way that an optimal control sequence is given every step by an online MPC controller. The main drawback is that the control law...
Prediction of Full-Scale Propulsion Power using Artificial Neural Networks
DEFF Research Database (Denmark)
Pedersen, Benjamin Pjedsted; Larsen, Jan
2009-01-01
Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature from four different loading conditions, together with hind cast data of wind and sea properties; and noon report data has been used to train an Artificial Neural Network for prediction...
Aggression in Primary Schools: The Predictive Power of the School and Home Environment
Kozina, Ana
2015-01-01
In this study, we analyse the predictive power of home and school environment-related factors for determining pupils' aggression. The multiple regression analyses are performed for fourth- and eighth-grade pupils based on the Trends in Mathematics and Science Study (TIMSS) 2007 (N = 8394) and TIMSS 2011 (N = 9415) databases for Slovenia. At the…
Güngör, Semra Kiranli
2016-01-01
The purpose of this study is to identify servant leadership and ethical leadership behaviors of administrators and the prediction power of these behaviors on teachers' job satisfaction according to the views of schoolteachers. This research, figured in accordance with the quantitative research processes. The target population of the research has…
Özdemir, Gökhan; Dalkiran, Esra
2017-01-01
This study, with the aim of identifying the predictive power of the five-factor personality traits of music teacher candidates on individual instrument performance anxiety, was designed according to the relational screening model. The study population was students attending the Music Education branch of Fine Arts Education Departments in…
Directory of Open Access Journals (Sweden)
Yanjun Zhang
2015-01-01
Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.
Directory of Open Access Journals (Sweden)
T. Krings
2011-12-01
Full Text Available Carbon dioxide (CO2 is the most important man-made greenhouse gas (GHG that cause global warming. With electricity generation through fossil-fuel power plants now being the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010, random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP. CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO with an 828-km orbit height, local time ascending node (LTAN of 13:30 (01:30 p.m. LT and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat has the potential to verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1 with a systematic error of less than ~4.9% and a random error of less than ~6.7% for 50% of all the power plants. For 90% of all the power plants, the systematic error was less than ~12.4% and the random error was less than ~13%. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other
Is It Really Self-Control? Examining the Predictive Power of the Delay of Gratification Task
Duckworth, Angela L.; Tsukayama, Eli; Kirby, Teri A.
2013-01-01
This investigation tests whether the predictive power of the delay of gratification task (colloquially known as the “marshmallow test”) derives from its assessment of self-control or of theoretically unrelated traits. Among 56 school-age children in Study 1, delay time was associated with concurrent teacher ratings of self-control and Big Five conscientiousness—but not with other personality traits, intelligence, or reward-related impulses. Likewise, among 966 preschool children in Study 2, delay time was consistently associated with concurrent parent and caregiver ratings of self-control but not with reward-related impulses. While delay time in Study 2 was also related to concurrently measured intelligence, predictive relations with academic, health, and social outcomes in adolescence were more consistently explained by ratings of effortful control. Collectively, these findings suggest that delay task performance may be influenced by extraneous traits, but its predictive power derives primarily from its assessment of self-control. PMID:23813422
Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.
2016-06-01
High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3 + 1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.
Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence
Directory of Open Access Journals (Sweden)
Timo Kropp
2018-05-01
Full Text Available Electroluminescence (EL is a powerful tool for the qualitative mapping of the electronic properties of solar modules, where electronic and electrical defects are easily detected. However, a direct quantitative prediction of electrical module performance purely based on electroluminescence images has yet to be accomplished. Our novel approach, called “EL power prediction of modules” (ELMO as presented here, used just two electroluminescence images to predict the electrical loss of mechanically damaged modules when compared to their original (data sheet power. First, using this method, two EL images taken at different excitation currents were converted into locally resolved (relative series resistance images. From the known, total applied voltage to the module, we were then able to calculate absolute series resistance values and the real distribution of voltages and currents. Then, we reconstructed the complete current/voltage curve of the damaged module. We experimentally validated and confirmed the simulation model via the characterization of a commercially available photovoltaic module containing 60 multicrystalline silicon cells, which were mechanically damaged by hail. Deviation between the directly measured and predicted current/voltage curve was less than 4.3% at the maximum power point. For multiple modules of the same type, the level of error dropped below 1% by calibrating the simulation. We approximated the ideality factor from a module with a known current/voltage curve and then expand the application to modules of the same type. In addition to yielding series resistance mapping, our new ELMO method was also capable of yielding parallel resistance mapping. We analyzed the electrical properties of a commercially available module, containing 72 monocrystalline high-efficiency back contact solar cells, which suffered from potential induced degradation. For this module, we predicted electrical performance with an accuracy of better
Validation of the FAST skating protocol to predict aerobic power in ice hockey players.
Petrella, Nicholas J; Montelpare, William J; Nystrom, Murray; Plyley, Michael; Faught, Brent E
2007-08-01
Few studies have reported a sport-specific protocol to measure the aerobic power of ice hockey players using a predictive process. The purpose of our study was to validate an ice hockey aerobic field test on players of varying ages, abilities, and levels. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol on a course measuring 160 feet (48.8 m) using a CD to pace the skater with a beep signal to cross the starting line at each end of the course. The FAST incorporates the principle of increasing workload at measured time intervals during a continuous skating exercise. Step-wise multiple regression modelling was used to determine the estimate of aerobic power. Participants completed a maximal aerobic power test using a modified Bruce incremental treadmill protocol, as well as the on-ice FAST. Normative data were collected on 406 ice hockey players (291 males, 115 females) ranging in age from 9 to 25 y. A regression to predict maximum aerobic power was developed using body mass (kg), height (m), age (y), and maximum completed lengths of the FAST as the significant predictors of skating aerobic power (adjusted R2 = 0.387, SEE = 7.25 mL.kg-1.min-1, p < 0.0001). These results support the application of the FAST in estimating aerobic power among male and female competitive ice hockey players between the ages of 9 and 25 years.
Method of critical power prediction based on film flow model coupled with subchannel analysis
International Nuclear Information System (INIS)
Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.
1988-01-01
A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)
Tan, R. P.; Carrey, J.; Respaud, M.
2014-12-01
Understanding the influence of dipolar interactions in magnetic hyperthermia experiments is of crucial importance for fine optimization of nanoparticle (NP) heating power. In this study we use a kinetic Monte Carlo algorithm to calculate hysteresis loops that correctly account for both time and temperature. This algorithm is shown to correctly reproduce the high-frequency hysteresis loop of both superparamagnetic and ferromagnetic NPs without any ad hoc or artificial parameters. The algorithm is easily parallelizable with a good speed-up behavior, which considerably decreases the calculation time on several processors and enables the study of assemblies of several thousands of NPs. The specific absorption rate (SAR) of magnetic NPs dispersed inside spherical lysosomes is studied as a function of several key parameters: volume concentration, applied magnetic field, lysosome size, NP diameter, and anisotropy. The influence of these parameters is illustrated and comprehensively explained. In summary, magnetic interactions increase the coercive field, saturation field, and hysteresis area of major loops. However, for small amplitude magnetic fields such as those used in magnetic hyperthermia, the heating power as a function of concentration can increase, decrease, or display a bell shape, depending on the relationship between the applied magnetic field and the coercive/saturation fields of the NPs. The hysteresis area is found to be well correlated with the parallel or antiparallel nature of the dipolar field acting on each particle. The heating power of a given NP is strongly influenced by a local concentration involving approximately 20 neighbors. Because this local concentration strongly decreases upon approaching the surface, the heating power increases or decreases in the vicinity of the lysosome membrane. The amplitude of variation reaches more than one order of magnitude in certain conditions. This transition occurs on a thickness corresponding to approximately
An Optimized Prediction Intervals Approach for Short Term PV Power Forecasting
Directory of Open Access Journals (Sweden)
Qiang Ni
2017-10-01
Full Text Available High quality photovoltaic (PV power prediction intervals (PIs are essential to power system operation and planning. To improve the reliability and sharpness of PIs, in this paper, a new method is proposed, which involves the model uncertainties and noise uncertainties, and PIs are constructed with a two-step formulation. In the first step, the variance of model uncertainties is obtained by using extreme learning machine to make deterministic forecasts of PV power. In the second stage, innovative PI-based cost function is developed to optimize the parameters of ELM and noise uncertainties are quantization in terms of variance. The performance of the proposed approach is examined by using the PV power and meteorological data measured from 1kW rooftop DC micro-grid system. The validity of the proposed method is verified by comparing the experimental analysis with other benchmarking methods, and the results exhibit a superior performance.
International Nuclear Information System (INIS)
Notley, M.J.F.; Kohn, E.
2001-01-01
Power-ramp induced fuel failure is not a problem in the present CANDU reactors. The current empirical correlations that define probability of failure do not agree one-with-another and do not allow extrapolation outside the database. A new methodology, based on physical processes, is presented and compared to data. The methodology calculates the pre-ramp sheath stress and the incremental stress during the ramp, and whether or not there is a defect is predicted based on a failure threshold stress. The proposed model confirms the deductions made by daSilva from an empirical 'fit' to data from the 1988 PNGS power ramp failure incident. It is recommended that daSilvas' correlation be used as reference for OPG (Ontario Power Generation) power reactor fuel, and that extrapolation be performed using the new model. (author)
Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage
Cepowski, Tomasz
2017-06-01
The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.
Simulation research on multivariable fuzzy model predictive control of nuclear power plant
International Nuclear Information System (INIS)
Su Jie
2012-01-01
To improve the dynamic control capabilities of the nuclear power plant, the algorithm of the multivariable nonlinear predictive control based on the fuzzy model was applied in the main parameters control of the nuclear power plant, including control structure and the design of controller in the base of expounding the math model of the turbine and the once-through steam generator. The simulation results show that the respond of the change of the gas turbine speed and the steam pressure under the algorithm of multivariable fuzzy model predictive control is faster than that under the PID control algorithm, and the output value of the gas turbine speed and the steam pressure under the PID control algorithm is 3%-5% more than that under the algorithm of multi-variable fuzzy model predictive control. So it shows that the algorithm of multi-variable fuzzy model predictive control can control the output of the main parameters of the nuclear power plant well and get better control effect. (author)
Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement
Directory of Open Access Journals (Sweden)
Dan Su
2018-01-01
Full Text Available Corrosion is one of the key issues that affect the service life and hinders wide application of steel reinforcement. Moreover, corrosion is a long-term process and not visible for embedded reinforcement. Thus, this research aims at developing a self-powered smart sensor system with integrated innovative prediction module for forecasting corrosion process of embedded steel reinforcement. Vibration-based energy harvester is used to harvest energy for continuous corrosion data collection. Spatial interpolation module was developed to interpolate corrosion data at unmonitored locations. Dynamic prediction module is used to predict the long-term corrosion based on collected data. Utilizing this new sensor network, the corrosion process can be automated predicted and appropriate mitigation actions will be recommended accordingly.
Application of neural networks to signal prediction in nuclear power plant
International Nuclear Information System (INIS)
Wan Joo Kim; Soon Heung Chang; Byung Ho Lee
1993-01-01
This paper describes the feasibility study of an artificial neural network for signal prediction. The purpose of signal prediction is to estimate the value of undetected next time step signal. As the prediction method, based on the idea of auto regression, a few previous signals are inputs to the artificial neural network and the signal value of next time step is estimated with the outputs of the network. The artificial neural network can be applied to the nonlinear system and answers in short time. The training algorithm is a modified backpropagation model, which can effectively reduce the training time. The target signal of the simulation is the steam generator water level, which is one of the important parameters in nuclear power plants. The simulation result shows that the predicted value follows the real trend well
Multivariate power-law models for streamflow prediction in the Mekong Basin
Directory of Open Access Journals (Sweden)
Guillaume Lacombe
2014-11-01
New hydrological insights for the region: A combination of 3–6 explanatory variables – chosen among annual rainfall, drainage area, perimeter, elevation, slope, drainage density and latitude – is sufficient to predict a range of flow metrics with a prediction R-squared ranging from 84 to 95%. The inclusion of forest or paddy percentage coverage as an additional explanatory variable led to slight improvements in the predictive power of some of the low-flow models (lowest prediction R-squared = 89%. A physical interpretation of the model structure was possible for most of the resulting relationships. Compared to regional regression models developed in other parts of the world, this new set of equations performs reasonably well.
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2015-09-01
Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.
Ibrahim, Wael Refaat Anis
The present research involves the development of several fuzzy expert systems for power quality analysis and diagnosis. Intelligent systems for the prediction of abnormal system operation were also developed. The performance of all intelligent modules developed was either enhanced or completely produced through adaptive fuzzy learning techniques. Neuro-fuzzy learning is the main adaptive technique utilized. The work presents a novel approach to the interpretation of power quality from the perspective of the continuous operation of a single system. The research includes an extensive literature review pertaining to the applications of intelligent systems to power quality analysis. Basic definitions and signature events related to power quality are introduced. In addition, detailed discussions of various artificial intelligence paradigms as well as wavelet theory are included. A fuzzy-based intelligent system capable of identifying normal from abnormal operation for a given system was developed. Adaptive neuro-fuzzy learning was applied to enhance its performance. A group of fuzzy expert systems that could perform full operational diagnosis were also developed successfully. The developed systems were applied to the operational diagnosis of 3-phase induction motors and rectifier bridges. A novel approach for learning power quality waveforms and trends was developed. The technique, which is adaptive neuro fuzzy-based, learned, compressed, and stored the waveform data. The new technique was successfully tested using a wide variety of power quality signature waveforms, and using real site data. The trend-learning technique was incorporated into a fuzzy expert system that was designed to predict abnormal operation of a monitored system. The intelligent system learns and stores, in compressed format, trends leading to abnormal operation. The system then compares incoming data to the retained trends continuously. If the incoming data matches any of the learned trends, an
Directory of Open Access Journals (Sweden)
Gimara Rajapakse
2017-10-01
Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.
Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems
DEFF Research Database (Denmark)
Preindl, Matthias; Schaltz, Erik
2011-01-01
The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...
Distributed Model Predictive Control for Active Power Control of Wind Farm
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard
2014-01-01
This paper presents the active power control of a wind farm using the Distributed Model Predictive Controller (D- MPC) via dual decomposition. Different from the conventional centralized wind farm control, multiple objectives such as power reference tracking performance and wind turbine load can...... be considered to achieve a trade-off between them. Additionally, D- MPC is based on communication among the subsystems. Through the interaction among the neighboring subsystems, the global optimization could be achieved, which significantly reduces the computation burden. It is suitable for the modern large......-scale wind farm control....
DEFF Research Database (Denmark)
Hajizadeh, Amin; Shahirinia, Amir
2017-01-01
Investigation of an advanced control structure for integration of Photovoltaic Power Systems through Grid Connected-Modular Multilevel Converter (GC-MMC) is proposed in this paper. To achieve this goal, a non-linear model of MMC regarding considering of negative and positive sequence components has...... been presented. Then, due to existence of unbalance voltage faults in distribution grid, non-linarites and uncertainties in model, model predictive controller which is developed for GC-MMC. They are implemented based upon positive and negative components of voltage and current to mitigate the power...
DEFF Research Database (Denmark)
Choi, Ui-Min; Ma, Ke; Blaabjerg, Frede
2018-01-01
In this paper, the lifetime prediction of power device modules based on the linear damage accumulation is studied in conjunction with simple mission profiles of converters. Superimposed power cycling conditions, which are called simple mission profiles in this paper, are made based on a lifetime ...... prediction of IGBT modules under power converter applications.......In this paper, the lifetime prediction of power device modules based on the linear damage accumulation is studied in conjunction with simple mission profiles of converters. Superimposed power cycling conditions, which are called simple mission profiles in this paper, are made based on a lifetime...... model in respect to junction temperature swing duration. This model has been built based on 39 power cycling test results of 600-V 30-A three-phase-molded IGBT modules. Six tests are performed under three superimposed power cycling conditions using an advanced power cycling test setup. The experimental...
Directory of Open Access Journals (Sweden)
Akça Firat
2014-07-01
Full Text Available The aim of this research was to develop different regression models to predict 2000 m rowing ergometer performance with the use of anthropometric, anaerobic and strength variables and to determine how precisely the prediction models constituted by different variables predict performance, when conducted together in the same equation or individually. 38 male collegiate rowers (20.17 ± 1.22 years participated in this study. Anthropometric, strength, 2000 m maximal rowing ergometer and rowing anaerobic power tests were applied. Multiple linear regression procedures were employed in SPSS 16 to constitute five different regression formulas using a different group of variables. The reliability of the regression models was expressed by R2 and the standard error of estimate (SEE. Relationships of all parameters with performance were investigated through Pearson correlation coefficients. The prediction model using a combination of anaerobic, strength and anthropometric variables was found to be the most reliable equation to predict 2000 m rowing ergometer performance (R2 = 0.92, SEE= 3.11 s. Besides, the equation that used rowing anaerobic and strength test results also provided a reliable prediction (R2 = 0.85, SEE= 4.27 s. As a conclusion, it seems clear that physiological determinants which are affected by anaerobic energy pathways should also get involved in the processes and models used for performance prediction and talent identification in rowing.
A review on the young history of the wind power short-term prediction
DEFF Research Database (Denmark)
Costa, A.; Crespo, A.; Navarro, J.
2008-01-01
This paper makes a brief review on 30 years of history of the wind power short-term prediction, since the first ideas and sketches on the theme to the actual state of the art oil models and tools, giving emphasis to the most significant proposals and developments. The two principal lines of thought...... on short-term prediction (mathematical and physical) are indistinctly treated here and comparisons between models and tools are avoided, mainly because, on the one hand, a standard for a measure of performance is still not adopted and, on the other hand, it is very important that the data are exactly...
PID and predictive control of electrical drives and power converters using MATLAB/Simulink
Wang, Liuping; Yoo, Dae; Gan, Lu; Ng, Ki
2015-01-01
A timely introduction to current research on PID and predictive control by one of the leading authors on the subject PID and Predictive Control of Electric Drives and Power Supplies using MATLAB/Simulink examines the classical control system strategies, such as PID control, feed-forward control and cascade control, which are widely used in current practice. The authors share their experiences in actual design and implementation of the control systems on laboratory test-beds, taking the reader from the fundamentals through to more sophisticated design and analysis. The book contains secti
Predicting the radioactive contamination of the surroundings near a nuclear power plant
Energy Technology Data Exchange (ETDEWEB)
Khristova, M; Paskalev, Z
1975-01-01
Predicting the radioactive contamination requires determining the concentration of radioactive material emitted from the stack of a nuclear power plant into the air and deposited on the earth's surface. The main factors determining the degree of contamination are the distance from the stack, the wind velocity and air turbulence. Formulas are presented for predicting the amount of radioactivity as a function of the initial concentration of activity, the distance from the stack and the meteorological condition. Formulas are given for the maximum deposition of radioactive aerosols at a distance R from the stack under wet and dry condtions. 2 refs. (SJR)
Directory of Open Access Journals (Sweden)
Jochen Wöhrle
Full Text Available It is not known whether biomarkers of hemodynamic stress, myocardial necrosis, and renal function might predict adverse outcome in patients undergoing percutaneous repair of severe mitral valve insufficiency. Thus, we aimed to assess the predictive value of various established and emerging biomarkers for major adverse cardiovascular events (MACE in these patients.Thirty-four patients with symptomatic severe mitral valve insufficiency with a mean STS-Score for mortality of 12.6% and a mean logistic EuroSCORE of 19.7% undergoing MitraClip therapy were prospectively included in this study. Plasma concentrations of mid regional-proatrial natriuretic peptide (MR-proANP, Cystatin C, high-sensitive C-reactive protein (hsCRP, high-sensitive troponin T (hsTnT, N-terminal B-type natriuretic peptide (NT-proBNP, galectin-3, and soluble ST-2 (interleukin 1 receptor-like 1 were measured directly before procedure. MACE was defined as cardiovascular death and hospitalization for heart failure (HF.During a median follow-up of 211 days (interquartile range 133 to 333 days, 9 patients (26.5% experienced MACE (death: 7 patients, rehospitalization for HF: 2 patients. Thirty day MACE-rate was 5.9% (death: 2 patients, no rehospitalization for HF. Baseline concentrations of hsTnT (Median 92.6 vs 25.2 ng/L, NT-proBNP (Median 11251 vs 1974 pg/mL and MR-proANP (Median 755.6 vs 318.3 pmol/L, all p<0.001 were clearly higher in those experiencing an event vs event-free patients, while other clinical variables including STS-Score and logistic EuroSCORE did not differ significantly. In Kaplan-Meier analyses, NT-proBNP and in particular hsTnT and MR-proANP above the median discriminated between those experiencing an event vs event-free patients. This was further corroborated by C-statistics where areas under the ROC curve for prediction of MACE using the respective median values were 0.960 for MR-proANP, 0.907 for NT-proBNP, and 0.822 for hsTnT.MR-proANP and hsTnT strongly
Energy Technology Data Exchange (ETDEWEB)
Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu [University of Michigan, Department of Astronomy, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States)
2016-11-20
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.
