WorldWideScience

Sample records for strong photoluminescence pl

  1. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    Science.gov (United States)

    2015-03-01

    aluminum gallium nitride (AlGaN)/gallium nitride (GaN) and indium aluminum nitride (InAlN)/GaN HEMT structures. These samples were cooled to 13 °K...SUBJECT TERMS Photoluminescence (PL), Laser Spectrscopy, High Electron Mobility Transistor (HEMT), aluminum gallium nitride (AlGaN), gallium nitride ...GaN), indium aluminum nitride (InAlN) 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18

  2. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    Directory of Open Access Journals (Sweden)

    Brian Ford

    2017-04-01

    Full Text Available The following study focuses on the photoluminescence (PL enhancement of chemically synthesized silicon oxycarbide (SiCxOy thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD, and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2 ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield.

  3. Photoluminescent (PL) or electroluminescent (EL) quantum dots for display, lighting, and photomedicine (Conference Presentation)

    Science.gov (United States)

    Dong, Yajie

    2017-02-01

    Quantum dots (QDs) have gone through a long journey before finding their ways into the display field. This talk will briefly touch on the history before trying to answer several key questions related to QDs applications in display: What are QDs? How are they made? What properties do they have and Why? How can these properties be used to improve color and efficiency of display, in either photoluminescence (PL) or electroluminescence (EL) mode? And what are the remaining challenges for QDs wide adoption in display industry? Lastly, some most recent progresses in our UCF lab at both PL and EL fronts will be highlighted. For PL, a cadmium-free perovskite-polymer composite films with exceptionally narrow emission green peaks (FWHM 20 nm) and good water and thermal stability will be reported. Together with red quantum dots or PFS/KSF phosphors as down-converters for blue LEDs, a white-light source with 95% Rec. 2020 color gamut was demonstrated [1]. For EL, red quantum dot light emitting devices (QLEDs) with record luminance of 165,000 Cd/m2 has been obtained at a current density of 1000 mA/cm2 with a low driving voltage of 5.8 V and CIE coordinates of (0.69, 0.31). [2] The potential of using these QLEDs for light sources for integrated sensing platform [3] or high efficiency, high color quality hybrid white OLED [4] will be discussed. [1] Y. N. Wang, J. He, H. Chen, J. S. Chen, R. D. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S. T. Wu, Y. J. Dong. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite - Polymer Composite Films, Advanced Materials, accepted, (2016). [2] Y. J. Dong, J.M. Caruge, Z. Q. Zhou, C. Hamilton, Z. Popovic, J. Ho, M. Stevenson, G. Liu, V. Bulovic, M. Bawendi, P. T. Kazlas, S. Coe-Sullivan, and J. Steckel Ultra-bright, Highly Efficient, Low Roll-off Inverted Quantum-Dot Light Emitting Devices (QLEDs). SID Symp. Dig. Tech. Pap. 46, 270-273 (2015). [3] J. He, H. Chen, S. T. Wu, and Y. J. Dong, Integrated Sensing Platform Based on Quantum

  4. The photoluminescence/excitation (PL/E) spectroscopy of Eu-implanted GaN

    KAUST Repository

    O'Donnell, Kevin Peter

    2011-05-01

    Several distinct luminescent centres form in GaN samples doped with Eu. One centre, Eu2, recently identified as the isolated, substitutional Eu impurity, EuGa, is dominant in ion-implanted samples annealed under very high pressures (1 GPa) of N2. According to structural determinations, such samples exhibit an essentially complete removal of lattice damage caused by the implantation process. A second centre, Eu1, probably comprising EuGa in association with an intrinsic lattice defect, produces a more complex emission spectrum. In addition there are several unidentified features in the 5D0 to 7F2 spectral region near 620 nm. We can readily distinguish Eu1 and Eu2 by their excitation spectra, in particular through their different sensitivities to above-gap and below-gap excitation. The present study extends recent work on photoluminescence/ excitation (PL/E) spectroscopy of Eu1 and Eu2 to arrive at an understanding of these mechanisms in terms of residual optically active defect concentrations. We also report further on the \\'host-independent\\' excitation mechanism that is active in the case of a prominent minority centre. The relevance of this work to the operation of the red GaN:Eu light-emitting diode is discussed. © 2010 Elsevier B.V. All rights reserved.

  5. Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields

    International Nuclear Information System (INIS)

    Herrera, H.; Calderon, A.; Gonzalez de la Cruz, G.

    2007-01-01

    Full text: Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al x Ga 1-x N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work we solve analytically the Schrodinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)

  6. Photoluminescence spectrum changes of GaN quantum wells caused by the strong piezoelectric fields

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, H.; Calderon, A. [CICATA-IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Gonzalez de la Cruz, G. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico)

    2006-07-01

    Spontaneous and piezoelectric fields are known to be the key to understanding the optical properties of nitride heterostructures. This effect modifies the electronic states in the quantum well (QW) and the emission energy in the photoluminescence (PL) spectrum. These fields induce a reduction of the oscillator strength on the transition energy between the confined electron and hole states in GaN/Al{sub x}Ga{sub 1-x}N QW's and dramatically increase the carrier life time as the QW thickness increases. In this work, we solve analytically the Schroedinger equation for moderate electric fields when the electron-hole transition energy in the QW is larger than the energy gap of the GaN. Furthermore, the large redshifts of the PL energy position and the spatial separation of the electron and hole by several times of the Bohr radius caused by the strong piezoelectric fields are explained using a triangular potential in the Schrodinger equation. The transition energy calculations between the electron-hole pair as a function of the well width with the electric field as a fitting parameter are in agreement with the measured photoluminescence energy peaks. (Author)

  7. Water-Soluble Polymers with Strong Photoluminescence through an Eco-Friendly and Low-Cost Route.

    Science.gov (United States)

    Guo, Zhaoyan; Ru, Yue; Song, Wenbo; Liu, Zhenjie; Zhang, Xiaohong; Qiao, Jinliang

    2017-07-01

    Photoluminescence (PL) of nonconjugated polymers brings a favorable opportunity for low-cost and nontoxic luminescent materials, while most of them still exhibit relatively weak emission. Strong PL from poly[(maleic anhydride)-alt-(vinyl acetate)] (PMV) from low-cost monomer has been found in organic solvents, yet the necessity of noxious solvents would hinder its practical applications. Herein, through a novel, eco-friendly, and one-step route, PMV-derived PL polymers can be fabricated with the highest quantum yield of 87% among water-soluble nonconjugated PL polymers ever reported. These PMV-derived polymers emit strong blue emission in both solutions and solids, and can be transformed into red-emission agents easily. These PL polymers exhibit application potentials in light-conversion agricultural films. It is assumed that this work not only puts forward a convenient preparation routine for nonconjugated polymers with high PL, but also provides an industrial application possibility for them. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3

    International Nuclear Information System (INIS)

    Benami, A; Santana, G; Ortiz, A; Ponce, A; Romeu, D; Aguilar-Hernandez, J; Contreras-Puente, G; Alonso, J C

    2007-01-01

    Strong white and blue photoluminescence (PL) from as-grown silicon nanocrystals (nc-Si) in SiN x films prepared by remote plasma enhanced chemical vapour deposition using SiCl 4 /NH 3 mixtures is reported. The colour and intensity of the PL could be controlled by adjusting the NH 3 flow rate. Samples with white emission were annealed at 1000 deg. C, obtaining a strong improvement of the PL intensity with a blue colour. The PL can be attributed to quantum confinement effect in nc-Si embedded in SiN x matrix, which is improved when a better passivation of nc-Si surface with chlorine and nitrogen atoms is obtained. The size, density and structure of the nc-Si in the as-grown and annealed films were confirmed and measured by high-resolution transmission electron microscopy

  9. Spatially and Temperature Resolved Photoluminescence (PL) Of Excitons in Highly Oriented Phthalocyanine Films

    Science.gov (United States)

    Rawat, Naveen; Pan, Zhenwen; Manning, Lane; Wetherby, Anthony; Waterman, Rory; Headrick, Randy; Furis, Madalina

    2012-02-01

    Phthalocyanines and their derivatives are interesting alternative to polymer materials for the development of electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photovoltaic cells. The present study focuses on spatially resolved, temperature-dependent PL of highly-oriented metal free and Zn -Octa-butoxy phthalocyanine (OBPc) polycrystalline thin films. Samples were fabricated using an in-house solution processing methodootnotetextR. L. Headrick et al, APL, 92, 063302 (2008) that results in mm-sized grains which can be individually probed using a focused laser beam. The experiments indicate the lowest optically active excitonic state which dominates the PL spectrum at 5K is optically-forbidden at room temperature. Linear Dichroism microscopy experiments indicate a reorientation of molecular planes below T˜200K which may favor a mixing of Frenkel and intermolecular excitons, changing the nature of excitonic ground state.

  10. From photoluminescence to thermal emission: Thermally-enhanced PL (TEPL) for efficient PV (Conference Presentation)

    Science.gov (United States)

    Manor, Assaf; Kruger, Nimrod; Martin, Leopoldo L.; Rotschild, Carmel

    2016-09-01

    The Shockley-Queisser efficiency limit of 40% for single-junction photovoltaic (PV) cells is mainly caused by the heat dissipation accompanying the process of electro-chemical potential generation. Concepts such as solar thermo-photovoltaics (STPV) aim to harvest this heat loss by the use of a primary absorber which acts as a mediator between the sun and the PV, spectrally shaping the light impinging on the cell. However, this approach is challenging to realize due to the high operating temperatures of above 2000K required in order to generate high thermal emission fluxes. After over thirty years of STPV research, the record conversion efficiency for STPV device stands at 3.2% for 1285K operating temperature. In contrast, we recently demonstrated how thermally-enhanced photoluminescence (TEPL) is an optical heat-pump, in which photoluminescence is thermally blue-shifted upon heating while the number of emitted photons is conserved. This process generates energetic photon-rates which are comparable to thermal emission in significantly reduced temperatures, opening the way for a TEPL based energy converter. In such a device, a photoluminescent low bandgap absorber replaces the STPV thermal absorber. The thermalization heat induces a temperature rise and a blue-shifted emission, which is efficiently harvested by a higher bandgap PV. We show that such an approach can yield ideal efficiencies of 70% at 1140K, and realistic efficiencies of almost 50% at moderate concentration levels. As an experimental proof-of-concept, we demonstrate 1.4% efficient TEPL energy conversion of an Nd3+ system coupled to a GaAs cell, at 600K.

  11. Interpretation of the temperature dependence of the strong visible photoluminescence of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, S. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Weber, J. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    1995-01-15

    The temperature dependence of the strong visible photoluminescence (550-850nm) is studied in differently prepared porous silicon samples. The variation in the photoluminescence intensity with temperature is a result of a decrease in the radiative decay time and an increase in the non-radiative recombination process with increasing temperatures. The strong visible photoluminescence is interpreted by a recombination of singlet and triplet excitons. The singlet-triplet splitting is comparable for all samples but depends on the detection wavelength and on sample preparation. We present similar data for the recombination process in siloxene which supports the model of a common origin of the strong visible photoluminescence in these very differently prepared samples. ((orig.))

  12. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    Energy Technology Data Exchange (ETDEWEB)

    Romero, V.H. [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); De la Rosa, E., E-mail: elder@cio.mx [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Velazquez-Salazar, J.J. [Department of Physics and Astronomy, The University of Texas at San Antonio One UTSA Circle, San Antonio TX 78249 (United States)

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  13. Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ZnWO{sub 4} rod-like nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Validzic, Ivana Lj., E-mail: validzic@vinca.rs [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Savic, Tatjana D.; Krsmanovic, Radenka M.; Jovanovic, Dragana J.; Novakovic, Mirjana M.; Popovic, Maja C.; Comor, Mirjana I. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Novel low temperature method for the synthesis of ZnO/ZnWO{sub 4} rod-like nanoparticles. Black-Right-Pointing-Pointer PL showed strong UV band peaked at 3.30 eV and a visible band at 2.71 and 2.53 eV. Black-Right-Pointing-Pointer Variations of the two PL bands were observed for different excitation wavelengths. Black-Right-Pointing-Pointer Band-gap energies of ZnO/ZnWO{sub 4} nanoparticles were found to be 3.62 and 3.21 eV. Black-Right-Pointing-Pointer Photocatalytic behaviour of ZnO is dependent on the formation of ZnWO{sub 4} phase. - Abstract: Zinc oxide (ZnO)/zinc tungstate (ZnWO{sub 4}) rod-like nanoparticles with diameters in the range of 6-11 nm and length of about 30 nm were synthesized by a low temperature soft solution method at 95 Degree-Sign C in the presence of non-ionic copolymer surfactant. It was found that their crystallinity was enhanced with the increase of heating time from 1 h up to 120 h. The photoluminescence (PL) measurements showed very strong, narrow UV band peaked at 3.30 eV and a broad visible band peaking at 2.71 eV with a shoulder at about 2.53 eV, for {lambda}{sub exc} < 300 nm. Quite large variations in the intensities of the two PL bands were observed for different excitation wavelengths. The intensity of the main visible band decreases with decreasing excitation energy and disappears when samples are excited {lambda} = 320 nm (E{sub exc} = 3.875 eV). We found that observed optical properties originate from ZnO phase. UV band gap PL had high intensity for all applied excitations, probably induced by ZnWO{sub 4} phase presence on the surface. In addition, two values were found for direct band-gap energy of ZnO/ZnWO{sub 4} rod-like nanoparticles 3.62 and 3.21 eV, determined from reflectance spectrum. The photocatalytic behaviour of ZnO is strongly dependent on the formation of ZnWO{sub 4} phase, of the obtained rod-like nanoparticles.

  14. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  15. Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene

    OpenAIRE

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-01-01

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (2 to 5 layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us ...

  16. High yield growth of uniform ZnS nanospheres with strong photoluminescence properties

    International Nuclear Information System (INIS)

    Li, Yuan; Li, Qing; Wu, Huijie; Zhang, Jin; Lin, Hua; Nie, Ming; Zhang, Yu

    2013-01-01

    Graphical abstract: High-yield ZnS nanospheres with an average diameter of 80 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant PVP. It was found that PVP plays a crucial role in the formation of uniform ZnS nanospheres. A possible self-assembling growth mechanism was proposed. The UV–vis spectrum indicates that the as-prepared ZnS nanospheres exhibit a dramatic blue-shift. PL spectrum reveals that the ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. Highlights: ► High-yield ZnS nanospheres were generated conveniently in aqueous solution. ► The amount of surfactant PVP plays a crucial role on the morphology and size of the products. ► A tentative explanation for the growth mechanism of ZnS nanospheres was proposed. ► The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. ► PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. - Abstract: High yield ZnS nanospheres were generated conveniently in aqueous solution with the assistance of surfactant polyvinyl pyrrolidone (PVP). The products were characterized by XRD, EDX, XPS, FESEM, TEM and HRTEM. The as-prepared ZnS nanospheres were uniform with an average diameter of 80 nm. The role of PVP in the forming of ZnS nanospheres was investigated. The results indicated that surfactant PVP plays a crucial role on the morphology and size of the products. Moreover, a tentative explanation for the growth mechanism of ZnS nanospheres was proposed. UV–vis and PL absorption spectrum were used to investigate the optical properties of ZnS nanospheres. The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm.

  17. Dependence of photoluminescence (PL) emission intensity on Eu3+ and ZnO concentrations in Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphors

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2011-08-01

    Full Text Available Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphor powders with different concentrations of Eu3+ ions were synthesized by a sol–gel method and their luminescence properties were investigated. The red photoluminescence (PL) from Eu3+ ions with the main...

  18. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

    Science.gov (United States)

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-Wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-09-23

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

  19. Fabrication and enhanced photoluminescence properties of NaLa ...

    Indian Academy of Sciences (India)

    Furthermore,UV-absorption and the photoluminescence (PL) properties of these phosphors were systematically investigated and the PLof the phosphors shows strong white light emissions. Efficient energy transfer from the MoO 4 2 − group or Bi 3 + ions to Sm 3 + ions was established by PL investigation excited at 405 nm.

  20. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)

    2016-11-15

    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  1. Passivation effect and photoluminescence decay lifetime of Si nanocrystals produced by hot implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sias, U.S. [Centro Federal de Educacao Tecnologica de Pelotas (CEFET-RS), 96015-370 Pelotas-RS (Brazil)], E-mail: uilson@cefetrs.tche.br; Behar, M. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre-RS (Brazil); Moreira, E.C. [UFPel - UNIPAMPA, Campus Bage, 96400-970 Bage-RS (Brazil)

    2008-06-15

    Si nanocrystals (Si NCs) produced by hot implantation present two photoluminescence (PL) bands (at 780 and 1000 nm, respectively) when measured at low pump power ({approx}20 mW/cm{sup 2}). Since each PL band was shown to have different origin we have investigated the passivation effect on them, as well as their PL decay lifetime. PL and time resolved PL measurements have demonstrated that both PL bands present different behavior after the passivation process. We have found that only the 1000 nm PL band is strongly influenced by the passivation process in its intensity as well as in its decay lifetime. In addition we have studied samples implanted at 600 deg. C annealed at 1150 deg. C for different time intervals and further passivated. The results show that the passivation effect on the 1000 nm PL band is strongly dependent on the preannealing time.

  2. Enhancement of porous silicon photoluminescence by electroless deposition of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Amdouni, S. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Rahmani, M., E-mail: rahmanimehdi79@yahoo.com [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Zaïbi, M.-A [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia); Ecole Nationale Supérieure des Ingénieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Oueslati, M. [Unité de nanomatériaux et photonique, Université El Manar, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis Tunisia (Tunisia)

    2015-01-15

    Nickel-porous silicon nanocomposites (PS/Ni) are elaborated by an electroless deposition method using NiCl{sub 2} aqueous solution. The presence of nickel ions in the porous layer is confirmed by Fourier Transformed InfraRed spectroscopy (FTIR) and Raman spectroscopy. The photoluminescence (PL) spectra of PS/Ni, prepared at different electroless durations (t{sub edp}), are analyzed. A remarkable enhancement in the integrated PL intensity of PS containing nickel was observed. The lower t{sub edp} favor the deposition of nickel in PS, hence the silicon dangling bonds at the porous surface are quenched and this was increased the PL intensity. However, for the longer t{sub edp}, the PL intensity has been considerably decreased due to the destruction of some Si nanocrystallites. The PL spectra of PS/Ni, for t{sub edp} less than 8 min, show a multiband profile indicating the creation of new luminescent centers by Ni elements which induces a strong modification in the emission mechanisms. - Highlights: • Deposition of Ni ions into porous silicon (PS) layer using the electroless method. • Formation of Ni–O bonds on the porous layer. • The photoluminescence (PL) intensity of PS is enhanced after Ni deposition. • The increase of the PL is due to the contribution of radiative centers related to Ni.

  3. Electronic band structure in porous silicon studied by photoluminescence and photoluminescence excitation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Kim, Young-You

    2004-01-01

    In this research, we used photoluminescence (PL) and photoluminescence excitation (PLE) to visualize the electronic band structure in porous silicon (PS). From the combined results of the PLE measurements at various PL emission energies and the PL measurements under excitation at various PLE absorption energies, we infer that three different electronic band structures, originating from different luminescent origins, give rise to the PL spectrum. Through either thermal activation or diffusive transfer, excited carriers are moved to each of the electronic band structures.

  4. Photoluminescence character of Xe ion irradiated sapphire

    International Nuclear Information System (INIS)

    Yin Song; Xie Erqing; Zhang Chonghong; Wang Zhiguang; Zhou Lihong; Ma YiZhong; Yao Cunfeng; Zang Hang; Liu Chunbao; Sheng Yanbin; Gou Jie

    2008-01-01

    In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10 15 ions/cm 2 and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10 13 ions/cm 2 . The FTIR spectra showed a broaden absorption band between 460 and 630 cm -1 , indicating that strong damaged region formed in Al 2 O 3

  5. Photoluminescence character of Xe ion irradiated sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Yin Song [Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)], E-mail: songyin@impcas.ac.cn; Xie Erqing [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhang Chonghong; Wang Zhiguang; Zhou Lihong; Ma YiZhong; Yao Cunfeng; Zang Hang; Liu Chunbao; Sheng Yanbin; Gou Jie [Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000 (China)

    2008-06-15

    In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10{sup 15} ions/cm{sup 2} and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10{sup 13} ions/cm{sup 2}. The FTIR spectra showed a broaden absorption band between 460 and 630 cm{sup -1}, indicating that strong damaged region formed in Al{sub 2}O{sub 3}.

  6. Complementary roles of benzylpiperazine and iodine 'vapor' in the strong enhancement of orange photoluminescence from CuI(1 1 1) thin film.

    Science.gov (United States)

    Rawal, Takat B; Turkowski, Volodymyr; Rahman, Talat S

    2014-05-07

    We have employed density functional theory, corrected by the on-site electron-electron repulsion energy U, to clarify the mechanism behind the enhanced orange photoluminescence (PL) of a CuI(1 1 1) thin film conjugated with a benzylpiperazine (BZP) molecule in the presence of an iodine 'vapor' atom. Our results demonstrated that the adsorbed molecule and the 'vapor' atom play complementary roles in producing the PL. The latter, in attaching to the film surface, creates a hole-trapping surface state located ~0.25 eV above the valence band-edge of the film, in good agreement with ~0.2 eV reported in experiments. Upon photo-excitation of the BZP/CuI(1 1 1) system in the presence of surface iodine 'vapor' atoms, excited electrons are transferred into the conduction band of CuI, and holes are trapped by the 'vapor' atoms. These holes, in turn, quickly relax into the HOMO state of the BZP molecule, owing to the fact that the molecule adsorbs on the film surface in the immediate vicinity of a 'vapor' atom. Relaxed holes subsequently recombine with excited electrons in the conduction band of the CuI film, thereby producing a luminescence peak at ~2.1 eV, in qualitative agreement with experimental findings.

  7. Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission

    KAUST Repository

    Krysmann, Marta J.

    2012-01-18

    We present a systematic investigation of the formation mechanism of carbogenic nanoparticles (CNPs), otherwise referred to as C-dots, by following the pyrolysis of citric acid (CA)-ethanolamine (EA) precursor at different temperatures. Pyrolysis at 180 °C leads to a CNP molecular precursor with a strongly intense photoluminescence (PL) spectrum and high quantum yield formed by dehydration of CA-EA. At higher temperatures (230 °C) a carbogenic core starts forming and the PL is due to the presence of both molecular fluorophores and the carbogenic core. CNPs that exhibit mostly or exclusively PL arising from carbogenic cores are obtained at even higher temperatures (300 and 400 °C, respectively). Since the molecular fluorophores predominate at low pyrolysis temperatures while the carbogenic core starts forming at higher temperatures, the PL behavior of CNPs strongly depends on the conditions used for their synthesis. © 2011 American Chemical Society.

  8. Synthesis, second-harmonic generation (SHG), and photoluminescence (PL) properties of noncentrosymmetric bismuth selenite solid solutions, Bi2-xLnxSeO5 (Ln = La and Eu; x = 0-0.3)

    Science.gov (United States)

    Qi, Hai-Xin; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-02-01

    A series of La3+ or Eu3+-doped noncentrosymmetric (NCS) bismuth selenite solid solutions, Bi2-xLnxSeO5 (x = 0.1, 0.2, and 0.3), have been successfully synthesized via standard solid-state reactions under vacuum with Bi2O3, La2O3 (or Eu2O3), and SeO2 as starting materials. Crystal structures and phase purities of the resultant materials were thoroughly characterized by powder X-ray diffraction using the Rietveld method. The results clearly show that the reported materials crystallize in the orthorhombic space group, Abm2 (No. 39), and exhibit pseudo-three-dimensional frameworks consisting of BiO3, BiO5, and SeO3 polyhedra that share edges and corners. Detailed diffraction studies indicate that the cell volume of Bi2-xLnxSeO5 decreases with an increasing amount of Ln3+ on the Bi3+ sites. However, no ordering between Ln3+ and Bi3+ was observed in the Bi2-xLnxSeO5 solid solutions. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that SHG efficiencies of Bi2-xLnxSeO5 solid solutions continuously decrease as more Ln3+ cations are added to the sites of polarizable Bi3+ cations. Photoluminescence (PL) measurements on Bi2-xEuxSeO5 exhibit three specific emission peaks at 592, 613, and 702 nm (5D0 → 7F1, 2, 4) owing to the 4f-4f intrashell transitions of Eu3+ ions.

  9. Photoluminescence enhancement through silicon implantation on SRO-LPCVD films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A., E-mail: amorales@inaoep.mx [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Leyva, K.M.; Aceves, M. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Barreto, J.; Dominguez, C. [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Luna-Lopez, J.A.; Carrillo, J. [CIDS-BUAP, Apdo. 1651, Puebla 72000 (Mexico); Pedraza, J. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2010-10-25

    Photoluminescence (PL) properties of thin and thick silicon-rich oxide (SRO) and silicon implanted SRO (SI-SRO) films with different silicon excess fabricated by low pressure chemical vapor deposition (LPCVD) were studied. The effects of the annealing temperature and silicon implantation on the PL were also studied. Maximum luminescence intensity was observed with an annealing temperature of 1150 and 1100 deg. C for thin and thick SRO films, respectively. The PL intensity is strongly enhanced when SRO films are implanted with silicon, especially for thin SRO films. Thin SI-SRO films emit up to six times more than non-implanted films, meanwhile the PL in thick SI-SRO films is only improved less than two times. Therefore, thin SI-SRO films are an interesting alternative for applications such as the fabrication of efficient Si-nps based LEDs.

  10. Deposition-induced photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum

    Science.gov (United States)

    Choong, V.-E.; Park, Y.; Shivaparan, N.; Tang, C. W.; Gao, Y.

    1997-08-01

    Ca, Ag, and Ge atoms quench the photoluminescence (PL) of an organic thin film, tris-(8-hydroxyquinoline) aluminum (Alq3), a model organic material for organic light emitting diodes. The observed PL quenching behavior was similar for all three elements, independent of their metallic nature. Due to strong interactions at the Ca/Alq3 interface, the quenching was much less effective at submonolayer coverages. We have also observed that proper oxidation of Ca at the Ca/Alq3 interface can significantly recover the quenched luminescence of Alq3.

  11. Photoluminescence character of Xe ion irradiated sapphire

    International Nuclear Information System (INIS)

    Song Yin; Xie Erqing; Li Yuhong; Zhang Chonghong; Zhou Lihong; Yang Yitao; Yao Cunfeng; Li Bingsheng; Ma Yizhun; Hou Jie

    2008-01-01

    The photoluminescence (PL) character of sapphire irradiated with 460 keV, 3 MeV and 308 MeV Xe ions were studied. The PL measurements show that the absorption peaks located at 380, 413, and 450 nm are increased, and new peaks are appeared at 390 and 564 nm in irradiated samples with 460 keV Xe ions. The PL measurements also show that the absorption peaks located at 516 and 564 nm appear in irradiated samples with 3 MeV Xe ions, and w hen the Xe ions fluency is increased to 1 × 10 16 cm -2 , the peak at 564 nm is disappeared. The PL measurements show that the absorption peaks are appeared at 357 and 516 nm for the irradiated samples with 308 MeV Xe ions, and the peak become more and more strong with increase of Xe ions fluencies. Infrared spectra show a broadening of the absorption band between 460 cm -1 and 630 cm -1 indicating strongly damaged regions formed in the Al 2 O 3 samples and position shift of the absorption band in 1000-1300 cm -1 towards to low wavenumber. (authors)

  12. Synthesis, characterization, photoluminescence and thermally ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Sm3+-doped ZnAl2O4 phosphor was synthesized by citrate sol–gel method and characterized using. X-ray diffraction and scanning electron microscopy to identify the crystalline phase and determine the parti- cle size. Photoluminescence (PL) studies on the sample showed emission peaks at 563, 601, 646 and ...

  13. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hwan; Lee, Seung-Koo [Department of Chemistry, Kongju National University, Kongju 314-701 (Korea, Republic of); Jeon, Ki-Seok, E-mail: ksjeon@kongju.ac.kr [Fusion Biotechnology Research Center, KRICT, Daejeon 305-600 (Korea, Republic of)

    2009-02-01

    Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors. The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm. In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.

  14. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing

    International Nuclear Information System (INIS)

    Lee, Ki-Hwan; Lee, Seung-Koo; Jeon, Ki-Seok

    2009-01-01

    Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors. The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm. In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.

  15. The post-annealing environment effect on the photoluminescence recovery of ion-irradiated Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sias, U.S. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil) and Centro Federal de Educacao Tecnologica de Pelotas (CEFET-RS), 96015-370 Pelotas, RS (Brazil)]. E-mail: uilson@cefetrs.tche.br; Behar, M. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Boudinov, H. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Moreira, E.C. [UFPel - UNIPAMPA, Campus Bage, 96400-970 Bage, RS (Brazil)

    2007-04-15

    In the present work we have investigated the influence of the post-annealing environment on the photoluminescence (PL) recovery of Si nanocrystals after ion irradiation. Samples originally produced by Si implantation into SiO{sub 2} matrix at 600 deg. C post-annealed at 1100 deg. C were further bombarded with 2 MeV Si{sup +}, at a fluence of {phi} = 2 x 10{sup 13} Si/cm{sup 2}. After irradiation the original emission, composed by two PL bands, was completely quenched. We shown that the environment of a post-annealing performed at 900 deg. C has a strong effect on the PL emission recovery. The intensity and shape of the PL spectra have revealed to be dependent of the annealing gas (N{sub 2} or Ar), annealing time, as well as the original Si excess. The results are explained on the basis of current theories.

  16. Photoluminescence of Zero-Dimensional Perovskites and Perovskite-Related Materials.

    Science.gov (United States)

    Seth, Sudipta; Samanta, Anunay

    2018-01-04

    Zero-dimensional (0-D) perovskites and perovskite-related materials are an emerging class of optoelectronic materials exhibiting strong excitonic properties and, quite often, high photoluminescence (PL) in the solid state. Here we highlight two different classes of 0-D perovskites with contrasting structural and optical properties, focusing mainly on the less explored but rapidly growing bulk quantum materials termed as 0-D perovskite-related materials (0-D PRMs), whose PL properties are quite intriguing and a topic of recent debate. We attempt to present here a comprehensive picture to rationalize the contrasting properties of the 0-D PRMs and provide an understanding of the mechanism of exciton dynamics and PL of this class of materials. We hope that exciting PL and tunable composition of these systems will help design of new materials with versatile optical properties suited for practical applications.

  17. Photoluminescence of a single InAs/AlAs quantum dot

    International Nuclear Information System (INIS)

    Shamirzaev, T.S.; Zhuravlev, K.S.; Larsson, M.; Holtz, P.O.

    2008-01-01

    Micro-photoluminescence (μ-PL) of a simple InAs/AlAs quantum dot (QD) has been studied. It has been found that the μ-PL emission related to the recombination in a single QD is strongly broadened probably due to spectral diffusion. Emissions related to the recombination of biexcitons and excitons occupying excited levels of the QD are observed in μ-PL spectra at high excitation power densities. A red shift of the μ-PL emissions related to recombination of excitons in the ground and excited levels of the QD with increasing excitation power gives clear evidence for type I alignment of the InAs/AlAs QD. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Engineering of the photoluminescence of ZnO nanowires by different growth and annealing environments

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; Sombrio, C I L; Franzen, P L

    2015-01-01

    Optical properties of ZnO nanowires were investigated through photoluminescence (PL) at room and low temperatures. An excitonic structure was observed in the UV band emission and we are able to distinguish between free excitons, bound excitons and donor acceptor pairs. The PL spectra shows deep...... level emissions ranging from 1.4 eV up to 2.8 eV, strongly depending on surface defects whereas the red emission (1.7 eV) is activated at cryogenic temperatures. We attribute the green luminescence (2.4 eV) emission to the presence of zinc vacancies into ZnO nanowires. Further evidences that confirm...

  19. Effect of illumination on photoluminescence properties of porous silicon

    International Nuclear Information System (INIS)

    Naddaf, M.; Hamadeh, H.

    2008-11-01

    Porous silicon (PS) layers were formed by photo-electrochemical etching of both p-type and n-type single crystal wafers in HF based solution. During the etching process, the silicon wafer was illuminated by a halogen lamp light guided by an optical fiber through a monochromator or diode lasers at different power density and wavelengths (480,533,580 and 635 nm). The optical and structural properties of the prepared PS samples have been investigated by using temperature dependent photoluminescence (PL) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, contact angle (CA) measurements, optical microscope and atomic force microscope (AFM). Beside the strong red-yellow PL band, a blue PL band has been observed only in the PS samples formed under the illumination with low power and short wavelengths (480-580 nm) light. In the near infrared (IR) spectral range, a new PL band at 850 nm was observed in p-type PS samples, which prepared under darkness or illumination with 635 nm of low power light. Temperature dependent PL measurements showed that, in contrast to the main IR PL band at around 1100 nm, the intensity of this new band increases on increasing the temperature. These changes in the PL properties was correlated with the illumination induced-structural and morphological modifications in the PS skeleton. In particular, the FTIR analysis showed that the chemical groups and bonds constituting the PS skeleton, such as, SiH, SiO bonds and silanol SiOH group play key role in deciding the PL emission intensity and blue shift. The study proved that the illumination parameters during the photo-electrochemical etching process can be utilized for tailoring a porous layer with novel optical and structural properties. (Authors)

  20. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    Full Text Available Photoluminescence (PL emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53–4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV to 400 (3.10 eV nm in step of 10 nm and the corresponding photoluminescence (PL emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC, the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation. Keywords: Photoluminescence spectra, Makrofol® DE 1-1, UV–vis spectrophotometry, Attenuation coefficient, Ultraviolet radiation

  1. Structure and photoluminescence of boron and nitrogen co-doped carbon nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Gao, B. [College of Computer Science, Chongqing University, Chongqing 400044 (China); Chongqing Municipal Education Examinations Authority, Chongqing 401147 (China); Zhong, X.X., E-mail: xxzhong@sjtu.edu.cn [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-07-15

    Graphical abstract: Boron- and nitrogen- doped carbon nanorods. - Highlights: • The co-doping of nitrogen and boron in carbon nanorods. • The doping mechanism of nitrogen and boron in carbon nanorods by plasma. • Photoluminescence properties of nitrogen- and boron-doped carbon nanorods. - Abstract: Boron and nitrogen doped carbon nanorods (BNCNRs) were synthesized by plasma-enhanced hot filament chemical vapor deposition, where methane, nitrogen and hydrogen were used as the reaction gases and boron carbide was the boron source. The results of scanning electron microscopy, micro-Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicate that boron and nitrogen can be used as co-dopants in amorphous carbon nanorods. Combined with the characterization results, the doping mechanism was studied. The mechanism is used to explain the formation of different carbon materials by different methods. The photoluminescence (PL) properties of BNCNRs were studied. The PL results show that the BNCNRs generate strong green PL bands and weak blue PL bands, and the PL intensity lowered due to the doping of boron. The outcomes advance our knowledge on the synthesis and optical properties of carbon-based nanomaterials and contribute to the development of optoelectronic nanodevices based on nano-carbon mateirals.

  2. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.

    Science.gov (United States)

    Chung, In; Song, Jung-Hwan; Im, Jino; Androulakis, John; Malliakas, Christos D; Li, Hao; Freeman, Arthur J; Kenney, John T; Kanatzidis, Mercouri G

    2012-05-23

    CsSnI(3) is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI(3) have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI(3), coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI(3). The black orthorhombic form of CsSnI(3) demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI(3) indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of ∼ 10(17) cm(-3) and a hole mobility of ∼585 cm(2) V(-1) s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise

  3. Photoluminescence Spectroscopy of Mass-Selected Electrosprayed Ions Embedded in Cryogenic Rare-Gas Matrixes.

    Science.gov (United States)

    Kern, Bastian; Greisch, Jean-François; Strelnikov, Dmitry; Weis, Patrick; Böttcher, Artur; Ruben, Mario; Schäfer, Bernhard; Schooss, Detlef; Kappes, Manfred M

    2015-12-01

    An apparatus is presented which combines nanoelectrospray ionization for isolation of large molecular ions from solution, mass-to-charge ratio selection in gas-phase, low-energy-ion-beam deposition into a (co-condensed) inert gas matrix and UV laser-induced visible-region photoluminescence (PL) of the matrix isolated ions. Performance is tested by depositing three different types of lanthanoid diketonate cations including also a dissociation product species not directly accessible by chemical synthesis. For these strongly photoluminescent ions, accumulation of some femto- to picomoles in a neon matrix (over a time scale of tens of minutes to several hours) is sufficient to obtain well-resolved dispersed emission spectra. We have ruled out contributions to these spectra due to charge neutralization or fragmentation during deposition by also acquiring photoluminescence spectra of the same ionic species in the gas phase.

  4. Mo-O bond doping and related-defect assisted enhancement of photoluminescence in monolayer MoS2

    Directory of Open Access Journals (Sweden)

    Xiaoxu Wei

    2014-12-01

    Full Text Available In this work, we report a strong photoluminescence (PL enhancement of monolayer MoS2 under different treatments. We find that by simple ambient annealing treatment in the range of 200 °C to 400 °C, the PL emission can be greatly enhanced by a factor up to two orders of magnitude. This enhancement can be attributed to two factors: first, the formation of Mo-O bonds during ambient exposure introduces an effective p-doping in the MoS2 layer; second, localized electrons formed around Mo-O bonds related defective sites where the electrons can be effectively localized with higher binding energy resulting in efficient radiative excitons recombination. Time resolved PL decay measurement showed that longer lifetime of the treated sample consistent with the higher quantum efficiency in PL. These results give more insights to understand the luminescence properties of the MoS2.

  5. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.

    Science.gov (United States)

    Park, Jeong-Eun; Kim, Sungi; Son, Jiwoong; Lee, Yeonhee; Nam, Jwa-Min

    2016-12-14

    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination.

  6. Influences of organic cation and hydrochloric acid additive on the morphology and photoluminescence of HC(NH2)2PbBr3 films

    Science.gov (United States)

    Yan, Jun; Chen, Yunlin; Wang, Ji; Zhang, Ao; Zhang, Bing

    2017-11-01

    The hydrohalic acid additives have been used in perovskite thin films to improve the film morphology and optical properties. However, our study demonstrated that the hydrochloric acid (HCl) additive greatly improved the surface coverage but lowered the photoluminescence (PL) emission intensities of HC(NH2)2PbBr3 (HC(NH2)2 = FA) films. The effects of organic cation and hydrochloric acid additive on the morphology and photoluminescence of FAPbBr3 films were investigated. We found that FAPbBr3 films prepared with HCl additive in low FABr concentration environment displayed good film quality but weak PL emission intensity. The optical properties of FAPbBr3 films have close relationship with FABr concentration. The optical absorption edge of FAPbBr3 showed a blue shift with increasing the FABr concentration. The strong PL emission intensities of FAPbBr3 can be obtained from the solutions with high FABr concentration.

  7. Photoluminescence of Er in SiOx

    International Nuclear Information System (INIS)

    Wan Jun; Sheng Chi; Lu Fang; Gong Dawei; Fan Yongliang; Lin Feng; Wang Xun

    1998-01-01

    Erbium-doped SiO x is prepared by molecular beam epitaxy. The influence of Er on the incorporation of O is studied by using Auger spectroscopy. Photoluminescence (PL) peaks around the wave-length of 1.53 μm have been observed within the temperature range of 18 to 300 K after annealing. The relationship between PL intensity and annealing temperature is discussed. The temperature dependence of the PL intensity shows an exponential decay with an activation energy of 12 meV at low temperatures ( 100 K)

  8. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  9. 3PL, 4PL and insourcing logistics

    Directory of Open Access Journals (Sweden)

    Mauro Vivaldini

    2015-12-01

    Full Text Available Logistics services have evolved and changed over time, especially in the hiring of them according to the concepts of 3PL (third party logistics, 4PL (fourth party logistics or insourcing logistics. 3PL service is a consolidated business, 4PL is an option for outsourcing logistics and has already been adopted by some organizations, and insourcing logistics suggests the return of these activities being internalized by companies, which is still a relatively unexplored subject in logistics literature. Analyzing these themes in the literature, this study updates the view on them and proposes a conceptual framework that classifies the different models of logistics services, showing the different options that can be adopted to help the company decide how to run their logistics services.

  10. Synthesis and photoluminescence property of silicon carbide ...

    Indian Academy of Sciences (India)

    Administrator

    SEM, EDS, PL and TEM (HR-TEM), β-SiC nanowires have been characterized and discussed in detail. The growth direction of nanowires lies along the 〈1 1 1〉 direc- tion. The tentative growth model according to the SiC thin film growth process was suggested. Finally, optical property is found in the photoluminescence ...

  11. Phenyl-doped graphitic carbon nitride: photoluminescence mechanism and latent fingerprint imaging.

    Science.gov (United States)

    Song, Zhiping; Li, Zhihong; Lin, Lihua; Zhang, Yongfan; Lin, Tianran; Chen, Ling; Cai, Zhuang; Lin, Sen; Guo, Liangqia; Fu, Fengfu; Wang, Xinchen

    2017-11-23

    The photoluminescence (PL) emission mechanism of graphitic carbon nitride (g-C 3 N 4 ) is still ambiguous and the application of PL g-C 3 N 4 powder as a solid sensing platform has not been explored. Herein we highlight a strategy to prepare g-C 3 N 4 powder with strong green PL by doping phenyl groups in a carbon nitride network. Compared with pristine g-C 3 N 4 , doping of phenyl groups greatly enhances the PL efficiency and Stokes shift. Theoretical calculations based on density function theory indicate that phenyl groups change the electronic structure of the carbon nitride network and have an obvious contribution to the LUMO of phenyl-doped g-C 3 N 4 , which may be the main reason for the enhancement of the PL efficiency and Stokes shift. Taking advantage of the high PL efficiency, large Stokes shift and high photo-stability, phenyl-doped g-C 3 N 4 powder shows promising application for the imaging of latent fingerprints.

  12. Photoluminescence signature of resonant energy transfer in ZnO coated Si nanocrystals decorated on vertical Si nanowires array

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ramesh [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Giri, P.K., E-mail: giri@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Imakita, Kenji; Fujii, Minoru [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501 (Japan)

    2015-07-25

    Highlights: • Si nanowires (NWs) array decorated with Si nanocrystals (NCs) are fabricated by metal assisted chemical etching method. • Coating of Si NWs/ NCs with thin ZnO layer changes the photoluminescence (PL) lifetime and PL peak position. • It is argued that resonant energy transfer from ZnO to Si NCs is responsible for the observed changes in PL. • Si-based hybrid optoelectronic device with tunable and broadband emission is demonstrated. - Abstract: We investigate the mechanism of red shift in photoluminescence (PL) and reduction in the PL lifetime from Si nanocrystals (NCs) decorated on vertical Si nanowires (NWs) array due to ZnO over layer coating. Arrays of vertically aligned single crystalline Si NWs decorated with arbitrary shaped Si NCs have been fabricated by a silver assisted wet chemical etching method. A strong broad band and tunable visible to near-infrared PL is observed from these Si NWs at room temperature and the Si NCs on the surface of the Si NWs are primarily responsible for the PL emission. Higher band gap ZnO film is sputter deposited on the Si NCs decorated Si NWs to form heterostructure. Bare Si NW/NCs and Si NCs/ZnO heterostructures show extremely high broad band absorption in the entire visible region. PL studies on the Si NCs/ZnO heterostructures reveal significant red shift and in some cases reduced intensity of the PL band due to the ZnO layer in close proximity of the Si NCs. This is accompanied by a reduction in the PL lifetime of the Si NCs after ZnO coating. Interestingly, no measurable red shift in PL is observed in absence of the resonance in the visible PL emission energy of ZnO and that of Si NCs. The modified PL from the heterostructures is explained through an energy band diagram on the basis of resonant energy transfer from the defect assisted recombination of the carries in the ZnO overlayer that excites the Si NCs in the close proximity and subsequent de-excitation process via radiative recombination. These

  13. Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates.

    Science.gov (United States)

    Melnikau, Dzmitry; Esteban, Ruben; Savateeva, Diana; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K; Liz-Marzán, Luis M; Aizpurua, Javier; Rakovich, Yury P

    2016-01-21

    We experimentally and theoretically investigate the interactions between localized plasmons in gold nanorods and excitons in J-aggregates under ambient conditions. Thanks to our sample preparation procedure we are able to track a clear anticrossing behavior of the hybridized modes not only in the extinction but also in the photoluminescence (PL) spectra of this hybrid system. Notably, while previous studies often found the PL signal to be dominated by a single mode (emission from so-called lower polariton branch), here we follow the evolution of the two PL peaks as the plasmon energy is detuned from the excitonic resonance. Both the extinction and PL results are in good agreement with the theoretical predictions obtained for a model that assumes two interacting modes with a ratio between the coupling strength and the plasmonic losses close to 0.4, indicative of the strong coupling regime with a significant Rabi splitting estimated to be ∼200 meV. The evolution of the PL line shape as the plasmon is detuned depends on the illumination wavelength, which we attribute to an incoherent excitation given by decay processes in either the metallic rods or the J-aggregates.

  14. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  15. Mechanoluminescence and photoluminescence of Pr3+ activated KMgF3 phosphor

    International Nuclear Information System (INIS)

    Dhoble, S.J.; Kher, R.S.; Furetta, C.

    2003-01-01

    A Czochralski method for the preparation of crystalline KMgF 3 : Pr phosphors are reported. Photoluminescence (PL) and mechanoluminescence (ML) characteristics are studied. Photoluminescence of Pr 3+ activated KMgF 3 shows the strong emission of Pr 3+ ions were observed at 498 and 650 nm by excitation of 213 mn. ML of KMgF 3 : Pr 3+ shows two peaks, which have been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radical (anion radical produced by γ-irradiation) released from two type traps during the mechanical pressure applied on KMgF 3 : Pr 3+ phosphor. It has a supra linear ML response with γ-ray exposure and a negligible fading. These properties of phosphor should be suitable in dosimetry of ionization relation using ML technique. Therefore the KMgF 3 : Pr 3+ phosphor proposed for ML dosimetry of ionization radiations. (Author)

  16. Energy transfer induced Eu{sup 3+} photoluminescence enhancement in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Stambouli, W. [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, Universite de Tunis-ElManar ElManar 2092, Tunis (Tunisia); Gelloz, B. [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, 184-8588 Tokyo (Japan); Ferid, M. [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Koshida, N. [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, 184-8588 Tokyo (Japan)

    2012-01-15

    In this work, structural, thermal and optical properties of Eu{sup 3+} doped TeO{sub 2}-La{sub 2}O{sub 3}-TiO{sub 2} glass were investigated. The differential scanning calorimetry (DSC) measurements reveal an important stability factor {Delta}T=143.52 K, which indicates the good thermal and mechanical stabilities of tellurite glass. From the absorption spectrum, the optical band gap was found to be direct with E{sub g}=3.23 eV. The temperature dependences of photoluminescence (PL) properties of Eu-doped and Eu-Tb codoped tellurite glass are investigated. As the temperature increases from 7 to 300 K, both the PL intensity and the PL lifetime relative to the {sup 5}D{sub 2}{yields}{sup 7}F{sub 0} are nearly constant below 230 K and then an enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from charged intrinsic defects states to Eu{sup 3+} energy levels. By co-doping tellurite glasses with Eu and Tb, a strong Eu{sup 3+} PL enhancement is shown due to excitation transfer from Tb{sup 3+} and intrinsic defects to Eu ions. - Highlights: > TeO{sub 2}-La{sub 2}O{sub 3}-TiO{sub 2} glass doped Eu{sup 3+} with good thermal stability elaborated. > PL evolution of Eu{sup 3+} with temperature shows a non-conventional behavior. > Thermally activated carrier transfer from intrinsic defects states to Eu{sup 3+} shown. > Strong Eu{sup 3+} PL enhancement is shown in Eu-Tb codoped glass.

  17. Blue-green photoluminescence in MCM-41 mesoporous nanotubes

    International Nuclear Information System (INIS)

    Shen, J L; Lee, Y C; Lui, Y L; Cheng, P W; Cheng, C F

    2003-01-01

    Different photoluminescence (PL) techniques have been used to study the blue-green emission from siliceous MCM-41 nanotubes. It was found that the intensity of the blue-green PL is enhanced by rapid thermal annealing (RTA). This enhancement is explained by the generation of twofold-coordinated Si centres and non-bridging oxygen hole centres, in line with the surface properties of MCM-41. On the basis of the analysis of the PL following RTA, polarized PL, and PL excitation, we suggest that the triplet-to-singlet transition of twofold-coordinated silicon centres is responsible for the blue-green PL in MCM-41 nanotubes. (letter to the editor)

  18. Temperature dependence of photoluminescence spectra of bilayer two-dimensional electron gases in LaAlO3/SrTiO3 superlattices: coexistence of Auger recombination and single-carrier trapping

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-06-01

    Full Text Available We report emerging photoluminescence (PL of bilayer two-dimensional electron gases (2DEG in LaAlO3/SrTiO3 (LAO/STO systems. A strong blue PL emerges in bilayer-2DEGs in LAO/STO/LAO/STO which doesn’t show in LAO/STO. PL band in bilayer-2DEGs includes both nearly temperature independent Auger recombination and temperature dependent free electron trapping while it crossovers from Auger recombination to single carrier trapping in LAO/STO. The PL signal of free electron trapping appears at high temperatures and it is much stronger than Auger recombination in the conducting channel in bilayer 2DEGs. This observation shows that high mobility carriers dominate the carrier dynamics in bilayer-2DEGs in LAO/STO superlattices.

  19. Photoluminescence of monovalent indium centres in phosphate glass

    OpenAIRE

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-01-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL ...

  20. Marketing poskytovatele 3PL

    OpenAIRE

    Bareš, Vladislav

    2010-01-01

    Services of 3PL providers are nowadays very commonly used by production and merchant firms. It is happening due to companies' concentration on their own core-business and outsourcing of many of their activities to external suppliers. This thesis is focused on marketing activities of a 3PL provider, which is a specific part of the B2B market, as well as the logistics market. The thesis consists of three parts. First chapter is focused on theoretical definition of marketing and individual aspec...

  1. Photoluminescence of Mg{sub 2}Si films fabricated by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yang-Fang [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); School of Physics and Electronic Science of Guizhou Normal University, Guiyang 550001 (China); Xie, Quan, E-mail: qxie@gzu.edu.cn [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); Xiao, Qing-Quan [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); Engineering Center for Avionics Electrical and Information Network of Guizhou Provincial Colleges and Universities, Anshun 561000 (China); Chen, Qian; Fan, Meng-Hui [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); Xie, Jing [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China); School of Physics and Electronic Science of Guizhou Normal University, Guiyang 550001 (China); Huang, Jin; Zhang, Jin-Min; Ma, Rui; Wang, Shan-Lan; Wu, Hong-Xian; Fang, Di [Institute of Advanced Optoelectronic Materials and Technology of College of BigData and Information Engineering of Guizhou University, Guiyang 550025 (China)

    2017-05-01

    Highlights: • High quality Mg{sub 2}Si films were grown on Si (111) and glass substrates with magnetron sputtering, respectively. • The first observation of Photoluminescence (PL) of Mg{sub 2}Si films was reported. • The Mg{sub 2}Si PL emission wavelengths are almost independence on temperature in the range of 77–300 K. • The strongest PL emissions may be attributed to interstitial Mg donor level to valence band transitions. • The activation energy of Mg{sub 2}Si is determined from the quenching of major luminescence peaks. - Abstract: To understand the photoluminescence mechanisms and optimize the design of Mg{sub 2}Si-based light-emitting devices, Mg{sub 2}Si films were fabricated on silicon (111) and glass substrates by magnetron sputtering technique, and the influences of different substrates on the photoelectric properties of Mg{sub 2}Si films were investigated systematically. The crystal structure, cross-sectional morphology, composition ratios and temperature-dependent photoluminescence (PL) of the Mg{sub 2}Si films were examined using X-ray diffraction (XRD), Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and PL measurement system, respectively. XRD results indicate that the Mg{sub 2}Si film on Si (111) displays polycrystalline structure, whereas Mg{sub 2}Si film on glass substrate is of like-monocrystalline structure.SEM results show that Mg{sub 2}Si film on glass substrate is very compact with a typical dense columnar structure, and the film on Si substrate represents slight delamination phenomenon. EDS results suggest that the stoichiometry of Mg and Si is approximately 2:1. Photoluminescence (PL) of Mg{sub 2}Si films was observed for the first time. The PL emission wavelengths of Mg{sub 2}Si are almost independence on temperature in the range of 77–300 K. The PL intensity decreases gradually with increasing temperature. The PL intensity of Mg{sub 2}Si films on glass substrate is much larger than that of Mg

  2. Plasmon-gating photoluminescence in graphene/GeSi quantum dots hybrid structures

    Science.gov (United States)

    Chen, Yulu; Wu, Qiong; Ma, Yingjie; Liu, Tao; Fan, Yongliang; Yang, Xinju; Zhong, Zhenyang; Xu, Fei; Lu, Jianping; Jiang, Zuimin

    2015-12-01

    The ability to control light-matter interaction is central to several potential applications in lasing, sensing, and communication. Graphene plasmons provide a way of strongly enhancing the interaction and realizing ultrathin optoelectronic devices. Here, we find that photoluminescence (PL) intensities of the graphene/GeSi quantum dots hybrid structures are saturated and quenched under positive and negative voltages at the excitation of 325 nm, respectively. A mechanism called plasmon-gating effect is proposed to reveal the PL dependence of the hybrid structures on the external electric field. On the contrary, the PL intensities at the excitation of 405 and 795 nm of the hybrid structures are quenched due to the charge transfer by tuning the Fermi level of graphene or the blocking of the excitons recombination by excitons separation effect. The results also provide an evidence for the charge transfer mechanism. The plasmon gating effect on the PL provides a new way to control the optical properties of graphene/QD hybrid structures.

  3. Photoluminescence and photoluminescence excitation studies in 80 MeV Ni ion irradiated MOCVD grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Devaraju, G. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Pathak, A.P., E-mail: appsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Srinivasa Rao, N.; Saikiran, V. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Enrichi, Francesco [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN), via delle Industrie 5, Marghera, I-30175Venice (Italy); Trave, Enrico [Dipartimento di Chimica Fisica, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venice (Italy)

    2011-09-01

    Highlights: {yields} MOCVD grown GaN samples are irradiated with 80 MeV Ni ions at room temperature. {yields} PL and PLE studies have been carried out for band to band, BL and YL emissions. {yields} Ni ions irradiated GaN shows BL band at 450 nm besides YL band. {yields} Radiation annealed Ga vacancies have quenching effect on YL intensity. {yields} We speculated that BL and YL are associated with N and Ga vacancies, respectively. - Abstract: We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.

  4. Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays.

    Science.gov (United States)

    Yang, Lixue; Yan, Yinzhou; Wang, Qiang; Zeng, Yong; Liu, Feifei; Li, Lin; Zhao, Yan; Jiang, Yijian

    2017-03-20

    Here we investigated the effect of substrate and film thickness on photoluminescence (PL) enhancement of wide bandgap semiconductor (i.e. ZnO) by dielectric microsphere array/luminescence film/substrate (MLS) sandwich structures. The PL enhancement channels in the sandwich structure were revealed, for the first time, including the focusing property of microsphere array (MSA) distinctly enhancing free-exciton recombination, anti-reflection effect of MSA increasing excitation cross-section area, MLS-supported TW-/SW-WGMs inducing ASE and Purcell's effect, and optical directional antenna effect for high equivalent NA of objective lens as well as out-coupling efficiency. The enhancement ratio of intensity (ERI) for ZnO UV-PL from free-exciton recombination in the sandwich structure was found to be strongly dependent upon the refractive index of substrate and luminescence film thickness. In order to achieve high ERI for PL emission, the refractive index of substrate should differ from luminescence film and the film thickness needs to be chosen to support WGMs in the sandwich structure. The maximum ERI beyond one order of magnitude for ZnO UV-PL was therefore predicted theoretically and validated experimentally, where 11.25-fold UV PL enhancement ratio was achieved in ~650-nm-thick ZnO film grown on SiC substrate and capped with 5.06-μm-diameter MSA. The ERI could further be increased by improving above-mentioned enhancement channels. The present work provides a novel platform to manipulate light by low-loss dielectric microstructures for enhancing photon-matter interaction, which would be employed for other semiconductors achieving energy-saving luminescence and high-sensitivity photoelectric detection in future.

  5. Portable Piezospectroscopy system: non-contact in-situ stress sensing through high resolution photo-luminescent mapping

    International Nuclear Information System (INIS)

    Hanhan, I.; Durnberg, E.; Freihofer, G.; Akin, P.; Raghavan, S.

    2014-01-01

    Through the piezospectroscopic effect, certain photo-luminescent materials, once excited with a laser, produce spectral emissions which are sensitive to the stress or strain that the material experiences. A system that utilizes the piezospectroscopic effect for non-contact stress detection over a material's surface can capture important information on the evolution of mechanical response under various conditions. Therefore, the components necessary for piezospectroscopic mapping and analysis have now been integrated into a versatile and transportable system that can be used with photo-luminescent materials in any load frame or on a variety of structures. This system combines compact hardware components such as a portable laser source, fiber optics, spectrograph, charge-coupled device (CCD), and an X-Y-Z stage (with focusing capabilities) with a series of data analysis algorithms capable of analyzing and outputting high resolution photo-luminescent (PL) maps on-site. Through a proof of concept experiment using a compressed polycrystalline alumina sample with sharp machined corners, this system successfully captured high resolution PL maps with a step size of 28.86μm/pixel and located high stress concentrations in critical areas, which correlated closely with the results of a finite element model. This work represents an important step in advancing the portability of piezospectroscopy for in-situ and non-contact stress detection. The instrumentation developed here has strong implications for the future of non-destructive evaluation and non-invasive structural health monitoring

  6. Photoluminescence of nanocrystalline ZnS thin film grown by sol-gel method.

    Science.gov (United States)

    Anila, E I; Safeera, T A; Reshmi, R

    2015-03-01

    Nano and polycrystalline ZnS thin films play a crucial role in photovoltaic technology and optoelectronic devices. In this work, we report the photoluminescence (PL) characterization of nanocrystalline ZnS thin films synthesized by dip coating method. The PL spectra exhibit broad nature with multiple emission peaks which are due to the different defect levels in the prepared film.

