Energy Technology Data Exchange (ETDEWEB)
Bouneau, S.; Azaiez, F.; Duprat, J. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others
1999-11-01
The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. All the three observed excited SD bands were found to decay to the Yrast SD band through, presumably, E1 transitions, allowing relative spin and excited energy assignments. Comparisons with calculation using the random phase approximation suggests that all three excited bands can be interpreted as octupole vibrational structures. (authors) 5 refs., 1 fig.
Evidence for octupole vibration in the superdeformed well of {sup 190}Hg from eurogam
Energy Technology Data Exchange (ETDEWEB)
Crowell, B.; Carpenter, M.P.; Janssens, R.V.F. [and others
1995-08-01
Gammasphere experiments in 1993-94 brought to light the existence of an excited superdeformed (SD) band in {sup 190}Hg with the unusual property of decaying entirely to the lowest (yrast) SD band over 3-4 transitions, rather than to the normally deformed states as is usually the case in the A {approximately} 150 and A {approximately} 190 regions of superdeformation. Although M1 transitions between signature-partner SD bands were previously observed in {sup 193}Hg, no such mechanism was available to explain the situation in the even-even nucleus {sup 190}Hg, whose yrast SD band has no signature partner. The best explanation appears to lie in long-standing theoretical predictions that the SD minimum in the potential energy surface would be quite soft with respect to octupole vibrations. This would lead to enhanced E1 transitions connecting the one-phonon and zero-phonon states. The data and this interpretation were published. A shortcoming of the Gammasphere experiments was that they did not allow the definitive measurement of the energies of the gamma-ray transitions connecting the two bands, due to the very weak population of the excited band ({approximately}0.05% of the {sup 190}Hg channel) and also partly, we believed, to the angular distributions of the transitions, which were peaked near 90 degrees, where Gammasphere had few detectors.
OCTUPOLE EXCITATIONS IN VIBRATIONAL NUCLEI AND THE SDF INTERACTING BOSON MODEL
PIGNANELLI, M; BLASI, N; MICHELETTI, S; DELEO, R; HOFSTEE, MA; SCHIPPERS, JM; VANDERWERF, SY; HARAKEH, MN
1990-01-01
Proton and deuteron inelastic scattering experiments, performed with an energy resolution of 12-15 keV, have been used to study negative-parity states of vibrational and transitional nuclei with mass between 98 and 150. The analysis has been focussed on the isovector components, on the
Studies of Stable Octupole Deformations in the Radium Region
2002-01-01
The purpose of the present project is to locate and identify states in the atomic nuclei possessing stable pearshaped octupole deformation. Such states, formally related to the structures known in molecular physics, manifest themselves as families of parity doublets in odd nuclei.\\\\ \\\\ The best possibilities for observing stable octupole deformations are offered in the Ra-region. Both theoretical calculations and experimental indications support such expectations. Such indications are the non-observation of two-phonon octupole vibrational states in the ISOLDE studies of the even-even radium nuclei, and the reversed sign of the decoupling factor of the ground state band in |2|2|5Ra observed in the single-neutron transfer reactions. In order to establish the predicted strong E1 and E3-transitions between the parity doublets in odd nuclei with stable octupole deformations it is proposed to study conversion electrons in odd-mass francium radium and radon isotopes following the @b-decay of francium and astatine. \\...
Electron scattering from the octupole band in /sup 238/U
Energy Technology Data Exchange (ETDEWEB)
Hirsch, A.; Creswell, C.; Bertozzi, W.; Heisenberg, J.; Hynes, M.V.; Kowalski, S.; Miska, H.; Norum, B.; Rad, F.N.; Sargent, C.P.; Sasanuma, T.; Turchinetz, W.
1978-03-06
A simple model for nuclear surface vibrations in permanently deformed nuclei does well in reproducing electron scattering cross sections of rotational levels built on a K/sup ..pi../= 0/sup -/ intrinsic octupole vibration in /sup 238/U.
Shell structure of octupole deformation
International Nuclear Information System (INIS)
Zhang Xizhen; Dong Baoguo
1992-01-01
A convenient definition of intrinsic frame of an octupole deformed shape was proposed recently. The octupole deformation potential was expanded on the bases of irreducible representations of group O h . Based on the parameterization given in previous paper, the shell structures of octupole deformation which cover all possible octupole deformed shapes were studied
Microscopic analysis of quadrupole-octupole shape evolution
Directory of Open Access Journals (Sweden)
Nomura Kosuke
2015-01-01
Full Text Available We analyze the quadrupole-octupole collective states based on the microscopic energy density functional framework. By mapping the deformation constrained self-consistent axially symmetric mean-field energy surfaces onto the equivalent Hamiltonian of the sdf interacting boson model (IBM, that is, onto the energy expectation value in the boson coherent state, the Hamiltonian parameters are determined. The resulting IBM Hamiltonian is used to calculate excitation spectra and transition rates for the positive- and negative-parity collective states in large sets of nuclei characteristic for octupole deformation and collectivity. Consistently with the empirical trend, the microscopic calculation based on the systematics of β2 – β3 energy maps, the resulting low-lying negative-parity bands and transition rates show evidence of a shape transition between stable octupole deformation and octupole vibrations characteristic for β3-soft potentials.
Rotational bands in the quadrupole-octupole collective model
Dobrowolski, A.; Mazurek, K.; Góźdź, A.
2018-02-01
A collective band of positive as well as negative parity could be composed of vibrational and rotational motions. The octupole vibrational configurations can be based either on axial or nonaxial octupole excitations. A consistent approach to the quadrupole-octupole collective vibrations coupled with the rotational motion enables us to distinguish between various scenarios of disappearance of the E 2 transitions in negative-parity bands observed in several nuclei. The theoretical estimates presented here are compared with the very recent experimental energies and transition probabilities in and between the ground-state and low-energy negative-parity bands in 156Dy. A realistic collective Hamiltonian contains the potential-energy term obtained through the macroscopic-microscopic Strutinsky-like method with a particle-number-projected BCS approach and a deformation-dependent mass tensor. The potential energy and the inertia parameters are defined in the vibrational-rotational, nine-dimensional collective space of the multipole-deformation parameters and Euler angles. The symmetrization procedure applied to the eigenstates of the collective Hamiltonian ensures their uniqueness with respect to the laboratory coordinate system. This quadrupole-octupole collective approach may also allow us to find and/or verify some fingerprints of possible high-rank symmetries (e.g., tetrahedral, octahedral, ...) in nuclear collective bands.
On Landau damping of dipole modes by non-linear space charge and octupoles
Möhl, D
1995-01-01
The joint effect of space-charge non-linearities and octupole lenses is important for Landau damping of coherent instabilities. The octupole strength required for stabilisation can depend strongly on the sign of the excitation current of the lenses. This note tries to extend results, previously obtained for coasting beams and rigid bunches, to more general head--tail modes.
The octupoles take pole position
2002-01-01
The first preseries octupole magnet was delivered to CERN in December 2001. Hooked up to a main quadrupole magnet, its function will be to correct imperfections in the beams. The LHC will be fitted with about 5000 corrector magnets, whose task it will be to provide maximum precision in beam collisions.
A transformation technique to treat strong vibrating absorbers
International Nuclear Information System (INIS)
Sahni, D.C.; Garis, N.S.; Pazsit, I.
1998-06-01
Calculation of the neutron noise, induced by small amplitude vibrations of a strong absorber, is a difficult task because the traditional linearization technique cannot be applied. Two methods, based on two different representations of the absorber, were developed earlier to solve the problem. In both methods the rod displacements are described by a Taylor expansion, such that the boundary condition needs only to be considered at the surface of a static rod. Only one of the methods is applicable in two dimensions. In this paper an alternative method is developed and used for the solution of the problem. The essence of the method is a variable transformation by which the moving boundary is transformed into a static one without Taylor expansion. The corresponding equations are solved in a linear manner and the solution is transformed back to the original parameter space. The method is equally applicable in one and two dimensions. The solutions are in complete agreement with those of the previous methods
Energy Technology Data Exchange (ETDEWEB)
Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics
2000-07-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhaoting; Wang, Rong Hui; Chen, Li; Dong, Chung Uang [School of Civil Engineering and Transportation, South China University of Technology, Guangzhou (China)
2016-08-15
This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modified Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.
Octupole correlations in positive-parity states of rare-earth and actinide nuclei
Directory of Open Access Journals (Sweden)
Spieker M.
2015-01-01
Full Text Available In this contribution, further evidence of the importance of multiphonon-octupole excitations to describe experimental data in the rare earths and actinides will be presented. First, new results of a (p, t experiment at the Q3D magnetic spectrograph in Munich will be discussed, which was performed to selectively excite Jπ = 0+ states in 240Pu. spdf interacting boson model (IBM calculations suggest that the previously proposed double-octupole phonon nature of the Jπ = 0+2 state is not in conflict with its strong (p, t population. Second, the framework of the IBM has been adopted for the description of experimental observables related to octupole excitations in the rare earths. Here, the IBM is able to describe the signature splitting for positiveand negative-parity states when multi-dipole and multi-octupole bosons are included. The present study might support the idea of octupole-phonon condensation at intermediate spin (Jπ = 10+ leading to the change in yrast structure observed in 146Nd.
Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes
Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.
2018-02-01
The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.
Vibrational Excitation of Diatomic Molecular Ions in Strong Field Ionization of Diatomic Molecules
International Nuclear Information System (INIS)
Kjeldsen, Thomas K.; Madsen, Lars Bojer
2005-01-01
A model based on the strong-field and Born-Oppenheimer approximations qualitatively describes the distribution over vibrational states formed in a diatomic molecular ion following ionization of the neutral molecule by intense laser pulses. Good agreement is found with a recent experiment [X. Urbain et al., Phys. Rev. Lett. 92, 163004 (2004)]. In particular, the observed deviation from a Franck-Condon-like distribution is reproduced. Additionally, we demonstrate control of the vibrational distribution by a variation of the peak intensity or a change of frequency of the laser pulse
Octupole Deformed Nuclei in the Actinide Region
Thorsteinsen, T; Rubio barroso, B; Simpson, J; Gulda, K; Sanchez-vega, M; Cocks, J; Nybo, K; Garcia borge, M; Aas, A; Fogelberg, B; Honsi, J; Smith, G; Naumann, R; Grant, I
2002-01-01
The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. \\\\ \\\\In order to establish the upper border line the $\\beta$ -decay chains of $^{227}$Rn $\\rightarrow ^{227}$Fr $\\rightarrow ^{227}$Ra and $^{231}$Fr $\\rightarrow ^{231}$Ra $\\rightarrow ^{231}$Ac were studied at PSB-ISOLDE using advanced fast timing and $\\gamma$-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed $\\beta\\gamma\\gamma$(t) method.
Perturbation analysis of octupoles in circular accelerators
International Nuclear Information System (INIS)
Moohyun Yoon
1998-01-01
The octupole effects in a circular accelerator are analyzed using a first-order canonical perturbation theory. It is shown that, to the first order, the nonlinear amplitude-dependent tune shifts due to an octupole are composed of two types: terms of second order and terms of fourth order in betatron-oscillation amplitudes. The fourth-order part of tune shifts is expressed in terms of distortion functions. Distortion functions are also expanded in harmonics to express the higher-order tune shifts in harmonically expanded form. Finally, the results are applied to an accelerator and compared with the results of numerical tracking of particles. Laskar's algorithm for numerical analysis of the fundamental frequency is used to determine tunes from the tracking data, in which the error becomes inversely proportional to the cube of the number of data points. (author)
International Nuclear Information System (INIS)
Cocks, J.; Butler, P.; Cann, K.; Greenlees, P.; Jones, G.; Asztalos, S.; Clark, R.; Deleplanque, M.; Diamond, R.; Fallon, P.; Lee, I.; Macchiavelli, A.; MacLeod, R.; Stephens, F.; Bhattacharyya, P.; Zhang, C.; Broda, R.; Fornal, B.; Jones, P.; Julin, R.; Lauritsen, T.; Smith, J.
1997-01-01
Multinucleon transfer reactions have been used, for the first time, to populate high-spin bands of alternating parity states in 218,220,222 Rn and 222,224,226 Ra. The behavior of the angular momentum alignment with rotational frequency for the Rn isotopes is very different when compared with Ra and Th isotopes with N∼134, indicating a transition from octupole vibrational to stable octupole deformation. Throughout the measured spin range the values of |D 0 /Q 0 | remain constant for 222 Ra and 226 Ra and have a very small value for 224 Ra, suggesting that the charge and mass distributions are not affected appreciably by rotations. copyright 1997 The American Physical Society
Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems
Razzak, M. A.; Alam, M. Z.; Sharif, M. N.
2018-03-01
In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.
Alling, B.; Kormann, F.H.W.; Grabowski, B; Glensk, A; Abrikosov, I.A.
2016-01-01
We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite
Using vibrational Cooper minima to determine strong-field molecular-dissociation pathways
Severt, T.; Zohrabi, M.; Armstrong, G. S. J.; McKenna, J.; Gaire, B.; Kling, Nora G.; Ablikim, U.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2015-05-01
We explore the possibility of using vibrational ``Cooper minima'' (VCM) locations as a method to determine dissociation pathways of molecules in a strong laser field. As a test case, we study the laser-induced dissociation of an O2+ion beam by several wavelengths (λ = 800 , 400, and 266 nm) using a coincidence three-dimensional momentum imaging technique. Vibrational structure is observed in the kinetic energy release spectra, revealing a suppression of the dissociation of certain vibrational levels, which is a manifestation of the VCM effect. Previously, it has been shown in H2+that first-order time-dependent perturbation theory can be used to predict the locations of the VCM. We explore if the VCM locations predicted by perturbation theory can help uniquely identify dissociation pathways in O2+and consider its utility for other systems. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. TS was partially supported by NSF-REU under Grant No. PHY-0851599.
Design of Octupole Channel for Integrable Optics Test Accelerator
Energy Technology Data Exchange (ETDEWEB)
Antipov, Sergey [Chicago U.; Carlson, Kermit [Fermilab; Castellotti, Riccardo [Unlisted, IT; Valishev, Alexander [Fermilab; Wesseln, Steven [Fermilab
2016-06-01
We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.
Wu, Ning; Feist, Johannes; Garcia-Vidal, Francisco J.
2016-11-01
We present a microscopic semianalytical theory for the description of organic molecules interacting strongly with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated on an equal footing by employing a temperature-dependent variational approach. The interplay between strong exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling regime. Thermal effects on several observables are briefly discussed.
Van Hoozen, Brian L.; Petersen, Poul B.
2018-04-01
Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features
Hackman, G.; Khoo, T. L.; Carpenter, M. P.; Lauritsen, T.; Lopez-Martens, A.; Calderin, I. J.; Janssens, R. V.; Ackermann, D.; Ahmad, I.; Agarwala, S.; Blumenthal, D. J.; Fischer, S. M.; Nisius, D.; Reiter, P.; Young, J.; Amro, H.; Moore, E. F.; Hannachi, F.; Korichi, A.; Lee, I. Y.; Macchiavelli, A. O.; Døssing, T.; Nakatsukasa, T.
1997-11-01
An excited superdeformed band in 194Hg, observed to decay directly to both normal-deformed and superdeformed yrast states, is proposed to be a Kπ = 2- octupole vibrational band, based on its excitation energies, spins, and likely parity. The transition energies are identical to those of the yrast superdeformed band in 192Hg, but originate from levels with different spins and parities. The evolution of transition energies with spin suggests that cancellations between pairing and particle alignment are partly responsible for the identical transition energies.
Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows
2014-01-01
3 where SVT is a steric factor, ! is the oscillator frequency, m̃ is the collision reduced mass, µ is the oscillator reduced mass, is the oscillator...f !"i+fCOL exp ("COL) nX r=0 (1)r r! (i r)! (f r)! 1 "rCOL 2 (2) "COL = SVT 4⇡3! m̃ 2/µ ↵2h sinh2 ⇣⇡! ↵v̄ ⌘ (3) For diatom...factors, SVT and SVV, and the parameter ↵ determine the rate of vibrational relaxation, while the inherent form of the transition probability
Electrostatic octupole lens calculations for MeV ion accelerators
Matteson, S.; Wilson, D. K.; Weathers, D. L.; McDaniel, F. D.; Duggan, J. L.; Anthony, J. M.
1991-05-01
In the application of a tandem electrostatic accelerator (NEC Pelletron) to accelerator mass spectrometry for stable isotopes, various optical elements are needed. These optical components are electrostatic dipoles, quadrupoles and octupoles. Cylindrical configurations of rods of circular cross section have been shown [J. Kelly, Adv. Electron. Electron Phys. 43 (1977) 43] to provide many of these desired features. In the present work, we present new designs using cylinders in a cylindrical arrangement which provide, when appropriately excited, dipoles, quadrupoles and octupoles. These configurations can be excited so as to produce combinations of these multipoles as well, thus permitting correction for aberrations. The results of optimization of the geometry using various eight electrode arrangements are reported and compared to previous four electrode and other geometries.
Correction of chromatic and geometric aberrations using sextupoles and octupoles
International Nuclear Information System (INIS)
Colton, E.
1978-01-01
The procedure for applying some chromatic corrections to a final transport line, neglecting space charge, utilizing the method suggested by Brown is described. The possibility of including octupoles into a point-to-point triplet system, as outlined by Fenster is studied. Positive results were obtained in both cases: (i) using 2 + I correcting sections with two pairs of non-interlaced sextupoles increased the fraction of beam with ΔP/P = 1% onto a 0.1 cm radius target by more than a factor of 1.75; (ii) six octupoles placed into a point-to-point triplet system increased the fraction of a full emittance ΔP/P = 0% beam striking a 0.1 cm radius target by a factor of 2.5
Strong-field dissociation dynamics of NO2+: A multiphoton electronic or vibrational excitation?
Jochim, Bethany; Zohrabi, M.; Ablikim, U.; Gaire, B.; Anis, F.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.; Wells, E.; Uhlíková, T.
2013-05-01
We utilize a 3-D momentum imaging technique to study laser-induced dissociation of a metastable NO2+ beam into N++ O+. Using an estimated initial vibrational population, measured kinetic energy release and angular distribution spectra, and time-dependent Schrödinger equation calculations, we identify the most likely dissociation pathways. While lower intensity pulses (process underlying this highly-aligned feature is a multiphoton permanent dipole transition solely within the electronic ground state, leading to its continuum. Supported by the DOE Chemical Sciences, Geosciences, and Biosciences Division, Office of Science. BJ also by NSF (PHY-0851599) and DOE SCGF (DE-AC05-06OR23100), BJ and EW by NSF (PHY-0969687), and TU by GACR and MetaCentrum.
Report from LHC MD 2171: Amplitude dependent closest tune approach from normal and skew octupoles
Maclean, Ewen Hamish; Persson, Tobias Hakan Bjorn; Carlier, Felix Simon; CERN. Geneva. ATS Department
2018-01-01
Simulation-based studies predict signiﬁcant amplitude-dependent closest tune approach can be generated by skew octupole sources in conjunction with their normal octupolar counterparts. This has the potential to signiﬁcantly inﬂuence Landau damping at small β∗, where skew octupole errors in the experimental IRs, together with b4 introduced by the Landau octupoles, is predicted to cause large distortion of the tune footprint. This MD aimed to perform a ﬁrst exploration of these predictions with beam, by enhancing skew octupole sources in the IRs at injection and measuring amplitude detuning with free kicks in the plane approaching the coupling resonance.
Directory of Open Access Journals (Sweden)
Yan-Lei Zhang
2016-01-01
Full Text Available Nonlinear vibration of a fluid-conveying pipe subjected to a transverse external harmonic excitation is investigated in the case with two-to-one internal resonance. The excitation amplitude is in the same magnitude of the transverse displacement. The fluid in the pipes flows in the speed larger than the critical speed so that the straight configuration becomes an unstable equilibrium and two curved configurations bifurcate as stable equilibriums. The motion measured from each of curved equilibrium configurations is governed by a nonlinear integro-partial-differential equation with variable coefficients. The Galerkin method is employed to discretize the governing equation into a gyroscopic system consisting of a set of coupled nonlinear ordinary differential equations. The method of multiple scales is applied to analyze approximately the gyroscopic system. A set of first-order ordinary differential equations governing the modulations of the amplitude and the phase are derived via the method. In the supercritical regime, the subharmonic, superharmonic, and combination resonances are examined in the presence of the 2 : 1 internal resonance. The steady-state responses and their stabilities are determined. The various jump phenomena in the amplitude-frequency response curves are demonstrated. The effects of the viscosity, the excitation amplitude, the nonlinearity, and the flow speed are observed. The analytical results are supported by the numerical integration.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
DEFF Research Database (Denmark)
Kuznetsov, A.M.; Ulstrup, Jens
2002-01-01
We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems both...... in vacuum or air, and in aqueous solution under electrochemical potential control. Multifarious patterns of rectified electron flow from the negatively to the positively biased electrode arise. The electronic interaction between the donor and acceptor fragments, mutually and with the electrodes, can be weak...
International Nuclear Information System (INIS)
Ge, Gen; Li, ZePeng
2016-01-01
A modified stochastic averaging method on single-degree-of-freedom (SDOF) oscillators under white noise excitations with strongly nonlinearity was proposed. Considering the existing approach dealing with strongly nonlinear SDOFs derived by Zhu and Huang [14, 15] is quite time consuming in calculating the drift coefficient and diffusion coefficients and the expressions of them are considerable long, the so-called He's energy balance method was applied to overcome the minor defect of the Zhu and Huang's method. The modified method can offer more concise approximate expressions of the drift and diffusion coefficients without weakening the accuracy of predicting the responses of the systems too much by giving an averaged frequency beforehand. Three examples, a cubic and quadratic nonlinearity coexisting oscillator, a quadratic nonlinear oscillator under external white noise excitations and an externally excited Duffing–Rayleigh oscillator, were given to illustrate the approach we proposed. The three examples were excited by the Gaussian white noise and the Gaussian colored noise separately. The stationary responses of probability density of amplitudes and energy, together with joint probability density of displacement and velocity are studied to verify the presented approach. The reliability of the systems were also investigated to offer further support. Digital simulations were carried out and the output of that are coincide with the theoretical approximations well.
Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T
2014-12-21
Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.
On quadrupole and octupole gravitational radiation in the ANK formalism
Kozameh, Carlos N.; Ortega, R. G.; Rojas, T. A.
2017-04-01
Following the approach of Adamo-Newman-Kozameh (ANK) we derive the equations of motion for the center of mass and intrinsic angular moment for isolated sources of gravitational waves in axially symmetric spacetimes. The original ANK formulation is generalized so that the angular momentum coincides with the Komar integral for a rotational Killing symmetry. This is done using the Winicour-Tamburino Linkages which yields the mass dipole-angular momentum tensor for the isolated sources. The ANK formalism then provides a complex worldline in a fiducial flat space to define the notions of center of mass and spin. The equations of motion are derived and then used to analyse a very simple astrophysical process where only quadrupole and octupole contributions are included. The results are then compared with those coming from the post newtonian approximation.
Energy Technology Data Exchange (ETDEWEB)
Garner, H.; Post, R. S.
1981-02-01
The effective sticking coefficient for low energy (< 30 eV) hydrogen ions on titanium gettered aluminium walls has been measured in the Wisconsin Levitated Octupole. A value of greater than 0.75 was measured. The H/sub 2/ effective sticking coefficient for the same conditions is less than 0.01. Seventy-four percent of the wall area of the Octupole is gettered. The effects of recycling on plasma parameters is also discussed.
Exactly solvable model in quadrupole-octupole coupled states
Jalili Majarshin, A.; Sabri, H.; Rezaei, M.
2018-03-01
Exactly solvable model in quadrupole-octupole coupled (QOC) states is an interesting nuclear structure phenomenon. For example, several transitions of the electric dipole and quadrupole (E1 and E2) values are indicative of QOC states. Various collective models as three-level and four-level pairing models were employed in order to account for the observed properties of the QOC states. We suggest a simultaneous description of low-lying collective positive and negative-parity states to use the spdf and sdf interacting boson model to reproduce the general characteristics of the QOC states. Also, quantum phase transitions are investigated based on dual algebraic structures for the sd, sdf and spdf-IBM. The low lying positive and negative parity states and the QOC properties of the stable even-even Cd isotopes are calculated in solvable extended transitional Hamiltonian of the IBM-spdf and IBM-sdf models based on the affine SU (1 , 1) ˆ Lie algebra. Some observables such as energy levels, transition rates, expectation value of boson number operators, energy differences and staggering pattern are calculated and examined for Cd isotopes. The IBM calculations indicate a nuclear structure of the electric E1, E2 and E3 strength and energy spectra in the low-lying, thus confirming the experimental results for transition region. The calculations confirm a good agreement for the energy spectra, quantum phase transitions and fragmentation of the E1, E2 and E3 strengths.
