On the Strong Direct Summand Conjecture
McCullough, Jason
2009-01-01
In this thesis, our aim is the study the Vanishing of Maps of Tor Conjecture of Hochster and Huneke. We mainly focus on an equivalent characterization called the Strong Direct Summand Conjecture, due to N. Ranganathan. Our results are separated into three chapters. In Chapter 3, we prove special cases of the Strong Direct Summand Conjecture in…
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Note on a reformulation of the strong cosmic censor conjecture based on computability
Energy Technology Data Exchange (ETDEWEB)
Etesi, Gabor
2002-12-12
In this Letter we provide a reformulation of the strong cosmic censor conjecture taking into account recent results on Malament-Hogarth space-times. We claim that the strong version of the cosmic censor conjecture can be formulated by postulating that a physically reasonable space-time is either globally hyperbolic or possesses the Malament-Hogarth property. But it is known that a Malament-Hogarth space-time in principle is capable for performing non-Turing computations such as checking consistency of ZFC set theory. In this way we get an intimate conjectured link between the cosmic censorship scenario and computability theory.
Pseudo-Riemannian Novikov algebras
Energy Technology Data Exchange (ETDEWEB)
Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn
2008-08-08
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.
Maximal Repetitions in Written Texts: Finite Energy Hypothesis vs. Strong Hilberg Conjecture
Directory of Open Access Journals (Sweden)
Łukasz Dębowski
2015-08-01
Full Text Available The article discusses two mutually-incompatible hypotheses about the stochastic mechanism of the generation of texts in natural language, which could be related to entropy. The first hypothesis, the finite energy hypothesis, assumes that texts are generated by a process with exponentially-decaying probabilities. This hypothesis implies a logarithmic upper bound for maximal repetition, as a function of the text length. The second hypothesis, the strong Hilberg conjecture, assumes that the topological entropy grows as a power law. This hypothesis leads to a hyperlogarithmic lower bound for maximal repetition. By a study of 35 written texts in German, English and French, it is found that the hyperlogarithmic growth of maximal repetition holds for natural language. In this way, the finite energy hypothesis is rejected, and the strong Hilberg conjecture is partly corroborated.
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Novikov algebras with associative bilinear forms
Energy Technology Data Exchange (ETDEWEB)
Zhu Fuhai; Chen Zhiqi [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)
2007-11-23
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.
A twisted generalization of Novikov-Poisson algebras
Yau, Donald
2010-01-01
Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.
Novikov Engine with Fluctuating Heat Bath Temperature
Schwalbe, Karsten; Hoffmann, Karl Heinz
2018-04-01
The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets
Carlet, Guido; Casati, Matteo; Shadrin, Sergey
2017-04-01
We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with D independent variables. We find that the second and third cohomology groups are generically non-vanishing in D > 1. Hence, in contrast with the D = 1 case, the deformation theory in the multivariable case is non-trivial.
Gong, Sheng
2014-01-01
In 1919, Bieberbach posed a seemingly simple conjecture. That "simple" conjecture challenged mathematicians in complex analysis for the following 68 years! In that time, a huge number of papers discussing the conjecture and its related problems were inspired. Finally in 1984, de Branges completed the solution. In 1989, Professor Gong wrote and published a short book in Chinese, The Bieberbach Conjecture, outlining the history of the related problems and de Branges' proof. The present volume is the English translation of that Chinese edition with modifications by the author. In particular, he includes results related to several complex variables. Open problems and a large number of new mathematical results motivated by the Bieberbach conjecture are included. Completion of a standard one-year graduate complex analysis course will prepare the reader for understanding the book. It would make a nice supplementary text for a topics course at the advanced undergraduate or graduate level.
Wess-Zumino-Novikov-Witten models based on Lie superalgebras
International Nuclear Information System (INIS)
Mohammedi, N.
1994-04-01
The affine current algebra for Lie superalgebras is examined. The bilinear invariant forms of the Lie superalgebra can be either degenerate or non-degenerate. We give the conditions for a Virasoro construction, in which the currents are primary fields of weight one, to exist. In certain cases, the Virasoro central charge is an integer equal to the super dimension of the group supermanifold. A Wess-Zumino-Novikov-Witten action based on these Lie superalgebras is also found. (orig.)
Wang, Joe S.
2011-01-01
Gronwall conjecture states that a planar 3-web which admits more than one distinct linearization is locally equivalent to an algebraic web. We give a partial answer to the conjecture in the affirmative for the class of planar 3-webs with the web curvature that vanishes to order three at a point. The differential relation on the third order jet of web curvature provides an explicit criterion for unique linearization.
Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence
Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.
2017-10-01
We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).
Pomeranchuk conjecture and symmetry schemes
Energy Technology Data Exchange (ETDEWEB)
Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)
1963-01-15
Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.
Energy Technology Data Exchange (ETDEWEB)
Friedland, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-08
This note confirms Goldbach’s Conjecture from 1742. This is, every even integer greater than two is the sum of two prime numbers. An analysis of the nature of multiplication as description length reduction for addition precedes a contraposition that it is impossible to subtract any prime from a given even integer without the result ever being prime.
International Nuclear Information System (INIS)
Farrell, F.T.
2002-01-01
This lecture is showing that homotopy equivalence implies homeomorphism for a large class of manifolds. It gives an introduction to high dimensional manifold topology. Splitting the surgery map under a geometric assumption is outlined. The vanishing of Wh(π 1 M) and the Borel conjecture for non-positively curved manifolds M are described and some calculations of π n (Top M), π n (Diff M) are shown
Finding Conjectures Using Geometer's Sketchpad
Fallstrom, Scott; Walter, Marion
2011-01-01
Conjectures, theorems, and problems in print often appear to come out of nowhere. Scott Fallstrom and Marion Walter describe how their thinking and conjectures evolved; they try to show how collaboration helped expand their ideas. By showing the results from working together, they hope readers will encourage collaboration amongst their students.…
Indian Academy of Sciences (India)
In this article, we prove that infinite number of integers satsify Erdős–Woods conjecture. Moreover, it follows that the number of natural numbers ≤ satisfies Erdős–Woods conjecture with = 2 is at least /(log ) for some positive constant > 2.
Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.
2017-05-01
In previous research we designed an interferometric quantum seismograph that uses entangled photon states to enhance sensitivity in an optomechanic device. However, a spatially-distributed array of such sensors, with each sensor measuring only nm-vibrations, may not provide sufficient sensitivity for the prediction of major earthquakes because it fails to exploit potentially critical phase information. We conjecture that relative phase information can explain the anecdotal observations that animals such as lemurs exhibit sensitivity to impending earthquakes earlier than can be done confidently with traditional seismic technology. More specifically, we propose that lemurs use their limbs as ground motion sensors and that relative phase differences are fused in the brain in a manner similar to a phased-array or synthetic-aperture radar. In this paper we will describe a lemur-inspired quantum sensor network for early warning of earthquakes. The system uses 4 interferometric quantum seismographs (e.g., analogous to a lemurs limbs) and then conducts phase and data fusion of the seismic information. Although we discuss a quantum-based technology, the principles described can also be applied to classical sensor arrays
Carella, N. A.
2006-01-01
This note imparts heuristic arguments and theorectical evidences that contradict the abc conjecture over the rational numbers. In addition, the rudimentary datails for transforming this problem into the doimain of equidistribution theory are provided.
Geometric Arveson–Douglas conjecture
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav; Eschmeier, J.
2015-01-01
Roč. 274, April (2015), s. 606-630 ISSN 0001-8708 Institutional support: RVO:67985840 Keywords : Arveson- Douglas conjecture * generalized Toeplitz operator Subject RIV: BA - General Mathematics Impact factor: 1.405, year: 2015 http://www.sciencedirect.com/science/article/pii/S0001870815000328
International Nuclear Information System (INIS)
Wang Ling; Dong Zhongzhou; Liu Xiqiang
2008-01-01
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
On the Casas-Alvero conjecture
Draisma, J.; Jong, de J.P.
2011-01-01
The Casas–Alvero conjecture says that a complex univariate polynomial having roots in common with each of its derivatives must be a power of a linear polynomial. In this expository note we review some ideas on this conjecture. In particular, we explain the rather successful algebraic attack by Graf
The volume conjecture and topological strings
Dijkgraaf, R.; Fuji, H.
2009-01-01
In this paper, we discuss a relation between Jones-Witten theory of knot invariants and topological open string theory on the basis of the volume conjecture. We find a similar Hamiltonian structure for both theories, and interpret the AJ conjecture as the D-module structure for a D-brane partition
Exploring Duopoly Markets with Conjectural Variations
Julien, Ludovic A.; Musy, Olivier; Saïdi, Aurélien W.
2014-01-01
In this article, the authors investigate competitive firm behaviors in a two-firm environment assuming linear cost and demand functions. By introducing conjectural variations, they capture the different market structures as specific configurations of a more general model. Conjectural variations are based on the assumption that each firm believes…
Deconstructing Arsovski's Proof of Snevily's Conjecture The ...