  7. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    International Nuclear Information System (INIS)

    Guillen-Cervantes, A.; Silva-Lopez, H.; Becerril-Silva, M.; Arias-Ceron, J.S.; Campos-Gonzalez, E.; Zelaya-Angel, O.; Medina-Torres, A.C.

    2015-01-01

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  8. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Cervantes, A.; Silva-Lopez, H.; Becerril-Silva, M.; Arias-Ceron, J.S.; Campos-Gonzalez, E.; Zelaya-Angel, O. [CINVESTAV-IPN, Physics Department, Apdo. Postal 14-740, Mexico (Mexico); Medina-Torres, A.C. [Escuela Superior de Fisica y Matematicas del IPN, Mexico (Mexico)

    2014-11-12

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  9. Characterization and photoluminescence studies of CdTe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The major objective of this work was to detect the change of photoluminescence (PL) intensity of. CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electro- spinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyl-.

  10. Photoluminescence properties of white light emitting La2O3:Dy3+ nanocrystals

    Science.gov (United States)

    Reenabati Devi, Konsam; Dorendrajit Singh, Shougaijam; David Singh, Th.

    2018-01-01

    White light emitting nanocrystalline La2O3:Dy3+ phosphors with different concentration (0.5-2 at.%) were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern indicates all the samples crystallizes in the hexagonal phase. Average crystallite sizes of the samples calculated from XRD data were found to be in the range of 20-55 nm. Transmission electron microscopy, selected area electron diffraction, energy dispersive analysis of X-ray and photoluminescence (PL) of the samples are also reported. Strong PL excitation peak due to charge transfer band was observed at 230 nm. Photoluminescence emission peaks observed at 486 and 575 nm were probably attributed to 4F9/2-6H15/2 and 4F9/2-6H13/2 of Dy3+ ions respectively. Optimum luminescence intensity is found at 1 at.% Dy3+ doped La2O3 sample. Further, Commission Internationale de l'é clairage (CIE, 1931) co-ordinates and correlated color temperature (CCT) of the doped sample were calculated to investigate the phosphors' performance and technical applicability of the emitted light respectively. CCT of the 0.5 and 1 at.% samples is 5894 K (white light), within the range of vertical daylight, which makes the synthesised samples promising nanophosphor and may find application in simulating vertical daylight of the Sun.

  11. Photoluminescence of highly compensated GaAs doped with high concentration of Ge

    Science.gov (United States)

    Watanabe, Masaru; Watanabe, Akira; Suezawa, Masashi

    1999-12-01

    We have studied the photoluminescence (PL) properties of Ge-doped GaAs crystals to confirm the validity of a theory developed by Shklovskii and Efros to explain the donor-acceptor pair (DAP) recombination in potential fluctuation. GaAs crystals doped with Ge of various concentrations were grown by a liquid-encapsulated Czochralski method. They were homogenized by annealing at 1200°C for 20 h under the optimum As vapor pressure. Both quasi-continuous and time-resolved PL spectra were measured at 4.2 K. The quasi-continuous PL spectra showed that the peak position shifted to lower energy as the Ge concentration increased, which was consistent with the Shklovskii and Efros's theory. Under very strong excitation in time-resolved measurements, the exciton peak appeared within short periods after excitation and then the peak shifted to that of DAP recombination. This clearly showed that the potential fluctuation disappeared under strong excitation and then recovered as the recombination proceeded.

  12. Microstructural and photoluminescence characterisation of germanium and silicon-germanium nanocrystalline materials

    CERN Document Server

    Kartopu, G

    2003-01-01

    The discovery of the strong room temperature visible photoluminescence (PL) emission from porous Si in 1990 has been the catalyst for much of the recent study on the visible PL emitting semiconductor nanocrystalline materials. Silicon, an indirect bandgap semiconductor, in the form of nanoparticles is thought to emit strong visible light due to quantum confinement effects and, in the near future, will replace GaAs (and the other direct bandgap III-IV semiconductors) as for the light emitting devices such as lasers. On the other hand, mainly due to its much larger exciton Bohr radius, Ge, in the form of nanocrystals, is expected show more pronounced quantum confinement effects compared to Si nanocrystals. SiGe alloys also constitute a more attractive material than Si in terms of both industrial applications and fundamental research: the lifetime of the 'porous Si-like' PL of porous SiGe is observed to be approximately two orders of magnitude faster than that of porous Si. Moreover, the bandgap of Si-Ge alloys ...

  13. Origins of excitation-wavelength-dependent photoluminescence in WS2 quantum dots

    Science.gov (United States)

    Caigas, Septem P.; Santiago, Svette Reina Merden; Lin, Tzu-Neng; Lin, Cheng-An J.; Yuan, Chi-Tsu; Shen, Ji-Lin; Lin, Tai-Yuan

    2018-02-01

    We report the photoluminescence studies of pristine and diethylenetriamine-doped (DETA-doped) WS2 quantum dots (QDs) synthesized by pulsed laser ablation. The DETA-doped WS2 QDs revealed a notable improvement of the luminescence quantum yield from 0.1% to 15.2% in comparison to pristine WS2 QDs. On the basis of the photoluminescence (PL) under different excitation wavelengths and the emission-energy dependence of PL dynamics, we suggest that the excitation-wavelength-dependent (excitation-wavelength-independent) PL for pristine (DETA-doped) WS2 QDs is attributed to the recombination of carriers from the localized (delocalized) states.

  14. Temperature variation of radiative recombination rate of electron-hole pairs responsible for defect photoluminescence in a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, C. [Department of Applied Science, Yamaguchi University, Ube (Japan); Morigaki, K. [Department of Electrical and Digital-System Engineering, Hiroshima Institute of Technology, Miyake, Saeki-ku, Hiroshima (Japan)

    2009-05-15

    Lifetime distribution and characteristic lifetime of the defect photoluminescence (PL) in a-Si:H have been obtained by means of frequency resolved spectroscopy at various temperatures in the range of 10-200 K. Temperature variation of the radiative recombination rate has been obtained from the intensities and the characteristic lifetimes. The results obtained for the a-Si:H films as grown and after prolonged illumination have been compared. Thermal quenching of the defect PL becomes more significant after illumination. However the decrease of lifetime with raising temperature becomes less significant after illumination. Increase of the radiative recombination rate with increasing temperature, which is significantly observed above 100 K, becomes less significant after the illumination, indicating that the illumination causes the increase of the density of strongly localised tail states. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Chloride salt enhancement and stabilization of the photoluminescence from a porous silicon surface

    Science.gov (United States)

    Gole, James L.; Devincentis, Julie A.; Seals, Lenward; Lillehei, Peter T.; Prokes, S. M.; Dixon, David A.

    2000-02-01

    In a postetch treatment, chloride salts are used to greatly enhance and stabilize the photoluminescence (PL) from a porous silicon (PS) surface. We compare the enhancement and stabilization induced by solutions of the strong acid HCl (H++Cl-), saturated NaCl (in MeOH, where Me denotes methyl), and a tetrabutylammonium perchlorate [TBAP(Cl-)] solution. The extent and duration of the stabilization process and its dependence on the chloride-ion concentration, the identity of the cation, and the solvent composition are outlined and contrasted to strongly quenching NaF (Na++F-) and NaOH (Na++OH-) treatments. Treatment with HCl is found to produce the most efficient enhancement of the PL signal. The H+- and Cl--ion concentrations in solution are critical as the stability of the strong HCl-induced enhancement of the nitrogen-laser-induced luminescence from the PS surface depends, as well, on the presence of methanol. PS surfaces treated in an HCl/H2O solution display a strongly enhanced in situ luminescence, which decays rapidly in an ex situ environment without treatment in ultrahigh-purity (UHP) methanol. Samples treated in an HCl(H2O)/MeOH solution (greater than 2M) maintain their enhancement for extended periods. Chloride-ion stabilization appears independent of the method of preparing the PS structure, implying that chloride salt treatment largely stabilizes the surface structure of the luminescent PS. Scanning electron micrographs demonstrate the profound change that accompanies the HCl treatment of the PS surface. Energy dispersive spectroscopy reveals chloride incorporation into the PS surface at strongly photoluminescent regions. Raman scattering demonstrates that the PL is correlated with the creation of amorphous structural regions. In conjunction with detailed quantum-chemical modeling, in which we examine the derivatization of the PS surface, time-dependent histograms obtained for the HCl-treated systems indicate that the resulting luminescence, initiated

  16. Optical modelling of photoluminescence emitted by thin doped films

    International Nuclear Information System (INIS)

    Pigeat, P.; Easwarakhanthan, T.; Briancon, J.L.; Rinnert, H.

    2011-01-01

    Photoluminescence (PL) spectra emitted by doped films are deformed owing to film thickness-dependent wave interference. This hampers knowing well their PL generating mechanisms as well as designing photonic devices with suitable geometries that improve their PL efficiency. We develop in this paper an energy model for PL emitted by doped films considering the interaction between the wavelength-differing incident standing and emitted waves, their energy transfer in-between, and the interferences undergone by both. The film optical constants are estimated fitting the model to the measured PL. This simple model has thus allowed us to interpret the evolution of PL emitted by Er-doped AlN films prepared on Si substrates by reactive magnetron sputtering. The shapes, the amplitudes, and the illusive sub-spectral features of the PL spectra depend essentially on the film thickness. The model further predicts high sensitivity for PL emitted by non-homogenously doped stacked-films to incident light wavelengths and film-thickness variations. This property has potential applications in tracking wavelength variations and in measuring physical quantities producing thickness variations. This model may be used to optimise PL efficiency of photonic devices through different film geometries and optical properties.

  17. Characterization of ZnS nanoparticle aggregation using photoluminescence.

    Science.gov (United States)

    Jassby, David; Wiesner, Mark

    2011-02-01

    Aggregation of uncoated ZnS nanoparticles was determined to have an unexpected impact on the particle's photoluminescent properties. Aggregation had significant consequences to both band-edge and trap-site photoluminescence, increasing the former and decreasing the latter. The onset of changes to photoluminescence was influenced by aggregation rate. Results suggest that aggregate structure plays an important role in determining the extent to which changes to photoluminescence occur. Strong evidence is presented in support of the hypothesis that aggregation-induced changes to surface tension are responsible for the observed photoluminescence behavior. We show that changes in photoluminescence can be used to predict the attachment coefficient, in lieu of dynamic light scattering. Additionally, our data indicate that the particle size distribution of aggregating ZnS nanoparticles is invariant across electrolyte concentrations, at a given standard deviation away from the maximum rate of photoluminescence change.

  18. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  19. Photoluminescence and structural studies of Tb and Eu implanted at high temperatures into SiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Bregolin, F.L. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre-RS (Brazil); Sias, U.S., E-mail: uilson.sias@gmail.com [Instituto Federal Sul-rio-grandense, Campus Pelotas, Praca 20 de Setembro 455, 96015-360, Pelotas-RS (Brazil); Behar, M. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970, Porto Alegre-RS (Brazil)

    2013-03-15

    The present work deals with the photoluminescence (PL) emitted from Eu and Tb ions implanted at room temperature (RT) up to 350 Degree-Sign C in a SiO{sub 2} matrix, followed by a further anneal process. The ions were implanted with energy of 100 keV and a fluence of 3 Multiplication-Sign 10{sup 15} ions/cm Superscript-Two . Further anneals were performed in atmospheres of N{sub 2} or O{sub 2} with temperatures ranging from 500 up to 800 Degree-Sign C. PL measurements were performed at RT and structural measurements were done via transmission electron microscopy (TEM). In addition, the Rutherford backscattering technique (RBS) was used to investigate the corresponding ion depth profiles. For Tb, the optimal implantation temperature was 200 Degree-Sign C, and the anneal one was of 500 Degree-Sign C. Under these conditions, the PL yield of the sharp band centered at 550 nm was significatively higher than the one obtained with RT implants. The PL spectra corresponding to the Eu ions show two bands, one narrow centered around 650 nm and a second broad one in the blue-green region. The implantation temperature plays a small influence on the PL shape and yield. However, the annealing atmosphere has a strong influence on it. Samples annealed in N{sub 2} present a broad PL band, ranging from 370 up to 840 nm. On the other hand, the O{sub 2} anneal conserves the original as-implanted spectrum, that is: a broad PL band in the blue-green region together with sharp PL band in the red one. For both ions, Tb and Eu, the TEM analyses indicate the formation of nanoclusters in the hot as-implanted samples. - Highlights: Black-Right-Pointing-Pointer Eu and Tb nanoparticles were obtained by hot ion implantation into SiO{sub 2} matrix. Black-Right-Pointing-Pointer TEM results indicate the formation of nanoclusters in the hot as-implanted samples. Black-Right-Pointing-Pointer Samples annealed in N{sub 2} presented a broad PL band (from 370 up to 840 nm). Black-Right-Pointing-Pointer O

  20. Size Controlled CaF2 Nanocubes and Their Dosimetric Properties Using Photoluminescence Technique

    Directory of Open Access Journals (Sweden)

    Najlaa D. Alharbi

    2015-01-01

    Full Text Available A new synthetic chemical coprecipitation route for the preparation of well-crystallized size controlled nano- and microcrystalline cubes of CaF2 is reported. Crystalline cubes in the range of 2 μm–20 nm could be synthesized and their sizes were controlled by varying the solvent : cosolvent ratio. The as-synthesized CaF2 nanocubes were characterized by different techniques. Photoluminescence (PL emission spectrum of CaF2 nanocrystalline powder showed strong emission band at 415 nm. Moreover, the effect of Eu as a dopant on the emission spectrum of CaF2 was investigated. This dopant was found to get incorporated in its Eu2+ and Eu3+ forms. The as-produced nanocubes were exposed to UV irradiation and the corresponding PL emission was studied. Excellent results are obtained, where CaF2:Eu nanocubes were found to be highly sensitive and might be suitable for esteeming the doses of UV irradiation using the PL technique.

  1. Study on the synthesis and excitation-powerdependent photoluminescence spectrum of ZnSe nanoparticles

    Science.gov (United States)

    Feng, Bo; Cao, Jian; Yang, Jinghai; Han, Donglai; Yang, Shuo

    2015-02-01

    Zinc selenide (ZnSe) nanoparticles with the cubic zinc blende structure were successfully prepared by a solvothermal method without any surface-active agents. The as-obtained sample was characterized by X-ray diffraction, transmission electron microscopy (TEM), selected area electron diffraction, high-resolution TEM, and room-temperature photoluminescence (PL) techniques. It was proved that EDTA played a significant role during the synthesis of ZnSe nanoparticles. The room-temperature PL spectrum of the ZnSe nanoparticles showed a strong near-band-edge emission peak at 472 nm and a weak defect-related emission band in the range of 600-650 nm. Excitation-powerdependent PL spectrum of the ZnSe nanoparticles showed that the near-band-edge emission peak displayed an evident redshift with increasing the excitation power, and the corresponding energy shift might be as large as 51 meV. In addition, the integrated intensity of the near-band-edge emission peak increased with increasing the excitation power, which indicated the competition between the radiative recombination process and the nonradiative recombination process of photogenerated carriers.

  2. Using quantum dot photoluminescence for load detection

    Directory of Open Access Journals (Sweden)

    M. Moebius

    2016-08-01

    Full Text Available We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N′,N′-Tetrakis(3-methylphenyl-3,3′-dimethylbenzidine (HMTPD and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  3. Resonantly excited photoluminescence in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbauer, M. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Leach, D.H. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Sendova-Vassileva, M. [CL SENES, Bulgarian Academy of Sciences, Tzarigradsko Chaus, BG-1784 Sofia (Bulgaria); Finkbeiner, S. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Stutzmann, M. [Walter-Schottky-Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    1995-01-15

    We report on the photoluminescence (PL) spectra of porous silicon excited resonantly by laser lines within the luminescence band. Measurements have been performed for different excitation energies, temperatures and delay times. At low temperatures, the known step-like phonon structure in the PL spectra of porous silicon and a gap of the few millielectronvolts between the laser line and the onset of the luminescence are observed. As the temperature is increased, the onsets of both the PL spectra and the step features shift towards higher energies whereas the peak of the spectrum moves towards lower energies by an amount which depends on the delay time after excitation. Furthermore, the gap disappears and simultaneously an exponential tail of the spectrum occurs on the high energy side of the laser line, which broadens proportionally to kT. These results are discussed in light of the existing theories for the luminescence mechanism in porous silicon and for the origin of the step features in the PL spectra. ((orig.))

  4. Gold nanoclusters with bright near-infrared photoluminescence.

    Science.gov (United States)

    Pramanik, Goutam; Humpolickova, Jana; Valenta, Jan; Kundu, Paromita; Bals, Sara; Bour, Petr; Dracinsky, Martin; Cigler, Petr

    2018-02-22

    The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (∼25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.

  5. Three-photon excited PL spectroscopy and photo-generated Frenkel defects in wide-bandgap layered CdI{sub 2} semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Qeensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong-4331 (Bangladesh)

    2009-12-14

    We performed a three-photon excitation nonlinear photoluminescence (PL) spectroscopy in single crystals of wide-bandgap semiconductors (WBSs). The crystal temperature (T{sub L})-dependent PL emission intensity (I{sub PL}) excited with different excitation power density (P) was measured. The PL emissions showed characteristics I{sub PL} with their maxima at around 520 nm. The I{sub PL} might be due to the presence of the photo-generated Frenkel defects (FDs) in WBSs. A detailed analysis of the PL spectra showed a third-order power law dependence of the maximum I{sub PL} on P for all the crystal temperature T{sub L}. The I{sub PL} was found to increase with decreasing T{sub L}. The results demonstrated the existence of the self-trapped excitons resulting from the presence of the FDs in the crystals.

  6. Twin extra-high photoluminescence in resonant double-period quantum wells.

    Science.gov (United States)

    Chang, C H; Cheng, Y H; Hsueh, W J

    2014-12-01

    Twin extra high photoluminescence (PL) in resonant quasi-periodic double-period quantum wells (DPQWs) for higher-generation orders is demonstrated. In the DPQW, the number of maxima in the maximum values of the PL intensity is two, which is different from other quasi-periodic quantum wells (QWs) and traditional periodic QWs. The maximum PL intensity in a DPQW is also stronger than that in a periodic QW under the anti-Bragg condition and that in a Fibonacci QW. Although the peaks of the squared electric field for the twin PL are both located near the QWs, their field profiles are distinct.

  7. Photoluminescence dynamics of weakly confined excitons in GaAs thin films

    International Nuclear Information System (INIS)

    Kanno, Atsushi; Katouf, Redouane; Kojima, Osamu; Ishi-Hayase, Junko; Sasaki, Masahide; Tsuchiya, Masahiro; Isu, Toshiro

    2008-01-01

    We investigate the dynamics of weakly confined excitons in GaAs thin films measured by time-resolved photoluminescence (PL) technique. When excitation energy was above the resonant energy of the exciton, a long PL rise time of about 200 ps was observed. It is considered that an exciton formation process from excited continuum energy states to discrete energy states of the exciton in the thin film causes the slow PL rise. The observed PL decay time constant was about 14 ns due to high quality fabricated samples. The observed population dynamics can be surely ascribed to the specific features of weakly confined excitons

  8. Photoluminescence of Pr3+-doped calcium and strontium stannates

    OpenAIRE

    Stanulis, Andrius; Katelnikovas, Arturas; Van Bael, Marlies K.; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas

    2016-01-01

    A series of Pr3+-doped CaSnO3, SrSnO3 and Ca2SnO4 samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. Moreover, luminous efficacies (LE) and color points according to the CIE 1931 color space diagram were calculated and discussed. The incorporation of Pr3+ ions into CaSnO3 an...

  9. 3PL markets in Russia

    OpenAIRE

    SILVENNOINEN ELINA

    2014-01-01

    The aim of this article is to familiarize with the status quo of 3PL markets in Russia. The study is based on lectures in Saimaa University of Applied Sciences, scientific articles, books and researches found from the internet. 3PL market in Russia was chosen for topic, because it supposedly benefits the author’ work as a Service Manager at the Savonlinna Business Services.

  10. Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu

    2017-01-01

    We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL

  11. Structure, microstructure and photoluminescence of nanocrystalline Ti-doped gahnite

    Energy Technology Data Exchange (ETDEWEB)

    Vrankic, M., E-mail: mvrankic@irb.hr [Ruder Boskovic Institute, Division of Materials Physics, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb (Croatia); Grzeta, B. [Ruder Boskovic Institute, Division of Materials Physics, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb (Croatia); Mandic, V.; Tkalcec, E. [University of Zagreb, Faculty of Chemical Engineering and Technology, Marulicev trg 19, HR-10000 Zagreb (Croatia); Milosevic, S. [Institute of Physics, Bijenicka cesta 46, P.O. Box 304, HR-10002 Zagreb (Croatia); Ceh, M. [Jozef Stefan Institute, Department for Nanostructured Materials, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Rakvin, B. [Ruder Boskovic Institute, Division of Physical Chemistry, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer Ti-doped gahnite samples with 0-11.6 at.% Ti were synthesized for the first time. Black-Right-Pointing-Pointer The samples had crystallite size of 16.6-20.5 nm and lattice strain of 0.07-0.26%. Black-Right-Pointing-Pointer Titanium entered the gahnite structure as Ti{sup 4+}, substituting for octahedral Al{sup 3+}. Black-Right-Pointing-Pointer Ti-doped gahnite showed the UV absorption and blue emission under UV excitation. - Abstract: A series of Ti-doped ZnAl{sub 2}O{sub 4} (gahnite) samples with doping levels of 0, 1.8, 3.8, 5.4 and 11.6 at.% Ti in relation to Al were prepared by a sol-gel technique. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), EPR spectroscopy, UV-vis reflectance spectroscopy and photoluminescence (PL) studies. Diffraction patterns indicated that all samples were nanocrystalline, with a spinel-type structure, space group Fd3{sup Macron }m. Titanium doping of gahnite caused an increase of unit-cell parameter and diffraction line broadening. The structure of samples was refined by the Rietveld method, simultaneously with the analysis of diffraction line broadening. TEM investigations confirmed that samples had spinel-type structure, and showed that samples contained evenly shaped particles of about 20 nm in size. Ti-doped samples exhibited strong absorption at wavelength <400 nm, and blue photoluminescence under excitation with {lambda}{sub exc} = 308 nm.

  12. Negative thermal quenching of photoluminescence in ZnO

    International Nuclear Information System (INIS)

    Watanabe, M.; Sakai, M.; Shibata, H.; Satou, C.; Satou, S.; Shibayama, T.; Tampo, H.; Yamada, A.; Matsubara, K.; Sakurai, K.; Ishizuka, S.; Niki, S.; Maeda, K.; Niikura, I.

    2006-01-01

    We have studied photoluminescence (PL) spectra of ZnO single crystals at photon energies ranging between 2.1 and 3.4eV as a function of temperature to determine thermal quenching behavior in PL emission intensity. It appears that the deep level emissions, donor-acceptor pair emissions, and the bound excitonic emissions undergo negative thermal quenching (NTQ) at intermediate temperatures above ∼10K. By employing an NTQ formula expressed analytically as a function of temperature, we have obtained quantitative NTQ characteristics in terms of the activation energies associated with the intermediate states as well as nonradiative channels

  13. Surface-related reduction of photoluminescence in GaAs quantum wires and its recovery by new passivation

    International Nuclear Information System (INIS)

    Shiozaki, Nanako; Anantathanasarn, Sanguan; Sato, Taketomo; Hashizume, Tamotsu; Hasegawa, Hideki

    2005-01-01

    Etched GaAs quantum wires (QWRs) and selectively grown (SG) QWRs were fabricated, and dependence of their photoluminescence (PL) properties on QWR width (W) and QWR distance to surface (d) were investigated. PL intensity greatly reduced with reduction of W and d, due to non-radiative recombination through surface states. Surface passivation by growing a Si interface control layer (Si-ICL) on group III-terminated surfaces greatly improved PL properties

  14. Photoluminescence of Reduced Graphene Oxide Prepared from Old Coconut Shell with Carbonization Process at Varying Temperatures

    Science.gov (United States)

    Jayanti, Dwi Noor; Yogi Nugraheni, Ananda; Kurniasari; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    Reduced graphene oxide (rGO) powder has been prepared from coconut shells by carbonization process at 400°C, 600°C, 800°C and 1000°C for 5 hours at ambient air. In this study the exfoliation rGO was added into distilled water with variation of concentration solution using the sonication process for 3 hours and centrifugation at 4000 rpm for 20 minutes. The characterization were performed by using XRD and photoluminescence (PL) spectroscopy. The photoluminescence or rGO showed the peak of excitation and emission at wavelengths ranging from 340 nm to 800 nm. The PL emission spectra are at wavelength ranging from UV to visible region approaching red. Observation showed that the photoluminescence intensity was significantly increased by the increasing content of rGO in the solution. The influence of the varying temperature on the PL spectra will also be discussed in this study.

  15. Shape controlled synthesis of CaMoO4 thin films and their photoluminescence property

    International Nuclear Information System (INIS)

    Marques, Ana Paula de Azevedo; Longo, Valeria M.; Melo, Dulce M.A. de; Pizani, Paulo S.; Leite, Edson R.; Varela, Jose Arana; Longo, Elson

    2008-01-01

    CaMoO 4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. - Graphical abstract: CaMoO 4 thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace and in a microwave oven. A strong photoluminescence emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were confirmed by high level first principle calculations

  16. Time-resolved photoluminescence investigation of (Mg, Zn) O alloy growth on a non-polar plane

    Science.gov (United States)

    Mohammed Ali, Mohammed Jassim; Chauveau, J. M.; Bretagnon, T.

    2018-04-01

    Excitons recombination dynamics in ZnMgO alloy have been studied by time-resolved photoluminescence according to temperature. At low temperature, localisation effects of the exciton are found to play a significant role. The photoluminescence (PL) decays are bi-exponential. The short lifetime has a constant value, whereas the long lifetime shows a dependency with temperature. For temperature higher than 100 K the declines show a mono-exponential decay. The PL declines are dominated by non-radiative process at temperatures above 150 K. The PL lifetime dependancy with temperature is analysed using a model including localisation effects and non-radiative recombinations.

  17. Oracle PL/SQL Programming

    CERN Document Server

    Feuerstein, Steven

    2009-01-01

    This book is the definitive reference on PL/SQL, considered throughout the database community to be the best Oracle programming book available. Like its predecessors, this fifth edition of Oracle PL/SQL Programming covers language fundamentals, advanced coding techniques, and best practices for using Oracle's powerful procedural language. Thoroughly updated for Oracle Database 11g Release 2, this edition reveals new PL/SQL features and provides extensive code samples, ranging from simple examples to complex and complete applications, in the book and on the companion website. This indispensab

  18. Photoluminescence properties and energy-level diagrams in (Ce3+, Tb3+)-codoped KCl green phosphor

    International Nuclear Information System (INIS)

    Tosaka, Yuki; Adachi, Sadao

    2014-01-01

    KCl:Ce 3+ , Tb 3+ green phosphor was synthesized from an aqueous solution of KCl–CeCl 3 –TbCl 3 . The synthesized phosphor was investigated using X-ray diffraction analysis, electron probe microanalysis, diffuse reflectance measurements, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay measurements. The KCl:Ce 3+ , Tb 3+ phosphor showed a strong Tb 3+ -related emission in the 480–700 nm spectral region. The Tb 3+ -related emission intensity in the codoped phosphor was enhanced more than 300 times compared to that in the Tb 3+ singly doped phosphor. This enhancement in the PL intensity could be attributed to an efficient energy transfer from Ce 3+ to Tb 3+ in the KCl host. The maximum transfer efficiency was η ∼92% for the sample synthesized at a solution of KCl:CeCl 3 :TbCl 3 =1:0.01:0.05 in molar ratio. The (Ce 3+ , Tb 3+ ) concentration dependences of the Ce 3+ - and Tb 3+ -emission decay times were determined. The temperature dependence of the Tb 3+ -related emission intensity was also measured and analyzed from T=20–450 K. - Highlights: • Simple method was developed for synthesizing KCl:Ce 3+ , Tb 3+ green phosphor. • Ce 3+ and Tb 3+ concentrations were optimized to obtain high efficient phosphor. • An efficient energy transfer was observed from Ce 3+ to Tb 3+ in KCl. • Detailed energy-level schemes for Ce 3+ and Tb 3+ ions in KCl were proposed

  19. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ranganaik Viswanath

    2014-01-01

    Full Text Available Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectrometry (FTIR, thermogravimetric-differential scanning calorimetry (TG-DSC, and UV-visible and photoluminescence (PL spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.

  20. Oracle PL/SQL Programming

    CERN Document Server

    Feuerstein, Steven

    2005-01-01

    The fourth edition is a comprehensive update, adding significant new content and extending coverage to Oracle Database 10g Release 2. It adds brand-new chapters on security, I/O (file, email, and Web), and internationalization. New features include the PL/SQL optimizing compiler, conditional compilation, compile-time warnings, regular expressions, and much more. Co-authored by the world's foremost PL/SQL authority, Steven Feuerstein, this classic reference provides language syntax, best practices, and extensive code

  1. Wet Chemical Preparation of Nanoparticles ZnO:Eu3+ and ZnO:Tb3+ with Enhanced Photoluminescence

    Directory of Open Access Journals (Sweden)

    Tran Kim Anh

    2014-01-01

    Full Text Available ZnO doped with Eu3+ and Tb3+ had been successfully prepared by wet chemical method with the assistance of microwave. The influence of reaction conditions such as temperature, time, content of Eu3+, Tb3+ ion, and annealing treatment on the structure and luminescent characteristics was studied. The analysis of energy dispersive spectroscopy (EDS and photoluminescence spectra measurements indicated that Eu3+ and Tb3+ exist in host lattice and create the new emission region compared to ZnO crystalline host lattice. The field emission scanning electron microscope (FE-SEM studies show the Eu3+, Tb3+ doped ZnO nanoparticles have a pseudohexagonal shape. The particle size was 30–50 nm for ZnO:Eu3+ and 40–60 nm for ZnO:Tb3+. Photoluminescence excitation (PLE and photoluminescence (PL spectra at room temperature have been studied to recognize active centers for characteristic luminescence of ZnO:Eu3+ and ZnO:Tb3+. The characteristic luminescent lines of Eu3+ (5D0-7Fj and Tb3+ (5D4-7Fj were determined. It has been demonstrated that the wet chemical synthesis method with microwave assistance can strongly enhance the luminescent intensity of nanoparticles ZnO:Eu3+ in red and ZnO:Tb3+ in green.

  2. Enhanced yellow-green photoluminescence from ZnO-SiO2 composite opal

    International Nuclear Information System (INIS)

    Yang Yingling; Yang Beifang; Fu Zhengping; Yan Hongwei; Zhen Wang; Dong Weiwei; Xia Linsheng; Liu Wenqi; Jian Zuo; Li Fanqing

    2004-01-01

    A remarkably enhanced yellow-green photoluminescence (PL) was observed from ZnO nanocrystals infiltrated into SiO 2 opal photonic crystals. It was clearly visible to the naked eye under the excitation of an Xe lamp and had substantially improved thermal stability over pure ZnO nanocrystals. The PL spectrum shape of a ZnO-SiO 2 composite opal can be modified by annealing an SiO 2 opal or choosing an SiO 2 opal with different lattice parameters. The enhancement of PL intensity is interpreted based on the dependence of the PL intensity on the size of SiO 2 microspheres as well as the anisotropy of the photoluminescence excitation (PLE) spectra. Our results may be interesting for further application

  3. Electric Field Effects on Photoluminescence of CdSe Nanoparticles in a PMMA Film

    Directory of Open Access Journals (Sweden)

    Takakazu Nakabayashi

    2014-06-01

    Full Text Available External electric field effects on spectra and decay of photoluminescence (PL as well as on absorption spectra were measured for CdSe nanoparticles in a poly(methyl methacrylate (PMMA film. Electrophotoluminescence (E-PL spectra as well as electroabsorption spectra show a remarkable Stark shift which depends on the particle size, indicating a large electric dipole moment in the first exciton state. The E-PL spectra also show that PL of CdSe is quenched by application of electric fields, and the magnitude of the field-induced quenching becomes larger with increasing size. The PL decay profiles observed in the absence and presence of electric field show that the field-induced quenching of PL mainly originates from the field-induced decrease in population of the emitting state prepared through the relaxation from the photoexcited state.

  4. Photoluminescence quenching of chemically functionalized porous silicon by a ruthenium cluster

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, R.; Wayner, D.D.M. [Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario (Canada); Lockwood, D.J. [Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario (Canada); Zargarian, D. [Chemistry Department, University of Montreal, C.P. 6128, succursale, Centre-ville, Montreal QC (Canada)

    2003-05-01

    This paper describes photoluminescence (PL) quenching of hydrogen-terminated and chemically derivatized porous silicon (PSi) nanostructures by a green ruthenium cluster (I). Chemisorption of freshly prepared PSi surfaces in a hexane solution of the Ru cluster for several days at room temperature led to a complete quenching of the PSi PL. The only visible PL was due to the original PL of the cluster. When the PSi surface functionalized with undecylenic acid was immersed in the same hexane solution of (I), the PSi PL was completely quenched and accompanied with a shift to a lower energy of the cluster PL. This shift was assigned to the formation of an ester linkage resulting from the nucleophilic attack of the PO anion of the cluster on the terminal acid functional group. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Photoluminescence quenching of chemically functionalized porous silicon by a ruthenium cluster

    Science.gov (United States)

    Boukherroub, R.; Wayner, D. D. M.; Lockwood, D. J.; Zargarian, D.

    2003-05-01

    This paper describes photoluminescence (PL) quenching of hydrogen-terminated and chemically derivatized porous silicon (PSi) nanostructures by a green ruthenium cluster (I). Chemisorption of freshly prepared PSi surfaces in a hexane solution of the Ru cluster for several days at room temperature led to a complete quenching of the PSi PL. The only visible PL was due to the original PL of the cluster. When the PSi surface functionalized with undecylenic acid was immersed in the same hexane solution of (I), the PSi PL was completely quenched and accompanied with a shift to a lower energy of the cluster PL. This shift was assigned to the formation of an ester linkage resulting from the nucleophilic attack of the PO anion of the cluster on the terminal acid functional group.

  6. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  7. Spin-exciton interaction and related micro-photoluminescence spectra of ZnSe:Mn DMS nanoribbon.

    Science.gov (United States)

    Hou, Lipeng; Zhou, Weichang; Zou, Bingsuo; Zhang, Yu; Han, Junbo; Yang, Xinxin; Gong, Zhihong; Li, Jingbo; Xie, Sishen; Shi, Li-Jie

    2017-03-10

    For their spintronic applications the magnetic and optical properties of diluted magnetic semiconductors (DMS) have been studied widely. However, the exact relationships between the magnetic interactions and optical emission behaviors in DMS are not well understood yet due to their complicated microstructural and compositional characters from different growth and preparation techniques. Manganese (Mn) doped ZnSe nanoribbons with high quality were obtained by using the chemical vapor deposition (CVD) method. Successful Mn ion doping in a single ZnSe nanoribbon was identified by elemental energy-dispersive x-ray spectroscopy mapping and micro-photoluminescence (PL) mapping of intrinsic d-d optical transition at 580 nm, i.e. the transition of 4 T 1 ( 4 G) →  6 A 1 ( 6 s),. Besides the d-d transition PL peak at 580 nm, two other PL peaks related to Mn ion aggregates in the ZnSe lattice were detected at 664 nm and 530 nm, which were assigned to the d-d transitions from the Mn 2+ -Mn 2+ pairs with ferromagnetic (FM) coupling and antiferromagnetic (AFM) coupling, respectively. Moreover, AFM pair formation goes along with strong coupling with acoustic phonon or structural defects. These arguments were supported by temperature-dependent PL spectra, power-dependent PL lifetimes, and first-principle calculations. Due to the ferromagnetic pair existence, an exciton magnetic polaron (EMP) is formed and emits at 460 nm. Defect existence favors the AFM pair, which also can account for its giant enhancement of spin-orbital coupling and the spin Hall effect observed in PRL 97, 126603(2006) and PRL 96, 196404(2006). These emission results of DMS reflect their relation to local sp-d hybridization, spin-spin magnetic coupling, exciton-spin or phonon interactions covering structural relaxations. This kind of material can be used to study the exciton-spin interaction and may find applications in spin-related photonic devices besides spintronics.

  8. Excitation intensity dependent photoluminescence of annealed two-dimensional MoS{sub 2} grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; Swaminathan, V. [U.S. Army RDECOM-ARDEC, Fuze Precision Armaments and Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Mills, K. [U.S. Army RDECOM-ARDEC, Energetics, Warheads and Manufacturing Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Lee, J. [Agency for Defense Development, Yuseong, P.O. Box 35, Daejeon, 305-600 (Korea, Republic of); Torrel, S. [Department of Materials Science and Engineering, Piscataway, Rutgers, The State University of New Jersey, New Jersey 08854 (United States)

    2016-06-07

    Here, we present detailed results of Raman and photoluminescence (PL) characterization of monolayers of MoS{sub 2} grown by chemical vapor deposition (CVD) on SiO{sub 2}/Si substrates after thermal annealing at 150 °C, 200 °C, and 250 °C in an argon atmosphere. In comparison to the as-grown monolayers, annealing in the temperature range of 150–250 °C brings about significant changes in the band edge luminescence. It is observed that annealing at 150 °C gives rise to a 100-fold increase in the PL intensity and produces a strong band at 1.852 eV attributed to a free-to-bound transition that dominates over the band edge excitonic luminescence. This band disappears for the higher annealing temperatures. The improvement in PL after the 200 °C anneal is reduced in comparison to that obtained after the 150 °C anneal; this is suggested to arise from a decrease in the non-radiative lifetime caused by the creation of sulfur di-vacancies. Annealing at 250 °C degrades the PL in comparison to the as-grown sample because of the onset of disorder/decomposition of the sample. It is clear that the PL features of the CVD-grown MoS{sub 2} monolayer are profoundly affected by thermal annealing in Ar atmosphere. However, further detailed studies are needed to identify, unambiguously, the role of native defects and/or adsorbed species in defining the radiative channels in annealed samples so that the beneficial effect of improvement in the optical efficiency of the MoS{sub 2} monolayers can be leveraged for various device applications.

  9. Excitation intensity dependent photoluminescence of annealed two-dimensional MoS2 grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Kaplan, D.; Swaminathan, V.; Mills, K.; Lee, J.; Torrel, S.

    2016-01-01

    Here, we present detailed results of Raman and photoluminescence (PL) characterization of monolayers of MoS 2 grown by chemical vapor deposition (CVD) on SiO 2 /Si substrates after thermal annealing at 150 °C, 200 °C, and 250 °C in an argon atmosphere. In comparison to the as-grown monolayers, annealing in the temperature range of 150–250 °C brings about significant changes in the band edge luminescence. It is observed that annealing at 150 °C gives rise to a 100-fold increase in the PL intensity and produces a strong band at 1.852 eV attributed to a free-to-bound transition that dominates over the band edge excitonic luminescence. This band disappears for the higher annealing temperatures. The improvement in PL after the 200 °C anneal is reduced in comparison to that obtained after the 150 °C anneal; this is suggested to arise from a decrease in the non-radiative lifetime caused by the creation of sulfur di-vacancies. Annealing at 250 °C degrades the PL in comparison to the as-grown sample because of the onset of disorder/decomposition of the sample. It is clear that the PL features of the CVD-grown MoS 2 monolayer are profoundly affected by thermal annealing in Ar atmosphere. However, further detailed studies are needed to identify, unambiguously, the role of native defects and/or adsorbed species in defining the radiative channels in annealed samples so that the beneficial effect of improvement in the optical efficiency of the MoS 2 monolayers can be leveraged for various device applications.

  10. Interdot carrier's transfer via tunneling pathway studied from photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Rihani, J.; Sallet, V.; Yahyaoui, N.; Harmand, J.C.; Oueslati, M.; Chtourou, R.

    2009-01-01

    Self-assembled InAs quantum dots (QDs) on GaAs(0 0 1) substrate were grown by molecular beam epitaxy (MBE) at a growth temperature of 490 deg. C. Two different families of dots were observed in the atomic force microscopy (AFM) image and ambiguously identified in the photoluminescence (PL) spectra. Temperature-dependent PL study was carried out in the 8-270 K temperature range. The integrated-PL intensity behavior of the two QDs populations was fit with the help of a rate equations model. It is found that the evolutions of the integrated-PL intensity of the two QDs population were governed by two regimes. The first one occurs in the 8-210 K temperature range and reveals an unusual enhancement of the integrated-PL intensity of the larger QDs (LQDs) class. This was attributed to the carrier supplies from the smaller QDs (SQDs) class via the tunneling process. The second one occurs in the 210-270 K temperature range and shows a common quench of the PL signals of the two QDs families, reflecting the same thermal escape mechanism of carriers

  11. Investigation on photoluminescence emission of (reduced) graphene oxide paper

    Science.gov (United States)

    Ding, J. J.; Chen, H. X.; Feng, D. Q.; Fu, H. W.

    2018-01-01

    In order to contrastively investigate optical properties of graphene oxide (GO) and reduced graphene oxide (rGO) paper, GO is prepared by improved Hummer method and controlled reduced using hydration hydrazine to obtain good dispersive rGO in organic solvent. Finally, GO and rGO paper are obtained by vacuum filtration method. Samples morphology and optical properties are analyzed by scanning electron microscopy (SEM) images, Raman spectra, absorbance spectra and photoluminescence (PL) spectra. Results indicate that there are large numbers of localized states in both GO and rGO paper, and optical gaps of two samples are 0.62 eV. In PL spectra of GO paper, we observe three emission peaks at 565, 578 and 608 nm, respectively whose intensity decreases evidently after reduced, which is due to the decrease of oxide functionalized groups and expansion of sp2 clusters. PL emission will gradually decrease during GO are reduced.

  12. Facile one-step synthesis and photoluminescence properties of Ag–ZnO core–shell structure

    International Nuclear Information System (INIS)

    Zhai, HongJu; Wang, LiJing; Han, DongLai; Wang, Huan; Wang, Jian; Liu, XiaoYan; Lin, Xue; Li, XiuYan; Gao, Ming; Yang, JingHai

    2014-01-01

    Graphical abstract: The PL of the Ag–ZnO core-shell nanostructure showed obvious increase of UV emission and slight decrease of visible light emission compared to that of the pure ZnO. With the calcination temperature increasing from 300 to 600 °C, the primary peak located at 380 nm became stronger and sharper, indicating that the increasing calcination temperature made the samples crystallize better. - Highlights: • Ag-ZnO core-shell structure was obtained via a simple one-step solvothermal process. • The approach was simple, mild, low cost, reproducible and easy-to-handle. • The obvious enhancement of UV luminescent has been observed. • Effects of the calcining temperature to luminescence were investigated in detail. - Abstract: Ag–ZnO core–shell structures were gained via one-step solvothermal process. The products were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, photoluminescence (PL) and UV–vis spectroscopy, respectively. It was shown that the properties were greatly changed compared to pure ZnO from the PL and Raman spectra, which indicated the strong interfacial interaction between ZnO and Ag. The work provides a feasible method to synthesize Ag–ZnO core–shell structure photocatalyst, which is promising in the further practical application of ZnO-based photocatalytic materials

  13. Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation

    International Nuclear Information System (INIS)

    Schmidt, O.G.; Eberl, K.

    2000-01-01

    Strain fields in stacked layers of vertically aligned self-assembled Ge islands on Si(100) can cause a reduction of the wetting layer thickness in all but the initial layer and hence induce an energy separation ΔE wl between the energy transitions of the different wetting layers. Our systematic photoluminescence (PL) study on twofold stacked Ge/Si layers shows that the quantity ΔE wl is a sensitive function of the Si spacer thickness and reflects the degree of strain field interaction between the island layers. Pronounced PL blueshifts are also observed for the island related energy transition in twofold and multifold island layers. We suggest that with increasing number of stacked island layers strain field superposition of buried islands causes enhanced SiGe material intermixing during Si overgrowth of the islands. This effect naturally explains the strong PL blueshift of the island related energy transition. Recently observed shape transformations in stacked Ge islands are well explained by our model of superimposed strain fields. We also discuss the initial stages of island formation in the second Ge layer of twofold island stacks. Many of the effects observed in this paper on the Ge/Si system are probably also important for self-assembling III/V islands but due to extremely small sizes are much harder to evaluate

  14. TEMPERATURE INDEPENDENT PHOTOLUMINESCENCE ...

    Indian Academy of Sciences (India)

    8

    Photoluminescence spectra of ZnO:Ce excited for near ultra violet region (325 nm) gives an ... Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy ..... stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE, J.Cryst. Growth. 605 (1998) 184.

  15. The effect of ultraviolet irradiation on the photothermal, photoluminescence and photoluminescence excitation spectra of Mn-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Briones Cruz, Almira; Shen Qing; Toyoda, Taro

    2006-01-01

    Research involving Mn doped nanocrystalline ZnS (ZnS:Mn) has grown in recent years, partly due to the high quantum luminescence efficiencies that have been reported. We measured the photoacoustic (PA), the photoluminescence (PL) and the photoluminescence excitation (PLE) spectra of surface-passivated and unpassivated ZnS:Mn. The effects of UV irradiation on the PL and PLE spectra were also studied. A decrease in the PA intensity after UV exposure was observed for the ZnS:Mn, indicating a decrease in the nonradiative relaxation probability. The observed increase in PL intensity indicates a corresponding increase in the radiative transition probability. For the PLE spectra, possible aggregation of the primary particles could have resulted in the lower measured energy of the PLE peak compared to the value predicted by the effective mass approximation theory

  16. Photoluminescence and X-ray diffraction studies on Cu{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Solache-Carranco, H., E-mail: hsolache@cinvestav.m [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico); Juarez-Diaz, G. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico); Esparza-Garcia, A.; Briseno-Garcia, M. [Centro de Ciencias Aplicadas y Desarrollo de Tecnologia-UNAM, Mexico, D.F. (Mexico); Galvan-Arellano, M. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico); Martinez-Juarez, J. [Centro de Investigacion en Dispositivos Semiconductores, BUAP, Puebla, Pue. (Mexico); Romero-Paredes, G.; Pena-Sierra, R. [Departamento de Ingenieria Electrica, SEES, CINVESTAV-IPN, Mexico, D.F. (Mexico)

    2009-12-15

    Cuprous oxide (Cu{sub 2}O) crystals were grown by the two-step crystallization method in air atmosphere conditions from polycrystalline thin copper foils. The method comprises two stages; in the first one the copper plates are oxidized at 1020 deg. C by some hours in line with its initial thickness. In the second stage, the growth of large crystalline areas is promoted by annealing the Cu{sub 2}O samples at 1100 deg. C for long periods. Raman scattering an X-ray measurements demonstrates the existence of the single-phase Cu{sub 2}O. The effects on the crystalline structure and photoluminescence (PL) response were studied as a function of the conditions used in the second stage of the synthesis method. PL spectra were taken from 10 to 180 K to define the main radiative recombination paths. Besides the near band excitonic transitions, two strong emission bands at 720 and 920 nm associated with relaxed excitons at oxygen and copper vacancies were detected. Both excitonic-vacancy bond transitions presented similar intensities that are related to the growth method. X-ray and Raman scattering measurements help to assess the samples crystalline quality.

  17. Preparation and Characterization of Cerium (III Doped Captopril Nanoparticles and Study of their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Ghamami Shahriar

    2016-01-01

    Full Text Available In this research Ce3+ doped Captopril nanoparticles (Ce3+ doped CAP-NP were prepared by a cold welding process and have been studied. Captopril may be applied in the treatment of hypertension and some types of congestive heart failure and for preventing kidney failure due to high blood pressure and diabetes. CAP-NP was synthesized by a cold welding process. The cerium nitrate was added at a ratio of 10% and the optical properties have been studied by photoluminescence (PL. The synthesized compounds were characterized by Fourier transform infrared spectroscopy. The size of CAP-NP was calculated by X-ray diffraction (XRD. The size of CAP-NP was in the range of 50 nm. Morphology of surface of synthesized nanoparticles was studied by scanning electron microscopy (SEM. Finally the luminescence properties of undoped and doped CAP-NP were compared. PL spectra from undoped CAP-NP show a strong pack in the range of 546 nm after doped cerium ion into the captopril appeared two bands at 680 and 357 nm, which is ascribed to the well-known 5d–4f emission band of the cerium.

  18. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  19. Study on photoluminescence from tris-(8-hydroxyquinoline)aluminum thin films and influence of light

    Science.gov (United States)

    Thangaraju, K.; Kumar, J.; Amaladass, P.; Mohanakrishnan, A. K.; Narayanan, V.

    2006-08-01

    Tris-(8-hydroxyquinoline)aluminum (Alq3), which is the most widely used material in organic electroluminescent devices, has been synthesized. Alq3 thin films have been deposited on glass and silicon substrates. The influence of light exposure on the optical properties of Alq3 thin films has been studied. It is confirmed that the photoluminescence (PL) of Alq3 thin film originates from its two geometrical isomers, namely, facial and meridional, which result from PL decay analysis (biexponential fit). It is also confirmed that the PL from both the isomers decreases for increasing light exposure time leading to the creation of luminescent quencher in Alq3 thin film.

  20. Long-time stabilization of porous silicon photoluminescence by surface modification

    International Nuclear Information System (INIS)

    Mahmoudi, Be.; Gabouze, N.; Guerbous, L.; Haddadi, M.; Beldjilali, K.

    2007-01-01

    We present results on the photoluminescence (PL) properties of porous silicon (PS) as a function of time. Stabilization of PL from PS has been achieved by replacing silicon-hydrogen bonds terminating the surface with more stable silicon-carbon bonds. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy at intervals of 1 month in ageing time up to 1 year. The position of the maximum PL peak wavelength oscillates between a blue-shift and a red-shift in the 615-660 nm range with time

  1. SEM, EDS, PL and absorbance study of CdTe thin films grown by CSS method

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Torres, M.E.; Silva-Gonzalez, R.; Gracia-Jimenez, J.M. [Instituto de Fisica, BUAP, Apdo. Postal J-48, San Manuel, 72570 Puebla, Pue. (Mexico); Casarrubias-Segura, G. [CIE- UNAM, 62580 Temixco, Morelos (Mexico)

    2006-09-22

    Oxygen-doped CdTe films were grown on conducting glass substrates by the close spaced sublimation (CSS) method and characterized using SEM, EDS, photoluminescence (PL) and absorbance. A significant change in the polycrystalline morphology is observed when the oxygen proportion is increased in the deposition atmosphere. The EDS analysis showed that all samples are nonstoichiometric with excess Te. The PL spectra show emission bands associated with Te vacancies (V{sub Te}), whose intensities decrease as the oxygen proportion in the CSS chamber is increased. The oxygen impurities occupy Te vacancies and modify the surfaces states, improving the nonradiative process. (author)

  2. Stationary and time resolved PL spectroscopy for analysis of ultrafst photoreactions in MALDI and solar cell samples; Stationaere und zeitaufgeloeste Photolumineszenz-Spektroskopie zur Analyse ultraschneller Photoreaktionen in MALDI- und Solarzellenproben

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Theo

    2009-02-12

    Stationary and time resolved measurements of photoluminescence (PL) were performed to analyse ultrafast photoreactions in solid MALDI (Matrix-Assisted Laser Desorption/Ionization) and solar cell samples. The investigation of pure cinnamic acid samples resulted in a first-time observation of a PL signature which is controlled by a photodimerisation on a ps- and fs-time scale. Other matrix compounds showed clear evidence of ultrafast photoinduced crystal reactions as well. In analyte/matrix mixtures consisting of angiotensin II and alpha-cyano-4-hydroxycinnamic acid or sinapinic acid, an additional effective PL quenching of matrix monomers was identified. This clearly indicates the existence of a further ultrafast photoreaction which strongly competes with the photodimerisation. The additional reaction is assumed to be a photoisomerisation of matrix monomers and to occur in the immediate vicinity of the analyte molecules. PL measurements on solar cell samples were performed with a P3HT/PCBM-mixture. The results show that within 150 fs about 50% of the P3HT-excitations relax via spontaneous charge transfer to PCBM molecules in this mixture.

  3. Oracle PL/SQL programming

    CERN Document Server

    Feuerstein, Steven

    2014-01-01

    Considered the best Oracle PL/SQL programming guide by the Oracle community, this definitive guide is precisely what you need to make the most of Oracle’s powerful procedural language. The sixth edition describes the features and capabilities of PL/SQL up through Oracle Database 12c Release 1. Hundreds of thousands of PL/SQL developers have benefited from this book over the last twenty years; this edition continues that tradition. With extensive code examples and a lively sense of humor, this book explains language fundamentals, explores advanced coding techniques, and offers best practices to help you solve real-world problems. * Get PL/SQL programs up and running quickly, with clear instructions for executing, tracing, testing, debugging, and managing code * Understand new 12.1 features, including the ACCESSIBLE_BY clause, WITH FUNCTION and UDF pragma, BEQUEATH CURRENT_USER for views, and new conditional compilation directives * Take advantage of extensive code samples, from easy-to-follow examples to reu...

  4. Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-04-01

    Full Text Available Un-doped and Tb(Sup3+) doped ZnO nanocrystals with different concentrations of Tb(Sup3+) were synthesized by a sol–gel method and their photoluminescence (PL) properties were investigated. The successful incorporation of Tb(sup3+) ions...

  5. Low-temperature photoluminescence analysis of CdTeSe crystals for radiation-detector applications

    Energy Technology Data Exchange (ETDEWEB)

    YANG G.; Roy, U. N.; Bolotnikov, A. E.; Cui, Y.; Camarda, G.S.; Hossain, A.; and James, R. B.

    2015-10-05

    Goal: Understanding the changes of material defects in CdTeSe following annealing. Experimental results and discussions: Infrared (IR) transmission microscopy; current-voltage measurements (Highlight: Improvement of resistivity of un-doped crystals after annealing); low-temperature photoluminescence (PL) spectrum of as-grown and annealed samples.

  6. Highly Luminescent Carbon-​Nanoparticle-​Based Materials: Factors Influencing Photoluminescence Quantum Yield

    NARCIS (Netherlands)

    Qu, S.; Shen, D.; Liu, X.; Jing, P.; Zhang, L.; Ji, W.; Zhao, H.; Fan, X.; Zhang, H.

    2014-01-01

    Unravelling the factors influencing photoluminescence (PL) quantum yield of the carbon nanoparticles (CNPs) is the prerequisite for prepg. highly luminescent CNP-​based materials. In this work, an easy and effective method is reported for prepg. highly luminescent CNP-​based materials. Water-​sol.

  7. Effect of ruthenium cluster on the photoluminescence of chemically derivatized porous silicon

    International Nuclear Information System (INIS)

    Boukherroub, Rabah; Zargarian, Davit; Reber, Christian; Lockwood, David J.; Carty, Arthur J.; Wayner, Danial D.M.

    2003-01-01

    A green photoluminescent triruthenium cluster (I) has been chemisorbed on highly luminescent porous silicon (PSi) layers, either freshly prepared or chemically modified with 1-decene, ethyl undecylenate, or undecylenic acid, in order to study the influence of the cluster on the photoluminescence (PL) arising from the PSi. Immersing the hydrogen-terminated PSi in a hexane solution of (I) for several days at room temperature led to the quenching of PL arising from PSi; the only PL detected was due to the Ru cluster (I). A complete quenching of the PL due to PSi was also observed when derivatized PSi surfaces were exposed to the same solution of (I); in these cases, the PL of (I) also shifted to lower energies. Both the quenching of the PL arising from the PSi layers and the shift in the PL of the cluster (I) are likely due to the difference in the chemical interaction of the PO moiety and the CO groups of the Ru cluster with the terminal functional group of the organic monolayer

  8. Effect of ruthenium cluster on the photoluminescence of chemically derivatized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Boukherroub, Rabah; Zargarian, Davit; Reber, Christian; Lockwood, David J.; Carty, Arthur J.; Wayner, Danial D.M

    2003-07-15

    A green photoluminescent triruthenium cluster (I) has been chemisorbed on highly luminescent porous silicon (PSi) layers, either freshly prepared or chemically modified with 1-decene, ethyl undecylenate, or undecylenic acid, in order to study the influence of the cluster on the photoluminescence (PL) arising from the PSi. Immersing the hydrogen-terminated PSi in a hexane solution of (I) for several days at room temperature led to the quenching of PL arising from PSi; the only PL detected was due to the Ru cluster (I). A complete quenching of the PL due to PSi was also observed when derivatized PSi surfaces were exposed to the same solution of (I); in these cases, the PL of (I) also shifted to lower energies. Both the quenching of the PL arising from the PSi layers and the shift in the PL of the cluster (I) are likely due to the difference in the chemical interaction of the PO moiety and the CO groups of the Ru cluster with the terminal functional group of the organic monolayer.

  9. Effect of ruthenium cluster on the photoluminescence of chemically derivatized porous silicon

    Science.gov (United States)

    Boukherroub, Rabah; Zargarian, Davit; Reber, Christian; Lockwood, David J.; Carty, Arthur J.; Wayner, Danial D. M.

    2003-07-01

    A green photoluminescent triruthenium cluster (I) has been chemisorbed on highly luminescent porous silicon (PSi) layers, either freshly prepared or chemically modified with 1-decene, ethyl undecylenate, or undecylenic acid, in order to study the influence of the cluster on the photoluminescence (PL) arising from the PSi. Immersing the hydrogen-terminated PSi in a hexane solution of (I) for several days at room temperature led to the quenching of PL arising from PSi; the only PL detected was due to the Ru cluster (I). A complete quenching of the PL due to PSi was also observed when derivatized PSi surfaces were exposed to the same solution of (I); in these cases, the PL of (I) also shifted to lower energies. Both the quenching of the PL arising from the PSi layers and the shift in the PL of the cluster (I) are likely due to the difference in the chemical interaction of the PO moiety and the CO groups of the Ru cluster with the terminal functional group of the organic monolayer.