Octupole collectivity in $^{220}$Rn and $^{224}$Ra
Gaffney, Liam Paul
Collective properties of the radioactive nuclei $^{220}$Rn and $^{224}$Ra have been studied via Coulomb excitation of a 2.8$\\,$A.MeV radioactive ion beam (RIB) incident upon $^{60}$Ni, $^{112,114}$Cd and $^{120}$Sn targets. The experiments took place at the REX-ISOLDE RIB facility, CERN. De-excitation $\\gamma$-ray yields following multiple-step Coulomb excitation were detected in coincidence with recoiling target nuclei in the Miniball spectrometer. For the first time, B(E3;3$^+ \\rightarrow 0^+$) values have been directly measured with a radioactive ion beam. In the process, $^{224}$Ra becomes the heaviest post-accelerated RIB to date at ISOLDE (with the possible exception of the quasi-stable $^{238}$U). The measurements presented in this thesis represent a tripling of the number of nuclei around Z$\\simeq88$ and N$\\simeq134$, for which direct measurements of the octupole collectivity have been performed. The only previous measurements being for the relatively long-lived $^{226}$Ra. The $\\gamma$-ray yields, in...
Observation of the Nuclear Magnetic Octupole Moment of 137Ba+
Hoffman, Matthew
Single trapped ions are ideal systems in which to test atomic physics at high precision, which can in turn be used for searches for violations of fundamental symmetries and physics beyond the standard model, in addition to quantum computation and a number of other applications. The ion is confined in ultra-high vacuum, is laser cooled to mK temperatures, and kept well isolated from the environment which allows these experimental efforts. In this thesis, a few diagnostic techniques will be discussed, covering a method to measure the linewidth of a narrowband laser in the presence of magnetic field noise, as well as a procedure to measure the ion's temperature using such a narrowband laser. This work has led to two precision experiments to measure atomic structure in 138Ba+, and 137Ba+ discussed here. First, employing laser and radio frequency spectroscopy techniques in 138Ba+, we measured the Lande- gJ factor of the 5D5/2 level at the part-per-million level, the highest precision to date. Later, the development of apparatus to efficiently trap and laser cool 137Ba+ has enabled a measurement of the hyperfine splittings of the 5D3/2 manifold, culminating in the observation of the nuclear magnetic octupole moment of 137Ba+.
Octupole deformation in 149,151Sm nuclei
International Nuclear Information System (INIS)
Basu, S.; Chatterjee, J.M.; Banik, D.; Chattopadhyay, R.K.; Sharma, R.P.; Pardha Saradhi, S.K.
1994-01-01
Parity doublet states and alternating parity bands in 149,151 Sm nuclei observed in 148,150 Nd (α,3nγ) reactions at E α =37 and 35 MeV are presented here. Nineteen new transitions in 149 Sm and sixteen in 151 Sm have been observed in singles and γ-γ-t-r.f. coincidence experiments. Four alternating parity bands in 149 Sm and two in 151 Sm characterized by simplex quantum numbers are reported. The observed level schemes are interpreted in terms of octupole deformation. The energy difference due to parity splitting, collective rotational parameters, quasiparticle Routhians, single particle angular momentum alignments of bands with simplex quantum number s=±i in 149 Sm and with s=-i in 151 Sm have been calculated from the experimental results. From the E1, E2 branching ratios, the electric dipole moments are deduced to be left-angle D 0 right-angle=0.19±0.08 e fm for 149 Sm and left-angle D 0 right-angle=0.36±0.11 e fm for 151 Sm. The parameter C 1 , a function of the symmetry energy coefficient, has been estimated for 149 Sm from the liquid drop model of Strutinsky for deformed nucleus, and has been found to be C 1 =0.002003 -0.000159 +0.000087 fm
Signatures of octupole correlations in neutron-rich odd-mass barium isotopes
Nomura, K.; Nikšić, T.; Vretenar, D.
2018-02-01
Octupole deformation and the relevant spectroscopic properties of neutron-rich odd-mass barium isotopes are investigated in a theoretical framework based on nuclear density functional theory and the particle-core coupling scheme. The interacting-boson Hamiltonian that describes the octupole-deformed even-even core nucleus, as well as the single-particle energies and occupation probabilities of an unpaired nucleon, are completely determined by microscopic axially symmetric (β2,β3) -deformation constrained self-consistent mean-field calculations for a specific choice of the energy density functional and pairing interaction. A boson-fermion interaction that involves both quadrupole and octupole degrees of freedom is introduced, and their strength parameters are determined to reproduce selected spectroscopic data for the odd-mass nuclei. The model reproduces recent experimental results for both even-even and odd-mass Ba isotopes. In particular, for Ba,147145 our results indicate, in agreement with recent data, that octupole deformation does not determine the structure of the lowest states in the vicinity of the ground state, and only becomes relevant at higher excitation energies.
Energy Technology Data Exchange (ETDEWEB)
Dancer, H.; Meyer, J.; Perries, S. [Inst.. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Bonche, P. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Flocard, H. [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Heenen, P.H. [Universite Libre de Bruxelles (Belgium)
1998-12-31
Octupole correlations have been investigated within the Generator Coordinate Method based upon Hartree-Fock plus BCS wavefunctions. GCM states corresponding to the q{sub 30} and q{sub 32} modes have been built up to describe the SD excited bands which have been recently observed as negative parity bands. (authors) 4 refs., 1 fig. Short communication
Examination of different strengths of octupole correlations in neutron-rich Pr and Pm isotopes
Czech Academy of Sciences Publication Activity Database
Thiamova, G.; Alexa, P.; Hons, Zdeněk; Simpson, G.S.
2012-01-01
Roč. 86, č. 4 (2012), 044334/1-044334/5 ISSN 0556-2813 R&D Projects: GA ČR GAP203/10/0310 Institutional support: RVO:61389005 Keywords : neutron rich nuclei * octupole correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.715, year: 2012
Single-beam measurements of LHC instability threshold in terms of octupole current
Mounet, N; Buffat, X; Burov, A; Hemelsoet, G; Metral, E; Papotti, G; Pieloni, T; Pojer, M; Salvant, B; Trad, G
2012-01-01
This note summarizes two machine development (MD) studies aimed at determining the octupole current needed in the LHC in order to stabilize all headtail instabilities at 4TeV/c, before and after the squeeze, with tight collimator settings, and when a single beam (beam 2) at maximum intensity (1380 bunches, 2.1 1014 protons) is present in the machine. The MDs followed the normal physics operation procedure, at the notable exception that a single beam was used, the other beam containing only one non-colliding nominal bunch. Octupole current (with negative polarity in the focusing octupoles and the opposite in the defocusing ones) was decreased by small steps until the instability threshold was reached. This was performed in two distinct MDs, one before the squeeze and the other after it, testing also several chromaticity values and the effect of the transverse damper in the latter case. Octupole thresholds are shown in each case studied, as well as the rise times of the instabilities observed.
Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.
2009-10-01
The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.
Description of octupole degrees of freedom in the U(5) ↔ SO(13) transitional region
Jalili Majarshin, A.; Jafarizadeh, M. A.; Sabri, H.
2017-10-01
In this paper, we discuss the problem of describing the collective states with negative parity in even-even nuclei by adding f boson to the usual sd-interacting boson model. The sdf -interacting boson model, which includes monopole (s, L=0), quadrupole (d, L=2) and octupole (f, L=3) degrees of freedom, enables analyzing the electric transitions of atomic nuclei. We proposed a solvable extended transitional Hamiltonian based on affine SU(1,1) Lie algebra within the framework of the sdf -interacting boson model to describe the low-lying octupole states between the spherical and deformed gamma-unstable shapes. Numerical extraction to low-lying energy levels and transition probabilities within the control parameters of this evaluated Hamiltonian are presented for various N values. By reproducing the experimental results, the extended interacting boson model calculations provide a better description of Pd isotopes in this transitional region.
Measurements of octupole collectivity in Rn and Ra nuclei using Coulomb excitation
We propose to exploit the unique capability of HIE-ISOLDE to provide post-accelerated $^{221,222}$Rn and $^{222,226,228}$Ra ion beams for the study of octupole collectivity in these nuclei. We will measure E3 transition moments in $^{222}$Rn and $^{222,226,228}$Ra in order to fully map out the variation in E3 strength in the octupole mass region with Z$\\thicksim$88 and N$\\thicksim$134. This will validate model calculations that predict different behaviour as a function of N. We will also locate the position of the parity doublet partner of the ground state in $^{221}$Rn, in order to test the suitability of odd-A radon isotopes for EDM searches.
Lower hybrid heating associated with mode conversion on the Wisconsin octupole
Energy Technology Data Exchange (ETDEWEB)
Owens, T.L.
1979-08-01
This thesis addresses the following key issues in the lower hybrid frequency range: 1. What are the importent physics aspects of wave propagation and heating in an experimental situation. 2. How effective is plasma heating in the complex magnetic field configuration of the octupole. Experimental work is accomplished by launching 1-10ms pulses of up to 40kW of radio frequency power at 140MHz corresponding to the hot plasma lower hybrid resonance in the octupole. A diploe antenna which is moveable radially and is also rotatable couples wave power to the plasma. Coupling efficiencies greater than 95% are achieved by proper antenna placement near the edge of the plasma radial density profile.
Kiciński, Jan
2018-01-01
The paper presents the results of the analysis of the dynamic performance of the rotor being a component of the ORC turbine set with the net electrical output of 100 kW and the nominal speed of 9000 rpm. The research was conducted using tools capable of performing the necessary simulation of the system operating under highly unstable conditions, i.e., in a strongly nonlinear regime. In this regard, the author of the paper followed the subsequent phases of whirl/whip formation manifested in the fluid film. Constructional solutions within the scope of the bearing were examined with non-conventional lubricating mediums (low boiling mediums). On the basis of those scientific studies, the decision to build a working prototype of the machine was taken. Such a prototype has already been manufactured, having regard to the outcome of the conducted analyses. The research presented herein produced interesting results showing that, under the conditions of hydrodynamic instability, the phenomena taking place inside the lubricating gap of the slide bearing are not recurrent for each individual rotor revolution, notwithstanding the fact that the external excitation forces acting on the system are fully repeatable. The research tools were presented that allow a detailed qualitative and quantitative description of such phenomena.
Directory of Open Access Journals (Sweden)
Tian Lan
2016-01-01
Full Text Available While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation, at high temperatures, this understanding must accommodate how phonons interact with other phonons or with other excitations. To date the anharmonic lattice dynamics is poorly understood despite its great importance, and most studies still rely on the quasiharmonic approximations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems and essentially modify the equilibrium and nonequilibrium properties of materials, for example, thermal expansion, thermodynamic stability, heat capacity, optical properties, thermal transport, and other nonlinear properties of materials. The review aims to introduce some recent developements of computational methodologies that are able to efficiently model the strong phonon anharmonicity based on quantum perturbation theory of many-body interactions and first-principles molecular dynamics simulations. The effective potential energy surface of renormalized phonons and structures of the phonon-phonon interaction channels can be derived from these interdependent methods, which provide both macroscopic and microscopic perspectives in analyzing the strong anharmonic phenomena while the traditional harmonic models fail dramatically. These models have been successfully performed in the studies on the temperature-dependent broadenings of Raman and neutron scattering spectra, high temperature phase stability, and negative thermal expansion of rutile and cuprite structures, for example.
Directory of Open Access Journals (Sweden)
ZHANG Zhihong
2013-10-01
Full Text Available In order to ensure wind-resistance safety of large-span pre-stressed flexible system in southeast coast area of China,and to prepare something for revising of current codes of practice or technical standards,the present paper conducts field measurement of wind pressure and wind-induced vibration of a practical and typical large-span spatial cable-truss system-lunar stadium in Yueqing city.Wind loading and wind effects on full-scale structure under strong wind or typhoon in real architectural environment can be obtained directly and effectively.Field measurement is the best way to investigate the wind loading property,wind effects,and wind-structure interactions of large-span flexible system.Measured data will be highly valuable for scientific research and practical design.On the other hand,it also provides the basis of wind-resistance safety design of this kind of tension structures.If any creative development,it would dramatically improve the research level of large-span pre-stressed flexible system in our country.
Exotic octupole deformation in proton-rich Z=N nuclei
Energy Technology Data Exchange (ETDEWEB)
Takami, Satoshi; Yabana, K. [Niigata Univ. (Japan); Matsuo, M.
1998-03-01
We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)
High-power ion-cyclotron-resonance heating in the Wisconsin Levitated Octupole
International Nuclear Information System (INIS)
Fortgang, C.M.
1983-05-01
Ion cyclotron resonance heating has been investigated, both experimentally and theoretically, on the Wisconsin Levitated Octupole. Heating of both ions and electrons has been observed. Typically, a two component ion energy distribution is produced (300 eV and 50 eV) with the application of 500 kW of rf power into a 5 x 10 12 cm -3 density plasma. Power is coupled to the plasma with an antenna that also serves as the inductor of an oscillator tank circuit. The oscillator is tunable from 1 to 3 MHz and can be applied for periods up to 10 msec. The experiments were performed with hydrogen, gun injected plasmas
Identification of Excited States in 226U: Evidence for Octupole Deformation
International Nuclear Information System (INIS)
Greenlees, P.T.; Amzal, N.; Andreyev, A.; Butler, P.A.; Cann, K.J.; Cocks, J.F.C.; Dorvaux, O.; Enqvist, T.; Fallon, P.; Gall, B.; Guttormsen, M.; Hawcroft, D.; Helariutta, K.; Hessberger, F.P.; Hoellinger, F.; Jones, G.D.; Jones, P.; Julin, R.; Juutinen, S.; Kankaanpaa, H.; Kettunen, H.; Kuusiniemi, P.; Leino, M.; Messelt, S.; Muikku, M.; Odegard, S.; Page, R.D.; Savelius, A.; Schiller, A.; Siem, S.; Trzaska, W.H.; Tveter, T.; Uusitalo, J.
1999-01-01
The level scheme of 226 U has been deduced from the results of two experiments carried out at the University of Jyvaskyla, Finland. Both α- and γ-ray-spectroscopic techniques have been employed. The interleaved states of positive- and negative-parity indicate the octupole nature of this nucleus, and the behavior of the difference in aligned angular momentum between the positive- and negative-parity bands as a function of rotational frequency is consistent with that expected for a rotating reflection-asymmetric shape
Energy Technology Data Exchange (ETDEWEB)
Chamon, L.C., E-mail: luiz.chamon@dfn.if.usp.b [Departamento de Fisica Nuclear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil); Carlson, B.V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil)
2010-11-30
We present a large-scale systematics of charge densities, excitation energies and deformation parameters for hundreds of heavy nuclei. The systematics is based on a generalized rotation-vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation.
Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations
Energy Technology Data Exchange (ETDEWEB)
Gregor, E.T.; Scheck, M.; Chapman, R.; Gaffney, L.P.; Keatings, J.; Mashtakov, K.R.; O' Donnell, D.; Smith, J.F.; Spagnoletti, P.; Wiseman, C. [University of the West of Scotland, School of Engineering and Computing, Paisley (United Kingdom); SUPA, Scottish Universities Physics Alliance, Glasgow (United Kingdom); Thuerauf, M.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2017-03-15
For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment. (orig.)
Using octupoles for background control in linear colliders -- An exploratory conceptual study
International Nuclear Information System (INIS)
Pitthan, R.
2000-01-01
If one adds a suited Octupole (or an even higher multipole) lattice to linear collider Quadrupole FODO lattices, the amplifying properties of the combined lattice drive particles in the tails, but not those in the core, into resonant losses. This approach is quite different in concept and beam dynamics impact from past proposed use of non-linear elements for collimation. This non-traditional scheme for background control has the added advantage that most, or maybe all, of the Halo collimation can be done using the lever arm of the real estate of the main accelerators, thus reducing the costly length of a separate dedicated collimation section and also unifying machine protection and background control. Simulations of particle distributions are presented. This approach requires cooperation by the designers of the accelerators, the beam delivery system, and the Detector, because a careful balance between sometimes conflicting requirements has to be found. As a second component of this approach the use of Octupoles right before the final focusing Quadrupoles is proposed in order to enlarge the effective beam stay clear by a factor of 2--3, thus reducing the requirements for collimation. This concept would reduce the requirement for collimation but simulation have not been carried out here in detail. To further explore and implement this concept will require a considerable effort in manpower, possibly comparable to, although less in scope, than the effort to develop the NLC RF or the CLIC RF schemes
Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums
Hoff, P; Kaczarowski, R
2002-01-01
%IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...
Higo, Tomoya; Man, Huiyuan; Gopman, Daniel B.; Wu, Liang; Koretsune, Takashi; van't Erve, Olaf M. J.; Kabanov, Yury P.; Rees, Dylan; Li, Yufan; Suzuki, Michi-To; Patankar, Shreyas; Ikhlas, Muhammad; Chien, C. L.; Arita, Ryotaro; Shull, Robert D.; Orenstein, Joseph; Nakatsuji, Satoru
2018-02-01
The magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials as a powerful probe for electronic and magnetic properties1-3 and for magneto-optical technologies4. The MOKE can be additionally useful for the investigation of the antiferromagnetic (AF) state, although thus far limited to insulators5-9. Here, we report the first observation of the MOKE in an AF metal. In particular, we find that the non-collinear AF metal Mn3Sn (ref. 10) exhibits a large zero-field Kerr rotation angle of 20 mdeg at room temperature, comparable to ferromagnetic metals. Our first-principles calculations clarify that ferroic ordering of magnetic octupoles11 produces a large MOKE even in its fully compensated AF state. This large MOKE further allows imaging of the magnetic octupole domains and their reversal. The observation of a large MOKE in an AF metal will open new avenues for the study of domain dynamics as well as spintronics using antiferromagnets12-16.
International Nuclear Information System (INIS)
Halenka, J.; Olchawa, W.
2005-01-01
From experiments, see e.g. [W. Wiese, D. Kelleher, and D. Paquette, Phys. Rev. A 6, 1132 (1972); V. Helbig and K. Nich, J. Phys. B 14, 3573 (1981).; J. Halenka, Z. Phys. D 16, 1 (1990); . Djurovic, D. Nikolic, I. Savic, S. Sorge, and A.V. Demura, Phys. Rev. E 71, 036407 (2005)], results that the hydrogen lines formed in plasma with N e φ 10 16 cm -3 are asymmetrical. The inhomogeneity of ionic micro field and the higher order corrections (quadratic and next ones) in perturbation theory are the reason for such asymmetry. So far, the ion-emitter quadrupole interaction and the quadratic Stark effect have been included in calculations. The recent work shows that a significant discrepancy between calculations and measurements occurs in the wings of H-beta line in plasmas with cm -3 . It should be stressed here that e.g. for the energy operator the correction raised by the quadratic Stark effect is proportional to (where is the emitter-perturber distance) similarly as the correction caused by the emitter-perturber octupole interaction and the quadratic correction from emitter-perturber quadrupole interaction. Thus, it is obvious that a model of the profile calculation is consistent one if all the aforementioned corrections are simultaneously included. Such calculations are planned in the future paper. A statistics of the octupole inhomogeneity tensor in a plasma is necessarily needed in the first step of such calculations. For the first time the distribution functions of the octupole inhomogeneity have been calculated in this paper using the Mayer-Mayer cluster expansion method similarly as for the quadrupole function in the paper [J. Halenka, Z. Phys. D 16, 1 (1990)]. The quantity is the reduced scale of the micro field strength, where is the Holtsmark normal field and is the mean distance defined by the relationship, that is approximately equal to the mean ion-ion distance; whereas is the screening parameter, where is the electronic Debye radius. (author)
International Nuclear Information System (INIS)
Fritzen, M.R.; Fritzen, T.A.
1994-01-01
Anytime that blasting operations will be conducted near existing inhabited structures, vibration damage claims are a major concern of the blasting contractor. It has been the authors' experience that even when vibration and airblast levels generated from a blast are well below accepted damage thresholds, damage claims can still arise. The single greatest source of damage claims is the element of surprise associated with not knowing that blasting operations are being conducted nearby. The second greatest source of damage claims arise form the inability to produce accurate and detailed records of all blasting activity which provides evidence that vibration and air blast levels from each blast had been taken by seismic recording equipment. Using a two part plan consisting of extensive public relations followed by a detailed and accurate monitoring and recording of blasting operations has resulted in no substantiated claims of damage since its' incorporation. The authors experience shows that by using this two part process when conducting blasting operations near inhabited structures, unsubstantiated blast vibration damage claims may be significantly reduced
Energy Technology Data Exchange (ETDEWEB)
Fritzen, M.R.; Fritzen, T.A. [Blasting Technology, Inc., Maui, HI (United States)
1994-12-31
Anytime that blasting operations will be conducted near existing inhabited structures, vibration damage claims are a major concern of the blasting contractor. It has been the authors` experience that even when vibration and airblast levels generated from a blast are well below accepted damage thresholds, damage claims can still arise. The single greatest source of damage claims is the element of surprise associated with not knowing that blasting operations are being conducted nearby. The second greatest source of damage claims arise form the inability to produce accurate and detailed records of all blasting activity which provides evidence that vibration and air blast levels from each blast had been taken by seismic recording equipment. Using a two part plan consisting of extensive public relations followed by a detailed and accurate monitoring and recording of blasting operations has resulted in no substantiated claims of damage since its` incorporation. The authors experience shows that by using this two part process when conducting blasting operations near inhabited structures, unsubstantiated blast vibration damage claims may be significantly reduced.
Energy Technology Data Exchange (ETDEWEB)
Antipov, S. A.; Nagaitsev, S.; Valishev, A.
2017-04-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.
Using Octupoles for Background Control in Linear Colliders an Exploratory Conceptual Study
Pitthan, R
1999-01-01
If one adds a suited Octupole (or an even higher multipole) lattice to linear collider Quadrupole FODO lattices, the amplifying properties of the combined lattice drive particles in the tails, but not those in the core, into resonant losses. This approach is quite different in concept and beam dynamics impact from past proposed use of non-linear elements for collimation. This non-traditional scheme for background control has the added advantage that most, or maybe all, of the Halo collimation can be done using the lever arm of the real estate of the main accelerators, thus reducing the costly length of a separate dedicated collimation section and also unifying machine protection and background control. Simulations of particle distributions are presented. This approach requires co operation by the designers of the accelerators, the beam delivery system, and the Detector, because a careful balance between sometimes conflicting requirements has to be found. As a second component of this approach the use of Octup...
Study of octupole deformation in n-rich Ba isotopes populated via $\\beta$-decay
We propose to exploit the unique capability of the ISOLDE facility to produce $^{150, 151, 152}$Cs beams to investigate their radioactive $\\beta$-decay to $^{150, 151, 152}$Ba. The interest to study this mass region is twofold: these nuclei are expected to show octupole deformations already in their low-lying state, secondly information on the $\\beta$-decay is needed for the nuclear astrophysical model. The experiment will be performed with the ISOLDE Decay Station (IDS) setup using the fast tape station of K.U.-Leuven, equipped with four Clover Germanium detectors, four LaBr$_{3}$(Ce) detectors and one LEP HPGe detector. Information on the $\\beta$-decay, such as lifetimes and delayed neutron-emission probabilities, will be extracted, together with the detailed spectroscopy of the daughter nuclei, via $\\gamma$-$\\gamma$-coincidences and lifetime measurement of specific states.
Experiment and theory of a drift wave in the levitated octupole
International Nuclear Information System (INIS)
Rose, E.A.
1982-08-01
A very coherent 30 kHz drift wave is observed in the Levitated Toroidal Octupole at the University of Wisconsin - Madison. The density and floating potential fluctuations have a well-defined spatial structure in the poloidal magnetic field. Radially the wave has a standing wave structure with amplitude peaked in regions of locally bad magnetic curvature. Poloidally the wave has a standing wave structure with odd symmetry; nodes are located in the regions of locally good magnetic curvature. The wave propagates toroidally in the electron diamagnetic drift direction with a wavelength of 20 centimeters. No changes occur in the wave structure as the plasma is varied over three orders of magnitude in density and beta
Ambipolar electric fields and turbulence studies in the Wisconsin levitated toroidal octupole
International Nuclear Information System (INIS)
Armentrout, C.J.