Indian Academy of Sciences (India)
What Do We Know? Let us turn back the clock to 2002; Snevily's conjecture has just been proved for all cyclic. Keywords. Snevily's conjecture, abelian groups, cyclic groups, ... Suppose G is finite abelian of order m and m divides. |F×|. If V is the vector space of .... transversal of a matrix is a latin transversal if no two of its cells.
Directory of Open Access Journals (Sweden)
Juan Carlos Pacheco-Paez
2017-03-01
Full Text Available The so-called Novikov power plant model has been widely used to represent some actual power plants, such as nuclear electric power generators. In the present work, a thermo-economic study of a Novikov power plant model is presented under three different regimes of performance: maximum power (MP, maximum ecological function (ME and maximum efficient power (EP. In this study, different heat transfer laws are used: The Newton’s law of cooling, the Stefan–Boltzmann radiation law, the Dulong–Petit’s law and another phenomenological heat transfer law. For the thermoeconomic optimization of power plant models, a benefit function defined as the quotient of an objective function and the total economical costs is commonly employed. Usually, the total costs take into account two contributions: a cost related to the investment and another stemming from the fuel consumption. In this work, a new cost associated to the maintenance of the power plant is also considered. With these new total costs, it is shown that under the maximum ecological function regime the plant improves its economic and energetic performance in comparison with the other two regimes. The methodology used in this paper is within the context of finite-time thermodynamics.
Philosophical conjectures and their refutation.
Kluge, A G
2001-06-01
Sir Karl Popper is well known for explicating science in falsificationist terms, for which his degree of corroboration formalism, C(h,e,b), has become little more than a symbol. For example, de Queiroz and Poe in this issue argue that C(h,e,b) reduces to a single relative (conditional) probability, p(e,hb), the likelihood of evidence e, given both hypothesis h and background knowledge b, and in reaching that conclusion, without stating or expressing it, they render Popper a verificationist. The contradiction they impose is easily explained--de Queiroz and Poe fail to take account of the fact that Popper derived C(h,e,b) from absolute (logical) probability and severity of test, S(e,h,b), where critical evidence, p(e,b), is fundamental. Thus, de Queiroz and Poe's conjecture that p(e,hb) = C(h,e,b) is refuted. Falsificationism, not verificationism, remains a fair description of the parsimony method of inference used in phylogenetic systematics, not withstanding de Queiroz and Poe's mistaken understanding that "statistical" probability justifies that method. Although de Queiroz and Poe assert that maximum likelihood has the power "to explain data", they do not successfully demonstrate how causal explanation is achieved or what it is that is being explained. This is not surprising, bearing in mind that what is assumed about character evolution in the accompanying likelihood model M cannot then be explained by the results of a maximum likelihood analysis.
Does the cosmic no-hair conjecture in brane scenarios follow from general relativity?
Chakraborty, S
2003-01-01
In this paper we examine the cosmic no-hair conjecture (CNHC) in braneworld scenarios. For the validity of this conjecture, in addition to the strong- and weak-energy conditions for the matter field, a similar type of assumption is made on the quadratic correction term and there is a restriction on the non-local term. It is shown using examples with realistic fluid models that strong- and weak-energy conditions are sufficient for the CNHC in braneworld scenarios.
International Nuclear Information System (INIS)
Borhanifar, A.; Kabir, M.M.; Maryam Vahdat, L.
2009-01-01
In this paper, the Exp-function method is used to obtain generalized solitonary solutions and periodic solutions of the Generalized Zakharov system and (2 + 1)-dimensional Nizhnik-Novikov-Veselov system. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.
Conjecture on the physical implications of the scale anomaly
International Nuclear Information System (INIS)
Hill, Christopher T.; Fermilab
2005-01-01
Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, Λ QCD . I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, ℎ → 0, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale
Computational topology and the Unique Games Conjecture
Grochow, Joshua A.; Tucker-Foltz, Jamie
2018-01-01
Covering spaces of graphs have long been useful for studying expanders (as "graph lifts") and unique games (as the "label-extended graph"). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology and the Unique Games Conjecture. Our starting point is Linial's 2005 observation that the only known problems whose inapproximability is equivalent to the Unique Games Conjecture - Unique Games and Max-2Lin - are instances of Maximum Section of...
A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models
Energy Technology Data Exchange (ETDEWEB)
Kawaguchi, Io; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2014-06-01
We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten models at the classical level. The target space is given by squashed S³ and the isometry is SU(2){sub L}×U(1){sub R}. It is known that SU(2){sub L} is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1){sub R} is a deformation of quantum affine algebra, where a new deformation parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the deformed quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed.