  10. Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites

    International Nuclear Information System (INIS)

    Borjanovic, Vesna; Hens, Suzanne; Shenderova, Olga; McGuire, Gary E; Lawrence, William G; Edson, Clark; Jaksic, Milko; Zamboni, Ivana; Vlasov, Igor

    2008-01-01

    Pure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported. Pure PDMS exhibits a noticeable stable blue PL, while the PDMS-ND composites exhibit a pronounced stable green PL under 425 nm excitation. The PL of PDMS-ND composites is much more prominent than that of pure PDMS or pure ND powder even when irradiated at higher doses. The origin of the significantly enhanced PL intensity for the proton-irradiated PDMS-ND composite is explained by the combination of enhanced intrinsic PL within ND particles due to ion-implantation-generated defects and by PL originating from structural transformations produced by protons at the nanodiamond/matrix interface.

  11. Photoluminescence of Diamondoid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Clay, William; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Sasagawa, Takao; Iwasa, Akio; /TIT, Nagatsuta; Liu, Zhi; /LBNL, ALS; Dahl, Jeremy E.; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Carlson, Robert M.K.; /Molecular Diamond Technologies, Chevron Technology Ventures; Kelly, Michael; Melos, Nicholas; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Shen, Zhi-Xun; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab. /SIMES, Stanford

    2012-04-03

    The photoluminescence of diamondoids in the solid state is examined. All of the diamondoids are found to photoluminesce readily with initial excitation wavelengths ranging from 233 nm to 240 nm (5.3 eV). These excitation energies are more than 1 eV lower than any previously studied saturated hydrocarbon material. The emission is found to be heavily shifted from the absorption, with emission wavelengths of roughly 295 nm (4.2 eV) in all cases. In the dissolved state, however, no uorescence is observed for excitation wavelengths as short as 200 nm. We also discuss predictions and measurements of the quantum yield. Our predictions indicate that the maximum yield may be as high as 25%. Our measurement of one species, diamantane, gives a yield of 11%, the highest ever reported for a saturated hydrocarbon, even though it was likely not at the optimal excitation wavelength.

  12. Synthesis of YVO4:Eu3+/YBO3Heteronanostructures with Enhanced Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Hu Haihua

    2009-01-01

    Full Text Available Abstract Novel YVO4:Eu3+/YBO3core/shell heteronanostructures with different shell ratios (SRs were successfully prepared by a facile two-step method. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the heteronanostructures. Photoluminescence (PL study reveals that PL efficiency of the YVO4:Eu3+nanocrystals (cores can be improved by the growth of YBO3nanocoatings onto the cores to form the YVO4:Eu3+/YBO3core/shell heteronanostructures. Furthermore, shell ratio plays a critical role in their PL efficiency. The heteronanostructures (SR = 1/7 exhibit the highest PL efficiency; its PL intensity of the5D0–7F2emission at 620 nm is 27% higher than that of the YVO4:Eu3+nanocrystals under the same conditions.

  13. Temperature dependence of the photoluminescence polarization of ordered III-V semiconductor alloys

    International Nuclear Information System (INIS)

    Prutskij, T.; Makarov, N.; Attolini, G.

    2016-01-01

    We studied the linear polarization of the photoluminescence (PL) emission of atomically ordered GaInAsP and GaInP alloys with different ordering parameters in the temperature range from 10 to 300 K. The epitaxial layers of these alloys were grown on GaAs and Ge (001) substrates by metal organic vapor phase epitaxy. The polarization of the PL emission propagating along different crystallographic axes depends on the value of biaxial strain in the layer and changes with temperature. We calculated the PL polarization patterns for different propagation directions as a function of biaxial strain using an existing model developed for ternary atomically ordered III-V alloys. Comparing the calculated PL polarization patterns with those obtained experimentally, we separated the variation of the PL polarization due to change of biaxial strain with temperature.

  14. Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures

    KAUST Repository

    Ben Slimane, Ahmed

    2013-01-01

    We report on the large photoluminescence redshift observed in nanostructures fabricated using n-type GaN by ultraviolet (UV) metal-assisted electroless chemical-etching method. The scanning electron microscopy (SEM) characterization showed nanostructures with size dispersion ranging from 10 to 100 nm. We observed the crystalline structure using high resolution transmission electron microscopy (HRTEM) and electron energy loss (EELS) techniques. In contrast to 362 nm UV emission from the GaN epitaxy, the nanostructures emitted violet visible-light in photoluminescence (PL) characterization with increasing optical excitation. An energy band model was presented to shed light on the large PL redshift under the influence of surface states, which resulted in two competing photoluminescence mechanisms depending on excitation conditions.

  15. Terahertz-field-induced photoluminescence of nanostructured gold films

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Malureanu, Radu; Zalkovskij, Maksim

    2013-01-01

    We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced at the pe......We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced...

  16. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand [Laboratory for Sensors and Physics Education, Department of Physics, Guru Nanak Dev University, Amritsar – 143005 (India)

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.

  17. Summary of field operations Powerline Wells PL-1, PL-2, PL-3

    International Nuclear Information System (INIS)

    Foutz, W.L.

    1996-03-01

    This report summarizes field operations and hydrogeologic data obtained during installation of the Powerline monitoring/test wells near the western boundary of Kirtland Air Force Base. These wells were installed in 1994 as part of the Site-Wide Hydrogeologic Characterization Project saturated zone investigation. The Site-Wide Hydrogeologic Characterization Project is part of Sandia National Laboratories, New Mexico, Environmental Restoration Project. Three wells were drilled and completed at this location, and named PL-1, PL-2, and PL-3. They are located northwest of Tech Area 3, and are named after a high-voltage powerline located just south of the wells. The objectives of the Powerline wells were to determine the depth to water, complete 2 water table wells and a deeper Santa Fe Group well, to determine the geologic provenance of Santa Fe Group sediments at this location, and to obtain background core samples for radiological analysis. During these field operations, important subsurface hydrogeologic data were obtained. These data include drill cuttings and lithologic descriptions, core samples with background analytical data, geophysical logs, water quality parameters, and water levels. Aquifer tests at the Powerline location will generate data that may yield information on anisotropy in the Santa Fe Group and constrain numerical modeling results that indicate that there is a major northward component of groundwater flow from McCormick Ranch and Tech Area 3 test sites toward City of Albuquerque and KAFB well fields

  18. Synthesis and characterization of a new photoluminescent material, tris-[1-10 phenanthroline] aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: id-kumarrahul003@gmail.com; Bhargava, Parag [Department of Metallurgical Engineering and Materials Science Indian Institute of Technology-Bombay, Mumbai-400076 (India); Dvivedi, Avanish [Department of Chemistry Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    A new photoluminescent material namely tris-[1-10 Phenanthroline] Aluminium Al(Phen){sub 3} has been synthesized and characterized. This material was characterized by fourier transform infrared spectroscopy (FTIR),nuclear magnetic resonance (NMR),mass spectroscopy, thermal gravimetric analysis (TGA),ultraviolet-visible spectroscopy(UV) and photoluminescence (PL). This material shows thermal stability up to 300°C. This material showed absorption maxima at 352nm which may be attributed to the moderate energy (π–π{sup *}) transition. Photoluminescence spectra for this material showed the most intense peak at 423 nm and the time resolved photoluminescence spectra showed two life time components. The decay times of the first and second component were 1.4ns and 4.8 ns respectively.

  19. Mechanism of photoluminescence in intrinsically disordered CaZrO3 crystals: First principles modeling of the excited electronic states

    OpenAIRE

    Carvalho Oliveira, Marisa; Gracia Edo, Lourdes; Assis, Marcelo de; Viana Rosa, Ieda Lucía; Do Carmo Gurgel, Maria Fernanda; Longo, Elson; Andrés, Juan

    2017-01-01

    CaZrO3 (CZO) powders obtained by the polymeric precursor method at 400 °C, and then, the samples were annealed at different temperatures (400, 600, 800, and 1000 °C) and characterized by X-ray diffraction, Raman and ultraviolet–visible spectroscopic methods, along with photoluminescence (PL) emissions. First principle calculations based on the density functional theory (DFT), using a periodic cell models, provide a theoretical framework for understanding the PL spectra based on the localizati...

  20. Energy transfer networks: Quasicontinuum photoluminescence linked to high densities of defects

    Science.gov (United States)

    Laurence, Ted A.; Ly, Sonny; Bude, Jeff D.; Baxamusa, Salmaan H.; Lepró, Xavier; Ehrmann, Paul

    2017-11-01

    In a series of studies related to laser-induced damage of optical materials and deposition of plastics, we discovered a broadly emitting photoluminescence with fast lifetimes that we termed quasicontinuum photoluminescence (QC-PL). Here, we suggest that a high density of optically active defects leads to QC-PL, where interactions between defects affect the temporal and spectral characteristics of both excitation and emission. We develop a model that predicts the temporal characteristics of QC-PL, based on energy transfer interactions between high densities of defects. Our model does not explain all spectral broadening and redshifts found in QC-PL, since we do not model spectral changes in defects due to proximity to other defects. However, we do provide an example of a well-defined system that exhibits the QC-PL characteristics of a distribution in shortened lifetimes and broadened, redshifted energy levels: an organic chromophore (fluorescein) that has been dried rapidly on a fused silica surface. Recently, we showed that regions of fused silica exposed to up to 1 billion high-fluence laser shots at 351 rm nm at subdamage fluences exhibit significant transmission losses at the surface. Here, we find that these laser-exposed regions also exhibit QC-PL. Increases in the density of induced defects on these laser-exposed surfaces, as measured by the local transmission loss, lead to decreases in the observed lifetime and redshifts in the spectrum of the QC-PL, consistent with our explanation for QC-PL. We have found QC-PL in an increasing variety of situations and materials, and we believe it is a phenomenon commonly found on surfaces and nanostructured materials.

  1. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    International Nuclear Information System (INIS)

    Prtljaga, Nikola; D'Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo

    2011-01-01

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  2. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    Science.gov (United States)

    Prtljaga, Nikola; D'Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo

    2011-05-01

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  3. Photoluminescence of hydrophilic silicon nanocrystals in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prtljaga, Nikola; D' Amato, Elvira; Pitanti, Alessandro; Guider, Romain; Froner, Elena; Larcheri, Silvia; Scarpa, Marina; Pavesi, Lorenzo, E-mail: nikolap@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2011-05-27

    Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable. Agglomeration can be reduced by using suitable surfactants. On a long timescale (days), oxidation of Si-nc occurs even in the presence of surfactants. These two observations render Si-nc very useful as a labeling agent for biosensing.

  4. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  5. Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids

    Science.gov (United States)

    Si, Hua-Yan; Liu, Cai-Hong; Xu, Hua; Wang, Tian-Ming; Zhang, Hao-Li

    2009-10-01

    A new type of nanohybrids containing carbon nanotubes (CNTs) and CdSe quantum dots (QDs) was prepared using an electrostatic self-assembly method. The CdSe QDs were capped by various mercaptocarboxylic acids, including thioglycolic acid (TGA), dihydrolipoic acid (DHLA) and mercaptoundecanoic acid (MUA), which provide shell thicknesses of ~5.2, 10.6 and 15.2 Å, respectively. The surface-modified CdSe QDs are then self-assembled onto aridine orange-modified CNTs via electrostatic interaction to give CdSe/CNT nanohybrids. The photoluminescence (PL) efficiencies of the obtained nanohybrids increase significantly with the increase of the shell thickness, which is attributed to a distance-dependent photo-induced charge-transfer mechanism. This work demonstrates a simple mean for fine tuning the PL properties of the CdSe/CNT nanohybrids and gains new insights to the photo-induced charge transfer in such nanostructures.

  6. Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids

    Directory of Open Access Journals (Sweden)

    Si Hua-Yan

    2009-01-01

    Full Text Available Abstract A new type of nanohybrids containing carbon nanotubes (CNTs and CdSe quantum dots (QDs was prepared using an electrostatic self-assembly method. The CdSe QDs were capped by various mercaptocarboxylic acids, including thioglycolic acid (TGA, dihydrolipoic acid (DHLA and mercaptoundecanoic acid (MUA, which provide shell thicknesses of ~5.2, 10.6 and 15.2 Å, respectively. The surface-modified CdSe QDs are then self-assembled onto aridine orange-modified CNTs via electrostatic interaction to give CdSe/CNT nanohybrids. The photoluminescence (PL efficiencies of the obtained nanohybrids increase significantly with the increase of the shell thickness, which is attributed to a distance-dependent photo-induced charge-transfer mechanism. This work demonstrates a simple mean for fine tuning the PL properties of the CdSe/CNT nanohybrids and gains new insights to the photo-induced charge transfer in such nanostructures.

  7. Photoluminescence of acupoint 'Waiqiu' in human superficial fascia

    International Nuclear Information System (INIS)

    Zhang Yuan; Yan Xiaohui; Liu Chenglin; Dang Ruishan; Zhang Xinyi

    2006-01-01

    The spectral characters of an acupuncture point named 'Waiqiu' in superficial fascia tissue have been studied by photoluminescence (PL) spectroscopy under the excitation of 457.9 nm. The PL around 'Waiqiu' acupuncture point consists of two sub-bands resulting from the flavin adenine dinucleotide (FAD) and phospholipids, and the porphyrins (including purine, isoxanthopterin and tryptophan), respectively. More emission due to FAD and phospholipids is found inside the acupuncture effect area of 'Waiqiu' than its marginal or outside acupuncture regions. The ratio of emission intensity of FAD and phospholipids to one of porphyrins gradually decreases along the direction away from the center of the acupuncture point. It implies that the component proportion changes between FAD, phospholipids and porphyrins around the 'Waiqiu' acupuncture point. We suggest that there might be a certain relationship between redox function of FAD and 'Waiqiu' acupuncture effect

  8. Photoluminescence of chemically treated InAs (111)A

    Science.gov (United States)

    Eassa, N.; Coetsee, E.; Swart, H. C.; Venter, A.; Botha, J. R.

    2014-06-01

    Variable laser power and temperature dependent photoluminescence (PL) measurements were used to identify some of the optical transitions and impurity-related emissions for chemically treated (Br-methanol, (NH4)2S + S or [(NH4)2S/ (NH4)2SO4] + S solutions) or oxidised (annealed in oxygen) bulk n-InAs (111)A. A combination of PL and X-ray photoelectron spectroscopy (XPS) measurements before and after various treatments was used to identify the chemical nature of the impurities giving rise to bound exciton recombination in InAs (111). Band-to-band transitions have been observed at 0.4185 eV. In addition, two shallow neutral donor bound excitons ascribed to atomic oxygen (at 0.412 eV) and to sulphur (at 0.414 eV), have been detected after treatment.

  9. Non-uniform distribution of induced strain in a gate-recessed AlGaN/GaN structure evaluated by micro-PL measurements

    International Nuclear Information System (INIS)

    Mikulics, M; Hardtdegen, H; Trellenkamp, St; Grützmacher, D; Lüth, H; Gregušová, D; Kordoš, P; Sofer, Z; Šimek, P; Marso, M

    2012-01-01

    Micro-photoluminescence (µ-PL) studies were performed on AlGaN/GaN heterostructure field effect transistors (HFETs) with different gate-recessing depths. It was found that µ-PL is the method of choice for detecting dry etching damage and simultaneously recording strain and stress in the HFET GaN layer. Lateral sub-µm resolved mapping shows that the strain in the GaN layer after recessing is partially relaxed and non-uniform. (paper)

  10. Influence of dopant transport rate upon photoluminescence and electrical properties of phosphorus-doped ZnMgTe layers grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K.; Guo, Q.X. [Synchrotron Light Application Center, Saga University, 1 Honjo, Saga 840-8502 (Japan); Saeki, T.; Tanaka, T.; Nishio, M. [Graduate School of Science and Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2012-08-15

    p-type doping of Zn{sub 1-x}Mg{sub x} Te has been investigated by metalorganic vapour phase epitaxy using tris-dimethylaminophosphorus as a dopant source. The photoluminescence (PL) and electrical properties of the as-grown and post-annealed layers have been clarified as a function of the dopant transport rate. In PL spectra at 4.2 K, the strong donor acceptor pair emission vanished and instead enhancement of P acceptor-related excitonic emission and/or appearance of free-to-bound emission were observed for all the layers by the post-annealing treatment. In accordance with the PL behavior, the hole concentration at room temperature of the annealed layers was significantly enhanced from 2 x 10{sup 15}{proportional_to}2 x 10{sup 16} cm{sup -3} to 5 x 10{sup 16}{proportional_to}2 x 10{sup 18} cm{sup -3} by a maximum factor of {proportional_to}600. The enhanced hole concentration shows saturation tendency with increasing dopant transport rate. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Effect of Substituents and Initial Degree of Functionalization of Alkylated Single-Walled Carbon Nanotubes on Their Thermal Stability and Photoluminescence Properties.

    Science.gov (United States)

    Maeda, Yutaka; Takehana, Yuya; Dang, Jing-Shuang; Suzuki, Mitsuaki; Yamada, Michio; Nagase, Shigeru

    2017-02-03

    Alkylated single-walled carbon nanotubes (SWNTs) have been thermally treated to determine the influence of substituents and the degree of functionalization on their thermal stability and photoluminescence (PL) properties. Alkylated SWNTs were prepared by treating SWNTs with sodium naphthalenide and alkyl bromide. The defunctionalization of the alkylated SWNTs was monitored by absorption and Raman spectra. Selective recovery of the characteristic absorption and radial breathing mode peaks was observed during the thermal treatment, which indicates that the thermal stability of the alkylated SWNTs decreases with increases in SWNT diameter and degree of functionalization. n-Butylated and phenethylated SWNTs showed higher thermal stability than sec-butylated and benzylated SWNTs for a similar degree of functionalization, respectively. The diameter selectivity and effect of substituents on the thermal elimination reaction were confirmed by density functional theory. In addition, it was shown that the initial degree of functionalization of the alkylated SWNTs, with the alkyl group and degree of functionalization being kept constant after thermal treatment, strongly affects their PL properties; Stokes shift, and PL peak intensity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polarization-selective three-photon absorption and subsequent photoluminescence in CsPbBr3 single crystal at room temperature

    Science.gov (United States)

    Clark, D. J.; Stoumpos, C. C.; Saouma, F. O.; Kanatzidis, M. G.; Jang, J. I.

    2016-05-01

    We report on highly polarization-selective three-photon absorption (3PA) in a Bridgman-grown single crystal of CsPbBr3 oriented along the (112) direction, which is an inorganic counterpart to emerging organic-inorganic hybrid halide perovskites for solar-cell and optoelectronic applications. The crystal exhibits strong photoluminescence (PL) at room temperature as a direct consequence of 3PA of fundamental radiation. Interestingly, 3PA disappears when the input polarization is parallel to the (-110 ) direction. This 3PA effect is strongest when orthogonal to (-110 ) and the corresponding 3PA coefficient was measured to be γ =0.14 ±0.03 cm3/GW2 under picosecond-pulse excitation at the fundamental wavelength of λ =1200 nm. The laser-induced damage threshold was also determined to be about 20 GW/cm2 at the same wavelength. Based on relative PL intensities upon λ tuning over the entire 3PA range (1100 -1700 nm), we determined the nonlinear optical dispersion of the 3PA coefficient for CsPbBr3, which is consistent with a theoretical prediction. Experimentally observed significant polarization dependence of γ was explained by relevant selection rules. The perovskite is potentially important for nonlinear optical applications owing to its highly efficient 3PA-induced PL response with a sharp on/off ratio by active polarization control.

  13. Influence of crystallisation on the photoluminescence properties of Y{sub 2-x}Er{sub x}Ti{sub 2}O{sub 7} sol-gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jenouvrier, P. [Laboratoire des Materiaux et du Genie Physique, UMR 5628, INPG-CNRS, ENSPG, Domaine Universitaire, BP 46, 38402, Saint Martin d' Heres (France); Institut de Microelectronique, Electromagnetisme et Photonique, UMR 5130, INPG-UJF-CNRS, ENSERG, BP 257, 38016, Grenoble (France); Langlet, M. [Laboratoire des Materiaux et du Genie Physique, UMR 5628, INPG-CNRS, ENSPG, Domaine Universitaire, BP 46, 38402, Saint Martin d' Heres (France); Rimet, R.; Fick, J. [Institut de Microelectronique, Electromagnetisme et Photonique, UMR 5130, INPG-UJF-CNRS, ENSERG, BP 257, 38016, Grenoble (France)

    2003-10-01

    Optically active Er{sub 2}Ti{sub 2}O{sub 7} (ETO) and Y{sub 2-x}Er{sub x}Ti{sub 2}O{sub 7} (YETO) films have been successfully deposited using the aerosol-gel process. Several heat-treatment procedures are investigated in the 600-850 C range. ETO and YETO films start to crystallise in the pyrochlore phase at about 750 C, depending on the heat-treatment time. Crystalline YETO films form a solid solution where the erbium ions are well diluted. Up-conversion emission (UPE) in the visible wavelength range and infrared photoluminescence (PL) at 1.53 {mu}m are investigated. PL spectra are composed of several sharp peaks. Stark splitting of the {sup 4}I{sub 13/2} and {sup 4}I{sub 15/2} erbium levels is analysed. A clear correlation between spectroscopic properties and film microstructure is evidenced. YETO films exhibit strong PL compared to ETO films. PL lifetimes of up to 8.6 ms were measured on YETO films at an erbium concentration of 2 x 10{sup 20} ions/cm{sup 3}. The YETO compound is found to be a suitable material, improving the erbium active properties. (orig.)

  14. Effect of variable cerium concentration on photoluminescence behaviour in ZrO{sub 2} phosphor synthesized by combustion synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Vikas, E-mail: jsvikasdubey@gmail.com [Department of Physics, Bhilai Institute of Technology, Raipur, 493661 (India); Kaur, Jagjeet [Department of Physics, Govt. V.Y.T. PG. Auto. College, Durg (India)

    2016-05-06

    Present paper reports synthesis and characterization of trivalent cerium (Ce{sup 3+}) doped zirconium dioxide (ZrO{sub 2}) phosphors. Effect of variable concentration of cerium on photoluminescence (PL) is studied. Samples were prepared by combustion synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. Starting material used for sample preparation are Zr(NO{sub 3}){sub 3} and Ce(NO{sub 3}){sub 3} and urea used as a fuel. All prepared phosphor with variable concentration of Ce{sup 3+} (0.1 to 2mol%) was studied by photoluminescence analysis it is found that the excitation spectra of prepared phosphor shows broad excitation centred at 390nm. The excitation spectra with variable concentration of Ce{sup 3+} show strong peaks at 447nm. Spectrophotometric determinations of peaks are evaluated by Commission Internationale de I’Eclairage technique. Using this phosphor, the desired CIE values including emissions throughout the violet (390 nm) and blue (427 nm) of the spectra were achieved. Efficient blue light emitting diodes were fabricated using Ce{sup 3+} doped phosphor based on near ultraviolet (NUV) excited LED lights.

  15. Nanomaterial Host Bands Effect on the Photoluminescence Properties of Ce-Doped YAG Nanophosphor Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    L. Guerbous

    2015-01-01

    Full Text Available Cerium trivalent (Ce3+ doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD, thermogravimetry (TG, differential scanning calorimetry (DSC analysis, Fourier transform infrared (FTIR spectroscopy, and steady photoluminescence (PL spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+ 5d1→2F5/2, 2F7/2 transitions and its photoluminescence excitation spectrum contains the two Ce3+ 4f1→5d1, 5d2 bands. The crystal filed splitting energy levels positions 5d1 and 5d2 and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+ 4f1 ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.

  16. Photoluminescence induced by Si implantation into Si{sub 3}N{sub 4} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bregolin, F.L. [Instituto de Fisica, Universidade Federal Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Behar, M. [Instituto de Fisica, Universidade Federal Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre, RS (Brazil)], E-mail: behar@if.ufrgs.br; Sias, U.S. [Centro Federal de Educacao Tecnologica de Pelotas, 96015-370, RS (Brazil); Moreira, E.C. [Universidade Federal do Pampa - UNIPAMPA, Campus Bage, 96400-970 Bage, RS (Brazil)

    2009-05-01

    Up to the present, photoluminescence (PL) was obtained from near stoichiometric or amorphous Si nitride films (SiN{sub x}) after annealing at high temperatures. As a consequence, the existence of PL bands has been reported in the 400-900 nm range. In the present contribution, we report the first PL results obtained by Si implantation into a stoichiometric 380 nm Si{sub 3}N{sub 4} film. The Si excess is obtained by a 170 keV Si implantation at different temperatures with a fluence of {phi} = 10{sup 17} Si/cm{sup 2}. Further, we have annealed the samples in a temperature range between 350 and 900 deg. C in order to form the Si precipitates. PL measurements were done using an Ar laser as an excitation source, and a broad PL band basically centered at 910 nm was obtained. We show that the best annealing condition is obtained at T{sub a} = 475 deg. C for the samples implanted at 200 deg. C, with a PL yield 20% higher than the obtained at room temperature implantation. Finally, we have varied the implantation fluence and, consequently, the Si nanocrystals size. However, no variation was observed nor in the position neither in the intensity of the PL band. We concluded that the PL emission is due to radiative states at the matrix and the Si nanocrystals interface, as previously suggested in the literature.

  17. Photoluminescence investigation of compensation in nitrogen doped zinc selenide

    Science.gov (United States)

    Moldovan, Monica

    A detailed liquid-helium-temperature photoluminescence study has been performed on a series of ZnSe epilayers grown by molecular beam epitaxy. The samples were grown at West Virginia University and include undoped and nitrogen-doped epilayers (with different levels of doping). The PL has been studied as a function of excitation wavelength, power, temperature and time. Electron Paramagnetic Resonance (EPR) and Photoluminescence Excitation (PLE) were also performed. An ionization energy of 50 meV for the "deep" donor in a lightly doped ZnSe:N sample is determined using power dependence data. Heavily nitrogen-doped samples (≥8 x 1018 cm-3 ) provided evidence for a second deeper donor with an ionization energy greater than 100 meV. The importance of accounting for interference effects in the PL spectra from heavily-doped ZnSe:N is shown. A model is proposed to explain the PL and PLE results in the presence of potential fluctuation and the deeper donor. The PL spectra obtained from samples grown using two rf sources (Oxford and EPI) were compared. Although the EPI source produced a lower ratio of ions to atomic nitrogen, compensation is still a problem for heavily doped samples. A third band, at 2.66 eV, is observed under high-power pulsed excitation, and the presence of this band can be correlated with growth conditions. Under the same conditions, a bound exciton appeared in a heavily doped sample. The presence of this exciton, called the IV line, was attributed to Se vacancies in undoped ZnSe/GaAs. The EPR results indicate the presence of singly ionized selenium vacancies in our heavily doped samples, and they can play a role in compensation.

  18. CVD grown 2D MoS2 layers: A photoluminescence and fluorescence lifetime imaging study

    International Nuclear Information System (INIS)

    Oezden, Ayberk; Madenoglu, Buesra; Sar, Hueseyin; Ay, Feridun; Perkgoez, Nihan Kosku; Yeltik, Aydan; Sevik, Cem

    2016-01-01

    In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS 2 . μ-Raman, μ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS 2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Observation of Si Nanocrystal Distrubition by Photoluminescence Spectroscopy

    International Nuclear Information System (INIS)

    Serincan, U.

    2004-01-01

    The observation of Photoluminescence (PL) from the semiconductor nanocrystals embedded into the Si0 2 matrix has drawn much attention in recent years because of its promising solution for the fabrication of Si-based light emitting diodes (LEDs), Recently, we have observed that Si implanted and post annealed samples show a broad PL band near 850 nm. The broadness of the PL spectra is attributed to the nanocrystal size distribution in the annealed films. The size distribution of the nanocrystals shows a Gaussian distribution as determined by TRIM calculations. it is shown in this study that, nanocrystals with different sizes can selectively be excited with a conroBed etch of SiO 2 layer. Hence, by conducting an etch-measure experiment, the PL spectrum has been shown to correlate with Si nanocrystal distribution in the Si0 2 . The red and blue shifts observed during this measurement has evidenced that the observed light emission is a size dependent phenomenon resulted from the Si nanocrystals

  20. Photoluminescence properties of TiO{sub 2} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chetibi, Loubna [University Mentouri Constantine and National Polytechnic School of Constantine, Materials Science and Applications Unit (Algeria); Busko, Tetiana; Kulish, Nikolay Polikarpovich [Kyiv National Taras Shevchenko University (Ukraine); Hamana, Djamel [University Mentouri Constantine and National Polytechnic School of Constantine, Materials Science and Applications Unit (Algeria); Chaieb, Sahraoui [Lawrence Berkeley National Laboratory (United States); Achour, Slimane, E-mail: achourslimane11@yahoo.fr [University Mentouri Constantine and National Polytechnic School of Constantine, Materials Science and Applications Unit (Algeria)

    2017-04-15

    Multi-walled carbon nanotube (MWCNT)-TiO{sub 2} nanofiber (NF) composites forming a layered nanostructure (MWCNTs/TiO{sub 2} NFs/Ti) were prepared by impregnation at low temperature. Room temperature photoluminescence (PL) of these nanostructures shows a broad intense band in the visible light range (∼450–600 nm). The origin of the PL emission which, mainly, resulted from surface oxygen vacancies and other defects was investigated. We studied the effect of MWCNT deposition on the PL of TiO{sub 2} NFs where the MWCNTs can act as an electron reservoir of electrons emitted from TiO{sub 2} nanofibers when irradiated with UV light. The combination of MWCNTs and TiO{sub 2} results in quenching of TiO{sub 2} luminescence in the visible range. In addition, the prepared surface of MWCNTs-TiO{sub 2} was irradiated with Ti{sup +} ions using irradiation energy of 140 keV and doses of 10{sup 13} ions/cm{sup 2}. Also, this treatment induced the PL intensity quenching due to the generation of non-radiative additional levels inside the band gap.

  1. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs.

    Science.gov (United States)

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K; Christiansen, Silke; Vollmer, Frank

    2016-04-26

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

  2. Offer a novel method for size appraise of NiO nanoparticles by PL analysis: Synthesis by sonochemical method

    Directory of Open Access Journals (Sweden)

    Seyid Javad Musevi

    2016-05-01

    Full Text Available In this work, we will discuss the optical properties of NiO nanoparticles that we have investigated recently by photoluminescence (PL spectroscopy. In particular, we will show the blue-shifts of PL, originating from the electron–hole recombination of the self-trapped exciton (STE, observed in smaller-sized NiO nanoparticles. To explain the size effect in relating to the STE PL shift, a question has been raised on whether it is appropriate to apply him quantum confinement (QC theory usually used for the Mott-Winner type excitons in semiconductors to wide band-gap material, such as silica. Variations in several parameters and their effects on the structural (crystal size and morphology properties of nanoparticles were investigated. Characterizations were carried out by X-ray diffraction (XRD, scanning electron microscopy (SEM, thermal stability (TGA and DTA, solid state UV and solid state florescent (PL.

  3. Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Dongqi; Hu Lizhong; Qiao Shuangshuang; Zhang Heqiu; Fu Qiang; Chen Xi; Sun Kaitong; Len, Song-En Andy; Len, L K

    2009-01-01

    Novel phosphorus-doped and undoped single crystal ZnO nanotetrapods were fabricated on sapphire by a simple chemical vapour deposition method, using phosphorus pentoxide (P 2 O 5 ) as the dopant source. The optical properties of the samples were investigated by photoluminescence (PL) spectroscopy. Low-temperature PL measurements of phosphorus-doped and undoped samples were compared, and the results indicated a decrease in deep level defects due to the incorporation of a phosphorus acceptor dopant. The PL spectrum of the phosphorus-doped sample at 10 K exhibited several acceptor-bound exciton related emission peaks. The effect of phosphorus doping on the optical characteristics of the samples was investigated by excitation intensity and temperature dependent PL spectra. The acceptor-binding energies of the phosphorus dopant were estimated to be about 120 meV, in good agreement with the corresponding theoretical and experimental values in phosphorus-doped ZnO films and nanowires.

  4. Influence of the implantation and annealing parameters on the photoluminescence produced by Si hot implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sias, U.S. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil) and Centro Federal de Educacao Tecnologica de Pelotas (CEFET-RS), 96015-370 Pelotas, RS (Brazil)]. E-mail: uilson@cefetrs.tche.br; Behar, M. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Boudinov, H. [Instituto de Fisica - Universidade Federal do Rio Grande do Sul (UFRGS), C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Moreira, E.C. [UFPel - UNIPAMPA, Campus Bage, 96400-970 Bage, RS (Brazil)

    2007-04-15

    We report an investigation on the effect of the fluence and annealing time on the photoluminescence (PL) from Si nanocrystals produced by hot implantation of Si into a SiO{sub 2} matrix followed by thermal treatment in nitrogen. We have varied the implantation fluence in a wide range, from 0.35 x 10{sup 17} to 4 x 10{sup 17} Si/cm{sup 2}. In addition, the PL evolution with the annealing time (1 up to 15 h) was studied for the samples implanted with fluences between 1 x 10{sup 17} and 4 x 10{sup 17} Si/cm{sup 2}. After annealing the spectra present two PL bands: one centered at 780 nm and a second one around 1000 nm. The influence of the studied parameters on the PL behavior of both bands suggests different origins for their emission. The results are discussed in terms of current models.

  5. Photoluminescence and Raman spectroscopy of MBE-grown InN nanocolumns

    International Nuclear Information System (INIS)

    Segura-Ruiz, J.; Cantarero, A.; Garro, N.; Denker, C.; Werner, F.; Malindretos, J.; Rizzi, A.

    2008-01-01

    InN nanocolumns grown under different conditions by plasma-assisted molecular beam epitaxy on p-Si (111) substrates are studied by micro-Raman and photoluminescence (PL) spectroscopies. The nanocolumns are free of strain and have an improved crystal quality as shown by the frequency and linewidth of the nonpolar E 2 h mode. Uncoupled polar modes coexist with a couple LO phonon-plasmon mode and are sensitive to the nanocolumn morphology. Variations in the growth conditions also modify the PL spectra significantly. An increase in the PL energy also involves a reduction of the integrated intensity and an increase of the PL linewidth. This overall phenomenology highlights the role of the surface accumulation layer in these nanostructures. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Photoluminescence and Raman spectroscopy of MBE-grown InN nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Ruiz, J.; Cantarero, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Garro, N. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Fundacio General de la Universitat de Valencia, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Denker, C.; Werner, F.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August Universitaet Goettingen (Germany)

    2008-07-01

    InN nanocolumns grown under different conditions by plasma-assisted molecular beam epitaxy on p-Si (111) substrates are studied by micro-Raman and photoluminescence (PL) spectroscopies. The nanocolumns are free of strain and have an improved crystal quality as shown by the frequency and linewidth of the nonpolar E{sub 2}{sup h} mode. Uncoupled polar modes coexist with a couple LO phonon-plasmon mode and are sensitive to the nanocolumn morphology. Variations in the growth conditions also modify the PL spectra significantly. An increase in the PL energy also involves a reduction of the integrated intensity and an increase of the PL linewidth. This overall phenomenology highlights the role of the surface accumulation layer in these nanostructures. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Photoluminescence Properties of Polymorphic Modifications of Low Molecular Weight Poly(3-hexylthiophene)

    Science.gov (United States)

    Kobayashi, Takashi; Kinoshita, Keita; Niwa, Akitsugu; Nagase, Takashi; Naito, Hiroyoshi

    2017-05-01

    The structural and photoluminescence (PL) properties of thin films of poly(3-hexylthophene) (P3HT) with molecular weights (MWs) of 3000 and 13,300 have been investigated. Although high MW P3HT always self-organizes into one packing structure (form I), low MW P3HT forms two different packing structures (forms I and II) depending on the fabrication conditions. In this work, several fabrication techniques have been examined to obtain form II samples with little inclusion of a form I component. It is found that drop-cast thin films of low MW P3HT (form II) exhibit a PL spectrum that is different from that of form I and does not contain the form I component. The PL spectrum can thus be attributed to form II. The differences in PL properties between forms I and II can be understood in terms of weakened interchain interactions due to the longer interchain distance in form II.

  8. In-situ Evidence of the Redox-State Dependence of Photoluminescence in Graphene Quantum Dots.

    Science.gov (United States)

    Barrera, Joaquin; Ibañez, David; Heras, Aranzazu; Ruiz, Virginia; Colina, Alvaro

    2017-01-19

    Changes in the optical properties of graphene quantum dots (GQD) during electrochemical reduction and oxidation were investigated by photoluminescence (PL) spectroelectrochemistry, which provided direct in situ evidence of the dependence of GQD luminescence on their redox state. We demonstrated that GQD PL intensity was enhanced upon reduction (quantum yield increased from 0.44 to 0.55) and substantially bleached during oxidation (quantum yield ∼0.12). Moreover, PL emission blue/red-shifted upon GQD reduction/oxidation, rendering information about electronic transitions involved in the redox processes, namely, the π → π* and the n → π* transitions between energy levels of the aromatic sp 2 domains and the functional groups, respectively. PL intensity changes during GQD reduction/oxidation resulted from a variation in structural changes in GQD as a result of charge injection, as corroborated by in situ Raman spectroelectrochemistry.

  9. Photoluminescence from ZnO-SiO2 opals with different sphere diameters and thicknesses

    International Nuclear Information System (INIS)

    Yang Yingling; Yan Hongwei; Fu Zhengping; Yang Beifang; Xia Linsheng; Wang Zhen; Zuo Jian; Yu Shijun; Fu Shengquan; Li Fanqing

    2007-01-01

    We systematically investigated the photoluminescence (PL) and transmittance characteristics of ZnO-SiO 2 opals with varied positions of the stop-band and film thicknesses. An improved ultraviolet (UV) luminescence was observed from ZnO-SiO 2 composites over pure ZnO nanocrystals under 325 nm He-Cd laser excitation at room temperature. The UV PL of ZnO nanocrystals in SiO 2 opals with stop-bands center of 410 nm is sensitive to the thickness of opal films, and the UV PL intensity increases with the film thickness increasing. The PL spectra of ZnO nanocrystals in SiO 2 opals with stop-bands center of 570 nm show a suppression of the weak visible band. The experimental results are discussed based on the scattering and/or absorbance in opal crystals

  10. Effect of annealing treatments on photoluminescence and charge storage mechanism in silicon-rich SiNx:H films

    Directory of Open Access Journals (Sweden)

    Sahu Bhabani

    2011-01-01

    Full Text Available Abstract In this study, a wide range of a-SiNx:H films with an excess of silicon (20 to 50% were prepared with an electron-cyclotron resonance plasma-enhanced chemical vapor deposition system under the flows of NH3 and SiH4. The silicon-rich a-SiNx:H films (SRSN were sandwiched between a bottom thermal SiO2 and a top Si3N4 layer, and subsequently annealed within the temperature range of 500-1100°C in N2 to study the effect of annealing temperature on light-emitting and charge storage properties. A strong visible photoluminescence (PL at room temperature has been observed for the as-deposited SRSN films as well as for films annealed up to 1100°C. The possible origins of the PL are briefly discussed. The authors have succeeded in the formation of amorphous Si quantum dots with an average size of about 3 to 3.6 nm by varying excess amount of Si and annealing temperature. Electrical properties have been investigated on Al/Si3N4/SRSN/SiO2/Si structures by capacitance-voltage and conductance-voltage analysis techniques. A significant memory window of 4.45 V was obtained at a low operating voltage of ± 8 V for the sample containing 25% excess silicon and annealed at 1000°C, indicating its utility in low-power memory devices.

  11. 3PL Factories or Lernstatts?

    DEFF Research Database (Denmark)

    Prockl, Günter; Pflaum, Alexander; Kotzab, Herbert

    2012-01-01

    with work of organizational theory and develops an analytical framework based on conceptual considerations. First empirical results are additionally used to support and illustrate the key outcomes. Findings – Combining the dimensions of integration power and intangible knowledge creation, the authors...... are able to specify generic types of contract logistics services. Thereby the authors deducted for every type the distinct requirements for service fulfilment and present this in a specific frame of reference. Research limitations/implications – The illustrated empirical results are still limited due...... with first empirical results, the paper's results offer insights for practitioners to rethink their value propositions and potentially redesign their service architectures. Originality/value – The paper delivers a set of distinct business models for 3PL services reflecting the customer's, as well...

  12. Preparation and Photoluminescence of ZnO Comb-Like Structure and Nanorod Arrays

    Science.gov (United States)

    Yin, Song; Chen, Yi-qing; Su, Yong; Zhou, Qing-tao

    2007-06-01

    A large quantity of Zinc oxide (ZnO) comb-like structure and high-density well-aligned ZnO nanorod arrays were prepared on silicon substrate via thermal evaporation process without any catalyst. The morphology, growth mechanism, and optical properties of the both structures were investigated using XRD, SEM, TEM and PL. The resulting comb-teeth, with a diameter about 20 nm, growing along the [0001] direction have a well-defined epitaxial relationship with the comb ribbon. The ZnO nanorod arrays have a diameter about 200 nm and length up to several micrometers growing approximately vertical to the Si substrate. A ZnO film was obtained before the nanorods growth. A growth model is proposed for interpreting the growth mechanism of comb-like zigzag-notch nanostructure. Room temperature photoluminescence measurements under excitation wavelength of 325 nm showed that the ZnO comb-like nanostructure has a weak UV emission at around 384 nm and a strong green emission around 491 nm, which correspond to a near band-edge transition and the singly ionized oxygen vacancy, respectively. In contrast, a strong and sharp UV peak and a weak green peak was obtained from the ZnO nanorod arrays.

  13. The photoluminescence decay time of self-assembled InAs quantum dots covered by InGaAs layers

    International Nuclear Information System (INIS)

    Shu, G W; Wang, C K; Wang, J S; Shen, J L; Hsiao, R S; Chou, W C; Chen, J F; Lin, T Y; Ko, C H; Lai, C M

    2006-01-01

    The temperature dependence of the time-resolved photoluminescence (PL) of self-assembled InAs quantum dots (QDs) with InGaAs covering layers was investigated. The PL decay time increases with temperature from 50 to 170 K, and then decreases as the temperature increases further above 170 K. A model based on the phonon-assisted transition between the QD ground state and the continuum state is used to explain the temperature dependence of the PL decay time. This result suggests that the continuum states are important in the carrier capture in self-assembled InAs QDs

  14. Morphology and photoluminescence of ZnO nanorods grown on sputtered GaN films with intermediate ZnO seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, R. [Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076 (India); Srinivasa, R.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, 400076 (India); Major, S.S., E-mail: syed@iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076 (India)

    2016-10-01

    ZnO nanorods (NRs) were grown by chemical bath deposition on sputtered GaN over Si with and without sputtered ZnO seed layers. The effect of ZnO seed layer thickness, precursor concentration and growth temperature on the morphology and photoluminescence (PL) of ZnO-NRs has been studied. Scanning electron microscopy studies at different stages of growth have shown that the thickness of ZnO seed layer is critically important for controlling the growth behavior, morphology and density of ZnO-NRs on GaN surface. ZnO-NRs on bare GaN/Si grow with a large diameter and small aspect ratio of ∼4, displaying the tendency of lateral growth. Introduction of a thin ZnO seed layer (10 nm) under optimized precursor concentration and temperature drastically increases the aspect ratio to ∼16, due to partial coverage of ZnO on GaN surface and a moderate density of nucleation with small critical size. ZnO seed layers of higher thickness (50 nm and 100 nm) result in reduced aspect ratio due to increase in nucleation density and limited availability of reacting species. Increase in precursor concentration results in pronounced lateral growth and the decrease in growth temperature also results in compact nanorods with reduced aspect ratios. Room temperature photoluminescence (PL) studies show that ZnO-NRs on GaN, grown with or without ZnO seed layer under optimized precursor concentration and temperature, display high near-band-edge luminescence and negligible defect emission, compared to the nanorods on a ZnO seed layer over Si, as well as those grown at higher precursor concentration and lower temperatures. The enhanced PL is attributed to the absence of crystalline defects at nanorod interfaces due to lateral coalescence, arising from the moderate density and slight misalignment of the nanorods. - Highlights: • ZnO nanorods grown on sputtered GaN film display strong tendency of lateral growth. • Nanorods grown on 10 nm ZnO/GaN display moderate density and high aspect ratios.

  15. Sol–gel synthesis and photoluminescence of CaTi1–x Zrx O3 :Pr ...

    Indian Academy of Sciences (India)

    Administrator

    300, 2/300, 3/300, 4/300, 5/300, 6/300, 7/300, respectively. Powder X-ray diffraction (XRD), UV-visible absorption spectra, photoluminescent spectra (PL), and scanning electron microscopy (SEM) images are used to characterize the powder ...

  16. Photoluminescence of Se-related oxygen deficient center in ion-implanted silica films

    International Nuclear Information System (INIS)

    Zatsepin, A.F.; Buntov, E.A.; Pustovarov, V.A.; Fitting, H.-J.

    2013-01-01

    The results of low-temperature time-resolved photoluminescence (PL) investigation of thin SiO 2 films implanted with Se + ions are presented. The films demonstrate an intensive PL band in the violet spectral region, which is attributed to the triplet luminescence of a new variant of selenium-related oxygen deficient center (ODC). The main peculiarity of the defect energy structure is the inefficient direct optical excitation. Comparison with spectral characteristics of isoelectronic Si-, Ge- and SnODCs show that the difference in electronic properties of the new center is related to ion size factor. It was established that the dominating triplet PL excitation under VUV light irradiation is related to the energy transfer from SiO 2 excitons. A possible model of Se-related ODC is considered. -- Highlights: • The low-temperature photoluminescence of thin SiO 2 films implanted with Se + ions was studied. • The 3.4 eV PL band was attributed to triplet luminescence of Se-related ODC. • The peculiarity of SeODC electronic properties is related to ion size factor. • The dominating VUV excitation of triplet PL is related to energy transfer from SiO 2 excitons. • A possible model of Se-related ODC is considered

  17. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    International Nuclear Information System (INIS)

    Bychto, Leszek; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia

    2008-01-01

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 Ωcm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  18. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Bychto, Leszek, E-mail: leszek.bychto@tu.koszalin.pl; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia, E-mail: eumat@upvnet.upv.e [Technical University of Valencia, Nanophotonics Technology Center (Spain)

    2008-12-15

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 {Omega}cm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  19. Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals

    Science.gov (United States)

    Bychto, Leszek; Balaguer, Maria; Pastor, Ester; Chirvony, Vladimir; Matveeva, Eugenia

    2008-12-01

    The time changes of photoluminescence (PL) characteristics of porous silicon (porSi) powder during storing in different ambients have been reported. A porous silicon material with embedded Si nanocrystals of size of few nanometers was prepared by an electrochemical method from 10 to 20 Ωcm p-type Si wafers, and both constant and pulse current anodization regimes were used. A powder with a submicron average particle size was obtained by simple mechanical lift-off of the porous layer followed by additional manual milling. The air, hexane, and water as storage media were used, and modification by a nonionic surfactant (undecylenic acid) of the porSi surface was applied in the latter case. Dependence of PL characteristics on preparation and storage conditions was then studied. A remarkable blue shift of a position of PL maximum was observed in time for porSi powders in each storage media. In water suspension a many-fold build-up (10-30) of PL intensity in a time scale of few days was accompanied by an observed blue shift. Photoluminescence time behavior of porSi powders was described by a known mechanism of the change of porSi PL from free exciton emission of Si nanocrystals to luminescence of localized oxidized states on the Si nanocrystal surface.

  20. FTIR, AFM and PL properties of thin SiO{sub x} films deposited by HFCVD

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J.A., E-mail: jalbluna@siu.buap.mx [CIDS-ICUAP, BUAP, Ciudad Universitaria, Ed. 103 D, Col. San Manuel, C.P. 72570, Puebla (Mexico); Garcia-Salgado, G.; Diaz-Becerril, T.; Lopez, J. Carrillo; Vazquez-Valerdi, D.E.; Juarez-Santiesteban, H.; Rosendo-Andres, E.; Coyopol, A. [CIDS-ICUAP, BUAP, Ciudad Universitaria, Ed. 103 D, Col. San Manuel, C.P. 72570, Puebla (Mexico)

    2010-10-25

    In order to have optoelectronic functions integrated in a single chip, it is very important to obtain a silicon compatible material with an optimal photoluminescence response. The non-stoichiometric silicon oxide (SiO{sub x}) has shown photoluminescence response and is also compatible with silicon technology. In this work, the composition and optical properties of the SiO{sub x} films are studied using null ellipsometry, Fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), and photoluminescence (PL). The SiO{sub x} films were growth to different temperatures. The IR absorption spectrum shows the presence of three typical Si-O-Si vibrations modes in SiO{sub 2}. However, changes in their intensity and position were observed. Also, when growth temperature decreased, the Si-H vibrations modes were observed. These changes are directly related with compositional variation in the SiO{sub x} films due to the growth temperature. A PL spectrum shows a considerable emission in the range 400-850 nm that varies with the growth temperatures.

  1. Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films

    KAUST Repository

    Matsuki, Keiichiro

    2016-05-24

    We fabricated electric double-layer transistors comprising large-area WSe2 monolayers and investigated the effects of electrolyte gating on their photoluminescence (PL) spectra. Using the efficient gating effects of electric double layers, we succeeded in the application of a large electric field (>107Vcm%1) and the accumulation of high carrier density (>1013cm%2). As a result, we observed PL spectra based on both positively and negatively charged excitons and their gate-voltage-dependent redshifts, suggesting the effects of both an electric field and charge accumulation. © 2016 The Japan Society of Applied Physics.

  2. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T.; Percino, J. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, 72050, Puebla, Pue. (Mexico); Orlova, T. [Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre Dame, IN (United States); Vavilova, L. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  3. Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures

    Science.gov (United States)

    Chen, Y. L.; Ma, Y. J.; Chen, D. D.; Wang, W. Q.; Ding, K.; Wu, Q.; Fan, Y. L.; Yang, X. J.; Zhong, Z. Y.; Xu, F.; Jiang, Z. M.

    2014-07-01

    Graphene has been discovered to have two effects on the photoluminescence (PL) properties of graphene/GeSi quantum dot (QD) hybrid structures, which were formed by covering monolayer graphene sheet on the multilayer ordered GeSi QDs sample surfaces. At the excitation of 488 nm laser line, the hybrid structure had a reduced PL intensity, while at the excitation of 325 nm, it had an enhanced PL intensity. The attenuation in PL intensity can be attributed to the transferring of electrons from the conducting band of GeSi QDs to the graphene sheet. The electron transfer mechanism was confirmed by the time resolved PL measurements. For the PL enhancement, a mechanism called surface-plasmon-polariton (SPP) enhanced absorption mechanism is proposed, in which the excitation of SPP in the graphene is suggested. Due to the resonant excitation of SPP by incident light, the absorption of incident light is much enhanced at the surface region, thus leading to more exciton generation and a PL enhancement in the region. The results may be helpful to provide us a way to improve optical properties of low dimensional surface structures.

  4. Effects of material growth technique and Mg doping on Er3+ photoluminescence in Er-implanted GaN

    International Nuclear Information System (INIS)

    Kim, S.; Henry, R. L.; Wickenden, A. E.; Koleske, D. D.; Rhee, S. J.; White, J. O.; Myoung, J. M.; Kim, K.; Li, X.; Coleman, J. J.

    2001-01-01

    Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies have been carried out at 6 K on the ∼1540 nm 4 I 13/2 - 4 I 15/2 emissions of Er 3+ in Er-implanted and annealed GaN. These studies revealed the existence of multiple Er 3+ centers and associated PL spectra in Er-implanted GaN films grown by metalorganic chemical vapor deposition, hydride vapor phase epitaxy, and molecular beam epitaxy. The results demonstrate that the multiple Er 3+ PL centers and below-gap defect-related absorption bands by which they are selectively excited are universal features of Er-implanted GaN grown by different techniques. It is suggested that implantation-induced defects common to all the GaN samples are responsible for the Er site distortions that give rise to the distinctive, selectively excited Er 3+ PL spectra. The investigations of selectively excited Er 3+ PL and PLE spectra have also been extended to Er-implanted samples of Mg-doped GaN grown by various techniques. In each of these samples, the so-called violet-pumped Er 3+ PL band and its associated broad violet PLE band are significantly enhanced relative to the PL and PLE of the other selectively excited Er 3+ PL centers. More importantly, the violet-pumped Er 3+ PL spectrum dominates the above-gap excited Er 3+ PL spectrum of Er-implanted Mg-doped GaN, whereas it was unobservable under above-gap excitation in Er-implanted undoped GaN. These results confirm the hypothesis that appropriate codopants can increase the efficiency of trap-mediated above-gap excitation of Er 3+ emission in Er-implanted GaN. [copyright] 2001 American Institute of Physics

  5. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com [Department of Physics, (UPM), Serdang, Selangor 43400 (Malaysia); Department of Physics, Anbar University (Iraq); Talib, Zainal A.; Josephine, L.Y.; Paiman, Suriati B.; Muh’d, Ibrahim B.; Mofdal, Manahil E. E. [Department of Physics, (UPM), Serdang, Selangor 43400 (Malaysia); Ahmed, Naser M.; Abdulateef, Sinan A. [School of Physics, USM, 11800 Penang (Malaysia); Al-Jumaily, Abdulmajeed H. J. [Department of Computer and Communication Systems Engineering, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400 (Malaysia); Ramizy, Asmiet [Department of Physics, Anbar University (Iraq)

    2016-07-06

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at the superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.

  6. Formation of photoluminescent n-type macroporous silicon: Effect of magnetic field and lateral electric potential

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E.E. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Estevez, J.O. [Instituto de Física, B. Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, CP 62580 (Mexico); Basurto-Pensado, M.A. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico)

    2014-11-15

    Metal electrode-free electrochemical etching of low doped n-type silicon substrates, under the combined effect of magnetic and lateral electric field, is used to fabricate photoluminescent n-type porous silicon structures in dark conditions. A lateral gradient in terms of structural characteristics (i.e. thickness and pore dimensions) along the electric field direction is formed. Enhancement of electric and magnetic field resulted in the increase of pore density and a change in the shape of the macropore structure, from circular to square morphology. Broad photoluminescence (PL) emission from 500 to 800 nm, with a PL peak wavelength ranging from 571 to 642 nm, is attributed to the wide range of microporous features present on the porous silicon layer.

  7. Photoluminescent properties of ZnS nanoparticles prepared by electro-explosion of Zn wires

    International Nuclear Information System (INIS)

    Goswami, Navendu; Sen, P.

    2007-01-01

    We study the photoluminescent properties of ZnS nanoparticles without the influence of dopants or magnetic impurities. The ZnS nanoparticles reported in this case were synthesized by a novel method of electro-explosion of wire (EEW). The nanoparticles were prepared employing electro-explosion of pure zinc wires in a cell filled with sulfide ions to produce a free-standing compound ZnS semiconductor. To investigate the structural and optical properties, these nanoparticles were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), UV-visible and photoluminescence (PL) spectroscopy. Consistent with the enhancement of the PL intensity of the 443 nm peak due to deep blue emission of ZnS particles, the XRD of the nanoparticles reveals a hexagonal phase of ZnS nanocrystallites prepared by our novel synthesis technique

  8. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.

    2002-01-01

    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  9. Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films

    International Nuclear Information System (INIS)

    Cavalcante, L.S.; Gurgel, M.F.C.; Paris, E.C.; Simoes, A.Z.; Joya, M.R.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2007-01-01

    The correlation between experimental data and theoretical calculations have been investigated to explain the photoluminescence at room temperature of Ba(Ti 0.75 Zr 0.25 )O 3 (BTZ) thin films prepared by the polymeric precursor method. The degree of structural order-disorder was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and photoluminescence (PL) measurements. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models. The electronic properties are analyzed and the relevance of the present theoretical and experimental results on the PL behavior is discussed. The presence of localized electronic levels and a charge gradient in the band gap due to a break in symmetry, are responsible for the PL in disordered BTZ lattice

  10. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina

    2014-04-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  11. Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr3 Nanowires and Nanoplatelets.

    Science.gov (United States)

    Di Stasio, Francesco; Imran, Muhammad; Akkerman, Quinten A; Prato, Mirko; Manna, Liberato; Krahne, Roman

    2017-06-15

    We discuss the photoluminescence (PL) of quantum-confined CsPbBr 3 colloidal nanocrystals of two different shapes (nanowires and nanoplatelets) at different concentrations in solution and in solid-state films. Upon increasing the nanocrystal concentration in solution, a constant drop in photoluminescence quantum yield is observed, accompanied by a significant PL red shift. This effect is reversible, and the original PL can be restored by diluting to the original concentration. We show that this effect can be in part attributed to self-absorption and partly to aggregation. In particular, for nanoplatelets, where the aggregation is mostly irreversible, while the self-absorption effect is reversible, the two contributions can be well separated. Finally, when dry solid-state films are prepared, the emission band is shifted into the green spectral region, close to the bulk CsPbBr 3 band gap, thus preventing blue emission from such films.

  12. The mechanism of the photoluminescence changes in bio-conjugated CdSe/ZnS quantum dots

    Science.gov (United States)

    Borkovska, L.; Korsunska, N.; Stara, T.; Kolomys, O.; Strelchuk, V.; Rachkov, O.; Kryshtab, T.

    2013-09-01

    The change of the photoluminescence (PL) and optical characteristics in non-conjugated and conjugated with S6K2 antibody CdSe/ZnS core/shell quantum dots (QDs) during storage in air has been studied by the conventional PL, micro-PL and micro-Raman techniques. The QDs dried on a crystalline Si substrate were kept in the darkness and under illumination. In the PL spectra, the storage resulted in a blue shift of PL peak position, in the increasing of the full width at a half maximum (FWHM) of the PL band and in the decreasing of the PL intensity. In the Raman spectra, the shift of the CdSe LO peak position to the low frequency region and the increasing of its FWHM were observed. The transformations in the PL and optical characteristics correlate with each other and are found to be the largest in bio-conjugated QDs stored under illumination. The increase of the light intensity accelerated the changes occurred during storage. An oxidation of the QD core, which decreases the QD size, is supposed to be responsible for observed transformations. The bio-conjugation is assumed to promote QD oxidation that results in different PL peak position in stored non-conjugated and bio-conjugated QDs. The mechanism of the effect is discussed.