1977-01-01
Detailed studies of hot ion plasmas (T/sub i/ > T/sub e/) in the poloidal field octupole show that the ambipolar electric field which is perpendicular to the flux surfaces is well explained by the observed properties of the microturbulence structures in the plasma. The turbulence structure has been measured by correlation techniques which are carefully described. In these experiments, signals were studied which are aperiodic in time and space, short lived compared to the decay times of the bulk plasma parameters, short ranged compared to the machine size, and are therefore classified as microturbulence structures. The resulting spatial and temporal correlation functions (CFs) are well fitted to a Gaussian function and the associated correlation lengths or times are the half width at half maximum of the CFs. The correlation length is measured to be the ion gyro radius for the hot hydrogen plasma and somewhat less for the helium plasma
John, Kevin D.; Miskowski, Vincent M.; Vance, Michael A.; Dallinger, Richard F.; Wang, Louis C.; Geib, Steven J.; Hopkins, Michael D.
1998-12-28
The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation
Energy Technology Data Exchange (ETDEWEB)
Aliev, T.M., E-mail: taliev@metu.edu.t [Physics Department, Middle East Technical University, 06531 Ankara (Turkey); Azizi, K., E-mail: kazizi@dogus.edu.t [Physics Division, Faculty of Arts and Sciences, Dogus University, Acibadem-Kadikoey, 34722 Istanbul (Turkey); Savci, M., E-mail: savci@metu.edu.t [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)
2009-11-02
The electric quadrupole and magnetic octupole moments of the light decuplet baryons are calculated in the framework of the light cone QCD sum rules. The obtained non-vanishing values for the electric quadrupole and magnetic octupole moments of these baryons show nonspherical charge distribution. The sign of electric quadrupole moment is positive for OMEGA{sup -}, XI*{sup -}, SIGMA*{sup -} and negative for SIGMA*{sup +}, which correspond to the prolate and oblate charge distributions, respectively. A comparison of the obtained results with the predictions of non-covariant quark model which shows a good consistency between two approaches is also presented. Comparison of the obtained results on the multipole moments of the decuplet baryons containing strange quark with those of DELTA baryons shows a large SU(3) flavor symmetry breaking.
Indication for a K/sup. pi. / = 0/sup -/ octupole band in /sup 150/Nd from electron scattering
Energy Technology Data Exchange (ETDEWEB)
Creswell, C.; Hirsch, A.; Bertozzi, W.; Heisenberg, J.; Kowalski, S.; Sargent, C.P.; Turchinetz, W.; Dieperink, A.
1978-11-01
Recent electron scattering results on the 0.850 MeV level of /sup 150/Nd, when analyzed in terms of the interacting boson model, are inconsistent with the interpretation of this level as a pure J/sup ..pi../(K) = 2/sup +/(0) state. Very recent (n,n'..gamma..) work has shown this level to be a 1/sup -/, 2/sup +/ doublet. Assuming this level to be the band head of a ''K/sup ..pi../ = 0/sup -/'' octupole band, a simple model is used to predict electron scattering form factors for the 0.850 MeV state and a 3/sup -/ octupole level observed at 0.931 MeV. Comparison is made between these predicted form factors and recent electron scattering data.
Hidden order in Ce compounds. Direct observation of magnetic octupole order by neutron scattering
International Nuclear Information System (INIS)
Kuwahara, Keitaro
2008-01-01
Experimental results of single crystal neutron scattering experiments on Ce 0.7 La 0.3 B 6 , which shows a so-called 'hidden order' in phase IV at low temperature, are presented. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l=odd number) have been observed for the first time by neutron scattering. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems. (author)
Core breaking and octupole low-spin states in $^{207}$ Tl
We propose to study the low-spin level structure of the $^{207}$Tl nucleus populated by the $\\beta$- decay of $^{207}$Hg. While $^{207}$Tl is a single-proton hole nucleus, the majority of the observed states will have a three-particle structure thus requiring the breaking of the neutron or proton core, or a collective octupole phonon coupled to the single proton hole. Thus information will be obtained on the single particle orbitals in the vicinity of the N=126 and Z=82 magic numbers, and on the size of the shell gap. The results will be used to improve the predictive power of the shell model for more exotic nuclei as we move to lighter N=126 nuclei.The experiment will use the ISOLDE Decay station, and will take advantage of the $^{207}$Hg beam from the molten lead target. A test on the feasibility to produce an $^{208}$Hg beam from the same target, with the aim to study the $\\beta$-decay into $^{208}$Tl, could be performed at the same time.
Energy Technology Data Exchange (ETDEWEB)
Zhu, S.J.; Wang, M.G.; Long, G.L.; Zhu, L.Y.; Gan, C.Y.; Yang, L.M.; Sakhaee, M.; Li, M.; Deng, J.K. [Physics Department, Tsinghua University, Beijing 100084, Peoples Republic of (China); Zhu, S.J.; Hamilton, J.H.; Ramayya, A.V.; Jones, E.F.; Hwang, J.K.; Zhang, X.Q.; Gore, P.M.; Peker, L.K.; Drafta, G.; Babu, B.R.; Deng, J.K.; Ginter, T.N.; Beyer, C.J.; Kormicki, J.; Ter-Akopian, G.M.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville, Tennessee 37235 (United States); Zhu, S.J.; Ter-Akopian, G.M.; Daniel, A.V. [Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee 37831 (United States); Ma, W.C. [Physics Department, Mississippi State University, Mississippi 39762 (United States); Cole, J.D.; Aryaeinejad, R.; Drigert, M.W. [Idaho National Engineering Laboratory, Idaho Falls, Idaho 83415 (United States); Rasmussen, J.O.; Asztalos, S.; Lee, I.Y.; Macchiavelli, A.O.; Chu, S.Y.; Gregorich, K.E.; Mohar, M.F. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russia); Donangelo, R. [Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RG (Brazil); Stoyer, M.A.; Lougheed, R.W.; Moody, K.J.; Wild, J.F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Prussin, S.G. [Nuclear Engineering Department, University of California at Berkeley, Berkeley, California 94720 (United States); Kliman, J. [Institute of Physics, SASc, Dubravskacesta 9, 84228 Bratislava (Slovakia); Griffin, H.C. [University of Michigan, Ann Arbor, Michigan 48104 (United States)
1999-11-01
High spin states in neutron-rich odd-{ital Z} {sup 143,145}Ba nuclei have been investigated from the study of prompt {gamma} rays in the spontaneous fission of {sup 252}Cf by using {gamma}-{gamma}- and {gamma}-{gamma}-{gamma}- coincidence techniques. Alternating parity bands are identified for the first time in {sup 145}Ba and extended in {sup 143}Ba. A new side band, with equal, constant dynamic, and kinetic moments of inertia equal to the rigid body value, as found in superdeformed bands, is discovered in {sup 145}Ba. Enhanced E1 transitions between the negative- and positive-parity bands in these nuclei give evidence for strong octupole deformation in {sup 143}Ba and in {sup 145}Ba. These collective bands show competition and coexistence between symmetric and asymmetric shapes in {sup 145}Ba. Evidence is found for crossing M1 and E1 transitions between the s=+i and s={minus}i doublets in {sup 143}Ba. {copyright} {ital 1999} {ital The American Physical Society}
Directory of Open Access Journals (Sweden)
C. Montag
2002-08-01
Full Text Available During the Relativistic Heavy Ion Collider commissioning in 2001 a fast transverse instability was observed on the ramp. In general this could be counteracted with increased chromaticity, resulting in Landau damping. However this method could not be applied around transition energy where chromaticities have to change sign. So octupoles were used near transition energy to create transverse Landau damping and avoid the transverse instability, emittance blowup, and beam loss. This paper describes the considerations that led to the present scheme, as well as experimental results.
Measurements of octupole collectivity in $^{220,222}$Rn and $^{222,224}$Ra using Coulomb excitation
Kruecken, R; Larsen, A; Hurst, A M; Voulot, D; Grahn, T; Clement, E; Wadsworth, R; Gernhaeuser, R A; Siem, S; Huyse, M L; Iwanicki, J S
2008-01-01
We propose to exploit the unique capability of ISOLDE to provide post-accelerated $^{220,222}$Rn and $^{222,224}$Ra ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ states in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^{-}$ state using the MINIBALL array we can obtain the transition matrix elements. This will give quantitative information about octupole correlations in these nuclei. We require 22 shifts to fulfil the aims of the experiment.
Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.
2018-03-01
Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.
We propose to study excited states in isotopes north-east of the doubly-magic $^{132}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to the determine B(E2) and B(E3) values to follow the evolution of quadrupole and octupole collectivity when going away from the shell closures at Z = 50 and N = 82. The B(E2; 0$^+_{gs}$ $\\rightarrow$ 2$^+_{1}$) values in the even isotopes $^{138-144}$Xe have been measured at REX-ISOLDE and the systematic trend towards neutron-rich nuclei is well described even by an empirical Grodzins-type formula. An increasing dipole moment observed for $^{140,142}$Xe is interpreted as indirect signature of increasing octupole correlations peaking at N = 88. So far, no B(E3) values are known. In contrast to the Xe isotopes, the Te ones, in particular $^{136}$Te, are known for their notoriously irregular behaviour. In order to understand the nuclear structure also on a microscopic basis, the isotope $^{136}$Te with just one pair of protons and neutrons...
2000-01-01
This document concerns the award of a contract for the supply of 168 MO superconducting octupole corrector magnet assemblies for the LHC. Following a market survey (MS-2594/LHC/LHC) carried out among 39 firms in thirteen Member States, two firms in Japan and one firm in the USA, a call for tenders (IT-2595/LHC/LHC) was sent on 15 February 2000 to 11 firms in seven Member States. By the closing date, CERN had received seven tenders. The Finance Committee is invited to agree to the negotiation of a contract with the firm ANTEC (ES), the lowest bidder, for the supply of 168 MO superconducting octupole corrector magnet assemblies for the LHC for a total amount of 2 075 935 Swiss francs, subject to revision for contractual deliveries after 31 December 2001, with an option for the supply of up to 50 additional MO corrector magnet assemblies, for a total amount of 526 400 Swiss francs, subject to revision for contractual deliveries after 31 December 2001, bringing the total amount to a maximum of 2 602 335 Swiss fra...
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.
1983-01-01
The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.
International Nuclear Information System (INIS)
Kohl, H.; Stringari, S.; Schuck, P.
1986-06-01
We use the Vlasov equation plus the Planck's constant - corrections to describe collective nuclear vibrations in the small amplitude limit. Separable forces of the multipole - multipole type are employed to study the quadrupole and octupole resonances. Whereas the giant states exhibit the well known distortions of the Fermi sphere already at the classical level we find that the low lying 3 - state has an isotropic pressure tensor in the Planck's constant #-> # 0 limit. Quantum corrections reestablish a small distortion and thus a finite restoring force
International Nuclear Information System (INIS)
Nhan Hao, T.V.; Phu Dat, D.H.; Hoang Tung, N.; Tran, H.N.
2015-01-01
The left–right asymmetric deformation of normal deformed (ND) and superdeformed (SD) states of 194 Pb has been investigated in the framework of the parity-symmetry projection of the highly truncated diagonalization approach (HTDA), which is suited to treat the correlations in an explicitly particle-number conserving microscopic approach. A Skyrme energy density functional using the SIII and SkM* interactions has been considered to treat the particle–hole channel, whereas a density-independent δ force has been adopted for the residual interaction. The obtained results are compared with previous approaches. The calculated octupole phonon excitation energy is found to be in good qualitative agreement with available data in the ND state. (author)
Energy Technology Data Exchange (ETDEWEB)
Azizi, K. [Middle East Technical University, Physics Department, Ankara (Turkey)
2009-05-15
Due to the very short lifetime of the {delta} baryons, a direct measurement on the electromagnetic moments of these systems is almost impossible in the experiment and can only be done indirectly. Although only for the magnetic dipole moments of {delta}{sup ++} and {delta}{sup +} systems there are some experimental data, the theoretical, phenomenological and lattice calculations could play crucial role. In the present work, the magnetic dipole ({mu}{sub {delta}}), electric quadrupole (Q{sub {delta}}) and magnetic octupole (O{sub {delta}}) moments of these baryons are computed within the light cone QCD sum rules. The results are compared with the predictions of the other phenomenological approaches, lattice QCD and existing experimental data. (orig.)
Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi
2018-03-01
This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.
We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{142}$Ba and $^{144}$Ba ion beams from the HIE-ISOLDE facility to enable the Coulomb excitation of the first 3$^-$ state in these nuclei. By measuring the $\\gamma$-ray yields of the E1 decays from the 3$^-$ state using the MINIBALL array, we can obtain the interesting transition matrix element. The results will give quantitative information about octupole correlations in these nuclei.
International Nuclear Information System (INIS)
Solov'ev, V.G.; Shirikova, N.Yu.
1989-01-01
The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be reasonale agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π and Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. 44 refs.; 1 fig.; 6 tabs
Lower hybrid heating associated with mode conversion on the Wisconsin toroidal octupole
International Nuclear Information System (INIS)
Owens, T.L.; Scharer, J.E.
1980-09-01
Wave heating experiments and wave propagation measurements in the lower hybrid range of frequencies are described. A T antenna launches up to 40 kW of wave power at 140 MHz with better than 95% coupling efficiency. Ion temperature increases of ΔT/sub i/ = 37 eV are measured with ΔT/sub parallel//T/sub io/ = 12. Ion heating is strongly localized near the lower hybrid turning point for a peak value of (k/sub parallel//ω)(KT/sub i//m/sub e/)/sup 1/2/ approx. = 0.3 corresponding to an upshifted k/sub parallel/ spectrum. Wavelength measurements indicate that the upshift in k/sub parallel/ occurs in the interior of the plasma. Other wave measurements show the existence of a large amplitude weakly damped fast wave component in addition to the slow wave
2009-01-01
Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.
Umesh P. Agarwal; Rajai Atalla
2010-01-01
Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...
We propose to exploit the unique capability of ISOLDE to provide intense post-accelerated $^{144}$Ba ion beams from the REX facility to enable the Coulomb excitation of the first 3$^{-}$ state in this nucleus. By measuring the $\\gamma$-ray yields of the E1 decay connecting the 3$^{-}$ and 2$^{+}$ states using the MINIBALL array, we can obtain the interesting transition matrix element. The result will give quantitative information about octupole correlations in this nucleus. We require 27 shifts to fulfill the aims of the experiment.
International Nuclear Information System (INIS)
Fadini, A.
1980-01-01
We present 13 programs for the calculation of vibrational spectroscopic problems applied to small molecules with high symmetry. The programs are compiled for the well known programmable pocket calculator Texas Instruments SR-52. To the special problems, the mathematical formulas, input and output instructions, several numerical examples, literature and the programs with comments are given. Order n = 1: The force constants, isotopic vibrational frequencies and the vibrational amplitudes are calculated for the two mass system XY(Csub(infinitely v)). For the three mass system XY 2 (Dsub(infinitely h)) only the force constants and isotopic frequencies are calculated. Order n = 2: For the three mass systems XYZ(Csub(infinitely v)) and XY 2 (Csub(infinitely 2v)) the inverse matrices G of the kinetic energy are presented. For complete sets of data (with isotopic frequencies, Coriolis coupling constants etc.) the complete force constant matrices are calculated. For non complete sets of data one starts in most cases with diagonal force constant matrices. The complete force constant matrix F is calculated with a minimalisation approximation. The eigenvector matrices L result from the G - F - and N-matrices. The N-matrices are calculated from the G- and F-matrices or from the F- and L-matrices respectively. Order n = 3: The matrix G of the system XYZ(Csub(S)) is calculated. For higher orders n, the 'isotopic reduction method' for the calculation of single force constants of proper systems is described. (orig.) [de
DEFF Research Database (Denmark)
Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen
2012-01-01
lab studies in that we found a decreased detection rate in busy environments. Here we test with a much larger sample and age range, and contribute with the first vibration sensitivity testing outside the lab in an urban public...
National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Experimental chaos in nonlinear vibration isolation system
International Nuclear Information System (INIS)
Lou Jingjun; Zhu Shijian; He Lin; He Qiwei
2009-01-01
The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability....
National Research Council Canada - National Science Library
Mansfield, Neil J
2005-01-01
.... Vibration measurements and standards are also addressed. This book meets the needs of those requiring knowledge of human response to vibration in order to make practical improvements to physical working environments...
DEFF Research Database (Denmark)
Thomsen, Jon Juel
dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... and physics. This edition includes a new chapter on the useful effects of fast vibrations and many new exercise problems. Written for: Students in mechanical or structural engineering. Keywords: Nonlinear Vibrations, Bifurcations, Chaotic Vibrations, Vibrations and Stability.......About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...
Tunable Passive Vibration Suppressor
Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)
2016-01-01
An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.
Chakraverty, Snehashish
2008-01-01
Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. This work provides a comprehensive introduction to vibration theory and analysis of two-dimensional plates. It offers information on vibration problems along with a discussion of various plate geometries and boundary conditions.
Indian Academy of Sciences (India)
We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.
International Nuclear Information System (INIS)
Spear, R.H.
1988-11-01
Adopted values for the excitation energy, E x( 3 1 - ), of the first 3 - state of the even-even nuclei are tabulated. Values of the reduced electric-octupole transition probability, B(E3;O 1 + → 3 1 - ), from the ground state to this state, as determined from Coulomb excitation, lifetime measurements, inelastic electron scattering, deformation parameters β 3 obtained from angular distributions of inelastically scattered nucleons and light ions, and other miscellaneous procedures are listed in separate Tables. Adopted values for B(E3; O 1 + → 3 1 - ) are presented in Table VII, together with the E3 transition strengths, in Weisskopf units, and the product E x( 3 1 - ) x B(E3; O 1 + → 3 1 - - ) expressed as a percentage of the energy-weighted E3 sum-rule strength. An evaluation is made of the reliability of B(E3; O 1 + → 3 1 - ) values deduced from deformation parameters β 3 . The literature has been covered to March 1988
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
14th International Conference on Acoustics and Vibration of Mechanical Structures
Marinca, Vasile
2018-01-01
This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
Vibrating fuel grapple. [LMFBR
Chertock, A.J.; Fox, J.N.; Weissinger, R.B.
A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.
Damping Estimation Using Free Decays and Ambient Vibration Tests
DEFF Research Database (Denmark)
Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro
2007-01-01
The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient...... vibration or from free vibration tests. In the last case, the structural response after application of an impulse or after the application of harmonic loads can be used. Ambient vibration tests have the strong advantage of being more practical and economical. However, recent applications of both approaches...
Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms
Energy Technology Data Exchange (ETDEWEB)
Lagana, A.; Garcia, E.; Ciccarelli, L.
1987-01-15
A classical trajector study of the title reaction has been carried out at T = 1000 K on a tentative LEPS surface. Reactivity was found to be small at low vibrational states and to increase exponentially at higher vibrational energies. Nonreactive collisions were found to strongly adiabatic, while no bias toward a given final vibrational state was shown by reactive processes.
THz-SAR Vibrating Target Imaging via the Bayesian Method
Directory of Open Access Journals (Sweden)
Bin Deng
2017-01-01
Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
Model Indepedent Vibration Control
Yuan, Jing
2010-01-01
A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...
Handbook Of Noise And Vibration
International Nuclear Information System (INIS)
1995-12-01
This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.
Studies of interstellar vibrationally-excited molecules
International Nuclear Information System (INIS)
Ziurys, L.M.; Snell, R.L.; Erickson, N.R.
1986-01-01
Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
International Nuclear Information System (INIS)
Aprahamian, A.
1992-01-01
Quadrupole oscillations around a deformed shape give rise to vibrations in deformed nuclei. Single phonon vibrations of K = 0 (β) and K = 2 (γ) are a systematic feature in deformed nuclei, but the existence of multi-phonon vibrations had remained an open question until the recently reported results in 168 Er. In this nucleus, a two-phonon K = 4(γγ) band was observed at approximately 2.5 times the energy of the single γ vibration. The authors have studied several deformed rare-earth nuclei using the ( 4 He,2n) reaction in order to map out the systematic behavior of these multi-phonon vibrations. Recently, they have identified a similar K = 4 band in 154 Gd
Bian, Yushu; Gao, Zhihui
2013-01-01
Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration abso...
Localized Surface Plasmons in Vibrating Graphene Nanodisks
DEFF Research Database (Denmark)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik
2016-01-01
in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
Lanzani, Guglielmo; De Silvestri, Sandro
2007-01-01
Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.
Vibration Analysis and the Accelerometer
Hammer, Paul
2011-01-01
Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…
PREFACE: Vibrations at surfaces Vibrations at surfaces
Rahman, Talat S.
2011-12-01
This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.
1982-01-01
A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.
Energy Technology Data Exchange (ETDEWEB)
Philip J. Reid
2009-09-21
The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.
Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality?
DEFF Research Database (Denmark)
Solov'yov, Ilia; Chang, Po-Yao; Schulten, Klaus
2012-01-01
to this suggestion an olfactory receptor is activated by electron transfer assisted through odorant vibrational excitation. The hundreds to thousands of different olfactory receptors in an animal recognize odorants over a discriminant landscape with surface properties and vibrational frequencies as the two major...... dimensions. In the present paper we introduce the vibrationally assisted mechanism of olfaction and demonstrate for several odorants that, indeed, a strong enhancement of an electron tunneling rate due to odorant vibrations can arise. We discuss in this regard the influence of odorant deuteration and explain...... olfactory receptors and odorants must obey for the vibrationally assisted electron transfer mechanism to function. We argue that the stated characteristics are feasible for realistic olfactory receptors, noting, though, that the receptor structure presently is still unknown, but can be studied through...
Vibration transducer calibration techniques
Brinkley, D. J.
1980-09-01
Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.
Ultrasound source using a rectangular vibrating plate combined with rigid walls
Sato, Ryo; Asami, Takuya; Miura, Hikaru
2017-07-01
Ultrasound sources that use a stripe-mode rectangular vibrating plate radiate strong ultrasound waves in the air. In this study, we investigated the design strategy for combining the vibrating plate with rigid walls and evaluated the intense ultrasound waves radiated by the sound source. First, we examined the design method for a rectangular transverse vibrating plate with both ends fixed and the vibration amplitude distribution of the vibrating plate. Second, we measured the sound pressure distribution in the formation of the standing wave field. Finally, we clarified the relationship between the input power and sound pressure of the standing wave field antinodes.
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Nokes, L D; Thorne, G C
1988-01-01
Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.
Two-phase flow induced parametric vibrations in structural systems
International Nuclear Information System (INIS)
Hara, Fumio
1980-01-01
This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)
Neural systemic impairment from whole-body vibration.
Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert
2015-05-01
Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.
Hubungan Phantom Vibration Syndrome Terhadap Sleep Disorder dan Kondisi Stress
Directory of Open Access Journals (Sweden)
Ajeng Yeni Setianingrum
2017-10-01
Full Text Available Phantom vibration syndrome is a condition where a person would feel the sensation of vibration of a cell phone as if there were incoming notification but the fact is not. This research investigated the relationship between phantom vibration syndromes, sleep disorder and stress condition. Questionnaires were distributed to 120 participants with age range 18 to 23 years old. Data of participants showed that all of participants using a smart mobile phone and 24% of them have more than one cell phone. Time usage of cell phone is at least 1 hour. 23% of participants using a cell phone for social media activity, followed by 21% related to entertainment (music, video and games. The results showed a positive relationship between phantom vibration syndrome, sleep disorder and stress condition. Insomnia contributed a greater influence on stress condition. However, the phantom vibration syndrome is more directly affecting the sleep apnea compared to insomnia and stress condition. Therefore, the phantom vibration syndrome more affects stress condition indirectly, through sleep disorder (sleep apnea and insomnia. Consequently, phantom vibration syndrome has a strong relationship with stress condition at the time of the phantom vibration syndrome can cause sleep disorder.
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration th...... theory is basically unchanged in comparison to the 1st edition. Only section 4.2 on single input - single output systems and chapter 6 on offshore structures have been modified in order to enhance the clearness....
Directory of Open Access Journals (Sweden)
Li Ma
2016-01-01
Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.
Heterogeneous Dynamics of Coupled Vibrations
Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E
2009-01-01
Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.
Composite Struts Would Damp Vibrations
Dolgin, Benjamin P.
1991-01-01
New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.
Development of vibrating insoles
Hijmans, J.M.; Geertzen, J.H.B.; Schokker, B.; Postema, K.
2007-01-01
The objective of this study was to describe the development of vibrating insoles. Insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy. This study describes
Vibrational Spectroscopy and Astrobiology
Chaban, Galina M.; Kwak, D. (Technical Monitor)
2001-01-01
Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...
Indian Academy of Sciences (India)
rical or mechanical reasonings, but solely algebraic [analytic] operations subjected to a uniform and regular procedure. Those. Keywords. Vibrations, eigenvalues .... Suggested Reading. [1] R Bhatia, Fourier Series, Hindustan Book Agency, Second Edition, 2003. [2] G Strang, Essays in Linear Algebra, SIAM, 2012. 872.
Ivanco, Thomas G. (Inventor)
2014-01-01
A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.