Restricted conformal invariance in QCD and its predictive power for virtual two-photon processes
Müller, D
1998-01-01
The conformal algebra provides powerful constraints, which guarantee that renormalized conformally covariant operators exist in the hypothetical conformal limit of the theory, where the $\\beta$-function vanishes. Thus, in this limit also the conformally covariant operator product expansion on the light cone holds true. This operator product expansion has predictive power for two-photon processes in the generalized Bjorken region. Only the Wilson coefficients and the anomalous dimensions that are known from deep inelastic scattering are required for the prediction of all other two-photon processes in terms of the process-dependent off-diagonal expectation values of conformal operators. It is checked that the next-to-leading order calculations for the flavour non-singlet meson transition form factors are consistent with the corrections to the corresponding Wilson coefficients in deep inelasitic scattering.
Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components
Energy Technology Data Exchange (ETDEWEB)
Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc
2017-06-27
The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.
Prediction and attendance of Angra 2 nuclear power plant cycle extension
International Nuclear Information System (INIS)
Dias, Amory; Ferreira Junior, Decio Brandes M.; Morgado, Mario Monteiro; Santos, Barbara Oliveira dos; Oliveira, Monica Georgia Nunes
2007-01-01
The Report Project Nuclear and Thermohydraulic (RPNT) of the Nuclear Power Plant Angra 2 previews extension of the cycle, using a feedback of core reactor reactivity, through the reduction of the moderator average temperature and power. In this phase, the reactor power remains almost invariable. Furthermore, the extension of cycle can be stretch after the limit of the temperature reduction has been reached, through of reactor power fall until the determined date for the end cycle and the start outage for the next cycle. The proposal of this work is to show the Power Plant results during the phase of moderator temperature reduction and to compare with the predict values obtained from reactivity balance calculation methodology used for the Reactor Physics. In general, the results of this work can collaborate for the extension behavior evaluation of the cycles of the Nuclear Power Plant 2, being used the procedure of cooling reduction average temperature, as well as, it will also collaborate for methodology qualification applied for the Reactor Physics during the reactivity balance calculation. (author)
Artificial Neural Networks to Predict the Power Output of a PV Panel
Directory of Open Access Journals (Sweden)
Valerio Lo Brano
2014-01-01
Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.
Short-term load and wind power forecasting using neural network-based prediction intervals.
Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas
2014-02-01
Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.
Comparison of Comet Enflow and VA One Acoustic-to-Structure Power Flow Predictions
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software based on the Energy Finite Element Analysis (EFEA). In this method the same finite element mesh used for structural and acoustic analysis can be employed for the high frequency solutions. Comet Enflow is being validated for a floor-equipped composite cylinder by comparing the EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) results from the commercial software program VA One from ESI Group. Early in this program a number of discrepancies became apparent in the Enflow predicted response for the power flow from an acoustic space to a structural subsystem. The power flow anomalies were studied for a simple cubic, a rectangular and a cylindrical structural model connected to an acoustic cavity. The current investigation focuses on three specific discrepancies between the Comet Enflow and the VA One predictions: the Enflow power transmission coefficient relative to the VA One coupling loss factor; the importance of the accuracy of the acoustic modal density formulation used within Enflow; and the recommended use of fast solvers in Comet Enflow. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 16 Hz to 4000 Hz.
Adaptive on-line prediction of the available power of lithium-ion batteries
Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe
2013-11-01
In this paper a new approach for prediction of the available power of a lithium-ion battery pack is presented. It is based on a nonlinear battery model that includes current dependency of the battery resistance. It results in an accurate power prediction not only at room temperature, but also at lower temperatures at which the current dependency is substantial. The used model parameters are fully adaptable on-line to the given state of the battery (state of charge, state of health, temperature). This on-line adaption in combination with an explicit consideration of differences between characteristics of individual cells in a battery pack ensures an accurate power prediction under all possible conditions. The proposed trade-off between the number of used cell parameters and the total accuracy as well as the optimized algorithm results in a real-time capability of the method, which is demonstrated on a low-cost 16 bit microcontroller. The verification tests performed on a software-in-the-loop test bench system with four 40 Ah lithium-ion cells show promising results.
Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power
Directory of Open Access Journals (Sweden)
Mashud Rana
2016-10-01
Full Text Available Solar energy generated from PhotoVoltaic (PV systems is one of the most promising types of renewable energy. However, it is highly variable as it depends on the solar irradiance and other meteorological factors. This variability creates difficulties for the large-scale integration of PV power in the electricity grid and requires accurate forecasting of the electricity generated by PV systems. In this paper we consider 2D-interval forecasts, where the goal is to predict summary statistics for the distribution of the PV power values in a future time interval. 2D-interval forecasts have been recently introduced, and they are more suitable than point forecasts for applications where the predicted variable has a high variability. We propose a method called NNE2D that combines variable selection based on mutual information and an ensemble of neural networks, to compute 2D-interval forecasts, where the two interval boundaries are expressed in terms of percentiles. NNE2D was evaluated for univariate prediction of Australian solar PV power data for two years. The results show that it is a promising method, outperforming persistence baselines and other methods used for comparison in terms of accuracy and coverage probability.
Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Wang, Jianhui
2017-01-01
This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio...... of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate...... the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme....
Hierarchical model-based predictive control of a power plant portfolio
DEFF Research Database (Denmark)
Edlund, Kristian; Bendtsen, Jan Dimon; Jørgensen, John Bagterp
2011-01-01
One of the main difficulties in large-scale implementation of renewable energy in existing power systems is that the production from renewable sources is difficult to predict and control. For this reason, fast and efficient control of controllable power producing units – so-called “portfolio...... design for power system portfolio control, which aims specifically at meeting these demands.The design involves a two-layer hierarchical structure with clearly defined interfaces that facilitate an object-oriented implementation approach. The same hierarchical structure is reflected in the underlying...... optimisation problem, which is solved using Dantzig–Wolfe decomposition. This decomposition yields improved computational efficiency and better scalability compared to centralised methods.The proposed control scheme is compared to an existing, state-of-the-art portfolio control system (operated by DONG Energy...
How Many Model Evaluations Are Required To Predict The AEP Of A Wind Power Plant?
DEFF Research Database (Denmark)
Murcia Leon, Juan Pablo; Réthoré, Pierre-Elouan; Natarajan, Anand
2015-01-01
(AEP) predictions expensive. The objective of the present paper is to minimize the number of model evaluations required to capture the wind power plant's AEP using stationary wind farm flow models. Polynomial chaos techniques are proposed based on arbitrary Weibull distributed wind speed and Von Misses...... distributed wind direction. The correlation between wind direction and wind speed are captured by defining Weibull-parameters as functions of wind direction. In order to evaluate the accuracy of these methods the expectation and variance of the wind farm power distributions are compared against...... the traditional binning method with trapezoidal and Simpson's integration rules. The wind farm flow model used in this study is the semi-empirical wake model developed by Larsen [1]. Three test cases are studied: a single turbine, a simple and a real offshore wind power plant. A reduced number of model...
Power Prediction Model for Turning EN-31 Steel Using Response Surface Methodology
Directory of Open Access Journals (Sweden)
M. Hameedullah
2010-01-01
Full Text Available Power consumption in turning EN-31 steel (a material that is most extensively used in automotive industry with tungstencarbide tool under different cutting conditions was experimentally investigated. The experimental runs were planned accordingto 24+8 added centre point factorial design of experiments, replicated thrice. The data collected was statisticallyanalyzed using Analysis of Variance technique and first order and second order power consumption prediction models weredeveloped by using response surface methodology (RSM. It is concluded that second-order model is more accurate than thefirst-order model and fit well with the experimental data. The model can be used in the automotive industries for decidingthe cutting parameters for minimum power consumption and hence maximum productivity
Power-Controlled MAC Protocols with Dynamic Neighbor Prediction for Ad hoc Networks
Institute of Scientific and Technical Information of China (English)
LI Meng; ZHANG Lin; XIAO Yong-kang; SHAN Xiu-ming
2004-01-01
Energy and bandwidth are the scarce resources in ad hoc networks because most of the mobile nodes are battery-supplied and share the exclusive wireless medium. Integrating the power control into MAC protocol is a promising technique to fully exploit these precious resources of ad hoc wireless networks. In this paper, a new intelligent power-controlled Medium Access Control (MAC) (iMAC) protocol with dynamic neighbor prediction is proposed. Through the elaborate design of the distributed transmit-receive strategy of mobile nodes, iMAC greatly outperforms the prevailing IEEE 802.11 MAC protocols in not only energy conservation but also network throughput. Using the Dynamic Neighbor Prediction (DNP), iMAC performs well in mobile scenes. To the best of our knowledge, iMAC is the first protocol that considers the performance deterioration of power-controlled MAC protocols in mobile scenes and then proposes a solution. Simulation results indicate that DNP is important and necessary for power-controlled MAC protocols in mobile ad hoc networks.
Conceptual Software Reliability Prediction Models for Nuclear Power Plant Safety Systems
International Nuclear Information System (INIS)
Johnson, G.; Lawrence, D.; Yu, H.
2000-01-01
The objective of this project is to develop a method to predict the potential reliability of software to be used in a digital system instrumentation and control system. The reliability prediction is to make use of existing measures of software reliability such as those described in IEEE Std 982 and 982.2. This prediction must be of sufficient accuracy to provide a value for uncertainty that could be used in a nuclear power plant probabilistic risk assessment (PRA). For the purposes of the project, reliability was defined to be the probability that the digital system will successfully perform its intended safety function (for the distribution of conditions under which it is expected to respond) upon demand with no unintended functions that might affect system safety. The ultimate objective is to use the identified measures to develop a method for predicting the potential quantitative reliability of a digital system. The reliability prediction models proposed in this report are conceptual in nature. That is, possible prediction techniques are proposed and trial models are built, but in order to become a useful tool for predicting reliability, the models must be tested, modified according to the results, and validated. Using methods outlined by this project, models could be constructed to develop reliability estimates for elements of software systems. This would require careful review and refinement of the models, development of model parameters from actual experience data or expert elicitation, and careful validation. By combining these reliability estimates (generated from the validated models for the constituent parts) in structural software models, the reliability of the software system could then be predicted. Modeling digital system reliability will also require that methods be developed for combining reliability estimates for hardware and software. System structural models must also be developed in order to predict system reliability based upon the reliability
Some Comparisons of Measured and Predicted Primary Radiation Levels in the Aagesta Power Plant
Energy Technology Data Exchange (ETDEWEB)
Aalto, E; Sandlin, R; Krell, Aa
1968-05-15
Neutron fluxes and gamma exposure rates in the primary shields of the Aagesta nuclear plant have been measured and the results compared with values predicted during shield design, and with values obtained later by the NRN bulk shielding code. The input data for the problems are given. The radial predictions are conservative by a factor of not more than 2 close to the reactor and by an unknown, higher factor further out. The conservatism is explainable by the differences between the true local conditions and core power distributions and those assumed in the predictions. The axial flux levels based on streaming calculations are found to agree quite well with the estimated values. The conservatism here is not so large and it seems to be necessary to be very careful when handling streaming problems. The experience gained shows that a power plant is less suitable for studying the accuracy of the shield design codes as such, but the practical results from the combined application of massive shield codes and void streaming predictions to complicated problems give information about the true degree of conservatism present.
Computerized heat balance models to predict performance of operating nuclear power plants
International Nuclear Information System (INIS)
Breeding, C.L.; Carter, J.C.; Schaefer, R.C.
1983-01-01
The use of computerized heat balance models has greatly enhanced the decision making ability of TVA's Division of Nuclear Power. These models are utilized to predict the effects of various operating modes and to analyze changes in plant performance resulting from turbine cycle equipment modifications with greater speed and accuracy than was possible before. Computer models have been successfully used to optimize plant output by predicting the effects of abnormal condenser circulating water conditions. They were utilized to predict the degradation in performance resulting from installation of a baffle plate assembly to replace damaged low-pressure blading, thereby providing timely information allowing an optimal economic judgement as to when to replace the blading. Future use will be for routine performance test analysis. This paper presents the benefits of utility use of computerized heat balance models
Data Analytics Based Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler
Directory of Open Access Journals (Sweden)
Zhenhao Tang
2017-01-01
Full Text Available To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptive model predictive control (DoAMPC method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature, the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the requirements of the real production process.
Steves, Claire J; Mehta, Mitul M; Jackson, Stephen H D; Spector, Tim D
2016-01-01
Many observational studies have shown a protective effect of physical activity on cognitive ageing, but interventional studies have been less convincing. This may be due to short time scales of interventions, suboptimal interventional regimes or lack of lasting effect. Confounding through common genetic and developmental causes is also possible. We aimed to test whether muscle fitness (measured by leg power) could predict cognitive change in a healthy older population over a 10-year time interval, how this performed alongside other predictors of cognitive ageing, and whether this effect was confounded by factors shared by twins. In addition, we investigated whether differences in leg power were predictive of differences in brain structure and function after 12 years of follow-up in identical twin pairs. A total of 324 healthy female twins (average age at baseline 55, range 43-73) performed the Cambridge Neuropsychological Test Automated Battery (CANTAB) at two time points 10 years apart. Linear regression modelling was used to assess the relationships between baseline leg power, physical activity and subsequent cognitive change, adjusting comprehensively for baseline covariates (including heart disease, diabetes, blood pressure, fasting blood glucose, lipids, diet, body habitus, smoking and alcohol habits, reading IQ, socioeconomic status and birthweight). A discordant twin approach was used to adjust for factors shared by twins. A subset of monozygotic pairs then underwent magnetic resonance imaging. The relationship between muscle fitness and brain structure and function was assessed using linear regression modelling and paired t tests. A striking protective relationship was found between muscle fitness (leg power) and both 10-year cognitive change [fully adjusted model standardised β-coefficient (Stdβ) = 0.174, p = 0.002] and subsequent total grey matter (Stdβ = 0.362, p = 0.005). These effects were robust in discordant twin analyses, where within
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
Predicting the long tail of book sales: Unearthing the power-law exponent
Fenner, Trevor; Levene, Mark; Loizou, George
2010-06-01
The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.
Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.
2008-09-01
The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.
Energy Technology Data Exchange (ETDEWEB)
Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Sokhan, Vlad P. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Crain, Jason [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Martyna, Glenn J. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States)
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a
International Nuclear Information System (INIS)
Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.
2016-01-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
Shi, Junxin; Shen, Jiabin; Caupp, Sarah; Wang, Angela; Nuss, Kathryn E; Kenney, Brian; Wheeler, Krista K; Lu, Bo; Xiang, Henry
2018-05-02
An accurate injury severity measurement is essential for the evaluation of pediatric trauma care and outcome research. The traditional Injury Severity Score (ISS) does not consider the differential risks of the Abbreviated Injury Scale (AIS) from different body regions nor is it pediatric specific. The objective of this study was to develop a weighted injury severity scoring (wISS) system for pediatric blunt trauma patients with better predictive power than ISS. Based on the association between mortality and AIS from each of the six ISS body regions, we generated different weights for the component AIS scores used in the calculation of ISS. The weights and wISS were generated using the National Trauma Data Bank (NTDB). The Nationwide Emergency Department Sample (NEDS) was used to validate our main results. Pediatric blunt trauma patients less than 16 years were included, and mortality was the outcome. Discrimination (areas under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, concordance) and calibration (Hosmer-Lemeshow statistic) were compared between the wISS and ISS. The areas under the receiver operating characteristic curves from the wISS and ISS are 0.88 vs. 0.86 in ISS=1-74 and 0.77 vs. 0.64 in ISS=25-74 (ppredictive value, negative predictive value, and concordance when they were compared at similar levels of sensitivity. The wISS had better calibration (smaller Hosmer-Lemeshow statistic) than the ISS (11.6 versus 19.7 for ISS=1-74 and 10.9 versus 12.6 for ISS= 25-74). The wISS showed even better discrimination with the NEDS. By weighting the AIS from different body regions, the wISS had significantly better predictive power for mortality than the ISS, especially in critically injured children.Level of Evidence and study typeLevel IV Prognostic/Epidemiological.
ANN-based wavelet analysis for predicting electrical signal from photovoltaic power supply system
Energy Technology Data Exchange (ETDEWEB)
Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics
2007-07-01
This study was conducted to predict different electrical signals from a photovoltaic power supply system (PVPS) using an artificial neural networks (ANN) with wavelet analysis. It involved the creation of a database of electrical signals (PV-generator current, voltage, battery current voltage, regulator current and voltage) obtained from an experimental PVPS system installed in the south of Algeria. The potential applications were for sizing and analyzing the performance of PVPS systems; control of maximum power point tracker (MPPT) in order to deliver the maximum energy from the PV-array; prediction of the optimal configuration (PV-array and battery sizing) of PVPS systems; expert configuration of PV-systems; faults diagnosis; supervision; and, control and monitoring. First, based on the wavelet analysis each electrical signal was mapped in several time frequency domains. The PV-system was then divided into 3-subsystems corresponding to ANN-PV generator model, ANN-battery model, and ANN-regulator model. An example of day-by-day prediction for each electrical signal was presented. The results of the proposed approach were in good agreement with experimental results. In addition, the accuracy of the proposed approach was more satisfactory when only ANN was used. It was concluded that this methodology offers the possibility of developing a new expert configuration of PVPS by implementing the soft computing ANN-wavelet program with a digital signal processing (DSP) circuit. 26 refs., 1 tab., 5 figs.
Wind power application research on the fusion of the determination and ensemble prediction
Lan, Shi; Lina, Xu; Yuzhu, Hao
2017-07-01
The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.
Computational models for residual creep life prediction of power plant components
International Nuclear Information System (INIS)
Grewal, G.S.; Singh, A.K.; Ramamoortry, M.
2006-01-01
All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)
DEFF Research Database (Denmark)
Lashab, Abderezak; Sera, Dezso; Guerrero, Josep M.
2018-01-01
The main objective of this work is to provide an overview and evaluation of discrete model predictive controlbased maximum power point tracking (MPPT) for PV systems. A large number of MPC based MPPT methods have been recently introduced in the literature with very promising performance, however......, an in-depth investigation and comparison of these methods have not been carried out yet. Therefore, this paper has set out to provide an in-depth analysis and evaluation of MPC based MPPT methods applied to various common power converter topologies. The performance of MPC based MPPT is directly linked...... with the converter topology, and it is also affected by the accurate determination of the converter parameters, sensitivity to converter parameter variations is also investigated. The static and dynamic performance of the trackers are assessed according to the EN 50530 standard, using detailed simulation models...
Application of an estimation model to predict future transients at US nuclear power plants
International Nuclear Information System (INIS)
Hallbert, B.P.; Blackman, H.S.