  13. Stimuli-responsive photoluminescent liquid crystals.

    Science.gov (United States)

    Yamane, Shogo; Tanabe, Kana; Sagara, Yoshimitsu; Kato, Takashi

    2012-01-01

    We describe mechanochromic and thermochromic photoluminescent liquid crystals. In particular, mechanochromic photoluminescent liquid crystals found recently, which are new stimuli-responsive materials are reported. For example, photoluminescent liquid crystals having bulky dendritic moieties with long alkyl chains change their photoluminescent colors by mechanical stimuli associated with isothermal phase transitions. The photoluminescent properties of molecular assemblies depend on their assembled structures. Therefore, controlling the structures of molecular assemblies with external stimuli leads to the development of stimuli-responsive luminescent materials. Mechanochromic photoluminescent properties are also observed for a photoluminescent metallomesogen and a liquid-crystalline polymer. We also show thermochromic photoluminescent liquid crystals based on origo-(p-phenylenevinylene) and anthracene moieties and a thermochromic photoluminescent metallocomplex.

  14. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    OpenAIRE

    Viswanath, Ranganaik; Naik, Halehatty Seethya Bhojya; Somalanaik, Yashavanth Kumar Gubbihally; Neelanjeneallu, Prashanth Kumar Parlesed; Harish, Khandugadahalli Nagarajappa; Prabhakara, Mustur Channabasappa

    2014-01-01

    Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrometry (FTIR), thermogravimetric-differential scanning calorimetry (TG-DSC), and UV-visible and photoluminescence (PL) spectroscopy were employed to characterize the as-synthesized ZnS and Z...

  15. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Thales R. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Sczancoski, Júlio C. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); Beltrán-Mir, Héctor [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Nogueira, Içamira C. [PPGEM-IFMA, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, 65030-005 São Luís, MA (Brazil); Li, Máximo S. [IFSC-USP, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP (Brazil); Andrés, Juan [QFA-UJI, Universitat Jaume I, 12071 Castellón (Spain); Cordoncillo, Eloisa [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Longo, Elson, E-mail: elson.liec@gmail.com [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil)

    2017-05-15

    Defect-related photoluminescence (PL) in materials have attracted interest for applications including near ultraviolet (NUV) excitable light-emitting diodes and in biomedical field. In this paper, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] nanorods with intense PL bands (bluish- and yellowish-white emissions) were obtained when excited under NUV radiation at room temperature. These nanoparticles were synthesized via chemical precipitation at 90 °C followed by distinct heat treatments temperatures (200–800 °C). Intense and broad emission profiles were achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). UV–Vis spectroscopy revealed band gap energies (5.58–5.78 eV) higher than the excitation energies (~3.54 and ~2.98 eV at 350 and 415 nm, respectively), confirming the contribution of defect energy levels within the forbidden zone for PL emissions. The structural features were characterized by X-ray diffraction, Rietveld refinement, thermogravimetric analysis, and Fourier transform infrared spectroscopy. By means of these techniques, the relation between structural order-disorder induced by defects, chemical reactions at both lattice and surface of the materials as well as the PL, without activator centers, was discussed in details. - Graphical abstract: The self-activated photoluminescence emissions of chemically precipitated hydroxyapatite nanorods were improved by different heat treatment temperatures. - Highlights: • HA nanorods were synthesized with improved self-activated PL at room temperature. • PL profile and intensity dependents on the temperature of posterior heat treatments. • Bluish- and yellowish-white emissions under NUV excitation (350 and 415 nm). • Broad and intense profiles achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). • PL from the e′–h{sup •} recombination between defect energy levels within the band gap.

  16. Application of UV photoluminescence imaging spectroscopy for stacking faults identification on thick, lightly n-type doped, 4°-off 4H-SiC epilayers

    Directory of Open Access Journals (Sweden)

    N. Thierry-Jebali

    2015-03-01

    Full Text Available This paper deals with the description and the application of an original photoluminescence (PL imaging technique on thick, lighly n-type doped 4H-SiC epilayers for in-grown stacking fault (SF identification. This technique, call “photoluminescence imaging spectroscopy” (PLIS, compares different PL imaging pictures in order to create a new picture which displays the location and an approximation of the maximum photoemission wavelength of SFs at room temperature. Five types of SF have been detected and identified by PLIS on two different wafers. The origin of SF type modification during the growth is also discussed in this work.

  17. Microcrystalline silicon films and solar cells investigatet by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merdzhanova, T.

    2005-07-01

    A systematic investigation on photoluminescence (PL) properties of microcrystalline silicon ({mu}c-Si:H) films with structural composition changing from highly crystalline to predominantly amorphous is presented. The samples were prepared by PECVD and HWCVD with different silane concentration in hydrogen (SC). By using photoluminescence in combination with Raman spectroscopy the relationship between electronic properties and the microstructure of the material is studied. The PL spectra of {mu}c-Si:H reveal a rather broad ({proportional_to}0.13 eV) featureless band at about 1 eV ('{mu}c'-Si-band). In mixed phase material of crystalline and amorphous regions, a band at about 1.3 eV with halfwidth of about 0.3 eV is found in addition to '{mu}c'-Si-band, which is attributed to the amorphous phase ('a'-Si-band). Similarly to amorphous silicon, the '{mu}c'-Si-band is assigned to recombination between electrons and holes in band tail states. An additional PL band centred at about 0.7 eV with halfwidth slightly broader than the '{mu}c'-Si-band is observed only for films prepared at high substrate temperature and it is preliminarily assigned to defect-related transitions as in polycrystalline silicon. With decreasing crystalline volume fraction, the '{mu}c'-Si-band shifts continuously to higher energies for all {mu}c-Si:H films but the linewidth of the PL spectra is almost unaffected. This is valid for all deposition conditions investigated. The results are interpreted, assuming decrease of the density of band tail states with decreasing crystalline volume fraction. A simple model is proposed to simulate PL spectra and V{sub oc} in {mu}c-Si:H solar cells as a function of temperature, based on carrier distributions in quasi-equilibrium conditions. In the model is assumed symmetric density of states distributions for electrons and holes in the conduction and the valence band tail states. The best agreement between

  18. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrzak, Malgorzata, E-mail: malgorzata.aleksandrzak@o2.pl; Kukulka, Wojciech; Mijowska, Ewa

    2017-03-15

    Highlights: • Graphitic carbon nitride modified with graphene nanostructures. • Influence of graphene nanostructures size in photocatalytic properties of g-C{sub 3}N{sub 4}. • Improved photocatalysis resulted from up-converted photoluminescence. - Abstract: The study presents a modification of graphitic carbon nitride (g-C{sub 3}N{sub 4}) with graphene oxide (GO) and reduced graphene oxide (rGO) and investigation of photoluminescent and photocatalytic properties. The influence of GO and rGO lateral sizes used for the modification was investigated. The nanomaterials were characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV–vis spectroscopy (DR-UV-vis) and photoluminescence spectroscopy (PL). PL revealed that pristine graphitic carbon nitride and its nanocomposites with GO and rGO emitted up-converted photoluminescence (UCPL) which could contribute to the improvement of photocatalytic activity of the materials. The photoactivity was evaluated in a process of phenol decomposition under visible light. A hybrid composed of rGO nanoparticles (rGONPs, 4–135 nm) exhibited the highest photoactivity compared to rGO with size of 150 nm–7.2 μm and graphene oxide with the corresponding sizes. The possible reason of the superior photocatalytic activity is the most enhanced UCPL of rGONPs, contributing to the emission of light with higher energy than the incident light, resulting in improved photogeneration of electron-hole pairs.

  19. Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence

    International Nuclear Information System (INIS)

    Zhu, Xiaohua; Zuo, Xiaoxi; Hu, Ruiping; Xiao, Xin; Liang, Yong; Nan, Junmin

    2014-01-01

    A simple and effective chemical synthesis of the photoluminescent nitrogen-doped graphene quantum dots (N-GQDs) biomaterial is reported. Using the hydrothermal treatment of graphene oxide (GO) in the presence of hydrogen peroxide (H 2 O 2 ) and ammonia, the N-GQDs are synthesized through H 2 O 2 exfoliating the GO into nanocrystals with lateral dimensions and ammonia passivating the generated active surface. Then, after a dialytic separation, two water-soluble N-GQDs with average size of about 2.1 nm/6.2 nm, which emit green/khaki luminescence and exhibit excitation dependent/independent photoluminescence (PL) behaviors, are obtained. In addition, it is also demonstrated that these two N-GQDs are stable over a broad pH range and have the upconversion PL property, showing this approach provides a simple and effective method to synthesize the functional N-GQDs. - Highlights: • Nitrogen-doped graphene quantum dots (N-GQDs) are prepared by hydrothermal routine. • Two N-GQDs with different size distribution emit green/khaki photoluminescence. • Two N-GQDs exhibit excitation-dependent/independent photoluminescence behaviors

  20. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  1. Effect of rapid thermal annealing observed by photoluminescence measurement in GaAs1-xN x layers

    International Nuclear Information System (INIS)

    Bousbih, F.; Bouzid, S.B.; Hamdouni, A.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    A set of GaAs 1-x N x samples with small nitrogen content were investigated by photoluminescence (PL) measurements as function of irradiance in order to investigate the effect of rapid thermal annealing (RTA) on photoluminescence (PL) properties. The analysis of PL spectra as function of irradiance and nitrogen content shows that the PL spectra associated to the GaAs 1- x N x layers are the result of the nitrogen localized state recombination. The results are examined as a consequence of a rapid thermal annealing (RTA). The variation of the emission band peak energy (E p ), at 10 K as a function of irradiance, is fitted by a theoretical model taking into account two types of nitrogen localized states. The variation of the PL intensity versus irradiance in the range from 1.59 to 159 W/cm 2 for different GaAs 1-x N x samples confirm that the PL spectra result from the nitrogen localized state recombination

  2. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.F., E-mail: guilmina@hotmail.com [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Gasparotto, G. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Paris, E.C. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao, Rua XV de novembro, 1452, Centro, 13.569-970 Sao Carlos, SP (Brazil); Zaghete, M.A.; Longo, E.; Varela, J.A. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil)

    2012-01-15

    Lead Titanate Zirconate (PZT) perovskite powders were synthesized by microwave hydrothermal method (M-H) at 180 {sup o}C for different time periods (2, 4, 8 and 12 h) with the presence of aqueous polyvinyl alcohol (PVA) solution 0.36 g L{sup -1}. The X-Ray diffraction (XRD), SE-FEG as well as the measurements of photoluminescence (PL) emission were used for monitoring the formation of a perovskite phase with random polycrystalline distortion in the structure. Emission spectra with fixed excitation wavelength of 350 nm showed higher value for the powder obtained after undergoing 8 h of treatment. A theoretical model derived from previous calculations allows us to discuss the origin of photoluminescence emission in the powders, which can be further related to the local disorder in the network of both ZrO{sub 6} and TiO{sub 6} octahedral, and dodecahedral PbO{sub 12}. The new morphology initially observed from the PZT perovskite crystal growth bearing the shape of fine plates is found to be directly related to photoluminescence emission with energy lower than that present in the PZT with cube-like morphology that emits in 560 nm. - Highlights: > This work details the efficiency of microwave hydrothermal synthesis in obtaining PZT powders. > PVA is used as a crystallization agent of PZT particles. > PZT particles presented photoluminescent (PL) behavior. > There aren't previous reports of photoluminescent PZT obtained by microwave hydrothermal synthesis. > Photoluminescence is one more interesting property for technological applications this material.

  3. Characterization of LP-MOCVD grown (Al, Ga)As/GaAs heterostructures by photoluminescence - Single heterojunction and inadvertent quantum wells

    Science.gov (United States)

    Zemon, S.; Norris, P.; Lee, J.; Lambert, G.; Black, J.

    1984-12-01

    Photoluminescence (PL) was used to detect rapid alloy compositional fluctuations which were found in (Al, Ga)As/GaAs heterostructures grown by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). PL data are employed to estimate the thickness and aluminum composition of the resulting inadvertent quantum well. A way to eliminate these artifacts was found. Using the improved growth procedures, modulation-doped heterostructures showing two-dimensional electron-gas behavior were then achieved.

  4. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol–gel processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Matras-Postolek, Katarzyna [Faculty of Chemical Engineering and Technology, Cracow University of Technology, Krakow 31-155 (Poland); Song, Xueling; Zheng, Yan; Liu, Yumeng; Ding, Kun; Nie, Shijie [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2015-10-15

    Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.

  5. Shear-coupled PL waves observed at the Kerguelen Isles

    Science.gov (United States)

    Pettersen, O.; Maupin, V.

    2003-04-01

    S-waves generated by earthquakes in Indonesia and recorded at the seismological broadband station PAF on the Kerguelen Isles are usually followed by particularly large, long and monochromatic wavetrains. These wavetrains are not observed, or are not as prominent, for events at comparable epicentral distances in other source regions. They have a clear dominant period of about 20 seconds and last usually for more than 100s. They show slight normal dispersion, and have a prograde elliptical motion in the vertical propagation plane with largest amplitude on the radial component. These characteristics suggest that the observed waves are shear-coupled PL-waves, i.e., a phase which propagates partly as a mantle S-wave and partly as P-waves trapped in the crust. The P-wave portion of the propagation may occur close to the source, close to the receiver, or at both ends of the wavepath, over a significant portion of the epicentral distance. Observations at Kerguelen of strong shear-coupled PL waves from Indonesian earthquakes suggest a special crust and upper mantle structure in the region between the Kerguelen hotspot and the South-East Indian Ridge, 1000 km away. This includes the region where a special upper mantle anisotropic structure has been detected from surface wave polarisation anomalies. We analyse which implications the strong shear-coupled PL waves may have on the structure between the hotspot and the ridge.

  6. Shine red and yellow photoluminescence in GdAlO3−δ powders

    International Nuclear Information System (INIS)

    Dhahri, Kh.; Bejar, M.; Dhahri, E.; Soares, M.J.; Sousa, M.; Valente, M.A.

    2015-01-01

    Highlights: • GdAlO 3−δ (δ = 0.0, 0.1 and 0.2) powders were synthesized using the conventional solid-state method. • The PL study has revealed the apparition of intense red and yellow photoluminescence (PL) emissions at room temperature. • The red emission was directly related to the singly ionized oxygen vacancy V O · . • The green emission was directly related the doubly ionized oxygen vacancy V O ·· . • The presence of the singly ionized oxygen vacancy was confirmed from the EPR study. - Abstract: GdAlO 3−δ (δ = 0.0, 0.1 and 0.2) compounds were prepared by the conventional solid-state method. XRD patterns revealed that all samples present a major orthorhombic structure. An intense red and a yellow photoluminescence (PL) emissions were observed at room temperature for δ = 0.0 and δ ≠ 0.0 samples, respectively. The red emission was related to the singly ionized oxygen vacancies V O · . The production of doubly ionized oxygen vacancies V O ·· lead to the appearance of a yellow color observed directly from δ = 0.1 and 0.2 samples. The presence of singly and doubly ionized clusters was found to play an important role in the formation of hole–electron pairs and to give rise to the PL emission. The presence of singly ionized oxygen vacancies was confirmed by the EPR study

  7. Photoluminescence in Carborane-Stilbene Triads: A Structural, Spectroscopic, and Computational Study.

    Science.gov (United States)

    Cabrera-González, Justo; Viñas, Clara; Haukka, Matti; Bhattacharyya, Santanu; Gierschner, Johannes; Núñez, Rosario

    2016-09-12

    A set of triads in which o- and m-carborane clusters are bonded to two stilbene units through Ccluster -CH2 bonds was synthesized, and their structures were confirmed by X-ray diffraction. A study on the influence of the o- and m- isomers on the absorption and photoluminescence properties of the stilbene units in solution revealed no charge-transfer contributions in the lowest excited state, as confirmed by (TD)DFT calculations. The presence of one or two B-I groups in m-carborane derivatives does not affect the emission properties of the stilbenes in solution, probably due to the rather large distance between the iodo substituents and the fluorophore. Nevertheless, a significant redshift of the photoluminescence (PL) emission maximum in the solid state (thin films and powder samples) compared to solution was observed; this can be traced back to PL sensitization, most probably due to more densely packed stilbene moieties. Remarkably, the PL absolute quantum yields of powder samples are significantly higher than those in solution, and this was attributed to the restricted environment and the aforementioned sensitization. Thus, the bonding of the carborane clusters to two stilbene units preserves their PL behavior in solution, but produces significant changes in the solid state. Furthermore, iodinated species can be considered to be promising precursors for theranostic agents in which both imaging and therapeutic functions could possibly be combined. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cubiertas de plástico reforzado

    Directory of Open Access Journals (Sweden)

    Equipo Editorial

    1960-07-01

    Full Text Available La casa Strutural Plastics Inc. de Fort Worth, Texas (EE. UU., ha fabricado los materiales utilizados para cubrir una superficie de 700 m2 con un producto plástico, de fibra de vidrio reforzada.

  9. Photoluminescence from narrow InAs-AlSb quantum wells

    Science.gov (United States)

    Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.

    1993-01-01

    We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.

  10. Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, N.V.; Karachevtsev, M.V.; Leontiev, V.S.; Karachevtsev, V.A., E-mail: karachevtsev@ilt.kharkov.ua

    2017-01-15

    The enhancement of the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes suspended with single-stranded DNA (ssDNA) in water observed after amino acids doping is the largest at cysteine addition. The PL intensity increased through the passivation of p-defects on the carbon nanotube sidewall by the cysteine molecules due to thiol group. The effect of several external factors on the cysteine-induced enhancement of PL from carbon nanotubes covered with ssDNA was studied: UV irradiation, tip or bath sonication treatment of the suspension, the ionic strength and pH of aqueous suspension. It turned out that all these factors have an essential influence on the dependence of the PL enhancement on the cysteine concentration through inducing of additional defects on nanotube as well as a change of the nanotube surface coverage with polymer. The obtained experimental results demonstrated that PL from carbon nanotubes can be exploited successfully for the monitoring of cysteine concentration in aqueous solution. - Highlights: • Cysteine doping enhances carbon nanotube emission more than other amino acids do. • SWNT emission dependence on cysteine concentration is tuned by UV irradiation and pH. • Type of sonication treatment influences SWNT PL dependence on cysteine concentration. • Polymer coverage and defectiveness of nanotubes effect on nanotube emission. • Graphic abstract.

  11. A Label-Free Photoluminescence Genosensor Using Nanostructured Magnesium Oxide for Cholera Detection

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md. Azahar; Krishnan, Sadagopan; Agrawal, Ved Varun; Al Kheraif, Abdulaziz A.; Fouad, H.; Ansari, Z. A.; Ansari, S. G.; Malhotra, Bansi D.

    2015-11-01

    Nanomaterial-based photoluminescence (PL) diagnostic devices offer fast and highly sensitive detection of pesticides, DNA, and toxic agents. Here we report a label-free PL genosensor for sensitive detection of Vibrio cholerae that is based on a DNA hybridization strategy utilizing nanostructured magnesium oxide (nMgO; size >30 nm) particles. The morphology and size of the synthesized nMgO were determined by transmission electron microscopic (TEM) studies. The probe DNA (pDNA) was conjugated with nMgO and characterized by X-ray photoelectron and Fourier transform infrared spectroscopic techniques. The target complementary genomic DNA (cDNA) isolated from clinical samples of V. cholerae was subjected to DNA hybridization studies using the pDNA-nMgO complex and detection of the cDNA was accomplished by measuring changes in PL intensity. The PL peak intensity measured at 700 nm (red emission) increases with the increase in cDNA concentration. A linear range of response in the developed PL genosensor was observed from 100 to 500 ng/μL with a sensitivity of 1.306 emi/ng, detection limit of 3.133 ng/μL and a regression coefficient (R2) of 0.987. These results show that this ultrasensitive PL genosensor has the potential for applications in the clinical diagnosis of cholera.

  12. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN

    International Nuclear Information System (INIS)

    Hoemmerich, U.; Nyein, Ei Ei; Lee, D.S.; Heikenfeld, J.; Steckl, A.J.; Zavada, J.M.

    2003-01-01

    The emission properties of rare earth (RE)-doped GaN are of significant current interest for applications in full color displays, white lighting technology, and optical communications. We are currently investigating the photoluminescence (PL) properties of RE (Er, Eu, Tm)-doped GaN thin-films prepared by solid-source molecular beam epitaxy. The most intense visible PL under above-gap excitation is observed from GaN:Eu (red: 622 nm) followed by GaN:Er (green: 537 nm, 558 nm), and then GaN:Tm (blue: 479 nm). In this paper, we present spectroscopic results on the Ga-flux dependence of the Er 3+ PL properties from GaN:Er and we report on the identification of different Eu 3+ centers in GaN:Eu through high-resolution PL excitation (PLE) studies. In addition, we observed an enhancement of the blue Tm 3+ PL from AlGaN:Tm compared to GaN:Tm. Intense blue PL from Tm 3+ ions was also obtained from AlN:Tm under below-gap pumping

  13. Temperature dependence of photoluminescence from ordered GaInP{sub 2} epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T. [Instituto de Ciencias, BUAP, Apartado Postal 207, 72000 Puebla, Pue. (Mexico); Pelosi, C. [IMEM/CNR, Parco Area delle Scienze 37/A, 43010 Parma (Italy)

    2010-01-15

    The temperature behavior of the integrated intensity of photoluminescence (PL) emission from ordered GaInP{sub 2} epitaxial layer was measured at temperatures of 10 - 300 K. Within this temperature range the PL emission is dominated by band-to-band radiative recombination. The PL intensity temperature dependence has two regions: at low temperatures it quenches rapidly as the temperature increases, and above 100 K it reduces slowly. This temperature behavior is compared with that of disordered GaInP{sub 2} layer. The specter of the PL emission of the disordered layer has two peaks, which are identified as due to donor-accepter (D-A) and band-to-band recombination. The PL intensity quenching of these spectral bands is very different: With increasing temperature, the D-A peak intensity remains almost unchanged at low temperatures and then decreases at a higher rate. The intensity of the band-to-band recombination peak decays gradually, having a higher rate at low temperatures than at higher temperatures. Comparing these temperature dependencies of these PL peaks of ordered and disordered alloys and the temperature behavior of their full width at half maximum (FWHM), we conclude that the different morphology of these alloys causes their different temperature behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Hysteresis compensation of photoluminescence in ZnS:Cu for noncontact shaft torque sensing.

    Science.gov (United States)

    Cho, Min-Young; Kim, Ji-Sik; Kim, Gi-Woo

    2016-03-01

    This paper presents a preliminary investigation of loading rate-dependent hysteresis of photoluminescence (PL) by phosphorescence quenching of copper-doped zinc sulfide (ZnS:Cu) microparticles in response to dynamic torsional loading. Precision sinusoidal torque waveforms in the frequency range of 0.5-3 Hz are used to identify the loading rate-dependent (i.e., frequency-dependent) nonlinear hysteresis phenomenon. The potential of the application of PL is demonstrated by successfully measuring the sinusoidal torque applied to a rotational shaft by evaluating the loading rate-dependent PL intensity signature using a photomultiplier tube. In addition, the potential of noncontact shaft torque sensing is demonstrated successfully by the simple compensation derived from ad hoc heuristic characterization.

  15. Photoluminescence Studies of Rare Earth (Er, Eu, Tm) in situ Doped GaN

    Science.gov (United States)

    2003-01-01

    lighting technology , and optical communications. We are currently investigating the photoluminescence (PL) properties of RE (Er, Eu, Tm)-doped GaN thin-films prepared by solid-source molecular beam epitaxy. The most intense visible PL under above-gap excitation is observed from GaN:Eu (red: 622 nm) followed by GaN:Er (green: 537 nm, 558 nm), and then GaN:Tm (blue: 479 nm). In this paper, we present spectroscopic results on the Ga-flux dependence of the Er3+ PL properties from GaN:Er and we report on the identification of different Eu3+ centers in GaN:Eu

  16. Photoluminescence properties of ion-beam-synthesized β-FeSi2 nanocrystals in Si

    Science.gov (United States)

    Nakajima, T.; Ichikawa, T.; Matsukura, B.; Maeda, Y.

    We have investigated photoluminescence (PL) properties of β-FeSi2 nanocrystals in Si crystals. The PL spectrum could be separated into three major A, B and C bands and some minor bands. The B and C band (side band) spectra with a Gaussian function shape could be deduced from subtraction of the A band spectra with a Lorentzian function shape from the whole PL spectrum observed. It was found that the temperature dependence of the C band emission was quite different from that of the intrinsic band (A band) emission which follows a Varshini empirical formula. The C band emission may be originated from two competition processes which are switched at 70 K.

  17. An intense ultraviolet photoluminescence in sol-gel ZnO-SiO sub 2 nanocomposites

    CERN Document Server

    Fu Zheng Ping; Li Li; Dong Wei Wei; Jia Chong; Wu Wan

    2003-01-01

    We report the phenomenon that the intensity of the ultraviolet (UV) photoluminescence (PL) from ZnO was greatly enhanced by incorporating ZnO into the SiO sub 2 matrix. PL excitation results show that both the ZnO nanoparticles and the SiO sub 2 matrix in the nanocomposites contribute to the luminescence process for the UV band. On the basis of the x-ray photoelectron spectra, we suggest that interface energy states are formed due to the presence of Zn-O-Si bonds between ZnO nanoparticles and the SiO sub 2 matrix. A tentative model concerning the contribution of the ZnO nanoparticles, SiO sub 2 matrix, and ZnO-SiO sub 2 interface is suggested to explain the PL enhancement effect.

  18. Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films: the role of disorder

    International Nuclear Information System (INIS)

    Orhan, E.; Anicete-Santos, M.; Maurera, M.A.M.A.; Pontes, F.M.; Paiva-Santos, C.O.; Souza, A.G.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2005-01-01

    The nature of intense visible photoluminescence at room temperature of SrWO 4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, band dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films

  19. Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy.

    Science.gov (United States)

    Oh, Hye Min; Han, Gang Hee; Kim, Hyun; Bae, Jung Jun; Jeong, Mun Seok; Lee, Young Hee

    2016-05-24

    Photoluminescence (PL) from monolayer MoS2 has been modulated using plasma treatment or thermal annealing. However, a systematic way of understanding the underlying PL modulation mechanism has not yet been achieved. By introducing PL and Raman spectroscopy, we analyze that the PL modulation by laser irradiation is associated with structural damage and associated oxygen adsorption on the sample in ambient conditions. Three distinct behaviors were observed according to the laser irradiation time: (i) slow photo-oxidation at the initial stage, where the physisorption of ambient gases gradually increases the PL intensity; (ii) fast photo-oxidation at a later stage, where chemisorption increases the PL intensity abruptly; and (iii) photoquenching, with complete reduction of PL intensity. The correlated confocal Raman spectroscopy confirms that no structural deformation is involved in slow photo-oxidation stage; however, the structural disorder is invoked during the fast photo-oxidation stage, and severe structural degradation is generated during the photoquenching stage. The effect of oxidation is further verified by repeating experiments in vacuum, where the PL intensity is simply degraded with laser irradiation in a vacuum due to a simple structural degradation without involving oxygen functional groups. The charge scattering by oxidation is further explained by the emergence/disappearance of neutral excitons and multiexcitons during each stage.

  20. SYNTHESIS, STRUCTURE AND PHOTOLUMINESCENCE OF ...

    African Journals Online (AJOL)

    Preferred Customer

    dimensional supramolecular framework. ... The growing interest in the field of the crystal engineering of inorganic-organic hybrid materials .... Synthesis, structure and photoluminescence of (HgCl3)n(C6NO2H6)n(C6NO2H5)n nH2O. Bull. Chem.

  1. Photoluminescence response of gas sensor based on CH x/porous silicon-Effect of annealing treatment

    International Nuclear Information System (INIS)

    Mahmoudi, Be.; Gabouze, N.; Guerbous, L.; Haddadi, M.; Cheraga, H.; Beldjilali, K.

    2007-01-01

    The most spectacular feature of porous silicon (PS) is its ability of emitting very intense visible light at room temperature and to use this light emission as a sensor signal. In this paper, we report the sensitivity of porous silicon photoluminescence (PL) to carbon dioxide and propane gases. A hydrocarbon film has been applied to PS surface to enhance its luminescence since a complete surface passivation is important to suppress or reduce non-radiative recombination centres. The operation sensor effect is based on the variation of the photoluminescence of the CH x /PS region due to the interaction with gaseous substances. Presence of carbon dioxide reduces the PL intensity while propane provokes an opposite behaviour. The PL quenching phenomenon leads itself to interesting optical sensor applications. The annealing effect on the photoluminescence of a p-type CH x /PS has been investigated. The orange light disappears and an intense blue light is obtained. Moreover, the effect of this treatment on the PL response of porous silicon in presence of CO 2 and propane gases has also been studied

  2. Contribution of structural order-disorder to the room-temperature photoluminescence of lead zirconate titanate powders

    International Nuclear Information System (INIS)

    Anicete-Santos, Marcos; Silva, Margarete S.; Orhan, Emmanuelle; Goes, Marcio S.; Zaghete, Maria A.; Paiva-Santos, Carlos O.; Pizani, Paulo S.; Cilense, Mario; Varela, Jose A.; Longo, Elson

    2007-01-01

    Intense and broad visible photoluminescent (PL) band was observed at room temperature in structurally disordered PbZr 0.53 Ti 0.47 O 3 powders. The lead zirconate titanate PbZr 0.53 Ti 0.47 O 3 powders prepared by the polymeric precursor method and heat treated at different temperatures were structurally characterized at long range by means of X-ray diffraction. The PL was measured at room temperature samples heat treated at different temperatures. Experimental measurements and quantum-mechanical calculations showed that the high structural order and the high structural disorder in PbZr 0.53 Ti 0.47 O 3 lattice are not favorable to the intense PL emission. Only samples containing simultaneous structural order and disorder in their lattice present the intense visible PL emission at room temperature

  3. Effects of thickness layer on the photoluminescence properties of InAlAs/GaAlAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Daly, A. Ben; Maaref, M.A. [Universite de Carthage, Laboratoire Materiaux, Molecules et Applications, Institut Preparatoire aux Etudes Scientifiques et Techniques, Tunis (Tunisia); Bernardot, F.; Barisien, T.; Testelin, C. [Sorbonne Universites, UPMC Universite Paris 06, UMR 7588, Institut des NanoSciences de Paris, Paris (France); CNRS, UMR 7588, INSP, Paris (France); Galopin, E.; Lemaitre, A. [Laboratoire de Photonique et Nanostructures, CNRS, Marcoussis (France)

    2016-09-15

    We investigated the effect of InAlAs layer thickness on exciton-spin relaxation and optical properties of In{sub 0.62}Al{sub 0.38}As/Al{sub 0.67}Ga{sub 0.33}As QDs. The luminescence properties and carrier dynamics of QDs were studied by the temperature-dependent photoluminescence (PL) and pump-probe measurements. As the total amount of deposited In0.62Al0.38As alloy increased, the central position of the low-energy PL signal decreases, while its full width at half maximum (FWHM) increases. A monotonous redshift of the PL peak was observed with increasing temperature due to the electron-phonon scattering. From the pump-probe measurement, the spin relaxation time decreases with the monolayers at higher temperatures, in agreement with the phonon energy determinate by PL measurements. (orig.)

  4. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.

    Science.gov (United States)

    Rowland, Clare E; Susumu, Kimihiro; Stewart, Michael H; Oh, Eunkeu; Mäkinen, Antti J; O'Shaughnessy, Thomas J; Kushto, Gary; Wolak, Mason A; Erickson, Jeffrey S; Efros, Alexander L; Huston, Alan L; Delehanty, James B

    2015-10-14

    The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.

  5. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  6. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-03-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  7. Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A 3 M 2 I 9 (A = Cs, Rb; M = Bi, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    McCall, Kyle M.; Stoumpos, Constantinos C.; Kostina, Svetlana S.; Kanatzidis, Mercouri G.; Wessels, Bruce W.

    2017-04-26

    The optical and electronic properties of Bridgman grown single crystals of the wide-bandgap semiconducting defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) have been investigated. Intense Raman scattering was observed at room temperature for each compound, indicating high polarizability and strong electron–phonon coupling. Both low-temperature and room-temperature photoluminescence (PL) were measured for each compound. Cs3Sb2I9 and Rb3Sb2I9 have broad PL emission bands between 1.75 and 2.05 eV with peaks at 1.96 and 1.92 eV, respectively. The Cs3Bi2I9 PL spectra showed broad emission consisting of several overlapping bands in the 1.65–2.2 eV range. Evidence of strong electron–phonon coupling comparable to that of the alkali halides was observed in phonon broadening of the PL emission. Effective phonon energies obtained from temperature-dependent PL measurements were in agreement with the Raman peak energies. A model is proposed whereby electron–phonon interactions in Cs3Sb2I9, Rb3Sb2I9, and Cs3Bi2I9 induce small polarons, resulting in trapping of excitons by the lattice. The recombination of these self-trapped excitons is responsible for the broad PL emission. Rb3Bi2I9, Rb3Sb2I9, and Cs3Bi2I9 exhibit high resistivity and photoconductivity response under laser photoexcitation, indicating that these compounds possess potential as semiconductor hard radiation detector materials.

  8. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  9. Effect of Al doping on the structural, optical and photoluminescence properties of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Amaranatha Reddy, D. [Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Liu, Chunli, E-mail: chunliliu@hufs.ac.kr [Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Vijayalakshmi, R.P.; Reddy, B.K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2014-01-05

    Highlights: • PEG capped ZnS:Al nanoparticles were synthesized through chemical route. • Structural, band gap, and PL studies were carried out. • Tunable band gap with Al doping concentration was noticed. • Appreciable enhancement in PL intensity was noticed in Al doped samples. • ZnS:Al nanoparticles may find applications in luminescent devices. -- Abstract: Un-doped and Al doped ZnS nanoparticles were prepared via an efficient and low cost chemical co-precipitation method using Poly Ethylene Glycol (PEG) as stabilizer. In the present study effect of Al concentration on the morphological, structural, and optical properties is studied using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Raman analysis, Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) studies. XRD, TEM, FTIR and Raman analysis indicated the formation of impurity-free nanocrystals with cubic structure. DRS studies revealed that as the Al dopant concentration increases the band gap increases in the range of 3.73–4.01 eV. The PL spectra of all samples exhibit a broad emission band in the range of 350–650 nm. The Gaussian fitting emission bands for ZnS are located at 382, 398, 417 and 445 nm. For Al doped ZnS nanoparticles in addition to the pure ZnS peaks two extra peaks are observed at 472 and 493 nm. Further, enhanced photoluminescence was observed with increasing Al content up to 8 at.% and beyond this photoluminescence quenching was noticed.

  10. Photoluminescence, thermally stimulated luminescence and ...

    Indian Academy of Sciences (India)

    γ and self α irradiated samples were carried out. PL spectra of these samples give structured broad band ... generated in these solids by self α and γ irradiation effects. Also structure of defect centres, their recombination on ... Author for correspondence (giritks@gmail.com) have different molecular structure leading to UO2−.

  11. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    Science.gov (United States)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  12. A study on near-UV blue photoluminescence in graphene oxide prepared by Langmuir–Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng; Yang, Shuming, E-mail: shuming.yang@mail.xjtu.edu.cn; Jing, Weixuan; Jiang, Zhuangde; Liu, Huan; Li, Lei

    2015-08-01

    Highlights: • GO films were deposited on substrates using LB method and reduced into rGO at 800 °C. • The PL of GO and rGO showed the near-UV blue emission. • This blue shift and decrease in PL was due to the newly formed sp{sup 2} clusters in rGO. - Abstract: The paper reports a study on a near-UV blue photoluminescence (PL) in graphene oxide (GO) films prepared by Langmuir–Blodgett (LB)-based method. GO films was reduced into reduced-graphene oxide (rGO) through thermal process at 800 °C. The surface morphology of both GO and rGO is characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) analysis shows the largely restoration of graphitic domains in GO after reduction. The photoluminescence (PL) of rGO shows the near-UV blue emission, which is blueshifted along with luminescent decreased as compared to GO. This blueshift and decrease in PL is mainly due to the newly formed sp{sup 2} clusters in rGO, which established percolation pathways between the sp{sup 2} clusters already present.

  13. Oracle PL/SQL Language Pocket Reference

    CERN Document Server

    Feuerstein, Steven; Dawes, Chip

    2004-01-01

    While it's good to have a book with all the answers--like your trusty copy of Oracle PL/SQL Programming-- how often do you need all the answers? More likely, you just need a reminder, a quick answer to a problem you're up against. For these times, nothing's handier than the new edition of the Oracle PL/SQL Language Pocket Reference by PL/SQL experts Stephen Feuerstein, Bill Pribyl, and Chip Dawes. Newly updated for Oracle10g, this little book is always at the ready for the quick problem solving you need. The 3rd edition of this popular mini-reference boils down the most vital information fr

  14. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission

    International Nuclear Information System (INIS)

    Ghamsari, Morteza Sasani; Gaeeni, Mohammad Reza; Han, Wooje; Park, Hyung-Ho

    2016-01-01

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO 2 nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO 2 colloidal nanocrystals. HRTEM showed that the diameter of TiO 2 colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO 2 colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO 2 sample has enough potential for optoelectronics applications.

  15. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    OpenAIRE

    Monemar, Bo; Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Lindgren, David; Samuelson, Lars; Ni, Xianfeng; Morkoç, Hadis; Paskova, Tanya; Bi, Zhaoxia; Ohlsson, Jonas

    2011-01-01

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 1018cm-3 to well above 1019 cm-3. The samples were grown with MOCVD at reduced pressure on low defect density m-plane bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9 eV to 3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependenc...

  16. Time-resolved ultraviolet near-field scanning optical microscope for characterizing photoluminescence lifetime of light-emitting devices.

    Science.gov (United States)

    Park, Kyoung-Duck; Jeong, Hyun; Kim, Yong Hwan; Yim, Sang-Youp; Lee, Hong Seok; Suh, Eun-Kyung; Jeong, Mun Seok

    2013-03-01

    We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

  17. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    International Nuclear Information System (INIS)

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  18. Photoluminescence properties of zinc white

    Science.gov (United States)

    Artesani, A.

    2017-03-01

    Zinc white pigment has characterized artist's palettes from the end of the eighteenth century up the twentieth century. It thus belongs to the modern pigments which were industrially produced by inorganic material (ZnO). This new category of pictorial materials interested conservators and scientists mainly for its behavour with aging. For this reason, this work focuses on the understanding of photo-physical behaviour of zinc white based on a time-resolved analysis of photoluminescence emission of historical samples. This study allowed the characterization of the decay kinetic properties of photoluminescence emissions. All historical samples showed near-band-edge and trap state emissions, typically occurring in semiconductors, that were modified by the interaction of the pigment with the surrounding organic binding material. The study further suggests that zinc carboxylates, detected in all historical samples, could be responsible for changes in emission mechanisms. Generally, data demonstrates how time-resolved photoluminescence spectroscopy is a powerful method for elucidating the nature of the mechanism processes in luminescent semiconductor pigments.

  19. Evidence for various higher-subband resonances and interferences in a GaAs/AlAs asymmetric quadruple-quantum-well superlattice analyzed from its photoluminescence properties

    Science.gov (United States)

    Hata, Keisuke; Hosoda, Makoto; Akahane, Kouichi; Ohtani, Naoki

    2017-02-01

    In this paper, we present evidence for the resonances between higher subbands in an asymmetric quadruple-quantum-well (AQQW) superlattice (SL) by photoluminescence (PL) spectra. Since each QW in an AQQW is separated by thin barriers, subband interferences can easily arise. As a result, various PL branches caused by the subband resonances are observed, including PL emissions from the higher-energy Γ states, the X state in a barrier with longitudinal optical phonon replica, and long-range Γ-X transfer with Γ-X mixing. However, in conventional QW systems, the PL emissions from higher-energy subbands and their interference have not been clearly observed yet; in our system, the interferences between higher-energy subbands can be observed through PL emission, since we achieved effective electron injection into the higher subbands under very thin barriers. From these observations, we exposed the existence of such interferences and transport processes.

  20. Photoluminescence study of trap-state defect on TiO2 thin films at different substrate temperature via RF magnetron sputtering

    Science.gov (United States)

    Abdullah, S. A.; Sahdan, M. Z.; Nafarizal, N.; Saim, H.; Bakri, A. S.; Cik Rohaida, C. H.; Adriyanto, F.; Sari, Y.

    2018-04-01

    This paper highlights the defect levels using photoluminescence spectroscopy of TiO2 thin films. The TiO2 were deposited by Magnetron Sputtering system with 200, 300, 400, and 500 °C substrate temperature on microscope glass substrate. The PL result shows profound effect of various substrate temperatures to defect levels of oxygen vacancies and Ti3+ at titanium interstitial site. Increasing temperature would minimize the oxygen vacancy defect, however Ti3+ shows otherwise. Green region of PL consist of trapped hole for oxygen vacancy, while red region of PL is trapped electron associated to structural defect Ti3+. Green PL is dominant peak at temperature 200 °C, indicating that oxygen vacancy is the main defect at this temperature. However, PL peak shows slightly same value for others samples indicating that the temperature did not give high influence to other level of defect after 200 °C.

  1. Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm

    Science.gov (United States)

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Kachynski, Aliaksandr; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We report intense upconversion photoluminescence (PL) in colloidal LiYF4:Er3+ nanocrystals under excitation with telecom-wavelength at 1490 nm. The intensities of two- and three-photon anti-Stokes upconversion PL bands are higher than or comparable to that of the Stokes emission under excitation with low power density in the range of 5–120 W/cm2. The quantum yield of the upconversion PL was measured to be as high as ~1.2±0.1%, which is almost 4 times higher than the highest upconversion PL quantum yield reported up to date for lanthanide-doped nanocrystals in 100 nm sized hexagonal NaYF4:Yb3+20%, Er3+2% using excitation at ~980 nm. Power dependence study revealed that the intensities of all PL bands have linear dependence on the excitation power density, which was explained by saturation effects in the intermediate energy states. PMID:21557587

  2. Environment dependent enhanced photoluminescence and Boolean logic gates like behavior of Bi2O3 and Ag:Bi2O3 nanostructures

    Science.gov (United States)

    Hariharan, S.; Karthikeyan, B.

    2018-03-01

    In the evolution of nanotechnology research for smart and precise sensor fabrication, here we report the implementation of simple logic gate operations performing by luminescent nanostructures in biomolecule environment based on photoluminescence (PL) technique. This present work deals with the luminescence property of α-Bi2O3 and Ag modified α-Bi2O3 nanostructures for D-glucose and Bovine serum albumin (BSA) sensing applications. These nanostructures are prepared by simple co-precipitation method and their morphology are examined using transmission electron microscope (TEM). We explore the PL characteristics of the prepared nanostructures and observe their change in PL intensity in the presence of D-glucose and BSA molecules. Enhancement in PL intensity is observed in the presence of D-glucose and BSA. Based on the PL response of prepared nanostructures in the biomolecule environment, we demonstrate biophotonic logic gates including YES, PASS 0, OR and INHIBIT gates.

  3. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  4. Photoluminescence characterization of Dy3+ and Eu2+ ion in M5(PO4)3F (M = Ba, Sr, Ca) phosphors

    International Nuclear Information System (INIS)

    Nagpure, I.M.; Shinde, K.N.; Dhoble, S.J.; Kumar, Animesh

    2009-01-01

    Photoluminescence investigation of Eu and Dy activated phosphate based phosphors prepared by combustion synthesis, characterized by XRD (X-ray diffraction) and photoluminescence techniques, has been reported. PL excitation spectrum of M 5 (PO 4 ) 3 F:Dy phosphors shows the excitation peaks ranging from 300 to 400 nm due to 4f → 4f transitions of Dy 3+ ions. PL emission spectrum of Dy 3+ ion under 348 nm excitation gives PL emission at 482 nm (blue) due to 4 F 9/2 → 6 H 15/2 transitions, 574 nm (yellow) emission due to 4 F 9/2 → 6 H 13/2 transitions and 670 nm (red) due to 4 F 9/2 → 6 H 11/2 transitions, gives BYR (blue-yellow-red) emissions. The Eu 2+ broad band PL emission spectrum was observed in M 5 (PO 4 ) 3 F:Eu phosphor at 440 nm in the blue region of the spectrum due to 5d → 4f transition at 352 nm excitation. The 300-400 nm is Hg-free excitation (Hg excitation is 85% 254 nm wavelength of light and 15% other wavelengths), which is characteristic of solid-state lighting phosphors. Hence PL emission in divalent europium and trivalent dysprosium may be efficient photoluminescent materials for solid-state lighting phosphors.

  5. Photoluminescence and reflectivity studies of high energy light ions irradiated polymethyl methacrylate films

    Science.gov (United States)

    Bharti, Madhu Lata; Singh, Fouran; Ramola, R. C.; Joshi, Veena

    2017-11-01

    The self-standing films of non-conducting polymethyl methacrylate (PMMA) were irradiated in vacuum using high energy light ions (HELIs) of 50 MeV Lithium (Li+3) and 80 MeV Carbon (C+5) at various ion dose to induce the optical changes in the films. Upon HELI irradiation, films exhibit a significant enhancement in optical reflectivity at the highest dose. Interestingly, the photoluminescence (PL) emission band with green light at (514.5 nm) shows a noticeable increase in the intensity with increasing ion dose for both ions. However, the rate of increase in PL intensity is different for both HELI and can be correlated with the linear energy transfer by these ions in the films. Origin of PL is attributed to the formation of carbon cluster and hydrogenated amorphous carbon in the polymer films. HAC clusters act as PL active centres with optical reflectivity. Most of the harmful radiation like UV are absorbed by the material and is becoming opaque after irradiation and this PL active material are useful in fabrication of optoelectronic devices, UV-filter, back-lit components in liquid crystal display systems, micro-components for integrate optical circuits, diffractive elements, advanced materials and are also applicable to the post irradiation laser treatment by means of ion irradiation.

  6. Photoluminescence induced from hot Ge implantation into SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bregolin, F.L. [Instituto de Fisica Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre (Brazil); Behar, M. [Instituto de Fisica Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre (Brazil)], E-mail: behar@if.ufrgs.br; Sias, U.S. [Centro Federal de Educacao Tecnologica de Pelotas, 96015-370 RS (Brazil); Moreira, E.C. [Universidade Federal do Pampa - UNIPAMPA, Campus Bage, 96400-970 Bage, RS (Brazil)

    2009-05-01

    Up to the present, by using the ion implantation technique, photoluminescence (PL) from Ge nanocrystals (Ge NCs) was obtained by room temperature (RT) Ge implantation into a SiO{sub 2} matrix followed by a high temperature anneal. In this way two PL bands were observed, one at 310 nm and the second, with much higher yield at 390 nm. In the present work we have used another experimental approach. We have performed the Si implantation at high temperature (T{sub i}) and then, we have done a higher temperature anneal (T{sub a}) in order to nucleate the Ge NCs. With this aim we have changed T{sub i} between RT and 600 deg. C. By performing the implantation at T{sub i} = 350 deg. C we found a PL yield four times higher than the one obtained from the usual RT implantation at the same fluence. Moreover, by changing the implantation fluence between {phi} = 0.25 x 10{sup 16} and 2.2 x 10{sup 16} Ge/cm{sup 2} we observed that {phi} = 0.5 x 10{sup 16} Ge/cm{sup 2} induces a PL yield three times higher as compared to the usual RT implantation fluence. In conclusion, using a hot Ge implantation plus an optimal Ge atomic concentration, we were able to gain more than one order of magnitude in the 390 nm PL yield as compared with previous ion implantation results.

  7. Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure.

    Science.gov (United States)

    Huang, Pu; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Zhong, Hong-Xia; Ding, Yi-Min; Cao, Xiong; Wu, Meng; Lu, Jing

    2016-08-04

    The physical origin of the observed anomalous photoluminescence (PL) behavior, that is, the large-size graphene quantum dots (GQDs) exhibiting higher PL energy than the small ones and the broadening PL spectra from deep ultraviolet to near-infrared, has been debated for many years. Obviously, it is in conflict with the well-accepted quantum confinement. Here we shed new light on these two notable debates by state-of-the-art first-principles calculations based on many-body perturbation theory. We find that quantum confinement is significant in GQDs with remarkable size-dependent exciton absorption/emission. The edge environment from alkaline to acidic conditions causes a blue shift of the PL peak. Furthermore, carbon vacancies are inclined to assemble at the GQD edge and form the tiny edge microstructures. The bound excitons, localized inside these edge microstructures, determine the anomalous PL behavior (blue and UV emission) of large-size GQDs. The bound excitons confined in the whole GQD lead to the low-energy transition.

  8. Structural and photoluminescence properties of silicon nanowires extracted by means of a centrifugation process from plasma torch synthesized silicon nanopowder.

    Science.gov (United States)

    Le Borgne, Vincent; Agati, Marta; Boninelli, Simona; Castrucci, Paola; De Crescenzi, Maurizio; Dolbec, Richard; El Khakani, My Ali

    2017-07-14

    We report on a method for the extraction of silicon nanowires (SiNWs) from the by-product of a plasma torch based spheroidization process of silicon. This by-product is a nanopowder which consists of a mixture of SiNWs and silicon particles. By optimizing a centrifugation based process, we were able to extract substantial amounts of highly pure Si nanomaterials (mainly SiNWs and Si nanospheres (SiNSs)). While the purified SiNWs were found to have typical outer diameters in the 10-15 nm range and lengths of up to several μm, the SiNSs have external diameters in the 10-100 nm range. Interestingly, the SiNWs are found to have a thinner Si core (2-5 nm diam.) and an outer silicon oxide shell (with a typical thickness of ∼5-10 nm). High resolution transmission electron microscopy (HRTEM) observations revealed that many SiNWs have a continuous cylindrical core, whereas others feature a discontinuous core consisting of a chain of Si nanocrystals forming a sort of 'chaplet-like' structures. These plasma-torch-produced SiNWs are highly pure with no trace of any metal catalyst, suggesting that they mostly form through SiO-catalyzed growth scheme rather than from metal-catalyzed path. The extracted Si nanostructures are shown to exhibit a strong photoluminescence (PL) which is found to blue-shift from 950 to 680 nm as the core size of the Si nanostructures decreases from ∼5 to ∼3 nm. This near IR-visible PL is shown to originate from quantum confinement (QC) in Si nanostructures. Consistently, the sizes of the Si nanocrystals directly determined from HRTEM images corroborate well with those expected by QC theory.

  9. Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content

    Energy Technology Data Exchange (ETDEWEB)

    Deus, R.C. [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); Cortés, J.A., E-mail: leandrosrr89@gmail.com [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); Ramirez, M.A. [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); Ponce, M.A. [Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) (CONICET-Universidad Nacional de Mar del Plata), Juan B. Justo 4302, 7600 Mar del Plata (Argentina); Andres, J. [Laboratório Interdisciplinar em Cerâmica, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, São Paulo (Brazil); Rocha, L.S.R. [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); and others

    2015-10-15

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in the cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.

  10. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yue Li; Li, Yong; Ji, Peng Fei; Zhou, Feng Qun; Sun, Xiao Jun; Yuan, Shu Qing; Wan, Ming Li [Pingdingshan University, Department of Physics, Solar New Energy Research Center, Pingdingshan (China); Ling, Hong [North China University of Water Resources and Electric Power, Department of Mathematics and Information Science, Zhengzhou (China)

    2016-12-15

    CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss-Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (I{sub Cd}) to the valence band, the recombination from I{sub Cd} to cadmium vacancies (V{sub Cd}), and from sulfur vacancies (V{sub s}) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions. (orig.)

  11. Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates

    International Nuclear Information System (INIS)

    Fang, Y.C.; Zhang, Y.; Gao, H.Y.; Chen, L.G.; Gao, B.; He, W.Z.; Meng, Q.S.; Zhang, C.; Dong, Z.C.

    2013-01-01

    We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic “hot-spots”.

  12. Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Y.C. [Department of Vacuum Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009 (China); HFNL, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Zhang, Y.; Gao, H.Y.; Chen, L.G.; Gao, B.; He, W.Z.; Meng, Q.S.; Zhang, C. [HFNL, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Dong, Z.C., E-mail: zcdong@ustc.edu.cn [HFNL, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2013-11-15

    We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic “hot-spots”.

  13. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao

    2017-09-22

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  14. Investigation of influence of electronic irradiation on photoluminescence spectrum and ir-spectrum of porous silicon

    International Nuclear Information System (INIS)

    Daineko, E.A.; Dihanbayev, K.K.; Akhtar, P.; Hussain, A.

    2007-01-01

    In this article we study the influence of 2-Mev electron irradiation on porous silicon (PS). Photoluminescence (PL) spectrum and IR-spectrum have been done on both newly-prepared PS samples and samples prepared a year ago after the irradiation. We analyzed PL spectrum for both types of PS samples. The experimental results suggest that the peak position in PL spectrum decreases for newly-prepared PS samples. The size of the nanocrystals calculated by the method of singling out of spectrum components was equal to 3.0-3.2 nm. Porosity of the samples was 60-75%. From IR-spectrum of newly-prepared PS samples wide absorption band was observed at 1100 cm/sup -1/ (Si-O-Si bond). Another peak of Si-O-Si group was observed at 850 cm/sub -1/. Also hydrogen absorption bands were appearing from 2000 to 2200 cm/sup -1/, corresponding to vibration modes SiH, SiH/sub 2/, SiH/sub 3/. As a result of electron irradiation the PL intensity of newly-prepared PS samples decreases abruptly by a factor of 30 without peak shifting. As for the samples prepared a year ago we observed a decrease in the PL intensity by 25-30%. From IR-spectrum of PS samples prepared a year ago it was shown that the intensity of bridge bonds corresponding to absorption band 850 cm/sup -1/, decreases gradually. Our experimental data shows that PS samples stored for longer time have better radiation resistant properties than the newly-prepared PS samples due to the replacement of Si-H bonds with more resistant Si-O bonds. Porous silicon, electrochemical anodizing, photoluminescence spectrum, IR-spectrum, electronic irradiation. (author)

  15. Photoluminescence and cathodoluminescence studies of Er3+-activated strontium molybdate for solid-state lighting and display applications

    Science.gov (United States)

    Soni, Abhishek Kumar; Mahata, Manoj Kumar

    2017-12-01

    The photoluminescence and cathodoluminescence properties of erbium ion (Er3+) activated SrMoO4 phosphor have been investigated herein. The photoluminescence (PL) emission spectra, recorded within 400–800 nm wavelength range upon 380 nm UV light excitation exhibit unusual blue emission along with its well-known green luminescence which has been explained through underlying mechanisms with the help of energy level structure. The blue luminescence of the phosphor at various Er3+-concentrations was further confirmed by computing the spectral colour coordinates that lies in the blue region of the chromaticity diagram. The cathodoluminescence (CL) spectra which were measured under low voltage electron beam excitation exhibited intense green luminescence. The PL and CL studies carried out in the synthesized phosphor indicates that it can be a useful candidate for making UV-excited light emitting diodes (LEDs) and low voltage electron beam excited field emission displays (FEDs).

  16. High Contrast In vitro and In vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors

    Science.gov (United States)

    Nyk, Marcin; Kumar, Rajiv; Ohulchanskyy, Tymish Y.; Bergey, Earl J.; Prasad, Paras N.

    2012-01-01

    A new approach for photoluminescence imaging in vitro and in vivo has been shown, utilizing near infrared to near infrared (NIR-to-NIR) up-conversion in nanophosphors. This NIR-to-NIR up-conversion process provides deeper light penetration into biological specimen and results in high contrast optical imaging due to absence of an autofluorescence background and decreased light scattering. Aqueous dispersible fluoride (NaYF4) nanocrystals (20–30 nm size) co-doped with the rare earth ions, Tm3+ and Yb3+, were synthesized and characterized by TEM, XRD and photoluminescence (PL) spectroscopy. In vitro cellular uptake was shown by the PL microscopy visualizing the characteristic emission of Tm3+ at ~ 800 nm excited with 975 nm. No apparent cytotoxicity was observed. Subsequent animal imaging studies were performed using Balb-c mice injected intravenously with up-converting nanophosphors, demonstrating the high contrast PL imaging in vivo. PMID:18928324

  17. Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD techniques

    International Nuclear Information System (INIS)

    Khranovskyy, Volodymyr; Yakimova, Rositza; Karlsson, Fredrik; Syed, Abdul S.; Holtz, Per-Olof; Nigussa Urgessa, Zelalem; Samuel Oluwafemi, Oluwatobi; Reinhardt Botha, Johannes

    2012-01-01

    The photoluminescence properties of individual ZnO nanorods, grown by atmospheric pressure metalorganic chemical vapor deposition (APMOCV) and chemical bath deposition (CBD) are investigated by means of temperature dependent micro-PL. It was found that the low temperature PL spectra are driven by neutral donor bound exciton emission D 0 X, peaked at 3.359 and 3.363 eV for APMOCVD and CBD ZnO nanorods, respectively. The temperature increase causes a red energy shift of the peaks and enhancement of the free excitonic emission (FX). The FX was found to dominate after 150 K for both samples. It was observed that while APMOCVD ZnO nanorods possess a constant low signal of visible deep level emission with temperature, the ZnO nanorods grown by CBD revealed the thermal activation of deep level emission (DLE) after 130 K. The resulting room temperature DLE was a wide band located at 420–550 nm. The PL properties of individual ZnO nanorods can be of importance for their forthcoming application in future optoelectronics and photonics.

  18. Sol–gel synthesis and photoluminescence of CaTi1–x Zrx O3: Pr 3 ...

    Indian Academy of Sciences (India)

    CaTi1–ZrO3 : Pr3+ phosphors have been synthesized by sol–gel and solid state methods, with = 1/300, 2/300, 3/300, 4/300, 5/300, 6/300, 7/300, respectively. Powder X-ray diffraction (XRD), UV-visible absorption spectra, photoluminescent spectra (PL), and scanning electron microscopy (SEM) images are used to ...