Blade Vibration Measurement System
Platt, Michael J.
2014-01-01
The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.
DEFF Research Database (Denmark)
Jönsson, Jeppe; Hansen, Lars Pilegaard
1994-01-01
work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...
Vibration characteristics of ultrasonic complex vibration for hole machining
Asami, Takuya; Miura, Hikaru
2012-05-01
Complex vibration sources that use diagonal slits as a longitudinal-torsional vibration converter have been applied to ultrasonic motors, ultrasonic rock drilling, and ultrasonic welding. However, there are few examples of the application of these sources to ultrasonic machining in combination with an abrasive. Accordingly, a new method has been developed for machining of holes in brittle materials by using the ultrasonic longitudinal and torsional vibration of a hollow-type stepped horn with a diagonal slit vibration converter. In this paper, we compared vibration of a uniform rod and a hollow-type stepped horn, both with diagonal slits, when the conditions of the diagonal slits are constant.
Nambu, Yohsuke; Yamamoto, Shota; Chiba, Masakatsu
2014-02-01
This study aims to effectively and robustly suppress the vibration of tension-stabilized structures (TSSs) using a smart dynamic vibration absorber (DVA). In recent years, a strong need has emerged for high-precision and high-functionality space structural systems for realizing advanced space missions. TSSs have attracted attention in this regard as large yet lightweight structural systems with high storage efficiency. A fundamental issue in the application of TSSs is vibration control of strings, of which TSSs are predominantly composed. In particular, the suppression of microvibrations is difficult because the deformation is almost perpendicular to the direction of vibration. A DVA is an effective device for suppressing microvibrations. However, the damping performance is sensitive to changes in dynamic properties. Furthermore, aging degradation and temperature dependence negatively affect DVA performance. This study aimed to develop a smart, active DVA with self-sensing actuation to improve robustness. A small cantilever with a piezoelectric transducer was utilized as a smart DVA. Numerical simulations and experiments showed that a passive DVA and the smart DVA suppressed vibrations but that the smart DVA showed improved effectiveness and robustness.
The effects of vibration-reducing gloves on finger vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2015-01-01
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new
Vibration Attenuation of Plate Using Multiple Vibration Absorbers
Directory of Open Access Journals (Sweden)
Zaman Izzuddin
2014-07-01
Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.
Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy
International Nuclear Information System (INIS)
Mandal, Aritra; Tokmakoff, Andrei
2015-01-01
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions
Vibrational stability of graphene
Directory of Open Access Journals (Sweden)
Yangfan Hu
2013-05-01
Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.
Katarina Anthony
2015-01-01
In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins. A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...
Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities
Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.
2018-03-01
Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.
Study on vibration behaviors of engineered barrier system
International Nuclear Information System (INIS)
Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro
1998-01-01
High-level radioactive wastes have been buried underground by packing into a strong sealed container made from carbon steel (over-pack) with buffer material (bentonite). The engineered barrier system constructed with an overpack and buffer materials must be resistant to earthquakes as well as invasion of groundwater for a long period. Therefore, seismic evaluation of barrier system for earthquakes is indispensable especially in Japan to keep its structural safety. Here, the effects of earthquake vibration on the engineered barrier systems were investigated experimentally. Random-wave vibration and practical seismic wave one were loaded for the systems and fundamental data were obtained. For the former vibration the response characteristics of both engineered barrier models constructed with overpack and bentonite were non-linear. For the latter one, the stress in bentonite was increased in proportion to the vibration level. (M.N.)
Optomechanical proposal for monitoring microtubule mechanical vibrations
Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, M.; Simon, C.
2017-07-01
Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.
Strongly Correlated Topological Insulators
2016-02-03
Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or
Isenberg, James
2017-01-01
The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.
Phonon driven proton transfer in crystals with short strong hydrogen bonds
Fontaine-Vive, F.; Johnson, M.R.; Kearley, G.J.; Cowan, J.A.; Howard, J.A.K.; Parker, S.F.
2006-01-01
Recent work on understanding why protons migrate with increasing temperature in short, strong hydrogen bonds is extended here to three more organic, crystalline systems. Inelastic neutron scattering and density functional theory based simulations are used to investigate structure, vibrations, and
A new vibration mechanism of balancing machine for satellite-borne spinning rotors
Directory of Open Access Journals (Sweden)
Wang Qiuxiao
2014-10-01
Full Text Available The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors’ low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine’s measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine’s performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite’s rotating payloads in terms of accuracy and stability.
Energy Technology Data Exchange (ETDEWEB)
Hirata, A. [Kumamoto Industries Univ, Kumamoto (Japan); Yamamoto, M. [Asahi Chemical Industry Co. Ltd., Tokyo (Japan); Inaba, C. [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Kaneko, K. [Hokkaido Univ (Japan)
1997-08-01
For avoiding the generation of public hazard due to ground vibration causes by blasting in tunneling, it is important to devise a blasting method for ensuring the level of the ground vibration caused thereby under a limit, and an exact predication of ground vibration before blasting is desirable. In this study, the characteristics of the ground vibration caused by tunnel blasting are analyzed, and a summary of amplitude spectra calculating method is described. A theoretical analysis method for predicting the vibration level is proposed based on spectrum-multiplicative method. Vibration caused by multistage blasting in tunneling is most strong and deemed as important. When observing the process of elastic wave motion caused by multistage blasting being measured, the process can be divided into three element processes in frequency area as vibration source spectrum, transmission attenuation spectrum and frequency response function vibrating test, and, with the multiplication of them, the amplitude spectra at an observation portion can be estimated. 12 refs., 12 figs.
Random vibrations theory and practice
Wirsching, Paul H; Ortiz, Keith
1995-01-01
Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...
Karhu, J.; Nauta, J.; Vainio, M.; Metsala, M.; Hoekstra, S.; Halonen, L.
2016-01-01
A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to
Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana
2012-01-01
A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...
Abortion: Strong's counterexamples fail
DEFF Research Database (Denmark)
Di Nucci, Ezio
2009-01-01
This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Digital analysis of vibrations
International Nuclear Information System (INIS)
Bohnstedt, H.J.; Walter, G.
1982-01-01
Vibrational measurements, e.g. on turbomachinery, can be evaluated rapidly and economically with the aid of a combination of the following instruments: a desk-top computer, a two-channel vector filter and a FFT spectral analyzer. This equipment combination is available within the Allianz Centre for Technology and has also been used for mobile, on-site investigations during the last year. It enables calculation and display of time functions, kinetic shaft orbits, displacement diagrams. Bode plots, polar-coordinate plots, cascade diagrams and histograms. (orig.) [de
Interaction of spin and vibrations in transport through single-molecule magnets.
May, Falk; Wegewijs, Maarten R; Hofstetter, Walter
2011-01-01
We study electron transport through a single-molecule magnet (SMM) and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST) and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.
Interaction of spin and vibrations in transport through single-molecule magnets
Directory of Open Access Journals (Sweden)
Falk May
2011-10-01
Full Text Available We study electron transport through a single-molecule magnet (SMM and the interplay of its anisotropic spin with quantized vibrational distortions of the molecule. Based on numerical renormalization group calculations we show that, despite the longitudinal anisotropy barrier and small transverse anisotropy, vibrational fluctuations can induce quantum spin-tunneling (QST and a QST-Kondo effect. The interplay of spin scattering, QST and molecular vibrations can strongly enhance the Kondo effect and induce an anomalous magnetic field dependence of vibrational Kondo side-bands.
International Nuclear Information System (INIS)
Marier, D.
1992-01-01
This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders
Quantum dynamics of vibrational excitations and vibrational charge ...
Indian Academy of Sciences (India)
Administrator
Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H. +. + O2 collisions at collision energy 23 eV. †. SAIESWARI AMARAN# and SANJAY KUMAR*. Department of Chemistry, Indian Institute of ...
Off-axis Modal Active Vibration Control Of Rotational Vibrations
Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.
Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the
Theoretical rotation-vibration spectrum of thioformaldehyde
International Nuclear Information System (INIS)
Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter
2013-01-01
We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H 2 CS. It covers 41 809 rovibrational levels for states up to J max = 30 with vibrational band origins up to 5000 cm −1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments
Theoretical rotation-vibration spectrum of thioformaldehyde
Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter
2013-11-01
We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H2CS. It covers 41 809 rovibrational levels for states up to Jmax = 30 with vibrational band origins up to 5000 cm-1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.
Theoretical rotation-vibration spectrum of thioformaldehyde
Energy Technology Data Exchange (ETDEWEB)
Yachmenev, Andrey [Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom); Polyak, Iakov; Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D–45470 Mülheim an der Ruhr (Germany)
2013-11-28
We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H{sub 2}CS. It covers 41 809 rovibrational levels for states up to J{sub max} = 30 with vibrational band origins up to 5000 cm{sup −1} and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.
2010-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...
Melt Stirring by Horizontal Crucible Vibration
Wolf, M. F.; Elwell, D.; Feigelson, R. S.
1985-01-01
Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.
On the nature of highly vibrationally excited states of thiophosgene
Indian Academy of Sciences (India)
Abstract. In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl2) is made in order to gain insights into some of the experimental observations and spectral features. The states analysed here lie in a spectrally complex region where strong mode mixings are expected due to the overlap of ...
On the nature of highly vibrationally excited states of thiophosgene
Indian Academy of Sciences (India)
Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...
Free vibration characteristics of double-walled carbon nanotubes embedded in an elastic medium
International Nuclear Information System (INIS)
Natsuki, Toshiaki; Lei, Xiao-Wen; Ni, Qing-Qing; Endo, Morinobu
2010-01-01
In this Letter, a theoretical analysis of the resonant vibration of double-walled carbon nanotubes (DWCNTs) and the DWCNTs embedded in an elastic medium is presented based on Euler-Bernoulli beam model and Winkler spring model. The vibration modes of DWCNTs are quite different from those of single-walled carbon nanotubes (SWCNTs). The resonant vibrations of DWCNTs are found to have in-phase and anti-phase modes, in which the deflections of the inner and outer nanotubes occur in the same and opposite directions, respectively. For the vibration of DWCNTs with the same harmonic numbers, the resonant frequencies of anti-phase mode are larger than the ones of in-phase mode. Moreover, influence of the surrounding medium on the resonant vibrations is investigated using the Winkler spring model. The results show that surrounding medium makes a strong impact on the vibration frequencies of in-phase mode, but little on those of anti-phase mode.
Barranco Garcia, Javier; CERN. Geneva. ATS Department
2017-01-01
The Large Hadron Collider has shown with various experimental verifications that one of the main limitations to the collider performance and to a possible upgrade can come from the long-range beam-beam effects which will define the operational parameters (intensities and emittances) and machine set-up (crossing angles and the minimum beta function at the interaction points). The High Luminosity project aims at very high intensities and will therefore need much larger separations to keep the long range effects weak. In the past several studies of possible active compensators have been carried out and experimental studies are planned to explore such schemes in the LHC. In this note we show the feasibility of using octupole magnets to compensate the effects of long range beam-beam interactions by use of dynamical aperture simulations. A prove of principle of such a compensation scheme is shown for the HL-LHC optics. Preliminary studies for the LHC optics ATS and standard are also presented pointing to the import...
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Plasmons in strong superconductors
International Nuclear Information System (INIS)
Baldo, M.; Ducoin, C.
2011-01-01
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.
Zhang, Z.; Piatkowski, L.; Bakker, H.J.; Bonn, M.
2011-01-01
Water is very different from liquids of similar molecular weight, and one of its unique properties is the very efficient transfer of vibrational energy between molecules, which arises as a result of strong dipole-dipole interactions between the O-H oscillators. Although we have a sound understanding
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
International Nuclear Information System (INIS)
Ebata, T.
1981-01-01
With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Vibrational anomalies and marginal stability of glasses
Marruzzo, Alessia
2013-01-01
The experimentally measured vibrational spectrum of glasses strongly deviates from that expected in Debye\\'s elasticity theory: The density of states deviates from Debye\\'s ω2 law ("boson peak"), the sound velocity shows a negative dispersion in the boson-peak frequency regime, and there is a strong increase in the sound attenuation near the boson-peak frequency. A generalized elasticity theory is presented, based on the model assumption that the shear modulus of the disordered medium fluctuates randomly in space. The fluctuations are assumed to be uncorrelated and have a certain distribution (Gaussian or otherwise). Using field-theoretical techniques one is able to derive mean-field theories for the vibrational spectrum of a disordered system. The theory based on a Gaussian distribution uses a self-consistent Born approximation (SCBA),while the theory for non-Gaussian distributions is based on a coherent-potential approximation (CPA). Both approximate theories appear to be saddle-point approximations of effective replica field theories. The theory gives a satisfactory explanation of the vibrational anomalies in glasses. Excellent agreement of the SCBA theory with simulation data on a soft-sphere glass is reached. Since the SCBA is based on a Gaussian distribution of local shear moduli, including negative values, this theory describes a shear instability as a function of the variance of shear fluctuations. In the vicinity of this instability, a fractal frequency dependence of the density of states and the sound attenuation ∝ ω1+a is predicted with a ≲ 1/2. Such a frequency dependence is indeed observed both in simulations and in experimental data. We argue that the observed frequency dependence stems from marginally stable regions in a glass and discuss these findings in terms of rigidity percolation. © 2013 EDP Sciences and Springer.
Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
Directory of Open Access Journals (Sweden)
A. Fereidoon
2012-01-01
Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.
Vibration response of misaligned rotors
Patel, Tejas H.; Darpe, Ashish K.
2009-08-01
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.
Antonella Del Rosso
2016-01-01
Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO. The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...
Molecular vibrations the theory of infrared and Raman vibrational spectra
Wilson, E Bright; Cross, Paul C
1980-01-01
Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.
49 CFR 178.819 - Vibration test.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...
Flexural vibrations of finite composite poroelastic cylinders
Indian Academy of Sciences (India)
If the wavelength is infinite, frequency equations are degenerated as product of two determinants pertaining to extensional vibrations and shear vibrations. In this case, it is seen that the nature of the surface does not have any influence over shear vibrations unlike in the case of extensional vibrations. For illustration purpose ...
Gamma-decay study of sup 2 sup 1 Na and sup 2 sup 1 Ne, octupole bands in sup 2 sup 1 Ne
Thummerer, S; Kokalova, T; Bohlen, H G; Gebauer, B; Tumino, A; Massey, T N; Angelis, G D; Axiotis, M; Gadea, A; Kröll, T; Marginean, N; Napoli, D R; Poli, M; Ur, C; Bazzacco, D; Lenzi, S M; Alvarez, C R; Lunardi, S; Menegazzo, R; Bizzeti, P G; Bizzeti-Sona, A M
2003-01-01
The reactions sup 1 sup 6 O( sup 7 Li, 2n) and sup 1 sup 6 O( sup 7 Li, np) populating sup 2 sup 1 Na and sup 2 sup 1 Ne have been studied at E sub L = 27 MeV using the GASP gamma-detector array. The level scheme for sup 2 sup 1 Na and sup 2 sup 1 Ne has been extended to higher excitation energy. Spins and parities of the observed levels are assigned tentatively supporting the identification of opposite parity structures connected by strong dipole transitions. The structure of these bands is interpreted as based on a reflection asymmetric cluster structure.
Design and construction of a laser micro vibration sensor
International Nuclear Information System (INIS)
Al hity, K. M.; Yousif, A. Z. M.
2009-01-01
Laser is one of the powerful tools in the field of the optical sensors. In this research a simple system was developed to sense the mechanical micro vibrations of a certain surface. The laser spot position modulation was adopted to achieve the laser beam modulation. This system was successfully tested and the audio signal was modulated on the laser beam. A light dependent resistance (LDR) was used in the receiver as an optical detector and it gave good results. From the results of this research, one can conclude that laser can successfully be used in micro vibrations measurements and there is a strong correlation between the strength of received signal and the physical contact of the sensor with the vibrated surface. (Author)
Nonlinear Vibration Analysis of Moving Strip with Inertial Boundary Condition
Directory of Open Access Journals (Sweden)
Chong-yi Gao
2015-01-01
Full Text Available According to the movement mechanism of strip and rollers in tandem mill, the strip between two stands was simplified to axially moving Euler beam and the rollers were simplified to the inertial component on the fixed axis rotation, namely, inertial boundary. Nonlinear vibration mechanical model of Euler beam with inertial boundary conditions was established. The transverse and longitudinal motion equations were derived based on Hamilton’s principle. Kantorovich averaging method was employed to discretize the motion equations and the inertial boundary equations, and the solutions were obtained using the modified iteration method. Depending on numerical calculation, the amplitude-frequency responses of Euler beam were determined. The axial velocity, tension, and rotational inertia have strong influences on the vibration characteristics. The results would provide an important theoretical reference to control and analyze the vertical vibration of moving strip in continuous rolling process.
Wickens, F
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
Strong-interaction nonuniversality
International Nuclear Information System (INIS)
Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.
1989-01-01
The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements
DEFF Research Database (Denmark)
Asmussen, J. C.; Nielsen, Søren R. K.
The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....
Dissipation enhanced vibrational sensing in an olfactory molecular switch
International Nuclear Information System (INIS)
Chęcińska, Agata; Heaney, Libby; Pollock, Felix A.; Nazir, Ahsan
2015-01-01
Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters
Vibrational spectroscopy of proteins
International Nuclear Information System (INIS)
Schwaighofer, A.
2013-01-01
Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de
Evaluation of hand-arm vibration reducing effect of anti-vibration glove
樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎
2015-01-01
Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...
Vibrationally inelastic integral cross sections for the scattering of He from H2
International Nuclear Information System (INIS)
Lin, C.S.; Secrest, D.
1979-01-01
Integral cross sections are presented for the scattering of He from H 2 on the Gordon--Secrest potential. Results are reported at four energies, two above the first excited vibrational state and two above the second excited vibrational state. The energies are high enough that the vibrational transition from the ground to the first vibrational state is significant. Enough channels were included in the calculation to ensure that the integral cross sections are correct to two or three figures for the model potential used. A discussion of convergence is included. These accurate cross sections serve as test points for approximate calculations of vibrational energy transfer. The results are compared with the coupled states approximation, effective potential calculations, the semiclassical strong-coupling correspondence principle, and classical trajectory calculations which had been reported earlier for this potential model by other workers. Results of the comparisons are discussed
Vibrationally coupled electron transport through single-molecule junctions
Energy Technology Data Exchange (ETDEWEB)
Haertle, Rainer
2012-04-26
Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting
PC based vibration monitoring system
International Nuclear Information System (INIS)
Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.
2004-01-01
Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)
Shen, Shixin (Cindy); House, Ronald A.
2017-01-01
Abstract Objective To provide family physicians with an understanding of the epidemiology, pathogenesis, symptoms, diagnosis, and management of hand-arm vibration syndrome (HAVS), an important and common occupational disease in Canada. Sources of information A MEDLINE search was conducted for research and review articles on HAVS. A Google search was conducted to obtain gray literature relevant to the Canadian context. Additional references were obtained from the articles identified. Main message Hand-arm vibration syndrome is a prevalent occupational disease affecting workers in multiple industries in which vibrating tools are used. However, it is underdiagnosed in Canada. It has 3 components—vascular, in the form of secondary Raynaud phenomenon; sensorineural; and musculoskeletal. Hand-arm vibration syndrome in its more advanced stages contributes to substantial disability and poor quality of life. Its diagnosis requires careful history taking, in particular occupational history, physical examination, laboratory tests to rule out alternative diagnoses, and referral to an occupational medicine specialist for additional investigations. Management involves reduction of vibration exposure, avoidance of cold conditions, smoking cessation, and medication. Conclusion To ensure timely diagnosis of HAVS and improve prognosis and quality of life, family physicians should be aware of this common occupational disease and be able to elicit the relevant occupational history, refer patients to occupational medicine clinics, and appropriately initiate compensation claims. PMID:28292796
Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru
2017-07-01
Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.
Directory of Open Access Journals (Sweden)
Yushu Bian
2013-01-01
Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2004-08-31
The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.
Innovative Techniques Simplify Vibration Analysis
2010-01-01
In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."
Quantum dynamics of vibrational excitations and vibrational charge ...
Indian Academy of Sciences (India)
Quantum mechanical study of vibrational state-resolved differential cross sections and transition probabilities for both the elastic/inelastic and the charge transfer processes have been carried out in the H+ + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the ...
Quantum dynamics of vibrational excitations and vibrational charge ...
Indian Academy of Sciences (India)
Administrator
+ O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the vibrational close-coupling rotational infinite-order sudden approximation frame- work employing our newly obtained quasi-diabatic potential energy surfaces corresponding to the ground and the first excited ...
Predicting Statistical Distributions of Footbridge Vibrations
DEFF Research Database (Denmark)
Pedersen, Lars; Frier, Christian
2009-01-01
The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...
Isotope separation using vibrationally excited molecules
International Nuclear Information System (INIS)
1979-01-01
This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)
Application of eigenfunction orthogonalities to vibration problems
CSIR Research Space (South Africa)
Fedotov, I
2009-07-01
Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...
Shock and Vibration. Volume 1, Issue 1
National Research Council Canada - National Science Library
Pilkey, Walter D
1994-01-01
..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...
Ultrasonic vibration for structural health monitoring
Liang, Y.; Yan, F.; Borigo, C.; Rose, J. L.
2013-01-01
Guided waves and vibration analysis are two useful techniques in Nondestructive Evaluation and Structural Health Monitoring. Bridging the gap between guided waves and vibration, a novel testing method ultrasonic vibration is demonstrated here. Ultrasonic vibration is capable to achieve defect detection sensitivity as ultrasonic guided waves, while maintaining the efficiency of traditional vibration in the way of adopting several sensors to cover the whole structure. In this new method, continuous guided wave energy will impinge into the structure to make the structure vibrate steadily. The steady state vibration is achieved after multiple boundary reflections of the continuous guided wave. In ultrasonic vibration experiments, annual array transducer is used as the actuator. The loading functions are tuned by the frequencies and phase delays among each transducer element. Experiments demonstrate good defect detection ability of by optimally selecting guided wave loadings.
Vibrations on board and health effects
DEFF Research Database (Denmark)
Jensen, Anker; Jepsen, Jørgen Riis
2014-01-01
There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places......, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces onboard. Anecdotal reports have related the development of “white feet” to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies...... for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value...
Moderately strong pump-induced ultrafast dynamics in solution
Energy Technology Data Exchange (ETDEWEB)
Shen, H.F. [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); School of Physical Science and Technology, ShanghaiTech University (China); University of Chinese Academy of Sciences (China); Zhang, Yizhu, E-mail: zhangyz@sari.ac.cn [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); Yan, T.-M., E-mail: yantm@sari.ac.cn [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); Wang, Z.Y. [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); School of Physical Science and Technology, ShanghaiTech University (China); Jiang, Y.H., E-mail: jiangyh@sari.ac.cn [Shanghai Advanced Research Institute, Chinese Academy of Sciences (China); School of Physical Science and Technology, ShanghaiTech University (China)
2016-09-12
Graphical abstract: Moderately strong pump pulse is applied to the transient absorption spectrum. The pump and dump processes (resonant impulsive stimulated Raman scattering) finished in one single pump pulse in moderately strong regime make the observation of high-lying excited state dynamics possible. - Highlights: • The pulse intensity in transient absorption spectrum are experimentally studied. • The higher nonlinear susceptibility responses are observed. • The resonant impulsive stimulated Raman scattering. • New dynamics information in strong pump field. - Abstract: The transient transmittance spectra of laser dye IR144 in methanol were investigated experimentally in the moderately strong pump-probe field. Observed emission spectra in the red edge of the incident-field bandwidth, created by resonant impulsive stimulated Raman scattering (RISRS), display significant nonlinear intensity dependence as the pulse intensity increases. Dynamic perspectives of RISRS spectra can be understood well in a wavepacket picture. The excitation of high vibrational levels in the ground electronic state leading to the redshift of emissions presents high dependence of the pump-pulse intensity and ultrafast dynamical features, mapping the spatial overlap and separation of ground and excited wave functions and resolving the ultrafast vibrational relaxation in the femtosecond regime.
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between
Resonant vibration control of rotating beams
DEFF Research Database (Denmark)
Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker
2011-01-01
Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....
Simultaneous Vibration Suppression and Energy Harvesting
2013-08-15
and clear sky condition (the condition of vibration induced during normal flight) are simulated using the Dryden PSD signal for both clear sky and...a cc ele ra tio n [ g ] Cumulus Cloud Wind Gust Clear Sky Normal Vibration Figure 4 Vibration response due to flow simulated using Dryden ... John Wiley & Sons, Ltd., Chichester, West Sussex, UK, 416 pp. (ISBN 978-0-470-68254-8) Inman, Daniel J., 2009. Engineering (ME 3504 Vibrations
33 CFR 159.103 - Vibration test.
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...