1987-01-01
A model developed by R.A. Fisher was applied to a set of Licensee Event Reports (LERs) summarizing transient initiating events at US commercial nuclear power plants. The empirical Bayes model was examined to study the feasibility of estimating the number of categories of transients which have not yet occurred at nuclear power plants. An examination of the model's predictive ability using an existing sample of data provided support for use of the model to estimate future transients. The estimate indicates that an approximate fifteen percent increase in the number of categories of transient initiating events may be expected during the period 1983--1993, assuming a stable process of transients. Limitations of the model and other possible applications are discussed. 10 refs., 1 fig., 3 tabs
Model Predictive Control of Offshore Power Stations With Waste Heat Recovery
DEFF Research Database (Denmark)
Pierobon, Leonardo; Chan, Richard; Li, Xiangan
2016-01-01
The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...... control (MPC) coupled with a steady-state performance optimizer has been developed in the SIMULINK language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic...... Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40%for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on...
Distributed Model Predictive Load Frequency Control of Multi-area Power System with DFIGs
Institute of Scientific and Technical Information of China (English)
Yi Zhang; Xiangjie Liu; Bin Qu
2017-01-01
Reliable load frequency control(LFC) is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control(DMPC) based on coordination scheme.The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The generation rate constraints(GRCs), load disturbance changes, and the wind speed constraints are considered. Furthermore, the DMPC algorithm may reduce the impact of the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and without the participation of the wind turbines is carried out. Analysis and simulation results show possible improvements on closed–loop performance, and computational burden with the physical constraints.
How Many Model Evaluations Are Required To Predict The AEP Of A Wind Power Plant?
International Nuclear Information System (INIS)
Murcia, J P; Réthoré, P E; Natarajan, A; Sørensen, J D
2015-01-01
Wind farm flow models have advanced considerably with the use of large eddy simulations (LES) and Reynolds averaged Navier-Stokes (RANS) computations. The main limitation of these techniques is their high computational time requirements; which makes their use for wind farm annual energy production (AEP) predictions expensive. The objective of the present paper is to minimize the number of model evaluations required to capture the wind power plant's AEP using stationary wind farm flow models. Polynomial chaos techniques are proposed based on arbitrary Weibull distributed wind speed and Von Misses distributed wind direction. The correlation between wind direction and wind speed are captured by defining Weibull-parameters as functions of wind direction. In order to evaluate the accuracy of these methods the expectation and variance of the wind farm power distributions are compared against the traditional binning method with trapezoidal and Simpson's integration rules.The wind farm flow model used in this study is the semi-empirical wake model developed by Larsen [1]. Three test cases are studied: a single turbine, a simple and a real offshore wind power plant. A reduced number of model evaluations for a general wind power plant is proposed based on the convergence of the present method for each case. (paper)
A Study of Performance in Low-Power Tokamak Reactor with Integrated Predictive Modeling Code
International Nuclear Information System (INIS)
Pianroj, Y.; Onjun, T.; Suwanna, S.; Picha, R.; Poolyarat, N.
2009-07-01
Full text: A fusion hybrid or a small fusion power output with low power tokamak reactor is presented as another useful application of nuclear fusion. Such tokamak can be used for fuel breeding, high-level waste transmutation, hydrogen production at high temperature, and testing of nuclear fusion technology components. In this work, an investigation of the plasma performance in a small fusion power output design is carried out using the BALDUR predictive integrated modeling code. The simulations of the plasma performance in this design are carried out using the empirical-based Mixed Bohm/gyro Bohm (B/gB) model, whereas the pedestal temperature model is based on magnetic and flow shear (δ α ρ ζ 2 ) stabilization pedestal width scaling. The preliminary results using this core transport model show that the central ion and electron temperatures are rather pessimistic. To improve the performance, the optimization approach are carried out by varying some parameters, such as plasma current and power auxiliary heating, which results in some improvement of plasma performance
Model Predictive Control of Power Converters for Robust and Fast Operation of AC Microgrids
DEFF Research Database (Denmark)
Dragicevic, Tomislav
2018-01-01
the load power at the same time. Those functionalities are conventionally achieved by hierarchical linear control loops. However, they have limited transient response and high sensitivity to parameter variations. This paper aims to mitigate these problems by firstly introducing an improvement of the FCS......This paper proposes the application of a finite control set model predictive control (FCS-MPC) strategy in standalone ac microgrids (MGs). AC MGs are usually built from two or more voltage source converters (VSCs) which can regulate the voltage at the point of common coupling, while sharing......-MPC strategy for a single VSC based on tracking of derivative of the voltage reference trajectory. Using only a single step prediction horizon, the proposed strategy exhibits low computational expense but provides steady state performance comparable to PWM, while its transient response and robustness...
Energy Technology Data Exchange (ETDEWEB)
Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van' t [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)
2012-03-15
Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.
Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A
2012-03-15
To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright Â© 2012 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Knee, H.E.; Haas, P.M.; Siegel, A.I.
1981-01-01
Human errors committed during maintenance activities are potentially a major contribution to the overall risk associated with the operation of a nuclear power plant (NPP). An NRC-sponsored program at Oak Ridge National Laboratory is attempting to develop a quantitative predictive technique to evaluate the contribution of maintenance errors to the overall NPP risk. The current work includes a survey of the requirements of potential users to ascertain the need for and content of the proposed quantitative model, plus an initial job/task analysis to determine the scope and applicability of various maintenance tasks. In addition, existing human reliability prediction models are being reviewed and assessed with respect to their applicability to NPP maintenance tasks. This paper discusses the status of the program and summarizes the results to date
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Edlund, Kristian
2012-01-01
. In this paper we describe a novel economic-optimizing Model Predictive Control (MPC) scheme that reduces operating costs by utilizing the thermal storage capabilities. A nonlinear optimization tool to handle a non-convex cost function is utilized for simulations with validated scenarios. In this way we...... explicitly address advantages from daily variations in outdoor temperature and electricity prices. Secondly, we formulate a new cost function that enables the refrigeration system to contribute with ancillary services to the balancing power market. This involvement can be economically beneficial...... of the system models allows us to describe and handle model as well as prediction uncertainties in this framework. This means we can demonstrate means for robustifying the performance of the controller....
Prediction of critical flow rates through power-operated relief valves
International Nuclear Information System (INIS)
Abdollahian, D.; Singh, A.
1983-01-01
Existing single-phase and two-phase critical flow models are used to predict the flow rates through the power-operated relief valves tested in the EPRI Safety and Relief Valve test program. For liquid upstream conditions, Homogeneous Equilibrium Model, Moody, Henry-Fauske and Burnell two-phase critical flow models are used for comparison with data. Under steam upstream conditions, the flow rates are predicted either by the single-phase isentropic equations or the Homogeneous Equilibrium Model, depending on the thermodynamic condition of the fluid at the choking plane. The results of the comparisons are used to specify discharge coefficients for different valves under steam and liquid upstream conditions and evaluate the existing approximate critical flow relations for a wide range of subcooled water and steam conditions
International Nuclear Information System (INIS)
Xu Chengjian; Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van’t
2012-01-01
Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.
Comparison of LOFT zero power physics testing measurement results with predicted values
International Nuclear Information System (INIS)
Rushton, B.L.; Howe, T.M.
1978-01-01
The results of zero power physics testing measurements in LOFT have been evaluated to assess the adequacy of the physics data used in the safety analyses performed for the LOFT FSAR and Technical Specifications. Comparisons of measured data with computed data were made for control rod worths, temperature coefficients, boron worths, and pressure coefficients. Measured boron concentrations at exact critical points were compared with predicted concentrations. Based on these comparisons, the reactivity parameter values used in the LOFT safety analyses were assessed for conservatism
DEFF Research Database (Denmark)
Ohlrich, Mogens
2011-01-01
of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan......Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source...
Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems
DEFF Research Database (Denmark)
Preindl, Matthias; Schaltz, Erik
2010-01-01
In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...
Prediction of accident sequence probabilities in a nuclear power plant due to earthquake events
International Nuclear Information System (INIS)
Hudson, J.M.; Collins, J.D.
1980-01-01
This paper presents a methodology to predict accident probabilities in nuclear power plants subject to earthquakes. The resulting computer program accesses response data to compute component failure probabilities using fragility functions. Using logical failure definitions for systems, and the calculated component failure probabilities, initiating event and safety system failure probabilities are synthesized. The incorporation of accident sequence expressions allows the calculation of terminal event probabilities. Accident sequences, with their occurrence probabilities, are finally coupled to a specific release category. A unique aspect of the methodology is an analytical procedure for calculating top event probabilities based on the correlated failure of primary events
Søe-Knudsen, Alf; Sorokin, Sergey
2011-06-01
This rapid communication is concerned with justification of the 'rule of thumb', which is well known to the community of users of the finite element (FE) method in dynamics, for the accuracy assessment of the wave finite element (WFE) method. An explicit formula linking the size of a window in the dispersion diagram, where the WFE method is trustworthy, with the coarseness of a FE mesh employed is derived. It is obtained by the comparison of the exact Pochhammer-Chree solution for an elastic rod having the circular cross-section with its WFE approximations. It is shown that the WFE power flow predictions are also valid within this window.
Aging predictions in nuclear power plants: Crosslinked polyolefin and EPR cable insulation materials
International Nuclear Information System (INIS)
Gillen, K.T.; Clough, R.L.
1991-06-01
In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs
Prediction of crack coalescence of steam generator tubes in nuclear power plants
International Nuclear Information System (INIS)
Abou-Hanna, Jeries; McGreevy, Timothy E.; Majumdar, Saurin
2004-01-01
Prediction of failure pressures of cracked steam generator tubes of nuclear power plants is an important ingredient in scheduling inspection and repair of tubes. Prediction is usually based on nondestructive evaluation (NDE) of cracks. NDE often reveals two neighboring cracks. If the cracks interact, the tube pressure under which the ligament between the two cracks fails could be much lower than the critical burst pressure of an individual equivalent crack. The ability to accurately predict the ligament failure pressure, called ''coalescence pressure,'' is important. The failure criterion was established by nonlinear finite element model (FEM) analyses of coalescence of two 100% through-wall collinear cracks. The ligament failure is precipitated by local instability of the ligament under plane strain conditions. As a result of this local instability, the ligament thickness in the radial direction decreases abruptly with pressure. Good correlation of FEM analysis results with experimental data obtained at Argonne National Laboratory's Energy Technology Division demonstrated that nonlinear FEM analyses are capable of predicting the coalescence pressure accurately for 100% through-wall cracks. This failure criterion and FEA work have been extended to axial cracks of varying ligament width, crack length, and cases where cracks are offset by axial or circumferential ligaments
Power Transformer Operating State Prediction Method Based on an LSTM Network
Directory of Open Access Journals (Sweden)
Hui Song
2018-04-01
Full Text Available The state of transformer equipment is usually manifested through a variety of information. The characteristic information will change with different types of equipment defects/faults, location, severity, and other factors. For transformer operating state prediction and fault warning, the key influencing factors of the transformer panorama information are analyzed. The degree of relative deterioration is used to characterize the deterioration of the transformer state. The membership relationship between the relative deterioration degree of each indicator and the transformer state is obtained through fuzzy processing. Through the long short-term memory (LSTM network, the evolution of the transformer status is extracted, and a data-driven state prediction model is constructed to realize preliminary warning of a potential fault of the equipment. Through the LSTM network, the quantitative index and qualitative index are organically combined in order to perceive the corresponding relationship between the characteristic parameters and the operating state of the transformer. The results of different time-scale prediction cases show that the proposed method can effectively predict the operation status of power transformers and accurately reflect their status.
Short-term prediction of windfarm power output - from theory to practice
International Nuclear Information System (INIS)
Landberg, L.
1998-01-01
From the very complicated and evolved theories of boundary-layer meteorology encompassing the equations of turbulence and mean flow, a model has been derived to predict the power output from wind farms. For practical dispatching purposes the predictions must reach as far into the future as 36 hours. The model has been put into an operation frame-work where the predictions for a number of wind farms scattered all over Europe are available on-line on the World Wide Web. The system is very versatile and new wind farms can be included within a few days. The system is made up of predictions from the Danish Meteorological Institute HIRLAM model which are refined using the WASP model from Risoe National Laboratory. The paper will describe this operation set-up, give examples of the performance of the model of wind farms in the UK, Denmark, Greece and the US. An analysis of the error for a one-year period will also be presented. Finally, possible improvements will be discussed. These include Kalman filtering and other statistical methods. (Author)
A new solar power output prediction based on hybrid forecast engine and decomposition model.
Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando
2018-06-12
Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Seismic response prediction for cabinets of nuclear power plants by using impact hammer test
Energy Technology Data Exchange (ETDEWEB)
Koo, Ki Young [Department of Civil and Structural Engineering, University of Sheffield, Sheffield (United Kingdom); Gook Cho, Sung [JACE KOREA, Gyeonggi-do (Korea, Republic of); Cui, Jintao [Department of Civil Engineering, Kunsan National University, Jeonbuk (Korea, Republic of); Kim, Dookie, E-mail: kim2kie@kunsan.ac.k [Department of Civil Engineering, Kunsan National University, Jeonbuk (Korea, Republic of)
2010-10-15
An effective method to predict the seismic response of electrical cabinets of nuclear power plants is developed. This method consists of three steps: (1) identification of the earthquake-equivalent force based on the idealized lumped-mass system of the cabinet, (2) identification of the state-space equation (SSE) model of the system using input-output measurements from impact hammer tests, and (3) seismic response prediction by calculating the output of the identified SSE model under the identified earthquake-equivalent force. A three-dimensional plate model of cabinet structures is presented for the numerical verification of the proposed method. Experimental validation of the proposed method is carried out on a three-story frame which represents the structure of a cabinet. The SSE model of the frame is accurately identified by impact hammer tests with high fitness values over 85% of the actual frame characteristics. Shaking table tests are performed using El Centro, Kobe, and Northridge earthquakes as input motions and the acceleration responses are measured. The responses of the model under the three earthquakes are predicted and then compared with the measured responses. The predicted and measured responses agree well with each other with fitness values of 65-75%. The proposed method is more advantageous over other methods that are based on finite element (FE) model updating since it is free from FE modeling errors. It will be especially effective for cabinet structures in nuclear power plants where conducting shaking table tests may not be feasible. Limitations of the proposed method are also discussed.
Power Relative to Body Mass Best Predicts Change in Core Temperature During Exercise-Heat Stress.
Gibson, Oliver R; Willmott, Ashley G B; James, Carl A; Hayes, Mark; Maxwell, Neil S
2017-02-01
Gibson, OR, Willmott, AGB, James, CA, Hayes, M, and Maxwell, NS. Power relative to body mass best predicts change in core temperature during exercise-heat stress. J Strength Cond Res 31(2): 403-414, 2017-Controlling internal temperature is crucial when prescribing exercise-heat stress, particularly during interventions designed to induce thermoregulatory adaptations. This study aimed to determine the relationship between the rate of rectal temperature (Trec) increase, and various methods for prescribing exercise-heat stress, to identify the most efficient method of prescribing isothermic heat acclimation (HA) training. Thirty-five men cycled in hot conditions (40° C, 39% R.H.) for 29 ± 2 minutes. Subjects exercised at 60 ± 9% V[Combining Dot Above]O2peak, with methods for prescribing exercise retrospectively observed for each participant. Pearson product moment correlations were calculated for each prescriptive variable against the rate of change in Trec (° C·h), with stepwise multiple regressions performed on statistically significant variables (p ≤ 0.05). Linear regression identified the predicted intensity required to increase Trec by 1.0-2.0° C between 20- and 45-minute periods and the duration taken to increase Trec by 1.5° C in response to incremental intensities to guide prescription. Significant (p ≤ 0.05) relationships with the rate of change in Trec were observed for prescriptions based on relative power (W·kg; r = 0.764), power (%Powermax; r = 0.679), rating of perceived exertion (RPE) (r = 0.577), V[Combining Dot Above]O2 (%V[Combining Dot Above]O2peak; r = 0.562), heart rate (HR) (%HRmax; r = 0.534), and thermal sensation (r = 0.311). Stepwise multiple regressions observed relative power and RPE as variables to improve the model (r = 0.791), with no improvement after inclusion of any anthropometric variable. Prescription of exercise under heat stress using power (W·kg or %Powermax) has the strongest relationship with the rate of change in
The Predictive Power of Evolutionary Biology and the Discovery of Eusociality in the Naked Mole-Rat.
Braude, Stanton
1997-01-01
Discusses how biologists use evolutionary theory and provides examples of how evolutionary biologists test hypotheses on specific modes of selection and evolution. Presents an example of the successful predictive power of one evolutionary hypothesis. Contains 38 references. (DDR)
Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.
2010-12-01
NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.
Bogner, Konrad; Monhart, Samuel; Liniger, Mark; Spririg, Christoph; Jordan, Fred; Zappa, Massimiliano
2015-04-01
In recent years large progresses have been achieved in the operational prediction of floods and hydrological drought with up to ten days lead time. Both the public and the private sectors are currently using probabilistic runoff forecast in order to monitoring water resources and take actions when critical conditions are to be expected. The use of extended-range predictions with lead times exceeding 10 days is not yet established. The hydropower sector in particular might have large benefits from using hydro meteorological forecasts for the next 15 to 60 days in order to optimize the operations and the revenues from their watersheds, dams, captions, turbines and pumps. The new Swiss Competence Centers in Energy Research (SCCER) targets at boosting research related to energy issues in Switzerland. The objective of HEPS4POWER is to demonstrate that operational extended-range hydro meteorological forecasts have the potential to become very valuable tools for fine tuning the production of energy from hydropower systems. The project team covers a specific system-oriented value chain starting from the collection and forecast of meteorological data (MeteoSwiss), leading to the operational application of state-of-the-art hydrological models (WSL) and terminating with the experience in data presentation and power production forecasts for end-users (e-dric.ch). The first task of the HEPS4POWER will be the downscaling and post-processing of ensemble extended-range meteorological forecasts (EPS). The goal is to provide well-tailored forecasts of probabilistic nature that should be reliable in statistical and localized at catchment or even station level. The hydrology related task will consist in feeding the post-processed meteorological forecasts into a HEPS using a multi-model approach by implementing models with different complexity. Also in the case of the hydrological ensemble predictions, post-processing techniques need to be tested in order to improve the quality of the
Hackett, Daniel A.; Davies, Timothy B.; Ibel, Denis; Cobley, Stephen; Sanders, Ross
2018-01-01
This study examined the predictive ability of the medicine ball chest throw and vertical jump for muscular strength and power in adolescents. One hundred and ninety adolescents participated in this study. Participants performed trials of the medicine ball chest throw and vertical jump, with vertical jump peak power calculated via an estimation…
Decentralized model predictive based load frequency control in an interconnected power system
Energy Technology Data Exchange (ETDEWEB)
Mohamed, T.H., E-mail: tarekhie@yahoo.co [High Institute of Energy, South Valley University (Egypt); Bevrani, H., E-mail: bevrani@ieee.or [Dept. of Electrical Engineering and Computer Science, University of Kurdistan (Iran, Islamic Republic of); Hassan, A.A., E-mail: aahsn@yahoo.co [Faculty of Engineering, Dept. of Electrical Engineering, Minia University, Minia (Egypt); Hiyama, T., E-mail: hiyama@cs.kumamoto-u.ac.j [Dept. of Electrical Engineering and Computer Science, Kumamoto University, Kumamoto (Japan)
2011-02-15
This paper presents a new load frequency control (LFC) design using the model predictive control (MPC) technique in a multi-area power system. The MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. Each local area controller is designed independently such that stability of the overall closed-loop system is guaranteed. A frequency response model of multi-area power system is introduced, and physical constraints of the governors and turbines are considered. The model was employed in the MPC structures. Digital simulations for both two and three-area power systems are provided to validate the effectiveness of the proposed scheme. The results show that, with the proposed MPC technique, the overall closed-loop system performance demonstrated robustness in the face of uncertainties due to governors and turbines parameters variation and loads disturbances. A performance comparison between the proposed controller and a classical integral control scheme is carried out confirming the superiority of the proposed MPC technique.
International Nuclear Information System (INIS)
Wilson, P.A.