  19. Setting up the photoluminescence laboratory at ISOLDE & Perturbed Angular Correlation spectroscopy for BIO physics experiments using radioactive ions

    CERN Document Server

    Savva, Giannis

    2016-01-01

    The proposed project I was assigned was to set up the photoluminescence (PL) laboratory at ISOLDE, under the supervision of Karl Johnston. My first week at CERN coincided with the run of a BIO physics experiment using radioactive Hg(II) ions in which I also participated under the supervision of Stavroula Pallada. This gave me the opportunity to work in two projects during my stay at CERN and in the present report I describe briefly my contribution to them.

  20. Examination of electronic structure differences between CIGSSe and CZTSSe by photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Kong Fai; Huan, Cheng Hon Alfred [Division of Physics and Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gershon, Talia; Gunawan, Oki, E-mail: ogunawa@us.ibm.com [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, New York 10598 (United States)

    2015-06-21

    In this paper, we elaborate on the interpretation and use of photoluminescence (PL) measurements as they relate to the “donor/acceptor” and “electrostatic potential fluctuations” models for compensated semiconductors. Low-temperature (7 K) PL measurements were performed on high-efficiency Cu(In,Ga)(S,Se){sub 2} and two Cu{sub 2}ZnSn(S,Se){sub 4} solar cells with high- and low-S/(S + Se) ratio, all fabricated by a hydrazine solution-processing method. From excitation-dependent PL, the total defect density (which include radiative and non-radiative defects) within the band gap (E{sub g}) was estimated for each material and the consequent depth of the electrostatic potential fluctuation (γ) was calculated. The quasi-donor-acceptor pair (QDAP) density was estimated from the blue-shift magnitude of the QDAP PL peak position in power-dependent PL spectra. As a further verification, we show that the slope of the lifetime as a function of photon energies (dτ/dE) is consistent with our estimate for the magnitude of γ. Lastly, the energetic depth of the QDAP defects is examined by studying the spectral evolution of the PL as a function of temperature. The shallow defect levels in CIGSSe resulted in a significant blue-shift of the PL peak with temperature, whereas no obvious shift was observed for either CZTSSe sample, indicating an increase in the depth of the defects. Further improvement on Cu{sub 2}ZnSn(S,Se){sub 4} solar cell should focus on reducing the sub-E{sub g} defect density and avoiding the formation of deep defects.

  1. Effect of hydrostatic pressure on photoluminescence spectra from structures with Si nanocrystals fabricated in SiO2 matrix

    International Nuclear Information System (INIS)

    Zhuravlev, K.S.; Tyschenko, I.E.; Vandyshev, E.N.; Bulytova, N.V.; Misiuk, A.; Rebohle, L.; Skorupa, W.

    2002-01-01

    The effect of hydrostatic pressure applied at high temperature on photoluminescence of Si-implanted SiO 2 films was studied. A 'blue'-shift of PL spectrum from the SiO 2 films implanted with Si + ions to total dose of 1.2x10 17 cm -2 with increase in hydrostatic pressure was observed. For the films implanted with Si + ions to a total dose of 4.8x10 16 cm -2 high temperature annealing under high hydrostatic pressure (12 kbar) causes a 'red'-shift of photoluminescence spectrum. The 'red' photoluminescence bands are attributed to Si nanocrystals while the 'blue' ones are related to Si nanocrystals of reduced size or chains of silicon atoms or Si-Si defects. A decrease in size of Si nanocluster occurs in result of the pressure-induced decrease in the diffusion of silicon atoms. (author)

  2. The down-conversion and up-conversion photoluminescence properties of Na0.5Bi0.5TiO3:Yb3+/Pr3+ ceramics

    International Nuclear Information System (INIS)

    Huang, Yinpeng; Luo, Laihui; Wang, Jia; Zuo, Qianghui; Yao, Yongjie; Li, Weiping

    2015-01-01

    Na 0.5 Bi 0.5−x−y Yb x Pr y TiO 3 (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb 3+ and Pr 3+ doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr 3+ and Yb 3+ ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr 3+ and Yb 3+ ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr 3+

  3. Probing the exciton density of states in semiconductor nanocrystals using integrated photoluminescence spectroscopy

    CERN Document Server

    Filonovich, S A; Vasilevskiy, M I; Rolo, A G; Gomes, M J M; Artemiev, M V; Talapin, D V; Rogach, A L

    2002-01-01

    We present the results of a comparative analysis of the absorption and photoluminescence excitation (PLE) spectra vs. integrated photoluminescence (IPL) measured as a function of the excitation wavelength for a number of samples containing II-VI semiconductor nanocrystals (NCs) produced by different techniques. The structure of the absorption and PL spectra due to excitons confined in NCs and difficulties with the correct interpretation of the transmittance and PLE results are discussed. It is shown that, compared to the conventional PLE, the IPL intensity plotted against the excitation wavelength (IPLE spectra) reproduce better the structure of the absorption spectra. Therefore, IPLE spectroscopy can be successfully used for probing the quantized electron-hole (e-h) transitions in semiconductor nanocrystals. (author)

  4. Mocking in Oracle PL/SQL

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Testing is not very popular in database development, so there are none common approaches how to test software written in database. Surprisingly one of the oldest DB still lacks of appropriate testing approach for its PL/SQL programs. SQLDeveloper's built-in test "framework" is far from excellence, especially it does not cover mocking which is inherent part of testing for any bigger system being developed. This talk will briefly introduce Edition-Based Redefinition by Oracle to be used for mocking.

  5. 3PL Services in City Logistics

    DEFF Research Database (Denmark)

    Aastrup, Jesper; Gammelgaard, Britta; Prockl, Günter

    2012-01-01

    The purpose of this paper is 1) to develop an overview of activities and services that can add value for users and consignees in city logistics schemes based on Urban Consolidation Centre, and 2) to understand and analyze the perceived value for users and consignees from using such services. The ...... provides an argument and analysis of value for users only sparsely dealt with in previous literature, and an overview from which practical launch of 3PL services in city logistics can take place....

  6. DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide.

    Science.gov (United States)

    Tang, Longhua; Chun, Ik Su; Wang, Zidong; Li, Jinghong; Li, Xiuling; Lu, Yi

    2013-10-15

    Efficient near-infrared detection of specific DNA with single nucleotide polymorphism selectivity is important for diagnostics and biomedical research. Herein, we report the use of gallium arsenide (GaAs) as a sensing platform for probing DNA immobilization and targeting DNA hybridization, resulting in ∼8-fold enhanced GaAs photoluminescence (PL) at ∼875 nm. The new signal amplification strategy, further coupled with the plasmonic effect of Au nanoparticles, is capable of detecting DNA molecules with a detection limit of 0.8 pM and selectivity against single base mismatches. Such an ultrasensitive near-infrared sensor can find a wide range of biochemical and biomedical applications.

  7. Effect of Ligand Exchange on the Photoluminescence Properties of Cu-Doped Zn-In-Se Quantum Dots

    Science.gov (United States)

    Dong, Xiaofei; Xu, Jianping; Yang, Hui; Zhang, Xiaosong; Mo, Zhaojun; Shi, Shaobo; Li, Lan; Yin, Shougen

    2018-04-01

    The surface-bound ligands of a semiconductor nanocrystal can affect its electron transition behavior. We investigate the photoluminescence (PL) properties of Cu-doped Zn-In-Se quantum dots (QDs) through the exchange of oleylamine with 6-mercaptohexanol (MCH). Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies, and mass spectrometry reveal that the short-chain MCH molecules are bound to the QD surface. The emission peaks remain unchanged after ligand exchange, and the PL quantum yield is reduced from 49% to 38%. The effects of particle size and defect type on the change in PL behavior upon ligand substitution are excluded through high-resolution transmission electron microscopy, UV-Vis absorption, and PL spectroscopies. The origin of the decreased PL intensity is associated with increased ligand density and the stronger ligand electron-donating abilities of MCH-capped QDs that induce an increase in the nonradiative transition probability. A lower PL quenching transition temperature is observed for MCH-capped QDs and is associated with increasing electron-acoustic phonon coupling due to the lower melting temperature of MCH.

  8. Enhanced photocatalytic activity of C@ZnO core-shell nanostructures and its photoluminescence property

    Science.gov (United States)

    Chen, Tao; Yu, Shanwen; Fang, Xiaoxin; Huang, Honghong; Li, Lun; Wang, Xiuyuan; Wang, Huihu

    2016-12-01

    An ultrathin layer of amorphous carbon coated C@ZnO core-shell nanostructures were synthesized via a facile hydrothermal carbonization process using glucose as precursor in this work. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectroscopy (DRS) were used for the characterization of as-prepared samples. Photoluminescence (PL) properties of C@ZnO samples were investigated using PL spectroscopy. The microstructure analysis results show that the glucose content has a great influence on the size, morphology, crystallinity and surface chemical states of C@ZnO nanostructures. Moreover, the as-prepared C@ZnO core-shell nanostructures exhibit the enhanced photocatalytic activity and good photostability for methyl orange dye degradation due to its high adsorption ability and its improved optical characteristics.

  9. Crystal-field tuning of photoluminescence in two-dimensional materials with embedded lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ding; Chen, Weiyin; Zeng, Mengqi; Xue, Haifeng; Chen, Yunxu; Xiao, Yao; Zhang, Tao; Fu, Lei [College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan (China); Sang, Xiahan; Unocic, Raymond R.; Xiao, Kai [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2018-01-15

    Lanthanide (Ln) group elements have been attracting considerable attention owing to the distinct optical properties. The crystal-field surroundings of Ln ions in the host materials can determine their energy level splitting, which is of vital importance to tailor their optical properties. 2D MoS{sub 2} single crystals were utilized as the host material to embed Eu{sup 3+} and energy-level splitting was achieved for tuning its photoluminescence (PL). The high anisotropy of the 2D host materials makes them distort the degenerate orbitals of the Ln ions more efficiently than the symmetrical bulk host materials. A significant red-shift of the PL peak for Eu{sup 3+} was observed. The strategy for tailoring the energy level splitting of Ln ions by the highly designable 2D material crystal field provides a new method to extend their optical properties. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Annealing effects on photoluminescence of SiNx films grown by PECVD

    International Nuclear Information System (INIS)

    Komarov, F.F.; Parkhomenko, I.N.; Vlasukova, L.A.; Milchanin, O.V.; Togambayeva, A.K.; Kovalchuk, N.S.

    2013-01-01

    Si-rich and N-rich silicon nitride films were deposited at low temperature 300 °C by using plasma-enhanced chemical vapor deposition (PECVD). The optical and structural properties of these films have been investigated by ellipsometry, Rutherford backscattering (RBS), transmission electron microscopy (TEM), Raman spectroscopy (RS) and photoluminescence (PL). The formation of silicon clusters in both Si-rich and N-rich silicon nitride films after annealing at 900 °C and 1000 °C for hour in N 2 ambient has been revealed by TEM. Dependency of PL spectra on stoichiometry and post-annealing temperature was analyzed. The contribution of Si and N-related defects in emitting properties of Si-rich and N-rich SiN x has been discussed. (authors)

  11. Photoluminescence of acupoint 'Waiqiu' in human superficial fascia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuan [Synchrotron Radiation Research Center, Department of Physics, Surface Physics Laboratory (State Key Laboratory) of Fudan University, Shanghai 200433 (China); Yan Xiaohui [Synchrotron Radiation Research Center, Department of Physics, Surface Physics Laboratory (State Key Laboratory) of Fudan University, Shanghai 200433 (China); Liu Chenglin [Synchrotron Radiation Research Center, Department of Physics, Surface Physics Laboratory (State Key Laboratory) of Fudan University, Shanghai 200433 (China); Dang Ruishan [Second Military Medical University, Shanghai 200433 (China); Zhang Xinyi [Synchrotron Radiation Research Center, Department of Physics, Surface Physics Laboratory (State Key Laboratory) of Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn

    2006-07-15

    The spectral characters of an acupuncture point named 'Waiqiu' in superficial fascia tissue have been studied by photoluminescence (PL) spectroscopy under the excitation of 457.9 nm. The PL around 'Waiqiu' acupuncture point consists of two sub-bands resulting from the flavin adenine dinucleotide (FAD) and phospholipids, and the porphyrins (including purine, isoxanthopterin and tryptophan), respectively. More emission due to FAD and phospholipids is found inside the acupuncture effect area of 'Waiqiu' than its marginal or outside acupuncture regions. The ratio of emission intensity of FAD and phospholipids to one of porphyrins gradually decreases along the direction away from the center of the acupuncture point. It implies that the component proportion changes between FAD, phospholipids and porphyrins around the 'Waiqiu' acupuncture point. We suggest that there might be a certain relationship between redox function of FAD and 'Waiqiu' acupuncture effect.

  12. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal [Chemical Engineering department, Universiti Teknology Petronas, Tronoh (Malaysia)

    2015-06-24

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  13. Photoluminescence Enhancement of Poly(3-methylthiophene Nanowires upon Length Variable DNA Hybridization

    Directory of Open Access Journals (Sweden)

    Jingyuan Huang

    2018-01-01

    Full Text Available The use of low-dimensional inorganic or organic nanomaterials has advantages for DNA and protein recognition due to their sensitivity, accuracy, and physical size matching. In this research, poly(3-methylthiophene (P3MT nanowires (NWs are electrochemically prepared with dopant followed by functionalization with probe DNA (pDNA sequence through electrostatic interaction. Various lengths of pDNA sequences (10-, 20- and 30-mer are conjugated to the P3MT NWs respectively followed with hybridization with their complementary target DNA (tDNA sequences. The nanoscale photoluminescence (PL properties of the P3MT NWs are studied throughout the whole process at solid state. In addition, the correlation between the PL enhancement and the double helix DNA with various lengths is demonstrated.

  14. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  15. Time resolved photoluminescence studies of long lived emissive specie in F8BT:PFB blends

    Science.gov (United States)

    Gélinas, Simon; Howard, Ian; Friend, Richard; Silva, Carlos

    2009-03-01

    Type-II heterojunctions play a crucial role in organic optoelectronic devices. We use donor-acceptor polyfluorene blends as a model system to understand excited-state dynamics at heterojunctions. These interfacial excitations are intrachain singlet and triplet excitons, geminate polaron pairs, and exciplexes (interfacial charge-transfer excitons). Time-resolved photoluminescence (PL) spectra were taken at 10,and room temperature to investigate the interconversion dynamics of these species. We observe delayed PL with sub-linear excitation fluence dependence. This implies that delayed singlet exciton generation involves a bimolecular annihilation mechanism. By means of kinetic modeling, we propose triplet-triplet exciton annihilation as a regeneration route to singlet excitons, and subsequently to exciplexes. This points to a significant (<15,%) yield of triplet excitons after interfacial charge separation, and to the central role of these species on the interfacial dynamics.

  16. Photoluminescence properties of {beta}-FeSi{sub 2} grains on Si with coating Au layer

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Kaneko, S; Hirabayashi, Y [Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Edina, Kanagawa, 243-0435 (Japan); Yokomizo, K; Itakura, M, E-mail: akiyama@kanagawa-iri.go.jp [Department of Applied Science for Electronics and Materials, Kyusyu University, 6- 1 Kasuga, Fukuoka 816-8580 (Japan)

    2011-10-29

    We have investigated the growth of {beta}-FeSi{sub 2} grains on Si(001) substrates with 90-nm-thick gold layer and its photoluminescence (PL) property. X-ray diffraction and scanning electron microscopy observations revealed that coarse island {beta}-FeSi{sub 2} grains with sizes from several to tens of micrometers were formed on the Si surface. A clear PL spectrum for the {beta}-FeSi{sub 2} grains was observed on as deposited sample by argon-ion laser irradiation to the Si substrate side. The values of the activation energy for a non-radiative recombination path were large, and indicated the formation of high-crystal-quality {beta}-FeSi{sub 2} with a low-level non-radiative center without post-annealing.

  17. Crystallization study of Cu{sub 2}O and their characterization for X-ray diffraction, Raman spectroscopy and photoluminescence; Estudio de la cristalizacion de Cu{sub 2}O y su caracterizacion por difraccion de rayos X, espectroscopica Raman y fotoluminiscencia

    Energy Technology Data Exchange (ETDEWEB)

    Solache C, H.; Juarez D, G.; Pena S, R. [Departamento de Ingenieria Electrica, SEES, Centro de Investigacion y de Estudios Avanzados, IPN, Av. Instituto Politecnico 2805, Col. Zacatenco, 07000 Mexico D. F. (Mexico); Martinez J, J. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, 14 Sur y Av. San Claudio, 72570 Puebla (Mexico)], e-mail: hsolache@cinvestav.mx

    2009-07-01

    The growth of polycrystalline cuprous oxide (Cu{sub 2}O) foils with great single-crystalline areas by the secondary crystallization method from polycrystalline copper in dry air atmosphere is reported. The method comprises two stages; in the first one polycrystalline copper foils were converted in cuprous oxide at 1020 C by some hours depending of their thickness, in the second stage the growth of great crystalline areas are promoted by annealing the Cu{sub 2}O foils at temperatures near to 1100 C by extended periods. The growth kinetics of the crystallites was studied; X-ray diffraction (XRD), Raman spectroscopy scattering and photoluminescence (Pl) measurements were done as a function of the crystallization conditions. The XRD and Raman scattering measurements reveal the existence of pure Cu{sub 2}O phase. The Pl spectra taken from 10 to 180 K define the main paths of the radiative recombination processes. Besides of the excitonic transition X at 610 nm, three strong bands at 720, 810 and 920 nm associated with relaxed excitons at oxygen and copper vacancies, respectively was detected. The relative intensity of the Pl transitions of excitons at vacancies change according to the duration of the crystallization process. (Author)

  18. Shine red and yellow photoluminescence in GdAlO{sub 3−δ} powders

    Energy Technology Data Exchange (ETDEWEB)

    Dhahri, Kh., E-mail: zmordaessebti88@yahoo.fr [Laboratoire de Physique Appliquée, Faculté des Sciences, B.P. 1171, 3000 Sfax, Université de Sfax (Tunisia); Bejar, M.; Dhahri, E. [Laboratoire de Physique Appliquée, Faculté des Sciences, B.P. 1171, 3000 Sfax, Université de Sfax (Tunisia); Soares, M.J.; Sousa, M.; Valente, M.A. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-08-15

    Highlights: • GdAlO{sub 3−δ} (δ = 0.0, 0.1 and 0.2) powders were synthesized using the conventional solid-state method. • The PL study has revealed the apparition of intense red and yellow photoluminescence (PL) emissions at room temperature. • The red emission was directly related to the singly ionized oxygen vacancy V{sub O}{sup ·}. • The green emission was directly related the doubly ionized oxygen vacancy V{sub O}{sup ··}. • The presence of the singly ionized oxygen vacancy was confirmed from the EPR study. - Abstract: GdAlO{sub 3−δ} (δ = 0.0, 0.1 and 0.2) compounds were prepared by the conventional solid-state method. XRD patterns revealed that all samples present a major orthorhombic structure. An intense red and a yellow photoluminescence (PL) emissions were observed at room temperature for δ = 0.0 and δ ≠ 0.0 samples, respectively. The red emission was related to the singly ionized oxygen vacancies V{sub O}{sup ·}. The production of doubly ionized oxygen vacancies V{sub O}{sup ··} lead to the appearance of a yellow color observed directly from δ = 0.1 and 0.2 samples. The presence of singly and doubly ionized clusters was found to play an important role in the formation of hole–electron pairs and to give rise to the PL emission. The presence of singly ionized oxygen vacancies was confirmed by the EPR study.

  19. Time-correlated single-photon counting study of multiple photoluminescence lifetime components of silicon nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Diamare, D., E-mail: d.diamare@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Wojdak, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Lettieri, S. [Institute for Superconductors and Innovative Materials, National Council of Research (CNR-SPIN), Via Cintia 80126, Naples (Italy); Department of Physical Sciences, University of Naples “Federico II”, Via Cintia 80126, Naples (Italy); Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)

    2013-04-15

    We report time-resolved photoluminescence measurements of thin films of silica containing silicon nanoclusters (Si NCs), produced by PECVD and annealed at temperatures between 700 °C and 1150 °C. While the near infrared emission of Si NCs has long been studied, visible light emission has only recently attracted interest due to its very short decay times and its recently-reported redshift with decreasing NCs size. We analyse the PL decay dynamics in the range 450–700 nm with picosecond time resolution using Time Correlated Single Photon Counting. In the resultant multi-exponential decays two dominant components can clearly be distinguished: a very short component, in the range of hundreds of picoseconds, and a nanosecond component. In this wavelength range we do not detect the microsecond component generally associated with excitonic recombination. We associate the nanosecond component to defect relaxation: it decreases in intensity in the sample annealed at higher temperature, suggesting that the contribution from defects decreases with increasing temperature. The origin of the very fast PL component (ps time region) is also discussed. We show that it is consistent with the Auger recombination times of multiple excitons. Further work needs to be done in order to assess the contribution of the Auger-controlled recombinations to the defect-assisted mechanism of photoluminescence. -- Highlights: ► We report time-resolved PL measurements of Si-Ncs embedded in SiO{sub 2} matrix. ► Net decrease of PL with increasing the annealing temperature has been observed. ► Lifetime distribution analysis revealed a multiexponential decay with ns and ps components. ► Ps components are consistent with the lifetime range of the Auger recombination times. ► No evidence for a fast direct transition at the Brillouin zone centre.

  20. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    CERN Document Server

    Gasanly, N M; Yuksek, N S

    2002-01-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T=10 K and an excitation intensity of 7.5 W cm sup - sup 2. We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm sup - sup 2. The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals.

  1. Hydrothermal Solution-Processed Reduced Nano-Graphene Oxide as Blue Photoluminescence Quantum Dots

    Science.gov (United States)

    Wang, Jigang; Wang, Yongsheng; He, Dawei; Jiang, Ke; Chen, Wei

    2012-02-01

    Chemical derived graphene oxide, an atomically thin sheet of graphite with 2-D construction, offers interesting electronic, chemical and mechanical properties that are currently being explored for advanced electronics, membranes and composites. Herein, we synthesize and explore the blue photoluminescence (PL) nano-graphene quantum dots (QD) through hydrothermal-solution-processed reduced graphene oxide. The PL investigation indicated that graphene oxide solution showed weak fluorescence. However, when the nano-graphene oxide solution samples were heated at different temperatures, from 200-300 ^o, the blue PL intensity of the solution improved radically as heating temperature increased. We also investigated time dependence at a certain heating temperature and the PL Intensity and peak based on graphene QDs under different pH values by adding NaOH. The FT-IR measurements showed that the functional groups of the graphene oxide had been altered due to the hydrothermal routes. In addition, we also investigated the absorption spectrum of the graphene QDs under different conditions, XRD and XPS images of the graphene oxide, TEM and SEM images based on graphene QDs under different conditions.

  2. Synthesis and photoluminescence spectroscopy of BaGeF6:Mn4+ red phosphor

    Science.gov (United States)

    Sekiguchi, Daisuke; Adachi, Sadao

    2015-04-01

    We synthesized Mn4+-activated BaGeF6 red phosphor by the chemical reaction method from HF, H2SiF6, BaF2, KMnO4, and GeO2 powder. The structural and optical properties of BaGeF6:Mn4+ were investigated using X-ray diffraction analysis, secondary electron microscopy observation, electron spin resonance measurement, photoluminescence (PL), PL excitation (PLE) and Raman scattering spectroscopies, and luminescence decay time measurement. Temperature dependence of the PL intensity was measured from T = 20 to 500 K and analyzed by taking into consideration the Bose-Einstein phonon occupation number. The PLE spectra measured at T = 20 and 300 K and luminescence decay time at T = 20-460 K were also analyzed based on the Franck-Condon and conventional thermal quenching models, respectively. Comprehensive discussion was given on the Mn4+-related PL properties and Raman scattering behaviors in a family of the barium hexafluorometallate phosphors.

  3. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    Science.gov (United States)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.; Hertel, Nolan E.; Summers, Christopher J.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ∘C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ∘C and then at different temperatures (100 ∘C-600 ∘C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, the ZnO nanorod arrays showed a broad yellow-orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ∘C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ∘C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ∘C for 90 min exhibited the highest scintillation response.

  4. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  5. Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons

    Directory of Open Access Journals (Sweden)

    Lipeng Hou

    2016-12-01

    Full Text Available Spin-related emission properties have important applications in the future information technology; however, they involve microscopic ferromagnetic coupling, antiferromagnetic or ferrimagnetic coupling between transition metal ions and excitons, or d state coupling with phonons is not well understood in these diluted magnetic semiconductors (DMS. Fe3+ doped ZnSe nanoribbons, as a DMS example, have been successfully prepared by a thermal evaporation method. Their power-dependent micro-photoluminescence (PL spectra and temperature-dependent PL spectra of a single ZnSe:Fe nanoribbon have been obtained and demonstrated that alio-valence ion doping diminishes the exciton magnetic polaron (EMP effect by introducing exceeded charges. The d-d transition emission peaks of Fe3+ assigned to the 4T2 (G → 6A1 (S transition at 553 nm and 4T1 (G → 6A1 (S transition at 630 nm in the ZnSe lattice have been observed. The emission lifetimes and their temperature dependences have been obtained, which reflected different spin–phonon interactions. There exists a sharp decrease of PL lifetime at about 60 K, which hints at a magnetic phase transition. These spin–spin and spin–phonon interaction related PL phenomena are applicable in the future spin-related photonic nanodevices.

  6. Defect study of Cu2ZnSn(SxSe1-x)4 thin film absorbers using photoluminescence and modulated surface photovoltage spectroscopy

    Science.gov (United States)

    Lin, Xianzhong; Ennaoui, Ahmed; Levcenko, Sergiu; Dittrich, Thomas; Kavalakkatt, Jaison; Kretzschmar, Steffen; Unold, Thomas; Lux-Steiner, Martha Ch.

    2015-01-01

    Defect states in Cu2ZnSn(SxSe1-x)4 thin films with x = 0.28, 0.36, and 1 were studied by combining photoluminescence (PL) and modulated surface photovoltage (SPV) spectroscopy. A single broad band emission in the PL spectra was observed and can be related to quasi-donor-acceptor pair transitions. The analysis of the temperature dependent quenching of the PL band (x = 0.28, 0.36, and 1) and SPV (x = 0.28) signals resulted in activation energies below 150 meV for PL and about 90 and 300 meV for SPV. Possible intrinsic point defects that might be associated with these observed activation energies are discussed.

  7. Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Antonov, A. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures of Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Maremyanin, K. V.; Kudryavtsev, K. E.; Krasilnikova, L. V. [Institute for Physics of Microstructures of Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-02-17

    Photoluminescence (PL) and photoconductivity (PC) studies of Hg{sub 1−x}Cd{sub x}Te (0.19 ≤ x ≤ 0.23) epitaxial films are presented. Interband PL is observed at wavelengths from 26 to 6 μm and in the temperature range 18 K–200 K. The PL line full width at half maximum is about 6 meV (4kT) at 18 K and approaches its theoretical limit of 1.8kT at higher temperatures. Carrier recombination process is also investigated by time resolved studies of PL and PC at pulsed excitation. Radiative transitions are shown to be the dominating mechanism of carrier recombination at high excitation levels.

  8. Plínio Marcos: uma biografia

    OpenAIRE

    Contiero, Lucinéia [UNESP

    2007-01-01

    Esta é uma biografia de Plínio Marcos, dramaturgo santista nascido em 1935. Tem um pouco de biografia intelectual, um pouco de biografia crítica. Mas é sobretudo a vida de um homem de teatro. O trabalho se abre com uma discussão teórica, em face da qual procuro situar essa abordagem de uma vida. Como toda biografia, prevaleceu aqui o interesse pela disposição cronológica dos fatos, com paradas para tratar de certos aspectos importantes, a vida de jornalista, a peças de maior sucesso. No prime...

  9. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C{sub 6}H{sub 11}NH{sub 3}){sub 2}[PbI{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Yangui, A. [Groupe d’Etudes de la Matière Condensée, UMR CNRS 8653-Université de Versailles Saint Quentin En Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles (France); Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Route de Soukra km 3.5 BP 1171, 3018 Sfax (Tunisia); Pillet, S. [Laboratoire de Cristallographie, Résonance Magnétique et Modélisations, UMR-CNRS 7036, Institut Jean Barriol, Université de Lorraine, BP 239, 54506 Vandoeuvre-lès-Nancy (France); Mlayah, A. [Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES), CNRS UPR 8011-Université de Toulouse, 29 rue Jeanne Marvig 31055, Toulouse, Cedex 4 (France); Lusson, A.; Bouchez, G.; Boukheddaden, K., E-mail: Younes.abid@fss.rnu.tn, E-mail: kbo@physique.uvsq.fr [Groupe d’Etudes de la Matière Condensée, UMR CNRS 8653-Université de Versailles Saint Quentin En Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles (France); Triki, S. [Laboratoire de Chimie, Electrochimie Moléculaires, Chimie Analytique, UMR CNRS 6521-Université de Bretagne Occidentale, BP 809, 29285 Brest (France); Abid, Y., E-mail: Younes.abid@fss.rnu.tn, E-mail: kbo@physique.uvsq.fr [Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Route de Soukra km 3.5 BP 1171, 3018 Sfax (Tunisia)

    2015-12-14

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C{sub 6}H{sub 11}NH{sub 3}){sub 2}[PbI{sub 4}] (abbreviated as C{sub 6}PbI{sub 4}) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C{sub 6}PbI{sub 4}, revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI{sub 6} octahedron. The resulting incommensurate spatial modulation of the Pb–I distances (and Pb–I–Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with

  10. Structural phase transition causing anomalous photoluminescence behavior in perovskite (C6H11NH3)2[PbI4

    International Nuclear Information System (INIS)

    Yangui, A.; Pillet, S.; Mlayah, A.; Lusson, A.; Bouchez, G.; Boukheddaden, K.; Triki, S.; Abid, Y.

    2015-01-01

    Optical and structural properties of the organic-inorganic hybrid perovskite-type (C 6 H 11 NH 3 ) 2 [PbI 4 ] (abbreviated as C 6 PbI 4 ) were investigated using optical absorption, photoluminescence (PL), and x-ray diffraction measurements. Room temperature, optical absorption measurements, performed on spin-coated films of C 6 PbI 4 , revealed two absorption bands at 2.44 and 3.21 eV. Upon 325 nm (3.815 eV) laser irradiation, strong green PL emission peaks were observed at 2.41 eV (P1) and 2.24 eV (P2) and assigned to free and localized excitons, respectively. The exciton binding energy was estimated at 356 meV. At low temperature, two additional emission bands were detected at 2.366 eV (P3) and a large band (LB) at 1.97 eV. The former appeared only below 40 K and the latter emerged below 130 K. The thermal dependence of the PL spectra revealed an abnormal behavior accompanied by singularities in the peak positions and intensities at 40 and 130 K. X-ray diffraction studies performed on powder and single crystals as a function of temperature evidenced significant changes of the interlayer spacing at 50 K and ∼138 K. Around 138 K, a commensurate to incommensurate structural phase transition occurred on cooling. It involves a symmetry breaking leading to a distortion of the PbI 6 octahedron. The resulting incommensurate spatial modulation of the Pb–I distances (and Pb–I–Pb angles) causes a spatial modulation of the band gap, which is at the origin of the emergence of the LB below ∼130 K and the anomalous behavior of the position of P1 below 130 K. The change of the interlayer spacing in the 40-50 K range may in turn be related to the significant decrease of the intensity of P2 and the maximum emission of the LB. These results underline the intricate character of the structural and the PL properties of the hybrid perovskites; understanding such properties should benefit to the design of optoelectronic devices with targeted properties

  11. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  12. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  13. Temperature-dependent photoluminescence and mechanism of CdS thin film grown on Si nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Li, Yan Tao [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Material Science and Engineering, Henan University of Technology, Zhengzhou 454052 (China); Hu, Chu Xiong [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Li, Xin Jian, E-mail: lixj@zzu.edu.cn [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2015-09-15

    Highlights: • CdS/silicon nanoporous pillar array (CdS/Si-NPA) was prepared by a CBD method. • The PL spectrum of CdS/Si-NPA was measured at different temperatures, from 10 to 300 K. • The PL spectrum was composed of four emission bands, obeying different mechanisms. • The PL degradation with temperature was due to phonon-induced escape of carriers. - Abstract: Si-based cadmium sulfide (CdS) is a prospective semiconductor system in constructing optoelectronic nanodevices, and this makes the study on the factors which may affect its optical and electrical properties be of special importance. Here we report that CdS thin film was grown on Si nanoporous pillar array (Si-NPA) by a chemical bath deposition method, and the luminescent properties of CdS/Si-NPA as well as its mechanism were studied by measuring and analyzing its temperature-dependent photoluminescence (PL) spectrum. The low-temperature measurement disclosed that the PL spectrum of CdS/Si-NPA could be decomposed into four emission bands, a blue band, a green band, a red band and an infrared band. The blue band was due to the luminescence from Si-NPA substrate, and the others originate from the CdS thin film. With temperature increasing, the peak energy, PL intensity and peak profile shape for the PL bands from CdS evolves differently. Through theoretical and fitting analyses, the origins of the green, red and infrared band are attributed to the near band-edge emission, the radiative recombination from surface defects to Cd vacancies and those to S interstitials, respectively. The cause of PL degradation is due to the thermal quenching process, a phonon-induced electron escape but with different activation energies. These results might provide useful information for optimizing the preparing parameters to promote the performance of Si-based CdS optoelectronic devices.

  14. Excitation wavelength dependent photoluminescence emission behavior, UV induced photoluminescence enhancement and optical gap tuning of Zn0.45Cd0.55S nanoparticles for optoelectronic applications

    Science.gov (United States)

    Osman, M. A.; Abd-Elrahim, A. G.

    2018-03-01

    In the present study, we investigate the excitation wavelength (λex) dependent photoluminescence (PL) behavior in Zn0.45Cd0.55S nanoparticles. The deconvoluted PL emission bands for nanopowders and nanocolloids reveal noticeable spectral blue shift with decreasing λex accompanied by intensity enhancement. This unusual behavior is explained in terms of selective particle size distribution in nanostructures, advancing of fast ionization process at short λex; and solvation process in polar solvent. In addition, we attributed the UV-induced PL intensity enhancement and blue shift of the optical gap to the reduction in particle size by photo-corrosion process associated with the improvement in the quantum size effect; surface modification due to cross-linkage improvement of capping molecules at NPs surface; the creation of new radiative centers and the formation of photo-passivation layers from ZnSO4 and CdSO4, and photo-enhanced oxygen adsorption on Zn0.45Cd0.55S nanoparticles surface.

  15. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  16. Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties.

    Science.gov (United States)

    Zhou, Jianhai; Zhu, Meiyi; Meng, Renyang; Qin, Haiyan; Peng, Xiaogang

    2017-11-22

    This work explored possibilities to obtain colloidal quantum dots (QDs) with ideal photoluminescence (PL) properties, i.e., monoexponential PL decay dynamics, unity PL quantum yield, ensemble PL spectrum identical to that at the single-dot level, single-dot PL nonblinking, and antibleaching. Using CdSe/CdS core/shell QDs as the model system, shell-epitaxy, ligand exchange, and shape conversion of the core/shell QDs were studied systematically to establish a strategy for reproducibly synthesizing QDs with the targeted properties. The key synthetic parameter during epitaxy was application of entropic ligands, i.e., mixed carboxylate ligands with different hydrocarbon chain length and/or structure. Well-controlled epitaxial shells with certain thickness (∼3-8 monolayers of the CdS shells) were found to be necessary to reach ideal photoluminescence properties, and the size of the core QDs was found to play a critical role in determining both photophysical and photochemical properties of the core/shell QDs. Effects of shape of the core QDs were unnoticeable, and shape of the core/shell QDs only affected photophysical properties quantitatively. Surface ligands, amines versus carboxylates, were important for photochemical properties (antiblinking and antibleaching) but barely affected photophysical properties as long as entropic ligands (mixed carboxylate ligands with distinguishable hydrocarbon chain lengths) were applied during epitaxy. Chemical environment (in polymer or in air), coupled with surface ligands, determined photochemical properties of the core/shell QDs with a given core size and shell thickness.

  17. Photoluminescence emission at room temperature in zinc oxide nano-columns

    International Nuclear Information System (INIS)

    Rocha, L.S.R.; Deus, R.C.; Foschini, C.R.; Moura, F.; Garcia, F. Gonzalez; Simões, A.Z.

    2014-01-01

    Highlights: • ZnO nanoparticles were obtained by microwave-hydrothermal method. • X-ray diffraction reveals a hexagonal structure. • Photoluminescence emission evidenced two absorption peaks, at around 480 nm and 590 nm wavelengths. - Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline zinc oxide (ZnO) nano-columns at the temperature of 120 °C with a soaking time of 8 min. ZnO nano-columns were characterized by using X-ray analyses (XRD), infrared spectroscopy (FT-IR), thermogravimetric analyses (TG-DTA), field emission gun and transmission electron microscopy (FEG-SEM and TEM) and photoluminescence properties (PL). XRD results indicated that the ZnO nano-columns are free of any impurity phase and crystallize in the hexagonal structure. Typical FT-IR spectra for ZnO nano-columns presented well defined bands, indicating a substantial short-range order in the system. PL spectra consist of a broad band at 590 nm and narrow band at 480 nm corresponding to a near-band edge emission related to the recombination of excitons and level emission related to structural defects. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain ZnO nano-columns in the temperature of 120 °C for 8 min

  18. Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Pham Van; Hieu, Le Trung; Nga, La Quynh [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Dung, Nguyen Duc [Advanced Institute of Science and Technology, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Khiem, Tran Ngoc, E-mail: khiem@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam)

    2016-11-15

    We report the characteristic photoluminescence (PL) spectra of erbium ion (Er{sup 3+})-doped tin dioxide (SnO{sub 2})nanoparticles. The materials were prepared via hydrothermal method at 180 °C with in 20 h by using various Er{sup 3+} ion concentrations ranging from 0.0 to 1.0 at%. After the synthesis, the materials were characterized through X-ray diffraction and high-resolution transmission electron microscopy. Crystallite SnO{sub 2} and its average particle diameter of approximately 5 nm did not change with Er{sup 3+} ion dopant concentration. Photoluminescence spectra showed the characteristic light emission from the Er{sup 3+} ions. The PL excitation spectra referred to an efficient energy transfer to Er{sup 3+} ions in the presence of SnO{sub 2}nanoparticles. The most intense Er-related emission of SnO{sub 2}:Er{sup 3+} nanoparticles in near infrared region was found in samples containing an Er{sup 3+} ion concentration of 0.25 at%. Although the absorption bandgaps of the materials were identified at approximately 3.8 eV, we found that efficient excitation comes with low excitation energy band edge. Excitation is possibly involved in shallow defects in SnO{sub 2} nanoparticles.

  19. Photoluminescence emission at room temperature in zinc oxide nano-columns

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L.S.R.; Deus, R.C. [Universidade Estadual Paulista – Unesp, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil); Foschini, C.R. [Universidade Estadual Paulista – Unesp, Instituto de Química, Laboratório Interdisciplinar em Cerâmica (LIEC), Rua Professor Francisco Degni s/n, CEP 14800-90 Araraquara, SP (Brazil); Moura, F.; Garcia, F. Gonzalez [Universidade Federal de Itajubá – Unifei, Campus Itabira, Rua São Paulo, 377, Bairro Amazonas, CEP 35900-37 Itabira, MG (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista – Unesp, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil)

    2014-02-01

    Highlights: • ZnO nanoparticles were obtained by microwave-hydrothermal method. • X-ray diffraction reveals a hexagonal structure. • Photoluminescence emission evidenced two absorption peaks, at around 480 nm and 590 nm wavelengths. - Abstract: Hydrothermal microwave method (HTMW) was used to synthesize crystalline zinc oxide (ZnO) nano-columns at the temperature of 120 °C with a soaking time of 8 min. ZnO nano-columns were characterized by using X-ray analyses (XRD), infrared spectroscopy (FT-IR), thermogravimetric analyses (TG-DTA), field emission gun and transmission electron microscopy (FEG-SEM and TEM) and photoluminescence properties (PL). XRD results indicated that the ZnO nano-columns are free of any impurity phase and crystallize in the hexagonal structure. Typical FT-IR spectra for ZnO nano-columns presented well defined bands, indicating a substantial short-range order in the system. PL spectra consist of a broad band at 590 nm and narrow band at 480 nm corresponding to a near-band edge emission related to the recombination of excitons and level emission related to structural defects. These results show that the HTMW synthesis route is rapid, cost effective, and could be used as an alternative to obtain ZnO nano-columns in the temperature of 120 °C for 8 min.

  20. Preparation and photoluminescence characterization of high-purity CdTe single crystals: purification effect of normal freezing on tellurium and cadmium telluride

    Science.gov (United States)

    Song, S. H.; Wang, J.; Isshiki, M.

    2002-03-01

    Extremely high-purity CdTe single crystals have been obtained by the traditional vertical Bridgman technique, beginning with the refining of tellurium material by the normal freezing method. The purification effect of normal freezing on tellurium has been confirmed to be very effective. This effect was also used to prepare extremely high-purity CdTe single crystals. The crystals were characterized by low temperature high-resolution photoluminescence (PL) spectroscopy. Only a sharp peak at 1.5896 eV was detected in the PL spectrum. The full-width at half-maximum is prepared by the Bridgman method.

  1. Investigation of cavity mode and excitonic transition in an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser structure by variable-temperature micro-photoluminescence, reflectance and photomodulated reflectance

    International Nuclear Information System (INIS)

    Yu, J L; Chen, Y H; Jiang, C Y; Zhang, H Y

    2012-01-01

    Variable-temperature micro-photoluminescence (μ-PL), reflectance (R) and photomodulated reflectance (PR) have been used to study an InGaAs/GaAs/AlGaAs vertical-cavity surface emitting laser (VCSEL) structure. μ-PL and R spectra have been recorded at different temperatures between 80 K and 300 K By comparing μ-PL with R spectra, both the excitonic transition and cavity mode are clearly identified. The Variable-temperature μ-PL and PR results of the etched sample with the top distributed Bragg reflectors (DBR) being removed further confirmed our identification. Our results demonstrate that variable-temperature μ-PL is a powerful noninvasive tool to measure accurate the quantum well transition and the cavity mode alignment.

  2. de las artes plásticas

    Directory of Open Access Journals (Sweden)

    Julieta Castro Bonilla

    2005-01-01

    Full Text Available Las innovaciones que se producen día con día en los campos científico, tecnológico, ambiental, social, entre otros, afectan de manera significativa la educación y en consecuencia la labor que desempeñan los docentes. En este marco se le reconoce a la educación su función de orientar e impulsar políticas que respondan a las necesidades e intereses de quienes conforman el contexto social. El presente artículo pretende que quien imparte lecciones en el área de las Artes Plásticas comprenda que, como facilitador de los procesos de enseñanza y aprendizaje, debe fundamentar su práctica docente en referentes teóricos que les permitan a sus estudiantes trascender su análisis teórico y crítico, y llegar a propuestas concretas, realizables y transferibles a otros contextos. No debe nunca considerarse dueño absoluto de la verdad y del conocimiento. Debe eso sí tomar en consideración, de acuerdo con su formación y experiencia en esta área, referentes teóricos como el constructivismo, el holismo, la teoría de las inteligencias múltiples, la aplicación de la pedagogía, la psicología, la epistemología y la didáctica, que entrelazados con los contenidos propios del área de las Artes Plásticas, le permitan organizar un trabajo de aula reflexivo, que ofrezca la posibilidad de generar aprendizajes importantes. Por consiguiente, le corresponde al profesor de Artes Plásticas estudiar e investigar en forma rigurosa los fundamentos mencionados, así como practicar de manera constante técnicas artísticas variadas, pues le facilitan al estudiante el desarrollo de sus habilidades para aprender, para asimilar información eficiente y oportuna, para tomar decisiones, solucionar problemas e incrementar su creatividad

  3. Photoluminescent carbon dots from 1,4-addition polymers.

    Science.gov (United States)

    Jiang, Zhiqiang; Nolan, Andrew; Walton, Jeffrey G A; Lilienkampf, Annamaria; Zhang, Rong; Bradley, Mark

    2014-08-25

    Photoluminescent carbon dots were synthesised directly by thermopyrolysis of 1,4-addition polymers, allowing precise control of their properties. The effect of polymer composition on the properties of the carbon dots was investigated by TEM, IR, XPS, elemental analysis and fluorescence analysis, with carbon dots synthesised from nitrogen-containing polymers showing the highest fluorescence. The carbon dots with high nitrogen content were observed to have strong fluorescence in the visible region, and culture with cells showed that the carbon dots were non-cytotoxic and readily taken up by three different cell lines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photoluminescence properties of Co-doped ZnO nanocrystals

    DEFF Research Database (Denmark)

    Lommens, P.; Smet, P.F.; De Mello Donega, C.

    2006-01-01

    We performed photoluminescence experiments on colloidal, Co -doped ZnO nanocrystals in order to study the electronic properties of Co in a ZnO host. Room temperature measurements showed, next to the ZnO exciton and trap emission, an additional emission related to the Co dopant. The spectral...... position and width of this emission does not depend on particle size or Co concentration. At 8 K, a series of ZnO bulk phonon replicas appear on the Co-emission band. We conclude that Co ions are strongly localized in the ZnO host, making the formation of a Co d-band unlikely. Magnetic measurements...

  5. Simple chemical aqueous synthesis of dahlia nanoflower consisting of finger-like ZnO nanorods and observation of stable ultraviolet photoluminescence emission

    Science.gov (United States)

    Chakraborty, S.; Tiwary, C. S.; Kumbhakar, P.

    2015-03-01

    In this work, we have reported the synthesis of dahlia flower-like ZnO nanostructures consisting of human finger-like nanorods by the hydrothermal method at 120 °C and without using any capping agent. Optical properties of the samples, including UV-vis absorption and photoluminescence (PL) emission characteristics are determined by dispersing the samples in water as well as in ethanol media. The quenching of PL emission intensity along-with the red shifting of the PL emission peak are observed when the samples are dispersed in water in comparison to those obtained after dispersing the samples in ethanol. It has been found that PL emission characteristic, particularly the spectral nature of PL emission, of the samples remains almost unaltered (except some improvement in UV PL emission) even after thermally annealing it for 2 h at the temperature of 300 °C. Also the synthesized powder samples, kept in a plastic container, showed a very stable PL emission even after 15 months of synthesis. Therefore, the synthesized samples might be useful for their applications in future optoelectronics devices.

  6. Photoluminescence and structural properties of unintentional single and double InGaSb/GaSb quantum wells grown by MOVPE

    Science.gov (United States)

    Ahia, Chinedu Christian; Tile, Ngcali; Botha, Johannes R.; Olivier, E. J.

    2018-04-01

    The structural and photoluminescence (PL) characterization of InGaSb quantum well (QW) structures grown on GaSb substrate (100) using atmospheric pressure Metalorganic Vapor Phase Epitaxy (MOVPE) is presented. Both structures (single and double-InGaSb QWs) were inadvertently formed during an attempt to grow capped InSb/GaSb quantum dots (QDs). In this work, 10 K PL peak energies at 735 meV and 740 meV are suggested to be emissions from the single and double QWs, respectively. These lines exhibit red shifts, accompanied by a reduction in their full-widths at half-maximum (FWHM) as the excitation power decreases. The presence of a GaSb spacer in the double QW was found to increase the strength of the PL emission, which consequently gives rise to a reduced blue-shift and broadening of the PL emission line observed for the double QW with an increase in laser power, while the low thermal activation energy for the quenching of the PL from the double QW is attributed to the existence of threading dislocations, as seen in the bright field TEM image for this sample.

  7. Study of optical absorption and photoluminescence of quantum dots of CdS formed in borosilicate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitender; Verma, A; Pandey, P K; Bhatnagar, P K; Mathur, P C [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Liu, W; Tang, S H [Department of Physics, National University of Singapore, 119243 (Singapore)], E-mail: jitender_does@yahoo.co.in

    2009-06-15

    Optical absorption and photoluminescence (PL) measurements have been made on the quantum dots (QDs) of CdS grown in a borosilicate glass matrix using a two-step annealing technique. The absorption measurements, made in the energy range of 1.3-3.2 eV, indicate the presence of nonradiative trap centers located in the forbidden gap at an energy level near 1.5 eV. The origin of these traps is attributed to the impurities present in the glass matrix. The PL measurements have been made at an excitation energy of 2.75 eV and it is concluded that the origin of PL is not due to either direct recombination of electrons and holes or deep traps, but that it is the shallow traps which are responsible for the observed PL. The shallow traps are attributed to sulfur vacancies formed at the glass-QD interface. The reason for the observed decrease in PL peak intensity with the increase of annealing time is due to the decrease of surface to volume ratio for QDs of higher size.

  8. Influence of ambient gas on the photoluminescence of sol-gel derived TiO2:Sm3+ films

    Science.gov (United States)

    Reedo, Valter; Lange, Sven; Kiisk, Valter; Lukner, Argo; Tätte, Tanel; Sildos, Ilmo

    2005-08-01

    Photoluminescence (PL) of TiO2:Sm3+ thin films was studied at RT. The films were prepared by the sol-gel spin-coating technique or by atomic layer deposition (ALD) followed by ion implantation. The PL was excited with a Nd:YAG pulse laser emitting at 355 nm. The spectrum of PL consists of intense Sm3+-specific emission lines with a well-pronounced fme structure. The influence of different gaseous environments (air, oxygen, nitrogen) or vacuum on the Sm3+ emission was investigated. In the case of a permanent irradiation of sol-gel films in an oxygen-containing environment, the PL intensity increased. The increase was significantly large but slow. The subsequent evacuation of the measurement chamber led to a rapid decrease of the emission below the detection limit. When the oxygen-containing gas was without any intermediate evacuation replaced by nitrogen, the PL intensity descended to an almost vacuum level. The subsequent exposure to oxygen led to a rather fast emission recovery. The ALD-prepared films exhibited a similar but markedly slower response. The fast response observed was attributed to the adsorption of oxygen on the surface, and the slower one, to the diffbsion of oxygen vacancies taking place under the irradiation in the bulk.

  9. In situ generated CdS nanostructure induced enhanced photoluminescence from Dy{sup 3+} ions doped dielectric nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chirantan; Karmakar, Basudeb [Glass Science and Technology Section, Glass Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India)

    2017-08-15

    We report CdS nanostructure induced enhanced photoluminescence (PL) from Dy{sup +3}:CdS co-doped dielectric-nanocomposites synthesized by the conventional melt-quench technique. CdS nanocrystals (NCs) were synthesized as in situ within the dielectric medium and their growth was controlled by heat treatment duration. Nanoparticles were investigated with absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. The experimentally obtained sizes of the NCs are found to increase from 5-11 nm to 50-80 nm. Bandgap enhancement for the carrier confinement was found to alter within the range of 0.20-0.38 eV. Phonon confinement effect has been confirmed by blue shifting of Raman peak for CdS NCs at 303 cm{sup -1}. Enhanced highly intense sharp PL peak at 576 nm was detected, and different parameters associated with the PL enhancement including energy transfer from CdS NCs to Dy{sup 3+} ions have been studied. This PL enhancement was steered by varying CdS NC sizes. Enhanced PL of these nanocomposites finds their potential applications as gain medium in the field of solid state lasers. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    Science.gov (United States)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  11. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    Science.gov (United States)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  12. The effect of the excitation and of the temperature on the photoluminescence circular polarization of AlInAs/AlGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Melliti, A., E-mail: adnenmelliti@yahoo.fr [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Sahli, A.; Maaref, M.A. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, La Marsa 2070 (Tunisia); Testelin, C. [Institut des NanoSciences de Paris, Campus Boucicaut, Universites Paris 6 et 7, CNRS, UMR7588, 140 rue de Lourmel, 75015 Paris (France); Kuszelewiez, R. [Laboratoire de Photonique et Nanostructures, CNRS, UPR 20 (France)

    2009-12-15

    In this paper, we present a study of photoluminescence (PL) from AlInAs/AlGaAs quantum dots (QDs) structures grown by molecular beam epitaxy. Specifically, we describe the effects of the temperature and of the excitation density on the photoluminescence circular polarization. We have found that the circular polarization degree depends on temperature. On the other hand, the study of the excitation density dependent circular polarization PL degree shows that the last increases in the case of the sample of weak dot density. However, in the case of large dot density, it is almost constant in the excitation density range from 0.116 W cm{sup -2} to 9 W cm{sup -2}.

  13. 1.54 μm Photoluminescence emission from Er-implanted SiO{sub 2} crystal and SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiling, E-mail: shilingli@sdu.edu.cn [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); College of Physics and Engineering, Shandong Provincial Key Laboratory of Laser and Information Technology, Qufu Normal University, Qufu 273165 (China); Fu, Gang [School of Science, Shandong Jianzhu University, Jinan 250014 (China); Ye, Yongkai [College of Physics and Engineering, Shandong Provincial Key Laboratory of Laser and Information Technology, Qufu Normal University, Qufu 273165 (China)

    2013-07-15

    Er-doped materials are of great importance for application in optical communication. SiO{sub 2} crystal and silica glass have been implanted with 500 keV Er ions at a fluence of 3 × 10{sup 15} ions/cm{sup 2}, with the aim of incorporating the rare-earth dopant on an optically active site. Erbium concentration profiles were analyzed by Rutherford backscattering technology. Photoluminescence (PL) spectrometry studies were performed at room temperature and at 12 K. The characteristic photoluminescence of Er{sup 3+} around 1.54 μm is observed at room temperature in as-implanted SiO{sub 2} crystal and SiO{sub 2} glass. And the influence of annealing on the PL intensity is studied.

  14. Use of photoluminescence spectroscopy to characterize the crystalline quality of CdTe films grown by a modified CSVT technique

    International Nuclear Information System (INIS)

    Mendoza-Alvarez, J.G.; Sanchez-Sinencio, F.; Zelaya, O.; Gonzalez-Hernandez, Y.J.; Cardenas, M.; Chao, S.S.

    1987-01-01

    The authors have employed photoluminescence measurements at 10-300 0 K to study the effects of deposition parameters, surface preparation and heat treatment on the properties of CdTe polycrystalline thin films. The films were grown using a modified hot wall close spaced vapor transport system. The authors found strong differences in the photoluminescence spectra of samples grown under different conditions. Heat treatments in the as-grown samples increase the average particle size and reduce the native defect density

  15. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  16. Photoluminescence emission at aging in ambient air of ZnO:Ag nanocrystals obtained by ultrasonic spray pyrolysis

    Science.gov (United States)

    Lozada, Erick Velázquez; Torchynska, T.; Castañeda, L.

    2018-02-01

    Scanning electronic microscopy (SEM), X ray diffraction (XRD) and photoluminescence (PL) methods have been applied to the study the structural and optical properties of ZnO:Ag nanorods prepared by the ultrasonic spray pyrolysis (USP) method. The temperature and time variation at the growth of ZnO:Ag films permits modifying the ZnO phase from the amorphous to crystalline, to change the size of ZnO:Ag nanorods as well as to vary their photoluminescence spectra. With increasing the process duration to 10 min the ZnO re-crystallization and additional oxidation take place at the growth temperature, which is more effective at 450 °C than at 400 °C. XRD show that crystal phase appeared is wurzite with the parameters of hexagonal crystal lattice equal to a = 3.2498 Å and c = 5.2066 Å. The size of ZnO nanocrystalls was estimated on the base of SEM results. This size was equal to 50 - 150 nm in the dependence on crystallization duration. PL spectra of ZnO:Ag nanorods are complex and can be represented as a superposition of elementary PL bands with the peaks in the spectral ranges: 2.90 - 3.25 eV (I), 2.10 - 2.80 eV (II) and 1.45 - 1.61 eV (III).

  17. Green Synthesis of CuInS2/ZnS Nanocrystals with High Photoluminescence and Stability

    Directory of Open Access Journals (Sweden)

    Min Fu

    2015-01-01

    Full Text Available Highly photoluminescent core/shell CuInS2/ZnS (CIS/ZnS nanocrystals were synthesized. Zinc acetate and dodecanethiol in octadecene solvent were used for shell growth. The structure and composition of QDs were investigated with inductively coupled plasma-optical emission spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The crystal phase of CIS was tetragonal chalcopyrite. Based on X-ray diffraction analysis, it has been concluded that the growth of the ZnS shell did not affect the phase structure of CuInS2 (CIS. Photoluminescence (PL quantum yield (QY of CIS increased to 80% after epitaxial growth of ZnS, and the PL emission wavelength can be feasibly tuned to be in the range of 560–710 nm by adjusting shell growth time. The superb photostability with high PL QY of CIS/ZnS nanocrystals is ascribed to the gradient of the chemical composition that has been formed between the core and the shell.

  18. Low temperature synthesis of Zn{sub 2}GeO{sub 4} nanorods and their photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Meng-Yen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300, Taiwan (China); Huang, Sheng-Hsin [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Perng, Tsong-Pyng, E-mail: tpperng@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli 320, Taiwan (China)

    2013-04-15

    Zn{sub 2}GeO{sub 4} nanorods were synthesized using a simple reflux method. The product with 0.05 M Zn{sub 2}GeO{sub 4} is an aggregation of short nanorods with the diameter ranging from 30 to 50 nm. If the Zn{sub 2}GeO{sub 4} molarity was increased, the nanorods became longer and aggregated as bundles. An intense white-bluish photoluminescence (PL) was observed from these nanorods, and the PL band can be dissolved into four Gaussian peaks that are associated with the native defects. Since the PL intensity of the nanorods is comparable to that of sintered particles, this reflux method provides a time- and energy-efficient route to prepare Zn{sub 2}GeO{sub 4} phosphor. -- Highlights: ► Zn{sub 2}GeO{sub 4} nanorods were prepared by a simple refluxing method at low temperature without any surfactants. ► The morphologies and crystal structures of Zn{sub 2}GeO{sub 4} growth were studied from beginning to the end (0 min to 3 h). ► The photoluminescence of Zn{sub 2}GeO{sub 4} synthesized by different methods was studied.