14 CFR 27.907 - Engine vibration.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...
14 CFR 29.907 - Engine vibration.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...
49 CFR 178.608 - Vibration standard.
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...
2010-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. [Doc. No...
Fourier Analysis Of Vibrations Of Round Structures
Davis, Gary A.
1990-01-01
Fourier-series representation developed for analysis of vibrations in complicated, round structures like turbopump impellers. Method eliminates guesswork involved in characterization of shapes of vibrational modes. Easy way to characterize complicated modes, leading to determination of responsiveness of given mode to various forcing functions. Used in conjunction with finite-element numerical simulation of vibrational modes of structure.
Vibration and Sound Damping in Polymers
Indian Academy of Sciences (India)
IAS Admin
Excessive vibrations or loud sounds cause deafness or reduced efficiency of people, wastage of energy and fatigue failure of machines/structures. Hence, unwanted vibrations need to be dampened. This article describes the transmis- sion of vibrations/sound through different materials such as metals and polymers.
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...
Vibration Damping Circuit Card Assembly
Hunt, Ronald Allen (Inventor)
2016-01-01
A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.
Vibrational properties of amorphous semiconductors
International Nuclear Information System (INIS)
Schulz, P.A.B.
1985-01-01
A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt
Low-Vibration Oscillating Compressor
Studer, P. A.
1984-01-01
Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.
Ultrafast vibrations of gold nanorings
DEFF Research Database (Denmark)
Kelf, T; Tanaka, Y; Matsuda, O
2011-01-01
We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...
Harmonic vibrations of multispan beams
DEFF Research Database (Denmark)
Dyrbye, Claes
1996-01-01
Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...
Vibrational entropies in metallic alloys
Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher
2000-03-01
Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.
Effect of shelf aging on vibration transmissibility of anti-vibration gloves
SHIBATA, Nobuyuki
2017-01-01
Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817
Vibration measurement with nonlinear converter in the presence of noise
Mozuras, Almantas
2017-10-01
Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on
An equipment test for grading lumber by transverse vibration technique
Directory of Open Access Journals (Sweden)
Marcelo Rodrigo Carreira
2008-08-01
Full Text Available Due to the great variability of its mechanical properties, the rational use of lumber for structural purposes is directly conditioned to its grading. There are several techniques available for grading structural lumber. The most relevant one is the transverse vibration technique which obtained reliable results in non-destructive evaluation of lumber. The purpose of this work is to present the bases for the mechanical grading of lumber and the results of the calibration test of the frst transverse vibration equipment developed in Brazil. In this research 30 beams of cupiúba (Goupia glabra with nominal dimensions of 5 cm X 10 cm X 300 cm, were used. The tests were accomplished at the Wood and Timber Structures Laboratory (LaMEM of the University of São Paulo (USP. The results showed a strong correlation between the elasticity modulus measured by the static bending test and the one obtained with the transverse vibration equipment, showing the high reliability of the vibration method for the grading of structural lumber. A determination coeffcient (R² of 0.896 was obtained with the Brazilian equipment, showing that it can be used in the grading of lumber.
PREFACE: International Conference on Vibration Problems (ICOVP-2015)
2015-12-01
Vibrations produced by operating machine cause deleterious effect including excessive stresses in mechanical components and reduce the machine performance. Hence, it is important to minimize the vibrations to improve the machine performance. Machines need the materials wherein vibration characteristics such as frequency and amplitude are lower. The vibration characteristics depend on strength and other elastic constants. Therefore, study of the relation between vibration characteristics and the elastic constants of the material is very much important. In the domain of seismology, the knowledge of vibrations associated with an earthquake is needed for the mitigation plans. With the increased use of strong and light weight structures especially in defence and aero-space engineering applications, wherein, precision is very important, problems of vibrations arise. The knowledge of quality (mechanical properties) of bones comes from the study of vibrations in it. This knowledge may, for exmple, help to answer bone tissue remodelling problems. Unfortunately, vibrations mostly deal with destructive areas such as manufacturing industry, seismology, and bonemechanics. These days, mathematics has become a very important tool for Non- Destructive Evaluation (NDE) in the destructive areas. A very common issue in the said domains is that the pertinent problems result in non-linear coupled differential equations which are not easily solvable. Keeping the above facts in mind, the Department of Mathematics, Kakatiya University has organized the International Conference on Vibration Problems (ICOVP-2015) from February, 18-20, 2015 in collaboration with the Department of Mechanical Engineering, Kakatiya University, and Von-Karman Society, West Bengal. This association has already succeeded in organizing the Wave Mechanics and Vibration Conference (WMVC) in the year 2010. In the Conference, new research results were presented by the experts from eight countries. There were more than
Field measurements and analyses of environmental vibrations induced by high-speed Maglev.
Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin
2016-10-15
Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life
Whole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?
Directory of Open Access Journals (Sweden)
Matej Supej
2018-03-01
Full Text Available Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which forms of skiing involve stronger vibrations and whether these exceed safety thresholds set by existing standards and directives. Therefore, this study was designed to examine whole-body vibrations connected with different types of skiing and the associated potential risk of developing low back pain. Eight highly skilled ski instructors, all former competitive ski racers and equipped with five accelerometers and a Global Satellite Navigation System to measure vibrations and speed, respectively, performed six different forms of skiing: straight running, plowing, snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate exposure to periodic, random and transient vibrations the power spectrum density (PSD and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square acceleration (RMS, crest factor, maximum transient vibration value and the fourth-power vibration dose value (VDV] were calculated. Ground reaction forces were estimated from data provided by accelerometers attached to the pelvis. The major novel findings were that all of the forms of skiing tested produced whole-body vibrations, with highest PSD values of 1.5–8 Hz. Intensified PSD between 8.5 and 35 Hz was observed only when skidding was involved. The RMS values for 10 min of short swinging or carved turns, as well as all 10-min equivalent VDV values exceeded the limits set by European Directive 2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection with high ground reaction forces, contribute to a high risk for low back
Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.
2016-09-01
Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.
Gerhardsson, Lars; Gillström, Lennart; Hagberg, Mats
2014-01-01
-retest reliability for the determination of temperature thresholds was lower and showed more varying results. The strong test-retest reliability for hand and muscle strength tests as well as for the determination of VPTs makes these procedures useful for diagnostic purposes and follow-up studies in vibration exposed workers.
Experience in WWER fuel assemblies vibration analysis
International Nuclear Information System (INIS)
Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.
2003-01-01
It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.
George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W
2016-10-07
From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.
International Nuclear Information System (INIS)
Dan, Kazuo
2006-01-01
The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)
Wang, Yuxi; Niu, Shengkai; Hu, Yuantai
2017-06-01
The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.
Active damping of self-excited torsional vibrations in oil well drillstrings
Jansen, J. D.; van den Steen, L.
1995-01-01
A drillstring used for the drilling of oil or gas wells behaves as a rotating torsional pendulum. The drillstring is rotated at a constant angular velocity by an electric motor, but exhibits superimposed torsional vibrations caused by a non-linear relationship between torque and angular velocity at the rock-crushing tool. The vibrations are self-excited, and disappear when the mean angular velocity of the pendulum is raised above a threshold value. An active damping system is described that strongly reduces the threshold value by using feedback control, thus extending the working range for vibration-free rotation. It operates at the current and the voltage of the electric motor, and can be implemented with only electrical components. The active damping system is interpreted as an extension of the passive tuned vibration absorber for quenching of self-excited vibrations in the form of a resilient foundation, as described by Tondl (1975 Journal of Sound and Vibration42(2), 251-260). The concept of quenching self-excited vibrations by modifying the drive system as described in this paper is directly applicable to other engineering systems which are driven by a separately excited DC motor. Furthermore, the concept can be applied to systems driven by a hydraulic motor with a continuously variable flow rate.
An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts
Yan, Kun; Cheng, Gengdong
2018-03-01
For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.
Design of external vibration absorber for vibration suppression of milling cutter in processing
Zhang, Ya-hui; Zhang, Nian-song; Wang, Ai-min
2018-01-01
A new type of external dynamic vibration absorber is designed to control the vibration at a specific frequency of the milling cutter during the milling process. The structural design of the dynamic vibration absorber and the selection of the corresponding parameters are conducted. The finite element model of the cutter is established and connected with the vibration absorber. The results of the harmonic response analysis of milling cutter before and after the installation of the vibration absorber are compared and show that the vibration absorber can reduce the vibration of the cutter at the resonant frequency, which means it has a good vibration damping performance. The vibration absorber has the advantages of simple structure, convenient frequency modulation and easy installation. This context lay the foundation of further application for damping cutter.
Energy Technology Data Exchange (ETDEWEB)
Pelaez, Jose R
1998-12-14
We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.
Bovenzi, M
1994-09-01
To investigate the occurrence of disorders associated with the hand arm vibration syndrome in a large population of stone workers in Italy. The dose-response relation for vibration induced white finger (VWF) was also studied. The study population consisted of 570 quarry drillers and stonecarvers exposed to vibration and 258 control stone workers who performed only manual activity. Each subject was interviewed with health and workplace assessment questionnaires. Sensorineural and VWF disorders were staged according to the Stockholm workshop scales. Vibration was measured on a representative sample of percussive and rotary tools. The 8 h energy equivalent frequency weighted acceleration (A (8)) and lifetime vibration doses were calculated for each of the exposed stone workers. Sensorineural and musculoskeletal symptoms occurred more frequently in the workers exposed to vibration than in the controls, but trend statistics did not show a linear exposure-response relation for these disorders. The prevalence of VWF was found to be 30.2% in the entire group exposed to vibration. Raynaud's phenomenon was discovered in 4.3% of the controls. VWF was strongly associated with exposure to vibration and a monotonic dose-response relation was found. According to the exposure data of this study, the expected percentage of stone workers affected with VWF tends to increase roughly in proportion to the square root of A(8) (for a particular exposure period) or in proportion to the square root of the duration of exposure (for a constant magnitude of vibration). Even although limited to a specific work situation, the dose-response relation for VWF estimated in this study suggests a time dependency such that halving the years of exposure allows a doubling of the energy equivalent vibration. According to these findings, the vibration exposure levels currently under discussion within the European Community seem to represent reasonable exposure limits for the protection of workers against
Influence of mechanical vibration on the solidification of a lost foam cast 356 alloy
Directory of Open Access Journals (Sweden)
Zhao Zhong
2010-02-01
Full Text Available Mechanical vibration was applied to the solidification of a lost foam cast (LFC 356 aluminum alloy. Effects of mechanical vibration, with different peak acceleration, on the size and morphology of α-Al phase, and also on the mechanical properties of the castings were studied. Results indicated that α-Al dendrites gradually grow into equiaxed grains as the peak acceleration of vibration is increased. When the peak acceleration is between about 1 to 4 g,α-Al phase distribution is uniform and is refined obviously. α-Al dendrites are reduced and the mechanical properties of the castings are improved significantly when compared to those of the castings that are produced without vibration. However, when the peak acceleration is higher than 4 g, strong vibration will lead to defects formation, such as sand adhesion, while the amount and size of pores will be increased. And due to theturbulent flow that caused by strong vibration, the chance of forming large pores in the matrix has been increased significantly. The increase in defects will result in the deterioration of mechanical properties.
International Nuclear Information System (INIS)
DeSantis, G.N.
1995-01-01
The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch
Energy Technology Data Exchange (ETDEWEB)
DeSantis, G.N.
1995-03-06
The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.
Ultrasonic vibration machining of Inconel
International Nuclear Information System (INIS)
Park, Myung Ho
2003-01-01
Recently, the demand for advanced technology of high precision and high efficiency processing of hard materials such as Inconel is increasing with progress of industrial goods. However, the machinability of Inconel is very inferior to the other conventional industrial materials and the machining technology for Inconel involves many problems to be solved in machining accuracy, machining efficiency, etc. Therefore it is needs to establish the machining technology. The purpose of this study is to develop an advanced ultrasonic vibration machining technology for Inconel, using the 60kHz and 75kHz high frequency, amplitude about 8μm and 4μm, respectively. As the result, this new ultrasonic vibration machining is reasonable and suitable for the high efficient, accuracy machining method of Inconel
2002-01-01
Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva
Vibration Analysis via Wireless Network
2007-09-01
C. RELATED WORK The thesis builds upon the research foundation established by several students at the Naval Postgraduate School. Chimi Zacot [4...reading of a MEMS device in only one coordinate axis, one degree of freedom. To fully understand the vibration of the machinery would require an...the signals between the coordinate axis. Figure 15. Spectral Distance Results for 115V DC Motor with Load Applied. 30 Measured
Optical vibrating-sample magnetometer
Diaz-Michelena, M; López, E; Sanchez, M C; Aroca, C
2000-01-01
A highly sensitive method of detecting vibrations of a cantilever in atomic-force microscopy has been introduced as a detector in an alternating-gradient field magnetometer. Use of light is the success of this system as it is compatible with vacuum systems and closed-flux cryostats. The optical signal is electronically conditioned easily. Experimental results show that highly sensitive measurements can be achieved.
Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2016-01-01
BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for
Surveillance of vibrations in PWR
International Nuclear Information System (INIS)
Espefaelt, R.; Lorenzen, J.; Aakerhielm, F.
1980-07-01
The core of a PWR - including fuel elements, internal structure, control rods and core support structure inside the pressure vessel - is subjected to forces which can cause vibrations. One sensitive means to detect and analyse such vibrations is by means of the noise from incore and excore neutron detector signals. In this project noise recordings have been made on two occasions in the Ringhals 2 plant and the obtained data been analysed using the Studsvik Noise Analysis Program System (SNAPS). The results have been intepreted and a detailed description of the vibrational status of the core and pressure vessel internals has been produced. On the basis of the obtained results it is proposed that neutron signal noise analysis should be performed at each PWR plant in the beginning, middle and end of each fuel cycle and an analysis be made using the methods developed in the project. It would also provide a contribution to a higher degree of preparedness for diagnostic tasks in case of unexpected and abnormal events. (author)
Vibration of a string against multiple spring-mass-damper stoppers
Shin, Ji-Hwan; Talib, Ezdiani; Kwak, Moon K.
2018-02-01
When a building sways due to strong wind or an earthquake, the elevator rope can undergo resonance, resulting in collision with the hoist-way wall. In this study, a hard stopper and a soft stopper comprised of a spring-mass-damper system installed along the hoist-way wall were considered to prevent the string from undergoing excessive vibrations. The collision of the string with multiple hard stoppers and multiple spring-mass-damper stoppers was investigated using an analytical method. The result revealed new formulas and computational algorithms that are suitable for simulating the vibration of the string against multiple stoppers. The numerical results show that the spring-mass-damper stopper is more effective in suppressing the vibrations of the string and reducing structural failure. The proposed algorithms were shown to be efficient to simulate the motion of the string against a vibration stopper.
Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave
Levko, Dmitry
2017-09-08
The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.
Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm
Directory of Open Access Journals (Sweden)
Xianjun Sheng
2016-01-01
Full Text Available Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC. The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.
Vibration-Assisted Handling of Dry Fine Powders
Directory of Open Access Journals (Sweden)
Paul Dunst
2018-04-01
Full Text Available Since fine powders tend strongly to adhesion and agglomeration, their processing with conventional methods is difficult or impossible. Typically, in order to enable the handling of fine powders, chemicals are added to increase the flowability and reduce adhesion. This contribution shows that instead of additives also vibrations can be used to increase the flowability, to reduce adhesion and cohesion, and thus to enable or improve processes such as precision dosing, mixing, and transport of very fine powders. The methods for manipulating powder properties are described in detail and prototypes for experimental studies are presented. It is shown that the handling of fine powders can be improved by using low-frequency, high-frequency or a combination of low- and high-frequency vibration.
Vibration of fusion reactor components with magnetic damping
Energy Technology Data Exchange (ETDEWEB)
D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)
2016-11-01
The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.
Nonlinear Vibrations of Cantilever Timoshenko Beams: A Homotopy Analysis
Directory of Open Access Journals (Sweden)
Shahram Shahlaei-Far
Full Text Available Abstract This study analyzes the fourth-order nonlinear free vibration of a Timoshenko beam. We discretize the governing differential equation by Galerkin's procedure and then apply the homotopy analysis method (HAM to the obtained ordinary differential equation of the generalized coordinate. We derive novel analytical solutions for the nonlinear natural frequency and displacement to investigate the effects of rotary inertia, shear deformation, pre-tensile loads and slenderness ratios on the beam. In comparison to results achieved by perturbation techniques, this study demonstrates that a first-order approximation of HAM leads to highly accurate solutions, valid for a wide range of amplitude vibrations, of a high-order strongly nonlinear problem.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2006-01-01
Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...
Titanium: light, strong, and white
Woodruff, Laurel; Bedinger, George
2013-01-01
Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.
Vibration-type particle separation device with piezoceramic vibrator
Ooe, Katsutoshi; Doi, Akihiro
2008-12-01
During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
Theory And Working Of Noise And Vibration
International Nuclear Information System (INIS)
Jeong, Il Rok
1988-09-01
This book deals with theory of noise including physical property of noise like term and characteristic of sound, occurrence of sound, characteristic of noise pollution and main cause of occurrence of noise, technique of prevention of noise with noise reduction, construction guide for prevention of noise, and measure of interior noise. It also has the theory of vibration such as an introduction of vibration, and technology of prevention of vibration, official test method of environmental pollution, and summary of protection of the environment.
High force vibration testing with wide frequency range
Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn
2013-04-02
A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.
Axisymmetric vibrations of thick shells of revolution
International Nuclear Information System (INIS)
Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin
1983-01-01
Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)
Developed vibration waveform monitoring unit for CBM
International Nuclear Information System (INIS)
Hamada, T.; Hotsuta, K.; Hirose, I.; Morita, E.
2007-01-01
In nuclear power plants, many rotating machines such as pumps and fans are in use. Shikoku Research Institute Inc. has recently developed easy-to-use tools to facilitate the maintenance of such equipment. They include a battery-operated vibration waveform monitoring unit which allows unmanned vibration monitoring on a regular basis and data collection even from intermittently operating equipment, a waveform data collector which can be used for easy collection, storage, control, and analysis of raw vibration waveform data during normal operation, and vibration analysis and evaluation tools. A combination of these tools has a high potential for optimization of rotating equipment maintenance. (author)
Vibrational dynamics of crystalline L-alanine
Energy Technology Data Exchange (ETDEWEB)
Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)
1997-11-01
The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.
Surface Acoustic Wave (SAW Vibration Sensors
Directory of Open Access Journals (Sweden)
Jerzy Filipiak
2011-12-01
Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
Human response to vibration in residential environments.
Waddington, David C; Woodcock, James; Peris, Eulalia; Condie, Jenna; Sica, Gennaro; Moorhouse, Andrew T; Steele, Andy
2014-01-01
This paper presents the main findings of a field survey conducted in the United Kingdom into the human response to vibration in residential environments. The main aim of this study was to derive exposure-response relationships for annoyance due to vibration from environmental sources. The sources of vibration considered in this paper are railway and construction activity. Annoyance data were collected using questionnaires conducted face-to-face with residents in their own homes. Questionnaires were completed with residents exposed to railway induced vibration (N = 931) and vibration from the construction of a light rail system (N = 350). Measurements of vibration were conducted at internal and external positions from which estimates of 24-h vibration exposure were derived for 1073 of the case studies. Sixty different vibration exposure descriptors along with 6 different frequency weightings were assessed as potential predictors of annoyance. Of the exposure descriptors considered, none were found to be a better predictor of annoyance than any other. However, use of relevant frequency weightings was found to improve correlation between vibration exposure and annoyance. A unified exposure-response relationship could not be derived due to differences in response to the two sources so separate relationships are presented for each source.
Electromagnetic Vibration Energy Harvesting for Railway Applications
Directory of Open Access Journals (Sweden)
Bradai S.
2018-01-01
Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.
Vibration fatigue using modal decomposition
Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.
Vibrational spectroscopy of Cm–C/Cb–Cb stretching vibrations of ...
Indian Academy of Sciences (India)
operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the U(2) algebraic approach. Keywords. Lie algebraic techniques; vibrational spectra; copper tetramesityl porphyrin. PACS Nos 31.65.
Adaptive photodetectors for vibration monitoring
International Nuclear Information System (INIS)
Sokolov, I.A.
2003-01-01
We present characteristics of laser vibrometer using semiconductor GaAs and molecular SnS 2 adaptive photodetectors (AP) based on the effect of the non-steady-state photoelectromotive force. AP enable efficient direct conversion of high-frequency phase modulation of speckle-like optical wave reflected from the vibrating object into an output electrical signal with concomitant setting of optimal operation point of the interferometer and suppression of amplitude laser noise. The sensitivity of the setup is analyzed and further improvements in operation of AP are discussed
EMBEDDED SYSTEMS FOR VIBRATION MONITORING
Directory of Open Access Journals (Sweden)
Miloš Milovančević
2014-08-01
Full Text Available The purpose of the research presented in this paper is the development of the optimal micro configuration for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is 10-bit MC, upgraded with 12/bit A/D converter. Software for acquisition and data analysis is optimized for testing turbo pumps with rotation speed up to 2000 rpm. This software limitation is set for automatic diagnostics and for individual and manual vibro-diagnostic; the only limitation is set by accelerometer performance. The authors have performed numerous measurements on a wide range of turbo aggregates for establishing the operational condition of pumping aggregates.
Multivariate Analysis of Ladle Vibration
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle
2016-08-01
The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent
Vibration diagnostics instrumentation for ILC
Energy Technology Data Exchange (ETDEWEB)
Bertolini, A.
2007-06-15
The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)
Vibration diagnostics instrumentation for ILC
International Nuclear Information System (INIS)
Bertolini, A.
2007-06-01
The future e - e + 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)
Vibrational Spectroscopy of Chromatographic Interfaces
Energy Technology Data Exchange (ETDEWEB)
Jeanne E. Pemberton
2011-03-10
Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.
Monothiodibenzoylmethane: Structural and vibrational assignments
DEFF Research Database (Denmark)
Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen
2007-01-01
The vibrational structure of the title compound (1,3-diphenyl-3-thioxopropane-1-one, TDBM) was studied by a variety of experimental and theoretical methods. The stable ground state configuration of TDBM was investigated by IR absorption measurements in different media, by LD polarization spectros...... to an “open”, non-chelated enethiol form (t-TCC), thereby supporting the previous conclusions by Posokhov et al. No obvious indications of the contribution of other forms to the observed spectra could be found....
Introduction to vibrations and waves
Pain, H John
2015-01-01
Based on the successful multi-edition book "The Physics ofVibrations and Waves" by John Pain, the authors carry overthe simplicity and logic of the approach taken in the originalfirst edition with its focus on the patterns underlying andconnecting so many aspects of physical behavior, whilst bringingthe subject up-to-date so it is relevant to teaching in the21st century.The transmission of energy by wave propagation is a key conceptthat has applications in almost every branch of physics withtransmitting mediums essentially acting as a continuum of coupledoscillators. The characterization of t
Energy Technology Data Exchange (ETDEWEB)
Marshall, P.
2005-01-03
Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
A two scale modeling and computational framework for vibration-induced Raynaud syndrome.
Hua, Yue; Lemerle, Pierre; Ganghoffer, Jean-François
2017-07-01
Hand-Arm Vibration syndrome (HAVS), usually caused by long-term use of hand-held power tools, can in certain manifestations alter the peripheral blood circulation in the hand-arm region. HAVS typically occurs after exposure to cold, causing an abnormally strong vasoconstriction of blood vessels. A pathoanatomical mechanism suggests that a reduction of the lumen of the blood vessels in VWF (Vibration White Finger) subjects, due to either hypertrophy or thickening of the vessel wall, may be at the origin of the disease. However, the direct and indirect effects of the load of the hand-held tools on the structure of blood vessels remain controversial:.one hypothesis is the mechanical action of vibration on the local acral dysregulation and/or on the vessel histomorphological modifications. Another hypothesis is the participation of the sympathetic nervous system to this dysregulation. In this paper, we assume the modifications as mechanobiological growth and the load-effect relationship may be interpreted as directly or indirectly induced. This work is the first attempt to model the effect of vibration through soft tissues onto the distal capillaries, addressing the double paradigm of multi space-time scales, i.e. low period vibration versus high time constant of the growth phenomenon as well as vibrations propagating in the macroscopic tissue including the microscopic capillary structures subjected to a pathological microstructural evolution. The objective is to lay down the theoretical basis of growth modeling for the small distal artery, with the ability to predict the geometrical and structural changes of the arterial walls caused by vibration exposure. We adopt the key idea of splitting the problem into one global vibration problem at the macroscopic scale and one local growth problem at the micro level. The macroscopic hyperelastic viscous dynamic model of the fingertip cross-section is validated by fitting experimental data. It is then used in steady
Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.