1986-01-01
The null hypothesis for this study suggested that there was no significant difference in the types of performance error indicators between accredited and non-accredited programs on the following types of indicators: (1) number of significant event reports per unit, (2) number of forced outages per unit, (3) number of unplanned automatic scrams per unit, and (4) amount of equivalent availability per unit. A sample of 90 nuclear power plants was selected for this study. Data were summarized from two data bases maintained by the Institute of Nuclear Power Operations. Results of this study did not support the research hypothesis. There was no significant difference between the accredited and non-accredited programs on any of the four performance error indicators. The primary conclusions of this include the following: (1) The four selected performance error indicators cannot be used individually or collectively to predict accreditation status in the nuclear power industry. (2) Annual performance error indicator ratings cannot be used to determine the effects of performance-based training on plant performance. (3) The four selected performance error indicators cannot be used to measure the effect of operator job performance on plant effectiveness
Decentralized model predictive based load frequency control in an interconnected power system
International Nuclear Information System (INIS)
Mohamed, T.H.; Bevrani, H.; Hassan, A.A.; Hiyama, T.
2011-01-01
This paper presents a new load frequency control (LFC) design using the model predictive control (MPC) technique in a multi-area power system. The MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. Each local area controller is designed independently such that stability of the overall closed-loop system is guaranteed. A frequency response model of multi-area power system is introduced, and physical constraints of the governors and turbines are considered. The model was employed in the MPC structures. Digital simulations for both two and three-area power systems are provided to validate the effectiveness of the proposed scheme. The results show that, with the proposed MPC technique, the overall closed-loop system performance demonstrated robustness in the face of uncertainties due to governors and turbines parameters variation and loads disturbances. A performance comparison between the proposed controller and a classical integral control scheme is carried out confirming the superiority of the proposed MPC technique.
Mid-term load forecasting of power systems by a new prediction method
International Nuclear Information System (INIS)
Amjady, Nima; Keynia, Farshid
2008-01-01
Mid-term load forecasting (MTLF) becomes an essential tool for today power systems, mainly in those countries whose power systems operate in a deregulated environment. Among different kinds of MTLF, this paper focuses on the prediction of daily peak load for one month ahead. This kind of load forecast has many applications like maintenance scheduling, mid-term hydro thermal coordination, adequacy assessment, management of limited energy units, negotiation of forward contracts, and development of cost efficient fuel purchasing strategies. However, daily peak load is a nonlinear, volatile, and nonstationary signal. Besides, lack of sufficient data usually further complicates this problem. The paper proposes a new methodology to solve it, composed of an efficient data model, preforecast mechanism and combination of neural network and evolutionary algorithm as the hybrid forecast technique. The proposed methodology is examined on the EUropean Network on Intelligent TEchnologies (EUNITE) test data and Iran's power system. We will also compare our strategy with the other MTLF methods revealing its capability to solve this load forecast problem
International Nuclear Information System (INIS)
Gore, K.L.; Thomas, J.M.; Kannberg, L.D.; Mahaffey, J.A.; Waton, D.G.
1976-12-01
A study was undertaken by the U.S. Nuclear Regulatory Commission (NRC) to evaluate the nonradiological environmental data obtained from three nuclear power plants operating for a period of one year or longer. The document presented reports the second of three nuclear power plants to be evaluated in detail by Battelle, Pacific Northwest Laboratories. Haddam Neck (Connecticut Yankee) Nuclear Power Plant nonradiological monitoring data were assessed to determine their effectiveness in the measurement of environmental impacts. Efforts were made to determine if: (1) monitoring programs, as designed, can detect environmental impacts, (2) appropriate statistical analyses were performed and if they were sensitive enough to detect impacts, (3) predicted impacts could be verified by monitoring programs, and (4) monitoring programs satisfied the requirements of the Environmental Technical Specifications. Both preoperational and operational monitoring data were examined to test the usefulness of baseline information in evaluating impacts. This included an examination of the methods used to measure ecological, chemical, and physical parameters, and an assessment of sampling periodicity and sensitivity where appropriate data sets were available. From this type of analysis, deficiencies in both preoperational and operational monitoring programs may be identified and provide a basis for suggested improvement
Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.
Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong
2013-10-01
Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.
Energy Technology Data Exchange (ETDEWEB)
Kwon, Seung Hee; Jang, Kyung Pil [Department of Civil and Environmental Engineering, Myongji University, Yongin (Korea, Republic of); Bang, Jin-Wook [Department of Civil Engineering, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jang Hwa [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of); Kim, Yun Yong, E-mail: yunkim@cnu.ac.kr [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of)
2014-08-15
Highlights: • Compressive strength tests for three concrete mixes were performed. • The parameters of the humidity-adjusted maturity function were determined. • Strength can be predicted considering temperature and relative humidity. - Abstract: This study proposes a method for predicting compressive strength developments in the early ages of concretes used in the construction of nuclear power plants. Three representative mixes with strengths of 6000 psi (41.4 MPa), 4500 psi (31.0 MPa), and 4000 psi (27.6 MPa) were selected and tested under various curing conditions; the temperature ranged from 10 to 40 °C, and the relative humidity from 40 to 100%. In order to consider not only the effect of the temperature but also that of humidity, an existing model, i.e. the humidity-adjusted maturity function, was adopted and the parameters used in the function were determined from the test results. A series of tests were also performed in the curing condition of a variable temperature and constant humidity, and a comparison between the measured and predicted strengths were made for the verification.
van Veen, S H C M; van Kleef, R C; van de Ven, W P M M; van Vliet, R C J A
2018-02-01
This study explores the predictive power of interaction terms between the risk adjusters in the Dutch risk equalization (RE) model of 2014. Due to the sophistication of this RE-model and the complexity of the associations in the dataset (N = ~16.7 million), there are theoretically more than a million interaction terms. We used regression tree modelling, which has been applied rarely within the field of RE, to identify interaction terms that statistically significantly explain variation in observed expenses that is not already explained by the risk adjusters in this RE-model. The interaction terms identified were used as additional risk adjusters in the RE-model. We found evidence that interaction terms can improve the prediction of expenses overall and for specific groups in the population. However, the prediction of expenses for some other selective groups may deteriorate. Thus, interactions can reduce financial incentives for risk selection for some groups but may increase them for others. Furthermore, because regression trees are not robust, additional criteria are needed to decide which interaction terms should be used in practice. These criteria could be the right incentive structure for risk selection and efficiency or the opinion of medical experts. Copyright © 2017 John Wiley & Sons, Ltd.
Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling.
Townsend, Nathan E; Nichols, David S; Skiba, Philip F; Racinais, Sebastien; Périard, Julien D
2017-01-01
Purpose: Develop a prediction equation for critical power (CP) and work above CP (W') in hypoxia for use in the work-balance ([Formula: see text]) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W' at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W' at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W' were used to compute W' during HIIT using differential ([Formula: see text]) and integral ([Formula: see text]) forms of the [Formula: see text] model. Results: CP decreased at altitude ( P equations for CP and W' developed in this study are suitable for use with the [Formula: see text] model in acute hypoxia. This enables the application of [Formula: see text] modelling to training prescription and competition analysis at altitude.
International Nuclear Information System (INIS)
Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan
2013-01-01
This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.
SIEX design predictions for the PNC fuel pins in the HEDL P-E01 power-to-melt test
International Nuclear Information System (INIS)
1979-01-01
During the design phase of the HEDL P-E01 power-to-melt test, a series of design predictions were generated for the three PNC pins using the SIEX fuel pin modeling code. This document tabulates a series of selected PNC pin design predictions as requested by M. Shinohara during his visit to HEDL
International Nuclear Information System (INIS)
Zang Deyan
1998-01-01
Based on gray system theory, the information about deformation observation of the first stage Qinshan nuclear power plant is analysed and predicted as well. The gray system theory is applied to engineering prediction and a large-scale building deformation observation. It is convenient to apply the model and it a has high degree of accuracy
Significant change of predictions related to the future of nuclear power
International Nuclear Information System (INIS)
Dumitrache, Ion
2002-01-01
During the last two decades of the 20th century, nuclear power contribution increased slowly in the world. This trend was mainly determined by the commissioning of new nuclear power plants, NPP, in the non-developed countries, except for Japan and South Korea. Almost all the forecasts offered the image of the stagnant nuclear power business. Sweden, Germany, Holland and Belgium Governments made clear the intention to stop the production of electricity based on fission. Recently, despite the negative effects on nuclear power of the terrorism events of September 11, 2001, the predictions related to the nuclear power future become much more optimistic. USA, Japan, South Korea and Canada made clear that new NPPs will offer their significant electricity contribution several decades, even after years 2020-2030. Moreover, several old NPP from USA obtained the license for an additional 20 years period of operation. The analysis indicated that most of the existing NPP in USA may increase the level of the maximum global power defined by the initial design. In the European Union the situation is much more complicated. About 35% of the electricity is based now on fission. Several countries, like Sweden and Germany, maintain the position of phasing out the NPPs, as soon as the licensed life-time is over. Finland decided to build a new power plant. France is very favorable to nuclear power, but does not need more energy. In the UK several very old NPP will be shut down, and companies like BNFL and British Energy intend to build new NPP, based on Westinghouse or AECL-Canada advanced reactors. Switzerland and Spain are favorable to the future use of nuclear power. In the eastern part of Europe, almost all the countries intend to base their electricity production on coal, fission, hydro and gas, nuclear contribution being significant. The most impressive increases of nuclear power output are related to Asia; in China, from 2.2 Gwe in 1999, to 18.7 Gwe in 2020, reference case, or 10
Directory of Open Access Journals (Sweden)
Yanzi Wang
2016-01-01
Full Text Available Over the last few years; issues regarding the use of hybrid energy storage systems (HESSs in hybrid electric vehicles have been highlighted by the industry and in academic fields. This paper proposes a fuzzy-logic power management strategy based on Markov random prediction for an active parallel battery-UC HESS. The proposed power management strategy; the inputs for which are the vehicle speed; the current electric power demand and the predicted electric power demand; is used to distribute the electrical power between the battery bank and the UC bank. In this way; the battery bank power is limited to a certain range; and the peak and average charge/discharge power of the battery bank and overall loss incurred by the whole HESS are also reduced. Simulations and scaled-down experimental platforms are constructed to verify the proposed power management strategy. The simulations and experimental results demonstrate the advantages; feasibility and effectiveness of the fuzzy-logic power management strategy based on Markov random prediction.
Prediction of Decommissioning Cost for Kijang Research Reactor Using Power Data of DACCORD
Energy Technology Data Exchange (ETDEWEB)
Hong, Yun Jeong; Jin, Hyung Gon; Park, Hee Seong; Park, Seung Kook [KAERI, Daejeon (Korea, Republic of)
2016-05-15
There are 3 types of cost estimate that can be used, and each have a different level of accuracy: (i) Order of magnitude estimate: One without detailed engineering data, where an estimate is prepared using scale-up or -down factors and approximate ratios. It is likely that the overall scope of the project has not been well defined. The level of accuracy expected is -30% to +50%. The cost plans to predict referring to abroad examples as decommissioning cost estimation has still not developed and been commercial method for Kijang research reactor. In Kijang research reactor case, overall scope of business isn't yet decided. Then it is supposed to estimate cost with type (i). The IAEA project, entitled 'DACCORD' (Data Analysis and Collection for Costing of Research Reactor Decommissioning) performs decommissioning costing after collecting and analyzing the information related to research reactors around the world for several years. Also decommissioning costing method development tends to increase in the each country. This paper aims to estimate preliminary decommissioning cost based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD project' data which is collected by member state. In this paper, preliminary decommissioning cost is estimated based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD data which is collected by member state. Although there exists a general tendency for costs to increase with increasing thermal power, the limited data available show that decommissioning costs at any given power level can vary widely, with increased variability at higher power levels. Variations in decommissioning cost for the research reactors of the same or similar thermal power are caused by differences in reactor types and design, decommissioning project scopes, country- specific unit workforce costs, and other reactor or project factors. An important factor for the
Predictive maintenance: A new approach in maintenance of nuclear power plants
International Nuclear Information System (INIS)
Benvenuto, F.; Ferrari, L.
2005-01-01
The maintenance services for a Nuclear Power Plant are in general aimed at reaching the following goals: - Increase component availability and consequently decrease intervention frequency; - Reduce unexpected costs from unexpected repairs; - Progressively decrease the time of each intervention; - Improve the spare parts supply efficiency; - Improve spare parts and consumable warehouse managing; - Decrease maintenance costs. Most of the currently used maintenance activities refer to run-to-failure or preventive approaches: - Run-to-failure or Corrective Maintenance means that work is only carried out when a component or system is faulty and unable to perform its critical function. Non critical components such as filters or components with spare may be maintained in this way; - Preventive or Scheduled Maintenance involves a regular pre-set schedule programme of maintenance work. Programme outlined by the manufacturer of the component in question based on the design life of the component and based on past experience by operation. One step further than Preventive Maintenance is represented by Predictive Maintenance. Whereas Preventive Maintenance bases its schedules on past performance data, a predictive system acquires condition data from the machine to be maintained whilst the machine is in operation. The information obtained from this analysis indicates the condition in real time, provides a diagnosis of wear and shows any trend towards critical conditions. Predictive maintenance mainly consists of the following interventions: - Lubricant analysis; - Collection / analysis of functional parameters, such as motor absorption, flow rate, pressure, temperature, noise, vibration of rotating equipment, thermal efficiency, etc; - Periodical test of lifting systems; - Other operations to acquire sensitive equipment parameters. Predictive Maintenance can reduce the accidental intervention and extend the components life, and, in the end, is increasing the global availability
Directory of Open Access Journals (Sweden)
M. Khademi
2016-01-01
Full Text Available The prediction of power generated by photovoltaic (PV panels in different climates is of great importance. The aim of this paper is to predict the output power of a 3.2 kW PV power plant using the MLP-ABC (multilayer perceptron-artificial bee colony algorithm. Experimental data (ambient temperature, solar radiation, and relative humidity was gathered at five-minute intervals from Tehran University’s PV Power Plant from September 22nd, 2012, to January 14th, 2013. Following data validation, 10665 data sets, equivalent to 35 days, were used in the analysis. The output power was predicted using the MLP-ABC algorithm with the mean absolute percentage error (MAPE, the mean bias error (MBE, and correlation coefficient (R2, of 3.7, 3.1, and 94.7%, respectively. The optimized configuration of the network consisted of two hidden layers. The first layer had four neurons and the second had two neurons. A detailed economic analysis is also presented for sunny and cloudy weather conditions using COMFAR III software. A detailed cost analysis indicated that the total investment’s payback period would be 3.83 years in sunny periods and 4.08 years in cloudy periods. The results showed that the solar PV power plant is feasible from an economic point of view in both cloudy and sunny weather conditions.
Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation
Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi
2016-09-01
We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.
International Nuclear Information System (INIS)
Ellingwood, B.R.; Mori, Yasuhiro
1993-01-01
A probability-based methodology is being developed in support of the NRC Structural Aging Program to assist in evaluating the reliability of existing concrete structures in nuclear power plants under potential future operating loads and extreme evironmental and accidental events. The methodology includes models to predict structural deterioration due to environmental stressors, a database to support the use of these models, and methods for analyzing time-dependent reliability of concrete structural components subjected to stochastic loads. The methodology can be used to support a plant license extension application by providing evidence that safety-related concrete structures in their current (service) condition are able to withstand future extreme events with a level of reliability sufficient for public health and safety. (orig.)
DEFF Research Database (Denmark)
Jørgensen, Søren; Dau, Torsten
2011-01-01
conditions by comparing predictions to measured data from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different interferers, including speech-shaped noise, bottle noise, car noise, and cafe noise. The model accounts well for the differences in intelligibility......The speech-based envelope power spectrum model (sEPSM) [Jørgensen and Dau (2011). J. Acoust. Soc. Am., 130 (3), 1475–1487] estimates the envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately describes the speech recognition thresholds (SRT) for normal-hearing listeners...... observed for the different interferers. None of the standardized models successfully describe these data....
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
A kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems has been developed. The model incorporates the most important chemical reactions that are known to occur when chlorine is added to natural fresh waters. The simultaneous differential equations, which describe the rates of these chemical reactions, are solved numerically to give the composition of the water as a function of time. A listing of the computer program is included, along with a description of the input variables. A worked-out example illustrates the application of the program to an actual cooling system. An appendix contains a compilation of the known equilibrium and kinetic data for many of the chemical reactions that might be encountered in chlorinating natural fresh waters
Maximal locality and predictive power in higher-dimensional, compactified field theories
International Nuclear Information System (INIS)
Kubo, Jisuke; Nunami, Masanori
2004-01-01
To realize maximal locality in a trivial field theory, we maximize the ultraviolet cutoff of the theory by fine tuning the infrared values of the parameters. This optimization procedure is applied to the scalar theory in D + 1 dimensional (D ≥ 4) with one extra dimension compactified on a circle of radius R. The optimized, infrared values of the parameters are then compared with the corresponding ones of the uncompactified theory in D dimensions, which is assumed to be the low-energy effective theory. We find that these values approximately agree with each other as long as R -1 > approx sM is satisfied, where s ≅ 10, 50, 50, 100 for D = 4,5,6,7, and M is a typical scale of the D-dimensional theory. This result supports the previously made claim that the maximization of the ultraviolet cutoff in a nonrenormalizable field theory can give the theory more predictive power. (author)
Directory of Open Access Journals (Sweden)
K. Chen
2016-06-01
Full Text Available Short-term precipitation commonly occurs in south part of China, which brings intensive precipitation in local region for very short time. Massive water would cause the intensive flood inside of city when precipitation amount beyond the capacity of city drainage system. Thousands people’s life could be influenced by those short-term disasters and the higher city managements are required to facing these challenges. How to predict the occurrence of heavy precipitation accurately is one of the worthwhile scientific questions in meteorology. According to recent studies, the accuracy of short-term precipitation prediction based on numerical simulation model still remains low reliability, in some area where lack of local observations, the accuracy may be as low as 10%. The methodology for short term precipitation occurrence prediction still remains a challenge. In this paper, a machine learning method based on SVM was presented to predict short-term precipitation occurrence by using FY2-G satellite imagery and ground in situ observation data. The results were validated by traditional TS score which commonly used in evaluation of weather prediction. The results indicate that the proposed algorithm can present overall accuracy up to 90% for one-hour to six-hour forecast. The result implies the prediction accuracy could be improved by using machine learning method combining with satellite image. This prediction model can be further used to evaluated to predicted other characteristics of weather in Shenzhen in future.
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
Past as Prediction: Newcomb, Huxley, The Eclipse of Thales, and The Power of Science
Stanley, Matthew
2009-12-01
The ancient eclipse of Thales was an important, if peculiar, focus of scientific attention in the 19th century. Victorian-era astronomers first used it as data with which to calibrate their lunar theories, but its status became strangely malleable as the century progressed. The American astronomer Simon Newcomb re-examined the eclipse and rejected it as the basis for lunar theory. But strangely, it was the unprecedented accuracy of Newcomb's calculations that led the British biologist T.H. Huxley to declare the eclipse to be the quintessential example of the power of science. Huxley argued that astronomy's ability to create "retrospective prophecy” showed how scientific reasoning was superior to religion (and incidentally, helped support Darwin's theories). Both Newcomb and Huxley declared that prediction (of past and future) was what gave science its persuasive power. The eclipse of Thales's strange journey through Victorian astronomy reveals how these two influential scientists made the case for the social and cultural authority of science.
Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks
Energy Technology Data Exchange (ETDEWEB)
Santos, Roberto Carlos dos; Pereira, Iraci Martinez, E-mail: rcsantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)
Time response prediction of Brazilian Nuclear Power Plant temperature sensors using neural networks
International Nuclear Information System (INIS)
Santos, Roberto Carlos dos; Pereira, Iraci Martinez
2011-01-01
This work presents the results of the time constants values predicted from ANN using Angra I Brazilian nuclear power plant data. The signals obtained from LCSR loop current step response test sensors installed in the process presents noise end fluctuations that are inherent of operational conditions. Angra I nuclear power plant has 20 RTDs as part of the protection reactor system. The results were compared with those obtained from traditional way. Primary coolant RTDs (Resistance Temperature Detector) typically feed the plant's control and safety systems and must, therefore, be very accurate and have good dynamic performance. An in-situ test method called LCSR - loop current step response test was developed to measure remotely the response time of RTDs. In the LCSR method, the response time of the sensor is identified by means of the LCSR transformation that involves the dynamic response modal time constants determination using a nodal heat transfer model. For this reason, this calculation is not simple and requires specialized personnel. This work combines the two methodologies, Plunge test and LCSR test, using neural networks. With the use of neural networks it will not be necessary to use the LCSR transformation to determine sensor's time constant and this leads to more robust results. (author)
DR2DI: a powerful computational tool for predicting novel drug-disease associations
Lu, Lu; Yu, Hua
2018-05-01
Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.