  19. Photoluminescence quenching and enhanced spin relaxation in Fe doped ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ovhal, Manoj M.; Santhosh Kumar, A. [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Khullar, Prerna [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Abhyankar, A.C., E-mail: ashutoshabhyankar@gmail.com [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2017-07-01

    Cost-effective ultrasonically assisted precipitation method is utilized to synthesize Zinc oxide (ZnO) nanoparticles (NPs) at room temperature and the effect of Iron (Fe) doping on structural, optical and spin relaxation properties also presented. As-synthesized pure and Fe doped ZnO NPs possess a perfect hexagonal growth habit of wurtzite zinc oxide, along the (101) direction of preference. With Fe doping, ‘c/a’ ratio and compressive lattice strain in ZnO NPs are found to reduce and increase, respectively. Raman studies demonstrate that the E{sub 1} longitudinal optical (LO) vibrational mode is very weak in pure which remarkably enhanced with Fe doping into ZnO NPs. The direct band gap energy (E{sub g}) of the ZnO NPs has been increased from 3.02 eV to 3.11 eV with Fe doping. A slight red-shift observed with strong green emission band, in photoluminescence spectra, is strongly quenched in 6 wt.% Fe doped ZnO NPs. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) reveals spherical shape of ZnO NPs with 60–70 nm, which reduces substantially on Fe doping. The energy dispersive X-ray spectrum and elemental mapping confirms the homogeneous distribution of Fe in ZnO NPs. Moreover, the specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been measured using Carr-Purcell-Meiboom-Gill (CPMG) method and found to be maximum in 6 wt.% Fe doped ZnO NPs. Further, the correlation of structural, optical and dynamic properties is proposed. - Highlights: • Pure ZnO and Fe doped ZnO NPs were successfully prepared by cost effective ultrasonically assisted precipitation method. • The optical band gap of ZnO has been enhanced form 3.02–3.11 eV with Fe doping. • PL quenching behaviour has been observed with Fe{sup 3+} ions substitution in ZnO lattice. • Specific relaxation rate (R{sub 2sp} = 1/T{sub 2}) has been varied with Fe doping and found to be maximum in 6 wt.% Fe doped ZnO NPs.

  20. Structural evolution, growth mechanism and photoluminescence properties of CuWO4nanocrystals.

    Science.gov (United States)

    Souza, E L S; Sczancoski, J C; Nogueira, I C; Almeida, M A P; Orlandi, M O; Li, M S; Luz, R A S; Filho, M G R; Longo, E; Cavalcante, L S

    2017-09-01

    Copper tungstate (CuWO 4 ) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100°C and 200°C have water molecules in their lattice (copper tungstate dihydrate (CuWO 4 ·2H 2 O) with monoclinic structure), when the crystals are calcinated at 300°C have the presence of two phase (CuWO 4 ·2H 2 O and CuWO 4 ), while the others heat treated at 400°C and 500°C have a single CuWO 4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet-Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300°C for 1h, which have a mixture of CuWO 4 ·2H 2 O and CuWO 4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Practical considerations for solar energy thermally enhanced photo-luminescence (TEPL) (Conference Presentation)

    Science.gov (United States)

    Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel

    2017-04-01

    While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.

  2. Raman and Photoluminescence Spectroscopy in Mineral Identification

    Science.gov (United States)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  3. Plástica mitral Mitral repair

    Directory of Open Access Journals (Sweden)

    Domingo M Braile

    1990-08-01

    Full Text Available Foram estudados 101 pacientes submetidos a plástica da valva mitral em seis anos, com seguimento de 100%. Entre eles, 36 eram do sexo masculino e 65 do sexo feminino, com idade variando de dois a 62 anos (M = 28 ± 16,4. Desses, 57 (56,4% foram submetidos apenas a abordagem valvar mitral. Os demais foram submetidos a procedimentos associados, como plástica tricúspide (9,9%, revascularização do miocárdio (4,0%, entre outros. Não foi registrado óbito imediato. O índice de mortalidade tardia foi de 2% (AVC hemorrágico após cinco anos e septicemia, no primeiro ano. As complicações não fatais foram representadas pela endocardite evidenciada em dois pacientes (2%, sendo tratados e curados, e um paciente com reestenose mitral pós-plástica por reagudização da doença reumática. O estudo atuarial revelou um índice de 79,0 ± 17,7% de sobrevida, um total de 76,3 ± 17,8% de pacientes livres de complicações, 80,0 ± 17,9% de reoperações, 100,0% livres de tromboembolismo. Os resultados ecodoplercardiográficos registraram que 89% dos pacientes evoluíram com ausência de insuficiência. Dos 11% restantes, 7,4% apresentram insuficiência mitral discreta, 2,4% moderada e 2% importante. De acordo com a classificação da NYHA, os pacientes das classes III (83,8% e IV (16,2% passaram para as classes I (33,3%, II (60,6%, III (4,1% e IV (2%. Os autores concluem que o anel de pericárdio flexível conforma-se perfeitamente com o anel valvar, não produz hemólise e se endoteliza completamente a médio prazo.A hundred-and-one patients were studied in six years, with 100% of follow-up. Among them, 36 were male and 65 female, with an age range of two to 62 years (mean 28 ± 16.4%. Fifty seven of them (56.4% underwent just a mitral surgery, the others and other associated procedures, as tricuspid plastic (9.9%, coronary artery revascularization (4.0%, among others. Hospital mortality was not registered. The late mortality rate was 2% for AVC

  4. Fabrication of 3D rotor-like ZnO nanostructure from 1D ZnO nanorods and their morphology dependent photoluminescence property

    Science.gov (United States)

    Rai, Prabhakar; Jo, Jin-Nyeong; Lee, In-Hwan; Yu, Yeon-Tae

    2010-10-01

    A facile and eco-friendly sonochemical route to fabricate well-defined dentritic (rotor-like) ZnO nanostructures from 1D ZnO nanorods without alloying elements, templates and surfactants has been reported. Phase and structural analysis has been carried out by X-ray diffraction (XRD) and Fourier Transform Infra-Red (FTIR) spectroscopy, showed the formation of hexagonal wurtzite structure of ZnO. Scanning electron microscopic (SEM) study showed the formation of rotor-like ZnO nanostructure having a central core which is surrounded by side branches nanocones. Transmission electron microscopic (TEM) study showed that these nanocones grow along [0001] direction on the six {01-10} planes of central core ZnO nanorods. A plausible formation mechanism of rotor-like ZnO nanostructures was studied by SEM which indicates that the size and morphology of side branches can be controlled by adjusting the concentration of OH - ions and time duration of growth. The photoluminescence (PL) spectrum of the synthesized rotor-like ZnO nanostructures exhibited a weak ultraviolet emission at 400 nm and a strong green emission at 532 nm recorded at room temperature. The influence of morphology on the origin of green emission was discussed in detail. The results suggested a positive relationship among polar plane, oxygen vacancy and green emission.

  5. Broadband infrared photoluminescence in silicon nanowires with high density stacking faults.

    Science.gov (United States)

    Li, Yang; Liu, Zhihong; Lu, Xiaoxiang; Su, Zhihua; Wang, Yanan; Liu, Rui; Wang, Dunwei; Jian, Jie; Lee, Joon Hwan; Wang, Haiyan; Yu, Qingkai; Bao, Jiming

    2015-02-07

    Making silicon an efficient light-emitting material is an important goal of silicon photonics. Here we report the observation of broadband sub-bandgap photoluminescence in silicon nanowires with a high density of stacking faults. The photoluminescence becomes stronger and exhibits a blue shift under higher laser powers. The super-linear dependence on excitation intensity indicates a strong competition between radiative and defect-related non-radiative channels, and the spectral blue shift is ascribed to the band filling effect in the heterostructures of wurtzite silicon and cubic silicon created by stacking faults.

  6. Theoretical and experimental study of disordered Ba0.45Sr0.55 TiO3 photoluminescence at room temperature

    International Nuclear Information System (INIS)

    Souza, I.A.; Gurgel, M.F.C.; Santos, L.P.S.; Goes, M.S.; Cava, S.; Cilense, M.; Rosa, I.L.V.; Paiva-Santos, C.O.; Longo, E.

    2006-01-01

    Disordered and crystalline Ba 0.45 Sr 0.55 TiO 3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 deg. C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature

  7. EPR and photoluminescence study of irradiated anion-defective alumina single crystals

    Science.gov (United States)

    Kortov, V. S.; Ananchenko, D. V.; Konev, S. F.; Pustovarov, V. A.

    2017-09-01

    Electron paramagnetic resonance (EPR) and photoluminescence (PL) spectra of anion-defective alumina single crystals were measured. Exposure to a dose 10 Gy-1 kGy causes isotropic EPR signal of a complex form, this signal contains narrow and broad components. At the same time, in the PL spectrum alongside with a band of F+-centers (3.8 eV) an additional emission band with the maximum of 2.25 eV is registered. This band corresponds to aggregate F22+-centers which were create under irradiation. By comparing measurements in EPR and PL spectra with further stepped annealing in the temperature range of 773-1473 K of the samples exposed to the same doses, we were able to conclude that a narrow component of isotropic EPR signal is associated with the formation of paramagnetic F22+-centers under irradiation. A wide component can be caused by deep hole traps which are created by a complex defect (VAl2- - F+) with a localized hole.

  8. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets

    Science.gov (United States)

    Li, Rui; Liu, Liying; Ming, Bangming; Ji, Yuhang; Wang, Ruzhi

    2018-05-01

    Fungus-like potassium niobate (KNb3O8) nanosheets have been synthesized on indium-doped tin oxide (ITO) glass substrates by a simple and environmental friendly two-step hydrothermal process. The prepared samples have been characterized by using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HRTEM), Fourier Transform Infra-Red Spectroscopy (FTIR), Raman Spectroscopy and X-ray Photoelectron Spectroscopy (XPS). Furthermore, the photoluminescence (PL) of KNb3O8 nanosheets have been systematically studied. The results showed that the PL spectrum is between 300 and 645 nm with a 325 nm light excitation, which is divided into some sub-peaks. It is different from the perfect KNb3O8 nanosheets whose PL emission peaks located at near 433 nm. It should be originated from the effect of the oxygen (O) vacancies in the KNb3O8 nanosheets, which the PLs peaks can be found at about 490 nm and 530 nm by different position of O vacancy. The experimental results are in accordance with the first-principles calculations. Our results may present a feasible clue to estimate the defect position in KNb3O8 by the shape analysis of its spectrum of PLs.

  9. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    International Nuclear Information System (INIS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S.A.; Al-Hajry, A.

    2016-01-01

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241 Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R 2 =0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10 7 particles/cm 2 . Additionally, a correlation coefficient R 2 =0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  10. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores.

    Science.gov (United States)

    Assad, Ossama N; Di Fiori, Nicolas; Squires, Allison H; Meller, Amit

    2015-01-14

    Optical sensing of solid-state nanopores is a relatively new approach that can enable high-throughput, multicolor readout from a collection of nanopores. It is therefore highly attractive for applications such as nanopore-based DNA sequencing and genotyping using DNA barcodes. However, to date optical readout has been plagued by the need to achieve sufficiently high signal-to-noise ratio (SNR) for single fluorophore sensing, while still maintaining millisecond resolution. One of the main factors degrading the optical SNR in solid-state nanopores is the high photoluminescence (PL) background emanating from the silicon nitride (SiNx) membrane in which pores are commonly fabricated. Focusing on the optical properties of SiNx nanopores we show that the local membrane PL intensity is substantially reduced, and its spectrum is shifted toward shorter wavelengths with increasing e-beam dose. This phenomenon, which is correlated with a marked photocurrent enhancement in these nanopores, is utilized to perform for the first time single molecule fluorescence detection using both green and red laser excitations. Specifically, the reduction in PL and the concurrent measurement of the nanopore photocurrent enhancement allow us to maximize the background suppression and to detect a dual color, five-unit DNA barcode with high SNR levels.

  11. Photoluminescence from SiO sub 2 /Si/SiO sub 2 structures

    CERN Document Server

    Photopoulos, P

    2003-01-01

    Si layers were developed on pre-oxidized Si wafers by decomposition of silane in a low pressure chemical vapour deposition reactor. By keeping the deposition time constant (2 min) three sets of samples were fabricated at deposition temperatures equal to 580, 610 and 625 deg C. The deposited Si layers were thinned by high temperature dry oxidation thus forming SiO sub 2 /Si/SiO sub 2 structures. Room temperature photoluminescence (PL) measurements showed that for those samples in which the thickness of the remaining Si layer was greater than approx 6 nm, the spectra exhibited a peak at approx 650 nm. Prolonged oxidations led to the formation of SiO sub 2 /nanocrystalline-Si/SiO sub 2 structures in which the thickness of the remaining nanocrystalline Si (nc-Si) layer was smaller than 3 nm. The PL spectra obtained from these structures were at least ten times stronger compared to the previous ones. The PL peak wavelength exhibited a weak dependence on the nc-Si layer thickness shifting from 800 to 720 nm for nc-...

  12. Near-infrared photoluminescence biosensing platform with gold nanorods-over-gallium arsenide nanohorn array.

    Science.gov (United States)

    Zhang, Yiming; Jiang, Tao; Tang, Longhua

    2017-11-15

    The near-infrared (NIR) optical detection of biomolecules with high sensitivity and reliability have been expected, however, it is still a challenge. In this work, we present a gold nanorods (AuNRs)-over-gallium arsenide nanohorn-like array (GaAs NHA) system that can be used for the ultrasensitive and specific NIR photoluminescence (PL) detection of DNA and proteins. The fabrication of GaAs NHA involved the technique of colloidal lithography and inductively coupled plasma dry etching, yielding large-area and well-defined nanostructural array, and exhibiting an improved PL emission compared to the planar GaAs substrate. Importantly, we found that the DNA-bridged AuNRs attachment on NHA could further improve the PL intensity from GaAs, and thereby provide the basis for the NIR optical sensing of biological analytes. We demonstrated that DNA and thrombin could be sensitively and specifically detected, with the detection limit of 1 pM for target DNA and 10 pM for thrombin. Such ultrasensitive NIR optical platform can extend to the detection of other biomarkers and is promising for clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  14. Relationship between crystal morphology and photoluminescence in polynanocrystalline lead sulfide thin films

    International Nuclear Information System (INIS)

    Kaci, S.; Keffous, A.; Trari, M.; Fellahi, O.; Menari, H.; Manseri, A.; Guerbous, L.

    2010-01-01

    Thin films of lead sulfide (PbS) nanoparticles were grown on corning glass and Si(1 0 0) substrates by polyethylene glycol-assisted chemical bath deposition (CBD) method. This paper compares the morphology and the luminescence properties (PL) of the deposited thin films in the presence (or absence) of PEG300 and investigates the effect of deposition temperatures. Surface morphology and photoluminescence properties of samples were analyzed. The PL data show a blue-shift from the normal emission at ∼2900 nm in PbS bulk to ∼360 nm in nanoparticles of PbS thin films. Furthermore, the PL emission of the films obtained without the addition of PEG300 (type 1) was slightly shifted from that of the films obtained in presence of PEG300 (type 2) from ∼360 to ∼470 nm. The blue-shifting of the emission wavelengths from 2900 to ∼360 or 470 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the shift between the two types of PbS nanoparticles thin films is speculated to be due to an increase in the defect concentration. The blue-shift increased with increase of the deposition temperature, which suggests that there has been a relative depletion in particle sizes during the CBD of the films at higher temperatures. The PbS nanocrystalline thin films obtained in the presence of PEG300 at 60 o C exhibit a high blue luminescence.

  15. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    Science.gov (United States)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  16. Photoluminescence study on irradiated yttria stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, Pranesh, E-mail: sengupta@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ghosh, A. [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ghosh, A.; Bhukta, A. [Institute of Physics, Bhubaneswar 751005 (India); Sharma, G. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-01-15

    Highlights: • YSZ and management of nuclear wastes. • Exposure to radiation environment. • First Photoluminescence data on irradiated YSZ pellets. - Abstract: The structural variations within monoclinic, tetragonal and cubic zirconia pellets with different amounts of yttria doping and its subsequent exposure to various proton, silver ion and gamma irradiation fluxes were investigated using photoluminescence spectroscopy. Upon ion irradiation color centers were produced at doses >10{sup 15} ions/cm{sup 2} resulting in purple coloration. The decrease in photoluminescence intensity was observed for proton irradiated pellets except for tetragonal zirconia (6YSZ: 6 mol% Y{sub 2}O{sub 3} doped ZrO{sub 2}). The anomalous behaviour in case of tetragonal zirconia may result from short range ordering of oxygen vacancies around Zr ions occurring in order to relieve the stress/lattice distortions associated with proton impingement.

  17. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Kong, Jing; Terrones, Humberto; Meunier, Vincent; Dresselhaus, Mildred S

    2014-10-08

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results.

  18. Effect of ion indium implantation on InP photoluminescence spectra

    International Nuclear Information System (INIS)

    Pyshnaya, N.B.; Radautsan, S.I.; Tiginyanu, I.M.; Ursaki, V.V.

    1988-01-01

    Photoluminescence spectra of indium phosphide single crystals implanted by indium after annealing under the protective Al 2 O 3 film in a nitrogen flow are investigated. As a result of implantation and annealing in photoluminescence spectra of crystals there appeared a new band with the maximum at 1.305 eV (T=6 K) which is connected with the free electron transition at the level of the antistructure defect of In p - lying by 0.115 eV above the valent zone ceiling. With large doses of the implanted indium in the photoluminescence spectrum a long-wave band with the maximum at 0.98-0.99 eV is also observed caused, apparently, by the strong lattice disorder

  19. The down-conversion and up-conversion photoluminescence properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}:Yb{sup 3+}/Pr{sup 3+} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yinpeng; Luo, Laihui, E-mail: luolaihui@nbu.edu.cn; Wang, Jia; Zuo, Qianghui; Yao, Yongjie; Li, Weiping [Department of Microelectronic Science and Engineering, Ningbo University, Ningbo 315211 (China)

    2015-07-28

    Na{sub 0.5}Bi{sub 0.5−x−y}Yb{sub x}Pr{sub y}TiO{sub 3} (NBT:xYb/yPr) ceramics with different Yb and Pr contents are prepared. Both the down-conversion (DC) and up-conversion (UC) photoluminescence (PL) of the ceramics via 453 and 980 nm excitation, respectively, are investigated. The effect of Yb{sup 3+} and Pr{sup 3+} doping contents on the DC and UC PL is significantly different from each other. Furthermore, the UC PL of the ceramics as a function of temperatures is measured to investigate the UC process in detail. Based on energy level diagram of Pr{sup 3+} and Yb{sup 3+} ions and the DC and UC PL spectra, the DC and UC PL mechanisms of Pr{sup 3+} and Yb{sup 3+} ions are discussed. Especially, the UC PL mechanism is clarified, which is different from the previously reported literature. Also, the temperature sensing properties of the ceramics are studied based on the photoluminescence ratio technique, using the thermal coupling energy levels of Pr{sup 3+}.

  20. Changes of photoluminescence of electron beam irradiated self-assembled InAs/GaAs quantum dots

    Science.gov (United States)

    Maliya; Aierken, Abuduwayiti; Li, Yudong; Zhou, Dong; Zhao, Xiaofan; Guo, Qi; Liu, Chaoming

    2018-03-01

    We investigate the effects of 1.0MeV electron beam irradiation on the photoluminescence of self-assembled InAs/GaAs quantum dots. After irradiation doses up to 1×1016e-/cm2 , photoluminescence of all samples was degraded dramatically and some additional radiation-induced changes in photo-carrier recombination from QDs, which include a slight increase in PL emission with low electron doses under different photo-injection condition in two samples, are also noticed. Different energy shift was observed in two samples with different Quantum Dot sizes. We attribute this remarkable phenomenon to combination of stress relaxation induced red-shift and In-Ga intermixing caused blue-shift.

  1. Electrospinning preparation and photoluminescence properties of poly (methyl methacrylate)/Eu3+ ions composite nanofibers and nanoribbons

    International Nuclear Information System (INIS)

    Li, Maoying; Zhang, Zhenyi; Cao, Tieping; Sun, Yangyang; Liang, Pingping; Shao, Changlu; Liu, Yichun

    2012-01-01

    Graphical abstract: Nanofibers and nanoribbons of poly (methyl methacrylate)/Eu 3+ ions composites were successfully prepared by using a simple electrospinning technique. And the photoluminescence properties of the above PMMA/Eu 3+ ions composites were studied. Highlights: ► Nanofibers and nanoribbons of PMMA/Eu 3+ ions composites are fabricated by electrospinning. ► Photoluminescence properties of as-electrospun PMMA/Eu 3+ ions composites are studied. ► The ratios of electric– and magnetic–dipole transitions are enhanced by increasing electrospinning voltage. -- Abstract: Nanofibers and nanoribbons of poly (methyl methacrylate) (PMMA)/Eu 3+ ions composites with different concentration of Eu 3+ ions were successfully prepared by using a simple electrospinning technique. From the results of scanning electron microscopy and energy-dispersive X-ray spectroscopy, we found that the morphology of the as-electrospun PMMA/Eu 3+ ions composites could be changed from fiber to ribbon structure by adjusting the concentration of Eu 3+ ions in the electrospun precursor solution. The coordination between the Eu 3+ ions and PMMA molecules were investigated by Fourier transform infrared spectroscopy and differential thermal analysis. The photoluminescence (PL) properties of the as-electrospun PMMA/Eu 3+ ions composites were studied in comparison to those of the Eu(NO 3 ) 3 powder. It was showed that the 5 D 0 – 7 F J (J = 0, 1, 2, 3, 4) emission appeared in the PL spectra of the as-electrospun PMMA/Eu 3+ ions composites, whereas the 5 D 0 – 7 F 0 emission was completely absent in the PL spectra of Eu(NO 3 ) 3 powder due to the different local environments surrounding Eu 3+ ions. It was interesting to note that the intensity ratios of the electric–dipole and magnetic–dipole transitions for the PMMA/Eu 3+ ions composites could be enhanced significantly by increasing electrospinning voltage.

  2. Photoluminescent layered Y/Er silicates

    International Nuclear Information System (INIS)

    Kostova, Mariya H.; Ananias, Duarte; Carlos, Luis D.; Rocha, Joao

    2008-01-01

    The synthesis of new layered rare-earth silicates K 3 [Y 1-a Er a Si 3 O 8 (OH) 2 ] (AV-22 materials) has been reported. The photoluminescence properties of Y/Er-AV-22 and the material resulting from its thermal degradation, K 3 [Y 1-a Er a Si 3 O 9 ] (Y/Er-AV-23), have been studied and compared. Both materials have a similar chemical makeup and structures sharing analogous building blocks, hence providing a unique opportunity for rationalising the evolution of the photoluminescence properties of lanthanide silicates across dimensionality

  3. Photoluminescence analysis of semiconductors using radioactive isotopes

    International Nuclear Information System (INIS)

    Henry, M.O.; Deicher, M.; Magerle, R.; McGlynn, E.; Stotzler, A.

    2000-01-01

    The combination of photoluminescence spectroscopy with the radioactive isotopes 7 Be, 71 As, 111 Ag, 111 In, 191 Pt, 193 Au and 197 Hg is shown to provide definitive proof of the chemical identity of impurities producing photoluminescence spectra in all classes of semiconductors. The isotope 71 As is used to show that radioactive isotopes can provide a powerful means of producing and studying a fundamental crystal defect such as an anti-site. Factors governing the luminescence intensities which can lead to apparently anomalous results are also discussed

  4. Strong near-infrared luminescence in BaSnO3.

    Science.gov (United States)

    Mizoguchi, Hiroshi; Woodward, Patrick M; Park, Cheol-Hee; Keszler, Douglas A

    2004-08-11

    Powdered samples of the perovskite BaSnO(3) exhibit strong near-infrared (NIR) luminescence at room temperature, following band-gap excitation at 380 nm (3.26 eV). The emission spectrum is characterized by a broad band centered at 905 nm (1.4 eV), tailing on the high-energy side to approximately 760 nm. The Stokes shift is 1.9 eV, and measured lifetimes in the range 7-18 ms depend on preparative conditions. These extraordinary long values indicate that the luminescence involves a defect state(s). At low temperatures, both a sharp peak and a broad band appear in the visible portion of the luminescence spectrum at approximately 595 nm. Upon cooling, the intensity of the NIR emission decreases, while the integrated intensities of the visible emission features increase to approximately 40% of the NIR intensity at 77 K. Room-temperature photoluminescence (PL) is observed across the Ba(1-x)Sr(x)SnO(3) series. As the strontium content increases, the excitation maximum and band gap shift further into the UV, while the intensity of the NIR emission peak decreases and shifts further into the infrared. This combination leads to an unexpectedly large increase in the Stokes shift. The unusual NIR PL in BaSnO(3) may originate from recombination of a photogenerated valence-band hole and an occupied donor level, probably associated with a Sn(2+) ion situated roughly 1.4 eV above the valence-band edge.

  5. Low temperature photoluminescence in ultra-thin germanium quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, P.A.M. [Brasilia Univ., DF (Brazil). Inst. de Fisica; Araujo-Silva, M.A. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Fisica; Narvaez, G.A.; Cerdeira, F. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica; Bean, J.C. [Virginia Univ., Charlottesville, VA (United States). Dept. of Electical Engineering

    1999-09-01

    We measured the photoluminescence (P L) spectra of a series of Ge{sub n} quantum wells as a function of temperature, from 2 K to 50 K. The P L spectra at 2.1 K are dominated by broad emission lines, which can be interpreted as recombination across the indirect gap of the Si?Ge microstructure and are strongly influenced by the interface morphology of each sample. Beyond T>{sub {approx}} 15 K, all samples show identical spectra in which the broad structures are replaced by thin, strong lines. We interpret these changes as a quenching of the recombination across the gap P L of the microstructure and the appearance of defect-related peaks from the Si substrate. (author)

  6. Photoluminescence of Hexagonal ZnO Nanorods Hydrothermally Grown on Zn Foils in KOH Solutions with Different Values of Basicity

    Directory of Open Access Journals (Sweden)

    Nuengruethai Ekthammathat

    2013-01-01

    Full Text Available Aligned hexagonal ZnO nanorods on pure Zn foils were hydrothermally synthesized in 30 mL solutions containing 0.05–0.50 g KOH. The products were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and photoluminescence (PL spectroscopy. In this research, wurtzite hexagonal ZnO nanorods grown along the [002] direction with green light emission at 541 nm caused by singly ionized oxygen vacancies inside were detected.

  7. de artes plásticas

    Directory of Open Access Journals (Sweden)

    Julieta Castro Bonilla

    2007-01-01

    Full Text Available El texto que a continuación presento, surge de una investigación en la que participan docentes que imparten lecciones en instituciones del sistema educativo y se preocupan por renovar sus prácticas pedagógicas con el propósito de que sus estudiantes ¬-niños y adolescentes-apliquen los aprendizajes mediante nuevas formas de expresión artística. En el artículo se menciona la metodología que aplica esa investigación, la cual se organiza mediante “fases” que facilitan espacios reflexivos que permiten valorar el trabajo docente mediante el enfoque cualitativo que promueve la investigación-acción en el aula. También se hace referencia a la fundamentación de una práctica pedagógica que le permite al profesor y a sus estudiantes, la posibilidad de asignar nuevos significados al trabajo que se realiza dentro y fuera del contexto escolar. Finalmente, se ofrecen algunas propuestas metodológicas que se dirigen de manera especial a quienes imparten lecciones de artes plásticas en la educación secundaria, aunque se pueden adecuar a otras poblaciones estudiantiles, mediante la planificación de proyectos que tiendan a mejorar las experiencias artísticas de quienes participan en los procesos de aprendizaje. Se espera que el texto facilite la organización de investigaciones que favorezcan la innovación en el aula.

  8. Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method

    KAUST Repository

    Najar, Adel

    2012-01-01

    We report on the structural and optical properties of porous silicon nanowires (PSiNWs) fabricated using silver (Ag) ions assisted electroless etching method. Silicon nanocrystallites with sizes <5 nm embedded in amorphous silica have been observed from PSiNW samples etched using the optimum hydrofluoric acid (HF) concentration. The strongest photoluminescence (PL) signal has been measured from samples etched with 4.8 M of HF, beyond which a significant decreasing in PL emission intensity has been observed. A qualitative model is proposed for the formation of PSiNWs in the presence of Ag catalyst. This model affirms our observations in PL enhancement for samples etched using HF <4.8 M and the eventual PL reduction for samples etched beyond 4.8 M of HF concentration. The enhancement in PL signals has been associated to the formation of PSiNWs and the quantum confinement effect in the Si nanocrystallites. Compared to PSiNWs without Si-O x, the HF treated samples exhibited significant blue PL peak shift of 100 nm. This effect has been correlated to the formation of defect states in the surface oxide. PSiNWs fabricated using the electroless etching method can find useful applications in optical sensors and as anti-reflection layer in silicon-based solar cells. © 2012 American Institute of Physics.

  9. Characterisation of multi-layer InAs/InP quantum wires by surface photovoltage and photoluminescence spectroscopies

    International Nuclear Information System (INIS)

    Ivanov, Ts; Donchev, V; Angelova, T; Cros, A; Cantarero, A; Shtinkov, N; Borissov, K; Fuster, D; Gonzalez, Y; Gonzalez, L

    2010-01-01

    The optical properties of multi-layer InAs/InP quantum wires (QWRs) with two different spacer thicknesses have been investigated by means of room temperature surface photovoltage (SPV) and photoluminescence (PL) spectroscopies, combined with empirical tight binding electronic structure calculations and structural data. The SPV and PL spectra reveal several features, which energy positions are in good agreement. They have been ascribed to excitonic transitions, which take place in the QWR families with heights differing by an integer number of monolayers. Comparing the experimental results with the theoretical ones, we have estimated the QWR family heights and the average atomic concentration of phosphorus in the QWRs. From the simultaneous analysis of the SPV amplitude and phase spectra, based on our vector model for SPV signal representation, a deeper understanding of the SPV results and of the mechanisms of carrier separation in the sample is obtained.

  10. Characterisation of multi-layer InAs/InP quantum wires by surface photovoltage and photoluminescence spectroscopies

    Science.gov (United States)

    Ivanov, Ts; Donchev, V.; Angelova, T.; Cros, A.; Cantarero, A.; Shtinkov, N.; Borissov, K.; Fuster, D.; González, Y.; González, L.

    2010-11-01

    The optical properties of multi-layer InAs/InP quantum wires (QWRs) with two different spacer thicknesses have been investigated by means of room temperature surface photovoltage (SPV) and photoluminescence (PL) spectroscopies, combined with empirical tight binding electronic structure calculations and structural data. The SPV and PL spectra reveal several features, which energy positions are in good agreement. They have been ascribed to excitonic transitions, which take place in the QWR families with heights differing by an integer number of monolayers. Comparing the experimental results with the theoretical ones, we have estimated the QWR family heights and the average atomic concentration of phosphorus in the QWRs. From the simultaneous analysis of the SPV amplitude and phase spectra, based on our vector model for SPV signal representation, a deeper understanding of the SPV results and of the mechanisms of carrier separation in the sample is obtained.

  11. Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation

    Directory of Open Access Journals (Sweden)

    Khaoula Jemli

    2016-07-01

    Full Text Available Investigating the stability and evaluating the quality of the CH3NH3PbI3 perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH3NH3PbI3 degrades producing some PbI2. We show here that low temperature Photoluminescence (PL spectroscopy is a powerful tool to detect PbI2 traces in hybrid perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on a black background, small PbI2 traces can be detected, when other methods currently used at room temperature fail. Our study highlights the extremely high stability of the single crystals compared to the thin layers and defects and grain boundaries are thought to play an important role in the degradation mechanism.

  12. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals

    International Nuclear Information System (INIS)

    Red'ko, R.A.; Budzulyak, S.I.; Vakhnyak, N.D.; Demchina, L.A.; Korbutyak, D.V.; Konakova, R.V.; Lotsko, A.P.; Okhrimenko, O.B.; Berezovskaya, N.I.; Bykov, Yu.V.; Egorov, S.V.; Eremeev, A.G.

    2016-01-01

    Effect of microwave radiation (24 GHz) on transformation of impurity-defect complexes in CdTe:Cl single crystals within the spectral range 1.3–1.5 eV was studied using the low-temperature (T=2 K) photoluminescence (PL) technique. The shapes of donor–acceptor pairs (DAP) and Y PL bands were studied in detail. The Huang–Rhys factor was calculated for the DAP luminescence depending on microwave radiation treatment. The increase of the distance between the DAP components responsible for emission at 1.455 eV and the quenching of Y-band due to microwave irradiation were observed. The method to decrease the amount of extended defects in near-surface layers of CdTe:Cl single crystals has been proposed.

  13. Polarization-angle dependence of photoluminescence intensity of ordered GaInP{sub 2} layers: observation of polarization memory

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T.; Brito-Orta, R. [Instituto de Ciencias, BUAP, Puebla (Mexico); Pelosi, C. [IMEM/CNR, Parma (Italy)

    2008-09-15

    We compare measured and calculated polarization-angle dependencies of the intensity of the photoluminescence emission from MOVPE-grown GaInP{sub 2} layers with different ordering parameters. We measured the polarization-angle dependencies of the emission propagating along the [001],[110] and [1 anti 10] directions at room temperature. Symmetry considerations were used to calculate the dependence of the relative intensity of the PL emission which was linearly polarized along different directions and to estimate the value of the valence-band splitting by fitting the measured dependencies with calculated curves. An intriguing influence of the polarization of the exciting beam on the relative amount of the polarized PL emission was observed in the emission from the (110) plane. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Stress relaxation in thick-film GaN grown by hydride vapor phase epitaxy on sapphire and spinel substrates as studied by photoluminescence and raman spectroscopy

    CERN Document Server

    Kim, S T; Lee, C; Kim, J E; Park, H Y

    1999-01-01

    The residual strains in thick-film GaN grown on both sapphire and spinel substrates has been evaluated by photoluminescence (PL) and raman spectroscopy . The strain-free shallow donor bound exciton recombination energy (I sub 2) is 3.468 eV at 10 K. The raman mode frequency shift with residual strain with estimated as DELTA w = 3.93 cm sup - sup 1 per one GPa for GaN layers on both substrates . The linear relationship between the PL I sub 2 line and the raman E sub 2 mode frequency is DELTA E/DELTA w = 5.12 meV/cm sup - sup 1 , which leads to a stress-induced PL line shift of DELTA E = 20 meV/GPa.

  15. The influence of a continuum background on photoluminescence of self-assembled InAlAs/AlGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, Universite de Carthage, La Marsa 2070 (Tunisia); Melliti, A., E-mail: adnenmelliti@yahoo.fr [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, Universite de Carthage, La Marsa 2070 (Tunisia); Othmen, R.; Maaref, M.A. [Unite de Recherche de Physique des Semiconducteurs et Capteurs, Institut Preparatoire aux Etudes Scientifiques et Techniques, Universite de Carthage, La Marsa 2070 (Tunisia); Kuszelewiez, R.; Lemaitre, A. [Laboratoire de Photonique et Nanostructures, CNRS, UPR 20 (France)

    2011-08-15

    We have investigated the effect of the low energy tail of the continuum states associated with wetting layers (WL tail) on temperature dependence of the photoluminescence (PL) spectra of self-assembled InAlAs/AlGaAs quantum dots. We have developed a model that studies this effect. The results of this model suggest that the WL tail play an important role in the evolution according to the temperature of the PL spectra. We have also estimated that the capture into the QD ground state is via the WL tail. - Highlights: > The evolution with the temperature of the QD PL is related to the WL tail. > The capture into the QD ground states is via the WL tail. > The deep of the WL tail decreases according to the QD emission energy.

  16. Correlation between impurities in Fe-Si amorphous layers synthesized by Fe implantation and photoluminescence property of {beta}-FeSi{sub 2} precipitates in Si

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.M. [Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)], E-mail: cmsun@ee.cuhk.edu.hk; Tsang, H.K.; Wong, S.P.; Ke, N. [Department of Electronic Engineering, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Hark, S.K. [Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)

    2008-11-15

    Completely amorphous Fe-Si layers are formed by Fe implantation into Si substrate at a dosage of 5x10{sup 15} cm{sup -2} using a metal vapor vacuum arc (MEVVA) ion source under 80 kV extraction voltage and cryogenic temperature. After thermal annealing, {beta}-FeSi{sub 2} precipitates are formed in Si matrix. The influence of impurities in these amorphous Fe-Si layers on the photoluminescence (PL) from {beta}-FeSi{sub 2} precipitates is investigated. PL is found to be significantly enhanced by optimizing the impurity concentration and annealing scheme. After 60 s of rapid thermal annealing (RTA) at 900 deg. C, {beta}-FeSi{sub 2} precipitates in medium boron-doped Si substrate give the strongest PL intensity without boron out-diffusion from them.

  17. Carrier redistribution between different potential sites in semipolar (202¯1) InGaN quantum wells studied by near-field photoluminescence

    KAUST Repository

    Marcinkevičius, S.

    2014-09-15

    © 2014 AIP Publishing LLC. Scanning near-field photoluminescence (PL) spectroscopy at different excitation powers was applied to study nanoscale properties of carrier localization and recombination in semipolar (202¯1) InGaN quantum wells (QWs) emitting in violet, blue, and green-yellow spectral regions. With increased excitation power, an untypical PL peak energy shift to lower energies was observed. The shift was attributed to carrier density dependent carrier redistribution between nm-scale sites of different potentials. Near-field PL scans showed that in (202¯1) QWs the in-plane carrier diffusion is modest, and the recombination properties are uniform, which is advantageous for photonic applications.

  18. Onset of the Efficiency Droop in GaInN Quantum Well Light-Emitting Diodes under Photoluminescence and Electroluminescence Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guan-Bo; Schubert, E. Fred; Cho, Jaehee; Park, Jun Hyuk; Kim, Jong Kyu

    2015-08-19

    The efficiency of Ga0.87In0.13N/GaN single and multiple quantum well (QW) light-emitting diodes is investigated under photoluminescence (PL) and electroluminescence (EL) excitation. By measuring the laser spot area (knife-edge method) and the absorbance of the GaInN QW (transmittance/reflectance measurements), the PL excitation density can be converted to an equivalent EL excitation density. The EL efficiency droop-onset occurs at an excitation density of 2.08 × 1026 cm–3 s–1 (J = 10 A/cm2), whereas no PL efficiency droop is found for excitation densities as high as 3.11 × 1027 cm–3 s–1 (J = 149 A/cm2). Considering Shockley–Read–Hall, radiative, and Auger recombination and including carrier leakage shows that the EL efficiency droop is consistent with a reduction of injection efficiency.

  19. Synthesis crystal structure, photoluminescence and photocatalytic ...

    Indian Academy of Sciences (India)

    photoluminescence and photocatalytic properties of 1 were also been investigated. Keywords. Zinc; 5-(pyridyl)tetrazolato (PTZ); Single-Crystal X-Ray Crystallography. 1. Introduction. In last few years tetrazole ligands have been widely used to synthesize metal–organic and H-bonded frameworks of various topologies.1–5 ...

  20. Synthesis and photoluminescence property of silicon carbide ...

    Indian Academy of Sciences (India)

    Administrator

    blue shift may be ascribed to morphology, quantum size confinement effects of the nanomaterials and abundant structure defects that existed in the nanowires. Keywords. SiC nanowires; nanocrystalline diamond; crystal growth; photoluminescence. 1. Introduction. SiC has been widely recognized as a versatile material.

  1. Photoluminescence, trap states and thermoluminescence decay ...

    Indian Academy of Sciences (India)

    Administrator

    Photoluminescence, trap states and thermoluminescence decay process study of Ca2MgSi2O7 : Eu. 2+. , Dy. 3+ phosphor. RAVI SHRIVASTAVA*, JAGJEET KAUR, VIKAS DUBEY and BEENA JAYKUMAR. Govt. VYT PG Autonomous College, Durg 491 001, (C.G.) India. MS received 9 July 2013; revised 5 December 2013.

  2. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Eu2+. Keywords. Biomaterials; silicates; akermanite; combustion synthesis; photoluminescence. 1. Introduction. It is essential to develop biocompatible, bioactive, biore- sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress and loads, and that invoke positive cellular and ...

  3. Microwave Assisted Synthesis and Photoluminescence Properties of ...

    Indian Academy of Sciences (India)

    46

    Microwave Assisted Synthesis and Photoluminescence Properties of. ZnS:Pb2+ Nanophosphor for Solid State Lighting. D.N.Game1*, C.B. Palan3, N.B.Ingale2 and S.K.Omanwar3. 1Cusrow Wadia Institute of Technology, Pune, India. 2 Prof. Ram Meghe Institute of Technology and Research, Badnera, Amravati, India.

  4. Photoluminescence, trap states and thermoluminescence decay ...

    Indian Academy of Sciences (India)

    ... solid-state reaction. The Fourier transform infrared (FT–IR) spectra confirmed the proper preparation of the sample. The prepared phosphors were characterized using photoluminescence excitation and emission spectra. Prominent green colour emission was obtained under ultraviolet excitation. The thermoluminescence ...

  5. Photoluminescent characteristics of ion beam synthesized Ge nanoparticles in thermally grown SiO2 films

    International Nuclear Information System (INIS)

    Yu, C.F.; Chao, D.S.; Chen, Y.-F.; Liang, J.H.

    2013-01-01

    Prospects of developing into numerous silicon-based optoelectronic applications have prompted many studies on the optical properties of Ge nanoparticles within a silicon oxide (SiO 2 ) matrix. Even with such abundant studies, the fundamental mechanism underlying the Ge nanoparticle-induced photoluminescence (PL) is still an open question. In order to elucidate the mechanism, we dedicate this study to investigating the correlation between the PL properties and microstructure of the Ge nanoparticles synthesized in thermally grown SiO 2 films. Our spectral data show that the peak position, at ∼3.1 eV or 400 nm, of the PL band arising from the Ge nanoparticles was essentially unchanged under different Ge implantation fluences and the temperatures of the following annealing process, whereas the sample preparation parameters modified or even fluctuated (in the case of the annealing temperature) the peak intensity considerably. Given the microscopically observed correlation between the nanoparticle structure and the sample preparation parameters, this phenomenon is consistent with the mechanism in which the oxygen-deficiency-related defects in the Ge/SiO 2 interface act as the major luminescence centers; this mechanism also successfully explains the peak intensity fluctuation with the annealing temperature. Moreover, our FTIR data indicate the formation of GeO x upon ion implantation. Since decreasing of the oxygen-related defects by the GeO x formation is expected to be correlated with the annealing temperature, presence of the GeO x renders further experimental support to the oxygen defect mechanism. This understanding may assist the designing of the manufacturing process to optimize the Ge nanoparticle-based PL materials for different technological applications

  6. Thermally enhanced photoluminescence for energy harvesting: from fundamentals to engineering optimization

    Science.gov (United States)

    Kruger, N.; Kurtulik, M.; Revivo, N.; Manor, A.; Sabapathy, T.; Rotschild, C.

    2018-05-01

    The radiance of thermal emission, as described by Planck’s law, depends only on the emissivity and temperature of a body, and increases monotonically with the temperature rise at any emitted wavelength. Non-thermal radiation, such as photoluminescence (PL), is a fundamental light–matter interaction that conventionally involves the absorption of an energetic photon, thermalization, and the emission of a redshifted photon. Such a quantum process is governed by rate conservation, which is contingent on the quantum efficiency. In the past, the role of rate conservation for significant thermal excitation had not been studied. Recently, we presented the theory and an experimental demonstration that showed, in contrast to thermal emission, that the PL rate is conserved when the temperature increases while each photon is blueshifted. A further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also demonstrated how such thermally enhanced PL (TEPL) generates orders of magnitude more energetic photons than thermal emission at similar temperatures. These findings show that TEPL is an ideal optical heat pump that can harvest thermal losses in photovoltaics with a maximal theoretical efficiency of 70%, and practical concepts potentially reaching 45% efficiency. Here we move the TEPL concept onto the engineering level and present Cr:Nd:YAG as device grade PL material, absorbing solar radiation up to 1 μm wavelength and heated by thermalization of energetic photons. Its blueshifted emission, which can match GaAs cells, is 20% of the absorbed power. Based on a detailed balance simulation, such a material coupled with proper photonic management can reach 34% power conversion efficiency. These results raise confidence in the potential of TEPL becoming a disruptive technology in photovoltaics.

  7. Photoluminescence investigation of strictly ordered Ge dots grown on pit-patterned Si substrates

    International Nuclear Information System (INIS)

    Brehm, Moritz; Grydlik, Martyna; Tayagaki, Takeshi; Schmidt, Oliver G; Langer, Gregor; Schäffler, Friedrich

    2015-01-01

    We investigate the optical properties of ordered Ge quantum dots (QDs) by means of micro-photoluminescence spectroscopy (PL). These were grown on pit-patterned Si(001) substrates with a wide range of pit-periods and thus inter QD-distances (425–3400 nm). By exploiting almost arbitrary inter-QD distances achievable in this way we are able to choose the number of QDs that contribute to the PL emission in a range between 70 and less than three QDs. This well-defined system allows us to clarify, by PL-investigation, several points which are important for the understanding of the formation and optical properties of ordered QDs. We directly trace and quantify the amount of Ge transferred from the surrounding wetting layer (WL) to the QDs in the pits. Moreover, by exploiting different pit-shapes, we reveal the role of strain-induced activation energy barriers that have to be overcome for charge carriers generated outside the dots. These need to diffuse between the energy minimum of the WL in and between the pits, and the one in the QDs. In addition, we demonstrate that the WL in the pits is already severely intermixed with Si before upright QDs nucleate, which further enhances intermixing of ordered QDs as compared to QDs grown on planar substrates. Furthermore, we quantitatively determine the amount of Ge transferred by surface diffusion through the border region between planar and patterned substrate. This is important for the growth of ordered islands on patterned fields of finite size. We highlight that the Ge WL-facets in the pits act as PL emission centres, similar to upright QDs. (paper)

  8. Photoluminescence properties of Tb3Al5O12:Ce3+ garnet synthesized by the metal organic decomposition method

    Science.gov (United States)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2017-02-01

    Tb3Al5O12:Ce3+ garnet (TAG:Ce3+) phosphor was synthesized by the metal organic decomposition (MOD) method and subsequent calcination at Tc = 800-1200°C for 1 h in air. The effects of Ce3+ concentration on the phosphor properties were investigated in detail using X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurements. The maximum intensity in the Ce3+ yellow emission was observed at the Ce3+ concentration of ∼0.20%. PLE and PL decay measurements suggested an evidence of the energy transfer from Tb3+ to Ce3+. Calcination temperature dependence of the XRD and PL intensities yielded an energy of ∼1.5 eV both for the TAG formation in the MOD process and for the optical activation of Ce3+ in its lattice sites. Temperature dependences of the PL intensity for the TAG:Ce3+ yellow-emitting and K2SiF6:Mn4+ red-emitting phosphors were also examined for the future solid-state lighting applications at T = 20-500 K in 10-K steps. The data of TAG:Ce3+ were analyzed using a theoretical model with considering a reservoir level of Et ∼9 meV, yielding a quenching energy of Eq ∼0.35 eV, whereas the K2SiF6:Mn4+ red-emitting phosphor data yielded a value of Eq ∼1.0 eV. The schematic energy-level diagrams for Tb3+ and Ce3+ were proposed for the sake of a better understanding of these ions in the TAG host.

  9. Photoluminescence and photoluminescence excitation spectra of GaAs grown directly on Si

    Science.gov (United States)

    Zemon, S.; Shastry, S. K.; Norris, P.; Jagannath, C.; Lambert, G.

    1986-05-01

    The photoluminescence of GaAs/Si grown by OMCVD has been analyzed as a function of temperature and the dominant high temperature line identified as a conduction-band-to-valence-band transition. Photoluminescence excitation spectra indicate that the transition is excitonic at 4.2 K. A second line, also identified as intrinsic, dominates the spectra below 100 K. A biaxial tensile strain is proposed to account for the two intrinsic lines through a splitting of the valence band degeneracy.

  10. Solvothermal synthesis and photoluminescence properties of ZnS:Mn2+/ZnO core-shell nanocrystals.

    Science.gov (United States)

    Wang, Yuhua; Li, Chengyan; Peng, Lingling

    2010-03-01

    High-quality ZnS:Mn2+ and ZnS:Mn2+/ZnO core-shell nanocrystals (NCs) were synthesized via a solvothermal method, and characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) and photoluminescence (PL) spectra. Compared with the bare ZnS:Mn2+ NCs (10 nm), the obtained ZnS:Mn2+/ZnO core-shell NCs have a smaller size (4 nm) and better dispersion, which could be attributed to the added ammonia that adsorbed on the surface of ZnS nuclei and hindered their further growth. From the PL spectrum of ZnS:Mn2+NCs, orange luminescence at about 595 nm is observed, which is attributed to the 4T1-6A1 transition of the Mn2+. Meanwhile, the PL intensity of the ZnS:Mn2+/ZnO core-shell NCs is enhanced, and the emission peak is shifted from 595 to 581 nm. The enhancement of the PL intensity is due to the elimination of the surface defects after the growth of the ZnO shell on ZnS:Mn2+ NCs, while the peak blue shift is mainly ascribed to the stress from the mismatch of lattice constants between ZnS and ZnO NCs.

  11. Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells

    Energy Technology Data Exchange (ETDEWEB)

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel [Electronics Department, University of Alcala, Alcala de Henares (Spain); Rigutti, Lorenzo; Julien, Francois H. [Institut d' Electronique Fondamentale, University of Paris Sud XI, UMR 8622 CNRS, Orsay (France); Lacroix, Bertrand; Ruterana, Pierre [Centre de Recherche sur les Ions les Materiaux et la Photonique (CIMAP), UMR 6252, CNRS, ENSICAEN, CEA, UCBN, Caen (France); Fernandez, Susana [Departamento de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Madrid (Spain); Monroy, Eva [CEA Grenoble, INAC/SP2M, Grenoble (France)

    2012-01-15

    We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In{sub 0.9}Ga{sub 0.1}N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-{mu}m-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at {proportional_to}0.73 eV with a full width at half maximum of {proportional_to}86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperaure, explained in terms of carrier localization. A carrier localization energy of {proportional_to}12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of {proportional_to}16%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells

    International Nuclear Information System (INIS)

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel; Rigutti, Lorenzo; Julien, Francois H.; Lacroix, Bertrand; Ruterana, Pierre; Fernandez, Susana; Monroy, Eva

    2012-01-01

    We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In 0.9 Ga 0.1 N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-μm-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at ∝0.73 eV with a full width at half maximum of ∝86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature, explained in terms of carrier localization. A carrier localization energy of ∝12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of ∝16%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure

    Science.gov (United States)

    Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo

    2018-03-01

    Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

  14. Correcting for interference effects in the photoluminescence of Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Max Hilaire; Siebentritt, Susanne [Laboratory for Photovoltaics, Physics and Materials Science Research Unit, University of Luxembourg, 4422 Belvaux (Luxembourg); Bissig, Benjamin; Reinhard, Patrick; Buecheler, Stephan [Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstr. 129, 8600 Duebendorf (Switzerland); Jackson, Philip [Zentrum fuer Sonnenenergie-und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), 70565 Stuttgart (Germany)

    2017-06-15

    Photoluminescence (PL) measurements are performed on high-quality Cu(In,Ga)Se{sub 2} (CIGS) thin films with the intention of investigating their electronic structure. Due to the nature of the CIGS absorbers, notably their smooth surface and a graded band gap, the measured PL spectra are distorted by interference effects, limiting thus the information that one can gain. Here we show that, by varying the entrance angle of the laser light and the detection angle of the emitted PL, we are able to correct for interference effects. As a result, we receive interference-free PL spectra that enable us to determine quantities such as band gap energies and quasi-Fermi level splittings (QFLS). Furthermore, we show that it is possible to measure the QFLS even without correcting for interference effects and we compare the QFLS to the open circuit voltage for a particular sample. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Highly Photoluminescent and Stable Aqueous ZnS Quantum Dots.

    Science.gov (United States)

    Li, Hui; Shih, Wan Y; Shih, Wei-Heng

    2010-01-01

    We report an all-aqueous synthesis of highly photoluminescent and stable ZnS quantum dots (QDs) with water as the medium, i.e. first synthesizing ZnS QDs with 3-mercaptopropionic acid (MPA) as the capping molecule, followed by replacing some of MPA with (3-mercaptopropyl) trimethoxysilane (MPS). The resultant MPS-replaced ZnS QDs were about 5 nm in size with a cubic zinc blende crystalline structure, and had both MPA and MPS on the surface as confirmed by the Fourier Transform Infrared (FTIR) spectroscopy. They exhibited blue trap-state emissions around 415 nm and a quantum yield (QY) of 75% with Rhodamine 101 as the reference, and remained stable for more than 60 days under the ambient conditions. Through the capping molecule replacement procedure, the MPS-replaced ZnS QDs avoided the shortcomings of both the MPA-ZnS QDs and the MPS-ZnS QDs, and acquired the advantages of strong photoluminescence and good stability, which are important to the QDs' applications especially for bioimaging.

  16. Time resolved photoluminescence spectroscopy of narrow gap Hg{sub 1−x}Cd{sub x}Te/Cd{sub y}Hg{sub 1−y}Te quantum well heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Antonov, A. V.; Kadykov, A. M.; Maremyanin, K. V.; Kudryavtsev, K. E.; Gavrilenko, V. I. [Institute for Physics of Microstructures of Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk (Russian Federation)

    2014-07-14

    Photoluminescence (PL) spectra and kinetics of narrow gap Hg{sub 1−x}Cd{sub x}Te/Cd{sub y}Hg{sub 1−y}Te quantum well (QW) heterostructures grown by molecular beam epitaxy technique are studied. Interband PL spectra are observed from 18 K up to the room temperature. Time resolved studies reveal an additional PL line with slow kinetics (7 μs at 18 K) related to deep defect states in barrier layers. These states act as traps counteracting carrier injection into QWs. The decay time of PL signal from QW layers is about 5 μs showing that gain can be achieved at wavelengths 10–20 μm by placing such QWs in HgCdTe structures with waveguides.

  17. Visible and infrared photoluminescence from Er-doped SiOx

    International Nuclear Information System (INIS)

    Wan, J.; Sheng, C.; Lu, F.; Yuan, S.; Gong, D.W.; Liao, L.S.; Fang, Y.L.; Lin, F.; Wang, X.

    1998-01-01

    The annealing behaviors of photoluminescence of SiO x and Er-doped SiO x grown by molecular beam epitaxy in the wavelength range of visible and infrared light are studied. For SiO x , four PL bands located at 510, 600, 716 and 810 nm, respectively, are observed. For Er-doped SiO x , the 716 nm band, which is believed to be originated from the electron-hole recombination at the interface between crystalline Si and amorphous SiO 2 , disappears in the annealing temperature range of 500-900C. It is suggested the enhancement of Er luminescence is partially due to the energy transfer from the recombination at the interface between crystalline Si and SiO 2 to Er ions. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Synthesis and photoluminescence of a full zinc blende phase ZnO nanorod array

    International Nuclear Information System (INIS)

    Zhou Shaomin; Gong Hechun; Zhang Bin; Du Zuliang; Zhang Xingtang; Wu Sixin

    2008-01-01

    A single-crystalline ZnO nanorod array with rectangular cross-sections has been synthesized, in which the as-obtained products are a complete metastable zinc blende (ZB) phase. X-ray powder diffraction, electron microscopy, and elemental maps have been used to show that the ZB-ZnO samples have a lattice constant a = 4.580 A, and are free from contamination by hexagonal wurtzite (HW) ZnO. Based on our experimental data, the associated growth mechanism is tentatively suggested. In addition, the photoluminescence (PL) spectrum (about 400 nm (3.1 eV)) of the as-fabricated ZB-ZnO products was detected; this is the first experimental report of the optical properties of ZB-ZnO nanorod arrays

  19. Optical absorption and photoluminescence properties of ZnO/PMMA nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kulyk, B; Kapustianyk, V [Department of Physics, Scientific and Educational Center ' Fractal' , Scientific-Technical and Educational Center of Low Temperature Studies, Ivan Franko National University of L' viv, 50 Dragomanova Str., L' viv (Ukraine); Krupka, O [Department of Chemistry, Kyiv Taras Shevchenko National University, 60 Volodymyrska Str., Kyiv (Ukraine); Sahraoui, B, E-mail: bohdan_kulyk@yahoo.com [Department of Physics, University of Angers, 2 Lavoisier Av., Angers (France)

    2011-04-01

    The ZnO nanocrystals (ZnO NCs) with particle size, less than 100 nm, have been blended with polymethylmethacrylate (PMMA) by solution mixing to prepare PMMA/ZnO nanocomposite films. The structure of ZnO/PMMA nanocomposite films was characterized using X-ray diffractometry. The prepared nanocomposite films are highly transparent and a clear excitonic peak is observed in their absorption spectra. Measurements of temperature evolution of the photoluminescence (PL) spectra show intensive UV emission peak corresponding to the donor-bound excitons with binding energy of 51 meV and green emission band related to the intrinsic defects in ZnO. The temperature evolution of the emission peaks energy position, intensity and integral intensity in ZnO/PMMA nanocomposite films were examined.

  20. The photoluminescence technique applied to the investigation of structural imperfections in quantum wells of semiconducting material

    Directory of Open Access Journals (Sweden)

    Eliermes Arraes Meneses

    2005-02-01

    Full Text Available Photoluminescence is one of the most used spectroscopy techniques for the study of the optical properties of semiconducting materials and heterostructures. In this work the potentiality of this technique is explored through the investigation and characterization of structural imperfections originated from fluctuations in the chemical composition of ternary and quaternary alloys, from interface roughnesses, and from unintentional compounds formed by the chemical elements intermixing at the interfaces. Samples of GaAs/AlGaAs, GaAsSb/GaAs, GaAsSbN/GaAs and GaAs/GaInP quantum well structures are analyzed to verify the influence of the structural imperfections on the PL spectra

  1. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application

    Science.gov (United States)

    Chen, Weiwei; Xin, Xing; Zang, Zhigang; Tang, Xiaosheng; Li, Cunlong; Hu, Wei; Zhou, Miao; Du, Juan

    2017-11-01

    All-inorganic cesium lead halide (CsPbBr3) perovskite quantum dots (QDs), as one kind of promising materials, have attracted considerable attention in optoelectronic applications. Herein, we synthesized the colloidal CsPbBr3 QDs with tunable photoluminescence (PL) (493-531 nm) by adjusting the reaction temperatures, which revealed narrow emission bandwidths of about 25 nm. The average diameters of the QDs could be adjusted from 7.1 to 12.3 nm as the temperature increased from 100 °C to 180 °C. Moreover, the radiative lifetimes of CsPbBr3 QDs were measured to be 2 ns, and the single QD fluorescence intensity time trace results demonstrated its suppressed blinking emission. Moreover, green light emitting diodes by using CsPbBr3 QDs casted on blue LED chips were further fabricated, which provided potential applications in the field of display and lighting technology.