Directory of Open Access Journals (Sweden)
Martin Bencsik
Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.
A vacuum microgripping tool with integrated vibration releasing capability
Energy Technology Data Exchange (ETDEWEB)
Rong, Weibin; Fan, Zenghua, E-mail: zenghua-fan@163.com; Wang, Lefeng; Xie, Hui; Sun, Lining [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang (China)
2014-08-01
Pick-and-place of micro-objects is a basic task in various micromanipulation demands. Reliable releasing of micro-objects is usually disturbed due to strong scale effects. This paper focuses on a vacuum micro-gripper with vibration releasing functionality, which was designed and assembled for reliable micromanipulation tasks. Accordingly, a vibration releasing strategy of implementing a piezoelectric actuator on the vacuum microgripping tool is presented to address the releasing problem. The releasing mechanism was illustrated using a dynamic micro contact model. This model was developed via theoretical analysis, simulations and pull-off force measurement using atomic force microscopy. Micromanipulation experiments were conducted to verify the performance of the vacuum micro-gripper. The results show that, with the assistance of the vibration releasing, the vacuum microgripping tool can achieve reliable release of micro-objects. A releasing location accuracy of 4.5±0.5 μm and a successful releasing rate of around 100% (which is based on 110 trials) were achieved for manipulating polystyrene microspheres with radius of 35–100 μm.
Noncontact vibration measurements using magnetoresistive sensing elements
Tomassini, R.; Rossi, G.
2016-06-01
Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.
Numerical simulation of flow-induced vibrations in tube bundles
International Nuclear Information System (INIS)
Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli
2005-01-01
Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific
Strong Decomposition of Random Variables
DEFF Research Database (Denmark)
Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.
2007-01-01
A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...
Strong interaction at finite temperature
Indian Academy of Sciences (India)
Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...
Rabi-vibronic resonance with large number of vibrational quanta
Glenn, R.; Raikh, M. E.
2011-01-01
We study theoretically the Rabi oscillations of a resonantly driven two-level system linearly coupled to a harmonic oscillator (vibrational mode) with frequency, \\omega_0. We show that for weak coupling, \\omega_p \\ll \\omega_0, where \\omega_p is the polaronic shift, Rabi oscillations are strongly modified in the vicinity of the Rabi-vibronic resonance \\Omega_R = \\omega_0, where \\Omega_R is the Rabi frequency. The width of the resonance is (\\Omega_R-\\omega_0) \\sim \\omega_p^{2/3} \\omega_0^{1/3} ...
Noise and vibration analysis system
International Nuclear Information System (INIS)
Johnsen, J.R.; Williams, R.L.
1985-01-01
The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results
Flow induced vibrations of piping
International Nuclear Information System (INIS)
Gibert, R.J.; Axisa, F.
1977-01-01
In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)
AVM branch vibration test equipment
International Nuclear Information System (INIS)
Anne, J.P.
1995-01-01
An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends
Time-resolved vibrational spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)
2009-05-14
This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.
Flow induced vibrations of piping
International Nuclear Information System (INIS)
Gibert, R.J.; Axisa, F.
1977-01-01
This paper presents a method to take into account the inertial effects and the fluid compressibility by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-element method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources (acoustical sources or forces exciting directly the structure). Equations have been written in the hypothesis that acoustical wave lengths remain large compared to the diameter of the pipe. Indeed this is largely verified in almost practical cases. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consist of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provide an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted [fr
Strong-strong beam-beam simulation on parallel computer
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji
2004-08-02
The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.
Strong-strong beam-beam simulation on parallel computer
International Nuclear Information System (INIS)
Qiang, Ji
2004-01-01
The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders
Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith Project
National Aeronautics and Space Administration — The idea of vibrational locomotion is based on vibrational-fluidization in ISRU reactor systems, which has proven very effective for regolith mixing. The vibrating...
International Nuclear Information System (INIS)
Briquet, Ludovic G.V.; Philipp, Patrick
2013-01-01
Highlights: ► Full electronic structure description. ► Elastic properties. ► Phonon band structure and DOS. ► Analysis of vibration modes. -- Abstract: Interest in tungsten disilicide is growing due to its use as protective coatings and non-volatile memory devices but fundamental investigations on tungsten disilicide vibrational properties are lacking in literature. In particular, the phonon vibration modes have never been described. This paper presents a first-principles investigation of the vibrational properties of WSi 2 crystals. The elastic and electronic properties are considered as well. First, the electron band structure is computed. Extra electronic levels for the valence electrons as compared to previously published results are found, highlighting the need for state-of-the-art DFT calculations. It is shown that the ionicity plays only a little role in the W–Si bonding. Instead, a strong degree of covalency is found. The elastic constants are computed in good agreement with the available experimental data. The complete phonon density of state as well as band structure are presented and all vibration modes are described. The phonon vibrations are also correlated to IR and Raman investigations available in the literature
Physical and numerical investigation of the flow induced vibration of the hydrofoil
Wu, Q.; Wang, G. Y.; Huang, B.
2016-11-01
The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.
Mode-selective vibrational modulation of charge transport in organic electronic devices
Bakulin, Artem A.
2015-08-06
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.
Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji
For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.
Study on Forced Torsional Vibration of CFRP Drive-Line System with Internal Damping
Yang, Mo; Hu, Yefa; Zhang, Jinguang; Ding, Guoping; Song, Chunsheng
2017-12-01
The use of CFRP transmission shaft has positive effect on the weight and flexural vibration reduction of drive-line system. However, the application of CFRP transmission shaft will greatly reduce the torsional stiffness of the drive-line, and may cause strong transient torsional vibration. Which will seriously affect the performance of CFRP drive-line. In this study, the forced torsional vibration of the CFRP drive-line system is carried out using the lumped parameter model. In addition, the effect of rotary inertia, internal damping, coupling due to the composite laminate, and excitation torque are incorporated in the modified transfer matrix model (TMM). Then, the modified TMM is used to predict the torsional frequency and forced torsional vibration of a CFRP drive-line with three-segment drive shafts. The results of modified TMM shown that the rotational speed difference of the CFRP transmission shaft segment is much larger than metal transmission shaft segment under excitation torque. And compared the results from finite element simulation, modified TMM and torsional vibration experiment respectively, and it has shown that the modified TMM can accurately predict forced torsional vibration behaviors of the CFRP drive-line system.
+ H and its reverse reaction: Role of initial vibrational and rotational
Indian Academy of Sciences (India)
trate symmetric distributions peaked at θr = 90◦. , which implies that product rotational angular momentum vec- tor j strongly aligns along the perpendicular direc- tion to k. In detail, in figure 2(a), the P(θr) distribution becomes higher and narrower with the increasing initial vibrational quantum number, as revealed in the v = 0, ...
PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
14 CFR 33.43 - Vibration test.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each... configuration of the propeller type which is used for the endurance test, and using, for other engines, the same...
Flexural vibrations of finite composite poroelastic cylinders
Indian Academy of Sciences (India)
infinite hollow poroelastic cylinders. Axially symmetric vibrations of finite composite poroe- lastic cylinders that are bonded end to end are investigated by Shah & Tajuddin (2009). The analysis of the flexural vibrations in cylindrical structures has wide applications in the field of acoustics structural design and Biomechanics, ...
General vibration monitoring: Utility Building, August 1992
International Nuclear Information System (INIS)
Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.
1993-01-01
This vibration data was generated from measurements made on 8/12/92. The contents are self explanatory. They are baseline measurements and no exceptionally large vibration amplitude or response was observed. These measurements represent baseline measurements, i.e., measurements with no driving forces active, made on the utility building, a service building for the Advanced Photon Source at Argonne National Laboratory
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
2016-09-07
Sep 7, 2016 ... Many H-abstraction reactions in chemistry involve halides like HCl, HBr and HI. And they often need to undergo coherent vibrational excitation to promote the reaction (for instance, the late-barrier reactions in chemistry require vibrationally hot reactant molecules to have the reaction promoted) efficiently.
Noncontact Ultrasonic Vibration Of Weld Puddles
Gilbert, Jeffrey L.
1990-01-01
Proposed ultrasonic stimulator vibrates weld puddle without making contact. Vibration breaks up large grain clumps in solidifying puddle, creating more uniform, fine-grain microstructure. Resulting weld joint less susceptible to hot cracking and other stress-related forms of degradation.
49 CFR 178.985 - Vibration test.
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR PACKAGINGS Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...
Dissimilar Dynamics of Coupled Water Vibrations
Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.
2009-01-01
Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian
Vibration and Sound Damping in Polymers
Indian Academy of Sciences (India)
IAS Admin
The damping property of rubbers is utilized in products like vibration damper ... engineering rubber products used for vibration isolation. In Greek, .... Natural rubber. – 73. Poly(methyl methacrylate) 105. Butadiene rubber. – 100. Polycarbonate. 145. Silicone rubber. – 127. Polynorbornene. 215. Table 1. Comparing the Tg of.
Benefits of Spacecraft Level Vibration Testing
Gordon, Scott; Kern, Dennis L.
2015-01-01
NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.
Enriched vibrational resonance in certain discrete systems
Indian Academy of Sciences (India)
We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...
Experimental evaluation of vibrations in heat exchangers
International Nuclear Information System (INIS)
Martin Ghiselli, A.
1997-01-01
Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author) [es
Vibrations in pipelines of nuclear power plants
International Nuclear Information System (INIS)
Leal, M.R.L.V.; Bevilacqua, L.
1984-01-01
It is presented the main causes of vibrations in nuclear power plants pipelines to allow the identification of critical areas and correct the errors during the specification design. The methods of vibration analysis to give subsidies in the determination of the corrective providences when the problem appears during the commissioning or the generation energy, are also presented. (M.C.K.) [pt
Modified Composite Struts Would Damp Vibrations
Chen, Gun-Shing; Dolgin, Benjamin P.
1993-01-01
Composite-material (fiber/matrix laminate) struts damping longitudinal vibrations fabricated more easily in proposed new design. Prior design described in "Composite Struts Would Damp Vibrations" (NPO-17914). New design similar except pattern of fibers includes rounded bends (instead of sharp bends) in fibers.
Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump
Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng
2017-06-01
In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.
Maternal vibration: an important cue for embryo hatching in a subsocial shield bug.
Directory of Open Access Journals (Sweden)
Hiromi Mukai
Full Text Available Hatching care has been reported for many taxonomic groups, from invertebrates to vertebrates. The sophisticated care that occurs around hatching time is expected to have an adaptive function supporting the feeble young. However, details of the characteristics of the adaptive function of hatching care remain unclear. This study investigated the hatching care of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Parastrachiidae to verify its function. Results show that the P. japonensis mothers vibrated the egg mass intermittently while maintaining an egg-guarding posture. Then embryos started to emerge from their shells synchronously. Unlike such behaviors of closely related species, this vibrating behavior was faint, but lasted more than 6 h. To investigate the effect of this behavior on hatching synchrony and hatching success, we observed the hatching pattern and the hatching rate in control, mother-removed, and two artificial vibration groups. Control broods experienced continuous guarding from the mother. Intermittent artificial vibration broods were exposed to vibrations that matched the temporal pattern of maternal vibration produced by a motor. They showed synchronous hatching patterns and high hatching rates. However, for mother-removed broods, which were isolated from the mother, and when we provided continuous artificial vibration that did not match the temporal pattern of the maternal vibration, embryo hatching was not only asynchronous: some embryos failed to emerge from their shells. These results lead us to infer that hatching care in P. japonensis has two functions: hatching regulation and hatching assistance. Nevertheless, several points of observational and circumstantial evidence clearly contraindicate hatching assistance. A reduction in the hatching rate might result from dependence on maternal hatching care as a strong cue in P. japonensis. We conclude that the hatching care of P. japonensis regulates the hatching
Passively damped vibration welding system and method
Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao
2013-04-02
A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.
Modeling Displacement Measurement using Vibration Transducers
Directory of Open Access Journals (Sweden)
AGOSTON Katalin
2014-05-01
Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.
Systematic vibration thermodynamic properties of bromine
Liu, G. Y.; Sun, W. G.; Liao, B. T.
2015-11-01
Based on the analysis of the maturity and finiteness of vibrational levels of bromine molecule in ground state and evaluating the effect on statistical computation, according to the elementary principles of quantum statistical theorem, using the full set of bromine molecular vibrational levels determined with algebra method, the statistical contribution for bromine systematical macroscopic thermodynamic properties is discussed. Thermodynamic state functions Helmholtz free energy, entropy and observable vibration heat capacity are calculated. The results show that the determination of full set of vibrational levels and maximum vibrational quantum number is the key in the correct statistical analysis of bromine systematical thermodynamic property. Algebra method results are clearly different from data of simple harmonic oscillator and the related algebra method results are no longer analytical but numerical and are superior to simple harmonic oscillator results. Compared with simple harmonic oscillator's heat capacities, the algebra method's heat capacities are more consistent with the experimental data in the given temperature range of 600-2100 K.
Phosphate vibrations as reporters of DNA hydration
Corcelli, Steven
The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.
Strongly correlated systems experimental techniques
Mancini, Ferdinando
2015-01-01
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...
Strongly Correlated Systems Theoretical Methods
Avella, Adolfo
2012-01-01
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Flavour Democracy in Strong Unification
Abel, S A; Abel, Steven; King, Steven
1998-01-01
We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.
Energy scavenging from environmental vibration.
Energy Technology Data Exchange (ETDEWEB)
Galchev, Tzeno (University of Michigan); Apblett, Christopher Alan; Najafi, Khalil (University of Michigan)
2009-10-01
The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The
Vibration Control in Periodic Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2017-01-01
Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre......Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....
Carbon Nanotube Tape Vibrating Gyroscope
Tucker, Dennis Stephen (Inventor)
2016-01-01
A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.
Steam generator tube vibration study
International Nuclear Information System (INIS)
Enderlin, W.I.
1986-01-01
Chemical cleaning has been proposed to remove magnetite buildup in some pressurized water reactor steam generators. The US Nuclear Regulatory Commission (NRC) has expressed concern that such cleaning would combine with the tube denting caused by magnetite formation to enlarge tube/tube support plate clearances, increasing the level of flow-induced vibrations that could lead to unacceptably high tube wear and failure rates. In support of NRC, the Pacific Northwest Laboratory investigated whether such increased clearances would exacerbate tube fretting wear. Using a full-length scale model of a steam generator tube bundle, flow tests were conducted at an instrumented location through clearances representing as-built and post-cleaned tube conditions. Test results indicated little potential for increased tube wear as a result of chemical cleaning, under normal operating conditions at tube support locations similar to that tested
Isospin effects in nuclear vibrations
International Nuclear Information System (INIS)
Madsen, V.A.; Brown, V.R.
1984-09-01
A review of the evidence that the ratio of neutron and proton multipole matrix elements for collective vibrations in single-closed-shell nuclei differ systematically from N/Z is presented. A theoretical framework is given for understanding the data on the basis of the ideas of core polarization. It follows that nuclear deformation parameters are probe dependent and that analysis of excitations by two different probes such as (p,p') and (n,n') can, in principle, give the ratio M/sub n//M/sub p/. Application is made to first 2 + states of open shell nuclei. Trends of M/sub n//M/sub p/ for higher 2 + states are presented. Expected systematics of M/sub n//M/sub p/ ratios for giant isoscalar quadrupole transitions are presented. 22 references
Super-multiplex vibrational imaging
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the
Redshift of A 1(longitudinal optical) mode for GaN crystals under strong electric field
Gu, Hong; Wu, Kaijie; Zheng, Shunan; Shi, Lin; Zhang, Min; Liu, Zhenghui; Liu, Xinke; Wang, Jianfeng; Zhou, Taofei; Xu, Ke
2018-01-01
We investigated the property of GaN crystals under a strong electric field. The Raman spectra of GaN were measured using an ultraviolet laser, and a remarkable redshift of the A 1(LO) mode was observed. The role of the surface depletion layer was discussed, and the interrelation between the electric field and phonons was revealed. First-principles calculations indicated that, in particular, the phonons that vibrate along the [0001] direction are strongly influenced by the electric field. This effect was confirmed by a surface photovoltage experiment. The results revealed the origin of the redshift and presented the phonon property of GaN under a strong electric field.
International Nuclear Information System (INIS)
L'Huillier, A.
2002-01-01
When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)
Xu, Dong
Accurate prediction of the vibrational spectra in polyatomic molecules and free radicals depends on obtaining high quality solutions to the vibrational Schrodinger equation. The quantum simple harmonic oscillator provides the traditional first approximation for modeling molecular vibrational states. Rarely does a vibrational analysis extend beyond this first approximation, and harmonic energy levels are routinely used to predict the infrared spectra and other dynamical properties of molecules. However, there are many large-amplitude molecular motions that are extremely anharmonic, including internal torsions about atom-atom single bonds, bending and stretching of weak bonds in van der Waals complexes, and isomerization along relocalization coordinates in free radicals. In these cases, the harmonic treatment provided by electronic structure quantum chemistry packages is completely inadequate. Furthermore, the anharmonicity often includes strong coupling among two or more distinct vibrational coordinates, necessitating a multi-dimensional analysis of the vibrational Schrodinger equation along the coupled coordinates. A novel ab initio solver package, FEMVib, is developed within the finite element method (FEM) framework. A mixed programming paradigm that combines C++, Fortran and Python is employed to take advantage of existing numerical libraries. FEMVib has been rigorously tested to resolve the eigenvalues and wavefunctions of hundreds of vibrational energy states to high accuracy and precision. It may be used to calculate the complete vibrational spectra of triatomic molecules or to approximate larger systems through a "relaxed" model that allows complete coupling of up to three selected vibrational coordinates. FEMVib provides physical chemists with a general, robust and accurate computational tool for molecular vibrational analysis.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
Directory of Open Access Journals (Sweden)
Shanshan Li
2016-01-01
Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
Lattice vibrations in copper at elevated temperatures studied by neutron scattering
International Nuclear Information System (INIS)
Larose, A.; Brockhouse, B.N.
1976-01-01
The technique of inelastic scattering of thermal neutrons was used to study the temperature dependence of lattice vibrations in Cu in the range 23 deg C to 1063 deg C, i.e. up to 20 deg C below the melting point, and in the various symmetry directions accessible in a (001) scattering plane. Resolution effects were taken into account in the determination of intrinsic phonon frequencies and linewidths. The results indicate a general softening of the lattice as the temperature is raised, the vibrations of transverse polarization being more strongly affected than those of longitudinal polarization. (author)
Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
DEFF Research Database (Denmark)
Fereidoon, A.; Ghadimi, M.; Barari, Amin
2012-01-01
In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown that t...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....
Strongly Interacting Light Dark Matter
Directory of Open Access Journals (Sweden)
Sebastian Bruggisser, Francesco Riva, Alfredo Urbano
2017-09-01
Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.
Strongly interacting light dark matter
International Nuclear Information System (INIS)
Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo
2016-07-01
In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.
Rydberg atoms in strong fields
International Nuclear Information System (INIS)
Kleppner, D.; Tsimmerman, M.
1985-01-01
Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Strong Plate, Weak Slab Dichotomy
Petersen, R. I.; Stegman, D. R.; Tackley, P.
2015-12-01
Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of
Review of Energy Harvesters Utilizing Bridge Vibrations
Directory of Open Access Journals (Sweden)
Farid Ullah Khan
2016-01-01
Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.
Temperature-dependent THz vibrational spectra of clenbuterol hydrochloride
Yang, YuPing; Lei, XiangYun; Yue, Ai; Zhang, Zhenwei
2013-04-01
Using the high-resolution Terahertz Time-domain spectroscopy (THz-TDS) and the standard sample pellet technique, the far-infrared vibrational spectra of clenbuterol hydrochloride (CH), a β 2-adrenergic agonist for decreasing fat deposition and enhancing protein accretion, were measured in temperature range of 77-295 K. Between 0.2 and 3.6 THz (6.6-120.0 cm-1), seven highly resolved spectral features, strong line-narrowing and a frequency blue-shift were observed with cooling. However, ractopamine hydrochloride, with some structural and pharmacological similarities to clenbuterol hydrochloride, showed no spectral features, indicating high sensitivity and strong specificity of THz-TDS. These results could be used for the rapid and nondestructive CH residual detection in food safety control.
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
Iwaya, Katsuya; Shimizu, Ryota; Hashizume, Tomihiro; Hitosugi, Taro
2011-08-01
We designed and constructed an effective vibration isolation system for stable scanning tunneling microscopy measurements using a separate foundation and two vibration isolation stages (i.e., a combination of passive and active vibration isolation dampers). Systematic analyses of vibration data along the horizontal and vertical directions are present, including the vibration transfer functions of each stage and the overall vibration isolation system. To demonstrate the performance of the system, tunneling current noise measurements are conducted with and without the vibration isolation. Combining passive and active vibration isolation dampers successfully removes most of the vibration noise in the tunneling current up to 100 Hz. These comprehensive vibration noise data, along with details of the entire system, can be used to establish a clear guideline for building an effective vibration isolation system for various scanning probe microscopes and electron microscopes.
Literature survey on anti-vibration gloves
CSIR Research Space (South Africa)
Sampson, E
2003-08-01
Full Text Available -arm vibration. (ISO 5349) 7 Figure 2: Test handle with placement of sensors (from ISO 10819, 1996) 10 Figure 3: Operators posture and handle direction (ISO 10819, 1996). 11 1. Introduction Prolonged exposure to vibration affects the human body in many... handle and the suggested position of the sensors. Figure 2: Test handle with placement of sensors (ISO 10819, 1996) The posture of the operator could affect the level of vibration transmitted to the hand since a change in the posture may cause...
Vibration Measurement with PULSE and DSPACE Equipment
Directory of Open Access Journals (Sweden)
Radim KLEČKA
2009-06-01
Full Text Available This contribution describes techniques and results of measurement with TIRA vibration generator. A method of experimental modal analysis allows next restore of vibration data. The goal is check validity of head expanders and screw connection. This process is based to using ME’scope environment. Another goal is check possibilities of dSPACE platform to vibration measurement. This task includes design of connection between dSPACE system and power amplifier, creating of graphical user interface and analyzing main configuration parameters to improve quality of drive signal.
Vibrational and Thermal Properties of Oxyanionic Crystals
Korabel'nikov, D. V.
2018-03-01
The vibrational and thermal properties of dolomite and alkali chlorates and perchlorates were studied in the gradient approximation of density functional theory using the method of a linear combination of atomic orbitals (LCAO). Long-wave vibration frequencies, IR and Raman spectra, and mode Gruneisen parameters were calculated. Equation-of-state parameters, thermodynamic potentials, entropy, heat capacity, and thermal expansion coefficient were also determined. The thermal expansion coefficient of dolomite was established to be much lower than for chlorates and perchlorates. The temperature dependence of the heat capacity at T > 200 K was shown to be generally governed by intramolecular vibrations.
Applications of Fault Detection in Vibrating Structures
Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.
2012-01-01
Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.
Vibration-Induced Climbing of Drops
Brunet, P.; Eggers, J.; Deegan, R. D.
2007-10-01
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.
Physics of Strongly Coupled Plasma
Energy Technology Data Exchange (ETDEWEB)
Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)
2007-07-15
Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and
Energy Technology Data Exchange (ETDEWEB)
Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.
2005-08-01
We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.
Takács, Gergely
2012-01-01
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of ...
Dynamic Properties of the Painter Street Overpass at Different Levels of Vibration
DEFF Research Database (Denmark)
Ventura, C. E.; Brincker, Rune; Andersen, P.
2005-01-01
This paper describes the results from a series of ambient vibration studies conducted on the Painter Street Overpass in Rio Dell, California. Painter Street is a two-span, skewed reinforced concrete bridge with two single piers near the middle and monolithic abutments, typical of bridge overpasses...... in California. Strong motion instruments were installed on the bridge in 1977, and since then it has recorded the motions from more than ten significant earthquakes. Because of the valuable amount of strong motion data available, the aim of the ambient vibration tests was to determine the dynamic...... from analyses of selected strong motion records. The magnitude of the events investigated ranges from ML=4.4 to ML=6.9, which produced accelerations of up to 0.54g at the free field site, 1.3g at the abutments, and 0.86g on the deck. The results of this study indicate that the overall dynamic...
Strongly coupled dust coulomb clusters
International Nuclear Information System (INIS)
Juan Wentau; Lai Yingju; Chen Mingheng; I Lin
1999-01-01
The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing
Probability densities in strong turbulence
Yakhot, Victor
2006-03-01
In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.
14 CFR 23.251 - Vibration and buffeting.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 23.251 Section 23... Requirements § 23.251 Vibration and buffeting. There must be no vibration or buffeting severe enough to result in structural damage, and each part of the airplane must be free from excessive vibration, under any...
