WorldWideScience

Sample records for strong phylogenetic signal

  1. Phylogenetic signals in the climatic niches of the world's amphibians

    DEFF Research Database (Denmark)

    Hof, Christian; Rahbek, Carsten; Araújo, Miguel B.

    2010-01-01

    amphibian orders and across biogeographical regions. To our knowledge, this is the first study providing a comprehensive analysis of the phylogenetic signal in species climatic niches for an entire clade across the world. Even though our results do not provide a strong test of the niche conservatism......The question of whether closely related species share similar ecological requirements has attracted increasing attention, because of its importance for understanding global diversity gradients and the impacts of climate change on species distributions. In fact, the assumption that related species...... are also ecologically similar has often been made, although the prevalence of such a phylogenetic signal in ecological niches remains heavily debated. Here, we provide a global analysis of phylogenetic niche relatedness for the world's amphibians. In particular, we assess which proportion of the variance...

  2. Phylogenetic Signal in AFLP Data Sets

    NARCIS (Netherlands)

    Koopman, W.J.M.

    2005-01-01

    AFLP markers provide a potential source of phylogenetic information for molecular systematic studies. However, there are properties of restriction fragment data that limit phylogenetic interpretation of AFLPs. These are (a) possible nonindependence of fragments, (b) problems of homology assignment

  3. Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision.

    Science.gov (United States)

    Motani, Ryosuke; Schmitz, Lars

    2011-08-01

    Phylogeny is deeply pertinent to evolutionary studies. Traits that perform a body function are expected to be strongly influenced by physical "requirements" of the function. We investigated if such traits exhibit phylogenetic signals, and, if so, how phylogenetic noises bias quantification of form-function relationships. A form-function system that is strongly influenced by physics, namely the relationship between eye morphology and visual optics in amniotes, was used. We quantified the correlation between form (i.e., eye morphology) and function (i.e., ocular optics) while varying the level of phylogenetic bias removal through adjusting Pagel's λ. Ocular soft-tissue dimensions exhibited the highest correlation with ocular optics when 1% of phylogenetic bias expected from Brownian motion was removed (i.e., λ= 0.01); the value for hard-tissue data were 8%. A small degree of phylogenetic bias therefore exists in morphology despite of the stringent functional constraints. We also devised a phylogenetically informed discriminant analysis and recorded the effects of phylogenetic bias on this method using the same data. Use of proper λ values during phylogenetic bias removal improved misidentification rates in resulting classifications when prior probabilities were assumed to be equal. Even a small degree of phylogenetic bias affected the classification resulting from phylogenetically informed discriminant analysis. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. Genomic repeat abundances contain phylogenetic signal

    Czech Academy of Sciences Publication Activity Database

    Dodsworth, S.; Chase, M.W.; Kelly, L.J.; Leitch, I.J.; Macas, Jiří; Novák, Petr; Piednoël, M.; Weiß-Schneeweiss, H.; Leitch, A.R.

    2015-01-01

    Roč. 64, č. 1 (2015), s. 112-126 ISSN 1063-5157 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Repetitive DNA * continuous characters * genomics * next-generation sequencing * phylogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.225, year: 2015

  5. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    Science.gov (United States)

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  6. Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?

    Science.gov (United States)

    Krabbenhoft, Trevor J; Turner, Thomas F

    2014-01-01

    Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.

  7. Phylogenetic signal dissection identifies the root of starfishes.

    Directory of Open Access Journals (Sweden)

    Roberto Feuda

    Full Text Available Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors--Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution--have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented.

  8. Landscape patterns in rainforest phylogenetic signal: isolated islands of refugia or structured continental distributions?

    Directory of Open Access Journals (Sweden)

    Robert M Kooyman

    Full Text Available OBJECTIVES: Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. METHODS: We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD, phylogenetic endemism (PE and phylogenetic structure (net relatedness index; NRI. Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. RESULTS: Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. CONCLUSIONS/SIGNIFICANCE: Concentrations of rainforest evolutionary history (phylo-diversity were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community

  9. Landscape Patterns in Rainforest Phylogenetic Signal: Isolated Islands of Refugia or Structured Continental Distributions?

    Science.gov (United States)

    Kooyman, Robert M.; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W.

    2013-01-01

    Objectives Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. Methods We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Results Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Conclusions/Significance Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of

  10. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans.

    Science.gov (United States)

    Gingras, Bruno; Mohandesan, Elmira; Boko, Drasko; Fitch, W Tecumseh

    2013-07-01

    Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran's I, Mantel, and Blomberg's K) and three models of genetic distance (pairwise distances, Abouheif's proximities, and the variance-covariance matrix derived from the phylogenetic tree). A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and acoustic similarity in the

  11. Untangling hybrid phylogenetic signals: horizontal gene transfer and artifacts of phylogenetic reconstruction.

    Science.gov (United States)

    Beiko, Robert G; Ragan, Mark A

    2009-01-01

    Phylogenomic methods can be used to investigate the tangled evolutionary relationships among genomes. Building 'all the trees of all the genes' can potentially identify common pathways of horizontal gene transfer (HGT) among taxa at varying levels of phylogenetic depth. Phylogenetic affinities can be aggregated and merged with the information about genetic linkage and biochemical function to examine hypotheses of adaptive evolution via HGT. Additionally, the use of many genetic data sets increases the power of statistical tests for phylogenetic artifacts. However, large-scale phylogenetic analyses pose several challenges, including the necessary abandonment of manual validation techniques, the need to translate inferred phylogenetic discordance into inferred HGT events, and the challenges involved in aggregating results from search-based inference methods. In this chapter we describe a tree search procedure to recover the most parsimonious pathways of HGT, and examine some of the assumptions that are made by this method.

  12. Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil

    Directory of Open Access Journals (Sweden)

    Camilo Andrés Roa-Fuentes

    Full Text Available We tested the contribution of the phylogenetic and specific components to the ecomorphological structure of stream fish from the upper Paraguai River and upper São Francisco River basins, and identified nodes in the phylogenetic tree at which major ecological shifts occurred. Fish were sampled between June and October of 2008 in 12 streams (six in each basin. In total, 22 species from the upper Paraguai River basin and 12 from the upper São Francisco River were analyzed. The ecomorphological patterns exhibited phylogenetic signal, indicating that the ecomorphological similarity among species is associated with the degree of relatedness. A strong habitat template is most likely to be the primary cause for a high phylogenetic signal. A significant contribution from the specific component was also detected, supporting the idea that the phylogenetic signal occurs in some clades for some traits, but not in others. The major ecological shifts were observed in the basal nodes, suggesting that ecological niche differences appear to accumulate early in the evolutionary history of major clades. This finding reinforces the role of key traits in the diversification of Neotropical fishes. Ecological shifts in recent groups could be related to morphological modifications associated with habitat use.

  13. Recovery of CTF beam signals from a strong wakefield background

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y [TRIUMF, Vancouver, BC (Canada); Schulte, E [European Organization for Nuclear Research, Geneva (Switzerland); Ekeloef, T [Uppsala Univ. (Sweden)

    1995-06-01

    The beam monitor for the CERN Linear Collider Test Facility (CTF) has to work not only with very short pulses (350 ps FWHM) at a spacing of 330 ps, but also in a strong wakefield background. A cone-shaped button pickup electrode has been designed and constructed for use with CTF beams and tests have been made using a real time analogue Gaussian filter to recover the beam signals from the strong wakefield signals. As a comparison to the analogue filter, a study has been made to process the data off-line and extract the beam signals using digital filtering based on the wavelet concept. (author). 3 refs., 7 figs.

  14. Phylogenetic diversity of stress signalling pathways in fungi

    Directory of Open Access Journals (Sweden)

    Stansfield Ian

    2009-02-01

    Full Text Available Abstract Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol, oxidative (H2O2 and menadione and cell wall stresses (Calcofluor White and Congo Red. There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our

  15. TreeScaper: Visualizing and Extracting Phylogenetic Signal from Sets of Trees.

    Science.gov (United States)

    Huang, Wen; Zhou, Guifang; Marchand, Melissa; Ash, Jeremy R; Morris, David; Van Dooren, Paul; Brown, Jeremy M; Gallivan, Kyle A; Wilgenbusch, Jim C

    2016-12-01

    Modern phylogenomic analyses often result in large collections of phylogenetic trees representing uncertainty in individual gene trees, variation across genes, or both. Extracting phylogenetic signal from these tree sets can be challenging, as they are difficult to visualize, explore, and quantify. To overcome some of these challenges, we have developed TreeScaper, an application for tree set visualization as well as the identification of distinct phylogenetic signals. GUI and command-line versions of TreeScaper and a manual with tutorials can be downloaded from https://github.com/whuang08/TreeScaper/releases TreeScaper is distributed under the GNU General Public License. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  17. Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae).

    Science.gov (United States)

    Johnson, Leigh A; Chan, Lauren M; Weese, Terri L; Busby, Lisa D; McMurry, Samuel

    2008-09-01

    Members of the phlox family (Polemoniaceae) serve as useful models for studying various evolutionary and biological processes. Despite its biological importance, no family-wide phylogenetic estimate based on multiple DNA regions with complete generic sampling is available. Here, we analyze one nuclear and five chloroplast DNA sequence regions (nuclear ITS, chloroplast matK, trnL intron plus trnL-trnF intergeneric spacer, and the trnS-trnG, trnD-trnT, and psbM-trnD intergenic spacers) using parsimony and Bayesian methods, as well as assessments of congruence and long branch attraction, to explore phylogenetic relationships among 84 ingroup species representing all currently recognized Polemoniaceae genera. Relationships inferred from the ITS and concatenated chloroplast regions are similar overall. A combined analysis provides strong support for the monophyly of Polemoniaceae and subfamilies Acanthogilioideae, Cobaeoideae, and Polemonioideae. Relationships among subfamilies, and thus for the precise root of Polemoniaceae, remain poorly supported. Within the largest subfamily, Polemonioideae, four clades corresponding to tribes Polemonieae, Phlocideae, Gilieae, and Loeselieae receive strong support. The monogeneric Polemonieae appears sister to Phlocideae. Relationships within Polemonieae, Phlocideae, and Gilieae are mostly consistent between analyses and data permutations. Many relationships within Loeselieae remain uncertain. Overall, inferred phylogenetic relationships support a higher-level classification for Polemoniaceae proposed in 2000.

  18. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes.

    Science.gov (United States)

    Anselmetti, Yoann; Duchemin, Wandrille; Tannier, Eric; Chauve, Cedric; Bérard, Sèverine

    2018-05-09

    Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADSEQ provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADSEQ to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. We demonstrate the method's ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.

  19. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies

    Science.gov (United States)

    Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.

    2017-01-01

    The Plio–Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys. PMID:28484618

  20. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences.

    Science.gov (United States)

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2017-08-01

    The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    Science.gov (United States)

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study

  2. Disproportionate Cochlear Length in Genus Homo Shows a High Phylogenetic Signal during Apes’ Hearing Evolution

    Science.gov (United States)

    Braga, J.; Loubes, J-M.; Descouens, D.; Dumoncel, J.; Thackeray, J. F.; Kahn, J-L.; de Beer, F.; Riberon, A.; Hoffman, K.; Balaresque, P.; Gilissen, E.

    2015-01-01

    Changes in lifestyles and body weight affected mammal life-history evolution but little is known about how they shaped species’ sensory systems. Since auditory sensitivity impacts communication tasks and environmental acoustic awareness, it may have represented a deciding factor during mammal evolution, including apes. Here, we statistically measure the influence of phylogeny and allometry on the variation of five cochlear morphological features associated with hearing capacities across 22 living and 5 fossil catarrhine species. We find high phylogenetic signals for absolute and relative cochlear length only. Comparisons between fossil cochleae and reconstructed ape ancestral morphotypes show that Australopithecus absolute and relative cochlear lengths are explicable by phylogeny and concordant with the hypothetized ((Pan,Homo),Gorilla) and (Pan,Homo) most recent common ancestors. Conversely, deviations of the Paranthropus oval window area from these most recent common ancestors are not explicable by phylogeny and body weight alone, but suggest instead rapid evolutionary changes (directional selection) of its hearing organ. Premodern (Homo erectus) and modern human cochleae set apart from living non-human catarrhines and australopiths. They show cochlear relative lengths and oval window areas larger than expected for their body mass, two features corresponding to increased low-frequency sensitivity more recent than 2 million years ago. The uniqueness of the “hypertrophied” cochlea in the genus Homo (as opposed to the australopiths) and the significantly high phylogenetic signal of this organ among apes indicate its usefulness to identify homologies and monophyletic groups in the hominid fossil record. PMID:26083484

  3. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification.

    Directory of Open Access Journals (Sweden)

    Nicolás Sarute

    Full Text Available Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.

  4. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification.

    Science.gov (United States)

    Sarute, Nicolás; Calderón, Marina Gallo; Pérez, Ruben; La Torre, José; Hernández, Martín; Francia, Lourdes; Panzera, Yanina

    2013-01-01

    Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus) is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H) gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp) coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.

  5. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  6. Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus Sorghum.

    Science.gov (United States)

    Hawkins, Jennifer S; Ramachandran, Dhanushya; Henderson, Ashley; Freeman, Jasmine; Carlise, Michael; Harris, Alex; Willison-Headley, Zachary

    2015-08-01

    Sorghum is an essential grain crop whose evolutionary placement within the Andropogoneae has been the subject of scrutiny for decades. Early studies using cytogenetic and morphological data point to a poly- or paraphyletic origin of the genus; however, acceptance of poly- or paraphyly has been met with resistance. This study aimed to address the species relationships within Sorghum, in addition to the placement of Sorghum within the tribe, using a phylogenetic approach and employing broad taxon sampling. From 16 diverse Sorghum species, eight low-copy nuclear loci were sequenced that are known to play a role in morphological diversity and have been previously used to study evolutionary relationships in grasses. Further, the data for four of these loci were combined with those from 57 members of the Andropogoneae in order to determine the placement of Sorghum within the tribe. Both maximum likelihood and Bayesian analyses were performed on multilocus concatenated data matrices. The Sorghum-specific topology provides strong support for two major lineages, in alignment with earlier studies employing chloroplast and internal transcribed spacer (ITS) markers. Clade I is composed of the Eu-, Chaeto- and Heterosorghum, while clade II contains the Stipo- and Parasorghum. When combined with data from the Andropogoneae, Clade II resolves as sister to a clade containing Miscanthus and Saccharum with high posterior probability and bootstrap support, and to the exclusion of Clade I. The results provide compelling evidence for a two-lineage polyphyletic ancestry of Sorghum within the larger Andropogoneae, i.e. the derivation of the two major Sorghum clades from a unique common ancestor. Rejection of monophyly in previous molecular studies is probably due to limited taxon sampling outside of the genus. The clade consisting of Para- and Stiposorghum resolves as sister to Miscanthus and Saccharum with strong node support. © The Author 2015. Published by Oxford University Press on

  7. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.

    Science.gov (United States)

    Fenn, J Daniel; Song, Hojun; Cameron, Stephen L; Whiting, Michael F

    2008-10-01

    The phylogenetic utility of mitochondrial genomes (mtgenomes) is examined using the framework of a preliminary phylogeny of Orthoptera. This study presents five newly sequenced genomes from four orthopteran families. While all ensiferan and polyneopteran taxa retain the ancestral gene order, all caeliferan lineages including the newly sequenced caeliferan species contain a tRNA rearrangement from the insect ground plan tRNA(Lys)(K)-tRNA(Asp)(D) swapping to tRNA(Asp) (D)-tRNA(Lys) (K) confirming that this rearrangement is a possible molecular synapomorphy for this suborder. The phylogenetic signal in mtgenomes is rigorously examined under the analytical regimens of parsimony, maximum likelihood and Bayesian inference, along with how gene inclusion/exclusion, data recoding, gap coding, and different partitioning schemes influence the phylogenetic reconstruction. When all available data are analyzed simultaneously, the monophyly of Orthoptera and its two suborders, Caelifera and Ensifera, are consistently recovered in the context of our taxon sampling, regardless of the optimality criteria. When protein-coding genes are analyzed as a single partition, nearly identical topology to the combined analyses is recovered, suggesting that much of the signals of the mtgenome come from the protein-coding genes. Transfer and ribosomal RNAs perform poorly when analyzed individually, but contribute signal when analyzed in combination with the protein-coding genes. Inclusion of third codon position of the protein-coding genes does not negatively affect the phylogenetic reconstruction when all genes are analyzed together, whereas recoding of the protein-coding genes into amino acid sequences introduces artificial resolution. Over-partitioning in a Bayesian framework appears to have a negative effect in achieving convergence. Our findings suggest that the best phylogenetic inferences are made when all available nucleotide data from the mtgenome are analyzed simultaneously, and that

  8. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  9. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  10. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    Directory of Open Access Journals (Sweden)

    Talavera Gerard

    2011-10-01

    Full Text Available Abstract Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the

  11. Acoustic evolution in crickets: need for phylogenetic study and a reappraisal of signal effectiveness

    Directory of Open Access Journals (Sweden)

    Laure Desutter-Grandcolas

    2004-06-01

    Full Text Available Cricket stridulums and calls are highly stereotyped, except those with greatly modified tegmina and/or vena-tion, or ''unusual'' frequency, duration and/or intensity. This acoustic diversity remained unsuspected until recently, and current models of acoustic evolution in crickets erroneously consider this clade homogeneous for acoustic features. The few phylogenetic studies analyzing acoustic evolution in crickets demonstrated that acoustic behavior could be particularly labile in some clades. The ensuing pattern for cricket evolution is consequently extremely complex. We argue that: (1 phylogeny should always be considered when analyzing acoustic evolution, whatever characters are considered (signals, stridulums or behaviors. Consequently, future studies should be devoted to entire clades, and not consider isolated taxa; character and character state definitions should allow significant reconstructions of character evolutionary transformations; and homologies should be carefully defined for all characters, including behavior. (2 The factors responsible for song effectiveness should be reconsidered and hypotheses on their potential influence on signal evolution tested jointly by phylogenies (for example, to assess correlated transformations of acoustic and ecological features, and population studies (for example, to correlate call range and population structure, or test the predation risk associated with a signal structure. Better understanding these points should help clarifying acoustic evolution in crickets.Os aparelhos estridulatórios e os chamados dos grilos são altamente estereotipados, exceto aqueles com áreas e/ou venação tegminais fortemente modificadas ou com freqüência, duração e/ou intensidade fora do ''normal''. Esta diversidade acústica ficou insuspeita até recentemente, e os modelos correntes de evolução acústica em grilos consideram erroneamente este clado como homogêneo para as características acústicas. Os

  12. Phenotypic Microdiversity and Phylogenetic Signal Analysis of Traits Related to Social Interaction in Bacillus spp. from Sediment Communities.

    Science.gov (United States)

    Rodríguez-Torres, María Dolores; Islas-Robles, África; Gómez-Lunar, Zulema; Delaye, Luis; Hernández-González, Ismael; Souza, Valeria; Travisano, Michael; Olmedo-Álvarez, Gabriela

    2017-01-01

    Understanding the relationship between phylogeny and predicted traits is important to uncover the dimension of the predictive power of a microbial composition approach. Numerous works have addressed the taxonomic composition of bacteria in communities, but little is known about trait heterogeneity in closely related bacteria that co-occur in communities. We evaluated a sample of 467 isolates from the Churince water system of the Cuatro Cienegas Basin (CCB), enriched for Bacillus spp. The 16S rRNA gene revealed a random distribution of taxonomic groups within this genus among 11 sampling sites. A subsample of 141 Bacillus spp. isolates from sediment, with seven well-represented species was chosen to evaluate the heterogeneity and the phylogenetic signal of phenotypic traits that are known to diverge within small clades, such as substrate utilization, and traits that are conserved deep in the lineage, such as prototrophy, swarming and biofilm formation. We were especially interested in evaluating social traits, such as swarming and biofilm formation, for which cooperation is needed to accomplish a multicellular behavior and for which there is little information from natural communities. The phylogenetic distribution of traits, evaluated by the Purvis and Fritz's D statistics approached a Brownian model of evolution. Analysis of the phylogenetic relatedness of the clusters of members sharing the trait using consenTRAIT algorithm, revealed more clustering and deeper phylogenetic signal for prototrophy, biofilm and swimming compared to the data obtained for substrate utilization. The explanation to the observed Brownian evolution of social traits could be either loss due to complete dispensability or to compensated trait loss due to the availability of public goods. Since many of the evaluated traits can be considered to be collective action traits, such as swarming, motility and biofilm formation, the observed microdiversity within taxonomic groups might be explained

  13. Phylogenetic Signal of Threatening Processes among Hylids: The Need for Clade-Level Conservation Planning

    Directory of Open Access Journals (Sweden)

    Sarah J. Corey

    2010-01-01

    Full Text Available Rapid, global declines among amphibians are partly alarming because many occur for apparently unknown or enigmatic reasons. Moreover, the relationship between phylogeny and enigmatic declines in higher clades of the amphibian phylogeny appears at first to be an intractable problem. I present a working solution by assessing threatening processes potentially underlying enigmatic declines in the family, Hylidae. Applying comparative methods that account for various evolutionary scenarios, I find extreme concentrations of threatening processes, including pollution and habitat loss, in the clade Hylini, potentially influenced by traits under selection. The analysis highlights hotspots of declines under phylogenetic influence in the genera Isthmohyla, Plectrohyla and Ptychohyla, and geographically in Mexico and Guatemala. The conservation implications of concentrated phylogenetic influence across multiple threatening processes are twofold: Data Deficient species of threatened clades should be prioritized in future surveys and, perhaps, a greater vulnerability should be assigned to such clades for further consideration of clade-level conservation priorities.

  14. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly

    Czech Academy of Sciences Publication Activity Database

    de Bello, Francesco; Šmilauer, P.; Diniz-Filho, J. A. F.; Carmona, C. P.; Lososová, Z.; Herben, Tomáš; Götzenberger, Lars

    2017-01-01

    Roč. 8, č. 10 (2017), s. 1200-1211 ISSN 2041-210X R&D Projects: GA ČR(CZ) GA16-15012S; GA ČR GB14-36079G EU Projects: European Commission(XE) 267243 Institutional support: RVO:67985939 Keywords : community ecology * phylogenetic diversity * functional diversity Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.708, year: 2016

  15. Multispecies coalescent analysis of the early diversification of neotropical primates: phylogenetic inference under strong gene trees/species tree conflict.

    Science.gov (United States)

    Schrago, Carlos G; Menezes, Albert N; Furtado, Carolina; Bonvicino, Cibele R; Seuanez, Hector N

    2014-11-05

    Neotropical primates (NP) are presently distributed in the New World from Mexico to northern Argentina, comprising three large families, Cebidae, Atelidae, and Pitheciidae, consequently to their diversification following their separation from Old World anthropoids near the Eocene/Oligocene boundary, some 40 Ma. The evolution of NP has been intensively investigated in the last decade by studies focusing on their phylogeny and timescale. However, despite major efforts, the phylogenetic relationship between these three major clades and the age of their last common ancestor are still controversial because these inferences were based on limited numbers of loci and dating analyses that did not consider the evolutionary variation associated with the distribution of gene trees within the proposed phylogenies. We show, by multispecies coalescent analyses of selected genome segments, spanning along 92,496,904 bp that the early diversification of extant NP was marked by a 2-fold increase of their effective population size and that Atelids and Cebids are more closely related respective to Pitheciids. The molecular phylogeny of NP has been difficult to solve because of population-level phenomena at the early evolution of the lineage. The association of evolutionary variation with the distribution of gene trees within proposed phylogenies is crucial for distinguishing the mean genetic divergence between species (the mean coalescent time between loci) from speciation time. This approach, based on extensive genomic data provided by new generation DNA sequencing, provides more accurate reconstructions of phylogenies and timescales for all organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. The No-Higgs Signal: Strong WW Scattering at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Michael S. Chanowitz

    2004-12-07

    Strong WW scattering at the LHC is discussed as a manifestation of electroweak symmetry breaking in the absence of a light Higgs bosom. The general framework of the Higgs mechanism--with or without a Higgs boson--is reviewed, and unitarity is shown to fix the scale of strong WW scattering. Strong WW scattering is also shown to be a possible outcome of five-dimensional models, which do not employ the usual Higgs mechanism at the TeV scale. Precision electroweak constraints are briefly discussed. Illustrative LHC signals are reviewed for models with QCD-like dynamics, stressing the complementarity of the W{sup {+-}}Z and like-charge W{sup +}W{sup +} + W{sup -}W{sup -} channels.

  17. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    DEFF Research Database (Denmark)

    Rasmussen, Bastian Barker; Nielsen, Kristian Fog; Machado, Henrique

    2014-01-01

    Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the en......Bacterial quorum sensing (QS) and the corresponding signals, acyl homoserine lactones (AHLs), were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae...... violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS) with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl) (OH-C6) and N-(3-hydroxy-decanoyl) (OH-C10) homoserine lactones were...

  18. Global and Phylogenetic Distribution of Quorum Sensing Signals, Acyl Homoserine Lactones, in the Family of Vibrionaceae

    Directory of Open Access Journals (Sweden)

    Bastian Barker Rasmussen

    2014-11-01

    Full Text Available Bacterial quorum sensing (QS and the corresponding signals, acyl homoserine lactones (AHLs, were first described for a luminescent Vibrio species. Since then, detailed knowledge has been gained on the functional level of QS; however, the abundance of AHLs in the family of Vibrionaceae in the environment has remained unclear. Three hundred and one Vibrionaceae strains were collected on a global research cruise and the prevalence and profile of AHL signals in this global collection were determined. AHLs were detected in 32 of the 301 strains using Agrobacterium tumefaciens and Chromobacterium violaceum reporter strains. Ethyl acetate extracts of the cultures were analysed by ultra-high performance liquid chromatography-high resolution mass spectrometry (MS with automated tandem MS confirmation for AHLs. N-(3-hydroxy-hexanoyl (OH-C6 and N-(3-hydroxy-decanoyl (OH-C10 homoserine lactones were the most common AHLs found in 17 and 12 strains, respectively. Several strains produced a diversity of different AHLs, including N-heptanoyl (C7 HL. AHL-producing Vibrionaceae were found in polar, temperate and tropical waters. The AHL profiles correlated with strain phylogeny based on gene sequence homology, however not with geographical location. In conclusion, a wide range of AHL signals are produced by a number of clades in the Vibrionaceae family and these results will allow future investigations of inter- and intra-species interactions within this cosmopolitan family of marine bacteria.

  19. Spectrum of absorption of a weak signal by an atom in a strong field

    International Nuclear Information System (INIS)

    Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.

    1985-01-01

    An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit

  20. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa.

    Science.gov (United States)

    Borowiec, Marek L; Lee, Ernest K; Chiu, Joanna C; Plachetzki, David C

    2015-11-23

    Understanding the phylogenetic relationships among major lineages of multicellular animals (the Metazoa) is a prerequisite for studying the evolution of complex traits such as nervous systems, muscle tissue, or sensory organs. Transcriptome-based phylogenies have dramatically improved our understanding of metazoan relationships in recent years, although several important questions remain. The branching order near the base of the tree, in particular the placement of the poriferan (sponges, phylum Porifera) and ctenophore (comb jellies, phylum Ctenophora) lineages is one outstanding issue. Recent analyses have suggested that the comb jellies are sister to all remaining metazoan phyla including sponges. This finding is surprising because it suggests that neurons and other complex traits, present in ctenophores and eumetazoans but absent in sponges or placozoans, either evolved twice in Metazoa or were independently, secondarily lost in the lineages leading to sponges and placozoans. To address the question of basal metazoan relationships we assembled a novel dataset comprised of 1080 orthologous loci derived from 36 publicly available genomes representing major lineages of animals. From this large dataset we procured an optimized set of partitions with high phylogenetic signal for resolving metazoan relationships. This optimized data set is amenable to the most appropriate and computationally intensive analyses using site-heterogeneous models of sequence evolution. We also employed several strategies to examine the potential for long-branch attraction to bias our inferences. Our analyses strongly support the Ctenophora as the sister lineage to other Metazoa. We find no support for the traditional view uniting the ctenophores and Cnidaria. Our findings are supported by Bayesian comparisons of topological hypotheses and we find no evidence that they are biased by long-branch attraction. Our study further clarifies relationships among early branching metazoan lineages

  1. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    Science.gov (United States)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure

  2. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras.

    Science.gov (United States)

    Eiserhardt, Wolf L; Borchsenius, Finn; Plum, Christoffer M; Ordonez, Alejandro; Svenning, Jens-Christian

    2015-03-01

    When taxa go extinct, unique evolutionary history is lost. If extinction is selective, and the intrinsic vulnerabilities of taxa show phylogenetic signal, more evolutionary history may be lost than expected under random extinction. Under what conditions this occurs is insufficiently known. We show that late Cenozoic climate change induced phylogenetically selective regional extinction of northern temperate trees because of phylogenetic signal in cold tolerance, leading to significantly and substantially larger than random losses of phylogenetic diversity (PD). The surviving floras in regions that experienced stronger extinction are phylogenetically more clustered, indicating that non-random losses of PD are of increasing concern with increasing extinction severity. Using simulations, we show that a simple threshold model of survival given a physiological trait with phylogenetic signal reproduces our findings. Our results send a strong warning that we may expect future assemblages to be phylogenetically and possibly functionally depauperate if anthropogenic climate change affects taxa similarly. © 2015 John Wiley & Sons Ltd/CNRS.

  3. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    Science.gov (United States)

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  4. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals.

    Science.gov (United States)

    Wu, Yih-Min; Kanamori, Hiroo

    2008-01-09

    As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τ c and the peak ground-motionvelocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τ c and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  5. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals

    Directory of Open Access Journals (Sweden)

    Hiroo Kanamori

    2008-01-01

    Full Text Available As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

  6. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    Science.gov (United States)

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  7. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.

    Science.gov (United States)

    Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy

    2016-10-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the

  8. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2004-09-01

    Full Text Available Abstract Background Quorum sensing is a process of bacterial cell-to-cell communication involving the production and detection of extracellular signaling molecules called autoinducers. Recently, it has been proposed that autoinducer-2 (AI-2, a furanosyl borate diester derived from the recycling of S-adenosyl-homocysteine (SAH to homocysteine, serves as a universal signal for interspecies communication. Results In this study, 138 completed genomes were examined for the genes involved in the synthesis and detection of AI-2. Except for some symbionts and parasites, all organisms have a pathway to recycle SAH, either using a two-step enzymatic conversion by the Pfs and LuxS enzymes or a one-step conversion using SAH-hydrolase (SahH. 51 organisms including most Gamma-, Beta-, and Epsilonproteobacteria, and Firmicutes possess the Pfs-LuxS pathway, while Archaea, Eukarya, Alphaproteobacteria, Actinobacteria and Cyanobacteria prefer the SahH pathway. In all 138 organisms, only the three Vibrio strains had strong, bidirectional matches to the periplasmic AI-2 binding protein LuxP and the central signal relay protein LuxU. The initial two-component sensor kinase protein LuxQ, and the terminal response regulator luxO are found in most Proteobacteria, as well as in some Firmicutes, often in several copies. Conclusions The genomic analysis indicates that the LuxS enzyme required for AI-2 synthesis is widespread in bacteria, while the periplasmic binding protein LuxP is only present in Vibrio strains. Thus, other organisms may either use components different from the AI-2 signal transduction system of Vibrio strains to sense the signal of AI-2, or they do not have such a quorum sensing system at all.

  9. Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula (Russulales; Basidiomycota)

    Science.gov (United States)

    József Geml; Gary A. Laursen; Ian C. Herriott; Jack M. McFarland; Michael G. Booth; Niall Lennon; H. Chad Nusbaum; D. Lee Taylor

    2010-01-01

    Although critical for the functioning of ecosystems, fungi are poorly known in high-latitude regions. Here, we provide the first genetic diversity assessment of one of the most diverse and abundant ectomycorrhizal genera in Alaska: Russula. We analyzed internal transcribed spacer rDNA sequences from sporocarps and soil samples using phylogenetic...

  10. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  11. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  12. A Novel Blind Source Separation Algorithm and Performance Analysis of Weak Signal against Strong Interference in Passive Radar Systems

    Directory of Open Access Journals (Sweden)

    Chengjie Li

    2016-01-01

    Full Text Available In Passive Radar System, obtaining the mixed weak object signal against the super power signal (jamming is still a challenging task. In this paper, a novel framework based on Passive Radar System is designed for weak object signal separation. Firstly, we propose an Interference Cancellation algorithm (IC-algorithm to extract the mixed weak object signals from the strong jamming. Then, an improved FastICA algorithm with K-means cluster is designed to separate each weak signal from the mixed weak object signals. At last, we discuss the performance of the proposed method and verify the novel method based on several simulations. The experimental results demonstrate the effectiveness of the proposed method.