The dynamical Mordell-Lang conjecture
Bell, Jason P; Tucker, Thomas J
2016-01-01
The Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point x under the action of an endomorphism f of a quasiprojective complex variety X. More precisely, it claims that for any point x in X and any subvariety V of X, the set of indices n such that the n-th iterate of x under f lies in V is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a p-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.
International Nuclear Information System (INIS)
Zhang Jiefang; Dai Chaoqing; Zong Fengde
2007-01-01
In this paper, with the variable separation approach and based on the general reduction theory, we successfully generalize this extended tanh-function method to obtain new types of variable separation solutions for the following Nizhnik-Novikov-Veselov (NNV) equation. Among the solutions, two solutions are new types of variable separation solutions, while the last solution is similar to the solution given by Darboux transformation in Hu et al 2003 Chin. Phys. Lett. 20 1413
International Nuclear Information System (INIS)
Schlichenmaier, M.
1990-01-01
For the generalized Krichever-Novikov algebras of meromorphic vector fields and their induced modules of weight λ a different basis is given. With respect to this basis the module structure is generalized graded. 'Local' central extensions of these algebras and their representations on the space of semi-infinite wedge product of forms of weight λ are studied. In this generalization, one again obtains c = -2(6λ 2 -6λ+1) as the value for the central charge. (orig.)
The real Fatou conjecture (AM-144)
Graczyk, Jacek
2014-01-01
In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters ""a,"" an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provi
Analytic Hypoellipticity and the Treves Conjecture
Directory of Open Access Journals (Sweden)
Marco Mughetti
2016-12-01
Full Text Available We are concerned with the problem of the analytic hypoellipticity; precisely, we focus on the real analytic regularity of the solutions of sums of squares with real analytic coefficients. Treves conjecture states that an operator of this type is analytic hypoelliptic if and only if all the strata in the Poisson-Treves stratification are symplectic. We discuss a model operator, P, (firstly appeared and studied in [3] having a single symplectic stratum and prove that it is not analytic hypoelliptic. This yields a counterexample to the sufficient part of Treves conjecture; the necessary part is still an open problem.
Celebrating Cercignani's conjecture for the Boltzmann equation
Villani, Cédric
2011-01-01
Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.
Celebrating Cercignani's conjecture for the Boltzmann equation
Villani, Cé dric; Mouhot, Clé ment; Desvillettes, Laurent
2011-01-01
Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.
Proof of Nishida's Conjecture on Anharmonic Lattices
Rink, Bob
2006-02-01
We prove Nishida's 1971 conjecture stating that almost all low-energetic motions of the anharmonic Fermi-Pasta-Ulam lattice with fixed endpoints are quasi-periodic. The proof is based on the formal computations of Nishida, the KAM theorem, discrete symmetry considerations and an algebraic trick that considerably simplifies earlier results.
Operadic categories and duoidal Deligne's conjecture
Czech Academy of Sciences Publication Activity Database
Batanin, M.; Markl, Martin
2015-01-01
Roč. 285, 5 November (2015), s. 1630-1687 ISSN 0001-8708 Institutional support: RVO:67985840 Keywords : operadic category * duoidal category * Deligne's conjecture Subject RIV: BA - General Mathematics Impact factor: 1.405, year: 2015 http://www.sciencedirect.com/science/article/pii/S0001870815002467
International Nuclear Information System (INIS)
Pacheco-Páez, J C; Angulo-Brown, F; Barranco-Jiménez, M A
2015-01-01
In this work, we study the thermoeconomics of a non-endoreversible simplified thermal power plant model, the so-called Novikov engine. Our study is made by means of the maximization of objective functions defined by the quotient of the characteristic functions (power output, efficient power and ecological function) and the total costs considered in the performance of the power plant. In our study three different costs are considered: a capital cost that is proportional to the investment and, therefore, to the size of the plant, a fuel cost that is proportional to the fuel consumption and a cost associated to maintenance of the power plant; that is, proportional to the power output of the plant. It is shown that under ecological conditions the plant dramatically reduces the amount of heat rejected to the environment, and a loss of profits is translated in an usage of fuels that dramatically reduces the heat rejected towards the environment in comparison to that obtained by means of maximum power regime
International Nuclear Information System (INIS)
Dubrovsky, V. G.; Topovsky, A. V.