Whole-body vibration dosage alters leg blood flow
Lythgo, Noel; Eser, Prisca; de Groot, Patricia; Galea, Mary
The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used
14 CFR 25.251 - Vibration and buffeting.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration and buffeting. 25.251 Section 25... Vibration and buffeting. (a) The airplane must be demonstrated in flight to be free from any vibration and... airplane must be demonstrated in flight to be free from excessive vibration under any appropriate speed and...
Putting a damper on drilling's bad vibrations
Energy Technology Data Exchange (ETDEWEB)
Jardine, S. (Sedco forex, Montrouge (France)); Malone, D. (Anadrill, Sugar Land, TX (United States)); Sheppard, M. (Schlumberger Cambridge Research, Cambridge (United Kingdom))
1994-01-01
Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.
The immediate effect of vibration therapy on flexibility in female ...
African Journals Online (AJOL)
The immediate effect of vibration therapy on flexibility in female junior elite gymnasts. ... Therefore, the aim of this study was to investigate the acute effects of vibration therapy on the flexibility of female gymnasts. A pre-test ... Keywords: Static stretching, vibration training, vibration therapy, acute effect, artistic gymnastics.
Calculation of vibrational excitation cross-sections in resonant ...
Indian Academy of Sciences (India)
WINTEC
tron is re-emitted after the anion has completed at least one vibration, the nuclear wave function for A– exhibits a reflection from the right turning point, and there is vibrational structure in the resonant scattering cross-sections even for the lowest vibrational excita- tion of the target.1–5 The pronounced vibrational struc-.
Charge pumping in strongly coupled molecular quantum dots
Haughian, Patrick; Yap, Han Hoe; Gong, Jiangbin; Schmidt, Thomas L.
2017-11-01
The interaction between electrons and the vibrational degrees of freedom of a molecular quantum dot can lead to an exponential suppression of the conductance, an effect which is commonly termed Franck-Condon blockade. Here, we investigate this effect in a quantum dot driven by time-periodic gate voltages and tunneling amplitudes using nonequilibrium Green's functions and a Floquet expansion. Building on previous results showing that driving can lift the Franck-Condon blockade, we investigate driving protocols which can be used to pump charge across the quantum dot. In particular, we show that due to the strongly coupled nature of the system, the pump current at resonance is an exponential function of the drive strength.
Energy Technology Data Exchange (ETDEWEB)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice.
Smit, Wilbert J; Versluis, Jan; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J
2018-02-26
We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H 2 O and D 2 O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, both for water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.
Liu, Shuang; Wang, Jin-Jin; Liu, Jin-Jie; Li, Ya-Qian
2015-10-01
In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically. Project supported by the National Natural Science Foundation of China (Grant No. 61104040), the Natural Science Foundation of Hebei Province, China (Grant No. E2012203090), and the University Innovation Team of Hebei Province Leading Talent Cultivation Project, China (Grant No. LJRC013).
The effect of vibrationally excited nitrogen on the low-latitude ionosphere
Directory of Open Access Journals (Sweden)
B. Jenkins
1997-11-01
Full Text Available The first five vibrationally excited states of molecular nitrogen have been included in the Sheffield University plasmasphere ionosphere model. Vibrationally excited molecular nitrogen reacts much more strongly with atomic oxygen ions than ground-state nitrogen; this means that more O+ ions are converted to NO+ ions, which in turn combine with the electrons to give reduced electron densities. Model calculations have been carried out to investigate the effect of including vibrationally excited molecular nitrogen on the low-latitude ionosphere. In contrast to mid-latitudes, a reduction in electron density is seen in all seasons during solar maximum, the greatest effect being at the location of the equatorial trough.
13C and 18O isotope enrichment by vibrational energy exchange pumping of CO
International Nuclear Information System (INIS)
Bergman, R.C.; Homicz, G.F.; Rich, J.W.; Wolk, G.L.
1983-01-01
Measurements of preferential vibration-to-vibration (V--V) pumping of high vibrational states of 13 C 16 O and 12 C 18 O in optically excited CO gas are reported. It is found that the v = 22, 25, 27, 30, and 32 states of 13 C 16 O and the v = 8, 10, and 12 states of 12 C 18 O are substantially overpopulated compared to the same states in 12 C 16 O in strongly V--V pumped CO. Such mixtures are observed to react, forming products enriched in 13 C. The results are in reasonable agreement with an analytical kinetic model of V--V pumping in binary mixtures of diatomic gases
Fatigue damage from random vibration pulse process of tubular structural elements subject to wind
DEFF Research Database (Denmark)
Christensen, Claus F.; Ditlevsen, Ove Dalager
1997-01-01
In a wide range of the Reynolds number an elastically suspended circular cylinder surrounded by a homogeneous wind velocity field will generate vortex shedding of a frequency that by and large is proportional to the far field wind velocity. However, if the cylinder is free to vibrate, resonance...... of turbulence observed in the natural wind the undisturbed local wind velocity directly upstream to the cylinder varies as a sample from a random process. Thus the local wind velocity will cross in and out of the "iock in"-intervals in a random fashion causing pulse like bursts of strong vibrations. The paper...... describes a random pulse process model of this vibration behavior supported on the experimental work of the first author. Moreover, it is shown how the mean accumulated material fatigue damage per time unit according to the Palmgren-Miner rule can be evaluated by simulation....
The modelling of industrial robot manipulator vibration
Energy Technology Data Exchange (ETDEWEB)
Marcham, L.J.; Rao, B.K.N.; Noroozi, S.; Penson, R.P. [Southampton Inst. (United Kingdom). Systems Engineering Research Centre
1996-11-01
The work reported in this paper addresses the modelling of robot manipulator vibration, with the specific aim of producing a model suitable to be employed within an active compensation controller. An overview of existing work on the modelling of robot dynamics, both mathematically and empirically, is reported. A model of the dynamics of an industrial manipulator, inclusive of vibration, derived using Lagrangian mechanics is presented and further developed through the application of experimental modal analysis, by which the position dependent modal parameters of an industrial robot manipulator are determined. The model results are compared with experimental vibration data taken from the end-effector of a PUMA562C industrial manipulator using laser interferometry. Control of an end-effector located, active compensator for vibration suppression, based upon the derived model is discussed and recommendations which form the basis of further investigations, currently being undertaken, are presented.
Vibrational and electronic spectroscopic studies of melatonin
Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.
2014-01-01
We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.
International Conference on Acoustics and Vibration
Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed
2017-01-01
The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...
A Miniature Coupled Bistable Vibration Energy Harvester
International Nuclear Information System (INIS)
Zhu, D; Arthur, D C; Beeby, S P
2014-01-01
This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator
Rheumatic effects of vibration at work
Palmer, Keith T; Bovenzi, Massimo
2016-01-01
Occupational exposures to vibration come in many guises and are very common at a population level. It follows that an important minority of working-aged patients seen by medical services will have been exposed to this hazard of employment. Vibration can cause human health effects which may manifest in the patients that rheumatologists see. In this chapter we identify the health effects of relevance to them, and review their epidemiology, pathophysiology, clinical presentation, differential diagnosis, and vocational and clinical management. On either side of this, we describe the nature and assessment of the hazard, the scale and common patterns of exposure to vibration in the community, and the legal basis for controlling health risks, and comment on the role of health surveillance in detecting early adverse effects and what can be done to prevent the rheumatic effects of vibration at work. PMID:26612239
Chronic subdural hematomas caused by vibrating Chinese ...
African Journals Online (AJOL)
Abstract. We present two middle aged Nigerian patients who developed significant chronic subdural hematomas weeks after going on vibrating Chinese massage chairs. This complication of using the chairs has not been previously reported.
Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.
Panek, Paweł T; Jacob, Christoph R
2016-08-18
Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra.
Theory of Arched Structures Strength, Stability, Vibration
Karnovsky, Igor A
2012-01-01
Theory of Arched Structures: Strength, Stability, Vibration presents detailed procedures for analytical analysis of the strength, stability, and vibration of arched structures of different types, using exact analytical methods of classical structural analysis. The material discussed is divided into four parts. Part I covers stress and strain with a particular emphasis on analysis; Part II discusses stability and gives an in-depth analysis of elastic stability of arches and the role that matrix methods play in the stability of the arches; Part III presents a comprehensive tutorial on dynamics and free vibration of arches, and forced vibration of arches; and Part IV offers a section on special topics which contains a unique discussion of plastic analysis of arches and the optimal design of arches.
Monitoring Engine Vibrations And Spectrum Of Exhaust
Martinez, Carol L.; Randall, Michael R.; Reinert, John W.
1991-01-01
Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).
Vibrations and stability of complex beam systems
Stojanović, Vladimir
2015-01-01
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...
Gaynor, James D.; Khalil, Munira
2017-09-01
Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.
Vibration analysis and vibration damage assessment in nuclear and process equipment
International Nuclear Information System (INIS)
Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.
1997-01-01
Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-04-01
The data presented in this article is in relation to the research article "Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage" Cahill et al. (2018) [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.
Actual behaviour of a ball vibration absorber
Czech Academy of Sciences Publication Activity Database
Pirner, Miroš
2002-01-01
Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002 http://www.sciencedirect.com/science/article/pii/S0167610502002155#
Optical vibration measurement of mechatronics devices
Yanabe, Shigeo
1993-09-01
An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.
Space shuttle main engine vibration data base
Lewallen, Pat
1986-01-01
The Space Shuttle Main Engine Vibration Data Base is described. Included is a detailed description of the data base components, the data acquisition process, the more sophisticated software routines, and the future data acquisition methods. Several figures and plots are provided to illustrate the various output formats accessible to the user. The numerous vibration data recall and analysis capabilities available through automated data base techniques are revealed.
Active and passive vibration control of structures
Spelsberg-Korspeter, Gottfried
2014-01-01
Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory. Also links between the different applications in structural control are shown.
RESEARCH OF BRIDGE STRUCTURE VIBRATION CHARACTERISTICS
Directory of Open Access Journals (Sweden)
V.P. Babak
2005-02-01
Full Text Available Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.
Mechanical vibration where do we stand?
Schneider, Wilhelm; Elishakoff, Isaac
2007-01-01
Written by the worldâs leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It poses the question: What are the most important contributions made in the past decade The reader will be able to gain a critical and authoritative overview of the subject from various complementary perspectives.
Prediction of induced vibrations in stall
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1999-03-01
The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)
International Nuclear Information System (INIS)
Maxton, P.M.; Schaeffer, M.W.; Ohline, S.M.; Kim, W.; Venturo, V.A.; Felker, P.M.
1994-01-01
Theoretical and experimental results pertaining to the excitation of intermolecular vibrations in the Raman and vibronic spectra of aromatic-containing, weakly bound complexes and clusters are reported. The theoretical analysis of intermolecular Raman activity is based on the assumption that the polarizability tensor of a weakly bound species is given by the sum of the polarizability tensors of its constituent monomers. The analysis shows that the van der Waals bending fundamentals in aromatic--rare gas complexes may be expected to be strongly Raman active. More generally, it predicts strong Raman activity for intermolecular vibrations that involve the libration or internal rotation of monomer moieties having appreciable permanent polarizability anisotropies. The vibronic activity of intermolecular vibrations in aromatic-rare gas complexes is analyzed under the assumption that every vibronic band gains its strength from an aromatic-localized transition. It is found that intermolecular vibrational excitations can accompany aromatic-localized vibronic excitations by the usual Franck--Condon mechanism or by a mechanism dependent on the librational amplitude of the aromatic moiety during the course of the pertinent intermolecular vibration. The latter mechanism can impart appreciable intensity to bands that are forbidden by rigid-molecule symmetry selection rules. The applicability of such rules is therefore called into question. Finally, experimental spectra of intermolecular transitions, obtained by mass-selective, ionization-detected stimulated Raman spectroscopies, are reported for benzene--X (X=Ar, --Ar 2 , N 2 , HCl, CO 2 , and --fluorene), fluorobenzene--Ar and --Kr, aniline--Ar, and fluorene--Ar and --Ar 2 . The results support the conclusions of the theoretical analyses and provide further evidence for the value of Raman methods in characterizing intermolecular vibrational level structures
Modelling chaotic vibrations using NASTRAN
Sheerer, T. J.
1993-01-01
Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.
Dancing drops over vibrating substrates
Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael
2017-04-01
We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.
CAMPANAC, P.; NONAMI, K.; DUHAMEL, D.
2000-03-01
In this article, theories of rolling tyre vibrations are presented. In previous publications, tread pattern was neglected and authors have studied vibrations in smooth tyres. When heterogeneity caused by a tread pattern on the tyre belt is introduced, it is shown that vibrations can be described by linear equations with time periodic coefficients. Firstly, the perturbation method is applied for a nearly smooth tyre, and the “self-excitation” phenomenon, a general feature in time periodic linear systems, is illustrated with the semi-analytic expressions obtained. Then, the generalization to a strong heterogeneity is achieved using the Bloch wave theory. This theoretical background suggests the decomposition of experimental data of noise in time signals for a given phase as compared to the wheel rotation. Finally, an effective method for numerical computations of vibrations is proposed; it uses the Floquet theory, a consequence of the Bloch theory. Finite element formulation and algorithm are derived for the heterogeneous “circular ring model”.
Raman scattering with strongly coupled vibron-polaritons
Strashko, Artem; Keeling, Jonathan
2016-08-01
Strong coupling between cavity photons and molecular vibrations can lead to the formation of vibron-polaritons. In a recent experiment with PVAc molecules in a metal-metal microcavity [Shalabney et al., Angew. Chem., Int. Ed. 54, 7971 (2015), 10.1002/anie.201502979], such a coupling was observed to enhance the Raman scattering probability by several orders of magnitude. Inspired by this, we theoretically analyze the effect of strong photon-vibron coupling on the Raman scattering amplitude of organic molecules. This problem has recently been addressed by del Pino, Feist, and Garcia-Vidal [J. Phys. Chem. C 119, 29132 (2015), 10.1021/acs.jpcc.5b11654] using exact numerics for a small number of molecules. In this paper we derive compact analytic results for any number of molecules, also including the ultrastrong-coupling regime. Our calculations predict a division of the Raman signal into upper and lower polariton modes, with some enhancement to the lower polariton Raman amplitude due to the mode softening under strong coupling.
Heat and mass transfer enforcement of vibrating fluidized bed
Chu, Zhide; Yang, Junhong; Li, Xuhui; Song, Yang
1994-12-01
This paper briefly introduces the development of vibrating fluidized bed at home and abroad, elaborates the vibration properties of vibrating fluidized bed, the fluidizing velocity and pressure drop of the bed layer. It also deduces the non-steady state drying dynamic equations of vibrating fluidized bed, analyzes main factors which influence the drying rate and inquires into drying rules of fixed bed and vibrating fluidized bed.
Using piezo-electric material to simulate a vibration environment
Jepsen, Richard A.; Davie, Neil T.; Vangoethem, Douglas J.; Romero, Edward F.
2010-12-14
A target object can be vibrated using actuation that exploits the piezo-electric ("PE") property. Under combined conditions of vibration and centrifugal acceleration, a centrifugal load of the target object on PE vibration actuators can be reduced by using a counterweight that offsets the centrifugal loading. Target objects are also subjected to combinations of: spin, vibration, and acceleration; spin and vibration; and spin and acceleration.
Method and apparatus for vibrating a substrate during material formation
Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA
2008-10-21
A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.
Zero-Annihilation Periodic Control For Damping Vibrations
Bayard, David S.; Boussalis, Dhemetrios
1995-01-01
Report presents study on use of recently developed zero-annihilation periodic (ZAP) controller for active suppression of vibrations in flexible structures characterized by non-minimum-phase transfer functions. Non-minimum-phase situation occurs if certain kinds of vibration-sensor/vibration-actuator pairs (e.g., piezoelectric) used, and/or if vibration sensor(s) not colocated with vibration actuator(s).
Frequency adjustable MEMS vibration energy harvester
Podder, P.; Constantinou, P.; Amann, A.; Roy, S.
2016-10-01
Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.
Frequency adjustable MEMS vibration energy harvester
International Nuclear Information System (INIS)
Podder, P; Constantinou, P; Roy, S; Amann, A
2016-01-01
Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)
Vibration monitoring with artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging
Broadband Vibration Attenuation Using Hybrid Periodic Rods
Directory of Open Access Journals (Sweden)
S. Asiri
2008-12-01
Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.
Tunable Mechanical Filter for Longitudinal Vibrations
Directory of Open Access Journals (Sweden)
S. Asiri
2007-01-01
Full Text Available This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a filter, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the “Pass Bands” and wave propagation is efficiently attenuated within other frequency bands called the “Stop Bands”. The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. The concept of this mechanical filter as presented can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.
On Kinetics Modeling of Vibrational Energy Transfer
Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)
1996-01-01
Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.
No Telescoping Effect with Dual Tendon Vibration.
Directory of Open Access Journals (Sweden)
Valeria Bellan
Full Text Available The tendon vibration illusion has been extensively used to manipulate the perceived position of one's own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration on both 'upward-downward' and 'towards-away from the elbow' planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a 'telescoping' effect. Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow, but no evidence of a contraction of the perceived arm length.
Strong Ideal Convergence in Probabilistic Metric Spaces
Indian Academy of Sciences (India)
In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...
Strong ideal convergence in probabilistic metric spaces
Indian Academy of Sciences (India)
In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...
Raynaud's phenomenon of fingers and toes among vibration-exposed patients.
Toibana, N; Ishikawa, N; Sakakibara, H; Yamada, S
1994-05-01
Eleven patients with Raynaud's phenomenon of the toes as well as the fingers were encountered among about 1,000 vibration-exposed patients. They consisted composed of four chain-saw operators, five rock drillers, a stone quarrier and a welder in a shipyard. All the cases were examined carefully for differential diagnosis, but there were no particular abnormalities in hematological, immunological and homodynamic examinations. The rock drillers, quarrier and welder had direct vibration exposure of the foot, which was considered to be responsible for their Raynaud's phenomenon of the toe. Four chain-saw operators, who had been little exposed to vibration of the foot directly, were examined further on skin temperature of fingers and toes every three hours except at night and in a 30-min cold provocation test at 5 degrees C. The skin temperature of both their fingers and toes was lower than in age-matched healthy controls. The chain-saw operators started to work in the 1960's and early in the 1970's, when the chain saw vibration level was high. It is, hence, considered that they were exposed to strong vibration of the hand from chain saws, and then suffered severe Raynaud's phenomenon of both fingers and toes.
Surface tension and orthobaric densities for vibrating square well dumbbells. I.
Chapela, Gustavo A; Alejandre, José
2010-03-14
Surface tensions and liquid-vapor orthobaric densities are calculated for a wide variety of vibrating square well dumbbells using discontinuous molecular dynamics simulations. The size of the vibration well, the elongation or bond distance of the two particles of the dumbbell, the asymmetry in size (and interaction range) of the two particles, and the depth of the interaction well are the variables whose effects are systematically evaluated in this work. Extensive molecular dynamics simulations were carried out and the orthobaric liquid-vapor densities are compared with those obtained previously by other authors using different methods of simulation for rigid and vibrating square well dumbbells. Surface tension values are reported for the first time for homonuclear and heteronuclear vibrating square well dumbbells as well as for all the simulated series. The molecular dynamics results of tangent homonuclear dumbbells are compared with those from Monte Carlo simulations also obtained in this work, as a way of checking the order of magnitude of the molecular dynamics results. The size of the vibration well is shown to have a small influence on the resulting properties. Decreasing elongation and the size of the second particle increase critical temperatures, liquid densities, and surface tensions. Moderate increases in the depth of the interaction well have the same effect. For larger asymmetries of the depth of the interaction well on the dumbbell particles, a strong association phenomenon is observed and the main effects are a maximum on the critical temperature for increasing well depth and a decrease in the surface tension.
Influence of controlling vibrations on heat transfer in floating zone crystal growth*
Fedyushkin, A. I.
The crystal growth processes of monocrystals are strongly vibrational sensitive systems and in particular it concerns to a floating zone method as presence of a free surface and two fronts of crystallization and melting that aggravate it The given work is devoted to numerical investigations of the influence of controlling vibrations on heat transfer during crystal growth by floating zone technique Normal and weightless environment conditions are considered Mathematical simulation is performed on the numerical solutions of basis unsteady Navier-Stokes equations for incompressible fluid flows and energy equation 2D axisymmetric geometry was used in model Marangoni convection and radiation condition on the curvature free surface were taken in account The calculations of the shape of a free surface of a liquid zone and influences on it of a corner of wetting force of weight and size of factor of a superficial tension are carried out The simulations of convective heat transfer for real curvature free surface of a liquid zone with and without the taking into account of the following factors parameters of radiation rotations natural and Marangoni convection and vibrations are carried out The given calculations are carried out for semiconductors melts with Prandtl number Pr 1 and for oxides Pr 1 The influence of vibrations of a crystal on melt flow and on the wide of dynamic and thermal boundary layers at melt-crystal interface is studied The action of vibrations on an enhancement of heat fluxes at the melt crystal interface is shown
Energy Technology Data Exchange (ETDEWEB)
Radecki, Peter P [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Bement, Matthew T [Los Alamos National Laboratory
2008-01-01
The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.
Directory of Open Access Journals (Sweden)
Till Heinemann
2017-08-01
Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.
Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator
DEFF Research Database (Denmark)
Pályi, András; Struck, P R; Rudner, Mark
2012-01-01
We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve....... The strong intrinsic spin-mechanical coupling allows for detection, as well as manipulation of the spin qubit, and may yield enhanced performance of nanotubes in sensing applications....
Remnants of strong tidal interactions
International Nuclear Information System (INIS)
Mcglynn, T.A.
1990-01-01
This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs
2006-01-01
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...
Strong seismic ground motion propagation
International Nuclear Information System (INIS)
Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.
1988-10-01
At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials
Monitoring Vibration of A Model of Rotating Machine
Directory of Open Access Journals (Sweden)
Arko Djajadi
2012-03-01
Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level.
DEFF Research Database (Denmark)
Settnes, Mikkel; Saavedra, J. R. M.; Thygesen, Kristian Sommer
2017-01-01
We reveal new aspects of the interaction between plasmons and phonons in 2D materials that go beyond a mere shift and increase in plasmon width due to coupling to either intrinsic vibrational modes of the material or phonons in a supporting substrate. More precisely, we predict strong plasmon spl...
Strongly interacting photons and atoms
International Nuclear Information System (INIS)
Alge, W.
1999-05-01
This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Promoting Strong Written Communication Skills
Narayanan, M.
2015-12-01
The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Starck, J; Pyykkö, I
1986-08-01
Impulsiveness is defined as the difference between peak and root-mean-square signals. As the difference varies in time, the cumulative distribution function has been used to describe the probability of achieving a certain value of impulsiveness. To make numerical comparison of different vibration signals possible, an impulse index has been selected from the cumulative distribution function. Symptoms of vibration-induced white finger were observed and compared to those expected on the basis of measurements taken according to guidelines of the International Organization for Standardization (ISO). Agreement was found for chain-saw vibration. In the case of pedestal grinding, the ISO draft underestimated the hazardous effects of vibration. Stone workers using pneumatic hammers were exposed to highly impulsive but asymmetrical vibration. The corresponding asymmetry was not, however, observed between the symptoms of the left and right hands, a finding which indicates that coupling between the tool and the hand is important for impulse vibration. The results suggest that the impulse character of vibration increases the risk of vibration-induced pathology. The analysis of high-impulse acceleration peaks obtained by the method presented in this study could provide additional data necessary to improve risk assessment.
Energy Technology Data Exchange (ETDEWEB)
Naudin, M. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[FRAMATOME, 92 - Paris-La-Defense (France); Pugnet, J.M. [Conservatoire National des Arts et Metiers (CNAM), Grenoble-1 Univ., 38 (France)]|[FRAMATOME, 92 - Paris-La-Defense (France)
1999-07-01
Vibration phenomena are sources of mechanical incidents in turbomachineries. A calculation of the Eigenmodes of machine parts and a knowledge of their possible excitation during the machine operation can greatly improve the reliability and availability of the equipments. The development of computer tools and in particular the use of finite-element codes has allowed a more and more precise calculation of Eigenmodes and Eigenfrequencies. However, the analysis of excitation sources remains sometimes insufficient to explain and anticipate some complex vibrational phenomena encountered in rotative machines. The aim of this paper is to present, using two different examples, the methodology to be used in order to perform a complete vibrational analysis of mechanical components. The following aspects are reviewed successively: 1 - the damped vibrational system: study of the free motion, study of the response to an harmonic forced excitation; 2 - vibrational analysis of turbine blades: steam turbine blades, Eigenmodes of mobile blades, excitation sources, Campbell diagram, calculation of static and dynamical stresses, Haigh diagram, acceptance criteria and safety coefficient, influence of corrosion; 3 - dynamical analysis of the bending of a lineshaft: different flexion Eigenmodes, stiffness and damping of bearings, calculation of flexion Eigenmodes, excitation sources, vibrational stability of the lineshaft and vibration level; 3 - generalization: vibration of blades, shaft dynamics, alternative machines. (J.S.) 10 refs.
Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.
2011-01-01
This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in
Foret, Marie; Hehlen, Bernard; Courtens, Éric
2001-03-01
The interest in measuring acoustic and optic vibrations of glasses at terahertz frequencies is explained. Techniques used for Brillouin spectroscopy at scattering vectors Q⩾1 nm -1 are briefly described and compared. Experimental results, for example on vitreous silicas or glassy selenium, show that plane-wave acoustic excitations exhibit a crossover from propagation to strong scattering as Q is increased. Optical excitations at similar frequencies form a 'boson peak'. These fairly local excitations can obey 'molecular-like' selection rules. The findings reveal a somewhat unexpected strong elastic inhomogeneity in the structure of glasses at the extended length scale of ˜5 nm, about which so little is known otherwise.
Implausibility of the vibrational theory of olfaction.
Block, Eric; Jang, Seogjoo; Matsunami, Hiroaki; Sekharan, Sivakumar; Dethier, Bérénice; Ertem, Mehmed Z; Gundala, Sivaji; Pan, Yi; Li, Shengju; Li, Zhen; Lodge, Stephene N; Ozbil, Mehmet; Jiang, Huihong; Penalba, Sonia F; Batista, Victor S; Zhuang, Hanyi
2015-05-26
The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol-recognizing receptor, MOR244-3, as well as other selected human and mouse ORs, responded similarly to normal, deuterated, and (13)C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d30 lacks the 1,380- to 1,550-cm(-1) IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of nonodorant molecular vibrational modes. These and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.
Strong thermal nonequilibrium in hypersonic CO and CH4 probed by CRDS.
Louviot, M; Suas-David, N; Boudon, V; Georges, R; Rey, M; Kassi, S
2015-06-07
A new experimental setup coupling a High Enthalpy Source (HES) reaching 2000 K to a cw-cavity ring-down spectrometer has been developed to investigate rotationally cold hot bands of polyatomic molecules in the [1.5, 1.7] μm region. The rotational and vibrational molecular degrees of freedom are strongly decoupled in the hypersonic expansion produced by the HES and probed by cavity ring-down spectroscopy. Carbon monoxide has been used as a first test molecule to validate the experimental approach. Its expansion in argon led to rotational and vibrational temperatures of 6.7 ± 0.8 K and 2006 ± 476 K, respectively. The tetradecad polyad of methane (1.67 μm) was investigated under similar conditions leading to rotational and vibrational temperatures of 13 ± 5 K and 750 ± 100 K, respectively. The rotationally cold structure of the spectra reveals many hot bands involving highly excited vibrational states of methane.
International Nuclear Information System (INIS)
Ryu, Jeong Soo; Yoon, Doo Byung
2005-01-01
HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition
Frequency weightings of hand-transmitted vibration for predicting vibration-induced white finger.
Bovenzi, Massimo; Pinto, Iole; Picciolo, Francesco; Mauro, Marcella; Ronchese, Federico
2011-05-01
The aim of this study was to investigate the performance of four frequency weightings for hand-transmitted vibration to predict the incidence of vibration-induced white finger (VWF). In a longitudinal study of vibration-exposed forestry and stone workers (N=206), the incidence of VWF was related to measures of vibration exposure expressed in terms of 8-hour frequency-weighted energy-equivalent root-mean-square (rms) acceleration magnitude [A(8)] and years of follow-up. To calculate A(8), the rms acceleration magnitudes of vibration were weighted by means of four frequency weightings: (i) W(h) (the frequency weighting specified in ISO 5349-1:2001); (ii) W(h-bl) (the band-limiting component of W(h)); (iii) W(hf) (a frequency weighting based on finger vibration power absorption); and (iv) W(hT) (a frequency weighting based on a Japanese study of VWF prevalence). The relations of VWF to alternative measures of vibration exposure were assessed by the generalized estimating equations (GEE) method to account for the within-subject dependency of the observations over time. Data analysis with a GEE logistic model and a measure of statistical fit suggested that calculating A(8) by weighting the tool rms accelerations with W(h-bl)gave better predictions of the cumulative incidence of VWF than the other alternative measures of daily vibration exposure. Values of A(8) derived from the currently recommended ISO frequency weighting Wh produced poorer predictions of the incidence of VWF than those obtained with frequency weightings W(hf)or W(hT). This prospective cohort study suggests that measures of daily vibration exposure which give relatively more weight to intermediate and high frequency vibration are more appropriate for assessing the probability of VWF.
Internal vibrations in molecular crystals
International Nuclear Information System (INIS)
Howard, J.
1984-01-01
Recent developments in the understanding of the relative intensities of INS bands (polycrystalline samples) are described together with the observation of a fundamental transition at ca 380 MeV (C-H stretching mode) uncontaminated by overtone or combination bands. Recent work (>100 MeV) on strongly hydrogen bonded complexes (CrOHO and MFHF - ), which have high energy modes exhibiting significant dispersion, is also discussed
Distributed Absorber for Noise and Vibration Control
Directory of Open Access Journals (Sweden)
Michel Azoulay
2011-01-01
Full Text Available An approach to a wide-band frequency passive vibration attenuation is introduced in this paper. This aims to suppress noise and vibration of extended multimode objects like plates, panels and shells. The absorber is arranged in the form of a single-layer assembly of small inertial bodies (balls being distributed and moulded within the light visco-elastic media (e.g. silicone resin. The absorber as a whole is embedded into object face covering the critical patches of the system surface. For the purpose of characterization, the authors introduced the complex frequency response function relating the volume velocity produced by the vibrating object surface (response stimulated by a point-wise force (stimulus applied to a particular point. The simulation and optimization of the main frequency characteristics has been performed using a full scale 3-dimensional Finite Element model. These revealed some new dynamic features of absorber's structures, which can contribute to vibration attenuation. A full-scale physical experimentation with synthesised absorber's structures confirmed the main results of simulation and has shown significant noise reduction over a staggering 0–20 kHz frequency band. This was achieved with a negligible weight and volume penalty due to the addition of the absorber. The results can find multiple applications in noise and vibration control of different structures. Some examples of such applications are presented.
Vibrational characteristics and wear of fuel rods
International Nuclear Information System (INIS)
Schmugar, K.L.
1977-01-01
Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude
Vibration-proof FBR type reactor
International Nuclear Information System (INIS)
Kawamura, Yutaka.
1992-01-01
In a reactor container in an FBR type reactor, an outer building and upper and lower portions of a reactor container are connected by a load transmission device made of a laminated material of rubber and steel plates. Each of the reactor container and the outer building is disposed on a lower raft disposed on a rock by way of a vibration-proof device made of a laminated material of rubber and steel plates. Vibration-proof elements for providing vertical eigen frequency of the vibration-proof system comprising the reactor building and the vibration-proof device within a range of 3Hz to 5Hz are used. That is, the peak of designed acceleration for response spectrum in the horizontal direction of the reactor structural portions is shifted to side of shorter period from the main frequency region of the reactor structure. Alternatively, rigidity of the vibration-proof elements is decreased to shift the peak to the side of long period from the main frequency region. Designed seismic force can be greatly reduced both horizontally and vertically, to reduce the wall thickness of the structural members, improve the plant economy and to ensure the safety against earthquakes. (N.H.)
Structural Design Optimization On Thermally Induced Vibration
International Nuclear Information System (INIS)
Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong
2002-01-01
The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration
Mechanical vibration of viscoelastic liquid droplets
Sharp, James; Harrold, Victoria
2014-03-01
The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.
Nanoscale piezoelectric vibration energy harvester design
Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin
2017-09-01
Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.
Vibration Isolation for Parallel Hydraulic Hybrid Vehicles
Directory of Open Access Journals (Sweden)
The M. Nguyen
2008-01-01
Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.
Vibration behavior of the artificial barrier system
Energy Technology Data Exchange (ETDEWEB)
Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru [National Research Inst. for Earth sceince and Disaster Prevention (Japan)
2000-02-01
This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)
Atomic-partial vibrational density of states of i-AlCuFe quasicrystals
Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y
2002-01-01
We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)
Horwath, T. G.
1992-01-01
The propagation of vibrational energy in bulk, torsional, and flexural modes, in electrically conducting media can undergo strong attenuation if subjected to high magnetic fields in certain spatial arrangements. The reasons for this are induced Eddy currents which are generated by the volume elements in the media moving transversally to the magnetic field at acoustic velocities. In magnetic fields achievable with superconductors, the non-conservative (dissipative) forces are compared to the elastic and inertial forces for most metals. Strong dissipation of vibrational energy in the form of heat takes place as a result. A simplified theory is presented based on engineering representations of electrodynamics, attenuation values for representative metals are calculated, and problems encountered in formulating a generalized theory based on electrodynamics of moving media are discussed. General applications as well as applications specific to maglev are discussed.
The Analysis and Suppression of the spike noise in vibrator record
Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.
2013-12-01
During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and
Isotope separation using vibrationally excited molecules
International Nuclear Information System (INIS)
Woodroffe, J.A.; Keck, J.C.
1977-01-01
A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow
Mechanical vibration to electrical energy converter
Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM
2009-03-03
Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.
Surface Vibration Reconstruction using Inverse Numerical Acoustics
Directory of Open Access Journals (Sweden)
F. Martinus
2003-05-01
Full Text Available This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. An overview of inverse numerical acoustics is presented and compared with other holography techniques such as nearfield acoustical holography and the Helmholtz equation least squares method. In order to obtain an acceptable reproduction of the surface vibration, several critical factors such as the field point selection and the effect of experimental errors have to be handled properly. Other practical considerations such as the use of few measured velocities and regularization techniques will also be presented. Examples will include a diesel engine, a transmission housing and an engine cover.
Status of the Vibrational Theory of Olfaction
Hoehn, Ross D.; Nichols, David E.; Neven, Hartmut; Kais, Sabre
2018-03-01
The vibrational theory of olfaction is an attempt to describe a possible mechanism for olfaction which is explanatory and provides researchers with a set of principles which permit predictions allowing for structure-odor relations. Similar theories have occurred several times throughout olfactory science; this theory has again recently come to prominence by Luca Turin who suggested that inelastic electron tunneling is the method by which vibrations are detected by the olfactory receptors within the hose. This work is intended to convey to the reader the an up-to-date account of the vibrational theory of olfaction, both the historical iterations as well as the present iteration. This text is designed to give a chronological account of both theoretical and experimental studies on the topic, while providing context, comments and background where they were found to be needed.
Vibration dynamics of single atomic nanocontacts
International Nuclear Information System (INIS)
Khater, A; Bourahla, B; Tigrine, R
2007-01-01
The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain
Effects of Cutting Tool Parameters on Vibration
Directory of Open Access Journals (Sweden)
Ince Mehmet Alper
2016-01-01
Full Text Available This paper presents of the influence on vibration of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (rotational speed, feed rate, depth of cut and tool tip radius. The influences of cutting parameters have been presented in graphical form for understanding. To achieve the minimum vibration, the optimum values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.25 mm/rev, 0.9 mm and 0.8 mm. Maximum vibration has been revealed the values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 636 rpm, 0.1 mm/rev, 0,5 mm and 0.8 mm.
Vibration Based Sun Gear Damage Detection
Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll
2013-01-01
Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.
Vibration-damping structure for reactor building
International Nuclear Information System (INIS)
Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru
1998-01-01
In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)
Desert ants learn vibration and magnetic landmarks.
Directory of Open Access Journals (Sweden)
Cornelia Buehlmann
Full Text Available The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.
Control aid for xenon vibration in reactor
International Nuclear Information System (INIS)
Kanekawa, Takashi.
1990-01-01
In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)
Status of the Vibrational Theory of Olfaction
Directory of Open Access Journals (Sweden)
Ross D. Hoehn
2018-03-01
Full Text Available The vibrational theory of olfaction is an attempt to describe a possible mechanism for olfaction which is explanatory and provides researchers with a set of principles which permit predictions allowing for structure-odor relations. Similar theories have occurred several times throughout olfactory science; this theory has again recently come to prominence by Luca Turin, who suggested that inelastic electron tunneling is the method by which vibrations are detected by the olfactory receptors within the hose. This work is intended to convey to the reader an up-to-date account of the vibrational theory of olfaction, both the historical iterations as well as the present iteration. This text is designed to give a chronological account of both theoretical and experimental studies on the topic, while providing context, comments, and background where they were found to be needed.
Theoretical methods for small-molecule ro-vibrational spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lodi, Lorenzo; Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.u [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)
2010-07-14
The solution of the first principle equations of quantum mechanics provides an increasingly accurate and predictive approach for solving problems involving atoms and small molecules. A general introduction to the methods used for the ab initio calculation of rotational-vibrational spectra of small molecules is presented, with a strong focus on triatomic systems. The use of multi-reference electronic structure methods to compute molecular potential-energy and dipole-moment surfaces is discussed. Issues related to the construction of such surfaces and the inclusion of corrections due to relativistic and non-Born-Oppenheimer effects are reviewed. The derivation of exact, internal-coordinate nuclear-motion-effective Hamiltonians and their solution using a discrete-variable representation are discussed. Sample results for the water molecules are used throughout the tutorial to illustrate the theoretical and numerical issues in such calculations. (phd tutorial)
Human responses to wave slamming vibration on a polar supply and research vessel.
Omer, H; Bekker, A
2018-02-01
A polar supply and research vessel is pre-disposed to wave slamming which has caused complaints among crew and researchers regarding interference with sleep, equipment use and research activities. The present work undertook to survey passenger claims of sleep interference, disturbed motor tasks and equipment damage as a result of wave slamming during normal operations of this vessel. The hypothesis was investigated that whole-body vibration metrics from ISO 2631-1 are potentially suitable for the prediction of human slamming complaints. Full-scale acceleration measurements were performed and wave slamming events were subsequently identified from the human weighted acceleration time histories. A daily diary survey was also conducted to gather the human response. The vibration caused by wave slamming was found to be strongly correlated with sleep disturbances and activity interference. Sleep and equipment use were found to be the most affected parameters by slamming. Daily vibration dose values were determined by accumulating the vibration as a result of slamming over 24 h periods. This metric accounted for increased magnitudes and frequency of slamming incidents and proved to be the best metric to represent human responses to slamming vibration. The greatest percentage of activities affected by slamming related to sleep regardless of daily cumulative VDV magnitude. More than 50% of the recorded responses related to sleep when the daily cumulative VDV ranged between 8.0 m/s 1.75 -10.0 m/s 1.75 . The peak vertical vibration levels recorded on the vessel reach magnitudes which are associated with sleep disturbance in environments where acoustic noise is present. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Wang, Huakun; Zhao, Dongliang; Yang, Wenyu; Yu, Guoliang, E-mail: yugl@sjtu.edu.cn [State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China (China)
2015-02-01
Flow-induced vibration (FIV) of a triangular cylinder is numerically investigated at a Reynolds number of Re = 100. The four-step fractional finite element method is employed to solve the two-dimensional (2D) incompressible Navier–Stokes equations. The cylinder is endowed with a two-degree-of-freedom motion with the reduced mass ratio of M{sub r} = 2. Three typical flow incidence angles, α = 0°, 30° and 60°, are examined to identify the effect of incidence angle on the vibration characteristics of the cylinder. For each α, computations are conducted in a wide range of reduced velocities 2 U{sub r} ≤ 18. The numerical results show that at α = 0° and 30°, the responses of the cylinder are dominated by vortex-induced vibration which resembles that of a circular cylinder. At α = 0°, the peak amplitude of transverse vibration is the smallest among the three investigated α, and most of the cylinder motions exhibit a regular figure-eight trajectory. Some single-loop trajectories are observed at α = 30°, where the vibration frequency in the in-line direction is always identical to that in the transverse direction. At α = 60°, the triangular cylinder undergoes a typical transverse galloping with large amplitude and low frequency, and the vibration trajectories appear to be regular or irregular figure-eight patterns, which are strongly affected by the reduced velocity. (paper)
Evaluation of hand-arm and whole-body vibrations in construction and property management.
Coggins, Marie A; Van Lente, Eric; McCallig, Margaret; Paddan, Gurmail; Moore, Ken
2010-11-01
s⁻²) and the highest WBV magnitudes were measured on an excavator with a rock breaking attachment (5.81 m s⁻²). HAV magnitudes were found to be particularly strongly influenced by tool age, while WBV magnitudes varied with work activity and terrain. Within the construction and management company, few hand tools (3 of 20) exceeded the exposure action values (EAV) specified in the European Physical Agents (Vibration) Directive 2002/44/EC [On the minimum health and safety requirements regarding the exposure of works to the risks arising form physical agents (vibration)], when used for an 8-h period. HAV magnitudes were found to be very dependent on tool age, highlighting the importance of a tool maintenance programme incorporating tool work life prediction supported by regular vibration exposure measurements. Most of the vehicles (10 of 11) tested in this study exceeded the EAV specified for WBV, when operated for 8 h. WBV magnitudes were found to be dependent on the work task and thus, job rotation could be employed to control WBV exposures to acceptable levels.
The Effects of Manufacturing Tolerances on the Vibration of Aero-engine Rotor-damper Assemblies
Sykes, J. E. H.; Holmes, R.
1991-01-01
A range of rotor assemblies incorporating one and two squeeze film dampers with various static misalignments is investigated. Waterfall diagrams are constructed which demonstrate the effects of such misalignment and damper support flexibility on the nature and severity of subsynchronous resonance and jump phenomena. Vibration signatures of similar rotor-bearing assemblies are shown to contrast strongly due to different accumulations of tolerances during manufacture, fitting, and operation.
Seeger, Nicole; Lange, Sigrid; Klein, Sandra
2015-08-01
Dissolution testing is an in vitro procedure which is widely used in quality control (QC) of solid oral dosage forms and, given that real biorelevant test conditions are applied, can also be used as a predictive tool for the in vivo performance of such formulations. However, if a dissolution method is intended to be used for such purposes, it has to deliver results that are only determined by the quality of the test product, but not by other variables. In the recent past, more and more questions were arising on how to address the effects of vibration on dissolution test results. The present study was performed to screen for the correlation of prednisone dissolution of USP Prednisone Tablets RS with vibration caused by a commercially available vibration source as well as to investigate how drug release from a range of immediate release formulations containing class 1-4 drugs of the biopharmaceutical classification scheme is affected by vibration when performing dissolution experiments at different agitation rates. Results of the present study show that the dissolution process of oral drug formulations can be affected by vibration. However, it also becomes clear that the degree of which a certain level of vibration impacts dissolution is strongly dependent on several factors such as drug properties, formulation parameters, and the design of the dissolution method. To ensure the establishment of robust and predictive dissolution test methods, the impact of variation should thus be considered in method design and validation.
Optical Measurement of Cable and String Vibration
Directory of Open Access Journals (Sweden)
Y. Achkire
1998-01-01
Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.
Lambda-matrices and vibrating systems
Lancaster, Peter; Stark, M; Kahane, J P
1966-01-01
Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late
Noise and vibration in friction systems
Sergienko, Vladimir P
2015-01-01
The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.
Skull Vibration Induced Nystagmus in Otorhinolaryngology
Directory of Open Access Journals (Sweden)
Carmen Sánchez Blanco
2018-01-01
Full Text Available Introduction and objective: The Vibration Induced Nystagmus (VIN is a useful, easy, non-invasive examination that involves an asymmetry of the vestibular function. Applying a 100Hz vibration over the mastoid process induces a horizontal nystagmus beating towards the normal side in patients with unilateral vestibular loss. In this paper we show the physiological foundations, practical conditions and the interpretation of the results. Methods: Narrative review. Discussion and conclusions: VIN starts with stimulation onset and it stops at stimulation offset. It has the same direction when you stimulate both mastoids. It shows a little or no habituation and it is permanent even in well compensated patients.
Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration
Irvine, T.
2016-01-01
Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.
Forced vibrations of rotating circular cylindrical shells
International Nuclear Information System (INIS)
Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru
1995-01-01
Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)
Design of Wind Turbine Vibration Monitoring System
Directory of Open Access Journals (Sweden)
Shoubin Wang
2013-04-01
Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.
Vibration Energy Harvesting Potential for Turbomachinery Applications
Directory of Open Access Journals (Sweden)
Adrian STOICESCU
2018-03-01
Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.
Active vibration control by robust control techniques
International Nuclear Information System (INIS)
Lohar, F.A.
2001-01-01
This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)
Multimode vibrational couplings in resonant positron annihilation.
d'A Sanchez, Sergio; Lima, Marco A P; Varella, Márcio T do N
2011-09-02
The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.
Energy Technology Data Exchange (ETDEWEB)
Maxwell, H.
1996-12-01
This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.
Gidlöf-Gunnarsson, Anita; Ögren, Mikael; Jerson, Tomas; Öhrström, Evy
2012-01-01
Internationally accepted exposure-response relationships show that railway noise causes less annoyance than road traffic and aircraft noise. Railway transport, both passenger and freight transport, is increasing, and new railway lines are planned for environmental reasons. The combination of more frequent railway traffic and faster and heavier trains will, most probably, lead to more disturbances from railway traffic in the near future. To effectively plan for mitigations against noise and vibration from railway traffic, new studies are needed to obtain a better basis of knowledge. The main objectives of the present study was to investigate how the relationship between noise levels from railway traffic and general annoyance is influenced by (i) number of trains, (ii) the presence of ground borne vibrations, and (iii) building situational factors, such as orientation of balcony/patio and bedroom window. Socio-acoustic field studies were executed in residential areas; (1) with relatively intense railway traffic; (2) with strong vibrations, and; (3) with the most intense railway traffic in the country. Data was obtained for 1695 respondents exposed to sound levels ranging from L(Aeq,24h) 45 to 65 dB. Both number of trains and presence of ground-borne vibrations, and not just the noise level per se, are of relevance for how annoying railway noise is perceived. The results imply that, for the proportion annoyed to be equal, a 5 - 7 dB lower noise level is needed in areas where the railway traffic causes strong ground-borne vibrations and in areas with a very large number of trains. General noise annoyance was twice as high among residents in dwellings with balcony / patio oriented towards the railway and about 1.5 times higher among residents with bedroom windows facing the railway.
1987-01-01
fatigae equivalent test time of 45-mimates. 1. BACKGROUND subjected to both vibration and loose cargo testing as well an the type and amount of...Environmental Test the track laying environment. Nethods, 10 March 1975. 8. FUTURE EFFORTS 11. Soci, Darrell F., Fatigae Life Estimation Techniques, Technical
Energy Technology Data Exchange (ETDEWEB)
Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)
1997-05-27
With an objective to measure a behavior of the surface ground during a strong earthquake directly on the actual ground and make evaluation thereon, a proposal was made on an original location measuring and analyzing method using an S-wave vibrator and seismic cones. This system consists of an S-wave vibrator and a static cone penetrating machine, and different types of measuring cones. A large number of measuring cones are inserted initially in the object bed of the ground, and variation in the vibration generated by the vibrator is measured. This method can derive decrease in rigidity rate of the actual ground according to dynamic strain levels, or in other words, the dynamic nonlinearity. The strain levels can be controlled with a range from 10 {sup -5} to 10 {sup -3} by varying the distance from the S-wave vibrator. Furthermore, the decrease in the rigidity rate can be derived by measuring variations in the S-wave velocity by using the plank hammering method during the vibration. Field measurement is as easy as it can be completed in about half a day including preparatory works, and the data analysis is also simple. The method is superior in mobility and workability. 9 figs.
Directory of Open Access Journals (Sweden)
J. P. Burrows
2012-09-01
Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.
Alleviation of Buffet-Induced Vibration Using Piezoelectric Actuators
National Research Council Canada - National Science Library
Morgenstern, Shawn D
2006-01-01
.... The objective of this research was to determine the most critical natural modes of vibration for the F-16 ventral fin and design piezoelectric actuators capable of reducing buffet-induced ventral fin vibration...
Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope
CSIR Research Space (South Africa)
Loveday, PW
1996-01-01
Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...
Evaluation of vibration limits and mitigation techniques for urban construction.
2013-10-01
The overriding purpose of this research was to develop a comprehensive framework to address : vibration issues prior to and during construction, including calculation of anticipated ground : vibrations during project design, condition surveys of stru...
Update LADOTD policy on pile driving vibration management.
2012-02-01
The main objective of this project was to update the current Louisiana Department of Transportation and Development (LADOTD) policy on pile driving vibration risk management with a focus on how to determine an appropriate vibration monitoring area. T...