  13. Phenotypic differentiation and phylogenetic signal of wing shape in western European biting midges, Culicoides spp., of the subgenus Avaritia

    DEFF Research Database (Denmark)

    Muñoz-Muñoz, F.; Talavera, S.; Carpenter, S.

    2014-01-01

    of cytochrome oxidase subunit I barcode sequencing and geometric morphometric analyses to investigate wing shape as a means to infer species identification within this subgenus. In addition the congruence of morphological data with different phylogenetic hypotheses is tested. Five different species...

  14. Phylogenetic signal in growth and reproductive traits and in their plasticity: the Descurainia radiation in the Canary Islands

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Rydlová, Věra; Fér, T.; Suda, Jan; Münzbergová, Zuzana; Wildová, Radka; Wild, Jan

    2014-01-01

    Roč. 174, č. 3 (2014), s. 384-398 ISSN 0024-4074 R&D Projects: GA ČR GA206/04/0081 Institutional support: RVO:67985939 Keywords : phenotypic plasticity * Brassicaceae * phylogenetic constraints Subject RIV: EF - Botanics Impact factor: 2.534, year: 2014

  15. Phylogenetic trees

    OpenAIRE

    Baños, Hector; Bushek, Nathaniel; Davidson, Ruth; Gross, Elizabeth; Harris, Pamela E.; Krone, Robert; Long, Colby; Stewart, Allen; Walker, Robert

    2016-01-01

    We introduce the package PhylogeneticTrees for Macaulay2 which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.

  16. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial–interglacial climate variability in gymnosperms than in angiosperms

    DEFF Research Database (Denmark)

    Ma, Ziyu; Sandel, Brody Steven; Svenning, Jens-Christian

    2016-01-01

    and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic edemism, patterns of unique lineages in restricted ranges is also related to glacial...... to recolonization to quantify glacial-interglacial climate variability. We found: i) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages towards lower temperature, consistent with tropical niche conservatism. ii) Long-term climate stability...

  17. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    Science.gov (United States)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  18. Strong conservation of rhoptry-associated-protein-1 (RAP-1) locus organization and sequence among Babesia isolates infecting sheep from China (Babesia motasi-like phylogenetic group).

    Science.gov (United States)

    Niu, Qingli; Valentin, Charlotte; Bonsergent, Claire; Malandrin, Laurence

    2014-12-01

    Rhoptry-associated-protein 1 (RAP-1) is considered as a potential vaccine candidate due to its involvement in red blood cell invasion by parasites in the genus Babesia. We examined its value as a vaccine candidate by studying RAP-1 conservation in isolates of Babesia sp. BQ1 Ningxian, Babesia sp. Tianzhu and Babesia sp. Hebei, responsible for ovine babesiosis in different regions of China. The rap-1 locus in these isolates has very similar features to those described for Babesia sp. BQ1 Lintan, another Chinese isolate also in the B. motasi-like phylogenetic group, namely the presence of three types of rap-1 genes (rap-1a, rap-1b and rap-1c), multiple conserved rap-1b copies (5) interspaced with more or less variable rap-1a copies (6), and the 3' localization of one rap-1c. The isolates Babesia sp. Tianzhu, Babesia sp. BQ1 Lintan and Ningxian were almost identical (average nucleotide identity of 99.9%) over a putative locus of about 31 Kb, including the intergenic regions. Babesia sp. Hebei showed a similar locus organization but differed in the rap-1 locus sequence, for each gene and intergenic region, with an average nucleotide identity of 78%. Our results are in agreement with 18S rDNA phylogenetic studies performed on these isolates. However, in extremely closely related isolates the rap-1 locus seems more conserved (99.9%) than the 18S rDNA (98.7%), whereas in still closely related isolates the identities are much lower (78%) compared with the 18S rDNA (97.7%). The particularities of the rap-1 locus in terms of evolution, phylogeny, diagnosis and vaccine development are discussed. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Trophic phylogenetics: evolutionary influences on body size, feeding, and species associations in grassland arthropods.

    Science.gov (United States)

    Lind, Eric M; Vincent, John B; Weiblen, George D; Cavender-Bares, Jeannine; Borer, Elizabeth T

    2015-04-01

    Contemporary animal-plant interactions such as herbivory are widely understood to be shaped by evolutionary history. Yet questions remain about the role of plant phylogenetic diversity in generating and maintaining herbivore diversity, and whether evolutionary relatedness of producers might predict the composition of consumer communities. We tested for evidence of evolutionary associations among arthropods and the plants on which they were found, using phylogenetic analysis of naturally occurring arthropod assemblages sampled from a plant-diversity manipulation experiment. Considering phylogenetic relationships among more than 900 arthropod consumer taxa and 29 plant species in the experiment, we addressed several interrelated questions. First, our results support the hypothesis that arthropod functional traits such as body size and trophic role are phylogenetically conserved in community ecological samples. Second, herbivores tended to cooccur with closer phylogenetic relatives than would be expected at random, whereas predators and parasitoids did not show phylogenetic association patterns. Consumer specialization, as measured by association through time with monocultures of particular host plant species, showed significant phylogenetic signal, although the. strength of this association varied among plant species. Polycultures of phylogenetically dissimilar plant species supported more phylogenetically dissimilar consumer communities than did phylogenetically similar polycultures. Finally, we separated the effects of plant species richness and relatedness in predicting the phylogenetic distribution of the arthropod assemblages in this experiment. The phylogenetic diversity of plant communities predicted the phylogenetic diversity of herbivore communities even after accounting for plant species richness. The phylogenetic diversity of secondary consumers differed by guild, with predator phylogenetic diversity responding to herbivore relatedness, while parasitoid

  20. Differential coactivation in a redundant signals task with weak and strong go/no-go stimuli

    DEFF Research Database (Denmark)

    Minakata, Katsumi; Gondan, Matthias

    2018-01-01

    When participants respond to stimuli of two sources, response times (RT) are often faster when both stimuli are presented together relative to the RTs obtained when presented separately (redundant signals effect, RSE). Race models and coactivation models can explain the RSE. In race models......, separate channels process the two stimulus components, and the faster processing time determines the overall RT. In audiovisual experiments, the RSE is often higher than predicted by race models, and coactivation models have been proposed that assume integrated processing of the two stimuli. Where does...

  1. Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.

    Science.gov (United States)

    Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong

    2017-03-03

    We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.

  2. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    Science.gov (United States)

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).

    Science.gov (United States)

    Botero-Castro, Fidel; Tilak, Marie-ka; Justy, Fabienne; Catzeflis, François; Delsuc, Frédéric; Douzery, Emmanuel J P

    2013-12-01

    Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of

  4. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    Science.gov (United States)

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-09-02

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal

  5. Looking for very low tectonic deformation in GNSS time series impacted by strong hydrological signal in the Okavango Delta, Botswana

    Science.gov (United States)

    Pastier, Anne-Morwenn; Dauteuil, Olivier; Murray-Hudson, Michael; Makati, Kaelo; Moreau, Frédérique; Crave, Alain; Longuevergne, Laurent; Walpersdorf, Andrea

    2017-04-01

    Located in northern Botswana, the Okavango Delta is a vast wetland, fed from the Angolan highlands and constrained by a half-graben in the Kalahari depression. Since the 70's, the Okavango graben is usually considered as the terminus of the East African Rift System. But a recent geodetic study showed there has been no extension on the tectonic structure over the past 5 years, and recent geophysical studies began to call this hypothesis into question. The deformation in the area could instead be related to far-field deformation accommodation due to the motion of the Kalahari craton relative to the rest of the Nubian plate and to the opening of the Rift Valley. Getting to the vertical deformation isn't trivial. The GNSS time series show a strong annual deformation of the ground surface (3 cm of amplitude). On the vertical component, this periodic signal is so strong that it hides the tectonic long-term deformation, while this information would give a crucial insight on the geodynamic process at play. This periodic signal is related to the seasonal loading of water due to the rainy season. This hypothesis is corroborated by the modeling of the surface deformation based on the GRACE satellites data, interpreted as the variation of groundwater amount. In the Okavango Delta, the peak of water level isn't paced with the local precipitations, but is driven by a flood pulse coming from the Angolan Highlands. The migration of this massive water body isn't visible at first order in GRACE data. Yet, local precipitations are supposed to undergo too much evapotranspiration to be significant in the hydrological balance. Thus this later water body isn't supposed to produce a mass anomaly in GRACE time series. This paradox could highlight a relationship not yet defined between groundwater and local rainfall. The wide spatial resolution of GRACE data (about 300 km) doesn't allow a modeling accurate enough to give access to the slow tectonic deformation, nor to determine the

  6. Strong foreshock signal preceding the L'Aquila (Italy earthquake (Mw 6.3 of 6 April 2009

    Directory of Open Access Journals (Sweden)

    G. Minadakis

    2010-01-01

    Full Text Available We used the earthquake catalogue of INGV extending from 1 January 2006 to 30 June 2009 to detect significant changes before and after the 6 April 2009 L'Aquila mainshock (Mw=6.3 in the seismicity rate, r (events/day, and in b-value. The statistical z-test and Utsu-test were applied to identify significant changes. From the beginning of 2006 up to the end of October 2008 the activity was relatively stable and remained in the state of background seismicity (r=1.14, b=1.09. From 28 October 2008 up to 26 March 2009, r increased significantly to 2.52 indicating weak foreshock sequence; the b-value did not changed significantly. The weak foreshock sequence was spatially distributed within the entire seismogenic area. In the last 10 days before the mainshock, strong foreshock signal became evident in space (dense epicenter concentration in the hanging-wall of the Paganica fault, in time (drastic increase of r to 21.70 events/day and in size (b-value dropped significantly to 0.68. The significantly high seismicity rate and the low b-value in the entire foreshock sequence make a substantial difference from the background seismicity. Also, the b-value of the strong foreshock stage (last 10 days before mainshock was significantly lower than that in the aftershock sequence. Our results indicate the important value of the foreshock sequences for the prediction of the mainshock.

  7. Principal component and discriminant analyses as powerful tools to support taxonomic identification and their use for functional and phylogenetic signal detection of isolated fossil shark teeth.

    Directory of Open Access Journals (Sweden)

    Giuseppe Marramà

    Full Text Available Identifying isolated teeth of fossil selachians only based on qualitative characters is sometimes hindered by similarity in their morphology, resulting often in heated taxonomic debates. On the other hand, the use of quantitative characters (i.e. measurements has been often neglected or underestimated in characterization and identification of fossil teeth of selachians. Here we show that, employing a robust methodological protocol based on principal component and discriminant analyses on a sample of 175 isolated fossil teeth of lamniform sharks, the traditional morphometrics can be useful to support and complement the classic taxonomic identification made on qualitative features. Furthermore, we show that discriminant analysis can be successfully useful to assign indeterminate isolated shark teeth to a certain taxon. Finally, the degree of separation of the clusters might be used to predict functional and probably also phylogenetic signals in lamniform shark teeth. However, this needs to be tested in the future employing teeth of more extant and extinct lamniform sharks and it must be pointed out that this approach does not replace in any way the qualitative analysis, but it is intended to complement and support it.

  8. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    Science.gov (United States)

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  9. Method for separation of a weak background signal from at the presence of a strong one in the Fourier spectroscopy

    International Nuclear Information System (INIS)

    Lib, Yu.N.; Zhukov, M.S.

    1985-01-01

    A method for solving a big signal problem in the nmr Fourier spectroscopy is described. Thus the digital filtration of a big signal is carried out, where from the droop of induced signal accumulated before the moment of memory content overflow, subtracted is a model interferogram, corresponding only to removed big signals (the model interferogram is the result of perocessing of an initial interferogram). Calculating formulae and dependences haracterizing the accumulation-subtraction process and minimal gain as compared with a common technique with scaling are given. Experimental results which confirm the method efficiency are stated

  10. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    Science.gov (United States)

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  11. Phylogenetic comparative methods on phylogenetic networks with reticulations.

    Science.gov (United States)

    Bastide, Paul; Solís-Lemus, Claudia; Kriebel, Ricardo; Sparks, K William; Ané, Cécile

    2018-04-25

    The goal of Phylogenetic Comparative Methods (PCMs) is to study the distribution of quantitative traits among related species. The observed traits are often seen as the result of a Brownian Motion (BM) along the branches of a phylogenetic tree. Reticulation events such as hybridization, gene flow or horizontal gene transfer, can substantially affect a species' traits, but are not modeled by a tree. Phylogenetic networks have been designed to represent reticulate evolution. As they become available for downstream analyses, new models of trait evolution are needed, applicable to networks. One natural extension of the BM is to use a weighted average model for the trait of a hybrid, at a reticulation point. We develop here an efficient recursive algorithm to compute the phylogenetic variance matrix of a trait on a network, in only one preorder traversal of the network. We then extend the standard PCM tools to this new framework, including phylogenetic regression with covariates (or phylogenetic ANOVA), ancestral trait reconstruction, and Pagel's λ test of phylogenetic signal. The trait of a hybrid is sometimes outside of the range of its two parents, for instance because of hybrid vigor or hybrid depression. These two phenomena are rather commonly observed in present-day hybrids. Transgressive evolution can be modeled as a shift in the trait value following a reticulation point. We develop a general framework to handle such shifts, and take advantage of the phylogenetic regression view of the problem to design statistical tests for ancestral transgressive evolution in the evolutionary history of a group of species. We study the power of these tests in several scenarios, and show that recent events have indeed the strongest impact on the trait distribution of present-day taxa. We apply those methods to a dataset of Xiphophorus fishes, to confirm and complete previous analysis in this group. All the methods developed here are available in the Julia package PhyloNetworks.

  12. Cyclopamine tartrate, an inhibitor of Hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells

    International Nuclear Information System (INIS)

    Alam, Md Maksudul; Sohoni, Sagar; Kalainayakan, Sarada Preeta; Garrossian, Massoud; Zhang, Li

    2016-01-01

    Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT’s impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and

  13. Molecular Phylogenetics: Concepts for a Newcomer.

    Science.gov (United States)

    Ajawatanawong, Pravech

    Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.

  14. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.

    Science.gov (United States)

    Mendes, Joana; Harris, D James; Carranza, Salvador; Salvi, Daniele

    2016-07-01

    used in previous studies (likely lacking enough phylogenetic signal) failed to recover these relationships. Finally, the phylogenetic position of most remaining genera was unresolved, corroborating the hypothesis of a hard polytomy in the Lacertini phylogeny due to a fast radiation. This is in agreement with all previous studies but in sharp contrast with a recent squamate megaphylogeny. We show that the supermatrix approach may provide high support for incorrect nodes that are not supported either by original sequence data or by new data from this study. This finding suggests caution when using megaphylogenies to integrate inter-generic relationships in comparative ecological and evolutionary studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals

    Science.gov (United States)

    Schuberth, Bernhard S. A.; Zaroli, Christophe; Nolet, Guust

    2015-12-01

    We study wavefield effects of direct P- and S-waves in elastic and isotropic 3-D seismic structures derived from the temperature field of a high-resolution mantle circulation model. More specifically, we quantify the dispersion of traveltime residuals caused by diffraction in structures with dynamically constrained length scales and magnitudes of the lateral variations in seismic velocities and density. 3-D global wave propagation is simulated using a spectral element method. Intrinsic attenuation (i.e. dissipation of seismic energy) is deliberately neglected, so that any variation of traveltimes with frequency can be attributed to structural effects. Traveltime residuals are measured at 15, 22.5, 34 and 51 s dominant periods by cross-correlation of 3-D and 1-D synthetic waveforms. Additional simulations are performed for a model in which 3-D structure is removed in the upper 800 km to isolate the dispersion signal of the lower mantle. We find that the structural length scales inherent to a vigorously convecting mantle give rise to significant diffraction-induced body-wave traveltime dispersion. For both P- and S-waves, the difference between long-period and short-period residuals for a given source-receiver pair can reach up to several seconds for the period bands considered here. In general, these `differential-frequency' residuals tend to increase in magnitude with increasing short-period delay. Furthermore, the long-period signal typically is smaller in magnitude than the short-period one; that is, wave-front healing is efficient independent of the sign of the residuals. Unlike the single-frequency residuals, the differential-frequency residuals are surprisingly similar between the `lower-mantle' and the `whole-mantle' model for corresponding source-receiver pairs. The similarity is more pronounced in case of S-waves and varies between different combinations of period bands. The traveltime delay acquired in the upper mantle seems to cancel in these differential

  16. Unrealistic phylogenetic trees may improve phylogenetic footprinting.

    Science.gov (United States)

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-06-01

    The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  17. Analysis of strong ionospheric scintillation events measured by means of GPS signals at low latitudes during disturbed conditions

    Science.gov (United States)

    Forte, B.

    2012-08-01

    Drifting structures characterized by inhomogeneities in the spatial electron density distribution at ionospheric heights cause the scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Different levels of scintillation were observed on experimental data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2005). The GPS receiver used in these campaigns was particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity was recorded in the post-sunset period (saturatingS4 and SI as high as 20 dB). Spectral modifications and broadening was observed during high levels of scintillation possibly indicating refractive scattering taking place instead of diffractive scattering. A possible interpretation of those events was attempted on the basis of the refractive scattering theory developed by Uscinski (1968) and Booker and MajidiAhi (1981).

  18. <strong>Pervasive strong>technology> in the strong>classroom>

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel; Majgaard, Gunver

    2010-01-01

    This paper discusses learning potentials of pervasive technology when used in the classroom setting. Explicitly this paper uses the research and development project “Octopus” as its point of departure and as the foundation for reflections on how learning takes place in intelligent contexts. We...... propose that pervasive and tangible media like the Octopus reshapes learning not only by utilizing the body as the epicenter for experiences, but also by changing the traditional temporal and vertical learning design (vertical refers to temporal gab between learned knowledge and applied knowledge......) normally associated with the traditional school system. Initial analyses on the research project “Octopus” indicate that the temporal and vertical learning patterns are replaced by spatial and simultaneous learning design. We suggest that this change signals a fundamental approach and at the same time...

  19. Global patterns of amphibian phylogenetic diversity

    DEFF Research Database (Denmark)

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    Aim  Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary...... processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location  Global; equal-area grid cells of approximately 10,000 km2. Methods  We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular...... phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index...

  20. Phylogenetic signal detection from an ancient rapid radiation: Effects of noise reduction, long-branch attraction, and model selection in crown clade Apocynaceae.

    Science.gov (United States)

    Straub, Shannon C K; Moore, Michael J; Soltis, Pamela S; Soltis, Douglas E; Liston, Aaron; Livshultz, Tatyana

    2014-11-01

    Crown clade Apocynaceae comprise seven primary lineages of lianas, shrubs, and herbs with a diversity of pollen aggregation morphologies including monads, tetrads, and pollinia, making them an ideal group for investigating the evolution and function of pollen packaging. Traditional molecular systematic approaches utilizing small amounts of sequence data have failed to resolve relationships along the spine of the crown clade, a likely ancient rapid radiation. The previous best estimate of the phylogeny was a five-way polytomy, leaving ambiguous the homology of aggregated pollen in two major lineages, the Periplocoideae, which possess pollen tetrads, and the milkweeds (Secamonoideae plus Asclepiadoideae), which possess pollinia. To assess whether greatly increased character sampling would resolve these relationships, a plastome sequence data matrix was assembled for 13 taxa of Apocynaceae, including nine newly generated complete plastomes, one partial new plastome, and three previously reported plastomes, collectively representing all primary crown clade lineages and outgroups. The effects of phylogenetic noise, long-branch attraction, and model selection (linked versus unlinked branch lengths among data partitions) were evaluated in a hypothesis-testing framework based on Shimodaira-Hasegawa tests. Discrimination among alternative crown clade resolutions was affected by all three factors. Exclusion of the noisiest alignment positions and topologies influenced by long-branch attraction resulted in a trichotomy along the spine of the crown clade consisting of Rhabdadenia+the Asian clade, Baisseeae+milkweeds, and Periplocoideae+the New World clade. Parsimony reconstruction on all optimal topologies after noise exclusion unambiguously supports parallel evolution of aggregated pollen in Periplocoideae (tetrads) and milkweeds (pollinia). Our phylogenomic approach has greatly advanced the resolution of one of the most perplexing radiations in Apocynaceae, providing the

  1. Whole Genome Phylogenetic Tree Reconstruction using Colored de Bruijn Graphs

    OpenAIRE

    Lyman, Cole

    2017-01-01

    We present kleuren, a novel assembly-free method to reconstruct phylogenetic trees using the Colored de Bruijn Graph. kleuren works by constructing the Colored de Bruijn Graph and then traversing it, finding bubble structures in the graph that provide phylogenetic signal. The bubbles are then aligned and concatenated to form a supermatrix, from which a phylogenetic tree is inferred. We introduce the algorithm that kleuren uses to accomplish this task, and show its performance on reconstructin...

  2. Phylogenetic Trees From Sequences

    Science.gov (United States)

    Ryvkin, Paul; Wang, Li-San

    In this chapter, we review important concepts and approaches for phylogeny reconstruction from sequence data.We first cover some basic definitions and properties of phylogenetics, and briefly explain how scientists model sequence evolution and measure sequence divergence. We then discuss three major approaches for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maximum parsimony, and maximum likelihood. In the third part of the chapter, we review how multiple phylogenies are compared by consensus methods and how to assess confidence using bootstrapping. At the end of the chapter are two sections that list popular software packages and additional reading.

  3. Phylogenetic Origins of Brain Organisers

    Directory of Open Access Journals (Sweden)

    Ellen Robertshaw

    2012-01-01

    Full Text Available The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP and dorsoventral (DV body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades.

  4. Phylogenetic congruence between subtropical trees and their associated fungi

    NARCIS (Netherlands)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S.; Gilbert, Gregory S; Yu, Shixiao

    2016-01-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi

  5. Phylogenetic relationships of African sunbird-like warblers: Moho ...

    African Journals Online (AJOL)

    Phylogenetic relationships of African sunbird-like warblers: Moho ( Hypergerus atriceps ), Green Hylia ( Hylia prasina ) and Tit-hylia ( Pholidornis rushiae ) ... different points in avian evolution reduces the phylogenetic signal in molecular sequence data, making difficult the reconstruction of relationships among taxa resulting ...

  6. Utilization of complete chloroplast genomes for phylogenetic studies

    NARCIS (Netherlands)

    Ramlee, Shairul Izan Binti

    2016-01-01

    Chloroplast DNA sequence polymorphisms are a primary source of data in many plant phylogenetic studies. The chloroplast genome is relatively conserved in its evolution making it an ideal molecule to retain phylogenetic signals. The chloroplast genome is also largely, but not completely, free from

  7. How does cognition evolve? Phylogenetic comparative psychology.

    Science.gov (United States)

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  8. How does cognition evolve? Phylogenetic comparative psychology

    Science.gov (United States)

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  9. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    Science.gov (United States)

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a

  10. The phylogenetic likelihood library.

    Science.gov (United States)

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL). © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  11. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  12. Phylogenetic diversity and biodiversity indices on phylogenetic networks.

    Science.gov (United States)

    Wicke, Kristina; Fischer, Mareike

    2018-04-01

    In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes

    Science.gov (United States)

    Gallus, Susanne; Janke, Axel

    2017-01-01

    Abstract Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation. PMID:28985298

  14. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes.

    Science.gov (United States)

    Lammers, Fritjof; Gallus, Susanne; Janke, Axel; Nilsson, Maria A

    2017-10-01

    Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. A Universal Phylogenetic Tree.

    Science.gov (United States)

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  16. Phylogenetic comparative methods complement discriminant function analysis in ecomorphology.

    Science.gov (United States)

    Barr, W Andrew; Scott, Robert S

    2014-04-01

    In ecomorphology, Discriminant Function Analysis (DFA) has been used as evidence for the presence of functional links between morphometric variables and ecological categories. Here we conduct simulations of characters containing phylogenetic signal to explore the performance of DFA under a variety of conditions. Characters were simulated using a phylogeny of extant antelope species from known habitats. Characters were modeled with no biomechanical relationship to the habitat category; the only sources of variation were body mass, phylogenetic signal, or random "noise." DFA on the discriminability of habitat categories was performed using subsets of the simulated characters, and Phylogenetic Generalized Least Squares (PGLS) was performed for each character. Analyses were repeated with randomized habitat assignments. When simulated characters lacked phylogenetic signal and/or habitat assignments were random, ecomorphology. Copyright © 2013 Wiley Periodicals, Inc.

  17. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    Science.gov (United States)

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  18. Visualizing phylogenetic tree landscapes.

    Science.gov (United States)

    Wilgenbusch, James C; Huang, Wen; Gallivan, Kyle A

    2017-02-02

    Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D

  19. Molecular cytogenetic characterisation and phylogenetic analysis of the seven cultivated Vigna species (Fabaceae).

    Science.gov (United States)

    She, C-W; Jiang, X-H; Ou, L-J; Liu, J; Long, K-L; Zhang, L-H; Duan, W-T; Zhao, W; Hu, J-C

    2015-01-01

    The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual-colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD-banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    Science.gov (United States)

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  2. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  3. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  4. Investigations of the signal production in liquid-ionization-chambers by the passage of strongly ionizing particles and a now theoretical description of recombination

    International Nuclear Information System (INIS)

    Supper, R.

    1991-12-01

    Starting from the original Onsager-theory an extended theory is presented describing the recombination of charge carriers and of signal production in TMS (tetramethylsilane) liquid ionization chambers. The shielding by the impurities of the liquid is explicitly taken into account. By dedicated measurements various parameter dependencies of the theory are checked and the parameter values are experimentally determined. The studies comprise test procedures of the TMS chamber operation and are in context of a hadron calorimeter set up of the cosmic ray experiment KASCADE. (orig.) [de

  5. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  6. Phylogenetic trees in bioinformatics

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom L [Los Alamos National Laboratory

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  7. Coherent response of a two-level atom to a signal field with account of suppression of phase relaxation by a strong field

    International Nuclear Information System (INIS)

    Grishanin, B.A.; Shatalova, G.G.

    1984-01-01

    Calculation is made of a coherent part of response to a weak test field of an atom located in a strong resonance field. The latter bads to a suppression of phase relaxation. This response is shown to appear both at a test field freq uency ω and at a combination frequency 2ωsub(l)-ω, where ωsub(l) is a resona nce field frequency. The spectrum of test field absorption by such a system has a symmetric form and consist of two parts, one of which corresponds to a test f ield absorption and another - to its amplification

  8. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera).

    Science.gov (United States)

    Yang, Huanhuan; Li, Teng; Dang, Kai; Bu, Wenjun

    2018-04-18

    Mitochondrial genome (mt-genome) data can potentially return artefactual relationships in the higher-level phylogenetic inference of insects due to the biases of accelerated substitution rates and compositional heterogeneity. Previous studies based on mt-genome data alone showed a paraphyly of Cimicomorpha (Insecta, Hemiptera) due to the positions of the families Tingidae and Reduviidae rather than the monophyly that was supported based on morphological characters, morphological and molecular combined data and large scale molecular datasets. Various strategies have been proposed to ameliorate the effects of potential mt-genome biases, including dense taxon sampling, removal of third codon positions or purine-pyrimidine coding and the use of site-heterogeneous models. In this study, we sequenced the mt-genomes of five additional Tingidae species and discussed the compositional and mutational rate heterogeneity in mt-genomes and its effect on the phylogenetic inferences of Cimicomorpha by implementing the bias-reduction strategies mentioned above. Heterogeneity in nucleotide composition and mutational biases were found in mt protein-coding genes, and the third codon exhibited high levels of saturation. Dense taxon sampling of Tingidae and Reduviidae and the other common strategies mentioned above were insufficient to recover the monophyly of the well-established group Cimicomorpha. When the sites with weak phylogenetic signals in the dataset were removed, the remaining dataset of mt-genomes can support the monophyly of Cimicomorpha; this support demonstrates that mt-genomes possess strong phylogenetic signals for the inference of higher-level phylogeny of this group. Comparison of the ratio of the removal of amino acids for each PCG showed that ATP8 has the highest ratio while CO1 has the lowest. This pattern is largely congruent with the evolutionary rate of 13 PCGs that ATP8 represents the highest evolutionary rate, whereas CO1 appears to be the lowest. Notably

  9. Metagenome-based diversity analyses suggest a strong locality signal for bacterial communities associated with oyster aquaculture farms in Ofunato Bay

    KAUST Repository

    Kobiyama, Atsushi

    2018-04-30

    Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matter into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-μm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3

  10. Metagenome-based diversity analyses suggest a strong locality signal for bacterial communities associated with oyster aquaculture farms in Ofunato Bay

    KAUST Repository

    Kobiyama, Atsushi; Ikeo, Kazuho; Reza, Md. Shaheed; Rashid, Jonaira; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Sato, Shigeru; Ogata, Takehiko; Jimbo, Mitsuru; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Ofunato Bay, in Japan, is the home of buoy-and-rope-type oyster aquaculture activities. Since the oysters filter suspended materials and excrete organic matter into the seawater, bacterial communities residing in its vicinity may show dynamic changes depending on the oyster culture activities. We employed a shotgun metagenomic technique to study bacterial communities near oyster aquaculture facilities at the center of the bay (KSt. 2) and compared the results with those of two other localities far from the station, one to the northeast (innermost bay, KSt. 1) and the other to the southwest (bay entrance, KSt. 3). Seawater samples were collected every month from January to December 2015 from the surface (1 m) and deeper (8 or 10 m) layers of the three locations, and the sequentially filtered fraction on 0.2-μm membranes was sequenced on an Illumina MiSeq system. The acquired reads were uploaded to MG-RAST for KEGG functional abundance analysis, while taxonomic analyses at the phylum and genus levels were performed using MEGAN after parsing the BLAST output. Discrimination analyses were then performed using the ROC-AUC value of the cross validation, targeting the depth (shallow or deep), locality [(KSt. 1 + KSt. 2) vs. KSt 3; (KSt. 1 + KSt. 3) vs. KSt. 2 or the (KSt. 2 + KSt. 3) vs. KSt. 1] and seasonality (12 months). The matrix discrimination analysis on the adjacent 2 continuous seasons by ROC-AUC, which was based on the datasets that originated from different depths, localities and months, showed the strongest discrimination signal on the taxonomy matrix at the phylum level for the datasets from July to August compared with those from September to June, while the KEGG matrix showed the strongest signal for the datasets from March to June compared with those from July to February. Then, the locality combination was subjected to the same ROC-AUC discrimination analysis, resulting in significant differences between KSt. 2 and KSt. 1 + KSt. 3

  11. Bayesian models for comparative analysis integrating phylogenetic uncertainty

    Directory of Open Access Journals (Sweden)

    Villemereuil Pierre de

    2012-06-01

    Full Text Available Abstract Background Uncertainty in comparative analyses can come from at least two sources: a phylogenetic uncertainty in the tree topology or branch lengths, and b uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow and inflated significance in hypothesis testing (e.g. p-values will be too small. Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible

  12. Bayesian models for comparative analysis integrating phylogenetic uncertainty

    Science.gov (United States)

    2012-01-01

    Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for

  13. Transforming phylogenetic networks: Moving beyond tree space

    OpenAIRE

    Huber, Katharina T.; Moulton, Vincent; Wu, Taoyang

    2016-01-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transforme...

  14. Site-specific glycoprofiling of N-linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Mysling, Simon; Højrup, Peter

    2009-01-01

    Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides was perf......Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides...... was performed to determine the relationship between the relative abundances of the individual glycoforms and the MALDI-TOF MS signal strength. Glycopeptides derived from glycoproteins containing neutral glycans (ribonuclease B, IgG, and ovalbumin) were initially profiled and yielded excellent and reproducible...... quantitation (correlation coefficient r = 0.9958, n = 5) when evaluated against a normal phase HPLC 2-AB glycan profile. Similarly, precise quantitation was observed for various forms of N-glycans (free, permethylated, and fluorescence-labeled) using MS. In addition, three different sialoglycopeptides from...