The Power of Implicit Social Relation in Rating Prediction of Social Recommender Systems.
Reafee, Waleed; Salim, Naomie; Khan, Atif
2016-01-01
The explosive growth of social networks in recent times has presented a powerful source of information to be utilized as an extra source for assisting in the social recommendation problems. The social recommendation methods that are based on probabilistic matrix factorization improved the recommendation accuracy and partly solved the cold-start and data sparsity problems. However, these methods only exploited the explicit social relations and almost completely ignored the implicit social relations. In this article, we firstly propose an algorithm to extract the implicit relation in the undirected graphs of social networks by exploiting the link prediction techniques. Furthermore, we propose a new probabilistic matrix factorization method to alleviate the data sparsity problem through incorporating explicit friendship and implicit friendship. We evaluate our proposed approach on two real datasets, Last.Fm and Douban. The experimental results show that our method performs much better than the state-of-the-art approaches, which indicates the importance of incorporating implicit social relations in the recommendation process to address the poor prediction accuracy.
Energy Technology Data Exchange (ETDEWEB)
Ho, Tien [School of Engineering, University of Tasmania, GPO Box 252-65, Hobart, Tasmania, 7001 (Australia); Karri, Vishy [Australian College of Kuwait, P.O. Box 1411, Safat 13015 (Kuwait)
2010-09-15
Many studies of renewable energy have shown hydrogen is one of the major green energy in the future. This has lead to the development of many automotive application of using hydrogen as a fuel especially in internal combustion engine. Nonetheless, there has been a slow growth and less knowledge details in building up the prototype and control methodology of the hydrogen internal combustion engine. In this paper, The Toyota Corolla 4 cylinder, 1.8l engine running on petrol was systematically modified in such a way that it could be operated on either gasoline or hydrogen at the choice of the driver. Within the scope of this project, several ancillary instruments such as a new inlet manifold, hydrogen fuel injection, storage system and leak detection safety system were implemented. Attention is directed towards special characteristics related to the basic tuning of hydrogen engine such as: air to fuel ratio operating conditions, ignition timing and injection timing in terms of different engine speed and throttle position. Based on the experimental data, a suite of neural network models were tested to accurately predict the effect of different engine operating conditions (speed and throttle position) on the hydrogen powered car engine characteristics. Predictions were found to be {+-}3% to the experimental values for all of case studies. This work provided better understanding of the effect of hydrogen engine characteristic parameters on different engine operating conditions. (author)
DR2DI: a powerful computational tool for predicting novel drug-disease associations
Lu, Lu; Yu, Hua
2018-04-01
Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.
A Predictive Power Control Strategy for DFIGs Based on a Wind Energy Converter System
Directory of Open Access Journals (Sweden)
Xiaoliang Yang
2017-07-01
Full Text Available A feasible control strategy is proposed to control a doubly fed induction generator based on the wind energy converter system (DFIG-WECS. The main aim is to enhance the steady state and dynamic performance under the condition of the parameter perturbations and external disturbances and to satisfy the stator power response of the system. Within the proposed control method, the control scheme for the rotor side converter (RSC is developed on the model predictive control. Firstly, the self-adaptive reference trajectory is established from the deduced discrete state-space equation of the generator. Then, the rotor voltage is calculated by minimizing the global performance index under the current prediction steps at the sampling instant. Through the control scheme for the grid side converter (GSC and wind turbine, we have re-applied the conventional control. The effectiveness of the proposed control strategy is verified via time domain simulation of a 150 kW-575 V DFIG-WECS using Matlab/Simulink. The simulation result shows that the control of the DFIG with the proposed control method can enhance the steady and dynamic response capability better than the conventional ones when the system faces errors due to the parameter perturbations, external disturbances and the rotor speed.
Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data
Directory of Open Access Journals (Sweden)
Alexander P. Kartun-Giles
2018-04-01
Full Text Available A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing and equilibrium (static sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling.
A review on the young history of the wind power short-term prediction
Energy Technology Data Exchange (ETDEWEB)
Costa, Alexandre; Navarro, Jorge [Wind Energy, Division of Renewable Energies, Department of Energy, CIEMAT, Av. Complutense, 22, Ed. 42, 28044 Madrid (Spain); Crespo, Antonio [Laboratorio de Mecanica de Fluidos, Departmento de Ingenieria Energetica y Fluidomecanica, ETSII, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2-28006 Madrid (Spain); Lizcano, Gil [Oxford University Centre for the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY (United Kingdom); Madsen, Henrik [Informatics and Mathematical Modelling - IMM, Technical University of Denmark, Richard Petersens Plads, Building 321, Office 019, 2800 Kgs. Lyngby (Denmark); Feitosa, Everaldo [Brazilian Wind Energy Centre - CBEE, Centro de Tecnologia e Geociencias, UFPE-50.740-530 Recife, PE (Brazil)
2008-08-15
This paper makes a brief review on 30 years of history of the wind power short-term prediction, since the first ideas and sketches on the theme to the actual state of the art on models and tools, giving emphasis to the most significant proposals and developments. The two principal lines of thought on short-term prediction (mathematical and physical) are indistinctly treated here and comparisons between models and tools are avoided, mainly because, on the one hand, a standard for a measure of performance is still not adopted and, on the other hand, it is very important that the data are exactly the same in order to compare two models (this fact makes it almost impossible to carry out a quantitative comparison between a huge number of models and methods). In place of a quantitative description, a qualitative approach is preferred for this review, remarking the contribution (and innovative aspect) of each model. On the basis of the review, some topics for future research are pointed out. (author)
Char characterization and DTF assays as tools to predict burnout of coal blends in power plants
Energy Technology Data Exchange (ETDEWEB)
C. Ulloa; A.G. Borrego; S. Helle; A.L. Gordon; X. Garcia [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Quimica
2005-02-01
The aim of this study is to predict efficiency deviations in the combustion of coal blends in power plants. Combustion of blends, as compared to its single coals, shows that for some blends the behavior is non-additive in nature. Samples of coal feed and fly ashes from combustion of blends at two power plants, plus chars of the parent coals generated in a drop-tube furnace (DTF) at temperatures and heating rates similar to those found in the industrial boilers were used. Intrinsic kinetic parameters, burning profiles and petrographic characteristics of these chars correlated well with the burnout in power plants and DTF experiments. The blend combustion in a DTF reproduces both positive and negative burnout deviations from the expected weighted average. These burnout deviations have been previously attributed to parallel or parallel-series pathways of competition for oxygen. No deviations were found for blends of low rank coals of similar characteristics yielding chars close in morphology, optical texture and reactivity. Negative deviations were found for blends of coals differing moderately in rank and were interpreted as associated with long periods of competition. In this case, fly-ashes were enriched in material derived from the least reactive char, but also unburnt material attributed to the most reactive char was identified. Improved burnout compared to the weighted average was observed for blends of coals very different in rank, and interpreted as the result of a short interaction period, followed by a period where the less reactive char burns under conditions that are more favorable to its combustion. In this case, only unburned material from the least reactive char was identified in the fly-ashes. 20 refs., 9 figs., 5 tabs.
Directory of Open Access Journals (Sweden)
Sergio Salas-Duarte
2016-01-01
Full Text Available The realization of an improved predictive current controller based on a trapezoidal model is described, and the impact of this technique is assessed on the performance of a 2 kW, 21.6 kHz, four-wire, Active Power Filter for utility equipment of Metro Railway, Power-Land Substations. The operation of the trapezoidal predictive current controller is contrasted with that of a typical predictive control technique, based on a single Euler approximation, which has demonstrated generation of high-quality line currents, each using a 400 V DC link to improve the power quality of an unbalanced nonlinear load of Metro Railway. The results show that the supply current waveforms become virtually sinusoidal waves, reducing the current ripple by 50% and improving its power factor from 0.8 to 0.989 when the active filter is operated with a 1.6 kW load. The principle of operation of the trapezoidal predictive controller is analysed together with a description of its practical development, showing experimental results obtained with a 2 kW prototype.
Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen
1999-01-01
Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.
International Nuclear Information System (INIS)
Su, Yan; Chan, Lai-Cheong; Shu, Lianjie; Tsui, Kwok-Leung
2012-01-01
Highlights: ► We develop online prediction models for solar photovoltaic system performance. ► The proposed prediction models are simple but with reasonable accuracy. ► The maximum monthly average minutely efficiency varies 10.81–12.63%. ► The average efficiency tends to be slightly higher in winter months. - Abstract: This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R 2 . The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9 am to 4 pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.
DEFF Research Database (Denmark)
Jørgensen, Søren; Dau, Torsten
2011-01-01
A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data. The ...... process provides a key measure of speech intelligibility. © 2011 Acoustical Society of America.......A model for predicting the intelligibility of processed noisy speech is proposed. The speech-based envelope power spectrum model has a similar structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108, 1181-1196], developed to account for modulation detection and masking data....... The model estimates the speech-to-noise envelope power ratio, SNR env, at the output of a modulation filterbank and relates this metric to speech intelligibility using the concept of an ideal observer. Predictions were compared to data on the intelligibility of speech presented in stationary speech...
Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng
2017-01-01
In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.
Directory of Open Access Journals (Sweden)
WenBo Xiao
Full Text Available In this article, we introduced an artificial neural network (ANN based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-, multi-crystalline (multi-, and amorphous (amor- crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.
Kunstman, Jonathan W; Clerkin, Elise M; Palmer, Kateyln; Peters, M Taylar; Dodd, Dorian R; Smith, April R
2016-03-01
This study tested whether relatively low levels of interoceptive accuracy (IAcc) are associated with body dysmorphic disorder (BDD) symptoms. Additionally, given research indicating that power attunes individuals to their internal states, we sought to determine if state interoceptive accuracy could be improved through an experimental manipulation of power.. Undergraduate women (N = 101) completed a baseline measure of interoceptive accuracy and then were randomized to a power or control condition. Participants were primed with power or a neutral control topic and then completed a post-manipulation measure of state IAcc. Trait BDD symptoms were assessed with a self-report measure. Controlling for baseline IAcc, within the control condition, there was a significant inverse relationship between trait BDD symptoms and interoceptive accuracy. Continuing to control for baseline IAcc, within the power condition, there was not a significant relationship between trait BDD symptoms and IAcc, suggesting that power may have attenuated this relationship. At high levels of BDD symptomology, there was also a significant simple effect of experimental condition, such that participants in the power (vs. control) condition had better interoceptive accuracy. These results provide initial evidence that power may positively impact interoceptive accuracy among those with high levels of BDD symptoms.. This cross-sectional study utilized a demographically homogenous sample of women that reflected a broad range of symptoms; thus, although there were a number of participants reporting elevated BDD symptoms, these findings might not generalize to other populations or clinical samples. This study provides the first direct test of the relationship between trait BDD symptoms and IAcc, and provides preliminary evidence that among those with severe BDD symptoms, power may help connect individuals with their internal states. Future research testing the mechanisms linking BDD symptoms with IAcc, as
DEFF Research Database (Denmark)
Zong, Yi; Bindner, Henrik W.; Gehrke, Oliver
2013-01-01
In order to achieve a Danish energy supply based on 100% renewable energy from combinations of wind, biomass, wave and solar power in 2050 and to cover 50% of the Danish electricity consumption by wind power in 2020, it requires more renewable energy in buildings and industries (e.g. cold stores......, greenhouses, etc.), and to coordinate the management of large numbers of distributed energy resources with the smart grid solution. This paper presents different predictive control (Genetic Algorithm-based and Model Predictive Control-based) strategies that schedule controlled loads in the industrial...... and residential sectors, based on dynamic power price and weather forecast, considering users’ comfort settings to meet an optimization objective, such as maximum profit or minimum energy consumption. Some field tests were carried out on a facility for intelligent, active and distributed power systems, which...
Energy Technology Data Exchange (ETDEWEB)
Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr
2016-04-15
Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.
Jesús Crespo Cuaresma; Anna Orthofer
2010-01-01
Reliable medium-term forecasts are essential for forward-looking monetary policy decisionmaking. Traditionally, predictions of the exchange rate tend to be linked to the equilibrium concept implied by the purchasing power parity (PPP) theory. In particular, the traditional benchmark for exchange rate models is based on a linear adjustment of the exchange rate to the level implied by PPP. In the presence of aggregation effects, transaction costs or uncertainty, however, economic theory predict...
Lack of predictive power of trait fear and anxiety for conditioned pain modulation (CPM).
Horn-Hofmann, Claudia; Priebe, Janosch A; Schaller, Jörg; Görlitz, Rüdiger; Lautenbacher, Stefan
2016-12-01
In recent years the association of conditioned pain modulation (CPM) with trait fear and anxiety has become a hot topic in pain research due to the assumption that such variables may explain the low CPM efficiency in some individuals. However, empirical evidence concerning this association is still equivocal. Our study is the first to investigate the predictive power of fear and anxiety for CPM by using a well-established psycho-physiological measure of trait fear, i.e. startle potentiation, in addition to two self-report measures of pain-related trait anxiety. Forty healthy, pain-free participants (female: N = 20; age: M = 23.62 years) underwent two experimental blocks in counter-balanced order: (1) a startle paradigm with affective picture presentation and (2) a CPM procedure with hot water as conditioning stimulus (CS) and contact heat as test stimulus (TS). At the end of the experimental session, pain catastrophizing (PCS) and pain anxiety (PASS) were assessed. PCS score, PASS score and startle potentiation to threatening pictures were entered as predictors in a linear regression model with CPM magnitude as criterion. We were able to show an inhibitory CPM effect in our sample: pain ratings of the heat stimuli were significantly reduced during hot water immersion. However, CPM was neither predicted by self-report of pain-related anxiety nor by startle potentiation as psycho-physiological measure of trait fear. These results corroborate previous negative findings concerning the association between trait fear/anxiety and CPM efficiency and suggest that shifting the focus from trait to state measures might be promising.
The role of predictive on-line monitoring systems in the power generation industry
Energy Technology Data Exchange (ETDEWEB)
Gittings, S.D.; Baldwin, J. [AEA Technology Energy plc (United Kingdom)
1998-12-31
It has been apparent in the power generation sector for some time that utilities are moving away from large scale, labour intensive, inspection and overhaul programmes. These are being replaced by targeted inspection and replacement programmes supported by engineering assessment. Such engineering assessments address the predominant long-term damage mechanisms and are aimed at predicting failure timescales based upon historic operating data. From these predictions extended inspection intervals can be justified and replacement schedules planned in advance, ensuring maximum plant availability and deferred capital expenditure. However, as these assessments are based upon an examination of past operating history they must be periodically re-visited and up-dated. The cost of such reassessments is usually close to that performed initially, although cost savings can arise from reductions in work-scope which have been previously justified. As computers have become more advanced (and significantly cheaper) some of the expertise used in these assessments has been transferred into software based products. However, these products are generally aimed at replacing specific parts of the desk-based analysis, necessitating a suite of products to be used in order to address all of the components and damage mechanisms, which must be assessed. As these products require specialized knowledge to be used effectively they are often employed by consultants and rarely by plant operators, except in the largest of organisations which can support an in-house team of `experts`. This has in essence led to an increase in the number of companies capable of offering assessment services, but has maintained, in the majority of cases, the plant operators reliance upon external consultants. These software based assessment methods rely upon historic operating data (in the same manner as their desk- based counterparts) and hence also need to be periodically up-dated. However, as previous assessments can
The role of predictive on-line monitoring systems in the power generation industry
Energy Technology Data Exchange (ETDEWEB)
Gittings, S D; Baldwin, J [AEA Technology Energy plc (United Kingdom)
1999-12-31
It has been apparent in the power generation sector for some time that utilities are moving away from large scale, labour intensive, inspection and overhaul programmes. These are being replaced by targeted inspection and replacement programmes supported by engineering assessment. Such engineering assessments address the predominant long-term damage mechanisms and are aimed at predicting failure timescales based upon historic operating data. From these predictions extended inspection intervals can be justified and replacement schedules planned in advance, ensuring maximum plant availability and deferred capital expenditure. However, as these assessments are based upon an examination of past operating history they must be periodically re-visited and up-dated. The cost of such reassessments is usually close to that performed initially, although cost savings can arise from reductions in work-scope which have been previously justified. As computers have become more advanced (and significantly cheaper) some of the expertise used in these assessments has been transferred into software based products. However, these products are generally aimed at replacing specific parts of the desk-based analysis, necessitating a suite of products to be used in order to address all of the components and damage mechanisms, which must be assessed. As these products require specialized knowledge to be used effectively they are often employed by consultants and rarely by plant operators, except in the largest of organisations which can support an in-house team of `experts`. This has in essence led to an increase in the number of companies capable of offering assessment services, but has maintained, in the majority of cases, the plant operators reliance upon external consultants. These software based assessment methods rely upon historic operating data (in the same manner as their desk- based counterparts) and hence also need to be periodically up-dated. However, as previous assessments can
International Nuclear Information System (INIS)
Zameer, Aneela; Arshad, Junaid; Khan, Asifullah; Raja, Muhammad Asif Zahoor
2017-01-01
Highlights: • Genetic programming based ensemble of neural networks is employed for short term wind power prediction. • Proposed predictor shows resilience against abrupt changes in weather. • Genetic programming evolves nonlinear mapping between meteorological measures and wind-power. • Proposed approach gives mathematical expressions of wind power to its independent variables. • Proposed model shows relatively accurate and steady wind-power prediction performance. - Abstract: The inherent instability of wind power production leads to critical problems for smooth power generation from wind turbines, which then requires an accurate forecast of wind power. In this study, an effective short term wind power prediction methodology is presented, which uses an intelligent ensemble regressor that comprises Artificial Neural Networks and Genetic Programming. In contrast to existing series based combination of wind power predictors, whereby the error or variation in the leading predictor is propagated down the stream to the next predictors, the proposed intelligent ensemble predictor avoids this shortcoming by introducing Genetical Programming based semi-stochastic combination of neural networks. It is observed that the decision of the individual base regressors may vary due to the frequent and inherent fluctuations in the atmospheric conditions and thus meteorological properties. The novelty of the reported work lies in creating ensemble to generate an intelligent, collective and robust decision space and thereby avoiding large errors due to the sensitivity of the individual wind predictors. The proposed ensemble based regressor, Genetic Programming based ensemble of Artificial Neural Networks, has been implemented and tested on data taken from five different wind farms located in Europe. Obtained numerical results of the proposed model in terms of various error measures are compared with the recent artificial intelligence based strategies to demonstrate the
DEFF Research Database (Denmark)
Pinson, Pierre; Tastu, Julija
2014-01-01
A new score for the evaluation of interval forecasts, the so-called coverage width-based criterion (CWC), was proposed and utilized.. This score has been used for the tuning (in-sample) and genuine evaluation (out-ofsample) of prediction intervals for various applications, e.g., electric load [1......], electricity prices [2], general purpose prediction [3], and wind power generation [4], [5]. Indeed, two papers by the same authors appearing in the IEEE Transactions On Sustainable Energy employ that score and use it to conclude on the comparative quality of alternative approaches to interval forecasting...