  2. Reverse logistics and 3PL in the Czech Republic

    OpenAIRE

    Klapalová Alena

    2012-01-01

    The paper is focused on presenting the results of survey investigating the utilization of services of the so called 3PL or in other words outsourcing of reverse logistics activities in the context of their strategic versus operative or ad hoc management of RL and in relation to various benefits seeking and gaining within the frame of RL management. The exploratory analysis tries to answer the basic research question whether companies strategically managing reverse flows use services of 3PL mo...

  3. Synthesis and photoluminescence of Tb3+ Activated NaY(WO4)2 phosphors

    International Nuclear Information System (INIS)

    Liu, Xiaohua; Xiang, Wendou; Chen, Fengming; Zhang, Wei; Hu, Zhengfa

    2012-01-01

    Graphical abstract: The phosphor powders of NaY(WO 4 ) 2 :Tb 3+ were prepared by solid state reaction. The dependence of luminescence intensity on the Tb 3+ concentration was investigated. Highlights: ► We synthesize NaY(WO 4 ) 2 :Tb 3+ phosphors by the solid-state reaction technique. ► We observe and explain the blue shifting of excitation peak positions of CTBs. ► The PL from 5 D 3 level become less probable with increasing the Tb 3+ content. ► The PL intensity increases with Tb 3+ content without concentration quenching. ► NaY(WO 4 ) 2 :Tb 3+ has potential application as a green emitting phosphor in lamps. -- Abstract: The novel yellowish green phosphor powders of NaY(WO 4 ) 2 doped with Tb 3+ were prepared by solid-state reaction. The powder samples were characterized by X-ray diffraction and photoluminescence. X-ray diffraction analysis showed that the phosphors sintered at 900 °C for 6 h were a pure NaY(WO 4 ) 2 phase for all the Tb 3+ doping concentrations. The room temperature excitation spectra vary with the Tb 3+ concentration and consist of an intense charge transfer band of WO 4 2− group and weak intra-4f 8 transition absorption peaks of Tb 3+ ions. The photoluminescence spectra, excited at the peak wavelengths of charge transfer bands, consist of the characteristic Tb 3+ emission transitions from 5 D 3 and 5 D 4 excited levels to 7 F J (J = 3–6) levels. The dependence of luminescence intensity on the Tb 3+ concentration in NaY(WO 4 ) 2 :Tb phosphors was investigated.

  4. Sonochemical synthesis and photoluminescent property of YVO4:Eu nanocrystals

    International Nuclear Information System (INIS)

    Zhu Ling; Li Jiayan; Li Qin; Liu Xiangdong; Meng Jian; Cao Xueqiang

    2007-01-01

    YVO 4 nanocrystals doped with 10.0 mol% Eu 3+ have been synthesized from an aqueous solution of (Y,Eu)(NO 3 ) 3 and NH 4 VO 3 with or without ultrasonic irradiation. The ultrasonic irradiation has a strong effect on the morphology of the YVO 4 :Eu particles. The spindle-like particles with an equatorial diameter of 90-150 nm and a length of 250-300 nm could be obtained with ultrasonic irradiation, whereas only nanoparticles were produced without ultrasonic irradiation. The photoluminescence intensity of YVO 4 :Eu of the spindle-like particles was largely improved compared with that of the nanoparticles. The possible formation mechanism of the spindle-like particles of YVO 4 :Eu with the application of ultrasonic irradiation was discussed in this paper

  5. Study on the fabrication and photoluminescence characteristics of LiPO3 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Jeong, S. Z.; Lee, J. M.; Hwang, J. H.; Choi, S. H.

    2001-01-01

    In this syudy, LiPO 3 glass scintillators were fabricated, and lanthanides (except Pm) oxides or chlorides were used as an activator. For the fabrication of LiPO 3 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time is 950 .deg. C and 90 min, respectively. As the result of photoluminescence analysis, it was impossible to apply Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu to activator. Because emission spectrum of samples with them was equal to that of sample without activator. In case of samples with Europium, the peak of emission spectrum of Eu(II) and Eu(III) is 420 nm and 620 nm, separately. And Samples with Ce(III) are about 380 nm, and Tb(III) are about 550 nm. On the fabrication of LiPO 3 glass samples, PL intensity was increased by adding sugar as reductant, and using Ar reduction atmosphere. And the optimum reduction conditions were differed as to the kinds of activators. Samples with Eu(II) and Tb(III) have the best PL intensity in the Ar reduction atmosphere, and sample with Ce(III) have the best intensity by added sugar

  6. On the origin of the 2.2-2.3 eV photoluminescence from chemically etched germanium

    CERN Document Server

    Kartopu, G; Karavanskij, V A; Curry, R J; Turan, R; Sapelkin, A V

    2003-01-01

    The photoluminescence (PL) at approx 2.2-2.3 eV from Ge-based nanocrystalline materials is described in the literature as nanocrystal size-independent. We have observed visible luminescence from two different types of stain-etched Ge samples, one prepared after Sendova-Vassileva et al. (Thin Solid Films 255 (1995) 282) in a solution of H sub 2 O sub 2 :HF at 50:1 volume ratio, and the other in a solution of HF:H sub 3 PO sub 4 :H sub 2 O sub 2 at 34:17:1 volume ratio. Energy dispersive X-ray analysis (EDX), Raman and FTIR spectroscopy, and the near edge X-ray absorption structure (XANES), indicate that the chemically etched Ge layers of the former type of samples are composed of non-stoichometric Ge oxides, i.e. GeO sub x (0Photoluminescence occurred at approx 2.3 eV for all samples. The PL behavior of ...

  7. Photoluminescent BaMoO4 nanopowders prepared by complex polymerization method (CPM)

    International Nuclear Information System (INIS)

    Azevedo Marques, Ana Paula de; Melo, Dulce M.A. de; Paskocimas, Carlos A.; Pizani, Paulo S.; Joya, Miryam R.; Leite, Edson R.; Longo, Elson

    2006-01-01

    The BaMoO 4 nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO 4 powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO 4 at 300 deg. C was disordered. At 400 deg. C and higher temperature, BaMoO 4 crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40-50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 deg. C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 deg. C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO 4 nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO 4 nanopowders suggested that this material is a highly promising candidate for photoluminescent applications

  8. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  9. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-01-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  10. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  11. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    Science.gov (United States)

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1.

  12. Incorporation of lanthanide (Eu(3+)) ions in ZnS semiconductor quantum dots with a trapped-dopant model and their photoluminescence spectroscopy study.

    Science.gov (United States)

    Wang, Yongbo; Liang, Xuhua; Liu, Enzhou; Hu, Xiaoyun; Fan, Jun

    2015-09-18

    Doping quantum dots (QDs) with lanthanide (Ln) ions is promising to modify the optical properties of QDs, but incorporating Ln(3+) ions into QD hosts remains a challenge. In this work, we adopt the trapped-dopant model for fabricating Eu-doped ZnS QDs via direct wet chemical synthesis. Sharp Eu dopant photoluminescence (PL) was observed in the PL spectra of the as-prepared Eu-doped ZnS QDs and the bands at ~590, ~618 and ~695 nm were assigned to transitions from (5)D0 to (7)F1, (7)F2 and (7)F4, respectively. Quenching of the ZnS bandgap PL and enhancement of the Eu dopant PL were observed with increasing Eu(3+) doping concentration, and also, the excitation spectra for Eu emission (618 nm) were similar to the typical excitonic features of the ZnS host. These spectroscopic results, as well as the XRD and EDS data, demonstrated that Eu(3+) ions were incorporated in the ZnS host rather than just on the surface, and the Eu dopant PL was derived from energy transfer from the QD host to Eu(3+) rather than direct excitation of Eu(3+). By surface passivation, the sharp Eu emission was well-separated from the ZnS bandgap emission, which led to a good signal-to-noise ratio for more sensitive detection.

  13. Transmission electron microscopy and photoluminescence characterization of InGaAs strained quantum wires on GaAs vicinal (110) substrates

    International Nuclear Information System (INIS)

    Shim, Byoung Rho; Torii, Satoshi; Ota, Takeshi; Kobayashi, Keisuke; Maehashi, Kenzo; Nakashima, Hisao; Lee, Sang Yun

    1999-01-01

    We have used transmission electron microscopy (TEM) and photoluminescence (PL) to study InGaAs/AlGaAs strained quantum wires (QWRs) grown by molecular beam epitaxy (MBE) on GaAs vicinal (110) substrates. The cross-sectional TEM image reveals that InGaAs QWRs structures are naturally formed on AlGaAs giant steps. In the plan-view TEM images, the fringe pattern in the giant-step region is observed for In x Ga 1-x As layers with x≤ 0.4 We measured the separation of the fringe in the plan-view TEM images and compared the result with the calculated fringe separation. From this result, we conclude that the fringes observed in the plan-view TEM images are moire fringes. PL spectra of the InGaAs QWRs samples reveal 80-meV shifts to lower energy with respect to the spectrum of a quantum well (QWL) grown on a (001) substrate under the same conditions. We also measured the polarization anisotropy of the PL spectra from the QWRs. The PL peak shifts systematically toward higher energy with decreasing InGaAs thickness. The degree of polarization for the InGaAs QWRs was about 0.29. The PL observation evidences the carrier confinement in the QWRs. These results indicate that locally thick InGaAs strained QWRs were successfully formed at the edge of AlGaAs giant steps

  14. Temperature-dependent photoluminescence analysis of 1-MeV electron irradiation-induced nonradiative recombination centers in GaAs/Ge space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tiancheng, Yi; Pengfei, Xiao; Yong, Zheng; Juan, Tang; Rong, Wang, E-mail: wangr@bnu.edu.cn

    2016-03-01

    The effects of irradiation of 1-MeV electrons on p{sup +}–n GaAs/Ge solar cells have been investigated by temperature-dependent photoluminescence (PL) measurements in the temperature range of 10–290 K. The temperature dependence of the PL peak energy agrees well with the Varnish relation, and the thermal quenching of the total integrated PL intensity is well explained by the thermal quenching theory. Meanwhile, the thermal quenching of temperature-dependent PL confirmed that there are two nonradiative recombination centers in the solar cells, and the thermal activation energies of these centers are determined by Arrhenius plots of the total integrated PL intensity. Furthermore, the nonradiative recombination center, as a primary defect, is identified as the H3 hole trap located at E{sub v} + 0.71 eV at room temperature and the H2 hole trap located at E{sub v} + 0.41 eV in the temperature range of 100–200 K, by comparing the thermal activation and ionization energies of the defects.

  15. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    Science.gov (United States)

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Geometric Potential of Pléiades 1A Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Postelniak Andrii

    2014-10-01

    Full Text Available In this paper, the geometrical characteristics of Pléiades 1A satellite imagery (both single and stereo are analysed. At first the process of digital surface model (DSM extraction from a Pléiades 1A stereo pair is described and analysed. After that geometric an accuracy of imagery, orthorectified using the extracted DSM and using the SRTM (Shuttle radar topographic mission was analysed. The Pléiades 1A stereo pair was acquired on October 22, 2012 from the same orbital pass over an urban zone (Kiev, Ukraine. The study area is heterogeneous: there are both built-up and flat areas. The iImage orientation, DSM extraction and orthorectified images generation were performed using the PCI Geomatica 2013 software. The results showed that a strong, positive correlation between reference-derived elevations and DSM-derived elevations can be observed, and the orthorectified image accuracy, generated using that DSM, approximately equal to 1 m can be achieved using a bias compensation sensor model. Different sensor models were used for orthorectification using the SRTM. In this case, the geometric accuracy is а function of a chosen sensor model and a number of ground control points (GCP.

  17. Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Dhlamini, M.S.; Terblans, J.J.; Ntwaeaborwa, O.M.; Ngaruiya, J.M.; Hillie, K.T.; Botha, J.R.; Swart, H.C.

    2008-01-01

    Thin films of lead sulfide (PbS) nanoparticles embedded in an amorphous silica (SiO 2 ) host were grown on Si(1 0 0) substrates at different temperatures by the pulsed laser deposition (PLD) technique. Surface morphology and photoluminescence (PL) properties of samples were analyzed with scanning electron microscopy (SEM) and a 458 nm Ar + laser, respectively. The PL data show a blue-shift from the normal emission at ∼3200 nm in PbS bulk to ∼560-700 nm in nanoparticulate PbS powders and thin films. Furthermore, the PL emission of the films was red-shifted from that of the powders at ∼560 to ∼660 nm. The blue-shifting of the emission wavelengths from 3200 to ∼560-700 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the red-shift between powders and thin-film PbS nanoparticles is speculated to be due to an increase in the defect concentration. The red-shift increased slightly with an increase in deposition temperature, which suggests that there has been a relative growth in particle sizes during the PLD of the films at higher temperatures. Generally, the PL emission of the powders was more intense than that of the films, although the intensity of some of the films was improved marginally by post-deposition annealing at 400 deg. C. This paper compares the PL properties of powder and pulsed laser-deposited thin films of PbS nanoparticles and the effects of deposition temperatures

  18. Photoluminescence varied by selective excitation in BiGdWO6:Eu3+ phosphor

    Science.gov (United States)

    Pavani, K.; Graça, M. P. F.; Kumar, J. Suresh; Neves, A. J.

    2017-12-01

    Eu3+ doped bismuth gadolinium tungstate (BGW), a simplest member of Aurivillius family of layered perovskites, was synthesized by solid-state reaction method. Structural characterisation has been performed by X-Ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Band gap of the host matrix has been calculated using reflectance and absorption spectra. Three different mechanisms were found to explain the excitation of Eu3+ ions and are described in detail. Photoluminescence (PL) spectra of the BGW phosphor doped with Eu3+ ions consist of major emission lines associated with 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) of Eu3+ ion. Site selective PL excitation and emission indicates that Eu3+ ions doped in BiGdWO6 are sensitive to the excitation wavelength without change in the structure. Change in emission spectra were observed when the excitation wavelength was changed. Judd-Ofelt (J-O) parameters were determined from the indirect method to interpret the interactions between the host and dopant ions along with detailed analysis of lifetime measurements.

  19. Photoluminescence studies of GaAs grown on InP substrates by molecular beam epitaxy

    Science.gov (United States)

    Huang, D.; Agarwala, S.; Morkoc, H.

    1989-01-01

    GaAs-based field-effect transistor structures have been grown on InP substrates with the InGaAs/GaAs strained-layer superlattices and 1.5 micron GaAs layer as the buffer. The low-temperature (4 K) photoluminescence (PL) from this GaAs buffer has been studied for the first time. Among five observable peaks, the excitonic transition at energy 1.513 eV and the impurity associated recombination at energy 1.483 eV have been identified with the aid of reflection, absorption, and temperature and excitation-intensity dependent PL measurements. The peak at 1.504 eV, most probably due to an exciton bound to a defect, is greatly enhanced compared with that of homoepitaxially grown GaAs. The optical results show that GaAs films of good quality can be grown on InP substrate, which is consistent with device results.

  20. Morphology and Photoluminescence of HfO2Obtained by Microwave-Hydrothermal

    Directory of Open Access Journals (Sweden)

    Cavalcante LS

    2009-01-01

    Full Text Available Abstract In this letter, we report on the obtention of hafnium oxide (HfO2 nanostructures by the microwave-hydrothermal method. These nanostructures were analyzed by X-ray diffraction (XRD, field-emission gum scanning electron microscopy (FEG-SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectrometry (EDXS, ultraviolet–visible (UV–vis spectroscopy, and photoluminescence (PL measurements. XRD patterns confirmed that this material crystallizes in a monoclinic structure. FEG-SEM and TEM micrographs indicated that the rice-like morphologies were formed due to an increase in the effective collisions between the nanoparticles during the MH processing. The EDXS spectrum was used to verify the chemical compositional of this oxide. UV–vis spectrum revealed that this material have an indirect optical band gap. When excited with 488 nm wavelength at room temperature, the HfO2nanostructures exhibited only one broad PL band with a maximum at around 548 nm (green emission.

  1. Solvothermal synthesis, characterization and photoluminescence studies of ZnS:Eu nanocrystals

    Science.gov (United States)

    Ashwini, K.; Yashaswini; Pandurangappa, C.

    2014-11-01

    Europium doped zinc sulfide nanocrystals (ZnS:Eu) are prepared by solvothermal method. Crystallite size and lattice constant of the prepared samples are calculated from the X-ray diffraction patterns. The as-prepared samples are found to be a mixture of complex chemical groups. Heat treatment of the samples at 300 °C resulted in ZnS:Eu state. The crystal structure is not affected by the increase in the concentration of Eu from 1 mol% to 5 mol%. Fourier Transform Infrared Spectroscopy (FTIR) studies showed that characteristic absorption bands of hydroxyl groups and the acetate bands increased with increase in Eu concentration. The morphological results studied using Scanning Electron Microscopy (SEM) indicate agglomeration of nanoparticles and a marginal increase in the particle size. Photoluminescence (PL) spectra of the samples showed a prominent emission band peaked at ∼400 nm besides three weak ones at ∼422, 485 and 530 nm. The PL intensity increased with increase in Eu concentration.

  2. Electrical and photoluminescence properties of carbon implanted ZnO bulk single crystals

    Science.gov (United States)

    Matsumoto, K.; Kuriyama, K.; Kushida, K.

    2009-05-01

    Carbon-ions, which are expected as an amphoteric impurity, are implanted into ZnO bulk single crystals with a fluence of 1.5 × 1015 cm-2. The carbon-ion implanted ZnO shows the n-type conductivity and the resistivity varies from 6 × 104 Ω cm (for unimplanted samples) to 3 × 10-2 Ω cm (for 800 °C-annealed ones). The Rutherford backscattering (RBS) studies show the existence of the displaced zinc atoms. In photoluminescence (PL) measurements, the broad emission at 2.34 eV observed in un-implanted and as-implanted samples is related to oxygen vacancy and zinc interstitial. After annealing, the weak PL-emission related to carbon donor is observed at 3.06 eV, indicating that the donor level lies at ∼310 meV below the conduction band. The carbon-ion implanted ZnO layer with the low resistivity achieved in the present study suggests the possibility of transparent conductive oxide.

  3. Electrical and photoluminescence properties of carbon implanted ZnO bulk single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan)], E-mail: kuri@ionbeam.hosei.ac.jp; Kushida, K. [Department of Arts and Sciences, Osaka Kyouiku University, Kashiwara, Osaka 582-8582 (Japan)

    2009-05-01

    Carbon-ions, which are expected as an amphoteric impurity, are implanted into ZnO bulk single crystals with a fluence of 1.5 x 10{sup 15} cm{sup -2}. The carbon-ion implanted ZnO shows the n-type conductivity and the resistivity varies from 6 x 10{sup 4} {omega} cm (for unimplanted samples) to 3 x 10{sup -2} {omega} cm (for 800 deg. C-annealed ones). The Rutherford backscattering (RBS) studies show the existence of the displaced zinc atoms. In photoluminescence (PL) measurements, the broad emission at 2.34 eV observed in un-implanted and as-implanted samples is related to oxygen vacancy and zinc interstitial. After annealing, the weak PL-emission related to carbon donor is observed at 3.06 eV, indicating that the donor level lies at {approx}310 meV below the conduction band. The carbon-ion implanted ZnO layer with the low resistivity achieved in the present study suggests the possibility of transparent conductive oxide.

  4. Microstructure and enhanced photoluminescence of ZnO/V2O5 composite

    Science.gov (United States)

    Zhan, Xinghua; Chen, Fei; Salcic, Zoran; Wong, Chee Cheong; Gao, Wei

    2017-07-01

    Submicron zinc oxide (ZnO) spheres prepared by a two-stage hydrothermal method were assembled into a layer on a substrate by vertical deposition. Vanadium pentoxide (V2O5) was deposited onto the top of ZnO spheres by magnetron sputtering followed by annealing in oxygen atmosphere at 500∘C for an hour. The microstructures and optical properties of the prepared samples were investigated. The photoluminescence (PL) results indicate that the intensity of PL in the annealed ZnO/V2O5 composite microstructures is dramatically improved compared to the constituent V2O5 and ZnO spheres. The intensity enhancement of light emission from the ZnO/V2O5 composite may be attributed to the special microstructure of ZnO particles and the coupling effect between ZnO and V2O5. This transition oxide composite may possibly be developed into a new type of high-efficiency light emitting material.

  5. Study of Te diffused into GaSb by photoluminescence and HRXRD

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Sanabria, R.; Rosendo, E.; Rosendo-Francisco, P. [FC, UAEMex, Instituto Literario 100 Col. Centro, Toluca (Mexico); Martinez, J.; Diaz, T.; Juarez, H.; Garcia, G. [CIDS-ICUAP, 14 Sur y San Claudio, Col San Manuel, Puebla (Mexico); Rubin, M. [FCC-BUAP, 14 Sur y San Claudio, Col San Manuel, Puebla (Mexico); de Anda, F. [IICO-UASLP Ave. Karakorum 1470, Lomas Cuarta (Mexico)

    2007-04-15

    Photoluminescence (PL) and High Resolution X-Ray Diffraction (HRXRD) measurements were used to study the diffusion of Te on GaSb-p thin films deposited on GaSb-n substrates by Liquid Phase Epitaxy (LPE). The studied samples consist of an n-type layer on a p-type layer to carry out the diffusion. The diffusion process was done through thermic treatment at 450 C and 2, 4 and 6 hours in to the hydrogen atmosphere. After carrying out the heat treatment, the n-type layer was removed with the purpose of studying the diffusion behavior of Te. The PL spectra show that when the time of diffusion increases, the signal produced by the excitonic transitions increases its intensity, this can be attributed to the increase of the concentration of Te in the GaSb-p film. The X-ray spectra show that in agreement it increases the time of diffusion, the amount of Te increases until having a single peak to 6 hrs of diffusion. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Photoluminescence studies of ZnO doped with stable and radioactive impurities

    CERN Document Server

    Cullen, Joseph; Martin O, Henry

    In this work the IIb-VI compound semiconductor ZnO is doped, via ion implantation of stable and radioactive isotopes, in order to investigate the chemical nature of exciton re-combinations bound to previously unidentified defects. Photo-luminescence (PL) is discussed and is used extensively as the primary investigative technique. A new defect emission feature, centred around 3.324 eV, is found to be related to Ge impurities occupying substitutional Zn sites in ZnO. This centre is investigated by temperature dependent PL, piezo-spectroscopy and Zeeman spectroscopy. The centre is donor-like in nature. Uniaxial stress measurements indicate that the defect centre has trigonal symmetry and applied magnetic field measurements reveal the neutral charge state of the centre and the donor-like binding mechanism. Subsequent to this, a study is undertaken of the iso-electronic defect Hg in ZnO studying the zero phonon feature at 3.279 eV and its associated phonon replica band. Temperature dependent measurements reveal tw...

  7. Synthesis, thermal and photoluminescent properties of ZnSe- based oxyfluoride glasses doped with samarium

    Science.gov (United States)

    Kostova, I.; Okada, G.; Pashova, T.; Tonchev, D.; Kasap, S.

    2014-12-01

    Rare earth (RE) doped glasses and glass ceramic materials have recently received considerable attention because of their potential or realized applications as X-ray intensifying screens, phosphors, detectors, waveguides, lasers etc. [1]. In this work, we present a new RE doped ZnO-ZnSe-SrF2-P2O5-B2O3-Sm2O3-SmF3 (ZSPB) glass system synthesized by melt quenching technique. The resulting glasses were visually fully transparent and stable with glass the transition temperatures around 530°C. The thermal properties of this glass system were characterized by Modulated Differential Scanning Calorimetry (MDSC) measurements before and after annealing at 650°C. We have characterized these glasses by Raman spectroscopy and photoluminescence (PL) measurements over the UV-VIS range using light emitting diodes (LED) and laser diodes (LD) excitation sources. We have also irradiated thermally treated and non-treated glass samples by X-rays and have studied the resulting PL. We discuss the results in terms of previously reported models for Sm-doped Zn-borophosphate oxide, oxyfluoride and oxyselenide glasses.

  8. Structure and Photoluminescence Properties of β-Ga2O3 Nanofibres Synthesized via Electrospinning Method

    Science.gov (United States)

    Sun, Chao; Deng, Jinxiang; Kong, Le; Chen, Liang; Shen, Zhen; Cao, Yisen; Zhang, Hao; Wang, Xiaoran

    2017-12-01

    This paper reported the β-Ga2O3 nanofibres which fabricated by electrospinning, and then calcining in oxygen at 750, 850, 950 and 1050°C. The structure and properties of β-Ga2O3 nanofibers have been studied though kinds of methods such as XRD, Photoluminescence (PL) spectrum, Raman spectrum, Scanning electron microscope (SEM) and FT-IR. The diameters of these nanofibres are from 60 to 130nm and the lengths of these nanofibres are about couple millimetres. The spectrum of PL which excitation at 365nm gave us the information that the emission peak of these β-Ga2O3 nanofibres is about 470nm, it may be coursed by the various defects including the vacancies of gallium and oxygen and the gallium-oxygen vacancy pairs as well, and observed that with the increasing of the annealing temperature, the emission peaks have a small bule swifting, and the crystallinity become better at the same time.

  9. ZnO Micro- and Nanostructures Obtained by Thermal Oxidation: Microstructure, Morphogenesis, Optical, and Photoluminescence Properties

    OpenAIRE

    Alejandro Escobedo-Morales; Rubén J. Aranda-García; Ernesto Chigo-Anota; Armando Pérez-Centeno; Antonio Méndez-Blas; Carlos G. Arana-Toro

    2016-01-01

    ZnO micro- and nanostructures were obtained through thermal oxidation of Zn powders at high temperature under air atmosphere. A detailed study of the microstructure, morphology, optical, and photoluminescence properties of the generated products at different stages of thermal oxidation is presented. It was found that the exposure time has a strong influence on the resulting morphology. The morphogenesis of the different ZnO structures is discussed, and experimental parameters for fabricating ...

  10. Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Chernikov, Alexey A.

    2011-07-01

    The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as

  11. Mechanism of photoluminescence quenching in thin films of N,N'-bis(3-methylphenyl-N,N'-bis(phenylbenzidine irradiated by UV light in air

    Directory of Open Access Journals (Sweden)

    Tomović Aleksandar Ž.

    2015-01-01

    Full Text Available The mechanism of photoluminescence (PL quenching of thin amorphous N,N'-bis(3-methylphenyl- N,N'-bis(phenylbenzidine (TPD films exposed to UV light in air is studied. TPD is small organic molecule widely used in production of organic light emmiting devices (OLEDs. Photoluminescence of TPD films decays exponentially with time of irradiation, i.e. with the increase of concentration of impurities (photo-oxidized TPD molecules generated by UV irradiation in air. Intensity of PL decreases to half of its original value when the concentration of impurities reaches 0.4%. Average distance between impurities (acceptors is almost an order of magnitude larger than average distance between host TPD molecules (donors. Direct long range Forster energy transfer is ruled out as the mechanism of PL quenching, as the overlap between donor and acceptor is lacking, and exciton self-diffusion in TPD films is postulated for the mechanism. The presence of oxidation products is confirmed by infrared (IR spectroscopy. Vibrational spectra of TPD molecule and few other possible products of photo-oxidation of TPD molecule, obtained by density functional theory, are compared to experimental IR spectra.

  12. Photoluminescence of ZnS: Mn quantum dot by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Yun Hu

    2018-01-01

    Full Text Available ZnS: Mn quantum dots (QDs with the average grain size from 4.2 to 7.2 nm were synthesized by a hydrothermal method. All samples were cubic zinc blende structure (β-ZnS measured using X-ray diffraction (XRD. And the main diffraction peaks of ZnS: Mn shifted slightly towards higher angle in comparison with the intrinsic ZnS because of the substitution of Mn2+ for Zn2+. Due to the small grain size (4-7 nm effect, the poor dispersion and serious reunion phenomenon for the samples were observed from transmission electron microscopy (TEM. ZnS: Mn QDs had four peaks centered at 466, 495, 522, and 554 nm, respectively, in the photoluminescence (PL spectra, in which the band at 554 nm absent in the intrinsic ZnS: Mn is attributed to the doping of Mn2+ in the lattice sites. As the concentration of Mn2+ increasing from 0% to 0.6 at%, the intensity of the PL emission also increased. But the concentration reached 0.9 at%, quenching of PL emission occurred. The peak in ZnS: Mn QDs observed at 490 cm-1 was originated from the stretching vibration of the Mn–O bonds in the Fourier transform infrared (FTIR spectra. And the small changes about this peak compared with the previous reports at 500 cm-1 can be attributed to the formation of quantum dots. This method we utilized to synthesize ZnS: Mn QDs is very simple, low cost, and applicable for other semiconductor QD materials.

  13. Photoluminescence excitation spectroscopy of SiV- and GeV- color center in diamond

    Science.gov (United States)

    Häußler, Stefan; Thiering, Gergő; Dietrich, Andreas; Waasem, Niklas; Teraji, Tokuyuki; Isoya, Junichi; Iwasaki, Takayuki; Hatano, Mutsuko; Jelezko, Fedor; Gali, Adam; Kubanek, Alexander

    2017-06-01

    Color centers in diamond are important quantum emitters for a broad range of applications ranging from quantum sensing to quantum optics. Understanding the internal energy level structure is of fundamental importance for future applications. We experimentally investigate the level structure of an ensemble of few negatively charged silicon-vacancy (SiV-) and germanium-vacancy (GeV-) centers in bulk diamond at room temperature by photoluminescence (PL) and excitation (PLE) spectroscopy over a broad wavelength range from 460 to 650 {nm} and perform power-dependent saturation measurements. For SiV- our experimental results confirm the presence of a higher energy transition at ˜ 2.31 {eV}. By comparison with detailed theoretical simulations of the imaginary dielectric function we interpret the transition as a dipole-allowed transition from {}2{E}g-state to {}2{A}2u-state where the corresponding a 2u -level lies deeply inside the diamond valence band. Therefore, the transition is broadened by the diamond band. At higher excitation power of 10 {mW} we indicate signs of a parity-conserving transition at ˜ 2.03 {eV} supported by saturation measurements. For GeV- we demonstrate that the PLE spectrum is in good agreement with the mirror image of the PL spectrum of the zero-phonon line. Experimentally we do not observe a higher lying energy level up to a transition wavelength of 460 {nm}. The observed PL spectra are identical, independent of excitation wavelength, suggesting a rapid decay to {}2{E}u excited state and followed by optical transition to {}2{E}g ground state. Our investigations convey important insights for future quantum optics and quantum sensing experiments based on SiV--center and GeV--center in diamond.

  14. Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2018-03-26

    The lack of structurally distinct nanoclusters (NCs) of identical size and composition prevented the mechanistic understanding of their structural effects on ion pairing and concomitant optical properties. To produce such highly sought NCs, we designed a new monothiolate-for-dithiolate exchange strategy that enabled the selective transformation of the structure of a NC without affecting its metal atomicity or composition. Through this method, a bimetallic [PtAg28(BDT)12(PPh3)4]4– NC (1) was successfully synthesized from [PtAg28(S-Adm)18(PPh3)4]2+ NC (2) (S-Adm, 1-adamantanethiolate; BDT, 1,3-benzenedithiolate; PPh3, triphenylphosphine). The determined X-ray crystal structure of 1 showed a PtAg12 icosahedron core and a partially exposed surface, which are distinct from a face-centered cubic PtAg12 core and a fully covered surface of 2. We reveal through mass spectrometry (MS) that 1 forms ion pairs with counterions attracted by the core charge of the cluster, which is in line with density functional simulations. The MS data for 1, 2, and other NCs suggested that such attraction is facilitated by the exposed surface of 1. The formation of ion pairs increases the photoluminescence (PL) quantum yield of 1 up to 17.6% depending on the bulkiness of the counterion. Unlike small counterions, larger ones are calculated to occupy ≤90% of the volume near the exposed cluster surface and to make the ligand shell of 1 more rigid, which is observed to increase the PL. Thus, the developed synthesis strategy for structurally different NCs of the same size and composition allows us to probe the structure–property relationship for ion pairing and concomitant PL enhancement.

  15. Low-temperature synthesis of Zn{sub 2}SiO{sub 4}:Mn green photoluminescence phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, V. [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Lakshmanan, Arunachalam, E-mail: arunachalamlakshmanan@yahoo.com [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Kalpana, S.; Sangeetha Rani, R.; Satheesh Kumar, R. [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Jose, M.T. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-08-15

    Zn{sub 2}SiO{sub 4}:Mn green phosphor having comparable photoluminescence (PL) efficiency with commercial phosphor has been synthesized at 1000 Degree-Sign C using solid state reactions involving ZnO, silicic acid and manganese acetate. The water of crystallization attached to SiO{sub 2} in silicic acid whose dissociation at 1000 Degree-Sign C seem to promote the sintering efficiency of Zn{sub 2}SiO{sub 4}:Mn. Incremental ZnO addition and re-firing at 1000 Degree-Sign C promote the diffusion rate of ZnO and SiO{sub 2}. The formation of a single crystalline phase of willemite structure in the samples was confirmed by powder XRD measurements. The phosphor exhibit an intense excitation band centered around 275 nm and a relatively weak excitation centered around 380 nm while the broad band green emission peaks at 524 nm. Other parameters studied include PL spectra, grain morphology, ZnO/SiO{sub 2} molar ratio, Mn concentration, co-dopant/flux and the effect of chemical forms of Mn dopant as well as silica on the PL efficiency. - Highlights: Black-Right-Pointing-Pointer Synthesis of Zn{sub 2}SiO{sub 4}:Mn by solid state sintering at a low temperature of 1000 Degree-Sign C in air. Black-Right-Pointing-Pointer Dissociation of water of crystallization in silicic acid promote sintering efficiency. Black-Right-Pointing-Pointer Photoluminescence efficiency comparable with that of the commercial phosphor. Black-Right-Pointing-Pointer Enhancement in luminescence with MgCO{sub 3} co-doping and refiring as well as ZnO addition. Black-Right-Pointing-Pointer XRD confirm single phase willemite structure (rhombohedral) of Zn{sub 2}SiO{sub 4}:Mn.

  16. Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes.

    Science.gov (United States)

    Yao, Ji-Song; Ge, Jing; Han, Bo-Ning; Wang, Kun-Hua; Yao, Hong-Bin; Yu, Hao-Lei; Li, Jian-Hai; Zhu, Bai-Sheng; Song, Ji-Zhong; Chen, Chen; Zhang, Qun; Zeng, Hai-Bo; Luo, Yi; Yu, Shu-Hong

    2018-03-14

    Inorganic perovskite CsPbBr 3 nanocrystals (NCs) are emerging, highly attractive light emitters with high color purity and good thermal stability for light-emitting diodes (LEDs). Their high photo/electroluminescence efficiencies are very important for fabricating efficient LEDs. Here, we propose a novel strategy to enhance the photo/electroluminescence efficiency of CsPbBr 3 NCs through doping of heterovalent Ce 3+ ions via a facile hot-injection method. The Ce 3+ cation was chosen as the dopant for CsPbBr 3 NCs by virtue of its similar ion radius and formation of higher energy level of conduction band with bromine in comparison with the Pb 2+ cation to maintain the integrity of perovskite structure without introducing additional trap states. It was found that by increasing the doping amount of Ce 3+ in CsPbBr 3 NCs to 2.88% (atomic percentage of Ce compared to Pb) the photoluminescence quantum yield (PLQY) of CsPbBr 3 NCs reached up to 89%, a factor of 2 increase in comparison with the native, undoped ones. The ultrafast transient absorption and time-resolved photoluminescence (PL) spectroscopy revealed that Ce 3+ -doping can significantly modulate the PL kinetics to enhance the PL efficiency of doped CsPbBr 3 NCs. As a result, the LED device fabricated by adopting Ce 3+ -doped CsPbBr 3 NCs as the emitting layers exhibited a pronounced improvement of electroluminescence with external quantum efficiency (EQE) from 1.6 to 4.4% via Ce 3+ -doping.

  17. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  18. Photoluminescence properties of erbium-doped III-V semiconductors

    Science.gov (United States)

    Culp, Thomas Dudley

    1998-12-01

    The photoluminescence properties of erbium doped GaAs and GaP epitaxial layers grown by metal-organic vapor phase epitaxy (MOVPE) were investigated. Rare-earth doped semiconductors are of interest because of their potential use in optoelectronic devices which combine sharp rare-earth luminescence with the convenience of electrical excitation via the semiconductor host. One desirable feature of rare-earth luminescence is that the emission wavelength shows exceptional stability against changes in temperature. Optical devices made from erbium doped materials are of particular interest because the I13/2 4→I4 15/2Er 3+ emission at 1.54 mum matches the minimum loss region of silica fibers used in optical communications. Relationships between the growth conditions and the optical, electrical, and physical properties of erbium doped GaAs and GaP were examined. A detailed analysis of the I13/2 4→I4 15/2Er 3+ emission indicated that different erbium source molecules or semiconductor hosts led to the incorporation of several different types of Er3+ centers. The interaction with unintentional oxygen impurities proved to be especially important, leading to the creation of Er-O complexes which showed exceptionally strong, sharp luminescence. In GaAs, these emissions were associated with the efficient Er-2O center. Possible incorporation mechanisms for the Er-2O center were given. In GaP, sharp emissions were proposed to originate from a well-defined Er3+ center with local bonding similar to erbium gallium garnets. The fundamental energy transfer mechanisms between the rare-earth ion and semiconductor host were also investigated. The characteristics of thermally activated quenching processes were examined by modeling the temperature dependence of the Er3+ emission intensity and decay lifetime. These results were used in conjunction with high pressure photoluminescence experiments to identify the two dominant processes responsible for strong quenching of the Er3+ emission at

  19. Carborane-stilbene dyads: the influence of substituents and cluster isomers on photoluminescence properties.

    Science.gov (United States)

    Ferrer-Ugalde, A; Cabrera-González, J; Juárez-Pérez, E J; Teixidor, F; Pérez-Inestrosa, E; Montenegro, J M; Sillanpää, R; Haukka, M; Núñez, R

    2017-02-14

    Two novel styrene-containing meta-carborane derivatives substituted at the second carbon cluster atom (C c ) with either a methyl (Me) or a phenyl (Ph) group are introduced herein along with a new set of stilbene-containing ortho- (o-) and meta- (m-) carborane dyads. The latter set of compounds have been prepared from styrene-containing carborane derivatives via a Heck coupling reaction. High regioselectivity has been achieved for these compounds by using a combination of palladium complexes [Pd 2 (dba) 3 ]/[Pd(t-Bu 3 P) 2 ] as a catalytic system, yielding exclusively E isomers. All compounds have been fully characterised and the crystal structures of seven of them were analysed by X-ray diffraction. The absorption spectra of these compounds are similar to those of their respective fluorophore groups (styrene or stilbene), showing a very small influence of the substituent (Me or Ph) linked to the second C c atom or the cluster isomer (o- or m-). On the other hand, fluorescence spectroscopy revealed high emission intensities for Me-o-carborane derivatives, whereas their Ph-o-carborane analogues evidenced an almost total lack of fluorescence, confirming the significant role of the substituent bound to the adjacent C c in o-carboranes. In contrast, all the m-carborane derivatives display similar photoluminescence (PL) behavior regardless of the substituent attached to the second C c , demonstrating its small influence on emission properties. Additionally, m-carborane derivatives are significantly more fluorescent than their o-counterparts, reaching quantum yield values as high as 30.2%. Regarding solid state emission, only stilbene-containing Ph-o-carborane derivatives, which showed very low fluorescence in solution, exhibited notable PL emission in films attributed to aggregation-induced emission. DFT calculations were performed to successfully complement the photoluminescence studies, supporting the experimentally observed photophysical behavior of the styrene and

  20. EDITORIAL: Plágio e ineditismo dos artigos

    Directory of Open Access Journals (Sweden)

    Fernando Castro Amoras

    2016-06-01

    Full Text Available EDITORIAL: Plágio e ineditismo dos artigos A partir deste ano de 2016, a revista Estação Científica (UNIFAP passou a adotar, como instrumento auxiliar da seleção dos artigos que serão publicados, a checagem de plágio nos conteúdos dos trabalhos que recebemos. Consta no site da revista a informação de que todos os trabalhos passarão por verificação de plágio, e desta forma alerta-se que sejam apresentados à Estação Científica (UNIFAP apenas os trabalhos que tenham autenticidade de autoria.

  1. Facile synthesis and photoluminescence mechanism of graphene quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Zhou, Ligang; Zhang, Shenli; Pan, Wei, E-mail: sjtushelwill@sjtu.edu.cn; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn [Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Wan, Neng [SEU-FEI Nano Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronics Science and Engineering, Southeast University, Nanjing 210096 (China)

    2014-12-28

    We report a facile hydrothermal synthesis of intrinsic fluorescent graphene quantum dots (GQDs) with two-dimensional morphology. This synthesis uses glucose, concentrate sulfuric acid, and deionized water as reagents. Concentrated sulfuric acid is found to play a key role in controlling the transformation of as-prepared hydrothermal products from amorphous carbon nanodots to well-crystallized GQDs. These GQDs show typical absorption characteristic for graphene, and have nearly excitation-independent ultraviolet and blue intrinsic emissions. Temperature-dependent PL measurements have demonstrated strong electron-electron scattering and electron-phonon interactions, suggesting a similar temperature behavior of GQDs to inorganic semiconductor quantum dots. According to optical studies, the ultraviolet emission is found to originate from the recombination of electron-hole pairs localized in the C=C bonds, while the blue emission is from the electron transition of sp{sup 2} domains.

  2. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  3. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  4. Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652

  5. Blue to Yellow Photoluminescence Emission and Photocatalytic Activity of Nitrogen Doping in TiO2 Powders

    Directory of Open Access Journals (Sweden)

    Gabriela Byzynski

    2015-01-01

    Full Text Available The defects caused by doping are important for understanding the increased photocatalytic activities of TiO2:N in organic reactions and in the evaluation of OH radical production after doping. TiO2:N was therefore synthesized using a modified polymeric method and N doping was performed by calcination with urea. The resulting powders were characterized using field emission scanning electron microscopy, X-ray diffraction, diffuse reflectance spectroscopy, Raman spectroscopy, Fourier transformation infrared spectroscopy, and photoluminescence emission spectroscopy (PL. N doping did not alter the morphology of the nanoparticles, and the anatase phase predominated, with the retention of the rutile phase. The band gap values, superficial areas, and crystallite sizes of the powders decreased after doping. The PL results showed an additional energy level in the TiO2:N band gap structure as a result of TiO2 lattice defects caused by doping. At low N contents, the powders showed continuous emissions from the blue region to the yellow region and a high N content shifted the PL emissions to the red region. These results suggest that the use of these powders could increase the efficiencies of solar cells and water-splitting processes. The photocatalytic activity of the powders under UVC illumination was confirmed for different organic dye molecules. The OH radical production did not change extensively after doping, as shown by experiments with terephthalic acid, and higher photocatalytic efficiencies in Rhodamine-B degradation under UVC illumination were achieved using the doped samples.

  6. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    CERN Document Server

    Chen, S J; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn sub 3 P sub 2. Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I sub 4) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrate...

  7. Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots

    Science.gov (United States)

    Ge, Shuaipeng; Zhang, Lisheng; Wang, Peijie; Fang, Yan

    2016-01-01

    Nanoscale phosphorene quantum dots (PQDs) with few-layer structures were fabricated by pulsed laser ablation of a bulk black phosphorus target in diethyl ether. An intense and stable photoluminescence (PL) emission of the PQDs in the blue-violet wavelength region is clearly observed for the first time, which is attributed to electronic transitions from the lowest unoccupied molecular orbital (LUMO) to the highest occupied molecular orbital (HOMO) and occupied molecular orbitals below the HOMO (H-1, H-2), respectively. Surprisingly, the PL emission peak positions of the PQDs are not red-shifted with progressively longer excitation wavelengths, which is in contrast to the cases of graphene and molybdenum disulphide quantum dots. This excitation wavelength-independence is derived from the saturated passivation on the periphery and surfaces of the PQDs by large numbers of electron-donating functional groups which cause the electron density on the PQDs to be dramatically increased and the band gap to be insensitive to the quantum size effect in the PQDs. This work suggests that PQDs with intense, stable and excitation wavelength-independent PL emission in the blue-violet region have a potential application as semiconductor-based blue-violet light irradiation sources. PMID:27265198

  8. Influence of metallic and dielectric nanowire arrays on the photoluminescence properties of P3HT thin films

    International Nuclear Information System (INIS)

    Handloser, M; Wisnet, A; Scheu, C; Hartschuh, A; Dunbar, R B; Altpeter, P; Schmidt-Mende, L

    2012-01-01

    The optical properties of organic semiconductor thin films deposited on nanostructured surfaces are investigated using time-resolved two-photon photoluminescence (PL) microscopy. The surfaces consist of parallel aligned metallic or dielectric nanowires forming well-defined arrays on glass substrates. Keeping the nanowire dimensions constant and varying only their spacing from 40 to 400 nm, we study the range of different types of nanowire–semiconductor interactions. For silver nanowires and spacings below 100 nm, the PL intensity and lifetime of P3HT and MDMO-PPV decrease rapidly due to the short-ranged metal-induced quenching that dominates the PL response with respect to a possible plasmonic enhancement of optical transition rates. In the case of P3HT however, we observe an additional longer-ranged reduction of non-radiative losses for both metallic and dielectric nanowires that is not observed for MDMO-PPV. Excitation polarization dependent measurements indicate that this reduction is due to self-assembly of the P3HT polymer chains along the nanowires. In conclusion, nanostructured surfaces, when fabricated across large areas, could be used to control film morphologies and to improve energy transport and collection efficiencies in P3HT-based solar cells. (paper)

  9. Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium

    Science.gov (United States)

    Stojadinović, Stevan; Tadić, Nenad; Ćirić, Aleksandar; Vasilić, Rastko

    2018-03-01

    Plasma electrolytic oxidation was used for synthesis of Eu3+ doped monoclinic HfO2 coatings on hafnium substrate. Results of photoluminescence (PL) measurements show the existence of two distinct regions: one that is related to the blue emission originating from oxygen vacancy defects in HfO2 and the other one characterized with a series of sharp orange-red emission peaks related to f-f transitions of Eu3+ from excited level 5D0 to lower levels 7FJ (J = 0, 1, 2, 3, and 4). PL peaks appearing in excitation spectra of obtained coatings are attributed either to charge transfer state of Eu3+ or to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold. PL of formed coatings increases with PEO time due to an increase of oxygen vacancy defects and the content of Eu3+. Acquired experimental data suggest that hypersensitive electrical dipole transition is much more intense than the magnetic dipole transition, indicating that Eu3+ ions occupy a non-inversion symmetry sites.

  10. Photoluminescence study on InGaAs/InP MQW structure with F+, Ne+-implant induced compositional disordering

    International Nuclear Information System (INIS)

    Zhao Jie; Wang Yongchen

    1994-01-01

    A photoluminescence (PL) study on InGaAs/InP multiple-quantum wells (MQW) structure with F + , Ne + implant induced compositional disordering (IICD) is presented. The effects of energy shift of PL peak depend on ion dose, annealing conditions, target temperature and implanted ion species. The results indicate that the optimum annealing condition is approximately 750 degree C for 30 s,, the ion dose which caused biggest blue shift is around 1 x 10 14 cm -2 for room temperature implantation and 5 x 10 14 cm -2 for elevated temperature of 200 degree C implantation. With the same condition of implantation and annealing, F + and Ne + implantation induced approximately the same blue shift of PL peak. This result suggests that the radiation enhanced diffusion by neutral implantation dominates the IICD processing. The secondary ion mass spectroscopy analysis indicates that the ion implantation caused slightly layer interdiffusion which makes the square potential well smear and results in the band gap blue shift

  11. Oxygen deficiency effects on recombination lifetime and photoluminescence characteristics of ZnO thin films; correlation with crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre; Tuezemen, S. [Ataturk University, Art and Science Faculty, Physics Department, Erzurum (Turkey); Meral, Kadem; Onganer, Y. [Ataturk University, Art and Science Faculty, Chemistry Department, Erzurum (Turkey)

    2009-03-15

    The photoluminescence (PL), recombination lifetime (RL), and X-ray diffraction (XRD) spectra of the samples grown at various O{sub 2} fractions of 0.290 (Zn-rich), 0.585 (moderate), and 0.836 (O-rich) over the total pressures in the growth chamber were investigated. XRD measurements revealed that all the films show highly preferred (0002) orientation. The PL measurements exhibit different dominant emissions in the ultraviolet (UV), violet and blue regions for Zn-rich, moderate and O-rich samples, respectively. Well-known green emission and high intensity of free exciton (FX) transition has been observed in Zn-rich sample after the sample is annealed at vacuum probably due to the oxygen deficiencies. Annealing the moderate sample gives rise to the UV emission at energy of 3.263 eV similar to the observed PL emission spectrum for the Zn-rich thin film. O-rich thin film exhibits a 338 meV acceptor level above the valance band maximum, most probably related to zinc vacancy (V{sub Zn}). Free exciton RL measurements result in 568.23, 397.65, and 797.46 ps for Zn-rich, moderate, and O-rich thin films, respectively. A good correlation was found between crystallite size and the lifetime values. (orig.)

  12. Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene

    International Nuclear Information System (INIS)

    Wang, Shugang; Li, Yaoxian; Bai, Jie; Yang, Qingbiao; Song, Yan; Zhang, Chaoqun

    2009-01-01

    The major objective of this work was to detect the change of photoluminescence (PL) intensity of CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electrospinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyl-trimethylammonium bromide (CTAB), and finally, transferred into PS matrix to form CdTe/PS nanofibres by electrospinning. Then, CdTe/PS nanofibres were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM) to observe their morphology and distribution, respectively. The selective area electronic diffraction (SAED) pattern proved that the CdTe NPs were cubic lattice. The PL spectrum indicated that CdTe NPs have been transferred into PS nanofibres, and the PL intensity of CdTe NPs in the nanofibres was even higher than that before CdTe NPs were introduced into PS nanofibres. Moreover, X-ray photoelectron spectra (XPS) revealed that thiol-stabilized CdTe NPs were enwrapped by CTAB, and PS acted as a dispersant in the process of electrospinning. (author)

  13. An Elementary Test of the Normal 2PL Model against the Normal 3PL Alternative. Research Report. ETS RR-06-14

    Science.gov (United States)

    Haberman, Shelby J.

    2006-01-01

    A simple score test of the normal two-parameter logistic (2PL) model is presented that examines the potential attraction of the normal three-parameter logistic (3PL) model for use with a particular item. Application is made to data from a test from the Praxis™ series. Results from this example raise the question whether the normal 3PL model should…

  14. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    Science.gov (United States)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and

  15. Multicolor photoluminescence in ITQ-16 zeolite film

    KAUST Repository

    Chen, Yanli

    2016-09-07

    Exploring the native defects of zeolites is highly important for understanding the properties of zeolites, such as catalysis and optics. Here, ITQ-16 films were prepared via the secondary growth method in the presence of Ge atoms. Various intrinsic defects of ITQ-16 films were fully studied through photoluminescence and FTIR characterizations. It was found that both the as-synthesized and calcined ITQ-16 films displayed multicolor photoluminescence including ultraviolet, blue, green and red emissions by exciting upon appropriate wavelengths. The results indicate that Si―OH and non-bridging oxygen hole centers(NBOHCs) are responsible for the origin of green and red emissions at 540―800 nm, while according to a variety of emission bands of calcined ITQ-16 film, blue emission bands at around 446 and 462 nm are attributed to peroxy free radicals(≡SiO2), ultraviolet emissions ranging from 250 nm to 450 nm are suggested originating from a singlet-to-triplet transition of two-fold-coordinated Si and Ge, respectively. © 2016, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH.

  16. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    International Nuclear Information System (INIS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-01-01

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  17. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qingxue [School of Physics, Shandong University, Jinan, 250100 (China); Liu, Rong [Department of Fundamental Theories, Shandong Institute of Physical Education and Sports, Jinan 250063 (China); Xiao, Hongdi, E-mail: hdxiao@sdu.edu.cn [School of Physics, Shandong University, Jinan, 250100 (China); Cao, Dezhong; Liu, Jianqiang; Ma, Jin [School of Physics, Shandong University, Jinan, 250100 (China)

    2016-11-30

    Highlights: • GaN film with a strong phase-separated InGaN/GaN layer was etched by electrochemical etching. • Vertically aligned nanopores in n-GaN films were buried underneath the InGaN/GaN structures. • The relaxation of compressive stress in the MQW structure was found by PL and Raman spectra. - Abstract: A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  18. Amenazas toxicológicas del plástico

    Science.gov (United States)

    El plástico representa el 80 de la basura marina que se origina de desperdicios terrestres. La presencia de estos desechos pásticos tiene un impacto negativo en el medioambiente, el turismo, la industria de la pesca y la navegación.

  19. Education's "Three Mile Island": PL 94-142.

    Science.gov (United States)

    Vernon, McCay

    1981-01-01

    PL 94-142 is viewed as educationally and psychologically destructive to disabled students. It is also described as financially devastating to local school districts since it mandates that: (1) Cost cannot be considered a factor in developing educational programs for handicapped children; and (2) The most money be spent on children least likely to…

  20. Influence of deposition rate on PL spectrum and surface morphology ...

    Indian Academy of Sciences (India)

    Influence of deposition rate on PL spectrum and surface morphology of ZnO nanolayers deposited on Si (100) substrate. A ZENDEHNAM. ∗. , M MIRZAEE and S MIRI. Thin Film Laboratory, Department of Physics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran. MS received 26 March 2012; revised 5 May 2012.

  1. The System of Register Labels in plWordNet

    Directory of Open Access Journals (Sweden)

    Marek Maziarz

    2015-12-01

    Full Text Available The System of Register Labels in plWordNet Stylistic registers influence word usage. Both traditional dictionaries and wordnets assign lexical units to registers, and there is a wide range of solutions. A system of register labels can be flat or hierarchical, with few labels or many, homogeneous or decomposed into sets of elementary features. We review the register label systems in lexicography, and then discuss our model, designed for plWordNet, a large wordnet for Polish. There follows a detailed comparative analysis of several register systems in Polish lexical resources. We also present the practical effect of the adoption of our flat, small and homogeneous system: a relatively high consistency of register assignment in plWordNet, as measured by inter-annotator agreement on a manageable sample. Large-scale conclusions for the whole plWordNet remain to be made once the annotation has been completed, but the experience half-way through this labour-intensive exercise is very encouraging.

  2. 3PL: A Useful Model with a Mild Estimation Problem

    Science.gov (United States)

    Partchev, Ivailo

    2009-01-01

    This author has always felt a bit uneasy about the three parameter logistic (3PL) model because it seems about as prone to discovering guessing when guessing does not take place, as the Rasch model is reluctant to admit that guessing might ever take place at all. However, the author has attributed this to the prior "magic" employed when estimating…

  3. Decontamination of Escherichia coli O157:H7 on green onions using pulsed light (PL) and PL-surfactant-sanitizer combinations.

    Science.gov (United States)

    Xu, Wenqing; Chen, Haiqiang; Huang, Yaoxin; Wu, Changqing

    2013-08-16

    Imported green onion has been associated with three large outbreaks in the USA. Contamination has been found on both domestic and imported green onions. The objective of our study was to investigate Escherichia coli O157:H7 inactivation efficacy of pulsed light (PL) as well as its combination with surfactant and/or sanitizers on green onions. Green onions were cut into two segments, stems and leaves, to represent two different matrixes. Stems were more difficult to be decontaminated. Spot and dip inoculation methods were compared and dipped inoculated green onions were found to be more difficult to be decontaminated. Results showed that 5s dry PL (samples were not immersed in water during PL treatment) and 60s wet PL (samples were immersed in water and stirred during PL treatment) treatments provided promising inactivation efficacy (>4log10CFU/g) for spot inoculated stems and leaves. For dip inoculated green onions, 60s wet PL treatment was comparable with 100ppm chlorine washing, demonstrating that PL could be used as an alternative to chlorine. To further increase the degree of microbial inactivation, combined treatments were applied. PL combined with surfactant (SDS) was found to be more effective than single treatments of PL, SDS, chlorine, citric acid, thymol, and hydrogen peroxide, and binary combined treatments of PL with one of those chemicals. Addition of chlorine or hydrogen peroxide to the PL-SDS combination did not further enhanced its microbial inactivation efficacy. The combination of PL and 1000ppm of SDS reduced the E. coli O157:H7 populations dip inoculated on the stems and leaves of green onions by 1.4 and 3.1log10CFU/g, respectively. Our findings suggest that PL could potentially be used for decontamination of E. coli O157:H7 on green onions, with wet PL added with SDS being the most effective PL treatment. © 2013.

  4. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  5. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence.