  15. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  16. The best of both worlds: Phylogenetic eigenvector regression and mapping

    Directory of Open Access Journals (Sweden)

    José Alexandre Felizola Diniz Filho

    2015-09-01

    Full Text Available Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998 proposed what they called Phylogenetic Eigenvector Regression (PVR, in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses.

  17. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  18. A format for phylogenetic placements.

    Directory of Open Access Journals (Sweden)

    Frederick A Matsen

    Full Text Available We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.

  19. On the information content of discrete phylogenetic characters.

    Science.gov (United States)

    Bordewich, Magnus; Deutschmann, Ina Maria; Fischer, Mareike; Kasbohm, Elisa; Semple, Charles; Steel, Mike

    2017-12-16

    Phylogenetic inference aims to reconstruct the evolutionary relationships of different species based on genetic (or other) data. Discrete characters are a particular type of data, which contain information on how the species should be grouped together. However, it has long been known that some characters contain more information than others. For instance, a character that assigns the same state to each species groups all of them together and so provides no insight into the relationships of the species considered. At the other extreme, a character that assigns a different state to each species also conveys no phylogenetic signal. In this manuscript, we study a natural combinatorial measure of the information content of an individual character and analyse properties of characters that provide the maximum phylogenetic information, particularly, the number of states such a character uses and how the different states have to be distributed among the species or taxa of the phylogenetic tree.

  20. Phylogenetic molecular function annotation

    International Nuclear Information System (INIS)

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2009-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called 'phylogenomics') is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  1. A phylogenetic community approach for studying termite communities in a West African savannah.

    Science.gov (United States)

    Hausberger, Barbara; Korb, Judith

    2015-10-01

    Termites play fundamental roles in tropical ecosystems, and mound-building species in particular are crucial in enhancing species diversity, from plants to mammals. However, it is still unclear which factors govern the occurrence and assembly of termite communities. A phylogenetic community approach and null models of species assembly were used to examine structuring processes associated with termite community assembly in a pristine savannah. Overall, we did not find evidence for a strong influence of interspecific competition or environmental filtering in structuring these communities. However, the presence of a single species, the mound-building termite Macrotermes bellicosus, left a strong signal on structuring and led to clustered communities of more closely related species. Hence, this species changes the assembly rules for a whole community. Our results show the fundamental importance of a single insect species for community processes, suggesting that more attention to insect species is warranted when developing conservation strategies. © 2015 The Author(s).

  2. A Consistent Phylogenetic Backbone for the Fungi

    Science.gov (United States)

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  3. A comparative test of phylogenetic diversity indices.

    Science.gov (United States)

    Schweiger, Oliver; Klotz, Stefan; Durka, Walter; Kühn, Ingolf

    2008-09-01

    Traditional measures of biodiversity, such as species richness, usually treat species as being equal. As this is obviously not the case, measuring diversity in terms of features accumulated over evolutionary history provides additional value to theoretical and applied ecology. Several phylogenetic diversity indices exist, but their behaviour has not yet been tested in a comparative framework. We provide a test of ten commonly used phylogenetic diversity indices based on 40 simulated phylogenies of varying topology. We restrict our analysis to a topological fully resolved tree without information on branch lengths and species lists with presence-absence data. A total of 38,000 artificial communities varying in species richness covering 5-95% of the phylogenies were created by random resampling. The indices were evaluated based on their ability to meet a priori defined requirements. No index meets all requirements, but three indices turned out to be more suitable than others under particular conditions. Average taxonomic distinctness (AvTD) and intensive quadratic entropy (J) are calculated by averaging and are, therefore, unbiased by species richness while reflecting phylogeny per se well. However, averaging leads to the violation of set monotonicity, which requires that species extinction cannot increase the index. Total taxonomic distinctness (TTD) sums up distinctiveness values for particular species across the community. It is therefore strongly linked to species richness and reflects phylogeny per se weakly but satisfies set monotonicity. We suggest that AvTD and J are best applied to studies that compare spatially or temporally rather independent communities that potentially vary strongly in their phylogenetic composition-i.e. where set monotonicity is a more negligible issue, but independence of species richness is desired. In contrast, we suggest that TTD be used in studies that compare rather interdependent communities where changes occur more gradually by

  4. phangorn: phylogenetic analysis in R.

    Science.gov (United States)

    Schliep, Klaus Peter

    2011-02-15

    phangorn is a package for phylogenetic reconstruction and analysis in the R language. Previously it was only possible to estimate phylogenetic trees with distance methods in R. phangorn, now offers the possibility of reconstructing phylogenies with distance based methods, maximum parsimony or maximum likelihood (ML) and performing Hadamard conjugation. Extending the general ML framework, this package provides the possibility of estimating mixture and partition models. Furthermore, phangorn offers several functions for comparing trees, phylogenetic models or splits, simulating character data and performing congruence analyses. phangorn can be obtained through the CRAN homepage http://cran.r-project.org/web/packages/phangorn/index.html. phangorn is licensed under GPL 2.

  5. On Nakhleh's metric for reduced phylogenetic networks

    OpenAIRE

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente Feruglio, Gabriel Alejandro

    2009-01-01

    We prove that Nakhleh’s metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phyl...

  6. The macroecology of phylogenetically structured hummingbird-plant networks

    DEFF Research Database (Denmark)

    González, Ana M. Martín; Dalsgaard, Bo; Nogues, David Bravo

    2015-01-01

    Aim To investigate the association between hummingbird–plant network structure and species richness, phylogenetic signal on species' interaction pattern, insularity and historical and current climate. Location Fifty-four communities along a c. 10,000 km latitudinal gradient across the Americas (39...... approach, we examined the influence of species richness, phylogenetic signal, insularity and current and historical climate conditions on network structure (null-model-corrected specialization and modularity). Results Phylogenetically related species, especially plants, showed a tendency to interact...... with a similar array of mutualistic partners. The spatial variation in network structure exhibited a constant association with species phylogeny (R2 = 0.18–0.19); however, network structure showed the strongest association with species richness and environmental factors (R2 = 0.20–0.44 and R2 = 0...

  7. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  8. Ecomorphology and phylogenetic risk: Implications for habitat reconstruction using fossil bovids.

    Science.gov (United States)

    Scott, Robert S; Barr, W Andrew

    2014-08-01

    Reconstructions of paleohabitats are necessary aids in understanding hominin evolution. The morphology of species from relevant sites, understood in terms of functional relationships to habitat (termed ecomorphology), offers a direct link to habitat. Bovids are a speciose radiation that includes many habitat specialists and are abundant in the fossil record. Thus, bovids are extremely common in ecomorphological analyses. However, bovid phylogeny and habitat preference are related, which raises the possibility that analyses linking habitat with morphology are not 'taxon free' but 'taxon-dependent.' Here we analyze eight relative dimensions and one shape index of the metatarsal for a sample of 72 bovid species and one antilocaprid. The selected variables have been previously shown to have strong associations with habitat and to have functional explanations for these associations. Phylogenetic generalized least squares analyses of these variables, including habitat and size, resulted in estimates for the parameter lambda (used to model phylogenetic signal) varying from zero to one. Thus, while phylogeny, morphology, and habitat all march together among the bovids, the odds that phylogeny confounds ecomorphological analyses may vary depending on particular morphological characteristics. While large values of lambda do not necessarily indicate that habitat differences are unimportant drivers of morphology, we consider the low value of lambda for relative metatarsal width suggestive that conclusions about habitat built on observations of this particular morphology carry with them less 'phylogenetic risk.' We suggest that the way forward for ecomorphology is grounded in functionally relevant observations and careful consideration of phylogeny designed to bracket probable habitat preferences appropriately. Separate consideration of different morphological variables may help to determine the level of 'phylogenetic risk' attached to conclusions linking habitat and morphology

  9. Point estimates in phylogenetic reconstructions

    OpenAIRE

    Benner, Philipp; Bacak, Miroslav; Bourguignon, Pierre-Yves

    2013-01-01

    Motivation: The construction of statistics for summarizing posterior samples returned by a Bayesian phylogenetic study has so far been hindered by the poor geometric insights available into the space of phylogenetic trees, and ad hoc methods such as the derivation of a consensus tree makeup for the ill-definition of the usual concepts of posterior mean, while bootstrap methods mitigate the absence of a sound concept of variance. Yielding satisfactory results with sufficiently concentrated pos...

  10. Phylogenetic lineages in Pseudocercospora.

    Science.gov (United States)

    Crous, P W; Braun, U; Hunter, G C; Wingfield, M J; Verkley, G J M; Shin, H-D; Nakashima, C; Groenewald, J Z

    2013-06-30

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general

  11. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    Science.gov (United States)

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait

  12. Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.

    Science.gov (United States)

    Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine

    2017-04-01

    In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.

  13. Phylogenetic classification of bony fishes.

    Science.gov (United States)

    Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo

    2017-07-06

    Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution

  14. Locating a tree in a phylogenetic network

    NARCIS (Netherlands)

    Iersel, van L.J.J.; Semple, C.; Steel, M.A.

    2010-01-01

    Phylogenetic trees and networks are leaf-labelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster

  15. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  16. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes

    Science.gov (United States)

    Boyle, Elizabeth E.; Adamowicz, Sarah J.

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities. PMID:26110886

  17. Locating a tree in a phylogenetic network

    OpenAIRE

    van Iersel, Leo; Semple, Charles; Steel, Mike

    2010-01-01

    Phylogenetic trees and networks are leaf-labelled graphs that are used to describe evolutionary histories of species. The Tree Containment problem asks whether a given phylogenetic tree is embedded in a given phylogenetic network. Given a phylogenetic network and a cluster of species, the Cluster Containment problem asks whether the given cluster is a cluster of some phylogenetic tree embedded in the network. Both problems are known to be NP-complete in general. In this article, we consider t...

  18. Phylogenetic reconstruction methods: an overview.

    Science.gov (United States)

    De Bruyn, Alexandre; Martin, Darren P; Lefeuvre, Pierre

    2014-01-01

    Initially designed to infer evolutionary relationships based on morphological and physiological characters, phylogenetic reconstruction methods have greatly benefited from recent developments in molecular biology and sequencing technologies with a number of powerful methods having been developed specifically to infer phylogenies from macromolecular data. This chapter, while presenting an overview of basic concepts and methods used in phylogenetic reconstruction, is primarily intended as a simplified step-by-step guide to the construction of phylogenetic trees from nucleotide sequences using fairly up-to-date maximum likelihood methods implemented in freely available computer programs. While the analysis of chloroplast sequences from various Vanilla species is used as an illustrative example, the techniques covered here are relevant to the comparative analysis of homologous sequences datasets sampled from any group of organisms.

  19. Charles Darwin, beetles and phylogenetics

    Science.gov (United States)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  20. Charles Darwin, beetles and phylogenetics.

    Science.gov (United States)

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  1. Interpreting the universal phylogenetic tree

    Science.gov (United States)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  2. Molecular phylogenetics and historical biogeography of Rhinolophus bats.

    Science.gov (United States)

    Stoffberg, Samantha; Jacobs, David S; Mackie, Iain J; Matthee, Conrad A

    2010-01-01

    The phylogenetic relationships within the horseshoe bats (genus Rhinolophus) are poorly resolved, particularly at deeper levels within the tree. We present a better-resolved phylogenetic hypothesis for 30 rhinolophid species based on parsimony and Bayesian analyses of the mitochondrial cytochrome b gene and three nuclear introns (TG, THY and PRKC1). Strong support was found for the existence of two geographic clades within the monophyletic Rhinolophidae: an African group and an Oriental assemblage. The relaxed Bayesian clock method indicated that the two rhinolophid clades diverged approximately 35 million years ago and results from Dispersal Vicariance (DIVA) analysis suggest that the horseshoe bats arose in Asia and subsequently dispersed into Europe and Africa.

  3. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  4. Phylogenetic congruence between subtropical trees and their associated fungi.

    Science.gov (United States)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao

    2016-12-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

  5. Phylogenetic relationships among Maloideae species

    Science.gov (United States)

    The Maloideae is a highly diverse sub-family of the Rosaceae containing several agronomically important species (Malus sp. and Pyrus sp.) and their wild relatives. Previous phylogenetic work within the group has revealed extensive intergeneric hybridization and polyploidization. In order to develop...

  6. Phylogenetics of neotropical Platymiscium (Leguminosae

    DEFF Research Database (Denmark)

    Saslis-Lagoudakis, C. Haris; Chase, Mark W; Robinson, Daniel N

    2008-01-01

    Platymiscium is a neotropical legume genus of forest trees in the Pterocarpus clade of the pantropical "dalbergioid" clade. It comprises 19 species (29 taxa), distributed from Mexico to southern Brazil. This study presents a molecular phylogenetic analysis of Platymiscium and allies inferred from...

  7. Estimating phylogenetic trees from genome-scale data.

    Science.gov (United States)

    Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles C; Edwards, Scott V

    2015-12-01

    The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data. © 2015 New York Academy of Sciences.

  8. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both?

    Science.gov (United States)

    Miller, Joseph T; Hui, Cang; Thornhill, Andrew; Gallien, Laure; Le Roux, Johannes J; Richardson, David M

    2016-12-30

    For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Phylogenetic Position of Barbus lacerta Heckel, 1843

    Directory of Open Access Journals (Sweden)

    Mustafa Korkmaz

    2015-11-01

    As a result, five clades come out from phylogenetic reconstruction and in phylogenetic tree Barbus lacerta determined to be sister group of Barbus macedonicus, Barbus oligolepis and Barbus plebejus complex.

  10. The transposition distance for phylogenetic trees

    OpenAIRE

    Rossello, Francesc; Valiente, Gabriel

    2006-01-01

    The search for similarity and dissimilarity measures on phylogenetic trees has been motivated by the computation of consensus trees, the search by similarity in phylogenetic databases, and the assessment of clustering results in bioinformatics. The transposition distance for fully resolved phylogenetic trees is a recent addition to the extensive collection of available metrics for comparing phylogenetic trees. In this paper, we generalize the transposition distance from fully resolved to arbi...

  11. Assembly and phylogenetic structure of Neotropical palm communities

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Svenning, J.-C.; Balslev, Henrik

    Diversity, composition and dynamics of Neotropical palm communities are receiving an increasing amount of attention due to their economic importance, but also because their high species richness and functional diversity render them valuable model systems for overall forest biodiversity. However......, to better understand these palm communities, it is crucial to gain insight into the mechanisms responsible for their assembly. These can be dispersal limitation, environmental filtering, or biotic interactions. If the degree of niche conservatism is known for a group of organisms, patterns of community...... an unspecific assumption of “general niche conservatism”, phylogenetic signal will be analysed for Neotropical palms. Moreover, as an example for evolutionary mechanisms disrupting phylogenetic signal, speciation modes will be examined in selected genera. With the combined results we aim to show the relative...

  12. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Science.gov (United States)

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial

  13. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Directory of Open Access Journals (Sweden)

    Nowak-Kemp Malgosia

    2009-05-01

    Full Text Available Abstract Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis, and the threatened Javan (Rhinoceros sondaicus, Sumatran (Dicerorhinus sumatrensis, and black (Diceros bicornis rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum and Indian (Rhinoceros unicornis rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i The black/white, (ii the woolly/Sumatran, and (iii the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete

  14. Phylogenetic footprints in organizational behavior

    OpenAIRE

    Witt, Ulrich; Schwesinger, Georg

    2012-01-01

    An evolutionary tool kit is applied in this paper to explain how innate social behavior traits evolved in early human groups. These traits were adapted to the particular production requirements of the group in human phylogeny. They shaped the group members' attitudes towards contributing to the group's goals and towards other group members. We argue that these attitudes are still present in modern humans and leave their phylogenetic footprints also in present-day organizational life. We discu...

  15. Targeted Enrichment of Large Gene Families for Phylogenetic Inference: Phylogeny and Molecular Evolution of Photosynthesis Genes in the Portullugo Clade (Caryophyllales).

    Science.gov (United States)

    Moore, Abigail J; Vos, Jurriaan M De; Hancock, Lillian P; Goolsby, Eric; Edwards, Erika J

    2018-05-01

    Hybrid enrichment is an increasingly popular approach for obtaining hundreds of loci for phylogenetic analysis across many taxa quickly and cheaply. The genes targeted for sequencing are typically single-copy loci, which facilitate a more straightforward sequence assembly and homology assignment process. However, this approach limits the inclusion of most genes of functional interest, which often belong to multi-gene families. Here, we demonstrate the feasibility of including large gene families in hybrid enrichment protocols for phylogeny reconstruction and subsequent analyses of molecular evolution, using a new set of bait sequences designed for the "portullugo" (Caryophyllales), a moderately sized lineage of flowering plants (~ 2200 species) that includes the cacti and harbors many evolutionary transitions to C$_{\\mathrm{4}}$ and CAM photosynthesis. Including multi-gene families allowed us to simultaneously infer a robust phylogeny and construct a dense sampling of sequences for a major enzyme of C$_{\\mathrm{4}}$ and CAM photosynthesis, which revealed the accumulation of adaptive amino acid substitutions associated with C$_{\\mathrm{4}}$ and CAM origins in particular paralogs. Our final set of matrices for phylogenetic analyses included 75-218 loci across 74 taxa, with ~ 50% matrix completeness across data sets. Phylogenetic resolution was greatly improved across the tree, at both shallow and deep levels. Concatenation and coalescent-based approaches both resolve the sister lineage of the cacti with strong support: Anacampserotaceae $+$ Portulacaceae, two lineages of mostly diminutive succulent herbs of warm, arid regions. In spite of this congruence, BUCKy concordance analyses demonstrated strong and conflicting signals across gene trees. Our results add to the growing number of examples illustrating the complexity of phylogenetic signals in genomic-scale data.

  16. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  17. Transforming phylogenetic networks: Moving beyond tree space.

    Science.gov (United States)

    Huber, Katharina T; Moulton, Vincent; Wu, Taoyang

    2016-09-07

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin

    Science.gov (United States)

    Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang

    2018-03-01

    The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.

  19. Nonbinary Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  20. Functional and phylogenetic ecology in R

    CERN Document Server

    Swenson, Nathan G

    2014-01-01

    Functional and Phylogenetic Ecology in R is designed to teach readers to use R for phylogenetic and functional trait analyses. Over the past decade, a dizzying array of tools and methods were generated to incorporate phylogenetic and functional information into traditional ecological analyses. Increasingly these tools are implemented in R, thus greatly expanding their impact. Researchers getting started in R can use this volume as a step-by-step entryway into phylogenetic and functional analyses for ecology in R. More advanced users will be able to use this volume as a quick reference to understand particular analyses. The volume begins with an introduction to the R environment and handling relevant data in R. Chapters then cover phylogenetic and functional metrics of biodiversity; null modeling and randomizations for phylogenetic and functional trait analyses; integrating phylogenetic and functional trait information; and interfacing the R environment with a popular C-based program. This book presents a uni...

  1. Hippo pathway phylogenetics predicts monoubiquitylation of Salvador and Merlin/Nf2.

    Directory of Open Access Journals (Sweden)

    Robert G Wisotzkey

    Full Text Available Recently we employed phylogenetics to predict that the cellular interpretation of TGF-β signals is modulated by monoubiquitylation cycles affecting the Smad4 signal transducer/tumor suppressor. This prediction was subsequently validated by experiments in flies, frogs and mammalian cells. Here we apply a phylogenetic approach to the Hippo pathway and predict that two of its signal transducers, Salvador and Merlin/Nf2 (also a tumor suppressor are regulated by monoubiquitylation. This regulatory mechanism does not lead to protein degradation but instead serves as a highly efficient "off/on" switch when the protein is subsequently deubiquitylated. Overall, our study shows that the creative application of phylogenetics can predict new roles for pathway components and new mechanisms for regulating intercellular signaling pathways.

  2. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.

    Science.gov (United States)

    Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.

  3. Phylogenetic trees and Euclidean embeddings.

    Science.gov (United States)

    Layer, Mark; Rhodes, John A

    2017-01-01

    It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.

  4. Phylogenetic Conservatism in Plant Phenology

    Science.gov (United States)

    Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; hide

    2013-01-01

    Phenological events defined points in the life cycle of a plant or animal have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism the tendency for closely related species to share similar ecological and biological attributes in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

  5. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae)

    DEFF Research Database (Denmark)

    Søchting, Ulrik; Lutzoni, François

    2003-01-01

    A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic ...

  6. Phylogenetic Analysis Using Protein Mass Spectrometry.

    Science.gov (United States)

    Ma, Shiyong; Downard, Kevin M; Wong, Jason W H

    2017-01-01

    Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

  7. Phylogenetic inertia and Darwin's higher law.

    Science.gov (United States)

    Shanahan, Timothy

    2011-03-01

    The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Nonbinary tree-based phylogenetic networks

    OpenAIRE

    Jetten, Laura; van Iersel, Leo

    2016-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and st...

  9. Growth rules based on the modularity of the Canarian Aeonium (Crassulaceae) and their phylogenetic value

    DEFF Research Database (Denmark)

    Jorgensen, T.H.; Olesen, J.M.

    2000-01-01

    Growth forms of 22 species of Aeonium (Crassulaceae) were quantified. Since all species are simple in their modular construction, models were developed to predict module length, branching mode and flowering probability using linear and logistic regression. When combined, the parameters...... of these models are species specific. A discriminant analysis generates a statistically significant separation of species at the level of phylogenetic sections. The results therefore demonstrate the phylogenetic value of growth rules in plants. This dynamic approach strongly contrasts with the traditional static...

  10. Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology.

    Science.gov (United States)

    Swenson, Nathan G; Enquist, Brian J

    2009-08-01

    Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.

  11. Improved Maximum Parsimony Models for Phylogenetic Networks.

    Science.gov (United States)

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  12. Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time.

    Science.gov (United States)

    Lamsdell, James C; Congreve, Curtis R; Hopkins, Melanie J; Krug, Andrew Z; Patzkowsky, Mark E

    2017-06-01

    The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales

    OpenAIRE

    Purschke, Oliver; Michalski, Stefan G.; Bruelheide, Helge; Durka, Walter

    2017-01-01

    Abstract Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic ...

  15. Nucleotide diversity and phylogenetic relationships among ...

    Indian Academy of Sciences (India)

    NIRAJ SINGH

    for phylogenetic analysis of Gladiolus and related taxa using combined datasets from chloroplast genome. The psbA–trnH ... phylogenetic relationships among cultivars could be useful for hybridization programmes for further improvement of the crop. [Singh N. ... breeding in nature, and exhibited diverse pollination mech-.

  16. Nonbinary Tree-Based Phylogenetic Networks

    NARCIS (Netherlands)

    Jetten, L.; van Iersel, L.J.J.

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can for example

  17. Nucleotide diversity and phylogenetic relationships among ...

    Indian Academy of Sciences (India)

    Navya

    2 attached at the base of tree as the diverging Iridaceae relative's lineage. Present study revealed that psbA-trnH region are useful in addressing questions of phylogenetic relationships among the Gladiolus cultivars, as these intergenic spacers are more variable and have more phylogenetically informative sites than the ...

  18. Characterization of Escherichia coli Phylogenetic Groups ...

    African Journals Online (AJOL)

    Background: Escherichia coli strains mainly fall into four phylogenetic groups (A, B1, B2, and D) and that virulent extra‑intestinal strains mainly belong to groups B2 and D. Aim: The aim was to determine the association between phylogenetic groups of E. coli causing extraintestinal infections (ExPEC) regarding the site of ...

  19. Virulence, serotype and phylogenetic groups of diarrhoeagenic ...

    African Journals Online (AJOL)

    Dr DADIE Thomas

    2014-02-17

    Feb 17, 2014 ... The virulence, serotype and phylogenetic traits of diarrhoeagenic Escherichia coli were detected in 502 strains isolated during digestive infections. Molecular detection of the target virulence genes, rfb gene of operon O and phylogenetic grouping genes Chua, yjaA and TSPE4.C2 was performed.

  20. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  1. Conservation threats and the phylogenetic utility of IUCN Red List rankings in Incilius toads.

    Science.gov (United States)

    Schachat, Sandra R; Mulcahy, Daniel G; Mendelson, Joseph R

    2016-02-01

    Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat-risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis' D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context. © 2015 Society for Conservation Biology.

  2. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate.

    Science.gov (United States)

    Lin, Jiannan; Chen, Guangfeng; Gu, Liang; Shen, Yuefeng; Zheng, Meizhu; Zheng, Weisheng; Hu, Xinjie; Zhang, Xiaobai; Qiu, Yu; Liu, Xiaoqing; Jiang, Cizhong

    2014-02-01

    Previous phylogenetic analyses have led to incongruent evolutionary relationships between tree shrews and other suborders of Euarchontoglires. What caused the incongruence remains elusive. In this study, we identified 6845 orthologous genes between seventeen placental mammals. Tree shrews and Primates were monophyletic in the phylogenetic trees derived from the first or/and second codon positions whereas tree shrews and Glires formed a monophyly in the trees derived from the third or all codon positions. The same topology was obtained in the phylogeny inference using the slowly and fast evolving genes, respectively. This incongruence was likely attributed to the fast substitution rate in tree shrews and Glires. Notably, sequence GC content only was not informative to resolve the controversial phylogenetic relationships between tree shrews, Glires, and Primates. Finally, estimation in the confidence of the tree selection strongly supported the phylogenetic affiliation of tree shrews to Primates as a monophyly. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The space of ultrametric phylogenetic trees.

    Science.gov (United States)

    Gavryushkin, Alex; Drummond, Alexei J

    2016-08-21

    The reliability of a phylogenetic inference method from genomic sequence data is ensured by its statistical consistency. Bayesian inference methods produce a sample of phylogenetic trees from the posterior distribution given sequence data. Hence the question of statistical consistency of such methods is equivalent to the consistency of the summary of the sample. More generally, statistical consistency is ensured by the tree space used to analyse the sample. In this paper, we consider two standard parameterisations of phylogenetic time-trees used in evolutionary models: inter-coalescent interval lengths and absolute times of divergence events. For each of these parameterisations we introduce a natural metric space on ultrametric phylogenetic trees. We compare the introduced spaces with existing models of tree space and formulate several formal requirements that a metric space on phylogenetic trees must possess in order to be a satisfactory space for statistical analysis, and justify them. We show that only a few known constructions of the space of phylogenetic trees satisfy these requirements. However, our results suggest that these basic requirements are not enough to distinguish between the two metric spaces we introduce and that the choice between metric spaces requires additional properties to be considered. Particularly, that the summary tree minimising the square distance to the trees from the sample might be different for different parameterisations. This suggests that further fundamental insight is needed into the problem of statistical consistency of phylogenetic inference methods. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Bias in phylogenetic reconstruction of vertebrate rhodopsin sequences.

    Science.gov (United States)

    Chang, B S; Campbell, D L

    2000-08-01

    Two spurious nodes were found in phylogenetic analyses of vertebrate rhodopsin sequences in comparison with well-established vertebrate relationships. These spurious reconstructions were well supported in bootstrap analyses and occurred independently of the method of phylogenetic analysis used (parsimony, distance, or likelihood). Use of this data set of vertebrate rhodopsin sequences allowed us to exploit established vertebrate relationships, as well as the considerable amount known about the molecular evolution of this gene, in order to identify important factors contributing to the spurious reconstructions. Simulation studies using parametric bootstrapping indicate that it is unlikely that the spurious nodes in the parsimony analyses are due to long branches or other topological effects. Rather, they appear to be due to base compositional bias at third positions, codon bias, and convergent evolution at nucleotide positions encoding the hydrophobic residues isoleucine, leucine, and valine. LogDet distance methods, as well as maximum-likelihood methods which allow for nonstationary changes in base composition, reduce but do not entirely eliminate support for the spurious resolutions. Inclusion of five additional rhodopsin sequences in the phylogenetic analyses largely corrected one of the spurious reconstructions while leaving the other unaffected. The additional sequences not only were more proximal to the corrected node, but were also found to have intermediate levels of base composition and codon bias as compared with neighboring sequences on the tree. This study shows that the spurious reconstructions can be corrected either by excluding third positions, as well as those encoding the amino acids Ile, Val, and Leu (which may not be ideal, as these sites can contain useful phylogenetic signal for other parts of the tree), or by the addition of sequences that reduce problems associated with convergent evolution.

  5. [A phylogenetic analysis of plant communities of Teberda Biosphere Reserve].

    Science.gov (United States)

    Shulakov, A A; Egorov, A V; Onipchenko, V G

    2016-01-01

    Phylogenetic analysis of communities is based on the comparison of distances on the phylogenetic tree between species of a community under study and those distances in random samples taken out of local flora. It makes it possible to determine to what extent a community composition is formed by more closely related species (i.e., "clustered") or, on the opposite, it is more even and includes species that are less related with each other. The first case is usually interpreted as a result of strong influence caused by abiotic factors, due to which species with similar ecology, a priori more closely related, would remain: In the second case, biotic factors, such as competition, may come to the fore and lead to forming a community out of distant clades due to divergence of their ecological niches: The aim of this' study Was Ad explore the phylogenetic structure in communities of the northwestern Caucasus at two spatial scales - the scale of area from 4 to 100 m2 and the smaller scale within a community. The list of local flora of the alpine belt has been composed using the database of geobotanic descriptions carried out in Teberda Biosphere Reserve at true altitudes exceeding.1800 m. It includes 585 species of flowering plants belonging to 57 families. Basal groups of flowering plants are.not represented in the list. At the scale of communities of three classes, namely Thlaspietea rotundifolii - commumties formed on screes and pebbles, Calluno-Ulicetea - alpine meadow, and Mulgedio-Aconitetea subalpine meadows, have not demonstrated significant distinction of phylogenetic structure. At intra level, for alpine meadows the larger share of closely related species. (clustered community) is detected. Significantly clustered happen to be those communities developing on rocks (class Asplenietea trichomanis) and alpine (class Juncetea trifidi). At the same time, alpine lichen proved to have even phylogenetic structure at the small scale. Alpine (class Salicetea herbaceae) that

  6. Extended molecular phylogenetics and revised systematics of Malagasy scincine lizards.

    Science.gov (United States)

    Erens, Jesse; Miralles, Aurélien; Glaw, Frank; Chatrou, Lars W; Vences, Miguel

    2017-02-01

    Among the endemic biota of Madagascar, skinks are a diverse radiation of lizards that exhibit a striking ecomorphological variation, and could provide an interesting system to study body-form evolution in squamate reptiles. We provide a new phylogenetic hypothesis for Malagasy skinks of the subfamily Scincinae based on an extended molecular dataset comprising 8060bp from three mitochondrial and nine nuclear loci. Our analysis also increases taxon sampling of the genus Amphiglossus by including 16 out of 25 nominal species. Additionally, we examined whether the molecular phylogenetic patterns coincide with morphological differentiation in the species currently assigned to this genus. Various methods of inference recover a mostly strongly supported phylogeny with three main clades of Amphiglossus. However, relationships among these three clades and the limb-reduced genera Grandidierina, Voeltzkowia and Pygomeles remain uncertain. Supported by a variety of morphological differences (predominantly related to the degree of body elongation), but considering the remaining phylogenetic uncertainty, we propose a redefinition of Amphiglossus into three different genera (Amphiglossus sensu stricto, Flexiseps new genus, and Brachyseps new genus) to remove the non-monophyly of Amphiglossus sensu lato and to facilitate future studies on this fascinating group of lizards. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. On Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  8. Molecular Phylogenetics: Mathematical Framework and Unsolved Problems

    Science.gov (United States)

    Xia, Xuhua

    Phylogenetic relationship is essential in dating evolutionary events, reconstructing ancestral genes, predicting sites that are important to natural selection, and, ultimately, understanding genomic evolution. Three categories of phylogenetic methods are currently used: the distance-based, the maximum parsimony, and the maximum likelihood method. Here, I present the mathematical framework of these methods and their rationales, provide computational details for each of them, illustrate analytically and numerically the potential biases inherent in these methods, and outline computational challenges and unresolved problems. This is followed by a brief discussion of the Bayesian approach that has been recently used in molecular phylogenetics.

  9. The phylogenetic distribution of extrafloral nectaries in plants.

    Science.gov (United States)

    Weber, Marjorie G; Keeler, Kathleen H

    2013-06-01

    Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1-2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in vascular plants. Our current understanding of the

  10. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota.