Frankenstein, Lutz; Zugck, Christian; Nelles, Manfred; Schellberg, Dieter; Katus, Hugo; Remppis, Andrew
2008-04-01
The 6-minute walk test (6MWT) is an established prognostic tool in chronic heart failure. The strong influence of height, weight, age, and sex on 6MWT distance may be accounted for by using percentage achieved of predicted value rather than uncorrected 6MWT values. The study included 1069 patients (862 men) with a mean age 55.2 +/- 11.7 years and mean left ventricular ejection fraction of 29% +/- 10%, attending the heart failure clinic of the University of Heidelberg between 1995 and 2005. The predictive power and accuracy of 6MWT and achieved percentage values according to all available published equations for mortality and mortality or transplant combined were tested separately for each sex. The percentage values varied largely between equations. For all equations, women in New York Heart Association (NYHA) functional class I had higher values than men. Although the 6MWT significantly discriminated all NYHA classes for both sexes, only 1 equation discriminated all NYHA classes. No significant differences in the area under the receiver operating-characteristic curve were noted between achieved percentage values and 6MWT. Despite strong univariate significance, achieved percentage values did not retain multivariate significance. The 6MWT was independent from N-terminal brain natriuretic propeptide, NYHA, left ventricular ejection fraction, and peak oxygen uptake. We confirmed 6MWT to be a strong and independent risk predictor for both sexes. Because the prognostic power of 6MWT is not enhanced using percentage achieved of published reference equations, we suggest recalibration of these reference values rather than discarding this approach.
Towards more accurate wind and solar power prediction by improving NWP model physics
Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo
2014-05-01
The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai
2016-01-01
This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual decomposition. The primary objective of the D-MPC control of the wind farm...... is power reference tracking from system operators. Besides, by optimal distribution of the power references to individual wind turbines and the ESS unit, the wind turbine mechanical loads are alleviated. With the fast gradient method, the convergence rate of the DMPC is significantly improved which leads...
International Nuclear Information System (INIS)
Walker, T.; Damerell, P.S.
1999-01-01
The EPRI MOV Performance Prediction Methodology (PPM) is an effective tool for evaluating design basis thrust and torque requirements for MOVs. Use of the PPM has become more widespread in US nuclear power plants as they close out their Generic Letter (GL) 89-10 programs and address MOV periodic verification per GL 96-05. The PPM has also been used at plants outside the US, many of which are implementing programs similar to US plants' GL 89-10 programs. The USNRC Safety Evaluation of the PPM and the USNRC's discussion of the PPM in GL 96-05 make the PPM an attractive alternative to differential pressure (DP) testing, which can be costly and time-consuming. Significant experience and benefits, which are summarized in this paper, have been gained using the PPM. Although use of PPM requires a commitment of resources, the benefits of a solidly justified approach and a reduced need for DP testing provide a substantial safety and economic benefit. (author)
International Nuclear Information System (INIS)
Shi Chunsheng; Meng Dapeng
2011-01-01
The prediction index for supply risk is developed based on the factor identifying of nuclear equipment manufacturing industry. The supply risk prediction model is established with the method of support vector machine and decision tree, based on the investigation on 3 important nuclear power equipment manufacturing enterprises and 60 suppliers. Final case study demonstrates that the combination model is better than the single prediction model, and demonstrates the feasibility and reliability of this model, which provides a method to evaluate the suppliers and measure the supply risk. (authors)
International Nuclear Information System (INIS)
Shatskiy, A. A.; Kovalev, Yu. Yu.; Novikov, I. D.
2015-01-01
The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations
Energy Technology Data Exchange (ETDEWEB)
Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Kovalev, Yu. Yu.; Novikov, I. D. [Russian Academy of Sciences, Astro Space Center, Lebedev Physical Institute (Russian Federation)
2015-05-15
The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.
The state-of-the-art in short-term prediction of wind power. A literature overview
Energy Technology Data Exchange (ETDEWEB)
Giebel, G.; Brownsword, R.; Kariniotakis, G.
2003-08-01
Based on an appropriate questionnaire (WP1.1) and some other works already in progress, this report details the state-of-the-art in short term prediction of wind power, mostly summarising nearly all existing literature on the topic. (au)
Wilms, I.; Gelper, S.E.C.; Croux, C.
2016-01-01
We study the predictive power of industry-specific economic sentiment indicators for future macro-economic developments. In addition to the sentiment of firms towards their own business situation, we study their sentiment with respect to the banking sector – their main credit providers. The use of
Huijdlng, J; de Jong, PJ; Huijding, J.
This study examined the predictive power of automatically activated spider-related affective associations for automatic and controllable fear responses. The Extrinsic Affective Simon Task (EAST; De Houwer, 2003) was used to indirectly assess automatic spider fear-related associations. The EAST and
C. Heij (Christiaan); S. Knapp (Sabine)
2018-01-01
textabstractThis paper investigates whether deficiencies detected during port state control (PSC) inspections have predictive power for future accident risk, in addition to other vessel-specific risk factors like ship type, age, size, flag, and owner. The empirical analysis links accidents to past
International Nuclear Information System (INIS)
Eliasi, H.; Menhaj, M.B.; Davilu, H.
2011-01-01
Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.
Kandemir, Mehmet; Ilhan, Tahsin; Ozpolat, Ahmed Ragip; Palanci, Mehmet
2014-01-01
The goal of this research is to analyze the predictive power level of academic self-efficacy, self-esteem and coping with stress on academic procrastination behavior. Relational screening model is used in the research whose research group is made of 374 students in Kirikkale University, Education Faculty in Turkey. Students in the research group…
Varol, Yaprak Kalemoglu
2015-01-01
The aim of the research is to determine the predictive power of prospective physical education teachers' attitudes towards educational technologies for their technological pedagogical content knowledge. In this study, a relational research model was used on a study group that consisted of 529 (M[subscript age]=21.49, SD=1.44) prospective physical…
Vali, M.; Petrović, Vlaho; Boersma, S.; van Wingerden, J.W.; Kuhn, Martin; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
2017-01-01
In this paper, we extend our closed-loop optimal control framework for wind farms to minimize wake-induced power losses. We develop an adjoint-based model predictive controller which employs a medium-fidelity 2D dynamic wind farm model. The wind turbine axial induction factors are considered here
Ohashi, Kenji; Takeda, Hiroyuki; Koike, Kazuhide; Ishitani, Osamu
2015-01-01
A novel method for constructing supramolecular hybrids composed of polyoxometalates and photofunctional metal complexes was developed. A Ru(II) complex with phosphonate groups (RuP) strongly interacted with Zn(II) to afford a 2 : 1 trinuclear metal complex ([(RuP)2Zn](3+)). In dimethylsulfoxide, [(RuP)2Zn](3+) strongly interacted with a Keggin-type heteropolyoxometalate (Si-WPOM) to form a 1 : 1 hybrid ([(RuP)2Zn]-POM). Irradiation of [(RuP)2Zn]-POM in the presence of diethanolamine caused rapid accumulation of the one-electron reduced hybrid with a quantum yield of 0.99.
International Nuclear Information System (INIS)
Ivanov, K.G.; Kharshiladze, A.F.; Romashets, E.P.
1992-01-01
Problem of magnetic clouds propagation in regular-nonuniform internal heliosphere is discussed. High dependence of their retardation and consequently intensity of interplanetary and geomagnetic disturbances on mutual location of flares, heliospheric current sheet and the Earth is identified. Eight solar flares, four of which caused strong storms, and another four led to weak disturbances, all of them being in fair agreement with theoretical conclusions, are presented as examples
International Nuclear Information System (INIS)
Usaola, J.; Ravelo, O.; Gonzalez, G.; Soto, F.; Davila, M.C.; Diaz-Guerra, B.
2004-01-01
One of the characteristics of wind energy, from the grid point of view, is its non-dispatchability, i.e. generation cannot be ordered, hence integration in electrical networks may be difficult. Short-term wind power prediction-tools could make this integration easier, either by their use by the grid System Operator, or by promoting the participation of wind farms in the electricity markets and using prediction tools to make their bids in the market. In this paper, the importance of a short-term wind power-prediction tool for the participation of wind energy systems in electricity markets is studied. Simulations, according to the current Spanish market rules, have been performed to the production of different wind farms, with different degrees of accuracy in the prediction tool. It may be concluded that income from participation in electricity markets is increased using a short-term wind power prediction-tool of average accuracy. This both marginally increases income and also reduces the impact on system operation with the improved forecasts. (author)
International Nuclear Information System (INIS)
Lefevre, Thibaut
2000-01-01
The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr
Directory of Open Access Journals (Sweden)
Viknash Shagar
2018-03-01
Full Text Available This paper aims to understand how the common phenomenon of fluctuations in propulsion and service load demand contribute to frequency transients in hybrid electric ship power systems. These fluctuations arise mainly due to changes in sea conditions resulting in significant variations in the propulsion load demand of ships. This leads to poor power quality for the power system that can potentially cause hazardous conditions such as blackout on board the ship. Effects of these fluctuations are analysed using a hybrid electric ship power system model and a proposed Model Predictive Control (MPC strategy to prevent propagation of transients from the propellers into the shipboard power system. A battery energy storage system, which is directly connected to the DC-link of the frequency converter, is used as the smoothing element. Case studies that involve propulsion and service load changes have been carried out to investigate the efficacy of the proposed solution. Simulation results show that the proposed solution with energy storage and MPC is able to contain frequency transients in the shipboard power system within the permissible levels stipulated by the relevant power quality standards. These findings will help ship builders and operators to consider using battery energy storage systems controlled by advanced control techniques such as MPC to improve the power quality on board ships.
Very short-term spatio-temporal wind power prediction using a censored Gaussian field
DEFF Research Database (Denmark)
Baxevani, Anastassia; Lenzi, Amanda
2018-01-01
Wind power is a renewable energy resource, that has relatively cheap installation costs and it is highly possible that will become the main energy resource in the near future. Wind power needs to be integrated efficiently into electricity grids, and to optimize the power dispatch, techniques...
Nijhuis, M.; Rawn, B.G.; Gibescu, M.
2014-01-01
During partly cloudy conditions, the power delivered by a photovoltaic array can easily fluctuate by three quarters of its rated power in 10 s. Fluctuations from photovoltaics of this size and on this time scale may necessitate adding an additional component to power system secondary and primary
Directory of Open Access Journals (Sweden)
Gonzalo Boncompte
Full Text Available Focusing one's attention by external guiding stimuli towards a specific area of the visual field produces systematical neural signatures. One of the most robust is the change in topological distribution of oscillatory alpha band activity across parieto-occipital cortices. In particular, decreases in alpha activity over contralateral and/or increases over ipsilateral scalp sites, respect to the side of the visual field where attention was focused. This evidence comes mainly from experiments where an explicit cue informs subjects where to focus their attention, thus facilitating detection of an upcoming target stimulus. However, recent theoretical models of attention have highlighted a stochastic or non-deterministic component related to visuospatial attentional allocation. In an attempt to evidence this component, here we analyzed alpha activity in a signal detection paradigm in the lack of informative cues; in the absence of preceding information about the location (and time of appearance of target stimuli. We believe that the unpredictability of this situation could be beneficial for unveiling this component. Interestingly, although total alpha power did not differ between Seen and Unseen conditions, we found a significant lateralization of alpha activity over parieto-occipital electrodes, which predicted behavioral performance. This effect had a smaller magnitude compared to paradigms in which attention is externally guided (cued. However we believe that further characterization of this spontaneous component of attention is of great importance in the study of visuospatial attentional dynamics. These results support the presence of a spontaneous component of visuospatial attentional allocation and they advance pre-stimulus alpha-band lateralization as one of its neural signatures.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
Using reference trajectories to predicted uncertain systems: exemplified on a power plant
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.
2007-01-01
This paper presents a method for prediction of uncertain closed loop systems, where the uncertainties are depending on operating points. Such model uncertainties are often present when complicated non-linear systems are predicted. The method uses precomputed mean and variances of the prediction e...
Directory of Open Access Journals (Sweden)
Mustafa İLHAN
2013-12-01
Full Text Available This research aims to explore predictive power of mathematics anxiety in terms of gender and class variables. For this purpose relational model was used in the study. Working group of the research consists of 348 secondary school second stage students, 175 of whom are girls and 175 are boys, having education in four elementary schools in central district of Diyarbakır province, during 2011-2012 Academic Year, first Semester. “Math Anxiety Scale for Primary School Students” to determine students’ mathematics anxiety was used. Averages of students’ mathematics notes in the first term of 2011- 2012 academic year are taken as the achievement scores of mathematics. The collected data has been analyzed by SPSS 17.0. The relationship between mathematics achievement and math anxiety was analyzed with pearson correlation. The predictor power of math anxiety for mathematics achievement was determined by the regression analysis. According the research findings %17 of the total variance of mathematics achievement can be explained by math anxiety. It has been determined that predictive power of mathematics anxiety on mathematics success is higher in girls than boys. Furthermore, it has been determined in the research that predictive power of mathematics anxiety on mathematics success increases, as students proceed towards the next grade.
Directory of Open Access Journals (Sweden)
Guo-Qiang Zeng
2017-11-01
Full Text Available As the penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations increases, the load frequency control issue of a multi-area interconnected power system becomes more challenging. This paper presents an adaptive model predictive load frequency control method for a multi-area interconnected power system with photovoltaic generation by considering some nonlinear features such as a dead band for governor and generation rate constraint for steam turbine. The dynamic characteristic of this system is formulated as a discrete-time state space model firstly. Then, the predictive dynamic model is obtained by introducing an expanded state vector, and rolling optimization of control signal is implemented based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have demonstrated the superiority of the proposed model predictive control method to these state-of-the-art control techniques such as firefly algorithm, genetic algorithm, and population extremal optimization-based proportional-integral control methods in cases of normal conditions, load disturbance and parameters uncertainty.
International Nuclear Information System (INIS)
Su Jie; Xia Guoqing; Zhang Wei
2007-01-01
For further improving the dynamic control capabilities of the gas turbine of the nuclear power plant, this paper puts forward to apply the algorithm of global predictive control with self-adaptive in the rotate speed control of the gas turbine, including control structure and the design of controller in the base of expounding the math model of the gas turbine of the nuclear power plant. the simulation results show that the respond of the change of the gas turbine speed under the control algorithm of global predictive control with self-adaptive is ten second faster than that under the PID control algorithm, and the output value of the gas turbine speed under the PID control algorithm is 1%-2% higher than that under the control slgorithm of global predictive control with self-adaptive. It shows that the algorithm of global predictive control with self-adaptive can better control the output of the speed of the gas turbine of the nuclear power plant and get the better control effect. (authors)
ELMO model predicts the price of electric power; ELMO-malli saehkoen hinnan ennustamiseksi
Energy Technology Data Exchange (ETDEWEB)
Antila, H. [Electrowatt-Ekono Oy, Helsinki (Finland)
2001-07-01
Electrowatt-Ekono has developed a new model, by which it is possible to make long-term prognoses on the development of electricity prices in the Nordic Countries. The ELMO model can be used as an analysis service of the electricity markets and estimation of the profitability of long-term power distribution contracts with different scenarios. It can also be applied for calculation of technical and economical fundamentals for new power plants, and for estimation of the effects of different taxation models on the emissions of power generation. The model describes the whole power generation system, the power and heat consumption and transmission. The Finnish power generation system is based on the Electrowatt-Ekono's boiler database by combining different data elements. Calculation is based on the assumption that the Nordic power generation system is used optimally, and that the production costs are minimised. In practise the effectively operated electricity markets ensure the optimal use of the production system. The market area to be described consists of Finland and Sweden. The spot prices have long been the same. Norway has been treated as a separate market area. The most potential power generation system, the power consumption and the power transmission system are presumed for the target year during a normal rainfall situation. The basic scenario is calculated on the basis of the preconditional data. The calculation is carried out on hourly basis, which enables the estimation of the price variation of electric power between different times during the day and seasons. The system optimises the power generation on the basis of electricity and heat consumption curves and fuel prices. The result is an hourly limit price for electric power. Estimates are presented as standard form reports. Prices are presented as average annuals, in the seasonal base, and in hourly or daily basis for different seasons.
International Nuclear Information System (INIS)
Pantic, Lana S.; Pavlović, Tomislav M.; Milosavljević, Dragana D.; Radonjic, Ivana S.; Radovic, Miodrag K.; Sazhko, Galina
2016-01-01
Five different models for calculating solar module temperature, output power and efficiency for sunny days with different solar radiation intensities and ambient temperatures are assessed in this paper. Thereafter, modeled values are compared to the experimentally obtained values for the horizontal solar module in Nis, Serbia. The criterion for determining the best model was based on the statistical analysis and the agreement between the calculated and the experimental values. The calculated values of solar module temperature are in good agreement with the experimentally obtained ones, with some variations over and under the measured values. The best agreement between calculated and experimentally obtained values was for summer months with high solar radiation intensity. The nonlinear model for calculating the output power is much better than the linear model and at the same time predicts better the total electrical energy generated by the solar module during the day. The nonlinear model for calculating the solar module efficiency predicts the efficiency higher than the STC (Standard Test Conditions) value of solar module efficiency for all conditions, while the linear model predicts the solar module efficiency very well. This paper provides a simple and efficient guideline to estimate relevant parameters of a monocrystalline silicon solar module under the moderate-continental climate conditions. - Highlights: • Linear model for solar module temperature gives accurate predictions for August. • The nonlinear model better predicts the solar module power than the linear model. • For calculating solar module power for Nis we propose the nonlinear model. • For calculating solar model efficiency for Nis we propose adoption of linear model. • The adopted models can be used for calculations throughout the year.
International Nuclear Information System (INIS)
Bae, Hyun-Mi; Lee, Jeong-Hoon; Yoon, Jung-Hwan; Kim, Yoon Jun; Heo, Dae Seog; Lee, Hyo-Suk
2011-01-01
Clinicians often experience extrahepatic metastases associated with hepatocellular carcinoma (HCC), even if no evidence of intrahepatic recurrence after treatment is observed. We investigated the pretreatment predictors of extrahepatic metastases in HCC patients. Patients diagnosed with HCC without evidence of extrahepatic metastases were prospectively enrolled. We evaluated the correlation between extrahepatic metastases and pretreatment clinical variables, including serum tumor markers. A total of 354 patients were included. Seventy-six patients (21%) had extrahepatic metastases during the observation period (median, 25.3 months; range, 0.6-51.3 months). Cox regression multivariate analysis showed that serum protein induced by vitamin K absence or antagonist-II (PIVKA-II) production levels, the intrahepatic tumor stage, platelet count, and portal vein thrombosis were independent risk factors for extrahepatic metastases. Patients with a PIVKA-II production ≥ 300 mAU/mL had a 2.7-fold (95% confidence interval; 1.5-4.8; P < 0.001) and 3.7-fold (95% confidence interval; 2.0-6.6; P < 0.001) increased risk for extrahepatic metastases after adjustment for stage, platelet count, alpha-fetoprotein ≥ 400 ng/mL, and portal vein thrombosis according to the AJCC and BCLC staging systems, respectively. PIVKA-II production levels might be a good candidate predictive marker for extrahepatic HCC metastases, especially in patients with smaller and/or fewer tumors in the liver with in stages regardless of serum alpha-fetoprotein
International Nuclear Information System (INIS)
Pei, Lei; Zhu, Chunbo; Wang, Tiansi; Lu, Rengui; Chan, C.C.