    Science.gov (United States)

    Petryayeva, Eleonora; Algar, W Russ

    2016-04-01

    Point-of-care (POC) diagnostic technologies are needed to improve global health and smartphones are a prospective platform for these technologies. While many fluorescence or photoluminescence-based smartphone assays have been reported in the literature, common shortcomings are the requirement of an excitation light source external to the smartphone and complicated integration of that excitation source with the smartphone. Here, we show that the photographic flash associated with the smartphone camera can be utilized to enable all-in-one excitation and imaging of photoluminescence (PL), thus eliminating the need for an excitation light source external to the smartphone. A simple and low-cost 3D-printed accessory was designed to create a dark environment and direct excitation light from the smartphone flash onto a sample. Multiple colors and compositions of semiconductor quantum dot (QD) were evaluated as photoluminescent materials for all-in-one smartphone excitation and imaging of PL, and these were compared with fluorescein and R-phycoerythrin (R-PE), which are widely utilized molecular and protein materials for fluorescence-based bioanalysis. The QDs were found to exhibit much better brightness and have the best potential for two-color detection. A model protein binding assay with a sub-microgram per milliliter detection limit and a Förster resonance energy transfer (FRET) assay for proteolytic activity were demonstrated, including imaging with serum as a sample matrix. In addition, FRET within tandem conjugates of a QD donor and fluorescent dye acceptor enabled smartphone detection of dye fluorescence that was otherwise unobservable without the QD to enhance its brightness. The ideal properties of photoluminescent materials for all-in-one smartphone excitation and imaging are discussed in the context of several different materials, where QDs appear to be the best overall material for this application.

  6. Contributions to the photoluminescence activity in the UV range in amorphous-SiO2

    International Nuclear Information System (INIS)

    Cannas, M.; Agnello, S.; Boscaino, R.; Gelardi, F.M.; Leone, M.

    2000-01-01

    We report a detailed experimental study on the photoluminescence activity in the UV range (4.0-4.5 eV) performed in natural and synthetic silica types both as grown and after γ exposure. Our results allow us to add new insight on the well-known emissions at 4.2 and 4.4 eV as regard their vacuum-UV excitation spectra and their kinetics behaviors. Moreover, a new contribution to the photoluminescence at 4.4 eV, excited within the absorption E band at 7.6 eV and exhibiting a strong temperature dependence, is identified and discussed in the light of the structural models reported in literature

  7. Enhancement of two-photon photoluminescence and SERS for low-coverage gold films

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Frydendahl, Christian

    2016-01-01

    Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images...... exhibit a strong increase in the level of TPL signals for films thicknesses 3-8-nm, near the percolation threshold. For some thicknesses, TPL measurements reveal super-cubic dependences on the incident power. We ascribe this feature to the occurrence of very strongly localized and enhanced electromagnetic...

  8. Electric field-induced hole injection-enhanced photoluminescence in a N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine-based emitter

    International Nuclear Information System (INIS)

    Xu-Xie Hui-Na; Li Wen-Bin; Peng Huan; He Yun; Yu Hao-Miao; Hou Xiao-Yuan

    2014-01-01

    Non-monotonic, asymmetrical electric field dependence of photoluminescence (PL) intensity is observed in a monolayer sample of tris-(8-hydroxyquinoline) aluminum (AlQ) doped N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-benzidine (TPD). A possible model is proposed: the charge separation from the dissociated photoexcited excitons causes energy band bending in the organic films and improves the hole injection from the electrode, which brings about the extra fluorescence. This mechanism is further verified by a series of experiments using a series of samples, variously featuring symmetrical electrodes, block layers, and hosts with lower hole mobilities. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Determination of hole g-factor in InAs/InGaAs/InAlAs quantum wells by magneto-photoluminescence studies

    Science.gov (United States)

    Terent'ev, Ya. V.; Danilov, S. N.; Durnev, M. V.; Loher, J.; Schuh, D.; Bougeard, D.; Ivanov, S. V.; Ganichev, S. D.

    2017-02-01

    A circularly polarized magneto-photoluminescence (magneto-PL) technique has been applied to investigate the Zeeman effect in InAs/InGaAs/InAlAs quantum wells (QWs) in the Faraday geometry. Structures with different thicknesses of the QW barriers have been studied in the magnetic field parallel and tilted with respect to the sample normal. The effective electron-hole g-factor has been found by measurement of splitting of polarized magneto-PL lines. Landé factors of electrons have been calculated using the 14-band k . p method, and the g-factor of holes was determined by subtracting the calculated contribution of the electrons from the effective electron-hole g-factor. Anisotropy of the hole g-factor has been studied applying the tilted magnetic field.

  10. Relationship between Crystal Shape, Photoluminescence, and Local Structure in SrTiO3 Synthesized by Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Luís F. da Silva

    2012-01-01

    Full Text Available This paper describes the effect of using different titanium precursors on the synthesis and physical properties of SrTiO3 powders obtained by microwave-assisted hydrothermal method. X-ray diffraction measurements, X-ray absorption near-edge structure (XANES spectroscopy, field emission scanning electron microscopy (FE-SEM, and high-resolution transmission electron microscopy (HRTEM were carried out to investigate the structural and optical properties of the SrTiO3 spherical and cubelike-shaped particles. The appropriate choice of the titanium precursor allowed the control of morphological and photoluminescence (PL properties of SrTiO3 compound. The PL emission was more intense in SrTiO3 samples composed of spherelike particles. This behavior was attributed to the existence of a lower amount of defects due to the uniformity of the spherical particles.

  11. UV-laser-light-controlled photoluminescence of metal oxide nanoparticles in different gas atmospheres: BaTiO3, SrTiO3 and HfO2

    International Nuclear Information System (INIS)

    Mochizuki, Shosuke; Saito, Takashi; Yoshida, Kaori

    2012-01-01

    The photoluminescence (PL) enhancement has been studied at room temperature using various specimen atmospheres (O 2 gas, CO 2 gas, CO 2 -H 2 mixture gas, Ar-H 2 mixture gas and vacuum) under 325 nm laser light irradiation on various metal oxides. Of them, the results obtained for BaTiO 3 nanocrystals, SrTiO 3 ones and HfO 2 powder crystal are given in the present paper. Their PL were considerably increased in intensity by irradiation of 325 nm laser light in CO 2 gas and CO 2 -H 2 mixture gas. The cause of the PL intensity enhancements is discussed in the light of the exciton theory, the defect chemistry and the photocatalytic theory. The results may be applied for the utilization of greenhouse gas (CO 2 ) and the optical sensor for CO 2 gas.

  12. Strain engineering of quantum dots for long wavelength emission: Photoluminescence from self-assembled InAs quantum dots grown on GaAs(001) at wavelengths over 1.55 μm

    International Nuclear Information System (INIS)

    Shimomura, K.; Kamiya, I.

    2015-01-01

    Photoluminescence (PL) at wavelengths over 1.55 μm from self-assembled InAs quantum dots (QDs) grown on GaAs(001) is observed at room temperature (RT) and 4 K using a bilayer structure with thin cap. The PL peak has been known to redshift with decreasing cap layer thickness, although accompanying intensity decrease and peak broadening. With our strain-controlled bilayer structure, the PL intensity can be comparable to the ordinary QDs while realizing peak emission wavelength of 1.61 μm at 4 K and 1.73 μm at RT. The key issue lies in the control of strain not only in the QDs but also in the cap layer. By combining with underlying seed QD layer, we realize strain-driven bandgap engineering through control of strain in the QD and cap layers

  13. PL-1 program system for generalized Patterson superpositions. [PL1GEN, SYMPL1, and ALSPL1, in PL/1 for IBM 360/65 computer

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, C.R.; Babich, M.W.; Jacobson, R.A.

    1977-01-01

    A new system of three programs written in PL/1 can calculate symmetry and Patterson superposition maps for triclinic, monoclinic, and orthorhombic space groups as well as any space group reducible to one of these three. These programs are based on a system of FORTRAN programs developed at Ames Laboratory, but are more general and have expanded utility, especially with regard to large unit cells. The program PLIGEN calculates a direct access data set, SYMPL1 calculates a direct access symmetry map, and ALSPL1 calculates a superposition map using one or multiple superpositions. A detailed description of the use of these programs including symbolic program listings is included. 2 tables.

  14. Facile synthesis of CuInS{sub 2}/ZnS quantum dots with highly near-infrared photoluminescence via phosphor-free process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruili; Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan (China); Wang, Yiqian [Qingdao University, The Cultivation Base for State Key Laboratory (China)

    2013-09-15

    We present the synthesis of CuInS{sub 2} quantum dots (QDs) with a size range of 3-4 nm through a phosphor-free method. The photoluminescence (PL) properties of CuInS{sub 2} QDs synthesized using various Cu/In molar ratios were investigated. With the decrease of Cu/In molar ratio, the PL peak wavelength revealed a clear blue shift by ca. 100 nm and a noticeable increase in PL intensity. Being coated with a ZnS shell on CuInS{sub 2} QDs, the resulting core/shell QDs exhibited a dramatic increase of PL efficiency and stability, with the maximum PL efficiency up to 39 %. This is ascribed to the efficient reduction of non-radiative recombination after surface modification. In addition, the PL peak wavelengths were tuned from 670 to 800 nm. The transmission electron microscopy observation and X-ray diffraction analysis indicated that the CuInS{sub 2} and CuInS{sub 2}/ZnS QDs revealed a 'dot' shaped morphology and exhibited a wurtzite structure. Time-resolved fluorescence spectroscopy revealed that CuInS{sub 2}/ZnS core/shell QDs apparently exhibited a slow decay compared with the CuInS{sub 2} cores (214 ns for CuInS{sub 2}/ZnS QDs and 172 ns for CuInS{sub 2} cores). Because of the tunable near-infrared range emission, high stability and long lifetimes of the CuInS{sub 2}/ZnS QDs, they will be very useful in applications such as solar cell and biological imaging.

  15. Facile synthesis of CuInS2/ZnS quantum dots with highly near-infrared photoluminescence via phosphor-free process

    Science.gov (United States)

    Zhang, Ruili; Yang, Ping; Wang, Yiqian

    2013-09-01

    We present the synthesis of CuInS2 quantum dots (QDs) with a size range of 3-4 nm through a phosphor-free method. The photoluminescence (PL) properties of CuInS2 QDs synthesized using various Cu/In molar ratios were investigated. With the decrease of Cu/In molar ratio, the PL peak wavelength revealed a clear blue shift by ca. 100 nm and a noticeable increase in PL intensity. Being coated with a ZnS shell on CuInS2 QDs, the resulting core/shell QDs exhibited a dramatic increase of PL efficiency and stability, with the maximum PL efficiency up to 39 %. This is ascribed to the efficient reduction of non-radiative recombination after surface modification. In addition, the PL peak wavelengths were tuned from 670 to 800 nm. The transmission electron microscopy observation and X-ray diffraction analysis indicated that the CuInS2 and CuInS2/ZnS QDs revealed a "dot" shaped morphology and exhibited a wurtzite structure. Time-resolved fluorescence spectroscopy revealed that CuInS2/ZnS core/shell QDs apparently exhibited a slow decay compared with the CuInS2 cores (214 ns for CuInS2/ZnS QDs and 172 ns for CuInS2 cores). Because of the tunable near-infrared range emission, high stability and long lifetimes of the CuInS2/ZnS QDs, they will be very useful in applications such as solar cell and biological imaging.

  16. Nanopowder Metal Oxide for Photoluminescent Gas Sensing

    Science.gov (United States)

    Zhyrovetsky, V. M.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.

    2017-02-01

    Gas sensing properties of metal oxide nanopowders (ZnO, TiO2, WO3, SnO2) with average diameters of 40-60 nm were analyzed by room-temperature photoluminescence spectroscopy. The influence of gas environment (O2, N2, H2, CO, CO2) on the emission intensity was investigated for metal oxide nanopowders with surface doped by impurities (Pt, Ag, Au, Sn, Ni or Cu). Established physicochemical regularities of modification of surface electronic states of initial and doped nanopowders during gas adsorption. The nature of metal oxide nanopowder gas-sensing properties (adsorption capacity, sensitivity, selectivity) has been established and the design and optimal materials for the construction of the multi-component sensing matrix have been selected.

  17. Nanopowder Metal Oxide for Photoluminescent Gas Sensing

    Directory of Open Access Journals (Sweden)

    V. M. Zhyrovetsky

    2017-02-01

    Full Text Available Abstract Gas sensing properties of metal oxide nanopowders (ZnO, TiO2, WO3, SnO2 with average diameters of 40–60 nm were analyzed by room-temperature photoluminescence spectroscopy. The influence of gas environment (O2, N2, H2, CO, CO2 on the emission intensity was investigated for metal oxide nanopowders with surface doped by impurities (Pt, Ag, Au, Sn, Ni or Cu. Established physicochemical regularities of modification of surface electronic states of initial and doped nanopowders during gas adsorption. The nature of metal oxide nanopowder gas-sensing properties (adsorption capacity, sensitivity, selectivity has been established and the design and optimal materials for the construction of the multi-component sensing matrix have been selected.

  18. Effects of InAlAs strain reducing layer on the photoluminescence properties of InAs quantum dots embedded in InGaAs/GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingmin, E-mail: konglm@qq.com [School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000 (China); Sun, Wei [SEM School of Electromechanical Engineering, Weifang Engineering Vocational College, Qingzhou 262500 (China); Feng, Zhe Chuan, E-mail: zcfeng@nut.edu.tw [Institute of Photonics and Optoelectronics, Department of Electrical Engineering, and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106-17, Taiwan (China); Xie, Sheng [School of Electronic and Information Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yunqing; Wang, Rui; Zhang, Cunxi; Zong, Zhaocun; Wang, Hongxia; Qiao, Qian [Department of Physics, Zhejiang Ocean University, Zhoushan 316000 (China); Wu, Zhengyun [Department of Physics, Xiamen University, Xiamen 361005 China (China)

    2014-07-01

    Two kinds of self-assembled quantum dots (QDs) embedded within InGaAs/GaAs quantum wells were grown by molecular beam epitaxy: one was capped with an InAlAs strain reducing (SR) layer, while the other was not. Their emission dynamics was investigated by time-resolved and temperature dependent (TD) photoluminescence (PL) measurements. A significant redshift can be observed in the emission peak position of InAs QDs with thin InAlAs SR cap layer, which results from SR effects. Different behaviors of the integrated PL intensity for the samples with or without InAlAs layer may be ascribed to the reduced carrier transition at higher temperature for the higher energy barrier of the InAlAs layer, and the TD mode of carrier migration. The PL decay time of quantum dots grown with InAlAs layer was much longer than that without the layer, which implies that the InAlAs layer with higher energy barrier may enhance the quantum restriction of carriers in InAs QDs. These observations are discussed from the viewpoint of strain compensation and potential barrier variation with SR layers. Our experiments also demonstrate that the main mode of carrier migration is quantum tunneling effect at lower temperature, while it is quantum transition at higher temperature. The results demonstrate the importance of InAlAs SR layer for the optical quality of InAs QDs. - Highlights: • InAs quantum dots (QDs) were grown on GaAs. • A thin InAlAs layer was grown on InAs QDs. • Temperature dependent photoluminescence (PL) and time-resolved PL were carried out. • Both a redshift and a double exponential decay of PL emission were generated by the InAlAs layer.

  19. Tunable Photoluminescent Core/Shell Cu(+)-Doped ZnSe/ZnS Quantum Dots Codoped with Al(3+), Ga(3+), or In(3+).

    Science.gov (United States)

    Cooper, Jason K; Gul, Sheraz; Lindley, Sarah A; Yano, Junko; Zhang, Jin Z

    2015-05-13

    Semiconductor quantum dots (QDs) with stable, oxidation resistant, and tunable photoluminescence (PL) are highly desired for various applications including solid-state lighting and biological labeling. However, many current systems for visible light emission involve the use of toxic Cd. Here, we report the synthesis and characterization of a series of codoped core/shell ZnSe/ZnS QDs with tunable PL maxima spanning 430-570 nm (average full width at half-maximum of 80 nm) and broad emission extending to 700 nm, through the use of Cu(+) as the primary dopant and trivalent cations (Al(3+), Ga(3+), and In(3+)) as codopants. Furthermore, we developed a unique thiol-based bidentate ligand that significantly improved PL intensity, long-term stability, and resilience to postsynthetic processing. Through comprehensive experimental and computational studies based on steady-state and time-resolved spectroscopy, electron microscopy, and density functional theory (DFT), we show that the tunable PL of this system is the result of energy level modification to donor and/or acceptor recombination pathways. By incorporating these findings with local structure information obtained from extended X-ray absorption fine structure (EXAFS) studies, we generate a complete energetic model accounting for the photophysical processes in these unique QDs. With the understanding of optical, structural, and electronic properties we gain in this study, this successful codoping strategy may be applied to other QD or related systems to tune the optical properties of semiconductors while maintaining low toxicity.

  20. Effect of Reaction Parameters on Morphology and Photoluminescence of Intrinsic and Mn-doped ZnS Microspheres Synthesized by Hydrothermal Method

    Science.gov (United States)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti; Tiwari, Archana; Chatterjee, Somenath

    2017-11-01

    Intrinsic and Manganese (Mn)-doped ZnS microspheres have been synthesized by hydrothermal method. Thiourea and amino acid, and uc(l)-histidine have been used as sulfur source and capping agent, respectively. The synthesized materials have been characterized using x-ray diffraction, field emission scanning electron microscopy, photoluminescence (PL) and UV-Vis spectroscopy. The above-said characterizations conveyed the information regarding the crystallinity, existence of microspheres, size and optical properties of synthesized ZnS and Mn-doped ZnS samples. Formation of microspheres of intrinsic and Mn-doped ZnS has been observed when the reaction parameters are kept at 150 °C for 4 h, and similarly, the micropores have been noticed when reaction parameters are kept at 150 °C for 8 h. The PL of ZnS microspheres shows multiple defect emissions. The nature of PL for pure ZnS has been regulated based on reaction parameters. Doping of Mn in the ZnS enhances the PL emission. This study reveals the role of reaction parameters and effect of Mn doping on tuning the morphology and emission behavior of ZnS microspheres.

  1. Photoluminescence of double core/shell infrared (CdSeTe)/ZnS quantum dots conjugated to Pseudo rabies virus antibodies

    Science.gov (United States)

    Torchynska, T. V.; Casas Espinola, J. L.; Jaramillo Gómez, J. A.; Douda, J.; Gazarian, K.

    2013-06-01

    Double core CdSeTe/ZnS quantum dots (QDs) with emission at 800 nm (1.60 eV) have been studied by photoluminescence (PL) and Raman scattering methods in the non-conjugated state and after the conjugation to the Pseudo rabies virus (PRV) antibodies. The transformation of PL spectra, stimulated by the electric charge of antibodies, has been detected for the bioconjugated QDs. Raman scattering spectra are investigated with the aim to reveal the CdSeTe core compositions. The double core QD energy diagrams were designed that help to analyze the PL spectra and their transformation at the bioconjugation. It is revealed that the interface in double core QDs has the type II quantum well character that permits to explain the near IR optical transition (1.60 eV) in the double core QDs. It is shown that the essential transformation of PL spectra is useful for the study of QD bioconjugation with specific antibodies and can be a powerful technique in early medical diagnostics.

  2. Transmission electron microscopy and photoluminescence characterization of InGaAs strained quantum wires on GaAs vicinal (110) substrates

    CERN Document Server

    Shim, B R; Ota, T; Kobayashi, K; Maehashi, K; Nakashima, H; Lee, S Y

    1999-01-01

    We have used transmission electron microscopy (TEM) and photoluminescence (PL) to study InGaAs/AlGaAs strained quantum wires (QWRs) grown by molecular beam epitaxy (MBE) on GaAs vicinal (110) substrates. The cross-sectional TEM image reveals that InGaAs QWRs structures are naturally formed on AlGaAs giant steps. In the plan-view TEM images, the fringe pattern in the giant-step region is observed for In sub x Ga sub 1 sub - sub x As layers with x<= 0.4 We measured the separation of the fringe in the plan-view TEM images and compared the result with the calculated fringe separation. From this result, we conclude that the fringes observed in the plan-view TEM images are moire fringes. PL spectra of the InGaAs QWRs samples reveal 80-meV shifts to lower energy with respect to the spectrum of a quantum well (QWL) grown on a (001) substrate under the same conditions. We also measured the polarization anisotropy of the PL spectra from the QWRs. The PL peak shifts systematically toward higher energy with decreasing...

  3. International P/L Insurance Output, Input, and Productivity Comparisons

    OpenAIRE

    Mary A. Weiss

    1991-01-01

    This research provides (bilateral) divisia and multilateral divisia indexes of output, input, and productivity for the property-liability (P-L) insurance industry for the following countries: United States, West Germany, Switzerland, France, and Japan. The time period studied is 1975 to 1987. The results indicate that considerable diversity exists among different countries, with Japan showing the weakest productivity growth. The United States and West Germany are associated overall with high ...

  4. Dziennikarze obywatelscy czy sprzedawcy rozrywki? Rzecz o Demotywatorach.pl

    Directory of Open Access Journals (Sweden)

    Agnieszka Barczyk

    2015-11-01

    Full Text Available The Polish Web site called Demotywatory.pl was established in 2008. It is a response to popular in the USA Motivators. Nowadays thousands of Internet users visit this Web site every day. Currently we have to redefine the basic categories: the text, the sender, the recipient. „Demot” is a specific message (interesting picture and intelligent buzzword Anyone can become a virtual publicist and say about important issues. This article tries to answer on the title question.

  5. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Shirazi, Roza; Kovacs, Andras; Dan Corell, Dennis; Gritti, Claudia; Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul; Kardynal, Beata

    2014-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active

  6. Growth process of microcrystalline silicon studied by combined photoluminescence and Raman investigations

    Energy Technology Data Exchange (ETDEWEB)

    Klossek, A.; Mankovics, D.; Ratzke, M. [Brandenburg University of Technology, Konrad-Wachsmann-Allee 1, D-03046 Cottbus (Germany); Arguirov, T.; Kittler, M. [Brandenburg University of Technology, Konrad-Wachsmann-Allee 1, D-03046 Cottbus (Germany); IHP Microelectronics, Im Technologiepark 25, D-15236 Frankfurt (Oder) (Germany); Kirner, S.; Gabriel, O.; Stannowski, B.; Schlatmann, R. [Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin, Helmholtz-Zentrum Berlin, Berlin (Germany); Friedrich, F. [Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin, Helmholtz-Zentrum Berlin, Berlin (Germany); Department of Semiconductor Devices, Technische Universität Berlin, Sekr. E2, Einsteinufer 19, D-10587 Berlin (Germany)

    2013-12-14

    Plasma enhanced chemical vapor deposition of silicon on glass substrates leads to formation of silicon amorphous films with partial crystallization of nano-grains in the amorphous matrix. We studied the transition of amorphous to microcrystalline silicon during such deposition. Formation of silicon nano-grains was detected by means of photoluminescence and Raman spectroscopy. The crystalline fraction and the mean size of the nano-grains were estimated by the position and the intensity of the peaks in the Raman spectrum. We showed that the fraction of crystalline silicon in the layers and the size of the nano-grains are strongly dependent on the growth conditions. The photoluminescence spectra exhibit distinct features related to recombination in the amorphous and in the crystalline phases. A significant narrowing of the photoluminescence peak related to the amorphous phase with increasing crystalline fraction indicates a structural modification in the amorphous silicon. It suggests an ordering process occurring before the start of the actual crystallization. A peak at about 1.4 eV was associated with isolated nano-crystalline grains within the amorphous matrix. A correlation between the peak energy and grain size was found, indicating effects of carrier quantum confinement. The experimental results confirm the established theoretical models for growth of microcrystalline silicon films.

  7. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  8. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Directory of Open Access Journals (Sweden)

    Ichiro Fujieda

    2017-10-01

    Full Text Available A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer’s law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  9. Effect of sol concentration on the structural, morphological, optical and photoluminescence properties of zirconia thin films

    International Nuclear Information System (INIS)

    Joy, K.; Maneeshya, L.V.; Thomas, Jijimon K.; Thomas, P.V.

    2012-01-01

    ZrO 2 thin films were deposited on quartz substrates from 10 wt.%, 20 wt.% and 40 wt.% solutions of Zirconium-n-butoxide in isopropanol by sol–gel dip-coating technique. Higher concentrated sols of 20 wt.% and 40 wt.% exhibited faster gelation, where as 10 wt.% sol remained stable for two months and films synthesized from this sol remained transparent and continuous even for 12 coatings. Ellipsometric study revealed that refractive index of the films increased with increase in sol concentration which is ascribed to the decrease in porosity. X-ray diffraction study showed that a tailoring of grain size from 7.9 to 39.2 nm is possible with increase in sol concentration. Atomic force microscopy studies showed a change in growth mode from vertical to lateral mode with increase in sol concentration. The film surface revealed positive skewness and high kurtosis values which make them favorable for tribological applications. The average optical transmittance in the visible region is highest (greater than 90%) for the film deposited from 10 wt.% sol. The optical band gap decreased from 5.74 to 5.62 eV with increase in the sol concentration. Photoluminescence (PL) spectra of the films exhibit an increase in the emission intensity with increase in sol concentration which substantiates better crystalline quality of the film deposited from 40 wt.% sol and increase in oxygen vacancies. The “Red shift” of the PL spectra with increase in sol concentration originates from the increase in the grain size with sol concentration which makes it suitable for generation of solid state lighting in light emitting diode. - Highlights: ► ZrO 2 thin films were deposited on quartz substrates by sol-gel method. ► Control of grain size with sol concentration. ► Microstructure studies showed a change in growth mode from vertical to lateral mode. ► The optical band gap decreased with increase in grain size and sol concentration. ► Dependence of photoluminescence on particle size

  10. Reverse logistics and 3PL in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Alena Klapalová

    2012-01-01

    Full Text Available The paper is focused the results of survey investigating the utilization of services of the so called 3PL (third party logistics or in other words outsourcing of reverse logistics activities (RL in the context of their strategic versus operative or ad hoc management of RL and in relation to various benefits seeking and gaining within the frame of RL management. The exploratory analysis tries to answer the basic research question whether companies strategically managing reverse flows (RF use services of 3PL more often compared to companies with ad hoc or operative management and what is the role of costs versus benefits in the context of outsourcing of RL activities. The survey was realized among 150 Czech small, middle and big companies from several industries and the size and type of industry are two other contextual factors related to outsourcing decisions. Results show statistically significant relationship between character of planning hierarchy and number of activities performed by 3PL, where companies that plan RF strategically, employ 3PL more often. The findings indicate also differences between the companies which plan RF strategically and those which plan RF only on tactical and operational level (Sig. (1-tailed = 0.033 and those that do not plan at all (in comparison to those that plan on strategic level – Sig. (1-tailed = 0.123 when analyzing the types of RL activities. The survey also shows that companies which outsource more RL activities (3 and more, perceive less financial benefits than nonfinancial benefits. Significant dependence was detected between the size of company and number of both benefits perceived with RF management. This finding can stand for the fact, that in bigger companies more commitment of managers and employees is devoted to RF. Very important result shows that activities which are outsourced distinctly more by the companies planning RL strategically belong to the activities creating higher value for

  11. The identity of Eudamus valeriana Plötz (Lepidoptera, Hesperiidae, Pyrginae)

    OpenAIRE

    Mielke, Olaf H. H.; Warren, Andrew D.

    2004-01-01

    Codatractus valeriana (Plötz, 1881) comb. nov. is confirmed as a senior synonym of Thorybes mysie Dyar, 1904. A lectotype for Eudamus valeriana Plötz is designated.Codatractus valeriana (Plötz, 1881) comb. nov. é confirmado como sinônimo senior de Thorybes mysie Dyar, 1904. Um lectótipo para Eudamus valeriana Plötz é designado.

  12. Rationale for utilizing 3PL in supply chain management: A shippers' economic perspective

    OpenAIRE

    Tezuka, Koichiro

    2011-01-01

    In this paper we first propose a conceptual framework for evaluating 3PL (third-party logistics) utilization in SCM (supply chain management), in which it is assumed that shippers may enjoy advantages derived from four contributory sources of 3PL specialization: scale, know-how, searching ability, and IT skills. It is also supposed that shippers may particularly benefit from 3PL when facing uncertain business environments. We also apply principal–agent relationships to shippers and 3PL provid...

  13. Enhanced PL and EL properties of Alq3/nano-TiO2 with the modification of 8-vinyl POSS

    Science.gov (United States)

    Li, Jie; Xie, Bing; Xia, Kai; Zhao, Chunmao; Li, Yingchun; Hu, Shengliang

    2018-04-01

    In this study, tris (8-hydroxyquinoline) aluminum/nano-titanium dioxide (Alq3/nano-TiO2) composites were synthesized using a simply in-situ process with 8-vinyl polyhedral oligomeric silsesquioxane (POSS) as a modifier. The as-prepared Alq3/nano-TiO2 composites were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV-vis) absorption spectra. The effect of modification on luminescence properties for the samples was studied by photoluminescence (PL) spectra, electroluminescence (EL) spectra and time-resolved luminescence decay curves. Organic light emitting diodes (OLEDs) with the corresponded emitting layer structure were investigated. The results show that the amphiphilicity of the 8-vinyl POSS leads to well-dispersion state of the nano-TiO2 in the Alq3. Adding a proper weight percentage of 8-vinyl POSS is beneficial for the PL and EL properties enhancement of the composites. OLED using the Alq3/nano-TiO2 with 1 wt% 8-vinyl POSS emitting layer has the low turn-on voltage (4.7 V at 1 cd/m2), high maximum luminance (7463 cd/m2 at 8.75 V), and high luminous efficiency (1.13 cd/A at 100 mA/cm2). Adding 1 wt% 8-vinyl POSS in Alq3/nano-TiO2 can increase the EL intensity by a factor of 37.1 at 8 V. These values are better than those for OLEDs using the Alq3 emitting layer. The increase in luminance and current efficiency stability can be attributed to the energy transfer process between the Alq3 and the nano-TiO2, and the suppression of the self-quenching by caged 8-vinyl POSS molecules.

  14. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    Science.gov (United States)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  15. Effect of band alignment on photoluminescence and carrier escape from InP surface quantum dots grown by metalorganic chemical vapor deposition on Si

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Nripendra N. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Biswas, Pranab; Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Dhabal Das, Tushar; Das, Sanat Kr.; Chattopadhyay, S. [Department of Electronic Science, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Biswas, D. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2014-01-28

    A detailed analysis of photoluminescence (PL) from InP quantum dots (QDs) grown on Si has been carried out to understand the effect of substrate/host material in the luminescence and carrier escape process from the surface quantum dots. Such studies are required for the development of monolithically integrated next generation III-V QD based optoelectronics with fully developed Si microelectronics. The samples were grown by atmospheric pressure metalorganic chemical vapor deposition technique, and the PL measurements were made in the temperature range 10–80 K. The distribution of the dot diameter as well as the dot height has been investigated from atomic force microscopy. The origin of the photoluminescence has been explained theoretically. The band alignment of InP/Si heterostructure has been determined, and it is found be type II in nature. The positions of the conduction band minimum of Si and the 1st excited state in the conduction band of InP QDs have been estimated to understand the carrier escape phenomenon. A blue shift with a temperature co-efficient of 0.19 meV/K of the PL emission peak has been found as a result of competitive effect of different physical processes like quantum confinement, strain, and surface states. The corresponding effect of blue shift by quantum confinement and strain as well as the red shift by the surface states in the PL peaks has been studied. The origin of the luminescence in this heterojunction is found to be due to the recombination of free excitons, bound excitons, and a transition from the 1st electron excited state in the conduction band (e{sub 1}) to the heavy hole band (hh{sub 1}). Monotonic decrease in the PL intensity due to increase of thermally escaped carriers with temperature has been observed. The change in barrier height by the photogenerated electric-field enhanced the capture of the carriers by the surface states rather than their accumulation in the QD excited state. From an analysis of the dependence of

  16. Interwell and intrawell magnetoexcitons in GaAs/AlGaAs superlattices

    DEFF Research Database (Denmark)

    Timofeev, V. B.; Filin, A. I.; Tartakovskii, A. I.

    1997-01-01

    The formation of spatially indirect (interwell) excitons in superlattices (SLs) with different barrier widths (different tunneling coupling) is experimentally investigated in a strong enough magnetic field with the use of photoluminescence (PL), photoluminescence excitation (PLE), reflectance spec...

  17. Mechanoluminescence, photoluminescence and thermoluminescence studies of SrZrO3:Ce phosphor

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2015-01-01

    Full Text Available The present paper reports the synthesis and characterization, photoluminescence thermoluminescence and mechanoluminescence studies of Ce3+ doped SrZrO3 phosphors. The effects of variable concentration of Cerium on meachanoluminescence (ML and photoluminescence behavior were studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. The starting material used for sample preparation are Sr(NO33, Zr(NO33 XH2O and Ce(NO33 6H2O and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ce (0.05–0.5 mol%. There is no any phase change found with increase the concentration of Ce. Sample shows orthorhombic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique. Mechanoluminescence studies on SrZrO3phosphors doped with Ce and underwent an impulsive deformation with an impact of a piston for Mechanoluminescence (ML investigations. Temporal characteristics in order to investigate about the luminescence centre responsible for ML peak, increasing impact velocity causes more number of electrons will be ionized to reach to the conduction band so there will be more number of electrons available to be recombined at recombination or luminescence centre. In photoluminescence study PL emission spectra show the isolated peak position observed at 388 nm near UV region of spectrum due to 5d–4f transition of Ce3+ion.Thermoluminescence study shows doping of Ce3+ ions reduced the TL intensity TL glow curve shows the high fading and less stability when it doped with cerium. The activation energy high for the doped SrZrO3 phosphor means that the trapped electron is highly trapped in trap level. The present study gives the advance application for fracture

  18. Photoluminescent carbogenic nanoparticles directly derived from crude biomass

    KAUST Repository

    Krysmann, Marta J.

    2012-01-01

    We present an environmentally benign, energy efficient and readily scalable approach to synthesize photoluminescent carbogenic nanoparticles directly from soft tissue biomass. Our approach relies on the pyrolytic decomposition of grass that gives rise to the formation of well-defined nanoparticles. The carbogenic nanoparticles can be readily surface modified, generating a series of highly selective photoluminescent materials that exhibit remarkable stability upon prolonged exposure to aggressive, high-temperature, high-salinity environment. © 2012 The Royal Society of Chemistry.

  19. Porous nC-Si/SiOx nanostructured layer on Si substrate with tunable photoluminescent properties fabricated by direct, precursor-free microplasma irradiation in air

    Science.gov (United States)

    Wang, Tao; Hu, Mingshan; Yang, Bin; Wang, Xiaolin; Liu, Jingquan

    2018-03-01

    Porous nC-Si/SiOx photoluminescent nanostructured layer is fabricated by direct, precursor-free microplasma irradiation on Si substrate in air. It is confirmed that the deposited layer has porous and cluster-like structures by scanning electron microscopy (SEM) and profile scanning. Fourier transform infrared transmission (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectrum (XPS) results indicate the produced layer is actually composed of nanocrystalline silicon (nC-Si) embedded in SiOx matrix. Transmission electron microscopy (TEM) and Raman results show the mean particle size of nC-Si is mainly between 2 and 4 nm and the highest crystalline volume fraction reaches 86.9%. The photoluminescence (PL) measurement of nC-Si/SiOx layer exhibited a broad band centered at 1.7-1.9 eV, ranging from 1.2-2.4 eV, and could be tuned by varying the applied voltage. The synthetical mechanisms are discussed to explain the PL properties of the layers. We propose that the energetic ions bombing induced by high compressed electric field near the Si surface is the main reason for porous nC-Si/SiOx formation. Maskless deposition of the line pattern of nC-Si/SiOx layer was also successfully fabricated. This simple, maskless, vacuum-free and precursor-free technique could be used in various potential optoelectronics and biological applications in the future.

  20. Photoluminescent Detection of Dissolved Underwater Trace Explosives

    Directory of Open Access Journals (Sweden)

    Tye Langston

    2010-01-01

    Full Text Available A portable, rapid, and economical method for in situ trace explosive detection in aqueous solutions was demonstrated using photoluminescence. Using europium/thenoyltrifluoroacetone as the reagent, dissolved nitroglycerin was fluorescently tagged and detected in seawater solutions without sample preparation, drying, or preconcentration. The chemical method was developed in a laboratory setting and demonstrated in a flow-through configuration using lightweight, inexpensive, commercial components by directly injecting the reagents into a continually flowing seawater stream using a small amount of organic solvent (approximately 8% of the total solution. Europium's vulnerability to vibrational fluorescence quenching by water provided the mode of detection. Without nitroglycerin in the seawater solution, the reagent's fluorescence was quenched, but when dissolved nitroglycerin was present, it displaced the water molecules from the europium/thenoyltrifluoroacetone compound and restored fluorescence. This effort focused on developing a seawater sensor, but performance comparisons were made to freshwater. The method was found to perform better in freshwater and it was shown that certain seawater constituents (such as calcium have an adverse impact. However, the concentrations of these constituents are not expected to vary significantly from the natural seawater used herein.

  1. Photoluminescence and magnetophotoluminescence studies in GaInNAs/GaAs quantum wells

    Science.gov (United States)

    Segura, J.; Garro, N.; Cantarero, A.; Miguel-Sánchez, J.; Guzmán, A.; Hierro, A.

    2007-04-01

    We investigate the effects of electron and hole localization in the emission of a GaInNAs/GaAs single quantum well at low temperatures. Photoluminescence measurements varying the excitation density and under magnetic fields up to 14 T have been carried out. The results indicate that electrons are strongly localized in these systems due to small fluctuations in the nitrogen content of the quaternary alloy. The low linear diamagnetic shift of the emission points out the weakness of the Coulomb correlation between electrons and holes and suggests an additional partial localization of the holes.

  2. Naukaoklimacie.pl: Between Science Blog and Mythbuster.

    Science.gov (United States)

    Malinowski, S. P.; Popkiewicz, M.; Kardaś, A.; Bielewicz, A.

    2015-12-01

    "Naukaoklimacie" is a Polish fellow of a well known portal SkepticalScience.com. The name is a quibble. This cluster of two Polish words can be translated into English as "Climate Science" or "Science about Climate". Naukaoklimacie.pl and the associate Facebook page is an ongoing, over two years old project, aimed at providing Polish-speaking community fundamentals of climate science. Itgives insight into the recent climate science achievements, rebutts climate misinformation and busts climate myths. During two years of activity we published over 250 texts, our Facebook page has over 4k fans and results in 4-12 thousands post reach week-to-week, the mainpage articles are quoted in press and used as reading texts for students. Unlike in many countries, in Poland there is a real problem in finding a trustworthy information on climate change and science behind it. Neither universities, nor governmental agencies present climate science to Polish society. Naukaoklimacie.pl fills this gap in an unique way. Editorial group of the portal consists of two atmospheric scientists, a physicist and the professional journalist and is supported by a scientific council, consisting of 14 active scientists specializing in various aspects of climate, atmosphere, biodiversity, atmospheric chemistry e.t.c.. All the texts published in the webpage are consulted with scientists - specialists in the subject of the text, usually from the scientific council, sometimes by the external specialists. All the texts provide links to the original scientific publications. Naukaoklimacie.pl is not only an internet activity. We meet people on Festivals of Science, Science Open Days. We exist also in the mainstream media the editors and the scientific councils were interviewed by press and TV.

  3. Recicplast - [Empresa de Aprovechamiento del Plástico

    OpenAIRE

    Acevedo Pedraza, Diana Lucía; Lasso Castelblanco, Beatriz Stella; Díaz Meza, Marianella

    2013-01-01

    Fabricar y comercializar productos elaborados en plástico reciclable, que sustituyan los materiales convencionales como la madera y metal empleados en el sector de la construcción, del transporte, agrícola y afines, con una mejor calidad, resistencia, durabilidad y contribuyendo a la protección del medio ambiente. Teniendo en cuenta lo anterior se presenta una gran oportunidad de negocio al reciclar esta materia prima y fabricar elementos demandados por sectores como la construcción, agropecu...

  4. Cálculo de engranajes plásticos

    Directory of Open Access Journals (Sweden)

    J. L. Moya Rodríguez

    2007-09-01

    Full Text Available En los últimos tiempos los materiales plásticos han tenido una proliferación en todos los campos de la Industria Mecánica, debido esencialmente a su bajo costo y a las mejoras de las propiedades mecánicas que se han ido logrando. En el caso particular de las transmisiones por engranajes existe una gran cantidad de estos materiales que pueden ser usados y de hecho se utilizan para la fabricación de ruedas dentadas de características muy disímiles. En la literatura científica existe muy poca información disponible sobre las fallas de engranajes plásticos, métodos de cálculo a resistencia y posibles materiales a emplear con sus respectivas propiedades mecánicas. Inclusive este tema no se aborda en los currículos de estudio tradicionales en Ibero-América. Queda mucho por discutir aun acerca del empleo de las correcciones del dentado en estas ruedas dentadas plásticas. En el presente trabajo se hace un análisis de los materiales, características, estudio de las fallas principales, métodos de cálculo y ejemplos de aplicación de los engranajes plásticos.Recently the use of plastic materials has been growing up due to their low cost and the improvements achieved on their mechanical properties. In the particular case of gear transmissions there are great quantities of polymers that can be used for gears. Plastic gears are powerful means of cutting drive cost, weight, noise, and wear. Plastic gears also open new opportunities for smaller and more efficient transmissions. Scientific literature about plastic gears failures, designing methods and materials is insufficient. Most engineering reference books are desicated to steel gears but there are remarkably silent about plastic gears. Design methods for plastic gears and gear trains must be modernized, because much of the information available is derived from research in metal gears. Main failures of plastic gears, calculation methods and the use of modification profiles among other

  5. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl2 with controllable dimension and morphology

    International Nuclear Information System (INIS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl 2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl 2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl 2 crystals. • At room temperature, the nano-PAA-ZnCl 2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl 2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl 2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl 2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl 2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl 2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl 2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  6. Electric field induced short range to long range structural ordering and its influence on the Eu{sup +3} photoluminescence in the lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kalaskar, Abhijeet; Rao, Badari Narayana; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science Bangalore, Bangalore 560012 (India); Thomas, Tiju, E-mail: tijuthomas@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2015-06-28

    Eu{sup +3} was incorporated into the lattice of a lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) as per the nominal formula Na{sub 0.5}Bi{sub 0.5−x}Eu{sub x}TiO{sub 3}. This system was investigated with regard to the Eu{sup +3} photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main {sup 5}D{sub 0}→{sup 7}F{sub 0} line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu{sup +3} luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom.

  7. Effects of citric acid additive on photoluminescence properties of YAG:Ce3+ nanoparticles synthesized by glycothermal reaction

    International Nuclear Information System (INIS)

    Asakura, R.; Isobe, T.; Kurokawa, K.; Takagi, T.; Aizawa, H.; Ohkubo, M.

    2007-01-01

    We synthesize Y 3 Al 5 O 12 :Ce 3+ (YAG:Ce 3+ ) nanoparticles in the presence of citric acid by glycothermal method. Fourier transform infrared absorption spectroscopy measurement indicates that the intensity of the peak corresponding to carboxyl groups coordinating to the nanoparticles increases with increasing amount of citric acid. At the same time, the primary particle diameter decreases from 10.2 to 4.0 nm. In addition, the internal quantum efficiency of the photoluminescence (PL) due to the 4f-5d transition of Ce 3+ increases from 22.0% to 40.1% with increasing amount of citric acid. Two kinds of PL decay lifetimes, 16-26 and 72-112 ns, are detected for YAG:Ce 3+ nanoparticles, whereas the micron sized YAG:Ce 3+ bulk shows the lifetime of 57 ns. We discuss these phenomena from the aspects of the coordination of citric acid and the incorporation of Ce 3+ ions into the nanoparticles

  8. Photoluminescence Quenching and Enhanced Optical Conductivity of P3HT-Derived Ho(3+)-Doped ZnO Nanostructures.

    Science.gov (United States)

    Kabongo, Guy L; Mbule, Pontsho S; Mhlongo, Gugu H; Mothudi, Bakang M; Hillie, Kenneth T; Dhlamini, Mokhotjwa S

    2016-12-01

    In this article, we demonstrate the surface effect and optoelectronic properties of holmium (Ho(3+))-doped ZnO in P3HT polymer nanocomposite. We incorporated ZnO:Ho(3+) (0.5 mol% Ho) nanostructures in the pristine P3HT-conjugated polymer and systematically studied the effect of the nanostructures on the optical characteristics. Detailed UV-Vis spectroscopy analysis revealed enhanced absorption coefficient and optical conductivity in the P3HT-ZnO:Ho(3+) film as compared to the pristine P3HT. Moreover, the obtained photoluminescence (PL) results established the improvement of exciton dissociation as a result of ZnO:Ho(3+) nanostructures inclusion. The occurrence of PL quenching is the result of enhanced charge transfer due to ZnO:Ho(3+) nanostructures in the polymer, whereas energy transfer from ZnO:Ho(3+) to P3HT was verified. Overall, the current investigation revealed a systematic tailoring of the optoelectronic properties of pristine P3HT after inclusion of ZnO:Ho(3+) nanostructures, thus opening brilliant perspectives for applications in various optoelectronic devices.

  9. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Monemar, Bo [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Lindgren, David; Samuelson, Lars [Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Ni, Xianfeng; Morkoc, Hadis [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3072 (United States); Paskova, Tanya [Kyma Technologies Inc., Raleigh, North Carolina 27617 (United States); Bi, Zhaoxia; Ohlsson, Jonas [Glo AB, Ideon Science Park, Scheelevaegen 17, 223 70 Lund (Sweden)

    2011-07-15

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 10{sup 18} cm{sup -3} to above 10{sup 20} cm{sup -3}. The samples were grown with MOCVD at reduced pressure on low defect density bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9-3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependence of the BE spectra on excitation intensity as well as the transient decay behaviour demonstrate acoustic phonon assisted transfer between the acceptor BE states. The lower energy donor-acceptor pair spectra suggest the presence of deep acceptors, in addition to the two main shallower ones at about 0.23 eV. Similar spectra from Mg-doped GaN nanowires (NWs) grown by MOCVD are also briefly discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Photoluminescence and ultrafast spectroscopy on GaAs quantum wells close to a GaMnAs layer

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Robert; Korn, Tobias; Maurer, Andreas; Stich, Dominik; Wurstbauer, Ursula; Schuh, Dieter; Wegscheider, Werner; Schueller, Christian [Institut fuer Experimentelle und Angewandte Physik II, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-07-01

    We study nonmagnetic GaAs quantum wells (QW) embedded in an AlGaAs/GaAs heterostructure close to a ferromagnetic GaMnAs layer. We present photoluminescence (PL) data of two QWs at different distances to the GaMnAs layer measured at 4 K: one QW is close (3 to 10 nm) to the GaMnAs layer, the other one is 120 nm away and used as a reference. The PL signal of the QW close to the Ga(Mn)As layer shows a significant broadening and quenching depending on the barrier width. This may be due to two effects: (i) Backdiffusion of Mn through the barrier into the upper QW during sample growth. (ii) Tunnelling of photoexcited charge carriers through the barrier into the low-bandgap Ga(Mn)As layer. Additionally, time-resolved pump-probe experiments show that the carrier lifetime in the upper QW in comparison with the reference QW is significantly reduced. In contrast, the spin lifetime is four times larger, which we attribute to the D'Yakonov-Perel mechanism: Mn ions within the upper QW act as momentum scattering centers und thus increase the spin lifetime.

  11. Photoluminescence of Alq3 - and Tb-activated aluminium-tris(8-hydroxyquinoline) complex for blue chip-excited OLEDs.

    Science.gov (United States)

    Yawalkar, P W; Dhoble, S J; Thejo Kalyani, N; Atram, R G; Kokode, N S

    2013-01-01

    The tris(8-hydroxyquinoline)-aluminium complex is the most important and widely studied as electron transporting and green light emitting material. Alq(3) and Tb(x) Al((1-x)) q(3) have been synthesized (where x = 0.1, 0.3, 0.5, 0.7 and 0.9) and blended films of Alq(3) and Tb(x) Al((1-x)) q(3) with PMMA and PS at different percentage weight (wt%) concentrations (e.g., 0.1, 1, 5, 10, 25 and 50 wt%) have been prepared. The synthesized materials and their blended thin films have been characterized by a photoluminescence (PL) technique; the synthesis and PL characterization are reported in this paper. The synthesized metal complex shows bright emission of green light with blue light excitation (440 nm) and the prepared Tb(x) Al((1-x)) q(3) phosphor may be applicable in blue chip-excited OLEDs for the newly developed wallpaper lighting technology. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges

    Science.gov (United States)

    Gan, Zhixing; Xu, Hao; Hao, Yanling

    2016-04-01

    Luminescent nanomaterials, with wide applications in biosensing, bioimaging, illumination and display techniques, have been consistently garnering enormous research attention. In particular, those with wavelength-controllable emissions could be highly beneficial. Carbon nanostructures, including graphene quantum dots (GQDs) and other graphene oxide derivates (GODs), with excitation-dependent photoluminescence (PL), which means their fluorescence color could be tuned simply by changing the excitation wavelength, have attracted lots of interest. However the intrinsic mechanism for the excitation-dependent PL is still obscure and fiercely debated presently. In this review, we attempt to summarize the latest efforts to explore the mechanism, including the quantum confinement effect, surface traps model, giant red-edge effect, edge states model and electronegativity of heteroatom model, as well as the newly developed synergistic model, to seek some clues to unravel the mechanism. Meanwhile the controversial difficulties for each model are further discussed. Besides this, the challenges and potential influences of the synthetic methodology and development of the materials are illustrated extensively to elicit more thought and constructive attempts toward their application.

  13. Nonlinear photoluminescence of graded band-gap Al sub x Ga sub 1 sub - sub x As solid solutions

    CERN Document Server

    Kovalenko, V F; Shutov, S V

    2002-01-01

    The dependence of the photoluminescence (PL) intensity of undoped and doped graded band-gap Al sub x Ga sub 1 sub - sub x As (x <= 0.36) solid solutions on the excitation level J (1 x 10 sup 1 sup 9 <= J <= 1 x 10 sup 2 sup 2 quantum cm sup - sup 2 s) for different values of built-in quasi-electrical field E (85 <= E <= 700 V/cm) has been studied. It is found that the dependence of the near-band-edge PL intensity I in the excitation level J at an accelerating action of the field E has a complex character. The nonlinearity of I(J) dependence is explained by contribution of the two-photon absorption of the radiating recombination in the process of its remission. The optimum range of E values (120 <= E <= 200 V/cm) providing the greatest contribution of the two-photon absorption in the reemission in undoped solid solutions is determined

  14. Influence of Bi doping on the structure and photoluminescence of ZnO phosphor synthesized by the combustion method

    Science.gov (United States)

    Pathak, Trilok K.; Swart, H. C.; Kroon, R. E.

    2018-02-01

    Bismuth doped ZnO (BZO) phosphors have been synthesized by the combustion method. The effect of Bi doping up to 4 mol% on the structural, morphological, optical and photoluminescence (PL) properties have been investigated. X-ray diffraction analysis revealed that the BZO phosphors had the hexagonal wurtzite structure. The nanocrystallite size decreased from 75 to 38 nm as the Bi concentration increased up to 3 mol%, but then increased slightly for 4 mol% Bi. The chemical states of the synthesized BZO phosphors were investigated using X-ray photoelectron spectroscopy and revealed the presence of both Bi3 + and Bi2 + charge states. The surface morphology showed spherical grains with some small particle agglomeration. The grain agglomeration and irregular shapes increased with increasing Bi concentration in the BZO phosphor. The absorption spectra were calculated from the reflection spectra using the Kubelka-Munk function and a blue shift in the absorption was obtained. The optical bandgap varied from 3.08 to 3.11 eV for increasing Bi doping concentration. The PL spectra showed a blue emission at 410-500 nm and a broad red peak at 650 nm. These peaks are attributed to oxygen related defects in the ZnO host. The addition of Bi decreased the red emission and enhanced the blue emission.

  15. Plasmonic Gold Nanorods Coverage Influence on Enhancement of the Photoluminescence of Two-Dimensional MoS2 Monolayer

    KAUST Repository

    Lee, Kevin C. J.

    2015-11-17

    The 2-D transition metal dichalcogenide (TMD) semiconductors, has received great attention due to its excellent optical and electronic properties and potential applications in field-effect transistors, light emitting and sensing devices. Recently surface plasmon enhanced photoluminescence (PL) of the weak 2-D TMD atomic layers was developed to realize the potential optoelectronic devices. However, we noticed that the enhancement would not increase monotonically with increasing of metal plasmonic objects and the emission drop after the certain coverage. This study presents the optimized PL enhancement of a monolayer MoS2 in the presence of gold (Au) nanorods. A localized surface plasmon wave of Au nanorods that generated around the monolayer MoS2 can provide resonance wavelength overlapping with that of the MoS2 gain spectrum. These spatial and spectral overlapping between the localized surface plasmon polariton waves and that from MoS2 emission drastically enhanced the light emission from the MoS2 monolayer. We gave a simple model and physical interpretations to explain the phenomena. The plasmonic Au nanostructures approach provides a valuable avenue to enhancing the emitting efficiency of the 2-D nano-materials and their devices for the future optoelectronic devices and systems.

  16. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, Brahim, E-mail: brahim.aissa@mpbc.ca [University of Quebec, Centre Énergie, Matériaux et Télécommunications, INRS-EMT (Canada); Nedil, Mourad [Telebec Wireless Underground Communication Laboratory, UQAT (Canada); Belaidi, Abdelhak; Isaifan, Rima J. [Hamad Bin Khalifa University, Qatar Foundation, Qatar Environment and Energy Research Institute (Qatar); Bentouaf, Ali [University Hassiba Ben Bouali, Physics Department, Faculty of Science (Algeria); Fauteux, Christian; Therriault, Daniel [École Polytechnique de Montréal, Laboratory for Multiscale Mechanics (LM2), Mechanical Engineering Department (Canada)

    2017-05-15

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO{sub 2} laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p–n junction behavior in the dark, and a clear I–V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm{sup −2}, and a fill factor of ∼35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  17. Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes

    Science.gov (United States)

    Aïssa, Brahim; Nedil, Mourad; Belaidi, Abdelhak; Isaifan, Rima J.; Bentouaf, Ali; Fauteux, Christian; Therriault, Daniel

    2017-05-01

    Zinc oxide (ZnO) nanostructures were successfully grown directly on single walled carbon nanotubes (SWCNT) template through the CO2 laser-induced chemical liquid deposition (LCLD) process. Photoluminescence (PL) of the deposited ZnO/SWCNT hybrid composites exhibits, at room temperature, a narrow near UV band located at 390 nm with no emission bands in the visible region, indicating a high degree of crystalline quality of the ZnO nanostructures. Moreover, when the relative SWCNT loads are varied within the composites, the PL intensity and the diffused optical reflectance diminish in comparison with those of ZnO alone, owing to the transfer of photo-excited electrons from ZnO to the SWCNT, and the enhancement of the optical absorbance, respectively. Finally, these ZnO/SWCNT hybrid composites are integrated into a heterojunction photovoltaic-based device, using PEDOT:PSS on ITO/glass substrate. The devices show an evident p-n junction behavior in the dark, and a clear I- V curve shift downward when illuminated with an open-circuit voltage of 1.1 V, a short circuit current density of 14.05 μA cm-2, and a fill factor of ˜35%. These results indicate that these composites fabricated via LCLD process could be promising for optoelectronic and energy-harvesting devices.

  18. Influence of titanium precursor on photoluminescent emission of micro-cube-shaped CaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mazzo, Tatiana Martelli, E-mail: tatimazzo@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Santilli do Nascimento Libanori, Gabriela [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Moreira, Mario Lucio [Instituto de Física e Matemática, Universidade Federal de Pelotas, P.O. Box 354, Campus do Capão do Leão, 96001-970 Pelotas, RS (Brazil); Avansi Jr, Waldir [Departamento de Física, Universidade Federal de São Carlos, Jardim Guanabara, 13565-905 São Carlos, SP (Brazil); Mastelaro, Valmor Roberto [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, Arnold Schimidt, 13566-590 São Carlos, SP (Brazil); Varela, José Arana; Longo, Elson [INCTMN/LIEC, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, R. Francisco Degni, 55, Bairro Quitandinha, 14801-907 Araraquara, SP (Brazil)

    2015-09-15

    For this research, we studied the influence of titanium tetrachloride (TC) and titanium tetraisopropoxide (TTP) precursors on CaTiO{sub 3} (CTO) synthesis by employing a microwave-assisted hydrothermal (MAH) method regarding their respective short-, medium- and long-range features to determine if the use of different titanium precursors enhances the structural evolution of the material. The growth mechanism for the formation of the micro-cube-shaped CTO is proposed to obtain nanoparticle aggregation of self-assembly nanoplates. The disorder coupled to the oxygen vacancies of [TiO{sub 5}]–[TiO{sub 6}] in complex clusters in the CTO 1 powder and twists in bonding between the [TiO{sub 6}]–[TiO{sub 6}] complex clusters in the CTO 2 powder were mainly responsible for photoluminescent (PL) emission. - Highlights: • Different titanium precursors enhance the structural evolution of the material. • [TiO{sub 5}]–[TiO{sub 6}] and twists in bonding [TiO{sub 6}]–[TiO{sub 6}] were responsible for PL emission. • Micro-cube shaped was formed by nanoparticle aggregation of self-assembly nanoplates.

  19. MOCVD growth and ultrafast photoluminescence in GaAs and InAs freestanding quantum whiskers: A review

    Science.gov (United States)

    Viswanath, A. Kasi; Hiruma, K.; Yazawa, M.; Ogawa, K.; Katsuyama, T.

    1994-02-01

    Nanometer-size quantum whiskers of InAs and GaAs were fabricated by low-pressure MOCVD. Time-integrated and time-resolved photoluminescence of GaAs wires of diameters 200, 100, 70, and 50 nm were studied. The temperature dependence of PL peak energy was found to follow the same variation as the bandgap of GaAs, and Varshni's theory was used to explain the temperature dependence. The main channel of radiative recombination was found to be due to free excitons. The nonuniformity in diameter and lattice phonon interactions were considered to understand the origin of the linewidth. From the time-resolved PL, the surface recombination lifetimes were measured directly. Surface recombination velocities were evaluated and were correlated to wire diameter. The quantum-size-dependent spatial part of the electronic wave function was thought to be responsible for the variation of surface recombination velocity with diameter. Surface treatment with sulphur reduced the surface depletion layer, as evidenced from the time-resolved and time-integrated spectra. The carrier lifetime was in picosecond time scales at 7 K and increased with temperature, thus confirming the quantum confinement effects. The polarization experiments revealed the one-dimensional nature of quantum whiskers.

  20. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    Science.gov (United States)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.