    Science.gov (United States)

    Oton, Eduard Vico; Quince, Christopher; Nicol, Graeme W; Prosser, James I; Gubry-Rangin, Cécile

    2016-01-01

    Thaumarchaeota form a ubiquitously distributed archaeal phylum, comprising both the ammonia-oxidising archaea (AOA) and other archaeal groups in which ammonia oxidation has not been demonstrated (including Group 1.1c and Group 1.3). The ecology of AOA in terrestrial environments has been extensively studied using either a functional gene, encoding ammonia monooxygenase subunit A (amoA) or 16S ribosomal RNA (rRNA) genes, which show phylogenetic coherence with respect to soil pH. To test phylogenetic congruence between these two markers and to determine ecological coherence in all Thaumarchaeota, we performed high-throughput sequencing of 16S rRNA and amoA genes in 46 UK soils presenting 29 available contextual soil characteristics. Adaptation to pH and organic matter content reflected strong ecological coherence at various levels of taxonomic resolution for Thaumarchaeota (AOA and non-AOA), whereas nitrogen, total mineralisable nitrogen and zinc concentration were also important factors associated with AOA thaumarchaeotal community distribution. Other significant associations with environmental factors were also detected for amoA and 16S rRNA genes, reflecting different diversity characteristics between these two markers. Nonetheless, there was significant statistical congruence between the markers at fine phylogenetic resolution, supporting the hypothesis of low horizontal gene transfer between Thaumarchaeota. Group 1.1c Thaumarchaeota were also widely distributed, with two clusters predominating, particularly in environments with higher moisture content and organic matter, whereas a similar ecological pattern was observed for Group 1.3 Thaumarchaeota. The ecological and phylogenetic congruence identified is fundamental to understand better the life strategies, evolutionary history and ecosystem function of the Thaumarchaeota.

  11. Nucleotide diversity and phylogenetic relationships among ...

    Indian Academy of Sciences (India)

    2017-03-03

    Mar 3, 2017 ... 2Department of Botany, D. S. B. Campus, Kumaun University, Nainital 263 001, India ... Rana T. S. 2017 Nucleotide diversity and phylogenetic relationships ... Anderson and Park 1989). ..... Edgewood Press, Edgewood, USA.

  12. Phenotypic diversity and phylogenetic relationship between the ...

    African Journals Online (AJOL)

    Phenotypic diversity and phylogenetic relationship between the Bakosi/Baweri and other pig breeds ( Sus scrofa Domesticus ) in the humid forest with monomodal rainfall agro-ecological zone of Cameroon.

  13. Phylogenetic structure in tropical hummingbird communities

    DEFF Research Database (Denmark)

    Graham, Catherine H; Parra, Juan L; Rahbek, Carsten

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic...... composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern...... that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining...

  14. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    PARUL BANERJEE

    c Indian Academy of Sciences. RESEARCH ARTICLE. The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. PARUL BANERJEE and BASHISTH N. SINGH. ∗. Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi ...

  15. The phylogenetics of succession can guide restoration

    DEFF Research Database (Denmark)

    Shooner, Stephanie; Chisholm, Chelsea Lee; Davies, T. Jonathan

    2015-01-01

    Phylogenetic tools have increasingly been used in community ecology to describe the evolutionary relationships among co-occurring species. In studies of succession, such tools may allow us to identify the evolutionary lineages most suited for particular stages of succession and habitat...... rehabilitation. However, to date, these two applications have been largely separate. Here, we suggest that information on phylogenetic community structure might help to inform community restoration strategies following major disturbance. Our study examined phylogenetic patterns of succession based...... for species sorting along abiotic gradients (slope and aspect) on the mine sites that had been abandoned for the longest. Synthesis and applications. Understanding the trajectory of succession is critical for restoration efforts. Our results suggest that early colonizers represent a phylogenetically random...

  16. Phylogenetic search through partial tree mixing

    Science.gov (United States)

    2012-01-01

    Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449

  17. Constructing phylogenetic trees using interacting pathways.

    Science.gov (United States)

    Wan, Peng; Che, Dongsheng

    2013-01-01

    Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.

  18. Virulence, serotype and phylogenetic groups of diarrhoeagenic ...

    African Journals Online (AJOL)

    Dr DADIE Thomas

    2014-02-17

    Feb 17, 2014 ... Phylogenetic characteristics play an important role for traceability and knowledge of ... amplification reaction was performed by PCR in a 25 μl reaction ...... Hierarchical grouping to optimize an objective function. J. Am. Statist.

  19. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...

  20. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  1. Phylogenetically Acquired Representations and Evolutionary Algorithms.

    OpenAIRE

    Wozniak , Adrianna

    2006-01-01

    First, we explain why Genetic Algorithms (GAs), inspired by the Modern Synthesis, do not accurately model biological evolution, being rather an artificial version of artificial, rather than natural selection. Being focused on optimisation, we propose two improvements of GAs, with the aim to successfully generate adapted, desired behaviour. The first one concerns phylogenetic grounding of meaning, a way to avoid the Symbol Grounding Problem. We give a definition of Phylogenetically Acquired Re...

  2. Functional & phylogenetic diversity of copepod communities

    Science.gov (United States)

    Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.

    2016-02-01

    The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.

  3. Nodal distances for rooted phylogenetic trees.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2010-08-01

    Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).

  4. Maximizing the phylogenetic diversity of seed banks.

    Science.gov (United States)

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. © 2014 Society for Conservation Biology.

  5. Inferring Phylogenetic Networks Using PhyloNet.

    Science.gov (United States)

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  6. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  7. Barcoding and Phylogenetic Inferences in Nine Mugilid Species (Pisces, Mugiliformes

    Directory of Open Access Journals (Sweden)

    Neonila Polyakova

    2013-10-01

    Full Text Available Accurate identification of fish and fish products, from eggs to adults, is important in many areas. Grey mullets of the family Mugilidae are distributed worldwide and inhabit marine, estuarine, and freshwater environments in all tropical and temperate regions. Various Mugilid species are commercially important species in fishery and aquaculture of many countries. For the present study we have chosen two Mugilid genes with different phylogenetic signals: relatively variable mitochondrial cytochrome oxidase subunit I (COI and conservative nuclear rhodopsin (RHO. We examined their diversity within and among 9 Mugilid species belonging to 4 genera, many of which have been examined from multiple specimens, with the goal of determining whether DNA barcoding can achieve unambiguous species recognition of Mugilid species. The data obtained showed that information based on COI sequences was diagnostic not only for species-level identification but also for recognition of intraspecific units, e.g., allopatric populations of circumtropical Mugil cephalus, or even native and acclimatized specimens of Chelon haematocheila. All RHO sequences appeared strictly species specific. Based on the data obtained, we conclude that COI, as well as RHO sequencing can be used to unambiguously identify fish species. Topologies of phylogeny based on RHO and COI sequences coincided with each other, while together they had a good phylogenetic signal.

  8. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities

    Directory of Open Access Journals (Sweden)

    Anthony Stuart Amend

    2015-02-01

    Full Text Available Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity. This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between phylogenetic diversity and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial phylogenetic diversity, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of sixty-six days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial phylogenetic diversity failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which phylogenetic diversity predicts ecosystem function will depend on environmental context.

  9. Phylogenetic patterns of extinction risk in the eastern arc ecosystems, an African biodiversity hotspot.

    Science.gov (United States)

    Yessoufou, Kowiyou; Daru, Barnabas H; Davies, T Jonathan

    2012-01-01

    There is an urgent need to reduce drastically the rate at which biodiversity is declining worldwide. Phylogenetic methods are increasingly being recognised as providing a useful framework for predicting future losses, and guiding efforts for pre-emptive conservation actions. In this study, we used a reconstructed phylogenetic tree of angiosperm species of the Eastern Arc Mountains - an important African biodiversity hotspot - and described the distribution of extinction risk across taxonomic ranks and phylogeny. We provide evidence for both taxonomic and phylogenetic selectivity in extinction risk. However, we found that selectivity varies with IUCN extinction risk category. Vulnerable species are more closely related than expected by chance, whereas endangered and critically endangered species are not significantly clustered on the phylogeny. We suggest that the general observation for taxonomic and phylogenetic selectivity (i.e. phylogenetic signal, the tendency of closely related species to share similar traits) in extinction risks is therefore largely driven by vulnerable species, and not necessarily the most highly threatened. We also used information on altitudinal distribution and climate to generate a predictive model of at-risk species richness, and found that greater threatened species richness is found at higher altitude, allowing for more informed conservation decision making. Our results indicate that evolutionary history can help predict plant susceptibility to extinction threats in the hyper-diverse but woefully-understudied Eastern Arc Mountains, and illustrate the contribution of phylogenetic approaches in conserving African floristic biodiversity where detailed ecological and evolutionary data are often lacking.

  10. Phylogenetic patterns of extinction risk in the eastern arc ecosystems, an African biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Kowiyou Yessoufou

    Full Text Available There is an urgent need to reduce drastically the rate at which biodiversity is declining worldwide. Phylogenetic methods are increasingly being recognised as providing a useful framework for predicting future losses, and guiding efforts for pre-emptive conservation actions. In this study, we used a reconstructed phylogenetic tree of angiosperm species of the Eastern Arc Mountains - an important African biodiversity hotspot - and described the distribution of extinction risk across taxonomic ranks and phylogeny. We provide evidence for both taxonomic and phylogenetic selectivity in extinction risk. However, we found that selectivity varies with IUCN extinction risk category. Vulnerable species are more closely related than expected by chance, whereas endangered and critically endangered species are not significantly clustered on the phylogeny. We suggest that the general observation for taxonomic and phylogenetic selectivity (i.e. phylogenetic signal, the tendency of closely related species to share similar traits in extinction risks is therefore largely driven by vulnerable species, and not necessarily the most highly threatened. We also used information on altitudinal distribution and climate to generate a predictive model of at-risk species richness, and found that greater threatened species richness is found at higher altitude, allowing for more informed conservation decision making. Our results indicate that evolutionary history can help predict plant susceptibility to extinction threats in the hyper-diverse but woefully-understudied Eastern Arc Mountains, and illustrate the contribution of phylogenetic approaches in conserving African floristic biodiversity where detailed ecological and evolutionary data are often lacking.

  11. Some limitations of public sequence data for phylogenetic inference (in plants).

    Science.gov (United States)

    Hinchliff, Cody E; Smith, Stephen Andrew

    2014-01-01

    The GenBank database contains essentially all of the nucleotide sequence data generated for published molecular systematic studies, but for the majority of taxa these data remain sparse. GenBank has value for phylogenetic methods that leverage data-mining and rapidly improving computational methods, but the limits imposed by the sparse structure of the data are not well understood. Here we present a tree representing 13,093 land plant genera--an estimated 80% of extant plant diversity--to illustrate the potential of public sequence data for broad phylogenetic inference in plants, and we explore the limits to inference imposed by the structure of these data using theoretical foundations from phylogenetic data decisiveness. We find that despite very high levels of missing data (over 96%), the present data retain the potential to inform over 86.3% of all possible phylogenetic relationships. Most of these relationships, however, are informed by small amounts of data--approximately half are informed by fewer than four loci, and more than 99% are informed by fewer than fifteen. We also apply an information theoretic measure of branch support to assess the strength of phylogenetic signal in the data, revealing many poorly supported branches concentrated near the tips of the tree, where data are sparse and the limiting effects of this sparseness are stronger. We argue that limits to phylogenetic inference and signal imposed by low data coverage may pose significant challenges for comprehensive phylogenetic inference at the species level. Computational requirements provide additional limits for large reconstructions, but these may be overcome by methodological advances, whereas insufficient data coverage can only be remedied by additional sampling effort. We conclude that public databases have exceptional value for modern systematics and evolutionary biology, and that a continued emphasis on expanding taxonomic and genomic coverage will play a critical role in developing

  12. Strong intrinsic motivation

    OpenAIRE

    Dessi, Roberta; Rustichini, Aldo

    2015-01-01

    A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...

  13. Bitcoin Meets Strong Consistency

    OpenAIRE

    Decker, Christian; Seidel, Jochen; Wattenhofer, Roger

    2014-01-01

    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...

  14. Strong gravity and supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Salam, A.; Strathdee, J.

    1977-11-01

    A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

  15. Introgression evidence and phylogenetic relationships among three (ParaMisgurnus species as revealed by mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Jakovlić I.

    2013-01-01

    Full Text Available The taxonomy of (ParaMisgurnus genera is still debated. We therefore used mitochondrial and nuclear DNA markers to analyze the phylogenetic relationships among Misgurnus anguillicaudatus, Paramisgurnus dabryanus and Misgurnus fossilis. Differing phylogenetic signals from mitochondrial and nuclear marker data suggest an introgression event in the history of M. anguillicaudatus and M. mohoity. No substantial genetic evidence was found that Paramisgurnus dabryanus should be classified as a separate genus.

  16. Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China.

    Science.gov (United States)

    Du, Yanjun; Chen, Jingru; Willis, Charles G; Zhou, Zhiqiang; Liu, Tong; Dai, Wujun; Zhao, Yuan; Ma, Keping

    2017-09-01

    Climate change has resulted in major changes in plant phenology across the globe that includes leaf-out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf-out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf-out date to climate factors exhibits phylogenetic signal. We used a 52-year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf-out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf-out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf-out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf-out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non-native species. Earlier leaf-out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf-out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf-out sensitivity.

  17. Rearrangement moves on rooted phylogenetic networks.

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Lafond, Manuel; Pardi, Fabio; Scornavacca, Celine

    2017-08-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for

  18. Rearrangement moves on rooted phylogenetic networks.

    Directory of Open Access Journals (Sweden)

    Philippe Gambette

    2017-08-01

    Full Text Available Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide

  19. Phylogenetic diversity and relationships among species of genus ...

    African Journals Online (AJOL)

    Fifty six Nicotiana species were used to construct phylogenetic trees and to asses the genetic relationships between them. Genetic distances estimated from RAPD analysis was used to construct phylogenetic trees using Phylogenetic Inference Package (PHYLIP). Since phylogenetic relationships estimated for closely ...

  20. Phylogenetic tests of distribution patterns in South Asia: towards

    Indian Academy of Sciences (India)

    The last four decades have seen an increasing integration of phylogenetics and biogeography. However, a dearth of phylogenetic studies has precluded such biogeographic analyses in South Asia until recently. Noting the increase in phylogenetic research and interest in phylogenetic biogeography in the region, we ...

  1. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species.

    Science.gov (United States)

    Larkin, Daniel J; Jacobi, Sarah K; Hipp, Andrew L; Kramer, Andrea T

    2016-01-01

    Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the 'PIECES' index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet-based decision support tool for North American angiosperms is provided; this tool can be customized to

  2. Late Cenozoic climate and the phylogenetic structure of regional conifer floras worldwide

    NARCIS (Netherlands)

    Eiserhardt, W.L.; Borchsenius, F.; Sandel, B.; Kissling, W.D.; Svenning, J.-C.

    2015-01-01

    Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate

  3. Encoding phylogenetic trees in terms of weighted quartets.

    Science.gov (United States)

    Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles

    2008-04-01

    One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.

  4. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales.

    Science.gov (United States)

    Purschke, Oliver; Michalski, Stefan G; Bruelheide, Helge; Durka, Walter

    2017-12-01

    Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.

  5. Fourier transform inequalities for phylogenetic trees.

    Science.gov (United States)

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  6. Folding and unfolding phylogenetic trees and networks.

    Science.gov (United States)

    Huber, Katharina T; Moulton, Vincent; Steel, Mike; Wu, Taoyang

    2016-12-01

    Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be "unfolded" to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be "folded" to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.

  7. Tree-Based Unrooted Phylogenetic Networks.

    Science.gov (United States)

    Francis, A; Huber, K T; Moulton, V

    2018-02-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.

  8. Strong WW scattering at photon linear colliders

    International Nuclear Information System (INIS)

    Berger, M.S.

    1994-06-01

    We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson

  9. Phylogenetic system and zoogeography of the Plecoptera.

    Science.gov (United States)

    Zwick, P

    2000-01-01

    Information about the phylogenetic relationships of Plecoptera is summarized. The few characters supporting monophyly of the order are outlined. Several characters of possible significance for the search for the closest relatives of the stoneflies are discussed, but the sister-group of the order remains unknown. Numerous characters supporting the presently recognized phylogenetic system of Plecoptera are presented, alternative classifications are discussed, and suggestions for future studies are made. Notes on zoogeography are appended. The order as such is old (Permian fossils), but phylogenetic relationships and global distribution patterns suggest that evolution of the extant suborders started with the breakup of Pangaea. There is evidence of extensive recent speciation in all parts of the world.

  10. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  11. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  12. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  13. BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.

    Science.gov (United States)

    Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu

    2013-09-15

    Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.

  14. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    Science.gov (United States)

    Manel, Stéphanie; Couvreur, Thomas L P; Munoz, François; Couteron, Pierre; Hardy, Olivier J; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  15. Characterizing the Phylogenetic Tree Community Structure of a Protected Tropical Rain Forest Area in Cameroon

    Science.gov (United States)

    Munoz, François; Couteron, Pierre; Hardy, Olivier J.; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world. PMID:24936786

  16. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    Science.gov (United States)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  17. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  18. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  19. A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.

    Science.gov (United States)

    Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang

    2013-01-01

    Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.

  20. Phylogenetic relationship among Kenyan sorghum germplasms ...

    African Journals Online (AJOL)

    Mr Kiboi

    phylogenetic relationships based on 10 DNA fragments at AltSB loci with SbMATE, ORF9 and MITE primers. .... estimate the overall genetic diversity in Kenyan sorghum lines: Cheprot et al. 3529 ..... EARN project and Generation Challenge (GCP), ... genetics and molecular biology of plant aluminum resistance and toxicity.

  1. Molecular characterization and phylogenetic relationships among ...

    African Journals Online (AJOL)

    Molecular characterization and phylogenetic relationships among and within species of Phalaenopsis (Epidendroideae: Orchidaceae) based on RAPD analysis. ... Ph. parishii, Ph. labbi nepal, Ph. speciosa, Ph. lobbi yellow, Ph. venosa, Ph. hieroglyphica, and Ph. maculata; the third group consisted of Ph. minho princess, ...

  2. YBYRÁ facilitates comparison of large phylogenetic trees.

    Science.gov (United States)

    Machado, Denis Jacob

    2015-07-01

    The number and size of tree topologies that are being compared by phylogenetic systematists is increasing due to technological advancements in high-throughput DNA sequencing. However, we still lack tools to facilitate comparison among phylogenetic trees with a large number of terminals. The "YBYRÁ" project integrates software solutions for data analysis in phylogenetics. It comprises tools for (1) topological distance calculation based on the number of shared splits or clades, (2) sensitivity analysis and automatic generation of sensitivity plots and (3) clade diagnoses based on different categories of synapomorphies. YBYRÁ also provides (4) an original framework to facilitate the search for potential rogue taxa based on how much they affect average matching split distances (using MSdist). YBYRÁ facilitates comparison of large phylogenetic trees and outperforms competing software in terms of usability and time efficiency, specially for large data sets. The programs that comprises this toolkit are written in Python, hence they do not require installation and have minimum dependencies. The entire project is available under an open-source licence at http://www.ib.usp.br/grant/anfibios/researchSoftware.html .

  3. Constructing Student Problems in Phylogenetic Tree Construction.

    Science.gov (United States)

    Brewer, Steven D.

    Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…

  4. Morphological characterization and phylogenetic distance among ...

    African Journals Online (AJOL)

    The genetic diversity was calculated with Nei and Li's index, and the phylogenetic tree (dendrogram) was generated with a neighbor-joining program. The dendrogram indicates the diversity of the genotypes, which are grouped into three distinctive large groups. The largest group includes species from the Mediolobivia and ...

  5. Efficient Computation of Popular Phylogenetic Tree Measures

    DEFF Research Database (Denmark)

    Tsirogiannis, Constantinos; Sandel, Brody Steven; Cheliotis, Dimitris

    2012-01-01

    Given a phylogenetic tree $\\mathcal{T}$ of n nodes, and a sample R of its tips (leaf nodes) a very common problem in ecological and evolutionary research is to evaluate a distance measure for the elements in R. Two of the most common measures of this kind are the Mean Pairwise Distance ($\\ensurem...

  6. Phylogenetic Inference of HIV Transmission Clusters

    Directory of Open Access Journals (Sweden)

    Vlad Novitsky

    2017-10-01

    Full Text Available Better understanding the structure and dynamics of HIV transmission networks is essential for designing the most efficient interventions to prevent new HIV transmissions, and ultimately for gaining control of the HIV epidemic. The inference of phylogenetic relationships and the interpretation of results rely on the definition of the HIV transmission cluster. The definition of the HIV cluster is complex and dependent on multiple factors, including the design of sampling, accuracy of sequencing, precision of sequence alignment, evolutionary models, the phylogenetic method of inference, and specified thresholds for cluster support. While the majority of studies focus on clusters, non-clustered cases could also be highly informative. A new dimension in the analysis of the global and local HIV epidemics is the concept of phylogenetically distinct HIV sub-epidemics. The identification of active HIV sub-epidemics reveals spreading viral lineages and may help in the design of targeted interventions.HIVclustering can also be affected by sampling density. Obtaining a proper sampling density may increase statistical power and reduce sampling bias, so sampling density should be taken into account in study design and in interpretation of phylogenetic results. Finally, recent advances in long-range genotyping may enable more accurate inference of HIV transmission networks. If performed in real time, it could both inform public-health strategies and be clinically relevant (e.g., drug-resistance testing.

  7. Reconstructing phylogenetic networks using maximum parsimony.

    Science.gov (United States)

    Nakhleh, Luay; Jin, Guohua; Zhao, Fengmei; Mellor-Crummey, John

    2005-01-01

    Phylogenies - the evolutionary histories of groups of organisms - are one of the most widely used tools throughout the life sciences, as well as objects of research within systematics, evolutionary biology, epidemiology, etc. Almost every tool devised to date to reconstruct phylogenies produces trees; yet it is widely understood and accepted that trees oversimplify the evolutionary histories of many groups of organims, most prominently bacteria (because of horizontal gene transfer) and plants (because of hybrid speciation). Various methods and criteria have been introduced for phylogenetic tree reconstruction. Parsimony is one of the most widely used and studied criteria, and various accurate and efficient heuristics for reconstructing trees based on parsimony have been devised. Jotun Hein suggested a straightforward extension of the parsimony criterion to phylogenetic networks. In this paper we formalize this concept, and provide the first experimental study of the quality of parsimony as a criterion for constructing and evaluating phylogenetic networks. Our results show that, when extended to phylogenetic networks, the parsimony criterion produces promising results. In a great majority of the cases in our experiments, the parsimony criterion accurately predicts the numbers and placements of non-tree events.

  8. Phylogenetic classification of the halichondrids (Porifera, Demospongiae)

    NARCIS (Netherlands)

    Soest, van R.W.M.; Díaz, Maria Cristina; Pomponi, Shirley A.

    1990-01-01

    Using a multicharacter approach and numerical cladistic computer programs a phylogenetic analysis is made of a newly defined order Halichondrida (which includes all Halichondrida and parts of the Axinellida sensu Lévi, 1973), with emphasis on the newly defined family Halichondriidae (which includes

  9. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    [Banerjee P. and Singh B. N. 2017 The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. J. Genet. 96, 97–107]. Introduction ..... loops touch the chromocenter and in our microphotograph. (depicting both the arms) too, the involvement of chromo-.

  10. Ultraviolet signals in birds are special.

    Science.gov (United States)

    Hausmann, Franziska; Arnold, Kathryn E; Marshall, N Justin; Owens, Ian P F

    2003-01-07

    Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals.

  11. Tree phylogenetic diversity promotes host-parasitoid interactions.

    Science.gov (United States)

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. © 2016 The Author(s).

  12. Phylogenetic relatedness predicts priority effects in nectar yeast communities

    Science.gov (United States)

    Peay, Kabir G.; Belisle, Melinda; Fukami, Tadashi

    2012-01-01

    Priority effects, in which the outcome of species interactions depends on the order of their arrival, are a key component of many models of community assembly. Yet, much remains unknown about how priority effects vary in strength among species in a community and what factors explain this variation. We experimented with a model natural community in laboratory microcosms that allowed us to quantify the strength of priority effects for most of the yeast species found in the floral nectar of a hummingbird-pollinated shrub at a biological preserve in northern California. We found that priority effects were widespread, with late-arriving species experiencing strong negative effects from early-arriving species. However, the magnitude of priority effects varied across species pairs. This variation was phylogenetically non-random, with priority effects stronger between closer relatives. Analysis of carbon and amino acid consumption profiles indicated that competition between closer relatives was more intense owing to higher ecological similarity, consistent with Darwin's naturalization hypothesis. These results suggest that phylogenetic relatedness between potential colonists may explain the strength of priority effects and, as a consequence, the degree to which community assembly is historically contingent. PMID:21775330

  13. Phylogenetic reconstruction and shell evolution of the Diplommatinidae (Gastropoda: Caenogastropoda).

    Science.gov (United States)

    Webster, Nicole B; Van Dooren, Tom J M; Schilthuizen, Menno

    2012-06-01

    The fascinating and often unlikely shell shapes in the terrestrial micromollusc family Diplommatinidae (Gastropoda: Caenogastropoda) provide a particularly attractive set of multiple morphological traits to investigate evolutionary patterns of shape variation. Here, a molecular phylogenetic reconstruction, based on five genes and 2700 bp, was undertaken for this family, integrated with ancestral state reconstruction and phylogenetic PCA of discrete and quantitative traits, respectively. We found strong support for the Diplommatininae as a monophyletic group, separating the Cochlostomatidae into a separate family. Five main clades appear within the Diplommatininae, corresponding with both coiling direction and biogeographic patterns. A Belau clade (A) with highly diverse (but always sinistral) morphology comprised Hungerfordia, Palaina, and some Diplommatina. Arinia (dextral) and Opisthostoma (sinistroid) are sister groups in clade B. Clade C and D solely contain sinistral Diplommatina that are robust and little ornamented (clade C) or slender and sculptured (clade D). Clade E is dextral but biogeographically diverse with species from all sampled regions save the Caroline Islands. Adelopoma, Diplommatina, Palaina, and Hungerfordia require revision to allow taxonomy to reflect phylogeny, whereas Opisthostoma is clearly monophyletic. Ancestral state reconstruction suggests a sinistral origin for the Diplommatinidae, with three reversals to dextrality. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Strongly intensive quantities

    International Nuclear Information System (INIS)

    Gorenstein, M. I.; Gazdzicki, M.

    2011-01-01

    Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.

  15. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  16. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    Science.gov (United States)

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  18. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  19. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids.

    Science.gov (United States)

    Jansen, Robert K; Kaittanis, Charalambos; Saski, Christopher; Lee, Seung-Bum; Tomkins, Jeffrey; Alverson, Andrew J; Daniell, Henry

    2006-04-09

    The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum likelihood analyses place

  20. Phylogenetic analyses of Vitis (Vitaceae based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids

    Directory of Open Access Journals (Sweden)

    Alverson Andrew J

    2006-04-01

    Full Text Available Abstract Background The Vitaceae (grape is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. Results The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade

  1. Disturbance by an endemic rodent in an arid shrubland is a habitat filter: effects on plant invasion and taxonomical, functional and phylogenetic community structure.

    Science.gov (United States)

    Escobedo, Víctor M; Rios, Rodrigo S; Salgado-Luarte, Cristian; Stotz, Gisela C; Gianoli, Ernesto

    2017-03-01

    Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion. It was expected that disturbance would operate as a habitat filter favouring exotic species with short life cycles. Sixteen plots were sampled along a disturbance gradient caused by the endemic fossorial rodent Spalacopus cyanus , measuring community parameters and estimating functional divergence for life history traits (functional dispersion index) and the relative contribution to functional divergence of exotic and native species. The phylogenetic signal (Pagel's lambda) and phylogenetic community structure (mean phylogenetic distance and mean nearest taxon phylogenetic distance) were also estimated. The use of a continuous approach to the disturbance gradient allowed the identification of non-linear relationships between disturbance and community parameters. The relationship between disturbance and both species richness and abundance was positive for exotic species and negative for native species. Disturbance modified community composition, and exotic species were associated with more disturbed sites. Disturbance increased trait convergence, which resulted in phylogenetic clustering because traits showed a significant phylogenetic signal. The relative contribution of exotic species to functional divergence increased, while that of natives decreased, with disturbance. Exotic and native species were not phylogenetically distinct. Disturbance by rodents in this arid shrubland constitutes a habitat filter over phylogeny-dependent life history traits, leading to phylogenetic clustering, and drives invasion by favouring species with short life cycles. Results can be

  2. Topological variation in single-gene phylogenetic trees

    OpenAIRE

    Castresana, Jose

    2007-01-01

    A recent large-scale phylogenomic study has shown the great degree of topological variation that can be found among eukaryotic phylogenetic trees constructed from single genes, highlighting the problems that can be associated with gene sampling in phylogenetic studies.

  3. An efficient and extensible approach for compressing phylogenetic trees

    KAUST Repository

    Matthews, Suzanne J; Williams, Tiffani L

    2011-01-01

    Background: Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend

  4. Strongly interacting Higgs bosons

    International Nuclear Information System (INIS)

    Appelquist, T.; Bernard, C.

    1980-01-01

    The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed

  5. Endocrinology of Species Differences in Sexually Dichromatic Signals

    Science.gov (United States)

    Diana K. Hews; Vanessa S. Quinn

    2003-01-01

    Many animals have conspicuous social signals. Often these signals are expressed in one sex and function in the context of mate choice, intrasexual competition, or both (Andersson 1994; Bradbury and Vehrencamp 1998). A more complete understanding of sex-specific signals will come from integrative studies within a phylogenetic context (Ryan, Autumn, and Wake 1998)....

  6. Body size and geographic range do not explain long term variation in fish populations: a Bayesian phylogenetic approach to testing assembly processes in stream fish assemblages.

    Directory of Open Access Journals (Sweden)

    Stephen J Jacquemin

    Full Text Available We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010 local scale population variation of fishes in West Fork White River (Indiana, USA. The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.

  7. Signals of strong electronic correlation in ion scattering processes

    Science.gov (United States)

    Bonetto, F.; Gonzalez, C.; Goldberg, E. C.

    2016-05-01

    Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.

  8. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  9. A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

    NARCIS (Netherlands)

    K.T. Huber; L.J.J. van Iersel (Leo); S.M. Kelk (Steven); R. Suchecki

    2010-01-01

    htmlabstractRecently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of

  10. A practical algorithm for reconstructing level-1 phylogenetic networks

    NARCIS (Netherlands)

    Huber, K.T.; Iersel, van L.J.J.; Kelk, S.M.; Suchecki, R.

    2011-01-01

    Recently, much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here, we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks-a type of network

  11. Sequence comparison and phylogenetic analysis of core gene of ...

    African Journals Online (AJOL)

    Phylogenetic analysis suggests that our sequences are clustered with sequences reported from Japan. This is the first phylogenetic analysis of HCV core gene from Pakistani population. Our sequences and sequences from Japan are grouped into same cluster in the phylogenetic tree. Sequence comparison and ...

  12. Molecular phylogenetics of mastodon and Tyrannosaurus rex.

    Science.gov (United States)

    Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M

    2008-04-25

    We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable.

  13. Phylogenetic rooting using minimal ancestor deviation.

    Science.gov (United States)

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  14. Phylogenetic paleobiogeography of Late Ordovician Laurentian brachiopods

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bauer

    2014-12-01

    Full Text Available Phylogenetic biogeographic analysis of four brachiopod genera was used to uncover large-scale geologic drivers of Late Ordovician biogeographic differentiation in Laurentia. Previously generated phylogenetic hypotheses were converted into area cladograms, ancestral geographic ranges were optimized and speciation events characterized as via dispersal or vicariance, when possible. Area relationships were reconstructed using Lieberman-modified Brooks Parsimony Analysis. The resulting area cladograms indicate tectonic and oceanographic changes were the primary geologic drivers of biogeographic patterns within the focal taxa. The Taconic tectophase contributed to the separation of the Appalachian and Central basins as well as the two midcontinent basins, whereas sea level rise following the Boda Event promoted interbasinal dispersal. Three migration pathways into the Cincinnati Basin were recognized, which supports the multiple pathway hypothesis for the Richmondian Invasion.

  15. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    cophaga ranges from 0.037–0.106 and 0.049–0.207 for COI and ND5 genes, respectively (tables 2 and 3). Analysis of genetic distance on the basis of sequence difference for both the mitochondrial genes shows very little genetic difference. The discrepancy in the phylogenetic trees based on individ- ual genes may be due ...