2014-01-01
The goal of this study is to realize real-time predictions of the peak power/state of power (SOP) for lithium-ion batteries in electric vehicles (EVs). To allow the proposed method to be applicable to different temperature and aging conditions, a training-free battery parameter/state estimator is presented based on an equivalent circuit model using a dual extended Kalman filter (DEKF). In this estimator, the model parameters are no longer taken as functions of factors such as SOC (state of charge), temperature, and aging; instead, all parameters will be directly estimated under the present conditions, and the impact of the temperature and aging on the battery model will be included in the parameter identification results. Then, the peak power/SOP will be calculated using the estimated results under the given limits. As an improvement to the calculation method, a combined limit of current and voltage is proposed to obtain results that are more reasonable. Additionally, novel verification experiments are designed to provide the true values of the cells' peak power under various operating conditions. The proposed methods are implemented in experiments with LiFePO 4 /graphite cells. The validating results demonstrate that the proposed methods have good accuracy and high adaptability. - Highlights: • A real-time peak power/SOP prediction method for lithium-ion batteries is proposed. • A training-free method based on DEKF is presented for parameter identification. • The proposed method can be applied to different temperature and aging conditions. • The calculation of peak power under the current and voltage limits is improved. • Validation experiments are designed to verify the accuracy of prediction results
Assessment of CPPF Reduction After Adapting Our Own Power Distribution Prediction Method
International Nuclear Information System (INIS)
Kim, Sung-min; Park, Joong-woo; Kho, Dae-hack; Seo, Hyung-beom; Han, Bong-gyun
2006-01-01
CANDU reactor which uses natural Uranium as a fuel requires daily on-power refueling due to its insufficient excess reactivity. So its power distribution changes unceasingly. Reactor physicists identify the change twice a week using RFSP (Reactor Fuelling Simulation Program) code, and check if it is operated within power limitation (380 channels and 4560 bundles). We also calculate ROP (Regional Overpower Protection trip system) detector calibration target value (DC, Detector Calibration) and determine refueling channels and their order. DC is composed of CPPF (Channel Power Peaking Factor), Plant ageing penalty and the factor considering PHT (Primary Heat Transport system) condition, etc. The lower CPPF means the lower DC, and the lower DC means the larger operating margin. If the reactor is not operated in full power state as Wolsong Unit no. 1, the additional operating margin can be converted to the additional operating power directly
International Nuclear Information System (INIS)
Adamsson, Carl; Le Corre, Jean-Marie
2011-01-01
Highlights: → The MEFISTO code efficiently and accurately predicts the dryout event in a BWR fuel bundle, using a mechanistic model. → A hybrid approach between a fast and robust sub-channel analysis and a three-field two-phase analysis is adopted. → MEFISTO modeling approach, calibration, CPU usage, sensitivity, trend analysis and performance evaluation are presented. → The calibration parameters and process were carefully selected to preserve the mechanistic nature of the code. → The code dryout prediction performance is near the level of fuel-specific empirical dryout correlations. - Abstract: Westinghouse is currently developing the MEFISTO code with the main goal to achieve fast, robust, practical and reliable prediction of steady-state dryout Critical Power in Boiling Water Reactor (BWR) fuel bundle based on a mechanistic approach. A computationally efficient simulation scheme was used to achieve this goal, where the code resolves all relevant field (drop, steam and multi-film) mass balance equations, within the annular flow region, at the sub-channel level while relying on a fast and robust two-phase (liquid/steam) sub-channel solution to provide the cross-flow information. The MEFISTO code can hence provide highly detailed solution of the multi-film flow in BWR fuel bundle while enhancing flexibility and reducing the computer time by an order of magnitude as compared to a standard three-field sub-channel analysis approach. Models for the numerical computation of the one-dimensional field flowrate distributions in an open channel (e.g. a sub-channel), including the numerical treatment of field cross-flows, part-length rods, spacers grids and post-dryout conditions are presented in this paper. The MEFISTO code is then applied to dryout prediction in BWR fuel bundle using VIPRE-W as a fast and robust two-phase sub-channel driver code. The dryout power is numerically predicted by iterating on the bundle power so that the minimum film flowrate in the
Directory of Open Access Journals (Sweden)
Xiang-ming Gao
2017-01-01
Full Text Available Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD and support vector machine (SVM optimized with an artificial bee colony (ABC algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
Ansari, Hamid Reza
2014-09-01
In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.
POWER STABILITY MONITORING BASED ON VOLTAGE INSTABILITY PREDICTION APPROACH THROUGH WIDE AREA SYSTEM
H. H. Goh; Q. S. Chua; S. W. Lee; B. C. Kok; K. C. Goh; K. T.K. Teo
2014-01-01
Nowadays, power systems are being forced to operate closer to its security limit due to current economic growth and the difficulties to upgrade the existing grid infrastructure. With the sudden increment of power demand, voltage instability problem has become a main concern to the power system operator because voltage instability has led or crucially contributed to some major blackouts throughout the world. Hence, methods for early warning and early prevention are required to prevent the powe...
International Nuclear Information System (INIS)
Wang, Hang; Peng, Min-jun; Wu, Peng; Cheng, Shou-yu
2016-01-01
Highlights: • Different methods for online monitoring and diagnosis are summarized. • Numerical simulation modeling of condensate and feed water system in nuclear power plant are done by FORTRAN programming. • Integrated online monitoring and prediction methods have been developed and tested. • Online monitoring module, fault diagnosis module and trends prediction module can be verified with each other. - Abstract: Faults or accidents may occur in a nuclear power plant (NPP), but it is hard for operators to recognize the situation and take effective measures quickly. So, online monitoring, diagnosis and prediction (OMDP) is used to provide enough information to operators and improve the safety of NPPs. In this paper, distributed conservation equation (DCE) and artificial immunity system (AIS) are proposed for online monitoring and diagnosis. On this basis, quantitative simulation models and interactive database are combined to predict the trends and severity of faults. The effectiveness of OMDP in improving the monitoring and prediction of condensate and feed water system (CFWS) was verified through simulation tests.
DEFF Research Database (Denmark)
Alessandrini, S.; Pinson, Pierre; Sperati, S.
2011-01-01
The importance of wind power forecasting (WPF) is nowadays commonly recognized because it represents a useful tool to reduce problems of grid integration and to facilitate energy trading. If on one side the prediction accuracy is fundamental to these scopes, on the other it has become also clear...... by a recalibration procedure that allowed obtaining a more uniform distribution among the 51 intervals, making the ensemble spread large enough to include the observations. After that it was observed that the EPS power spread seemed to have enough correlation with the error calculated on the deterministic forecast...
International Nuclear Information System (INIS)
Kinase, Sakae; Sato, Satoshi; Saito, Kimiaki; Takahashi, Tomoyuki; Sakamoto, Ryuichi
2014-01-01
Preliminary prediction models have been studied for the radioactive caesium distribution within the 80-km radius of the Fukushima Daiichi nuclear power plant. The models were represented by exponential functions using ecological half-life of radioactive caesium in the environment. The ecological half-lives were derived from the changes in ambient dose equivalent rates through vehicle-borne surveys. It was found that the ecological half-lives of radioactive caesium were not constant within the 80-km radius of the Fukushima Daiichi nuclear power plant. The ecological half-life of radioactive caesium in forest areas was found to be much larger than that in urban and water areas. (authors)
Fan, Rong; Sun, Jian; Yuan, Quan; Xie, Qing; Bai, Xuefan; Ning, Qin; Cheng, Jun; Yu, Yanyan; Niu, Junqi; Shi, Guangfeng; Wang, Hao; Tan, Deming; Wan, Mobin; Chen, Shijun; Xu, Min; Chen, Xinyue; Tang, Hong; Sheng, Jifang; Lu, Fengmin; Jia, Jidong; Zhuang, Hui; Xia, Ningshao; Hou, Jinlin
2016-01-01
Objective The investigation regarding the clinical significance of quantitative hepatitis B core antibody (anti-HBc) during chronic hepatitis B (CHB) treatment is limited. The aim of this study was to determine the performance of anti-HBc as a predictor for hepatitis B e antigen (HBeAg) seroconversion in HBeAg-positive CHB patients treated with peginterferon (Peg-IFN) or nucleos(t)ide analogues (NUCs), respectively. Design This was a retrospective cohort study consisting of 231 and 560 patients enrolled in two phase IV, multicentre, randomised, controlled trials treated with Peg-IFN or NUC-based therapy for up to 2 years, respectively. Quantitative anti-HBc evaluation was conducted for all the available samples in the two trials by using a newly developed double-sandwich anti-HBc immunoassay. Results At the end of trials, 99 (42.9%) and 137 (24.5%) patients achieved HBeAg seroconversion in the Peg-IFN and NUC cohorts, respectively. We defined 4.4 log10 IU/mL, with a maximum sum of sensitivity and specificity, as the optimal cut-off value of baseline anti-HBc level to predict HBeAg seroconversion for both Peg-IFN and NUC. Patients with baseline anti-HBc ≥4.4 log10 IU/mL and baseline HBV DNA baseline anti-HBc level was the best independent predictor for HBeAg seroconversion (OR 2.178; 95% CI 1.577 to 3.009; pBaseline anti-HBc titre is a useful predictor of Peg-IFN and NUC therapy efficacy in HBeAg-positive CHB patients, which could be used for optimising the antiviral therapy of CHB. PMID:25586058
Tsao, Sinchai; Gajawelli, Niharika; Zhou, Jiayu; Shi, Jie; Ye, Jieping; Wang, Yalin; Lepore, Natasha
2014-03-21
Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end we combine a predictive multi-task machine learning method 1 with novel MR-based multivariate morphometric surface map of the hippocampus 2 to predict future cognitive scores of patients. Previous work by Zhou et al. 1 has shown that a multi-task learning framework that performs prediction of all future time points (or tasks) simultaneously can be used to encode both sparsity as well as temporal smoothness. They showed that this can be used in predicting cognitive outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied Shi et al. 2 s recently developed multivariate tensor-based (mTBM) parametric surface analysis method to extract features from the hippocampal surface. We show that by combining the power of the multi-task framework with the sensitivity of mTBM features of the hippocampus surface, we are able to improve significantly improve predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.
Tsao, Sinchai; Gajawelli, Niharika; Zhou, Jiayu; Shi, Jie; Ye, Jieping; Wang, Yalin; Lepore, Natasha
2014-03-01
Prediction of Alzheimers disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end we combine a predictive multi-task machine learning method1 with novel MR-based multivariate morphometric surface map of the hippocampus2 to predict future cognitive scores of patients. Previous work by Zhou et al.1 has shown that a multi-task learning framework that performs prediction of all future time points (or tasks) simultaneously can be used to encode both sparsity as well as temporal smoothness. They showed that this can be used in predicting cognitive outcomes of Alzheimers Disease Neuroimaging Initiative (ADNI) subjects based on FreeSurfer-based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied Shi et al.2s recently developed multivariate tensor-based (mTBM) parametric surface analysis method to extract features from the hippocampal surface. We show that by combining the power of the multi-task framework with the sensitivity of mTBM features of the hippocampus surface, we are able to improve significantly improve predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.
Directory of Open Access Journals (Sweden)
S. Raia
2014-03-01
of several model runs obtained varying the input parameters are analyzed statistically, and compared to the original (deterministic model output. The comparison suggests an improvement of the predictive power of the model of about 10% and 16% in two small test areas, that is, the Frontignano (Italy and the Mukilteo (USA areas. We discuss the computational requirements of TRIGRS-P to determine the potential use of the numerical model to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides in very large areas, extending for several hundreds or thousands of square kilometers. Parallel execution of the code using a simple process distribution and the message passing interface (MPI on multi-processor machines was successful, opening the possibly of testing the use of TRIGRS-P for the operational forecasting of rainfall-induced shallow landslides over large regions.
Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F.
2013-01-01
are analyzed statistically, and compared to the original (deterministic) model output. The comparison suggests an improvement of the predictive power of the model of about 10% and 16% in two small test areas, i.e. the Frontignano (Italy) and the Mukilteo (USA) areas, respectively. We discuss the computational requirements of TRIGRS-P to determine the potential use of the numerical model to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides in very large areas, extending for several hundreds or thousands of square kilometers. Parallel execution of the code using a simple process distribution and the Message Passing Interface (MPI) on multi-processor machines was successful, opening the possibly of testing the use of TRIGRS-P for the operational forecasting of rainfall-induced shallow landslides over large regions.
The predictive power of depression screening procedures for veterans with coronary artery disease
Directory of Open Access Journals (Sweden)
Shankman SA
2012-04-01
Full Text Available Stewart A Shankman1*, Jeffrey Nadelson2*, Sarah Kate McGowan1, Ali A Sovari2, Mladen I Vidovich21Department of Psychiatry and Psychology, University of Illinois, 2Department of Cardiology, Jesse Brown VA Medical Center, Chicago, IL, USA*These authors contributed equally to this workAbstract: Depression leads to a worse outcome for patients with coronary artery disease (CAD. Thus, accurately identifying depression in CAD patients is imperative. In many veterans affairs (VA hospitals, patients are screened for depression once a year using the patient health questionnaire (PHQ-9. Although the PHQ-9 is generally considered a specific and sensitive measure of depression, there is reason to believe that these screening procedures may miss a large number of cases of depression within CAD patients and cardiology patients more generally. The goal of this study was to provide data as to the predictive power of this depression screening procedure by (a comparing the prevalence rate of depression identified by the PHQ-9 to known prevalence rates and (b examining whether patients identified as “depressed” also had conditions that consistently co-occur with depression (eg, post-traumatic stress disorder [PTSD], other medical issues. Participants were 813 consecutive patients who received an angiogram in the cardiac catheterization laboratory at a large VA Medical Center. Prevalence of depression was 6.9% in the overall sample and less than 6% when the sample was restricted to CAD patients with significant stenosis. Depression was significantly associated with PTSD, smoking, and alcohol problems. However, depression was not associated with other medical problems such as diabetes, renal failure, peripheral vascular disease, or anemia. In conclusion, the low prevalence rate of depression and lack of associations with comorbid medical problems may suggest that the VA’s depression screening procedures have low sensitivity for identifying depression in CAD
International Nuclear Information System (INIS)
Jung, Gye Jo; Jung, Nam Gun
2010-01-01
Many forces are pressuring utilities to reduce operating and maintenance costs without cutting back on reliability or availability. Many utility managers are re-evaluating maintenance strategies to meet these demands. To utilities how to reduce maintenance costs and extent the effective operating life of equipment, predictive maintenance technique can be adapted. Predictive maintenance had three types program which are in-house program, engineering company program and mixed program. We can approach successful predictive maintenance program with 'smart trust' concept
DEFF Research Database (Denmark)
Elmholdt, Claus Westergård; Fogsgaard, Morten
2016-01-01
and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable....... It is thus a central point that power is not necessarily something that breaks down and represses. On the contrary, an explicit focus on the dynamics of power in relation to creativity can be productive for the organisation. Our main focus is to elaborate the implications of this for practice and theory...
Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems
DEFF Research Database (Denmark)
You, Shi; Liu, Zongyu; Zong, Yi
2015-01-01
A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...
International Nuclear Information System (INIS)
Kim, Si Moon
2002-01-01
This paper presents the simulation model developed to predict design and off-design performance of an actual combined cycle power plant(S-Station in Korea), which would be running combined with on-line performance monitoring system in an on-line real-time fashion. The first step in thermal performance analysis is to build an accurate performance model of the power plant, in order to achieve this goal, GateCycle program has been employed in developing the model. This developed models predict design and off-design performance with a precision of one percent over a wide range of operating conditions so that on-line real-time performance monitoring can accurately establish both current performance and expected performance and also help the operator identify problems before they would be noticed
Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Aminmohammad Saberian
2014-01-01
Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.
International Nuclear Information System (INIS)
Guseynov, Sh; Gakhramanov, I.G.
2012-01-01
Full text : All living and non-living things on Earth is dependent on the processes occurring in the Sun. Therefore the study of the Sun with the aim to predict powerful solar flares is of great scientific and practical importance. It is known that the main drawback of modern forecasting of solar flares and the low reliability of forecasts is the lack of use of the physical concepts of the mechanism of flares
McCormick, Keith; Wei, Bowen
2017-01-01
IBM SPSS Modeler allows quick, efficient predictive analytics and insight building from your data, and is a popularly used data mining tool. This book will guide you through the data mining process, and presents relevant statistical methods which are used to build predictive models and conduct other analytic tasks using IBM SPSS Modeler. From ...
Energy Technology Data Exchange (ETDEWEB)
Abdelrasoul, Amira; Doan, Huu; Lohi, Ali; Cheng, Chil-Hung [Ryerson University, 350 Victoria Street, Toronto (Canada)
2016-03-15
Tha aim of the present study was to develop a series of numerical models for an accurate prediction of the power consumption in ultrafiltration of simulated latex effluent. The developed power consumption model incorporated fouling attachment, as well as chemical and physical factors in membrane fouling, in order to ensure accurate prediction and scale-up. This model was applied to heterogeneous membranes with non-uniform pore sizes at a given operating conditions and membrane surface charges. Polysulfone flat membrane, with a membrane molecular weight cutoff (MWCO) of 60,000 dalton, at different surface charges was used under a constant flow rate and cross-flow mode. In addition, the developed models were examined using various membranes at a variety of surface charges so as to test the overall reliability and accuracy of these models. The power consumption predicted by the models corresponded to the calculated values from the experimental data for various hydrophilic and hydrophobic membranes with an error margin of 6.0% up to 19.1%.
Electrophoresis in strong electric fields.
Barany, Sandor
2009-01-01
Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a
MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM
Directory of Open Access Journals (Sweden)
I. Elzein
2015-01-01
Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.
International Nuclear Information System (INIS)
Abou-Gabal, A.; Akl, Sh.A.; Hussain, Sh.H.; Allam, H.A.
2013-01-01
Objective: to determine whether endometrial volume or power Doppler indices as measured by 3D ultrasound imaging can discriminate between benign and malignant endometrium in women with postmenopausal bleeding and endometrial thickness > 5 mm. Study design: Eighty-four patients with postmenopausal bleeding and endometrial thickness > 5 mm underwent 3D power Doppler ultrasound examination of the corpus uteri. The endometrial volume was calculated, along with the vascularisation index (VI), flow index and vascularisation flow index (VFI) in the endometrium. The gold standard was the histological diagnosis of the endometrium. Results: There were 56 benign and 28 malignant endometrial. Endometrial thickness and volume were significantly larger in malignant than in benign endometrial, and flow indices in the endometrium were Significantly higher. The area under the ROC curve (AUC) of endometrial thickness was 0.83, that of endometrial volume 0.73, and that of the best power Doppler variable FI 0.93. The best logistic regression model for predicting malignancy contained the variables endometrial thickness and FI. Its AUC was 0.93. Conclusion: the diagnostic performance of endometrial volume measured by 3d imaging with regard to discriminating between benign and malignant endometrium was not superior to that of endometrial thickness measured by 2D ultrasound examination, but 3D power Doppler flow indices are good diagnostic tool in predicting endometrial carcinoma
Directory of Open Access Journals (Sweden)
N. H. Walke
2016-01-01
Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.
Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren
2017-05-01
Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.
Directory of Open Access Journals (Sweden)
Yanzhen Zhou
2016-09-01
Full Text Available Machine learning techniques have been widely used in transient stability prediction of power systems. When using the post-fault dynamic responses, it is difficult to draw a definite conclusion about how long the duration of response data used should be in order to balance the accuracy and speed. Besides, previous studies have the problem of lacking consideration for the confidence level. To solve these problems, a hierarchical method for transient stability prediction based on the confidence of ensemble classifier using multiple support vector machines (SVMs is proposed. Firstly, multiple datasets are generated by bootstrap sampling, then features are randomly picked up to compress the datasets. Secondly, the confidence indices are defined and multiple SVMs are built based on these generated datasets. By synthesizing the probabilistic outputs of multiple SVMs, the prediction results and confidence of the ensemble classifier will be obtained. Finally, different ensemble classifiers with different response times are built to construct different layers of the proposed hierarchical scheme. The simulation results show that the proposed hierarchical method can balance the accuracy and rapidity of the transient stability prediction. Moreover, the hierarchical method can reduce the misjudgments of unstable instances and cooperate with the time domain simulation to insure the security and stability of power systems.
Directory of Open Access Journals (Sweden)
Hao Li
2017-01-01
Full Text Available Predicting the performance of solar water heater (SWH is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine learning-based high-throughput screening (HTS method. Design of water-in-glass evacuated tube solar water heater (WGET-SWH is selected as a case study to show the potential application of machine learning-based HTS to the design and optimization of solar energy systems.