  16. Bayesian phylogenetic estimation of fossil ages.

    Science.gov (United States)

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  17. New substitution models for rooting phylogenetic trees.

    Science.gov (United States)

    Williams, Tom A; Heaps, Sarah E; Cherlin, Svetlana; Nye, Tom M W; Boys, Richard J; Embley, T Martin

    2015-09-26

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. © 2015 The Authors.

  18. Coalescent methods for estimating phylogenetic trees.

    Science.gov (United States)

    Liu, Liang; Yu, Lili; Kubatko, Laura; Pearl, Dennis K; Edwards, Scott V

    2009-10-01

    We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have methods been developed that explicitly estimate species trees. Of the several factors that can cause gene tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating species trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenetics and involves the model of nucleotide substitution, and the second of which is less familiar to phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for systematics, appear to work well in some cases where concatenation can be misleading, and suggest that sampling many independent loci will be paramount. Such methods can also be challenging to implement because of the complexity of the models and computational time. In addition, further elaboration of the simplest of coalescent models will be required to incorporate commonly known issues such as deviation from the molecular clock, gene flow and other genetic forces.

  19. Fast algorithms for computing phylogenetic divergence time.

    Science.gov (United States)

    Crosby, Ralph W; Williams, Tiffani L

    2017-12-06

    The inference of species divergence time is a key step in most phylogenetic studies. Methods have been available for the last ten years to perform the inference, but the performance of the methods does not yet scale well to studies with hundreds of taxa and thousands of DNA base pairs. For example a study of 349 primate taxa was estimated to require over 9 months of processing time. In this work, we present a new algorithm, AncestralAge, that significantly improves the performance of the divergence time process. As part of AncestralAge, we demonstrate a new method for the computation of phylogenetic likelihood and our experiments show a 90% improvement in likelihood computation time on the aforementioned dataset of 349 primates taxa with over 60,000 DNA base pairs. Additionally, we show that our new method for the computation of the Bayesian prior on node ages reduces the running time for this computation on the 349 taxa dataset by 99%. Through the use of these new algorithms we open up the ability to perform divergence time inference on large phylogenetic studies.

  20. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  1. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  2. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  3. Remarkable phylogenetic resolution of the most complex clade of Cyprinidae (Teleostei: Cypriniformes): a proof of concept of homology assessment and partitioning sequence data integrated with mixed model Bayesian analyses.

    Science.gov (United States)

    Tao, Wenjing; Mayden, Richard L; He, Shunping

    2013-03-01

    Despite many efforts to resolve evolutionary relationships among major clades of Cyprinidae, some nodes have been especially problematic and remain unresolved. In this study, we employ four nuclear gene fragments (3.3kb) to infer interrelationships of the Cyprinidae. A reconstruction of the phylogenetic relationships within the family using maximum parsimony, maximum likelihood, and Bayesian analyses is presented. Among the taxa within the monophyletic Cyprinidae, Rasborinae is the basal-most lineage; Cyprinine is sister to Leuciscine. The monophyly for the subfamilies Gobioninae, Leuciscinae and Acheilognathinae were resolved with high nodal support. Although our results do not completely resolve relationships within Cyprinidae, this study presents novel and significant findings having major implications for a highly diverse and enigmatic clade of East-Asian cyprinids. Within this monophyletic group five closely-related subgroups are identified. Tinca tinca, one of the most phylogenetically enigmatic genera in the family, is strongly supported as having evolutionary affinities with this East-Asian clade; an established yet remarkable association because of the natural variation in phenotypes and generalized ecological niches occupied by these taxa. Our results clearly argue that the choice of partitioning strategies has significant impacts on the phylogenetic reconstructions, especially when multiple genes are being considered. The most highly partitioned model (partitioned by codon positions within genes) extracts the strongest phylogenetic signals and performs better than any other partitioning schemes supported by the strongest 2Δln Bayes factor. Future studies should include higher levels of taxon sampling and partitioned, model-based analyses. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  5. Larger phylogenetic distances in litter mixtures - lower microbial biomass and higher C/N ratios but equal mass loss

    Czech Academy of Sciences Publication Activity Database

    Pan, X.; Berg, M. P.; Butenschoen, O.; Murray, P. J.; Bartish, Igor V.; Cornelissen, J.H.C.; Dong, M.; Prinzing, A.

    2015-01-01

    Roč. 282, č. 1806 (2015), s. 1-9; no. UNSP 20150103 ISSN 1471-2954 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:67985939 Keywords : decomposition * litter degradation * phylogenetic signal of functional traits Subject RIV: EF - Botanics

  6. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus.

    Science.gov (United States)

    Larson, Eric R; Castelin, Magalie; Williams, Bronwyn W; Olden, Julian D; Abbott, Cathryn L

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  7. Is induction ability of seed germination of Phelipanche ramosa phylogenetically structured among hosts? A case study on Fabaceae species.

    Science.gov (United States)

    Perronne, Rémi; Gibot-Leclerc, Stéphanie; Dessaint, Fabrice; Reibel, Carole; Le Corre, Valérie

    2017-12-01

    Phelipanche ramosa is a major root-holoparasitic damaging weed characterized by a broad host range, including numerous Fabaceae species. In France, the agricultural threat posed by P. ramosa has increased over two decades due to the appearance of a genetically differentiated pathovar presenting a clear host specificity for oilseed rape. The new pathovar has led to a massive expansion of P. ramosa in oilseed rape fields. The germination rate of P. ramosa seeds is currently known to vary among P. ramosa pathovars and host species. However, only a few studies have investigated whether phylogenetic relatedness among potential host species is a predictor of the ability of these species to induce the seed germination of parasitic weeds by testing for phylogenetic signal. We focused on a set of 12 Fabaceae species and we assessed the rate of induction of seed germination by these species for two pathovars based on in vitro co-cultivation experiments. All Fabaceae species tested induced the germination of P. ramosa seeds. The germination rate of P. ramosa seeds varied between Fabaceae species and tribes studied, while pathovars appeared non-influential. Considering oilseed rape as a reference species, we also highlighted a significant phylogenetic signal. Phylogenetically related species therefore showed more similar rates of induction of seed germination than species drawn at random from a phylogenetic tree. In in vitro conditions, only Lotus corniculatus induced a significantly higher germination rate than oilseed rape, and could potentially be used as a catch crop after confirmation of these results under field conditions.

  8. Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes.

    Science.gov (United States)

    Wolf, P

    1997-10-01

    Inferring basal relationships among vascular plants poses a major challenge to plant systematists. The divergence events that describe these relationships occurred long ago and considerable homoplasy has since accrued for both molecular and morphological characters. A potential solution is to examine phylogenetic analyses from multiple data sets. Here I present a new source of phylogenetic data for ferns and other pteridophytes. I sequenced the chloroplast gene atpB from 23 pteridophyte taxa and used maximum parsimony to infer relationships. A 588-bp region of the gene appeared to contain a statistically significant amount of phylogenetic signal and the resulting trees were largely congruent with similar analyses of nucleotide sequences from rbcL. However, a combined analysis of atpB plus rbcL produced a better resolved tree than did either data set alone. In the shortest trees, leptosporangiate ferns formed a monophyletic group. Also, I detected a well-supported clade of Psilotaceae (Psilotum and Tmesipteris) plus Ophioglossaceae (Ophioglossum and Botrychium). The demonstrated utility of atpB suggests that sequences from this gene should play a role in phylogenetic analyses that incorporate data from chloroplast genes, nuclear genes, morphology, and fossil data.

  9. Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents.

    Science.gov (United States)

    Krasnov, Boris R; Shenbrot, Georgy I; van der Mescht, Luther; Warburton, Elizabeth M; Khokhlova, Irina S

    2018-04-12

    To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.

  10. Molecular phylogenetics of finches and sparrows: consequences of character state removal in cytochrome b sequences.

    Science.gov (United States)

    Groth, J G

    1998-12-01

    The complete mitochondrial cytochrome b genes of 53 genera of oscine passerine birds representing the major groups of finches and some allies were compared. Phylogenetic trees resulting from three levels of character partition removal (no data removed, transitions at third positions of codons removed, and all transitions removed [transversion parsimony]) were generally concordant, and all supported several basic statements regarding relationships of finches and finch-like birds, including: (1) larks (Alaudidae) show no close relationship to any finch group; (2) Peucedramus (olive warbler) is phylogenetically far removed from true wood warblers; (3) a clade consisting of fringillids, passerids, motacillids, and emberizids is supported, and this clade is characterized by evolution of a vestigial 10th wing primary; and (4) Hawaiian honeycreepers are derived from within the cardueline finches. Excluding transition substitutions at third positions of codons resulted in phylogenetic trees similar to, but with greater bootstrap nodal support than, trees derived using either all data (equally weighted) or transversion parsimony. Relative to the shortest trees obtained using all data, the topologies obtained after elimination of third-position transitions showed only slight increases in realized treelength and homoplasy. These increases were negligable compared to increases in overall nodal support; therefore, this partition removal scheme may enhance recovery of deep phylogenetic signal in protein-coding DNA datasets. Copyright 1998 Academic Press.

  11. Phylogenetic Distribution of Leaf Spectra and Optically Derived Functional Traits in the American Oaks

    Science.gov (United States)

    Cavender-Bares, J.; Meireles, J. E.; Couture, J. J.; Kaproth, M.; Townsend, P. A.

    2015-12-01

    Detecting functional traits of species, genotypes and phylogenetic lineages is critical in monitoring functional biodiversity remotely. We examined the phylogenetic distribution of leaf spectra across the American Oaks for 35 species under greenhouse conditions as well as genetic variation in leaf spectra across Central American populations of a single species grown in common gardens in Honduras. We found significant phylogenetic signal in the leaf spectra (Blomberg's K > 1.0), indicating similarity in spectra among close relatives. Across species, full range leaf spectra were used in a Partial Least Squares Discriminant Analysis (PLS-DA) that allowed species calibration (kappa statistic = 0.55). Validation of the model used to detect species (kappa statistic = 0.4) indicated reasonably good detection of individual species within the same the genus. Among four populations from Belize, Costa Rica, Honduras, and Mexico within a single species (Quercus oleoides), leaf spectra were also able to differentiate populations. Ordination of population-level data using dissimilarities of predicted foliar traits, including leaf mass per area (LMA), lignin content, fiber content, chlorophyll a+b, and C:N ratio in genotypes in either watered or unwatered conditions showed significant differentiation among populations and treatments. These results provide promise for remote detection and differentiation of plant functional traits among plant phylogenetic lineages and genotypes, even among closely related populations and species.

  12. Combining Phylogenetic and Occurrence Information for Risk Assessment of Pest and Pathogen Interactions with Host Plants

    Directory of Open Access Journals (Sweden)

    Ángel L. Robles-Fernández

    2017-08-01

    Full Text Available Phytosanitary agencies conduct plant biosecurity activities, including early detection of potential introduction pathways, to improve control and eradication of pest and pathogen incursions. For such actions, analytical tools based on solid scientific knowledge regarding plant-pest or pathogen relationships for pest risk assessment are needed. Recent evidence indicating that closely related species share a higher chance of becoming infected or attacked by pests has allowed the identification of taxa with different degrees of vulnerability. Here, we use information readily available online about pest-host interactions and their geographic distributions, in combination with host phylogenetic reconstructions, to estimate a pest-host interaction (in some cases infection index in geographic space as a more comprehensive, spatially explicit tool for risk assessment. We demonstrate this protocol using phylogenetic relationships for 20 beetle species and 235 host plant genera: first, we estimate the probability of a host sharing pests, and second, we project the index in geographic space. Overall, the predictions allow identification of the pest-host interaction type (e.g., generalist or specialist, which is largely determined by both host range and phylogenetic constraints. Furthermore, the results can be valuable in terms of identifying hotspots where pests and vulnerable hosts interact. This knowledge is useful for anticipating biological invasions or spreading of disease. We suggest that our understanding of biotic interactions will improve after combining information from multiple dimensions of biodiversity at multiple scales (e.g., phylogenetic signal and host-vector-pathogen geographic distribution.

  13. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    Science.gov (United States)

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  14. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    Directory of Open Access Journals (Sweden)

    Kodner Robin B

    2010-10-01

    Full Text Available Abstract Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service.

  15. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  16. Using tree diversity to compare phylogenetic heuristics.

    Science.gov (United States)

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-04-29

    Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.

  17. Phylogenetic and biogeographic analysis of sphaerexochine trilobites.

    Directory of Open Access Journals (Sweden)

    Curtis R Congreve

    Full Text Available BACKGROUND: Sphaerexochinae is a speciose and widely distributed group of cheirurid trilobites. Their temporal range extends from the earliest Ordovician through the Silurian, and they survived the end Ordovician mass extinction event (the second largest mass extinction in Earth history. Prior to this study, the individual evolutionary relationships within the group had yet to be determined utilizing rigorous phylogenetic methods. Understanding these evolutionary relationships is important for producing a stable classification of the group, and will be useful in elucidating the effects the end Ordovician mass extinction had on the evolutionary and biogeographic history of the group. METHODOLOGY/PRINCIPAL FINDINGS: Cladistic parsimony analysis of cheirurid trilobites assigned to the subfamily Sphaerexochinae was conducted to evaluate phylogenetic patterns and produce a hypothesis of relationship for the group. This study utilized the program TNT, and the analysis included thirty-one taxa and thirty-nine characters. The results of this analysis were then used in a Lieberman-modified Brooks Parsimony Analysis to analyze biogeographic patterns during the Ordovician-Silurian. CONCLUSIONS/SIGNIFICANCE: The genus Sphaerexochus was found to be monophyletic, consisting of two smaller clades (one composed entirely of Ordovician species and another composed of Silurian and Ordovician species. By contrast, the genus Kawina was found to be paraphyletic. It is a basal grade that also contains taxa formerly assigned to Cydonocephalus. Phylogenetic patterns suggest Sphaerexochinae is a relatively distinctive trilobite clade because it appears to have been largely unaffected by the end Ordovician mass extinction. Finally, the biogeographic analysis yields two major conclusions about Sphaerexochus biogeography: Bohemia and Avalonia were close enough during the Silurian to exchange taxa; and during the Ordovician there was dispersal between Eastern Laurentia and

  18. Polytomy identification in microbial phylogenetic reconstruction

    Directory of Open Access Journals (Sweden)

    Lin Guan

    2011-12-01

    Full Text Available Abstract Background A phylogenetic tree, showing ancestral relations among organisms, is commonly represented as a rooted tree with sets of bifurcating branches (dichotomies for simplicity, although polytomies (multifurcating branches may reflect more accurate evolutionary relationships. To represent the true evolutionary relationships, it is important to systematically identify the polytomies from a bifurcating tree and generate a taxonomy-compatible multifurcating tree. For this purpose we propose a novel approach, "PolyPhy", which would classify a set of bifurcating branches of a phylogenetic tree into a set of branches with dichotomies and polytomies by considering genome distances among genomes and tree topological properties. Results PolyPhy employs a machine learning technique, BLR (Bayesian logistic regression classifier, to identify possible bifurcating subtrees as polytomies from the trees resulted from ComPhy. Other than considering genome-scale distances between all pairs of species, PolyPhy also takes into account different properties of tree topology between dichotomy and polytomy, such as long-branch retraction and short-branch contraction, and quantifies these properties into comparable rates among different sub-branches. We extract three tree topological features, 'LR' (Leaf rate, 'IntraR' (Intra-subset branch rate and 'InterR' (Inter-subset branch rate, all of which are calculated from bifurcating tree branch sets for classification. We have achieved F-measure (balanced measure between precision and recall of 81% with about 0.9 area under the curve (AUC of ROC. Conclusions PolyPhy is a fast and robust method to identify polytomies from phylogenetic trees based on genome-wide inference of evolutionary relationships among genomes. The software package and test data can be downloaded from http://digbio.missouri.edu/ComPhy/phyloTreeBiNonBi-1.0.zip.

  19. Ecological and phylogenetic variability in the spinalis muscle of snakes.

    Science.gov (United States)

    Tingle, J L; Gartner, G E A; Jayne, B C; Garland, T

    2017-11-01

    Understanding the origin and maintenance of functionally important subordinate traits is a major goal of evolutionary physiologists and ecomorphologists. Within the confines of a limbless body plan, snakes are diverse in terms of body size and ecology, but we know little about the functional traits that underlie this diversity. We used a phylogenetically diverse group of 131 snake species to examine associations between habitat use, sidewinding locomotion and constriction behaviour with the number of body vertebrae spanned by a single segment of the spinalis muscle, with total numbers of body vertebrae used as a covariate in statistical analyses. We compared models with combinations of these predictors to determine which best fit the data among all species and for the advanced snakes only (N = 114). We used both ordinary least-squares models and phylogenetic models in which the residuals were modelled as evolving by the Ornstein-Uhlenbeck process. Snakes with greater numbers of vertebrae tended to have spinalis muscles that spanned more vertebrae. Habitat effects dominated models for analyses of all species and advanced snakes only, with the spinalis length spanning more vertebrae in arboreal species and fewer vertebrae in aquatic and burrowing species. Sidewinding specialists had shorter muscle lengths than nonspecialists. The relationship between prey constriction and spinalis length was less clear. Differences among clades were also strong when considering all species, but not for advanced snakes alone. Overall, these results suggest that muscle morphology may have played a key role in the adaptive radiation of snakes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. Constructing level-2 phylogenetic networks from triplets

    OpenAIRE

    Iersel, Leo; Keijsper, J.C.M.; Kelk, Steven; Stougie, Leen; Hagen, F.; Boekhout, T.; Vingron, M.; Wong, L.

    2009-01-01

    htmlabstractJansson and Sung showed that, given a dense set of input triplets T (representing hypotheses about the local evolutionary relationships of triplets of taxa), it is possible to determine in polynomial time whether there exists a level-1 network consistent with T, and if so to construct such a network (Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets, Theoretical Computer Science, 363, pp. 60-68 (2006)). Here we extend this work by showing that this probl...

  1. Molecular phylogenetic reconstruction of the endemic Asian salamander family Hynobiidae (Amphibia, Caudata).

    Science.gov (United States)

    Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J

    2013-01-01

    The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger

  2. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient.

    Science.gov (United States)

    Mondav, Rhiannon; McCalley, Carmody K; Hodgkins, Suzanne B; Frolking, Steve; Saleska, Scott R; Rich, Virginia I; Chanton, Jeff P; Crill, Patrick M

    2017-08-01

    Biogenic production and release of methane (CH 4 ) from thawing permafrost has the potential to be a strong source of radiative forcing. We investigated changes in the active layer microbial community of three sites representative of distinct permafrost thaw stages at a palsa mire in northern Sweden. The palsa site (intact permafrost and low radiative forcing signature) had a phylogenetically clustered community dominated by Acidobacteria and Proteobacteria. The bog (thawing permafrost and low radiative forcing signature) had lower alpha diversity and midrange phylogenetic clustering, characteristic of ecosystem disturbance affecting habitat filtering. Hydrogenotrophic methanogens and Acidobacteria dominated the bog shifting from palsa-like to fen-like at the waterline. The fen (no underlying permafrost, high radiative forcing signature) had the highest alpha, beta and phylogenetic diversity, was dominated by Proteobacteria and Euryarchaeota and was significantly enriched in methanogens. The Mire microbial network was modular with module cores consisting of clusters of Acidobacteria, Euryarchaeota or Xanthomonodales. Loss of underlying permafrost with associated hydrological shifts correlated to changes in microbial composition, alpha, beta and phylogenetic diversity associated with a higher radiative forcing signature. These results support the complex role of microbial interactions in mediating carbon budget changes and climate feedback in response to climate forcing. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    Science.gov (United States)

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  4. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    Science.gov (United States)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  5. Evolution of feeding specialization in Tanganyikan scale-eating cichlids: a molecular phylogenetic approach

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-10-01

    Full Text Available Abstract Background Cichlid fishes in Lake Tanganyika exhibit remarkable diversity in their feeding habits. Among them, seven species in the genus Perissodus are known for their unique feeding habit of scale eating with specialized feeding morphology and behaviour. Although the origin of the scale-eating habit has long been questioned, its evolutionary process is still unknown. In the present study, we conducted interspecific phylogenetic analyses for all nine known species in the tribe Perissodini (seven Perissodus and two Haplotaxodon species using amplified fragment length polymorphism (AFLP analyses of the nuclear DNA. On the basis of the resultant phylogenetic frameworks, the evolution of their feeding habits was traced using data from analyses of stomach contents, habitat depths, and observations of oral jaw tooth morphology. Results AFLP analyses resolved the phylogenetic relationships of the Perissodini, strongly supporting monophyly for each species. The character reconstruction of feeding ecology based on the AFLP tree suggested that scale eating evolved from general carnivorous feeding to highly specialized scale eating. Furthermore, scale eating is suggested to have evolved in deepwater habitats in the lake. Oral jaw tooth shape was also estimated to have diverged in step with specialization for scale eating. Conclusion The present evolutionary analyses of feeding ecology and morphology based on the obtained phylogenetic tree demonstrate for the first time the evolutionary process leading from generalised to highly specialized scale eating, with diversification in feeding morphology and behaviour among species.

  6. Phylogenetic relationships of the freshwater alga Boldia erythrosiphon (Compsopogonales, Rhodophyta) based on 18S rRNA gene sequences

    NARCIS (Netherlands)

    Holton, R.W; Boele-Bos, S.A.; Stam, W.T.

    The nuclear small-subunit ribosomal DNA sequence from the freshwater red alga Boldia erythrosiphon Herndon emend Howard et Parker was determined. Phylogenetic analysis confirms the positioning of this species within the bangiophycidean order of the Compsopogonales. The results strongly suggest that

  7. Phylogenetic Analysis of Staphylococcus aureus CC398 Reveals a Sub-Lineage Epidemiologically Associated with Infections in Horses

    DEFF Research Database (Denmark)

    Abdelbary, Mohamed M. H.; Wittenberg, Anne; Cuny, Christiane

    2014-01-01

    -allelic polymorphisms, and phylogenetic analyses revealed that an epidemic sub-clone within CC398 (dubbed 'clade (C)') has spread within and between equine hospitals, where it causes nosocomial infections in horses and colonises the personnel. While clade (C) was strongly associated with S. aureus from horses...

  8. Extracting the evolutionary signal from genomes.

    NARCIS (Netherlands)

    Dutilh, B.E.

    2007-01-01

    Several methods to analyze aspects of evolution are developed, that depend on the availability of complete genomes. While I consistently find a phylogenetic signal using many approaches, a question that is winning concern is how these evolutionary relationships should be interpreted. Since Darwin’s

  9. Epitope discovery with phylogenetic hidden Markov models.

    LENUS (Irish Health Repository)

    Lacerda, Miguel

    2010-05-01

    Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.

  10. A phylogenetic blueprint for a modern whale.

    Science.gov (United States)

    Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R

    2013-02-01

    The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Phylogenetic convolutional neural networks in metagenomics.

    Science.gov (United States)

    Fioravanti, Diego; Giarratano, Ylenia; Maggio, Valerio; Agostinelli, Claudio; Chierici, Marco; Jurman, Giuseppe; Furlanello, Cesare

    2018-03-08

    Convolutional Neural Networks can be effectively used only when data are endowed with an intrinsic concept of neighbourhood in the input space, as is the case of pixels in images. We introduce here Ph-CNN, a novel deep learning architecture for the classification of metagenomics data based on the Convolutional Neural Networks, with the patristic distance defined on the phylogenetic tree being used as the proximity measure. The patristic distance between variables is used together with a sparsified version of MultiDimensional Scaling to embed the phylogenetic tree in a Euclidean space. Ph-CNN is tested with a domain adaptation approach on synthetic data and on a metagenomics collection of gut microbiota of 38 healthy subjects and 222 Inflammatory Bowel Disease patients, divided in 6 subclasses. Classification performance is promising when compared to classical algorithms like Support Vector Machines and Random Forest and a baseline fully connected neural network, e.g. the Multi-Layer Perceptron. Ph-CNN represents a novel deep learning approach for the classification of metagenomics data. Operatively, the algorithm has been implemented as a custom Keras layer taking care of passing to the following convolutional layer not only the data but also the ranked list of neighbourhood of each sample, thus mimicking the case of image data, transparently to the user.

  12. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  13. A Distance Measure for Genome Phylogenetic Analysis

    Science.gov (United States)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  14. Phylogenetically-informed priorities for amphibian conservation.

    Science.gov (United States)

    Isaac, Nick J B; Redding, David W; Meredith, Helen M; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  15. Phylogenetically-informed priorities for amphibian conservation.

    Directory of Open Access Journals (Sweden)

    Nick J B Isaac

    Full Text Available The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  16. Phylogenetic position of the bee genera Ancyla and Tarsalia (Hymenoptera: Apidae): a remarkable base compositional bias and an early Paleogene geodispersal from North America to the Old World.

    Science.gov (United States)

    Praz, Christophe J; Packer, Laurence

    2014-12-01

    We address the phylogenetic position of the bee genera Tarsalia and Ancyla (currently forming the tribe Ancylaini) on the basis of morphological, molecular and combined data. We assembled a matrix of 309 morphological characters and 5246 aligned nucleotide positions from six nuclear genes (28S, EF-1a, wingless, POL2, LW-Rhodopsin, NAK). In addition to both constituent genera of Ancylaini, we include all three subtribes of the Eucerini as well as a large number of other tribes from the "eucerine line". The morphological data suggest Ancyla to be sister to Tarsalia+Eucerini and analyses of the entire molecular dataset suggest Tarsalia to be sister to Ancyla+Eucerini. However, analyses of the combined dataset suggests the Ancylaini to be monophyletic. We address possible bias within the molecular data and show that the base composition of two markers (EF-1a and NAK) is significantly heterogeneous among taxa and that this heterogeneity is strong enough to overcome the phylogenetic signal from the other markers. Analyses of a molecular matrix where the heterogeneous partitions have been RY-recoded yield trees that are better resolved and have higher nodal support values than those recovered in analyses of the non-recoded matrix, and strongly suggest the Ancylaini to be a monophyletic sister group to the Eucerini. A dated phylogeny and ancestral range reconstructions suggest that the common ancestor of the Ancylaini reached the Old World from the New World most probably via the Thulean Land Bridge in a time window between 69 and 47 mya, a period that includes the Early Eocene Climatic Optimum. No further exchanges between the New World and the Old World are implied by our data until the period between 22 mya and 13.9 mya. These more recent faunal exchanges probably involved geodispersal over the Bering Land Bridge by less thermophilic lineages. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Fruits and frugivores of the Brazilian Cerrado: ecological and phylogenetic considerations

    Directory of Open Access Journals (Sweden)

    Marcelo Kuhlmann

    Full Text Available ABSTRACT Knowing the morphological and phylogenetic patterns of fruits of a plant community may elucidate plant-frugivore interactions, and analysis of dispersal syndromes is a practical approach to understanding these mutualisms. We investigated different zoochorous fruits and frugivorous animals among Cerrado formations (forest, savanna and grassland, mapped dispersal syndromes on a Cerrado angiosperm phylogeny and tested for phylogenetic signal. For a core region in Cerrado, we found that, among almost a thousand fruit species and 258 fruit-eating vertebrates, 60% of the fruits had an ornithochorous syndrome and that 70% of the frugivores were birds. Most fruit and frugivorous species (~80% inhabit forest formations, but many of them also occurred in more than one Cerrado formation. The zoochorous syndromes were found to have little phylogenetic signal, with many plant families exhibiting more than one fruit syndrome, and with ornithochory being widely distributed throughout the phylogeny. Our results suggest that plant-frugivore interactions tend to be evolutionarily labile in this Neotropical region, although birds have had a prominent role in fruit evolution. Furthermore, we found that all three Cerrado formations seem to be interrelated in maintaining functional stability of the plant-frugivore mutualisms in the Cerrado biome.

  18. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  19. Phylogenetic community structure: temporal variation in fish assemblage

    OpenAIRE

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-01-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales...

  20. treespace: Statistical exploration of landscapes of phylogenetic trees.

    Science.gov (United States)

    Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline

    2017-11-01

    The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  1. A program for verification of phylogenetic network models.

    Science.gov (United States)

    Gunawan, Andreas D M; Lu, Bingxin; Zhang, Louxin

    2016-09-01

    Genetic material is transferred in a non-reproductive manner across species more frequently than commonly thought, particularly in the bacteria kingdom. On one hand, extant genomes are thus more properly considered as a fusion product of both reproductive and non-reproductive genetic transfers. This has motivated researchers to adopt phylogenetic networks to study genome evolution. On the other hand, a gene's evolution is usually tree-like and has been studied for over half a century. Accordingly, the relationships between phylogenetic trees and networks are the basis for the reconstruction and verification of phylogenetic networks. One important problem in verifying a network model is determining whether or not certain existing phylogenetic trees are displayed in a phylogenetic network. This problem is formally called the tree containment problem. It is NP-complete even for binary phylogenetic networks. We design an exponential time but efficient method for determining whether or not a phylogenetic tree is displayed in an arbitrary phylogenetic network. It is developed on the basis of the so-called reticulation-visible property of phylogenetic networks. A C-program is available for download on http://www.math.nus.edu.sg/∼matzlx/tcp_package matzlx@nus.edu.sg Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Is It Possible to Predict Strong Earthquakes?

    Science.gov (United States)

    Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.

    2015-07-01

    The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.

  3. Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.

    Science.gov (United States)

    Altaba, Cristian R

    2009-01-01

    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts

  4. A contribution to the understanding of phylogenetic relationships among species of the genus Octopus (Octopodidae: Cephalopoda

    Directory of Open Access Journals (Sweden)

    María Soledad Acosta-Jofré

    2011-11-01

    Full Text Available Many species of the genus Octopus are important resources for fisheries worldwide. Its approximately 200 species show a strong similarity in structural morphology and a wide diversity in skin coloration and patterning, behaviour and life strategies that have hampered the study of phylogenetic relationships. We used a Bayesian approach to estimate as yet unknown phylogenetic relationships among O. tehuelchus from the southwestern Atlantic, new specimens of O. mimus (Chile and Peru and other Octopus species, and used Bayes factors to test phylogenetic hypotheses. O. tehuelchus was more closely related to the genera Callistoctopus, Grimpella and Macroctopus than to Octopus, and therefore its generic placement may need a revision. O. vulgaris specimens from Costa Rica (Pacific Ocean and O. oculifer grouped with O. mimus. Bayes factors showed positive evidence in favor of this grouping and therefore these individuals could have been misidentified, being in fact O. mimus. O. vulgaris specimens from the Costa Rican Caribbean were more related to O. mimus than to other O. vulgaris and could represent a cryptic species. The remaining O. vulgaris clustered with O. tetricus. Bayes factors found strong evidence against the monophyly of O. vulgaris as currently defined, giving statistical support to the monophyly of an O. vulgaris s. str. + O. tetricus group proposed previously by other authors.

  5. Phylogenetic utility of ribosomal genes for reconstructing the phylogeny of five Chinese satyrine tribes (Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    Mingsheng Yang

    2015-03-01

    Full Text Available Satyrinae is one of twelve subfamilies of the butterfly family Nymphalidae, which currently includes nine tribes. However, phylogenetic relationships among them remain largely unresolved, though different researches have been conducted based on both morphological and molecular data. However, ribosomal genes have never been used in tribe level phylogenetic analyses of Satyrinae. In this study we investigate for the first time the phylogenetic relationships among the tribes Elymniini, Amathusiini, Zetherini and Melanitini which are indicated to be a monophyletic group, and the Satyrini, using two ribosomal genes (28s rDNA and 16s rDNA and four protein-coding genes (EF-1α, COI, COII and Cytb. We mainly aim to assess the phylogenetic informativeness of the ribosomal genes as well as clarify the relationships among different tribes. Our results show the two ribosomal genes generally have the same high phylogenetic informativeness compared with EF-1α; and we infer the 28s rDNA would show better informativeness if the 28s rDNA sequence data for each sampling taxon are obtained in this study. The placement of the monotypic genus Callarge Leech in Zetherini is confirmed for the first time based on molecular evidence. In addition, our maximum likelihood (ML and Bayesian inference (BI trees consistently show that the involved Satyrinae including the Amathusiini is monophyletic with high support values. Although the relationships among the five tribes are identical among ML and BI analyses and are mostly strongly-supported in BI analysis, those in ML analysis are lowly- or moderately- supported. Therefore, the relationships among the related five tribes recovered herein need further verification based on more sampling taxa.

  6. Relation between flower head traits and florivory in Asteraceae: a phylogenetically controlled approach.

    Science.gov (United States)

    Oguro, Michio; Sakai, Satoki

    2015-03-01

    • While much research has examined the relation between leaf traits and herbivory, very little is known about the interaction between floral traits, particularly biochemical traits, and florivory. We investigated patterns between floral traits and florivory across multiple species using phylogenetic comparative approaches to enhance our understanding of the evolution of plant-florivore interactions.• The relation between the intensity of florivory and five biochemical traits (concentrations of carbon, nitrogen, phosphorus, water, and total phenolics) and two morphological traits (diameter and number of flower heads) were investigated in wild individuals of 18 native species of Asteraceae. The phylogenetic signals in the morphological traits and intensity of florivory were also tested.• We found that species with higher nitrogen, water, and total phenolics and lower phosphorus concentrations in the flower heads and species with a large number and diameter of flower heads tended to be attacked by florivores. In addition, we found significant phylogenetic signals in florivory and morphological traits.• Our results clearly show that biochemical traits also play important roles in plant-florivore interactions, as previously shown in plant-leaf herbivore interactions. The positive relationship between florivory and total phenolics implies that phenolic compounds in flower heads may not act as a defense in the species. In addition, the observed pattern of signals in florivory might not be solely explained by the signals of the measured traits and other plant traits may also play significant roles in plant-florivore interaction in these species. © 2015 Botanical Society of America, Inc.

  7. The rhabdoviruses: biodiversity, phylogenetics, and evolution.

    Science.gov (United States)

    Kuzmin, I V; Novella, I S; Dietzgen, R G; Padhi, A; Rupprecht, C E

    2009-07-01

    Rhabdoviruses (family Rhabdoviridae) include a diversity of important pathogens of animals and plants. They share morphology and genome organization. The understanding of rhabdovirus phylogeny, ecology and evolution has progressed greatly during the last 30 years, due to enhanced surveillance and improved methodologies of molecular characterization. Along with six established genera, several phylogenetic groups at different levels were described within the Rhabdoviridae. However, comparative relationships between viral phylogeny and taxonomy remains incomplete, with multiple representatives awaiting further genetic characterization. The same is true for rhabdovirus evolution. To date, rather simplistic molecular clock models only partially describe the evolutionary dynamics of postulated viral lineages. Ongoing progress in viral evolutionary and ecological investigations will provide the platform for future studies of this diverse family.

  8. Inferring Phylogenetic Networks from Gene Order Data

    Directory of Open Access Journals (Sweden)

    Alexey Anatolievich Morozov

    2013-01-01

    Full Text Available Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary, sets of trees, and distance matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different real gene order datasets. All proposed methods are based on intermediate data, which can be generated from genome structures under study and used as an input for network construction algorithms. Three intermediates are used: set of jackknife trees, distance matrix, and binary encoding. According to simulations and case studies, the best intermediates are jackknife trees and distance matrix (when used with Neighbor-Net algorithm. Binary encoding can also be useful, but only when the methods mentioned above cannot be used.

  9. Phylogenetic Analyses of Quasars and Galaxies

    Science.gov (United States)

    Fraix-Burnet, Didier; D'Onofrio, Mauro; Marziani, Paola

    2017-10-01

    Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.

  10. Phylogenetic classification of the world's tropical forests

    DEFF Research Database (Denmark)

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodriguez, Victor

    2018-01-01

    -Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between......Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern...... phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal...

  11. Phylogenetic perspectives on reef fish functional traits.

    Science.gov (United States)

    Floeter, Sergio R; Bender, Mariana G; Siqueira, Alexandre C; Cowman, Peter F

    2018-02-01

    Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait-environment interactions as well as by species and trait-trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a

  12. Forensic application of phylogenetic analyses - Exploration of suspected HIV-1 transmission case.

    Science.gov (United States)

    Siljic, Marina; Salemovic, Dubravka; Cirkovic, Valentina; Pesic-Pavlovic, Ivana; Ranin, Jovan; Todorovic, Marija; Nikolic, Slobodan; Jevtovic, Djordje; Stanojevic, Maja

    2017-03-01

    Transmission of human immunodeficiency virus (HIV) between individuals may have important legal implications and therefore may come to require forensic investigation based upon phylogenetic analysis. In criminal trials results of phylogenetic analyses have been used as evidence of responsibility for HIV transmission. In Serbia, as in many countries worldwide, exposure and deliberate transmission of HIV are criminalized. We present the results of applying state of the art phylogenetic analyses, based on pol and env genetic sequences, in exploration of suspected HIV transmission among three subjects: a man and two women, with presumed assumption of transmission direction from one woman to a man. Phylogenetic methods included relevant neighbor-joining (NJ), maximum likelihood (ML) and Bayesian methods of phylogenetic trees reconstruction and hypothesis testing, that has been shown to be the most sensitive for the reconstruction of epidemiological links mostly from sexually infected individuals. End-point limiting-dilution PCR (EPLD-PCR) assay, generating the minimum of 10 sequences per genetic region per subject, was performed to assess HIV quasispecies distribution and to explore the direction of HIV transmission between three subjects. Phylogenetic analysis revealed that the viral sequences from the three subjects were more genetically related to each other than to other strains circulating in the same area with the similar epidemiological profile, forming strongly supported transmission chain, which could be in favour of a priori hypothesis of one of the women infecting the man. However, in the EPLD based phylogenetic trees for both pol and env genetic region, viral sequences of one subject (man) were paraphyletic to those of two other subjects (women), implying the direction of transmission opposite to the a priori assumption. The dated tree in our analysis confirmed the clustering pattern of query sequences. Still, in the context of unsampled sequences and

  13. Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree

    Science.gov (United States)

    Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca

    2017-04-01

    The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.

  14. Equality of Shapley value and fair proportion index in phylogenetic trees.

    Science.gov (United States)

    Fuchs, Michael; Jin, Emma Yu

    2015-11-01

    The Shapley value and the fair proportion index of phylogenetic trees have been introduced recently for the purpose of making conservation decisions in genetics. Moreover, also very recently, Hartmann (J Math Biol 67:1163-1170, 2013) has presented data which shows that there is a strong correlation between a slightly modified version of the Shapley value (which we call the modified Shapley value) and the fair proportion index. He gave an explanation of this correlation by showing that the contribution of both indices to an edge of the tree becomes identical as the number of taxa tends to infinity. In this note, we show that the Shapley value and the fair proportion index are in fact the same. Moreover, we also consider the modified Shapley value and show that its covariance with the fair proportion index in random phylogenetic trees under the Yule-Harding model and uniform model is indeed close to one.

  15. Macroevolution of life-history traits in passerine birds: adaptation and phylogenetic inertia.

    Science.gov (United States)

    Pienaar, Jason; Ilany, Amiyaal; Geffen, Eli; Yom-Tov, Yoram

    2013-05-01

    We used a recent passerine phylogeny and comparative method to evaluate the macroevolution of body and egg mass, incubation and fledging periods, time to independence and time with parents of the main passerine lineages. We hypothesised that passerine reproductive traits are affected by adaptation to both past and present environmental factors and phenotypic attributes such as body mass. Our results suggest that the evolution of body and egg mass, time to independence, incubation and fledging times are affected by strong phylogenetic inertia and that these breeding traits are all affected by body mass. Time with parents, where major lineages exhibit their own fixed optima and body mass does not have an effect, and clutch size which is affected by body mass and additionally by climate regimes, do not exhibit any phylogenetic inertia. © 2013 Blackwell Publishing Ltd/CNRS.

  16. The phylogenetic relationships of endemic Australasian trichostrongylin families (Nematoda: Strongylida) parasitic in marsupials and monotremes.

    Science.gov (United States)

    Chilton, Neil B; Huby-Chilton, Florence; Koehler, Anson V; Gasser, Robin B; Beveridge, Ian

    2015-10-01

    The phylogenetic relationships of the endemic (or largely endemic) Australasian trichostrongylin nematode families Herpetostrongylidae, Mackerrastrongylidae and Nicollinidae as well as endemic trichostrongylin nematodes currently placed in the families Trichostrongylidae and Molineidae were examined using the complete large subunit (28S) ribosomal RNA gene. The Herpetostrongylinae proved to be monophyletic. However, representatives of the Nicollinidae nested with the Herpetostrongylinae. The Mackerrastrongylidae was also a monophyletic group and included Peramelistrongylus, currently classified within the Trichostrongylidae. The Globocephaloidinae, currently considered to be a subfamily of the Herpetostrongylidae, was excluded from the family in the current analysis. Ollulanus and Libyostrongylus, included for the first time in a molecular phylogenetic analysis, were placed within the Trichostrongylidae. This study provided strong support for the Herpetostrongylidae (including within it the Nicollinidae, but excluding the Globocephaloidinae) and the Mackerrastrongylidae as monophyletic assemblages. Additional studies are required to resolve the relationships of the remaining endemic Australasian trichostrongylin genera.

  17. BEASTling: A software tool for linguistic phylogenetics using BEAST 2.

    Directory of Open Access Journals (Sweden)

    Luke Maurits

    Full Text Available We present a new open source software tool called BEASTling, designed to simplify the preparation of Bayesian phylogenetic analyses of linguistic data using the BEAST 2 platform. BEASTling transforms comparatively short and human-readable configuration files into the XML files used by BEAST to specify analyses. By taking advantage of Creative Commons-licensed data from the Glottolog language catalog, BEASTling allows the user to conveniently filter datasets using names for recognised language families, to impose monophyly constraints so that inferred language trees are backward compatible with Glottolog classifications, or to assign geographic location data to languages for phylogeographic analyses. Support for the emerging cross-linguistic linked data format (CLDF permits easy incorporation of data published in cross-linguistic linked databases into analyses. BEASTling is intended to make the power of Bayesian analysis more accessible to historical linguists without strong programming backgrounds, in the hopes of encouraging communication and collaboration between those developing computational models of language evolution (who are typically not linguists and relevant domain experts.

  18. BEASTling: A software tool for linguistic phylogenetics using BEAST 2

    Science.gov (United States)

    Forkel, Robert; Kaiping, Gereon A.; Atkinson, Quentin D.

    2017-01-01

    We present a new open source software tool called BEASTling, designed to simplify the preparation of Bayesian phylogenetic analyses of linguistic data using the BEAST 2 platform. BEASTling transforms comparatively short and human-readable configuration files into the XML files used by BEAST to specify analyses. By taking advantage of Creative Commons-licensed data from the Glottolog language catalog, BEASTling allows the user to conveniently filter datasets using names for recognised language families, to impose monophyly constraints so that inferred language trees are backward compatible with Glottolog classifications, or to assign geographic location data to languages for phylogeographic analyses. Support for the emerging cross-linguistic linked data format (CLDF) permits easy incorporation of data published in cross-linguistic linked databases into analyses. BEASTling is intended to make the power of Bayesian analysis more accessible to historical linguists without strong programming backgrounds, in the hopes of encouraging communication and collaboration between those developing computational models of language evolution (who are typically not linguists) and relevant domain experts. PMID:28796784

  19. A phylogenetic delimitation of the "Sphagnum subsecundum complex" (Sphagnaceae, Bryophyta).

    Science.gov (United States)

    Shaw, A Jonathan; Boles, Sandra; Shaw, Blanka

    2008-06-01

    A seemingly obvious but sometimes overlooked premise of any evolutionary analysis is delineating the group of taxa under study. This is especially problematic in some bryophyte groups because of morphological simplicity and convergence. This research applies information from nucleotide sequences for eight plastid and nuclear loci to delineate a group of northern hemisphere peat moss species, the so-called Sphagnum subsecundum complex, which includes species known to be gametophytically haploid or diploid (i.e., sporophytically diploid-tetraploid). Despite the fact that S. subsecundum and several species in the complex have been attributed disjunct ranges that include all major continents, phylogenetic analyses suggest that the group is actually restricted to Europe and eastern North America. Plants from western North America, from California to Alaska, which are morphologically similar to species of the S. subsecundum complex in eastern N. America and Europe, actually belong to a different deep clade within Sphagnum section Subsecunda. One species often considered part of the S. subsecundum complex, S. contortum, likely has a reticulate history involving species in the two deepest clades within section Subsecunda. Nucleotide sequences have a strong geographic structure across the section Subsecunda, but shallow tip clades suggest repeated long-distance dispersal in the section as well.

  20. Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood

    NARCIS (Netherlands)

    Yguel, B.; Courty, P.E.; Jactel, H.; Pan, X.; Butenschoen, O.; Murray, P.J.; Prinzing, A.

    2014-01-01

    Host-plants may rarely leave their ancestral niche and in which case they tend to be surrounded by phylogenetically distant neighbours. Phylogenetically isolated host-plants might share few mutualists with their neighbours and might suffer from a decrease in mutualist support. In addition host

  1. Phylogenetic relationships of the lancelets of the genus ...

    African Journals Online (AJOL)

    phylogenetic relationships of the Branchiostoma lancelets from South (Xiamen) and North (Qingdao and Rizhao) China, and phylogenetic trees constructed also included the existing data from Japanese waters. The genetic distances of the lancelets between South and North China averaged 0.19, 0.21, and 0.17 based on ...

  2. Comparative phylogenetic analysis of intergenic spacers and small ...

    African Journals Online (AJOL)

    The phylogenetic analysis of test isolates included assessment of variation in sequences and length of IGS and SSU-rRNA genes with reference to 16 different microsporidian sequences. The results proved that IGS sequences have more variation than SSU-rRNA gene sequences. Analysis of phylogenetic trees reveal that ...

  3. Conus pennaceus : a phylogenetic analysis of the Mozambican ...

    African Journals Online (AJOL)

    The genus Conus has over 500 species and is the most species-rich taxon of marine invertebrates. Based on mitochondrial DNA, this study focuses on the phylogenetics of Conus, particularly the pennaceus complex collected along the Mozambican coast. Phylogenetic trees based on both the 16S and the 12S ribosomal ...

  4. Orthology prediction at scalable resolution by phylogenetic tree analysis

    NARCIS (Netherlands)

    Heijden, R.T.J.M. van der; Snel, B.; Noort, V. van; Huynen, M.A.

    2007-01-01

    BACKGROUND: Orthology is one of the cornerstones of gene function prediction. Dividing the phylogenetic relations between genes into either orthologs or paralogs is however an oversimplification. Already in two-species gene-phylogenies, the complicated, non-transitive nature of phylogenetic

  5. Increased phylogenetic resolution using target enrichment in Rubus

    Science.gov (United States)

    Phylogenetic analyses in Rubus L. have been challenging due to polyploidy, hybridization, and apomixis within the genus. Wide morphological diversity occurs within and between species, contributing to challenges at lower and higher systematic levels. Phylogenetic inferences to date have been based o...

  6. Evolution of the brain and phylogenetic development of Mrican ...

    African Journals Online (AJOL)

    Evolution of the brain and phylogenetic development of Mrican Bovidae. Henriette Oboussier. Zoological Institute and Museum, University of Hamburg. Evidence drawn from the study of 270 brains of 54 species and subspecies of African Bovidae makes it possible to base phylogenetic relationships on the similarities in the ...

  7. Phylogenetic relationships within and among Brassica species from ...

    African Journals Online (AJOL)

    Consequently, two potentially susceptible B. napus accessions were identified. The high polymorphic information content (PIC) and number of phylogenetically informative bands established RAPD as a useful tool for phylogenetic reconstruction, quantification of genetic diversity for conservation, cultivar classification and ...

  8. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    Science.gov (United States)

    Dees, Jonathan; Momsen, Jennifer L.; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa…

  9. PhyDesign: an online application for profiling phylogenetic informativeness

    Directory of Open Access Journals (Sweden)

    Townsend Jeffrey P

    2011-05-01

    Full Text Available Abstract Background The rapid increase in number of sequenced genomes for species across of the tree of life is revealing a diverse suite of orthologous genes that could potentially be employed to inform molecular phylogenetic studies that encompass broader taxonomic sampling. Optimal usage of this diversity of loci requires user-friendly tools to facilitate widespread cost-effective locus prioritization for phylogenetic sampling. The Townsend (2007 phylogenetic informativeness provides a unique empirical metric for guiding marker selection. However, no software or automated methodology to evaluate sequence alignments and estimate the phylogenetic informativeness metric has been available. Results Here, we present PhyDesign, a platform-independent online application that implements the Townsend (2007 phylogenetic informativeness analysis, providing a quantitative prediction of the utility of loci to solve specific phylogenetic questions. An easy-to-use interface facilitates uploading of alignments and ultrametric trees to calculate and depict profiles of informativeness over specified time ranges, and provides rankings of locus prioritization for epochs of interest. Conclusions By providing these profiles, PhyDesign facilitates locus prioritization increasing the efficiency of sequencing for phylogenetic purposes compared to traditional studies with more laborious and low capacity screening methods, as well as increasing the accuracy of phylogenetic studies. Together with a manual and sample files, the application is freely accessible at http://phydesign.townsend.yale.edu.

  10. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  11. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  12. Different relationships between temporal phylogenetic turnover and phylogenetic similarity and in two forests were detected by a new null model.

    Science.gov (United States)

    Huang, Jian-Xiong; Zhang, Jian; Shen, Yong; Lian, Ju-yu; Cao, Hong-lin; Ye, Wan-hui; Wu, Lin-fang; Bin, Yue

    2014-01-01

    Ecologists have been monitoring community dynamics with the purpose of understanding the rates and causes of community change. However, there is a lack of monitoring of community dynamics from the perspective of phylogeny. We attempted to understand temporal phylogenetic turnover in a 50 ha tropical forest (Barro Colorado Island, BCI) and a 20 ha subtropical forest (Dinghushan in southern China, DHS). To obtain temporal phylogenetic turnover under random conditions, two null models were used. The first shuffled names of species that are widely used in community phylogenetic analyses. The second simulated demographic processes with careful consideration on the variation in dispersal ability among species and the variations in mortality both among species and among size classes. With the two models, we tested the relationships between temporal phylogenetic turnover and phylogenetic similarity at different spatial scales in the two forests. Results were more consistent with previous findings using the second null model suggesting that the second null model is more appropriate for our purposes. With the second null model, a significantly positive relationship was detected between phylogenetic turnover and phylogenetic similarity in BCI at a 10 m×10 m scale, potentially indicating phylogenetic density dependence. This relationship in DHS was significantly negative at three of five spatial scales. This could indicate abiotic filtering processes for community assembly. Using variation partitioning, we found phylogenetic similarity contributed to variation in temporal phylogenetic turnover in the DHS plot but not in BCI plot. The mechanisms for community assembly in BCI and DHS vary from phylogenetic perspective. Only the second null model detected this difference indicating the importance of choosing a proper null model.

  13. Audibility of modulation noise in stationary signals

    NARCIS (Netherlands)

    Neelen, J.J.M.

    1970-01-01

    Recordings of an acoustic signal on magnetic tape often show noise, which may be divided into two main classes: additive noise and multiplicative noise. A characteristic of the latter is that it is weak with weak signals and strong with strong signals. This modulation noise has been subjected to a

  14. Open Reading Frame Phylogenetic Analysis on the Cloud

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus.

  15. New weighting methods for phylogenetic tree reconstruction using multiple loci.

    Science.gov (United States)

    Misawa, Kazuharu; Tajima, Fumio

    2012-08-01

    Efficient determination of evolutionary distances is important for the correct reconstruction of phylogenetic trees. The performance of the pooled distance required for reconstructing a phylogenetic tree can be improved by applying large weights to appropriate distances for reconstructing phylogenetic trees and small weights to inappropriate distances. We developed two weighting methods, the modified Tajima-Takezaki method and the modified least-squares method, for reconstructing phylogenetic trees from multiple loci. By computer simulations, we found that both of the new methods were more efficient in reconstructing correct topologies than the no-weight method. Hence, we reconstructed hominoid phylogenetic trees from mitochondrial DNA using our new methods, and found that the levels of bootstrap support were significantly increased by the modified Tajima-Takezaki and by the modified least-squares method.

  16. Visualising very large phylogenetic trees in three dimensional hyperbolic space

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2004-04-01

    Full Text Available Abstract Background Common existing phylogenetic tree visualisation tools are not able to display readable trees with more than a few thousand nodes. These existing methodologies are based in two dimensional space. Results We introduce the idea of visualising phylogenetic trees in three dimensional hyperbolic space with the Walrus graph visualisation tool and have developed a conversion tool that enables the conversion of standard phylogenetic tree formats to Walrus' format. With Walrus, it becomes possible to visualise and navigate phylogenetic trees with more than 100,000 nodes. Conclusion Walrus enables desktop visualisation of very large phylogenetic trees in 3 dimensional hyperbolic space. This application is potentially useful for visualisation of the tree of life and for functional genomics derivatives, like The Adaptive Evolution Database (TAED.

  17. Strong piezoelectricity in bioinspired peptide nanotubes.

    Science.gov (United States)

    Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil

    2010-02-23

    We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.

  18. Strong signatures of right-handed compositeness

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [INFN, Sesto Fiorentino, Firenze (Italy); Sanz, Veronica [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Vries, Maikel de; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multi-jet signals.

  19. Short proofs of strong normalization

    OpenAIRE

    Wojdyga, Aleksander

    2008-01-01

    This paper presents simple, syntactic strong normalization proofs for the simply-typed lambda-calculus and the polymorphic lambda-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types to systems, for which strong normalization property is known.

  20. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  1. ATP signals

    DEFF Research Database (Denmark)

    Novak, Ivana

    2016-01-01

    The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas......The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas...

  2. Atelinae phylogenetic relationships: the trichotomy revived?

    Science.gov (United States)

    Collins, A C

    2004-08-01

    This research examines phylogenetic relationships between members of the Atelinae subfamily (Alouatta, Ateles, Brachyteles, and Lagothrix), based on analysis of three genetic regions. Two loci, cytochrome c oxidase subunit II (COII) and the hypervariable I portion of the control region, are part of the mitochondrial genome. The other is a single-copy nuclear gene, Aldolase A Intron V. Analysis of these genetic regions provides support for tribe Alouattini containing the Alouatta species, while tribe Atelini contains the other three genera. However, these three genetic regions produce conflicting results for relationships among tribe Atelini members. Previous genetic studies supported grouping Brachyteles with Lagothrix, leaving Ateles in a separate subclade. The present data sets vary based on the genetic region analyzed and method of analysis suggesting all possible cladistic relationships. These results are more consistent with investigations of morphology and behavior among these primates. The primary cause of discrepancy between this study and previous genetic studies is postulated to reside in increased sampling in the present study of genetic variation among members of the Atelinae, specifically Ateles. The present study utilized samples of Ateles from all postulated species for this genetically variable primate, while previous studies used only one or two species of Ateles. This paper demonstrates that shifting relationships are produced when different species of Ateles are used to reconstruct phylogenies. This research concludes that a trichotomy should still be supported between members of tribe Atelini until further analyses, which include additional Atelinae haplotypes are conducted. Copyright 2003 Wiley-Liss, Inc.

  3. Phylogenetic Analyses of Quasars and Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Fraix-Burnet, Didier [University Grenoble Alpes, CNRS, IPAG, Grenoble (France); D' Onofrio, Mauro [Osservatorio Astronomico di Padova (INAF), Padua (Italy); Marziani, Paola, E-mail: didier.fraix-burnet@univ-grenoble-alpes.fr [Dipartimento di Fisica e Astronomia, Università di Padova, Padua (Italy)

    2017-10-10

    Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z < 0.7) which offer a satisfactory coverage of the Eigenvector 1-derived main sequence. Cladistics is not only able to group sources radiating at higher Eddington ratios, to separate radio-quiet (RQ) and radio-loud (RL) quasars and properly distinguishes core-dominated and lobe-dominated quasars, but it suggests a black hole mass threshold for powerful radio emission as already proposed elsewhere. An interesting interpretation from this work is that the phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1,500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.

  4. Phylogenetic classification of the world's tropical forests.

    Science.gov (United States)

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  5. Recursive algorithms for phylogenetic tree counting.

    Science.gov (United States)

    Gavryushkina, Alexandra; Welch, David; Drummond, Alexei J

    2013-10-28

    In Bayesian phylogenetic inference we are interested in distributions over a space of trees. The number of trees in a tree space is an important characteristic of the space and is useful for specifying prior distributions. When all samples come from the same time point and no prior information available on divergence times, the tree counting problem is easy. However, when fossil evidence is used in the inference to constrain the tree or data are sampled serially, new tree spaces arise and counting the number of trees is more difficult. We describe an algorithm that is polynomial in the number of sampled individuals for counting of resolutions of a constraint tree assuming that the number of constraints is fixed. We generalise this algorithm to counting resolutions of a fully ranked constraint tree. We describe a quadratic algorithm for counting the number of possible fully ranked trees on n sampled individuals. We introduce a new type of tree, called a fully ranked tree with sampled ancestors, and describe a cubic time algorithm for counting the number of such trees on n sampled individuals. These algorithms should be employed for Bayesian Markov chain Monte Carlo inference when fossil data are included or data are serially sampled.

  6. Fast Structural Search in Phylogenetic Databases

    Directory of Open Access Journals (Sweden)

    William H. Piel

    2005-01-01

    Full Text Available As the size of phylogenetic databases grows, the need for efficiently searching these databases arises. Thanks to previous and ongoing research, searching by attribute value and by text has become commonplace in these databases. However, searching by topological or physical structure, especially for large databases and especially for approximate matches, is still an art. We propose structural search techniques that, given a query or pattern tree P and a database of phylogenies D, find trees in D that are sufficiently close to P . The “closeness” is a measure of the topological relationships in P that are found to be the same or similar in a tree D in D. We develop a filtering technique that accelerates searches and present algorithms for rooted and unrooted trees where the trees can be weighted or unweighted. Experimental results on comparing the similarity measure with existing tree metrics and on evaluating the efficiency of the search techniques demonstrate that the proposed approach is promising

  7. Phylogenetic analysis of fungal ABC transporters.

    Science.gov (United States)

    Kovalchuk, Andriy; Driessen, Arnold J M

    2010-03-16

    The superfamily of ABC proteins is among the largest known in nature. Its members are mainly, but not exclusively, involved in the transport of a broad range of substrates across biological membranes. Many contribute to multidrug resistance in microbial pathogens and cancer cells. The diversity of ABC proteins in fungi is comparable with those in multicellular animals, but so far fungal ABC proteins have barely been studied. We performed a phylogenetic analysis of the ABC proteins extracted from the genomes of 27 fungal species from 18 orders representing 5 fungal phyla thereby covering the most important groups. Our analysis demonstrated that some of the subfamilies of ABC proteins remained highly conserved in fungi, while others have undergone a remarkable group-specific diversification. Members of the various fungal phyla also differed significantly in the number of ABC proteins found in their genomes, which is especially reduced in the yeast S. cerevisiae and S. pombe. Data obtained during our analysis should contribute to a better understanding of the diversity of the fungal ABC proteins and provide important clues about their possible biological functions.

  8. Pareto-optimal phylogenetic tree reconciliation.

    Science.gov (United States)

    Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S; Kellis, Manolis

    2014-06-15

    Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. . © The Author 2014. Published by Oxford University Press.

  9. Ultrastructure, biology, and phylogenetic relationships of kinorhyncha.

    Science.gov (United States)

    Neuhaus, Birger; Higgins, Robert P

    2002-07-01

    The article summarizes current knowledge mainly about the (functional) morphology and ultrastructure, but also about the biology, development, and evolution of the Kinorhyncha. The Kinorhyncha are microscopic, bilaterally symmetrical, exclusively free-living, benthic, marine animals and ecologically part of the meiofauna. They occur throughout the world from the intertidal to the deep sea, generally in sediments but sometimes associated with plants or other animals. From adult stages 141 species are known, but 38 species have been described from juvenile stages. The trunk is arranged into 11 segments as evidenced by cuticular plates, sensory spots, setae or spines, nervous system, musculature, and subcuticular glands. The ultrastructure of several organ systems and the postembryonic development are known for very few species. Almost no data are available about the embryology and only a single gene has been sequenced for a single species. The phylogenetic relationships within Kinorhyncha are unresolved. Priapulida, Loricifera, and Kinorhyncha are grouped together as Scalidophora, but arguments are found for every possible sistergroup relationship within this taxon. The recently published Ecdysozoa hypothesis suggests a closer relationship of the Scalidophora, Nematoda, Nematomorpha, Tardigrada, Onychophora, and Arthropoda.

  10. Phylogenetic and Phylogenomic Definition of Rhizopus Species

    Directory of Open Access Journals (Sweden)

    Andrii P. Gryganskyi

    2018-06-01

    Full Text Available Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar. A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as threefold within a species and is driven by changes in transposable element copy numbers and genome duplications.

  11. Tanglegrams: A Reduction Tool for Mathematical Phylogenetics.

    Science.gov (United States)

    Matsen, Frederick A; Billey, Sara C; Kas, Arnold; Konvalinka, Matjaz

    2018-01-01

    Many discrete mathematics problems in phylogenetics are defined in terms of the relative labeling of pairs of leaf-labeled trees. These relative labelings are naturally formalized as tanglegrams, which have previously been an object of study in coevolutionary analysis. Although there has been considerable work on planar drawings of tanglegrams, they have not been fully explored as combinatorial objects until recently. In this paper, we describe how many discrete mathematical questions on trees "factor" through a problem on tanglegrams, and how understanding that factoring can simplify analysis. Depending on the problem, it may be useful to consider a unordered version of tanglegrams, and/or their unrooted counterparts. For all of these definitions, we show how the isomorphism types of tanglegrams can be understood in terms of double cosets of the symmetric group, and we investigate their automorphisms. Understanding tanglegrams better will isolate the distinct problems on leaf-labeled pairs of trees and reveal natural symmetries of spaces associated with such problems.

  12. Multiple sequence alignment accuracy and phylogenetic inference.

    Science.gov (United States)

    Ogden, T Heath; Rosenberg, Michael S

    2006-04-01

    Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.

  13. Phylogenetic Analyses of Quasars and Galaxies

    International Nuclear Information System (INIS)

    Fraix-Burnet, Didier; D'Onofrio, Mauro; Marziani, Paola

    2017-01-01

    Phylogenetic approaches have proven to be useful in astrophysics. We have recently published a Maximum Parsimony (or cladistics) analysis on two samples of 215 and 85 low-z quasars (z < 0.7) which offer a satisfactory coverage of the Eigenvector 1-derived main sequence. Cladistics is not only able to group sources radiating at higher Eddington ratios, to separate radio-quiet (RQ) and radio-loud (RL) quasars and properly distinguishes core-dominated and lobe-dominated quasars, but it suggests a black hole mass threshold for powerful radio emission as already proposed elsewhere. An interesting interpretation from this work is that the phylogeny of quasars may be represented by the ontogeny of their central black hole, i.e. the increase of the black hole mass. However these exciting results are based on a small sample of low-z quasars, so that the work must be extended. We are here faced with two difficulties. The first one is the current lack of a larger sample with similar observables. The second one is the prohibitive computation time to perform a cladistic analysis on more that about one thousand objects. We show in this paper an experimental strategy on about 1,500 galaxies to get around this difficulty. Even if it not related to the quasar study, it is interesting by itself and opens new pathways to generalize the quasar findings.

  14. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly.

    Science.gov (United States)

    Kunstler, Georges; Lavergne, Sébastien; Courbaud, Benoît; Thuiller, Wilfried; Vieilledent, Ghislain; Zimmermann, Niklaus E; Kattge, Jens; Coomes, David A

    2012-08-01

    The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view. © 2012 Blackwell Publishing Ltd/CNRS.

  15. Effects of Phylogenetic Tree Style on Student Comprehension

    Science.gov (United States)

    Dees, Jonathan Andrew

    Phylogenetic trees are powerful tools of evolutionary biology that have become prominent across the life sciences. Consequently, learning to interpret and reason from phylogenetic trees is now an essential component of biology education. However, students often struggle to understand these diagrams, even after explicit instruction. One factor that has been observed to affect student understanding of phylogenetic trees is style (i.e., diagonal or bracket). The goal of this dissertation research was to systematically explore effects of style on student interpretations and construction of phylogenetic trees in the context of an introductory biology course. Before instruction, students were significantly more accurate with bracket phylogenetic trees for a variety of interpretation and construction tasks. Explicit instruction that balanced the use of diagonal and bracket phylogenetic trees mitigated some, but not all, style effects. After instruction, students were significantly more accurate for interpretation tasks involving taxa relatedness and construction exercises when using the bracket style. Based on this dissertation research and prior studies on style effects, I advocate for introductory biology instructors to use only the bracket style. Future research should examine causes of style effects and variables other than style to inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  16. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.