Directory of Open Access Journals (Sweden)
Laura Castro
2011-01-01
Full Text Available On-site power and mass flow rate measurements were conducted in a hydroelectric power plant (Mexico. Mass flow rate was obtained using Gibson's water hammer-based method. A numerical counterpart was carried out by using the commercial CFD software, and flow simulations were performed to principal components of a hydraulic turbine: runner and draft tube. Inlet boundary conditions for the runner were obtained from a previous simulation conducted in the spiral case. The computed results at the runner's outlet were used to conduct the subsequent draft tube simulation. The numerical results from the runner's flow simulation provided data to compute the torque and the turbine's power. Power-versus-efficiency curves were built, and very good agreement was found between experimental and numerical data.
Predicted effect of power uprating on the water chemistry of commercial boiling water reactors
International Nuclear Information System (INIS)
Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching
2009-01-01
The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP
Automated system for load flow prediction in power substations using artificial neural networks
Directory of Open Access Journals (Sweden)
Arlys Michel Lastre Aleaga
2015-09-01
Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.
DEFF Research Database (Denmark)
Lakshmanan, Venkatachalam; Marinelli, Mattia; Kosek, Anna Magdalena
2013-01-01
This paper discusses and presents a simple temperature prediction strategy for the domestic refrigerator. The main idea is to predict the duration it takes to the Cold chamber temperature to reach the thresholds according to the state of the compressor and to the last temperature measurements....... The experiments are conducted at SYSLAB facility at DTU Risø Campus having a set of refrigerators working at different set point temperatures, with different ambient temperatures and under different thermal load conditions. The prediction strategy is tested using a set of different refrigerators in order...
Directory of Open Access Journals (Sweden)
Dirk Cannon
2017-06-01
Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.
Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.
2012-01-01
PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator
Powering and Motion Predictions of High Speed Sea Lift (HSSL) Ships
National Research Council Canada - National Science Library
Gorski, Joseph; Miller, Ronald; Carrica, Pablo; Kandasamy, Mani; Stern, Fred
2007-01-01
High Speed Sea Lift (HSSL) is an important area of in terest for the US Navy. Computational tools are needed to predict the hydrodynamics of these configurations for their proper design and analysis in many areas including...
Larsgård, Borgar
2015-01-01
Shift work can have adverse effects on employees' health, including symptoms of insomnia. This may cause severe problems both for employee and employer. The personality variables morningness, neuroticism and extraversion, along with some demographic variables (e.g. gender, age) have been found to correlate with insomnia symptoms, but predictive data have been scarce. This study sought to discover whether personality variables could predict insomnia. A hierarchical longitudinal (six months)...
Predictive power of the DASA-IV: Variations in rating method and timescales.
Nqwaku, Mphindisi; Draycott, Simon; Aldridge-Waddon, Luke; Bush, Emma-Louise; Tsirimokou, Alexandra; Jones, Dominic; Puzzo, Ignazio
2018-05-10
This project evaluated the predictive validity of the Dynamic Appraisal of Situational Aggression - Inpatient Version (DASA-IV) in a high-secure psychiatric hospital in the UK over 24 hours and over a single nursing shift. DASA-IV scores from three sequential nursing shifts over a 24-hour period were compared with the mean (average of three scores across the 24-hour period) and peak (highest of the three scores across the 24-hour period) scores across these shifts. In addition, scores from a single nursing shift were used to predict aggressive incidents over each of the following three shifts. The DASA-IV was completed by nursing staff during handover meetings, rating 43 male psychiatric inpatients over a period of 6 months. Data were compared to incident reports recorded over the same period. Receiver operating characteristic (ROC) curves and generalized estimating equations assessed the predictive ability of various DASA-IV scores over 24-hour and single-shift timescales. Scores from the DASA-IV based on a single shift had moderate predictive ability for aggressive incidents occurring the next calendar day, whereas scores based on all three shifts had excellent predictive ability. DASA-IV scores from a single shift showed moderate predictive ability for each of the following three shifts. The DASA-IV has excellent predictive ability for aggressive incidents within a secure setting when data are summarized over a 24-hour period, as opposed to when a single rating is taken. In addition, it has moderate value for predicting incidents over even shorter timescales. © 2018 Australian College of Mental Health Nurses Inc.
Strongly interacting Higgs bosons
International Nuclear Information System (INIS)
Appelquist, T.; Bernard, C.
1980-01-01
The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed
Directory of Open Access Journals (Sweden)
Irfan Ullah
2017-12-01
Full Text Available A variety of reasons, specifically contact issues, irregular loads, cracks in insulation, defective relays, terminal junctions and other similar issues, increase the internal temperature of electrical instruments. This results in unexpected disturbances and potential damage to power equipment. Therefore, the initial prevention measures of thermal anomalies in electrical tools are essential to prevent power-equipment failure. In this article, we address this initial prevention mechanism for power substations using a computer-vision approach by taking advantage of infrared thermal images. The thermal images are taken through infrared cameras without disturbing the working operations of power substations. Thus, this article augments the non-destructive approach to defect analysis in electrical power equipment using computer vision and machine learning. We use a total of 150 thermal pictures of different electrical equipment in 10 different substations in operating conditions, using 300 different hotspots. Our approach uses multi-layered perceptron (MLP to classify the thermal conditions of components of power substations into “defect” and “non-defect” classes. A total of eleven features, which are first-order and second-order statistical features, are calculated from the thermal sample images. The performance of MLP shows initial accuracy of 79.78%. We further augment the MLP with graph cut to increase accuracy to 84%. We argue that with the successful development and deployment of this new system, the Technology Department of Chongqing can arrange the recommended actions and thus save cost in repair and outages. This can play an important role in the quick and reliable inspection to potentially prevent power substation equipment from failure, which will save the whole system from breakdown. The increased 84% accuracy with the integration of the graph cut shows the efficacy of the proposed defect analysis approach.
A prediction of Power Duration Curve from the Optimal Operation of the Multi Reservoirs System
Directory of Open Access Journals (Sweden)
Abdul Wahab Younis
2013-04-01
Full Text Available This study aims of predication Power Duration Curves(PDC resulting from the optimal operation of the multi reservoirs system which comprises the reservoirs of Bakhma dam,Dokan dam and Makhool dam for the division of years over 30 years.Discrete Differential Dynamic Programming(DDDP has been employed to find the optimal operation of the said reservoirs. PDC representing the relationship between the generated hydroelectric power and percentage of operation time equaled or exceeded . The importance of these curves lies in knowing the volume of electric power available for that percentage of operation time. The results have shown that the sum of yearly hydroelectric power for average Release and for the single operation was 5410,1604,2929(Mwfor the reservoirs of Bakhma, Dokan, Makhool dams, which resulted from the application of independent DDDP technology. Also, the hydroelectric power whose generation can be guranteed for 90% of the time is 344.91,107.7,188.15 (Mw for the single operation and 309.1,134.08,140.7 (Mw for the operation as a one system for the reservoirs of Bakhma, Dokan, and Makhool dams respectively.
Directory of Open Access Journals (Sweden)
Marino Marrocu
2017-11-01
Full Text Available An accurate forecast of the power generated by a wind turbine is of paramount importance for its optimal exploitation. Several forecasting methods have been proposed either based on a physical modeling or using a statistical approach. All of them rely on the availability of high quality measures of local wind speed, corresponding generated power and on numerical weather forecasts. In this paper, a simple and effective wind power forecast technique, based on the probability distribution mapping of wind speed forecast and observed power data, is presented and it is applied to two turbines located on the island of Borkum (Germany in the North Sea. The wind speed forecast of the ECMWF model at 100 m from the ground is used as the prognostic meteorological parameter. Training procedures are based entirely on relatively short time series of power measurements. Results show that our approach has skills that are similar or better than those obtained using more standard methods when measured with mean absolute error.
Pellicano, Elizabeth
2013-08-01
This follow-up study investigated the predictive power of early cognitive atypicalities. Specifically, it examined whether early individual differences in specific cognitive skills, including theory of mind, executive function, and central coherence, could uniquely account for variation in autistic children's behaviors-social communication, repetitive behaviors, and interests and insistence on sameness-at follow-up. Thirty-seven cognitively able children with an autism spectrum condition were assessed on tests tapping verbal and nonverbal ability, theory of mind (false-belief prediction), executive function (planning ability, cognitive flexibility, and inhibitory control), and central coherence (local processing) at intake and their behavioral functioning (social communication, repetitive behaviors and interests, insistence on sameness) 3 years later. Individual differences in early executive but not theory of mind skills predicted variation in children's social communication. Individual differences in children's early executive function also predicted the degree of repetitive behaviors and interests at follow-up. There were no predictive relationships between early central coherence and children's insistence on sameness. These findings challenge the notion that distinct cognitive atypicalities map on to specific behavioral features of autism. Instead, early variation in executive function plays a key role in helping to shape autistic children's emerging behaviors, including their social communication and repetitive behaviors and interests. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Zuzek, P.; Baird, W.F.; International Joint Commission, Ottawa, ON
2008-01-01
This presentation discussed an automated flood and erosion prediction system designed for the upstream sections of the Moses-Saunders power dam. The system included a wave prediction component along with 3-D maps, hourly run-ups, geographic information system (GIS) tools and a hazard analysis tool. Parcel, reach, township, and county databases were used to populate the system. The prediction system was used to develop detailed study sites of shore units in the study area. Shoreline classes included sand and cohesive buffs, low banks, coarse beaches, and cobble or boulder lags. Time series plots for Lake Ontario water and wave levels were presented. Great Lakes ice cover data were also included in the system as well as erosion predictions from 1961 to 1995. The system was also used to develop bluff recession equations and cumulative recession analyses for different regulation plans. Cumulative bluff recession and protection requirements were outlined. Screenshots of the flood and erosion prediction system interface were also included. tabs., figs
Using heat demand prediction to optimise Virtual Power Plant production capacity
Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria
2008-01-01
In the coming decade a strong trend towards distributed electricity generation (microgeneration) is expected. Micro-generators are small appliances that generate electricity (and heat) at the kilowatt level, which allows them to be installed in households. By combining a group of micro-generators, a
Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin
2017-08-01
The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
International Nuclear Information System (INIS)
Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi
2012-01-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)
A Model for Prediction of Propulsion Power and Emissions – Tankers and Bulk Carriers
DEFF Research Database (Denmark)
Lützen, Marie; Kristensen, Hans Otto Holmegaard
To get an idea of the reduction in propulsion power and associated emissions by varying the speed and other ship design main parameters, a generic model for parameter studies of tankers and bulk carriers has been developed. With only a few input parameters of which the maximum deadweight capacity...... is the primary input a proposal for the main dimensions is made. Based on these dimensions and other ship particulars which are determined by the program the necessary installed propulsion power can be calculated. By adjusting the vessel design, i.e. the suggested main dimensions, and varying the speed...
Using micro saint to predict performance in a nuclear power plant control room
International Nuclear Information System (INIS)
Lawless, M.T.; Laughery, K.R.; Persenky, J.J.
1995-09-01
The United States Nuclear Regulatory Commission (NRC) requires a technical basis for regulatory actions. In the area of human factors, one possible technical basis is human performance modeling technology including task network modeling. This study assessed the feasibility and validity of task network modeling to predict the performance of control room crews. Task network models were built that matched the experimental conditions of a study on computerized procedures that was conducted at North Carolina State University. The data from the open-quotes paper proceduresclose quotes conditions were used to calibrate the task network models. Then, the models were manipulated to reflect expected changes when computerized procedures were used. These models' predictions were then compared to the experimental data from the open-quotes computerized conditionsclose quotes of the North Carolina State University study. Analyses indicated that the models predicted some subsets of the data well, but not all. Implications for the use of task network modeling are discussed
International Nuclear Information System (INIS)
Ferng, Y.M.
2008-01-01
The erosion-corrosion (E/C) wear is an essential degradation mechanism for the piping in the nuclear power plant, which results in the oxide mass loss from the inside of piping, the wall thinning, and even the pipe break. The pipe break induced by the E/C wear may cause costly plant repairs and personal injures. The measurement of pipe wall thickness is a useful tool for the power plant to prevent this incident. In this paper, CFD models are proposed to predict the local distributions of E/C wear sites, which include both the two-phase hydrodynamic model and the E/C models. The impacts of centrifugal and gravitational forces on the liquid droplet behaviors within the piping can be reasonably captured by the two-phase model. Coupled with these calculated flow characteristics, the E/C models can predicted the wear site distributions that show satisfactory agreement with the plant measurements. Therefore, the models proposed herein can assist in the pipe wall monitoring program for the nuclear power plant by way of concentrating the measuring point on the possible sites of severe E/C wear for the piping and reducing the measurement labor works
Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C
2016-01-01
To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Marcello Angotti
2016-09-01
Full Text Available The study aimed to analyze if the information about comprehensive income (CI and its individual components have predictive power to determine the Operating Cash Flow of the subsequent period (OCFt+1 at the Brazilian capital market companies. The research methodology has used financial data collected from Economatica® and CVM databases. The sample selection was performed considering the availability of variables: OCFt+1 and share prices. The period analyzed comprehended the years 2012-2014. It were used quantitative valuation techniques, establishing two moments of study: the first moment by testing the hypothesis that CI has greater predictive power than Net Income (NI for forecasting OCFt+1 (528 firms/years; and the second moment by testing the hypothesis that CI and its components have a value relevance at the Brazilian capital market (605 firms/years. The results suggest that the analysis of the consolidated CI individually would not be incremental for forecasting OCFt+1. However, an increase was observed in the predictive capacity for OCFt+1, with the inclusion of Other Comprehensive Income (OCI. Could not be verified, with aggregate disruption of the individual items of OCI, incremental capacity to determine the OCFt+1. It was observed that the Equity and NI have value relevance, but that is not confirmed to consolidated CI. Added to that, only the cash flow hedge was significant to explain the market value of the company, indicating there is informational benefit to stakeholders that employ the CI in their analysis.
International Nuclear Information System (INIS)
Hanafusa, Hidemitsu; Iwaki, Toshio; Embrey, D.
2000-01-01
The objective of this study was to develop and effective methodology for predicting and preventing errors in nuclear power plant maintenance tasks. A method was established by which chief maintenance personnel can predict and reduce errors when reviewing the maintenance procedures and while referring to maintenance supporting systems and methods in other industries including aviation and chemical plant industries. The method involves the following seven steps: 1. Identification of maintenance tasks. 2. Specification of important tasks affecting safety. 3. Assessment of human errors occurring during important tasks. 4. Identification of Performance Degrading Factors. 5. Dividing important tasks into sub-tasks. 6. Extraction of errors using Predictive Human Error Analysis (PHEA). 7. Development of strategies for reducing errors and for recovering from errors. By way of a trial, this method was applied to the pump maintenance procedure in nuclear power plants. This method is believed to be capable of identifying the expected errors in important tasks and supporting the development of error reduction measures. By applying this method, the number of accidents resulting form human errors during maintenance can be reduced. Moreover, the maintenance support base using computers was developed. (author)
The power of habits: unhealthy snacking behaviour is primarily predicted by habit strength.
Verhoeven, Aukje A C; Adriaanse, Marieke A; Evers, Catharine; de Ridder, Denise T D
2012-11-01
Although increasing evidence shows the importance of habits in explaining health behaviour, many studies still rely solely on predictors that emphasize the role of conscious intentions. The present study was designed to test the importance of habit strength in explaining unhealthy snacking behaviour in a large representative community sample (N= 1,103). To test our hypothesis that habits are crucial when explaining unhealthy snacking behaviour, their role was compared to the 'Power of Food', a related construct that addresses sensitivity to food cues in the environment. Moreover, the relation between Power of Food and unhealthy snacking habits was assessed. A prospective design was used to determine the impact of habits in relation to intention, Power of Food and a number of demographic variables. One month after filling out the questionnaire, including measures of habit strength and Power of Food, participants reported their unhealthy snacking behaviour by means of a 7-day snack diary. Results showed that habit strength was the most important predictor, outperforming all other variables in explaining unhealthy snack intake. The findings demonstrate that snacking habits provide a unique contribution in explaining unhealthy snacking behaviour, stressing the importance of addressing habit strength in further research and interventions concerning unhealthy snacking behaviour. ©2012 The British Psychological Society.
Tracing and Prediction of Losses for Deregulated Operation of Power Systems
DEFF Research Database (Denmark)
Nallagownden, Perumal; Mukerjee, Ravindra Nath; Masri, Syafrudin
2011-01-01
To facilitate both generation and retailing to have an open access to the transmission grid for trading electricity, a real time procedure is proposed. The line flows for an operation are assumed to be available from PMU and WAM validated state estimation. Power tracing determines different...... at the retail end and its associated line losses, for an oncoming operating scenario....
Clinical tests of ankle plantarflexor strength do not predict ankle power generation during walking.
Kahn, Michelle; Williams, Gavin
2015-02-01
The aim of this study was to investigate the relationship between a clinical test of ankle plantarflexor strength and ankle power generation (APG) at push-off during walking. This is a prospective cross-sectional study of 102 patients with traumatic brain injury. Handheld dynamometry was used to measure ankle plantarflexor strength. Three-dimensional gait analysis was performed to quantify ankle power generation at push-off during walking. Ankle plantarflexor strength was only moderately correlated with ankle power generation at push-off (r = 0.43, P < 0.001; 95% confidence interval, 0.26-0.58). There was also a moderate correlation between ankle plantarflexor strength and self-selected walking velocity (r = 0.32, P = 0.002; 95% confidence interval, 0.13-0.48). Handheld dynamometry measures of ankle plantarflexor strength are only moderately correlated with ankle power generation during walking. This clinical test of ankle plantarflexor strength is a poor predictor of calf muscle function during gait in people with traumatic brain injury.
The Predictive Power of Phonemic Awareness and Naming Speed for Early Dutch Word Recognition
Verhagen, Wim G. M.; Aarnoutse, Cor A. J.; van Leeuwe, Jan F. J.
2009-01-01
Effects of phonemic awareness and naming speed on the speed and accuracy of Dutch children's word recognition were investigated in a longitudinal study. Both the speed and accuracy of word recognition at the end of Grade 2 were predicted by naming speed from both kindergarten and Grade 1, after control for autoregressive relations, kindergarten…
Cascallar, Eduardo; Musso, Mariel; Kyndt, Eva; Dochy, Filip
2014-01-01
Two articles, Edelsbrunner and, Schneider (2013), and Nokelainen and Silander (2014) comment on Musso, Kyndt, Cascallar, and Dochy (2013). Several relevant issues are raised and some important clarifications are made in response to both commentaries. Predictive systems based on artificial neural networks continue to be the focus of current…
Yalcin, S. Barbaros; Kavakli, Mehmet; Kesici, Sahin
2017-01-01
Purpose: The purpose of this study is to determine whether or not the undergraduates' personality traits and self-esteem predict their forgiveness. Methods: The study was conducted using a descriptive research designed as a relational survey method. The study group consists of 323 undergraduates, of whom 250 (77.2 %) are female and 73 (22.5%) are…
DEFF Research Database (Denmark)
Nallagownden, P.; Mukerjee, R.N.; Masri, S.
2010-01-01
of the transmission services hiring contract, inputs such as extent of use of a transmission circuit for a transaction and the associated power loss in the said transmission circuit are also required. To provide the necessary lead time to frame transaction and transmission contracts for an oncoming operational...... coefficients are used advantageously to predict a generator's contribution to a retailer's demand and power loss for this transaction. This paper proposes a procedure that can be implemented real time, to quantify losses in each transmission circuit used by a specific transaction, based on proportionality......The deregulated electricity market can be thought of as a conglomeration of generation providers, transmission service operators (TSO) and retailers, where both generation and retailing may have open access to the transmission grid for trading electricity. For a transaction contract bid to take...
International Nuclear Information System (INIS)
Lietzke, M.H.
1977-01-01
The purpose of this report is to present a validation of a previously described kinetic model which was developed to predict the composition of chlorinated fresh water discharged from power plant cooling systems. The model was programmed in two versions: as a stand-alone program and as a part of a unified transport model developed from consistent mathematical models to simulate the dispersion of heated water and radioisotopic and chemical effluents from power plant discharges. The results of testing the model using analytical data taken during operation of the once-through cooling system of the Quad Cities Nuclear Station are described. Calculations are also presented on the Three Mile Island Nuclear Station which uses cooling towers