    Science.gov (United States)

    Deepak, Akshay; Fernández-Baca, David

    2014-01-01

    A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

  17. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    Science.gov (United States)

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  18. The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications.

    Science.gov (United States)

    Foth, Christian

    2011-04-01

    Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior-posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown-group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of "model organisms" to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. Copyright © 2011 Wiley-Liss, Inc.

  19. A scalable method for identifying frequent subtrees in sets of large phylogenetic trees.

    Science.gov (United States)

    Ramu, Avinash; Kahveci, Tamer; Burleigh, J Gordon

    2012-10-03

    We consider the problem of finding the maximum frequent agreement subtrees (MFASTs) in a collection of phylogenetic trees. Existing methods for this problem often do not scale beyond datasets with around 100 taxa. Our goal is to address this problem for datasets with over a thousand taxa and hundreds of trees. We develop a heuristic solution that aims to find MFASTs in sets of many, large phylogenetic trees. Our method works in multiple phases. In the first phase, it identifies small candidate subtrees from the set of input trees which serve as the seeds of larger subtrees. In the second phase, it combines these small seeds to build larger candidate MFASTs. In the final phase, it performs a post-processing step that ensures that we find a frequent agreement subtree that is not contained in a larger frequent agreement subtree. We demonstrate that this heuristic can easily handle data sets with 1000 taxa, greatly extending the estimation of MFASTs beyond current methods. Although this heuristic does not guarantee to find all MFASTs or the largest MFAST, it found the MFAST in all of our synthetic datasets where we could verify the correctness of the result. It also performed well on large empirical data sets. Its performance is robust to the number and size of the input trees. Overall, this method provides a simple and fast way to identify strongly supported subtrees within large phylogenetic hypotheses.

  20. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.

    Directory of Open Access Journals (Sweden)

    Stinus Lindgreen

    2014-10-01

    Full Text Available Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.

  1. Are Ichthyosporea animals or fungi? Bayesian phylogenetic analysis of elongation factor 1alpha of Ichthyophonus irregularis.

    Science.gov (United States)

    Ragan, Mark A; Murphy, Colleen A; Rand, Thomas G

    2003-12-01

    Ichthyosporea is a recently recognized group of morphologically simple eukaryotes, many of which cause disease in aquatic organisms. Ribosomal RNA sequence analyses place Ichthyosporea near the divergence of the animal and fungal lineages, but do not allow resolution of its exact phylogenetic position. Some of the best evidence for a specific grouping of animals and fungi (Opisthokonta) has come from elongation factor 1alpha, not only phylogenetic analysis of sequences but also the presence or absence of short insertions and deletions. We sequenced the EF-1alpha gene from the ichthyosporean parasite Ichthyophonus irregularis and determined its phylogenetic position using neighbor-joining, parsimony and Bayesian methods. We also sequenced EF-1alpha genes from four chytrids to provide broader representation within fungi. Sequence analyses and the presence of a characteristic 12 amino acid insertion strongly indicate that I. irregularis is a member of Opisthokonta, but do not resolve whether I. irregularis is a specific relative of animals or of fungi. However, the EF-1alpha of I. irregularis exhibits a two amino acid deletion heretofore reported only among fungi.

  2. Molecular Phylogenetic Screening of Withania somnifera Relative From Indonesia Based on Internal Transcribed Spacer Region

    Directory of Open Access Journals (Sweden)

    Topik Hidayat

    2016-04-01

    Full Text Available Withania somnifera (family Solanaceae, known commonly as Ashwaganda, is one of the important medicinal plants, and recent studies reported that Withanone, one of the chemical components in this plant, has ability to kill cancer cell. Because of endemic state of this plant to South Asia, exploring plant species under the same family which grow well in Indonesia has been of interest. The purpose of this study was to screen the Indonesian plant which has strong phylogenetic relationship with Ashwaganda. Thus, phylogenetic analysis using DNA sequences of internal transcribed spacer (ITS region was conducted. Thus, 19 species of Solanaceae and two species of Convolvulaceae as outgroup were examined. Five ITS regions of Ashwaganda retrieved from GenBank were included in the phylogenetic analysis. Parsimony analysis showed that Indonesia Solanaceae comprises seven groups which is consistent with the global Solanaceae relationship as previously reported. Furthermore, our study revealed that two species, Physalis angulata and Physalis peruviana, are relative to W. somnifera. Morphologically, they share characters of flower and fruit. This result indicated that these two species are potential to have similar chemical properties as Ashwaganda, thus we can have new variants of Withanone originated from Indonesia with similar effect.

  3. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    Science.gov (United States)

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  4. Carotenogenesis diversification in phylogenetic lineages of Rhodophyta.

    Science.gov (United States)

    Takaichi, Shinichi; Yokoyama, Akiko; Mochimaru, Mari; Uchida, Hiroko; Murakami, Akio

    2016-06-01

    Carotenoid composition is very diverse in Rhodophyta. In this study, we investigated whether this variation is related to the phylogeny of this group. Rhodophyta consists of seven classes, and they can be divided into two groups on the basis of their morphology. The unicellular group (Cyanidiophyceae, Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae) contained only β-carotene and zeaxanthin, "ZEA-type carotenoids." In contrast, within the macrophytic group (Bangiophyceae, Compsopogonophyceae, and Florideophyceae), Compsopogonophyceae contained antheraxanthin in addition to ZEA-type carotenoids, "ANT-type carotenoids," whereas Bangiophyceae contained α-carotene and lutein along with ZEA-type carotenoids, "LUT-type carotenoids." Florideophyceae is divided into five subclasses. Ahnfeltiophycidae, Hildenbrandiophycidae, and Nemaliophycidae contained LUT-type carotenoids. In Corallinophycidae, Hapalidiales and Lithophylloideae in Corallinales contained LUT-type carotenoids, whereas Corallinoideae in Corallinales contained ANT-type carotenoids. In Rhodymeniophycidae, most orders contained LUT-type carotenoids; however, only Gracilariales contained ANT-type carotenoids. There is a clear relationship between carotenoid composition and phylogenetics in Rhodophyta. Furthermore, we searched open genome databases of several red algae for references to the synthetic enzymes of the carotenoid types detected in this study. β-Carotene and zeaxanthin might be synthesized from lycopene, as in land plants. Antheraxanthin might require zeaxanthin epoxydase, whereas α-carotene and lutein might require two additional enzymes, as in land plants. Furthermore, Glaucophyta contained ZEA-type carotenoids, and Cryptophyta contained β-carotene, α-carotene, and alloxanthin, whose acetylenic group might be synthesized from zeaxanthin by an unknown enzyme. Therefore, we conclude that the presence or absence of the four enzymes is related to diversification of carotenoid

  5. Ant-Based Phylogenetic Reconstruction (ABPR: A new distance algorithm for phylogenetic estimation based on ant colony optimization

    Directory of Open Access Journals (Sweden)

    Karla Vittori

    2008-12-01

    Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.

  6. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes.

    Science.gov (United States)

    Raguso, Robert A; Schlumpberger, Boris O; Kaczorowski, Rainee L; Holtsford, Timothy P

    2006-09-01

    We analyzed floral volatiles from eight tobacco species (Nicotiana; Solanaceae) including newly discovered Brazilian taxa (Nicotiana mutabilis and "Rastroensis") in section Alatae. Eighty-four compounds were found, including mono- and sesquiterpenoids, nitrogenous compounds, benzenoid and aliphatic alcohols, aldehydes and esters. Floral scent from recent accessions of Nicotiana alata, Nicotiana bonariensis and Nicotiana langsdorffii differed from previously published data, suggesting intraspecific variation in scent composition at the level of biosynthetic class. Newly discovered taxa in Alatae, like their relatives, emit large amounts of 1,8-cineole and smaller amounts of monoterpenes on a nocturnal rhythm, constituting a chemical synapomorphy for this lineage. Fragrance data from three species of Nicotiana sect. Suaveolentes, the sister group of Alatae, (two Australian species: N. cavicola, N. ingulba; one African species: N. africana), were compared to previously reported data from their close relative, N. suaveolens. Like N. suaveolens, N. cavicola and N. ingulba emit fragrances dominated by benzenoids and phenylpropanoids, whereas the flowers of N. africana lacked a distinct floral scent and instead emitted only small amounts of an aliphatic methyl ester from foliage. Interestingly, this ester also is emitted from foliage of N. longiflora and N. plumbaginifolia (both in section Alatae s.l.), which share a common ancestor with N. africana. This result, combined with the synapomorphic pattern of 1,8 cineole emission in Alatae s.s., suggests that phylogenetic signal explains a major component of fragrance composition among tobacco species in sections Alatae and Suaveolentes. At the intraspecific level, interpopulational scent variation is widespread in sect. Alatae, and may reflect edaphic specialization, introgression, local pollinator shifts, genetic drift or artificial selection in cultivation. Further studies with genetically and geographically well

  7. Phylogenetic relationships of typical antbirds (Thamnophilidae and test of incongruence based on Bayes factors

    Directory of Open Access Journals (Sweden)

    Nylander Johan AA

    2004-07-01

    Full Text Available Abstract Background The typical antbirds (Thamnophilidae form a monophyletic and diverse family of suboscine passerines that inhabit neotropical forests. However, the phylogenetic relationships within this assemblage are poorly understood. Herein, we present a hypothesis of the generic relationships of this group based on Bayesian inference analyses of two nuclear introns and the mitochondrial cytochrome b gene. The level of phylogenetic congruence between the individual genes has been investigated utilizing Bayes factors. We also explore how changes in the substitution models affected the observed incongruence between partitions of our data set. Results The phylogenetic analysis supports both novel relationships, as well as traditional groupings. Among the more interesting novel relationship suggested is that the Terenura antwrens, the wing-banded antbird (Myrmornis torquata, the spot-winged antshrike (Pygiptila stellaris and the russet antshrike (Thamnistes anabatinus are sisters to all other typical antbirds. The remaining genera fall into two major clades. The first includes antshrikes, antvireos and the Herpsilochmus antwrens, while the second clade consists of most antwren genera, the Myrmeciza antbirds, the "professional" ant-following antbirds, and allied species. Our results also support previously suggested polyphyly of Myrmotherula antwrens and Myrmeciza antbirds. The tests of phylogenetic incongruence, using Bayes factors, clearly suggests that allowing the gene partitions to have separate topology parameters clearly increased the model likelihood. However, changing a component of the nucleotide substitution model had much higher impact on the model likelihood. Conclusions The phylogenetic results are in broad agreement with traditional classification of the typical antbirds, but some relationships are unexpected based on external morphology. In these cases their true affinities may have been obscured by convergent evolution and

  8. Mitochondrial DNA genomes organization and phylogenetic relationships analysis of eight anemonefishes (pomacentridae: amphiprioninae.

    Directory of Open Access Journals (Sweden)

    Jianlong Li

    Full Text Available Anemonefishes (Pomacentridae Amphiprioninae are a group of 30 valid coral reef fish species with their phylogenetic relationships still under debate. The eight available mitogenomes of anemonefishes were used to reconstruct the molecular phylogenetic tree; six were obtained from this study (Amphiprion clarkii, A. frenatus, A. percula, A. perideraion, A. polymnus and Premnas biaculeatus and two from GenBank (A. bicinctus and A. ocellaris. The seven Amphiprion species represent all four subgenera and P. biaculeatus is the only species from Premnas. The eight mitogenomes of anemonefishes encoded 13 protein-coding genes, two rRNA genes, 22 tRNA genes and two main non-coding regions, with the gene arrangement and translation direction basically identical to other typical vertebrate mitogenomes. Among the 13 protein-coding genes, A. ocellaris (AP006017 and A. percula (KJ174497 had the same length in ND5 with 1,866 bp, which were three nucleotides less than the other six anemonefishes. Both structures of ND5, however, could translate to amino acid successfully. Only four mitogenomes had the tandem repeats in D-loop; the tandem repeats were located in downstream after Conserved Sequence Block rather than the upstream and repeated in a simply way. The phylogenetic utility was tested with Bayesian and Maximum Likelihood methods using all 13 protein-coding genes. The results strongly supported that the subfamily Amphiprioninae was monophyletic and P. biaculeatus should be assigned to the genus Amphiprion. Premnas biaculeatus with the percula complex were revealed to be the ancient anemonefish species. The tree forms of ND1, COIII, ND4, Cytb, Cytb+12S rRNA, Cytb+COI and Cytb+COI+12S rRNA were similar to that 13 protein-coding genes, therefore, we suggested that the suitable single mitochondrial gene for phylogenetic analysis of anemonefishes maybe Cytb. Additional mitogenomes of anemonefishes with a combination of nuclear markers will be useful to

  9. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  10. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    Navya

    *For Correspondence. e-mail: bashisthsingh2004@rediffmail.com, ... A species complex constitutes groups of closely related species which have diverged ..... there is a strong reproductive isolation too (See review by Singh and Banerjee 2016) .... figure both the loops touch the chromocenter and in our microphotograph ...

  11. Sequence comparison and phylogenetic analysis of core gene of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... and antisense primers, a single band of 573 base pairs .... Amino acid sequence alignment of Cluster I and Cluster II of phylogenetic tree. First ten sequences ... sequence weighting, postion-spiecific gap penalties and weight.

  12. Trinets encode tree-child and level-2 phylogenetic networks

    NARCIS (Netherlands)

    L.J.J. van Iersel (Leo); V. Moulton

    2012-01-01

    htmlabstractPhylogenetic networks generalize evolutionary trees, and are commonly used to represent evolutionary histories of species that undergo reticulate evolutionary processes such as hybridization, recombination and lateral gene transfer. Recently, there has been great interest in trying to

  13. Global patterns and drivers of phylogenetic structure in island floras

    NARCIS (Netherlands)

    Weigelt, P.; Kissling, W.D.; Kisel, Y.; Fritz, S.A.; Karger, D.N.; Kessler, A.; Lehtonen, S.; Svenning, J.-C.; Kreft, H.

    2015-01-01

    Islands are ideal for investigating processes that shape species assemblages because they are isolated and have discrete boundaries. Quantifying phylogenetic assemblage structure allows inferences about these processes, in particular dispersal, environmental filtering and in-situ speciation. Here,

  14. BioMatriX: Sequence analysis, structure visualization, phylogenetics ...

    African Journals Online (AJOL)

    bmx-biomatrix.blogspot.com) developed for biological science community to augment scientific research regarding genomics, proteomics, phylogenetics and linkage analysis in one platform. BioMatriX offers multi-functional services to perform ...

  15. The limitations of ontogenetic data in phylogenetic analyses

    NARCIS (Netherlands)

    Koenemann, Stefan; Schram, Frederick R.

    2002-01-01

    The analysis of consecutive ontogenetic stages, or events, introduces a new class of data to phylogenetic systematics that are distinctly different from traditional morphological characters and molecular sequence data. Ontogenetic event sequences are distinguished by varying degrees of both a

  16. Phylogenetic analysis of anemone fishes of the Persian Gulf using ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... genetic diversity among samples was investigated by phylogenetic analysis. Results show that there is ... more about the living organisms found in this region. Many marine ... Kish (modified from Pous et al., 2004). Table 2.

  17. Taxonomic and phylogenetic utility of variation in advertising calls of ...

    African Journals Online (AJOL)

    Taxonomic and phylogenetic utility of variation in advertising calls of francolins and spurfowls (Galliformes: Phasianidae). Tshifhiwa G. Mandiwana-Neudani, Rauri C.K. Bowie, Martine Hausberger, Laurence Henry, Timothy M. Crowe ...

  18. Comparison of sequence-based and structure-based phylogenetic ...

    Indian Academy of Sciences (India)

    Prakash

    phylogenetic tree construction methods, has been considered as an equivalent of .... Further detailed analysis described is restricted to the first two groups only. ..... Aspartate-ammonia ligase. Plant virus ..... enzymatic activities?; Trends ...

  19. Ecological and phylogenetic influences on maxillary dentition in snakes

    Directory of Open Access Journals (Sweden)

    Kate Jackson

    2010-12-01

    Full Text Available The maxillary dentition of snakes was used as a system with which to investigate the relative importance of the interacting forces of ecological selective pressures and phylogenetic constraints indetermining morphology. The maxillary morphology of three groups of snakes having different diets, with each group comprising two distinct lineages — boids and colubroids — was examined. Our results suggest that dietary selective pressures may be more significantthan phylogenetic history in shaping maxillary morphology.

  20. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    Science.gov (United States)

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction

    OpenAIRE

    Cancino, W.; Delbem, A.C.B.

    2010-01-01

    In this paper, we proposed an MOEA approach, called PhyloMOEA which solves the phylogenetic inference problem using maximum parsimony and maximum likelihood criteria. The PhyloMOEA's development was motivated by several studies in the literature (Huelsenbeck, 1995; Jin & Nei, 1990; Kuhner & Felsenstein, 1994; Tateno et al., 1994), which point out that various phylogenetic inference methods lead to inconsistent solutions. Techniques using parsimony and likelihood criteria yield to different tr...

  2. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  3. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  4. Strong-field dissociation dynamics

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, Baorui.

    1993-01-01

    The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs

  5. Phylogenetic analysis of local-scale tree soil associations in a lowland moist tropical forest.

    Directory of Open Access Journals (Sweden)

    Laura A Schreeg

    Full Text Available BACKGROUND: Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. METHODOLOGY/PRINCIPAL FINDINGS: Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water. We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI, Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the 'traits' (i.e., soil variables evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. CONCLUSIONS: Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny

  6. Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations.

    Science.gov (United States)

    Kobert, K; Stamatakis, A; Flouri, T

    2017-03-01

    The phylogenetic likelihood function (PLF) is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection, and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory savings attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 12-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the PLF currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation. [Algorithms; maximum likelihood; phylogenetic likelihood function; phylogenetics]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  7. Molecular Phylogenetic: Organism Taxonomy Method Based on Evolution History

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2011-03-01

    Full Text Available Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1 Maximum parsimony, (2 Distance, and (3 Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data.

  8. Phylogenetic analysis using parsimony and likelihood methods.

    Science.gov (United States)

    Yang, Z

    1996-02-01

    The assumptions underlying the maximum-parsimony (MP) method of phylogenetic tree reconstruction were intuitively examined by studying the way the method works. Computer simulations were performed to corroborate the intuitive examination. Parsimony appears to involve very stringent assumptions concerning the process of sequence evolution, such as constancy of substitution rates between nucleotides, constancy of rates across nucleotide sites, and equal branch lengths in the tree. For practical data analysis, the requirement of equal branch lengths means similar substitution rates among lineages (the existence of an approximate molecular clock), relatively long interior branches, and also few species in the data. However, a small amount of evolution is neither a necessary nor a sufficient requirement of the method. The difficulties involved in the application of current statistical estimation theory to tree reconstruction were discussed, and it was suggested that the approach proposed by Felsenstein (1981, J. Mol. Evol. 17: 368-376) for topology estimation, as well as its many variations and extensions, differs fundamentally from the maximum likelihood estimation of a conventional statistical parameter. Evidence was presented showing that the Felsenstein approach does not share the asymptotic efficiency of the maximum likelihood estimator of a statistical parameter. Computer simulations were performed to study the probability that MP recovers the true tree under a hierarchy of models of nucleotide substitution; its performance relative to the likelihood method was especially noted. The results appeared to support the intuitive examination of the assumptions underlying MP. When a simple model of nucleotide substitution was assumed to generate data, the probability that MP recovers the true topology could be as high as, or even higher than, that for the likelihood method. When the assumed model became more complex and realistic, e.g., when substitution rates were

  9. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Science.gov (United States)

    Liang, Ping; Nair, Jayakumar R; Song, Lei; McGuire, John J; Dolnick, Bruce J

    2005-01-01

    Background The rTS gene (ENOSF1), first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS) mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis. PMID:16162288

  10. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  11. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....

  12. Strong coupling electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

  13. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  14. The colours of strong interaction

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

  15. Strong cosmic censorship and the strong curvature singularities

    International Nuclear Information System (INIS)

    Krolak, A.

    1987-01-01

    Conditions are given under which any asymptotically simple and empty space-time that has a partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown that this result suggests that the Cauchy horizons of the type occurring in Reissner--Nordstroem and Kerr space-times are unstable. This in turn gives support for the validity of the strong cosmic censorship hypothesis

  16. Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom.

    Science.gov (United States)

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  17. Towards a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom

    Directory of Open Access Journals (Sweden)

    Philipp eJanitza

    2012-12-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and dicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as MHKs. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  18. Diversity of Phylogenetic Information According to the Locus and the Taxonomic Level: An Example from a Parasitic Mesostigmatid Mite Genus

    Directory of Open Access Journals (Sweden)

    Lise Roy

    2010-04-01

    Full Text Available Molecular markers for cladistic analyses may perform differently according to the taxonomic group considered and the historical level under investigation. Here we evaluate the phylogenetic potential of five different markers for resolving evolutionary relationships within the ectoparasitic genus Dermanyssus at the species level, and their ability to address questions about the evolution of specialization. COI provided 9–18% divergence between species (up to 9% within species, 16S rRNA 10–16% (up to 4% within species, ITS1 and 2 2–9% (up to 1% within species and Tropomyosin intron n 8–20% (up to 6% within species. EF-1a revealed different non-orthologous copies withinindividuals of Dermanyssus and Ornithonyssus. Tropomyosin intron n was shown containing consistent phylogenetic signal at the specific level within Dermanyssus and represents a promising marker for future prospects in phylogenetics of Acari. Phylogenetic analyses revealed that the generalist condition is apomorphic and D. gallinae mightrepresent a complex of hybridized lineages. The split into hirsutus-group and gallinae-group in Dermanyssus does not seem to be appropriate based upon these results and D. longipes appears to be composed of two different entities.

  19. Patterns and effects of GC3 heterogeneity and parsimony informative sites on the phylogenetic tree of genes.

    Science.gov (United States)

    Ma, Shuai; Wu, Qi; Hu, Yibo; Wei, Fuwen

    2018-05-20

    The explosive growth in genomic data has provided novel insights into the conflicting signals hidden in phylogenetic trees. Although some studies have explored the effects of the GC content and parsimony informative sites (PIS) on the phylogenetic tree, the effect of the heterogeneity of the GC content at the first/second/third codon position on parsimony informative sites (GC1/2/3 PIS ) among different species and the effect of PIS on phylogenetic tree construction remain largely unexplored. Here, we used two different mammal genomic datasets to explore the patterns of GC1/2/3 PIS heterogeneity and the effect of PIS on the phylogenetic tree of genes: (i) all GC1/2/3 PIS have obvious heterogeneity between different mammals, and the levels of heterogeneity are GC3 PIS  > GC2 PIS  > GC1 PIS ; (ii) the number of PIS is positively correlated with the metrics of "good" gene tree topologies, and excluding the third codon position (C3) decreases the quality of gene trees by removing too many PIS. These results provide novel insights into the heterogeneity pattern of GC1/2/3 PIS in mammals and the relationship between GC3/PIS and gene trees. Additionally, it is necessary to carefully consider whether to exclude C3 to improve the quality of gene trees, especially in the super-tree method. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective.

    Science.gov (United States)

    González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B; Lima, Celia A; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia; Hernández, Cristián E

    2017-01-01

    It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet 'Everything is everywhere, but, the environment selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis-in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica.

  1. Signal detection

    International Nuclear Information System (INIS)

    Tholomier, M.

    1985-01-01

    In a scanning electron microscope, whatever is the measured signal, the same set is found: incident beam, sample, signal detection, signal amplification. The resulting signal is used to control the spot luminosity with the observer cathodoscope. This is synchronized with the beam scanning on the sample; on the cathodoscope, the image in secondary electrons, backscattered electrons,... of the sample surface is reconstituted. The best compromise must be found between a register time low enough to remove eventual variations (under the incident beam) of the nature of the observed phenomenon, and a good spatial resolution of the image and a signal-to-noise ratio high enough. The noise is one of the basic limitations of the scanning electron microscope performance. The whose measurement line must be optimized to reduce it [fr

  2. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards.

    Directory of Open Access Journals (Sweden)

    Patrick P Edger

    Full Text Available The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1. Ease of amplification due to high copy number of the gene clusters, 2. Available cost-effective methods and highly conserved primers, 3. Rapidly evolving markers (i.e. variable between closely related species, and 4. The assumption (and/or treatment that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  3. Environmental quality of a stream can be better predicted by phylogenetic than by taxonomic diversity

    Directory of Open Access Journals (Sweden)

    Koperski Paweł

    2017-01-01

    Full Text Available Different indices of taxonomic diversity (TD and phylogenetic diversity (PD of the macrobenthos were compared to determine the efficient predictors of environmental quality (EQ in different types of watercourses in Poland. Archived data of 864 samples of benthic invertebrates identified to the family level were analysed on the basis of linear and non-linear multiply regression. The strengths of the correlations between two measures of EQ:BMWPpl (British Monitoring Working Party score system, Polish modification and MMI (Multimetric Macroinvertebrate Index and the values of taxonomic richness and three well-known TD indices: Shannon, Margalef and J' Evenness were compared to those for values of three PD indices, based on taxonomic distinctness. Taxonomic richness and all PD indices correlated more strongly with both measures of EQ than all TD indices. Correlations with both types of diversity indices were visibly stronger for BMWPpl when compared with MMI. We suggest that analysed indices of PD, especially MDis (mean phylogenetic distance between families in a sample, are related with EQ strongly enough to be taken into account as potential metrics in selection procedures of biological assessment.

  4. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo

    2012-01-01

    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  5. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando

    2013-01-01

    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  6. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando

    2015-01-01

    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  7. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven

    1998-01-01

    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  8. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  9. Phylogenetic biome conservatism on a global scale.

    Science.gov (United States)

    Crisp, Michael D; Arroyo, Mary T K; Cook, Lyn G; Gandolfo, Maria A; Jordan, Gregory J; McGlone, Matt S; Weston, Peter H; Westoby, Mark; Wilf, Peter; Linder, H Peter

    2009-04-09

    How and why organisms are distributed as they are has long intrigued evolutionary biologists. The tendency for species to retain their ancestral ecology has been demonstrated in distributions on local and regional scales, but the extent of ecological conservatism over tens of millions of years and across continents has not been assessed. Here we show that biome stasis at speciation has outweighed biome shifts by a ratio of more than 25:1, by inferring ancestral biomes for an ecologically diverse sample of more than 11,000 plant species from around the Southern Hemisphere. Stasis was also prevalent in transocean colonizations. Availability of a suitable biome could have substantially influenced which lineages establish on more than one landmass, in addition to the influence of the rarity of the dispersal events themselves. Conversely, the taxonomic composition of biomes has probably been strongly influenced by the rarity of species' transitions between biomes. This study has implications for the future because if clades have inherently limited capacity to shift biomes, then their evolutionary potential could be strongly compromised by biome contraction as climate changes.

  10. Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf.

    Science.gov (United States)

    Cardona, Gabriel; Mir, Arnau; Rosselló, Francesc; Rotger, Lucía; Sánchez, David

    2013-01-16

    Phylogenetic tree comparison metrics are an important tool in the study of evolution, and hence the definition of such metrics is an interesting problem in phylogenetics. In a paper in Taxon fifty years ago, Sokal and Rohlf proposed to measure quantitatively the difference between a pair of phylogenetic trees by first encoding them by means of their half-matrices of cophenetic values, and then comparing these matrices. This idea has been used several times since then to define dissimilarity measures between phylogenetic trees but, to our knowledge, no proper metric on weighted phylogenetic trees with nested taxa based on this idea has been formally defined and studied yet. Actually, the cophenetic values of pairs of different taxa alone are not enough to single out phylogenetic trees with weighted arcs or nested taxa. For every (rooted) phylogenetic tree T, let its cophenetic vectorφ(T) consist of all pairs of cophenetic values between pairs of taxa in T and all depths of taxa in T. It turns out that these cophenetic vectors single out weighted phylogenetic trees with nested taxa. We then define a family of cophenetic metrics dφ,p by comparing these cophenetic vectors by means of Lp norms, and we study, either analytically or numerically, some of their basic properties: neighbors, diameter, distribution, and their rank correlation with each other and with other metrics. The cophenetic metrics can be safely used on weighted phylogenetic trees with nested taxa and no restriction on degrees, and they can be computed in O(n2) time, where n stands for the number of taxa. The metrics dφ,1 and dφ,2 have positive skewed distributions, and they show a low rank correlation with the Robinson-Foulds metric and the nodal metrics, and a very high correlation with each other and with the splitted nodal metrics. The diameter of dφ,p, for p⩾1 , is in O(n(p+2)/p), and thus for low p they are more discriminative, having a wider range of values.

  11. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  12. BLAST-EXPLORER helps you building datasets for phylogenetic analysis

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2010-01-01

    Full Text Available Abstract Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr

  13. Predicting rates of interspecific interaction from phylogenetic trees.

    Science.gov (United States)

    Nuismer, Scott L; Harmon, Luke J

    2015-01-01

    Integrating phylogenetic information can potentially improve our ability to explain species' traits, patterns of community assembly, the network structure of communities, and ecosystem function. In this study, we use mathematical models to explore the ecological and evolutionary factors that modulate the explanatory power of phylogenetic information for communities of species that interact within a single trophic level. We find that phylogenetic relationships among species can influence trait evolution and rates of interaction among species, but only under particular models of species interaction. For example, when interactions within communities are mediated by a mechanism of phenotype matching, phylogenetic trees make specific predictions about trait evolution and rates of interaction. In contrast, if interactions within a community depend on a mechanism of phenotype differences, phylogenetic information has little, if any, predictive power for trait evolution and interaction rate. Together, these results make clear and testable predictions for when and how evolutionary history is expected to influence contemporary rates of species interaction. © 2014 John Wiley & Sons Ltd/CNRS.

  14. Maximum parsimony, substitution model, and probability phylogenetic trees.

    Science.gov (United States)

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  15. The power and pitfalls of HIV phylogenetics in public health.

    Science.gov (United States)

    Brooks, James I; Sandstrom, Paul A

    2013-07-25

    Phylogenetics is the application of comparative studies of genetic sequences in order to infer evolutionary relationships among organisms. This tool can be used as a form of molecular epidemiology to enhance traditional population-level communicable disease surveillance. Phylogenetic study has resulted in new paradigms being created in the field of communicable diseases and this commentary aims to provide the reader with an explanation of how phylogenetics can be used in tracking infectious diseases. Special emphasis will be placed upon the application of phylogenetics as a tool to help elucidate HIV transmission patterns and the limitations to these methods when applied to forensic analysis. Understanding infectious disease epidemiology in order to prevent new transmissions is the sine qua non of public health. However, with increasing epidemiological resolution, there may be an associated potential loss of privacy to the individual. It is within this context that we aim to promote the discussion on how to use phylogenetics to achieve important public health goals, while at the same time protecting the rights of the individual.

  16. Spatial phylogenetics of the vascular flora of Chile.

    Science.gov (United States)

    Scherson, Rosa A; Thornhill, Andrew H; Urbina-Casanova, Rafael; Freyman, William A; Pliscoff, Patricio A; Mishler, Brent D

    2017-07-01

    Current geographic patterns of biodiversity are a consequence of the evolutionary history of the lineages that comprise them. This study was aimed at exploring how evolutionary features of the vascular flora of Chile are distributed across the landscape. Using a phylogeny at the genus level for 87% of the Chilean vascular flora, and a geographic database of sample localities, we calculated phylogenetic diversity (PD), phylogenetic endemism (PE), relative PD (RPD), and relative PE (RPE). Categorical Analyses of Neo- and Paleo-Endemism (CANAPE) were also performed, using a spatial randomization to assess statistical significance. A cluster analysis using range-weighted phylogenetic turnover was used to compare among grid cells, and with known Chilean bioclimates. PD patterns were concordant with known centers of high taxon richness and the Chilean biodiversity hotspot. In addition, several other interesting areas of concentration of evolutionary history were revealed as potential conservation targets. The south of the country shows areas of significantly high RPD and a concentration of paleo-endemism, and the north shows areas of significantly low PD and RPD, and a concentration of neo-endemism. Range-weighted phylogenetic turnover shows high congruence with the main macrobioclimates of Chile. Even though the study was done at the genus level, the outcome provides an accurate outline of phylogenetic patterns that can be filled in as more fine-scaled information becomes available. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.

    Science.gov (United States)

    Hanson-Smith, Victor; Kolaczkowski, Bryan; Thornton, Joseph W

    2010-09-01

    Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and a specific phylogeny--typically the tree with the ML. The true phylogeny is seldom known with certainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both simplified and empirically derived conditions to compare the accuracy of ASR carried out using ML and Bayesian approaches. We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ancestral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty also make the ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is neither necessary nor beneficial.

  18. Towards an integrated phylogenetic classification of the Tremellomycetes.

    Science.gov (United States)

    Liu, X-Z; Wang, Q-M; Göker, M; Groenewald, M; Kachalkin, A V; Lumbsch, H T; Millanes, A M; Wedin, M; Yurkov, A M; Boekhout, T; Bai, F-Y

    2015-06-01

    Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.

  19. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  20. Inferring epidemic contact structure from phylogenetic trees.

    Directory of Open Access Journals (Sweden)

    Gabriel E Leventhal

    Full Text Available Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing.

  1. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  2. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  3. Strong versions of Bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1994-01-01

    Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

  4. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  5. Weak consistency and strong paraconsistency

    Directory of Open Access Journals (Sweden)

    Gemma Robles

    2009-11-01

    Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.

  6. On the strong CP problem

    Energy Technology Data Exchange (ETDEWEB)

    Dowrick, N.J. (Dept. of Physics, Oxford (United Kingdom)); McDougall, N.A. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1992-07-09

    We show that two well-known solutions to the strong CP problem, the axion and a massless quark, may be understood in terms of the mechanism recently proposed by Samuel where long-range interactions between topological charges may be responsible for the removal of CP violation. We explain how the axion and a QCD meson (identified as the {eta}' if all quarks are massless) suppress fluctuations in global topological charge by almost identical dynamical although the masses, couplings and relevant length scales are very different. Furthermore, we elucidate the precise origin of the {eta}' mass. (orig.).

  7. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  8. Estimation of strong ground motion

    International Nuclear Information System (INIS)

    Watabe, Makoto

    1993-01-01

    Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event

  9. Strong Mechanoluminescence from Oxynitridosilicate Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin; Xu Chaonan; Yamada, Hiroshi, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku, Tosu, Saga 841-0052 (Japan)

    2011-10-29

    We successfully developed a novel Mechanoluminescence (ML) material with water resistance, oxynitridosilicate; BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+}. The crystal structure, photoluminescence (PL) and ML properties were characterized. The ML of BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is so strong that the blue-green emission can be observed by the naked eyes clearly. In addition, it shows superior water resistance property. No changes were found in the ML intensities during the total water treatment test.

  10. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow.

    Science.gov (United States)

    Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel

    2014-08-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts.

    Science.gov (United States)

    Palma, Margarida; Goffeau, André; Spencer-Martins, Isabel; Baret, Philippe V

    2007-01-01

    A total of 214 members of the sugar porter (SP) family (TC 2.A.1.1) from eight hemiascomycetous yeasts: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Ashbya (Eremothecium) gossypii, Debaryomyces hansenii, Yarrowia lipolytica, Candida albicans and Pichia stipitis, were identified. The yeast SPs were classified in 13 different phylogenetic clusters. Specific sugar substrates could be allocated to nine phylogenetic clusters, including two novel TC clusters that are specific to fungi, i.e. the glycerol:H(+) symporter (2.A.1.1.38) and the high-affinity glucose transporter (2.A.1.1.39). Four phylogenetic clusters are identified by the preliminary fifth number Z23, Z24, Z25 and Z26 and the substrates of their members remain undetermined. The amplification of the SP clusters across the Hemiascomycetes reflects adaptation to specific carbon and energy sources available in the habitat of each yeast species. (c) 2007 S. Karger AG, Basel.

  12. A new algorithm to construct phylogenetic networks from trees.

    Science.gov (United States)

    Wang, J

    2014-03-06

    Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.

  13. Inferring phylogenetic trees from the knowledge of rare evolutionary events.

    Science.gov (United States)

    Hellmuth, Marc; Hernandez-Rosales, Maribel; Long, Yangjing; Stadler, Peter F

    2018-06-01

    Rare events have played an increasing role in molecular phylogenetics as potentially homoplasy-poor characters. In this contribution we analyze the phylogenetic information content from a combinatorial point of view by considering the binary relation on the set of taxa defined by the existence of a single event separating two taxa. We show that the graph-representation of this relation must be a tree. Moreover, we characterize completely the relationship between the tree of such relations and the underlying phylogenetic tree. With directed operations such as tandem-duplication-random-loss events in mind we demonstrate how non-symmetric information constrains the position of the root in the partially reconstructed phylogeny.

  14. Dimensional Reduction for the General Markov Model on Phylogenetic Trees.

    Science.gov (United States)

    Sumner, Jeremy G

    2017-03-01

    We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.

  15. Statistical assignment of DNA sequences using Bayesian phylogenetics

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Huelsenbeck, John P.

    2008-01-01

    We provide a new automated statistical method for DNA barcoding based on a Bayesian phylogenetic analysis. The method is based on automated database sequence retrieval, alignment, and phylogenetic analysis using a custom-built program for Bayesian phylogenetic analysis. We show on real data...... that the method outperforms Blast searches as a measure of confidence and can help eliminate 80% of all false assignment based on best Blast hit. However, the most important advance of the method is that it provides statistically meaningful measures of confidence. We apply the method to a re......-analysis of previously published ancient DNA data and show that, with high statistical confidence, most of the published sequences are in fact of Neanderthal origin. However, there are several cases of chimeric sequences that are comprised of a combination of both Neanderthal and modern human DNA....

  16. TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics

    Directory of Open Access Journals (Sweden)

    von Haeseler Arndt

    2004-06-01

    Full Text Available Abstract Background Most analysis programs for inferring molecular phylogenies are difficult to use, in particular for researchers with little programming experience. Results TREEFINDER is an easy-to-use integrative platform-independent analysis environment for molecular phylogenetics. In this paper the main features of TREEFINDER (version of April 2004 are described. TREEFINDER is written in ANSI C and Java and implements powerful statistical approaches for inferring gene tree and related analyzes. In addition, it provides a user-friendly graphical interface and a phylogenetic programming language. Conclusions TREEFINDER is a versatile framework for analyzing phylogenetic data across different platforms that is suited both for exploratory as well as advanced studies.

  17. Effective lagrangian for strong interactions

    International Nuclear Information System (INIS)

    Jain, P.

    1988-01-01

    We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model

  18. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Ronning, Filip; Batista, Cristian

    2011-03-01

    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  19. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  20. Sequence of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the gene family.

    Science.gov (United States)

    Habenicht, A; Quesada, A; Cerff, R

    1997-10-01

    A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.

  1. Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine.

    Science.gov (United States)

    Rincón, A; Santamaría, B P; Ocaña, L; Verdú, M

    2014-02-01

    Environmental disturbances define the diversity and assemblage of species, affecting the functioning of ecosystems. Fire is a major disturbance of Mediterranean pine forests. Pines are highly dependent on the ectomycorrhizal (EM) fungal symbiosis, which is critical for tree recruitment under primary succession. To determine the effects of time since fire on the structure and recovery of EM fungal communities, we surveyed the young Pinus pinaster regenerate in three sites differing in the elapsed time after the last fire event. Pine roots were collected, and EM fungi characterized by sequencing the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal (nr)-DNA. The effects of the elapsed time after fire on the EM community structure (richness, presence/absence of fungi, phylogenetic diversity) and on soil properties were analysed.Fungal richness decreased with the elapsed time since the fire; although, the phylogenetic diversity of the EM community increased. Soil properties were different depending on the elapsed time after fire and particularly, the organic matter, carbon-to-nitrogen (C/N) ratio, nitrogen and iron significantly correlated with the assemblage of fungal species. Ascomycetes, particularly Tuberaceae and Pezizales, were significantly over-represented on saplings in the burned site. On seedlings, a significant over-representation of Rhizopogonaceae and Atheliaceae was observed in the most recently burned site, while other fungi (i.e. Cortinariaceae) were significantly under-represented. Our results are consistent with the hypothesis that fire can act as a selective agent by printing a phylogenetic signal on the EM fungal communities associated with naturally regenerated pines, pointing out to some groups as potential fire-adapted fungi.

  2. Revised phylogenetic analysis of the Aetosauria (Archosauria: Pseudosuchia; assessing the effects of incongruent morphological character sets

    Directory of Open Access Journals (Sweden)

    William G. Parker

    2016-01-01

    Full Text Available Aetosauria is an early-diverging clade of pseudosuchians (crocodile-line archosaurs that had a global distribution and high species diversity as a key component of various Late Triassic terrestrial faunas. It is one of only two Late Triassic clades of large herbivorous archosaurs, and thus served a critical ecological role. Nonetheless, aetosaur phylogenetic relationships are still poorly understood, owing to an overreliance on osteoderm characters, which are often poorly constructed and suspected to be highly homoplastic. A new phylogenetic analysis of the Aetosauria, comprising 27 taxa and 83 characters, includes more than 40 new characters that focus on better sampling the cranial and endoskeletal regions, and represents the most comprenhensive phylogeny of the clade to date. Parsimony analysis recovered three most parsimonious trees; the strict consensus of these trees finds an Aetosauria that is divided into two main clades: Desmatosuchia, which includes the Desmatosuchinae and the Stagonolepidinae, and Aetosaurinae, which includes the Typothoracinae. As defined Desmatosuchinae now contains Neoaetosauroides engaeus and several taxa that were previously referred to the genus Stagonolepis, and a new clade, Desmatosuchini, is erected for taxa more closely related to Desmatosuchus. Overall support for some clades is still weak, and Partitioned Bremer Support (PBS is applied for the first time to a strictly morphological dataset demonstrating that this weak support is in part because of conflict in the phylogenetic signals of cranial versus postcranial characters. PBS helps identify homoplasy among characters from various body regions, presumably the result of convergent evolution within discrete anatomical modules. It is likely that at least some of this character conflict results from different body regions evolving at different rates, which may have been under different selective pressures.

  3. Orthology prediction at scalable resolution by phylogenetic tree analysis

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2007-03-01

    Full Text Available Abstract Background Orthology is one of the cornerstones of gene function prediction. Dividing the phylogenetic relations between genes into either orthologs or paralogs is however an oversimplification. Already in two-species gene-phylogenies, the complicated, non-transitive nature of phylogenetic relations results in inparalogs and outparalogs. For situations with more than two species we lack semantics to specifically describe the phylogenetic relations, let alone to exploit them. Published procedures to extract orthologous groups from phylogenetic trees do not allow identification of orthology at various levels of resolution, nor do they document the relations between the orthologous groups. Results We introduce "levels of orthology" to describe the multi-level nature of gene relations. This is implemented in a program LOFT (Levels of Orthology From Trees that assigns hierarchical orthology numbers to genes based on a phylogenetic tree. To decide upon speciation and gene duplication events in a tree LOFT can be instructed either to perform classical species-tree reconciliation or to use the species overlap between partitions in the tree. The hierarchical orthology numbers assigned by LOFT effectively summarize the phylogenetic relations between genes. The resulting high-resolution orthologous groups are depicted in colour, facilitating visual inspection of (large trees. A benchmark for orthology prediction, that takes into account the varying levels of orthology between genes, shows that the phylogeny-based high-resolution orthology assignments made by LOFT are reliable. Conclusion The "levels of orthology" concept offers high resolution, reliable orthology, while preserving the relations between orthologous groups. A Windows as well as a preliminary Java version of LOFT is available from the LOFT website http://www.cmbi.ru.nl/LOFT.

  4. Phylogenetic Diversity of Vibrio cholerae Associated with Endemic Cholera in Mexico from 1991 to 2008.

    Science.gov (United States)

    Choi, Seon Young; Rashed, Shah M; Hasan, Nur A; Alam, Munirul; Islam, Tarequl; Sadique, Abdus; Johura, Fatema-Tuz; Eppinger, Mark; Ravel, Jacques; Huq, Anwar; Cravioto, Alejandro; Colwell, Rita R

    2016-03-15

    in Mexico prior to the 1990s, genetically diverse V. cholerae O1 strains were isolated between 1991 and 2008. Despite the lack of strong evidence, the notion that cholera was transmitted from Africa to Latin America has been proposed in the literature. In this study, we have applied whole-genome sequence analysis to a set of 124 V. cholerae strains, including six Mexican isolates, to determine their phylogenetic relationships. Phylogenetic analysis indicated the six V. cholerae O1 isolates belong to five phylogenetic clades: i.e., basal, nontoxigenic, classical, El Tor, and hybrid El Tor. Thus, the results of phylogenetic analysis, coupled with CTXϕ array and antibiotic susceptibility, do not support single-source transmission of cholera to Mexico from African countries. The association of indigenous populations of V. cholerae that has been observed in this study suggests it plays a significant role in the dynamics of cholera in Mexico. Copyright © 2016 Choi et al.

  5. Phylogenetic and chemical diversity of MAR4 streptomycete lineage

    Directory of Open Access Journals (Sweden)

    Marisa Paulino

    2014-06-01

    To date, phylogenetic characterization of 6 representative isolates, based on partial sequence of gene encoding 16S rRNA, confirm that these strains belong to the specie Streptomyces aculeolatus. Figure 2. Neighbour-joining phylogenetic tree created from 6 partial 16S rRNA gene sequence from Streptomyces aculeolatus strains cultured from Madeira Archipelago, based on 1000 bootstrap replicates. BLAST matches (deposited in GenBank are included with species and strain name followed by accession number. Verrucosispora maris and Micromonospora aurantiaca were used as outgroups.

  6. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species

    Directory of Open Access Journals (Sweden)

    Tuffery Pierre

    2009-12-01

    Full Text Available Abstract Background Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. Results We identified the gene encoding esterase B as the acetyl-esterase gene (aes using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Conclusion Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  7. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  8. Strong growth for Queensland mining

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Queensland mining industry experienced strong growth during 1989-90 as shown in the latest statistics released by the Department of Resource Industries. The total value of Queensland mineral and energy production rose to a new record of $5.1 billion, an increase of 16.5% on 1988-89 production. A major contributing factor was a 20.9 percent increase in the value of coal production. While the quantity of coal produced rose only 1.1 percent, the substantial increase in the value of coal production is attributable to higher coal prices negotiated for export contracts. In Australian dollar terms coal, gold, lead, zinc and crude oil on average experienced higher international prices than in the previous year. Only copper and silver prices declined. 3 tabs.

  9. Strong moduli stabilization and phenomenology

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A

    2013-01-01

    We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).

  10. Strongly interacting W's and Z's

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1984-01-01

    The study focussed primarily on the dynamics of a strongly interacting W, Z(SIW) sector, with the aim of sharpening predictions for total W, Z yield and W, Z multiplicities expected from WW fusion for various scenarios. Specific issues raised in the context of the general problem of modeling SIW included the specificity of the technicolor (or, equivalently, QCD) model, whether or not a composite scalar model can be evaded, and whether the standard model necessarily implies an I = J = O state (≅ Higgs particle) that is relatively ''light'' (M ≤ hundreds of TeV). The consensus on the last issue was that existing arguments are inconclusive. While the author shall briefly address compositeness and alternatives to the technicolor model, quantitative estimates will be of necessity based on technicolor or an extrapolation of pion data

  11. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  12. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  13. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  14. Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology.

    Science.gov (United States)

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy

    2015-04-01

    Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.

  15. Relating appendicular skeletal variation of sigmodontine rodents to locomotion modes in a phylogenetic context.

    Science.gov (United States)

    Carvalho Coutinho, Ludmilla; Alves de Oliveira, João

    2017-10-01

    Sigmodontinae rodents constitute the second-largest subfamily among mammals. Alongside the taxonomic diversity, they are also ecologically diverse, exhibiting a wide array of locomotion modes, with semifossorial, terrestrial, semiaquatic, scansorial, arboreal, and saltatorial forms. To understand the ecomorphologic aspects that allow these rodents to display such locomotion diversity, we analyzed 35 qualitative characters of the appendicular skeleton (humerus, ulna, radius, scapula, femur, tibia, ilium, ischium and pubis) in 795 specimens belonging to 64 species, 34 genera and 10 tribes, representing all locomotion modes assigned to this subfamily. We performed a statistical analysis based upon the coefficient of trait differentiation to test the congruence of character states and the different locomotion modes. We also mapped characters states in a molecular phylogeny in order to reconstruct ancestral states and to evaluate how appendicular characters evolved within main lineages of Sigmodontinae radiation under a phylogenetic framework. The statistical analyses revealed six characters related to specific locomotion modes, except terrestrial. The mapping and parsimony ancestral states reconstruction identified two characters with phylogenetical signal and eight characters that are exclusively or more frequently recorded in certain modes of locomotion, four of them also detected by the statistical analysis. Notwithstanding the documented morphological variation, few changes characterize the transition to each of the locomotion modes, at least regarding the appendicular skeleton. This finding corroborates previous results that showed that sigmodontines exhibit an all-purpose appendicular morphology that allows them to use and explore a great variety of habitats. © 2017 Anatomical Society.

  16. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities.

    Science.gov (United States)

    Amend, Anthony S; Matulich, Kristin L; Martiny, Jennifer B H

    2015-01-01

    Fungi play a critical role in the degradation of organic matter. Because different combinations of fungi result in different rates of decomposition, determining how climate change will affect microbial composition and function is fundamental to predicting future environments. Fungal response to global change is patterned by genetic relatedness, resulting in communities with comparatively low phylogenetic diversity (PD). This may have important implications for the functional capacity of disturbed communities if lineages sensitive to disturbance also contain unique traits important for litter decomposition. Here we tested the relationship between PD and decomposition rates. Leaf litter fungi were isolated from the field and deployed in microcosms as mock communities along a gradient of initial PD, while species richness was held constant. Replicate communities were subject to nitrogen fertilization comparable to anthropogenic deposition levels. Carbon mineralization rates were measured over the course of 66 days. We found that nitrogen fertilization increased cumulative respiration by 24.8%, and that differences in respiration between fertilized and ambient communities diminished over the course of the experiment. Initial PD failed to predict respiration rates or their change in response to nitrogen fertilization, and there was no correlation between community similarity and respiration rates. Last, we detected no phylogenetic signal in the contributions of individual isolates to respiration rates. Our results suggest that the degree to which PD predicts ecosystem function will depend on environmental context.

  17. Phylogenetic distribution of a male pheromone that may exploit a nonsexual preference in lampreys.

    Science.gov (United States)

    Buchinger, T J; Bussy, U; Li, K; Wang, H; Huertas, M; Baker, C F; Jia, L; Hayes, M C; Li, W; Johnson, N S

    2017-12-01

    Pheromones are among the most important sexual signals used by organisms throughout the animal kingdom. However, few are identified in vertebrates, leaving the evolutionary mechanisms underlying vertebrate pheromones poorly understood. Pre-existing biases in receivers' perceptual systems shape visual and auditory signalling systems, but studies on how receiver biases influence the evolution of pheromone communication remain sparse. The lamprey Petromyzon marinus uses a relatively well-understood suite of pheromones and offers a unique opportunity to study the evolution of vertebrate pheromone communication. Previous studies indicate that male signalling with the mating pheromone 3-keto petromyzonol sulphate (3kPZS) may exploit a nonsexual attraction to juvenile-released 3kPZS that guides migration into productive rearing habitat. Here, we infer the distribution of male signalling with 3kPZS using a phylogenetic comparison comprising six of 10 genera and two of three families. Our results indicate that only P. marinus and Ichthyomyzon castaneus release 3kPZS at high rates. Olfactory and behavioural assays with P. marinus, I. castaneus and a subset of three other species that do not use 3kPZS as a sexual signal indicate that male signalling might have driven the evolution of female adaptations to detect 3kPZS with specific olfactory mechanisms and respond to 3kPZS with targeted attraction relevant during mate search. We postulate that 3kPZS communication evolved independently in I. castaneus and P. marinus, but cannot eliminate the alternative that other species lost 3kPZS communication. Regardless, our results represent a rare macroevolutionary investigation of a vertebrate pheromone and provide insight into the evolutionary mechanisms underlying pheromone communication. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  19. Strong Statistical Convergence in Probabilistic Metric Spaces

    OpenAIRE

    Şençimen, Celaleddin; Pehlivan, Serpil

    2008-01-01

    In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.

  20. Taxonomic colouring of phylogenetic trees of protein sequences

    Directory of Open Access Journals (Sweden)

    Andrade-Navarro Miguel A

    2006-02-01

    Full Text Available Abstract Background Phylogenetic analyses of protein families are used to define the evolutionary relationships between homologous proteins. The interpretation of protein-sequence phylogenetic trees requires the examination of the taxonomic properties of the species associated to those sequences. However, there is no online tool to facilitate this interpretation, for example, by automatically attaching taxonomic information to the nodes of a tree, or by interactively colouring the branches of a tree according to any combination of taxonomic divisions. This is especially problematic if the tree contains on the order of hundreds of sequences, which, given the accelerated increase in the size of the protein sequence databases, is a situation that is becoming common. Results We have developed PhyloView, a web based tool for colouring phylogenetic trees upon arbitrary taxonomic properties of the species represented in a protein sequence phylogenetic tree. Provided that the tree contains SwissProt, SpTrembl, or GenBank protein identifiers, the tool retrieves the taxonomic information from the corresponding database. A colour picker displays a summary of the findings and allows the user to associate colours to the leaves of the tree according to any number of taxonomic partitions. Then, the colours are propagated to the branches of the tree. Conclusion PhyloView can be used at http://www.ogic.ca/projects/phyloview/. A tutorial, the software with documentation, and GPL licensed source code, can be accessed at the same web address.

  1. Phylogenetic relationships of Chaetomium isolates based on the ...

    African Journals Online (AJOL)

    Molecular characterization of 18 Chaetomium isolates collected from India based on the internal transcribed spacer (ITS) region of the rRNA gene sequences was done. Phylogenetic analysis of full length ITS region showed that Chaetomium globosum isolates, Cg1, Cg2, Cg6, Cg11 and Cg15, Chaetomium spp. isolates, ...

  2. Phylogenetic tests of a Cercopithecus monkey hybrid reveal X ...

    African Journals Online (AJOL)

    A captive Cercopithecus nictitans × C. cephus male was examined at loci on the X- and Y-chromosomes as a test of previously described phylogenetic methods for identifying hybrid Cercopithecus monkeys. The results confirm the reliability of such assays, indicating that they can be of immediate utility for studies of wild ...

  3. Global phylogenetic analysis of contemporary aleutian mink disease viruses (AMDVs)

    DEFF Research Database (Denmark)

    Ryt-Hansen, Pia; Hagberg, E. E.; Chriél, Mariann

    2017-01-01

    a strain originating from Sweden. In contrast, we did not identify any potential source for the other and more widespread outbreak strain. To the authors knowledge this is the first major global phylogenetic study of contemporary AMDV partial NS1 sequences. The study proved that partial NS1 sequencing can...

  4. Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae).

    Science.gov (United States)

    Nakao, Minoru; Lavikainen, Antti; Yanagida, Tetsuya; Ito, Akira

    2013-11-01

    Echinococcosis is a serious helminthic zoonosis in humans, livestock and wildlife. The pathogenic organisms are members of the genus Echinococcus (Cestoda: Taeniidae). Life cycles of Echinococcus spp. are consistently dependent on predator-prey association between two obligate mammalian hosts. Carnivores (canids and felids) serve as definitive hosts for adult tapeworms and their herbivore prey (ungulates, rodents and lagomorphs) as intermediate hosts for metacestode larvae. Humans are involved as an accidental host for metacestode infections. The metacestodes develop in various internal organs, particularly in liver and lungs. Each metacestode of Echinococcus spp. has an organotropism and a characteristic form known as an unilocular (cystic), alveolar or polycystic hydatid. Recent molecular phylogenetic studies have demonstrated that the type species, Echinococcus granulosus, causing cystic echinococcosis is a cryptic species complex. Therefore, the orthodox taxonomy of Echinococcus established from morphological criteria has been revised from the standpoint of phylogenetic systematics. Nine valid species including newly resurrected taxa are recognised as a result of the revision. This review summarises the recent advances in the phylogenetic systematics of Echinococcus, together with the historical backgrounds and molecular epidemiological aspects of each species. A new phylogenetic tree inferred from the mitochondrial genomes of all valid Echinococcus spp. is also presented. The taxonomic nomenclature for Echinococcus oligarthrus is shown to be incorrect and this name should be replaced with Echinococcus oligarthra. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Hal: an automated pipeline for phylogenetic analyses of genomic data.

    Science.gov (United States)

    Robbertse, Barbara; Yoder, Ryan J; Boyd, Alex; Reeves, John; Spatafora, Joseph W

    2011-02-07

    The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (http://sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed.

  6. Phylogenetic analysis of West Nile virus, Nuevo Leon State, Mexico.

    Science.gov (United States)

    Blitvich, Bradley J; Fernández-Salas, Ildefonso; Contreras-Cordero, Juan F; Loroño-Pino, María A; Marlenee, Nicole L; Díaz, Francisco J; González-Rojas, José I; Obregón-Martínez, Nelson; Chiu-García, Jorge A; Black, William C; Beaty, Barry J

    2004-07-01

    West Nile virus RNA was detected in brain tissue from a horse that died in June 2003 in Nuevo Leon State, Mexico. Nucleotide sequencing and phylogenetic analysis of the premembrane and envelope genes showed that the virus was most closely related to West Nile virus isolates collected in Texas in 2002.

  7. Phylogenetic placement of the Dominican Republic endemic genus Sarcopilea (Urticaceae)

    Czech Academy of Sciences Publication Activity Database

    Jestrow, B.; Valdés, James J.; Rodríguez, F. J.; Francisco-Ortega, J.

    2012-01-01

    Roč. 61, č. 3 (2012), s. 592-600 ISSN 0040-0262 Institutional support: RVO:60077344 Keywords : CAM * Caribbean Islands * cystoliths * epistomatic * hyperstomatic * hydathodes * phylogenetics * Pilea * Sarcopilea * succulent * Urticaceae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.782, year: 2012

  8. Host specificity and phylogenetic relationships of chicken and turkey parvoviruses

    Science.gov (United States)

    Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...

  9. Host specialization and phylogenetic diversity of Corynespora cassiicola.

    Science.gov (United States)

    Dixon, L J; Schlub, R L; Pernezny, K; Datnoff, L E

    2009-09-01

    The fungus Corynespora cassiicola is primarily found in the tropics and subtropics, and is widely diverse in substrate utilization and host association. Isolate characterization within C. cassiicola was undertaken to investigate how genetic diversity correlates with host specificity, growth rate, and geographic distribution. C. cassiicola isolates were collected from 68 different plant species in American Samoa, Brazil, Malaysia, and Micronesia, and Florida, Mississippi, and Tennessee within the United States. Phylogenetic analyses using four loci were performed with 143 Corynespora spp. isolates, including outgroup taxa obtained from culture collections: C. citricola, C. melongenae, C. olivacea, C. proliferata, C. sesamum, and C. smithii. Phylogenetic trees were congruent from the ribosomal DNA internal transcribed spacer region, two random hypervariable loci (caa5 and ga4), and the actin-encoding locus act1, indicating a lack of recombination within the species and asexual propagation. Fifty isolates were tested for pathogenicity on eight known C. cassiicola crop hosts: basil, bean, cowpea, cucumber, papaya, soybean, sweet potato, and tomato. Pathogenicity profiles ranged from one to four hosts, with cucumber appearing in 14 of the 16 profiles. Bootstrap analyses and Bayesian posterior probability values identified six statistically significant phylogenetic lineages. The six phylogenetic lineages correlated with host of origin, pathogenicity, and growth rate but not with geographic location. Common fungal genotypes were widely distributed geographically, indicating long-distance and global dispersal of clonal lineages. This research reveals an abundance of previously unrecognized genetic diversity within the species and provides evidence for host specialization on papaya.

  10. Phylogenetic Analysis of the Bee Tribe Anthidiini | Combey | Journal ...

    African Journals Online (AJOL)

    The phylogenetic relationships among members of long tongue bee tribe Anthidiini (Megachilidae: Megachilinae) were investigated at the Department of Entomology and Wildlife, University of Cape Coast (Ghana) and the Agricultural Research Council, Pretoria (South Af-rica) from July, 2006 to May, 2007. Ten museums ...

  11. PhyloSift: phylogenetic analysis of genomes and metagenomes.

    Science.gov (United States)

    Darling, Aaron E; Jospin, Guillaume; Lowe, Eric; Matsen, Frederick A; Bik, Holly M; Eisen, Jonathan A

    2014-01-01

    Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection. In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata. These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454).

  12. PhyloSift: phylogenetic analysis of genomes and metagenomes

    Directory of Open Access Journals (Sweden)

    Aaron E. Darling

    2014-01-01

    Full Text Available Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection.In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata.These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454.

  13. A phylogenetic study of Boletus section Boletus in Europe

    NARCIS (Netherlands)

    Beugelsdijk, D.C.M.; Linde, van der S.; Zuccarello, G.C.; Bakker, den H.C.

    2008-01-01

    A phylogenetic study of the species in Boletus sect. Boletus was undertaken using the molecular markers ITS1-5.8S-ITS2 and Gap dh. Four well-supported lineages, one comprising Boletus edulis s.l., the others referring to B. aereus, B. reticulatus and B. pinophilus have been distinguished. The ML and

  14. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  15. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis)

    NARCIS (Netherlands)

    Udayanga, D.; Liu, X.; Crous, P.W.; McKenzie, E.H.C.; Chukeatirote, E.; Hyde, K.D.

    2012-01-01

    The genus Diaporthe (Phomopsis) includes important plant pathogenic fungi with wide host ranges and geographic distributions. In the present study, phylogenetic species recognition in Diaporthe is re-evaluated using a multi-locus phylogeny based on a combined data matrix of rDNA ITS, and partial

  16. Phylogenetic relationships within and among Brassica species from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... Inappropriate tree reconstruction methods would pose a problem only in the basal relationships rather than in terminal taxa; the paraphyly observed in this study applied mostly to terminal taxa. This study recovered sufficient phylogenetic characters to separate accessions of the same species, making.

  17. Phylogenetic diversity analysis of Trichoderma species based on ...

    African Journals Online (AJOL)

    vi-4177/CSAU be assigned as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit ...

  18. Phylogenetic relationships of Chaetomium isolates based on the ...

    African Journals Online (AJOL)

    Biotech Unit

    2013-02-27

    Feb 27, 2013 ... Phylogenetic analysis of Chaetomium species. The evolutionary history was inferred using the maximum parsimony method. The bootstrap consensus tree inferred from. 1000 replicates is taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). The MP tree was obtained using.

  19. Inferring 'weak spots' in phylogenetic trees: application to mosasauroid nomenclature.

    Science.gov (United States)

    Madzia, Daniel; Cau, Andrea

    2017-01-01

    Mosasauroid squamates represented the apex predators within the Late Cretaceous marine and occasionally also freshwater ecosystems. Proper understanding of the origin of their ecological adaptations or paleobiogeographic dispersals requires adequate knowledge of their phylogeny. The studies assessing the position of mosasauroids on the squamate evolutionary tree and their origins have long given conflicting results. The phylogenetic relationships within Mosasauroidea, however, have experienced only little changes throughout the last decades. Considering the substantial improvements in the development of phylogenetic methodology that have undergone in recent years, resulting, among others, in numerous alterations in the phylogenetic hypotheses of other fossil amniotes, we test the robustness in our understanding of mosasauroid beginnings and their evolutionary history. We re-examined a data set that results from modifications assembled in the course of the last 20 years and performed multiple parsimony analyses and Bayesian tip-dating analysis. Following the inferred topologies and the 'weak spots' in the phylogeny of mosasauroids, we revise the nomenclature of the 'traditionally' recognized mosasauroid clades, to acknowledge the overall weakness among branches and the alternative topologies suggested previously, and discuss several factors that might have an impact on the differing phylogenetic hypotheses and their statistical support.

  20. Extended molecular phylogenetics and revised systematics of Malagasy scincine lizards

    NARCIS (Netherlands)

    Erens, Jesse; Miralles, A.; Glaw, F.; Chatrou, L.W.; Vences, M.

    2017-01-01

    Among the endemic biota of Madagascar, skinks are a diverse radiation of lizards that exhibit a striking ecomorphological variation, and could provide an interesting system to study body-form evolution in squamate reptiles. We provide a new phylogenetic hypothesis for Malagasy skinks of the