2013-01-01
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n) , n= 1, …, N are constructed via Zakharov and Manakov ∂-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by ∂-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n) . It is shown that the sums u=u (k 1 ) +...+u (k m ) , 1 ⩽k 1 2 m ⩽N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Energy Technology Data Exchange (ETDEWEB)
Dubrovsky, V. G.; Topovsky, A. V. [Novosibirsk State Technical University, Karl Marx prosp. 20, Novosibirsk 630092 (Russian Federation)
2013-03-15
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
Probing the CORE of the Haldane conjecture
Energy Technology Data Exchange (ETDEWEB)
Weinstein, M.
1997-09-01
The Contractor Renormalization group method (CORE), originally developed for application to lattice gauge theories, is very well adapted to the study of spin systems and systems with fermions. As a warmup exercise for studying Hubbard models this method is applied to spin-1/2 and spin-1 anti-ferromagnets in one space dimension in order to see if it is able to explain the physics of the Haldane conjecture. The method not only provides support for Haldane's conjecture but provides insight int the physics of a more general class of spin-1 systems with Hamiltonians of the form H = {summation}{sub j} {rvec s}(j) {center_dot} {rvec s}(j + 1) - {beta}({rvec s}(j) {center_dot} {rvec s}(j+1)){sup 2} about which, until now, little was known.
Forming conjectures within a spreadsheet environment
Calder, Nigel; Brown, Tony; Hanley, Una; Darby, Susan
2006-12-01
This paper is concerned with the use of spreadsheets within mathematical investigational tasks. Considering the learning of both children and pre-service teaching students, it examines how mathematical phenomena can be seen as a function of the pedagogical media through which they are encountered. In particular, it shows how pedagogical apparatus influence patterns of social interaction, and how this interaction shapes the mathematical ideas that are engaged with. Notions of conjecture, along with the particular faculty of the spreadsheet setting, are considered with regard to the facilitation of mathematical thinking. Employing an interpretive perspective, a key focus is on how alternative pedagogical media and associated discursive networks influence the way that students form and test informal conjectures.
Synchronous correlation matrices and Connes’ embedding conjecture
Energy Technology Data Exchange (ETDEWEB)
Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)
2016-01-15
In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
Proof of Polyakov conjecture on supercomplex plane
International Nuclear Information System (INIS)
Kachkachi, M.; Kouadik, S.
1994-10-01
Using Neumann series, we solve iteratively SBE to arbitrary order. Then applying this, we compute the energy momentum tensor and n points functions for generic n starting from WZP action on the supercomplex plane. We solve the superconformal Ward identity and we show that the iterative solution to arbitrary order is resumed by WZP action. This proves the Polyakov conjecture on supercomplex plane. (author). 8 refs
On conjectures of Minkowski and Woods for n = 9
Indian Academy of Sciences (India)
Here we shall prove Conjecture II for n = 9, thereby proving Minkowski's Conjecture for n = 9. Woods [20 ... result that if hypothesis of Conjecture III holds, then any closed sphere in R9 of radius. √ ...... tures of Minkowski and Watson, Number Theory, Trends in Mathematics (2000) (Basel: ... Journal of the Indian Math. Soc.
On a conjecture concerning helly circle graphs
Directory of Open Access Journals (Sweden)
Durán Guillermo
2003-01-01
Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.
A Reduction of the Graph Reconstruction Conjecture
Directory of Open Access Journals (Sweden)
Monikandan S.
2014-08-01
Full Text Available A graph is said to be reconstructible if it is determined up to isomor- phism from the collection of all its one-vertex deleted unlabeled subgraphs. Reconstruction Conjecture (RC asserts that all graphs on at least three vertices are reconstructible. In this paper, we prove that interval-regular graphs and some new classes of graphs are reconstructible and show that RC is true if and only if all non-geodetic and non-interval-regular blocks G with diam(G = 2 or diam(Ḡ = diam(G = 3 are reconstructible
Cores, Joins and the Fano-Flow Conjectures
Directory of Open Access Journals (Sweden)
Jin Ligang
2018-02-01
Full Text Available The Fan-Raspaud Conjecture states that every bridgeless cubic graph has three 1-factors with empty intersection. A weaker one than this conjecture is that every bridgeless cubic graph has two 1-factors and one join with empty intersection. Both of these two conjectures can be related to conjectures on Fano-flows. In this paper, we show that these two conjectures are equivalent to some statements on cores and weak cores of a bridgeless cubic graph. In particular, we prove that the Fan-Raspaud Conjecture is equivalent to a conjecture proposed in [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78 (2015 195–206]. Furthermore, we disprove a conjecture proposed in [G. Mazzuoccolo, New conjectures on perfect matchings in cubic graphs, Electron. Notes Discrete Math. 40 (2013 235–238] and we propose a new version of it under a stronger connectivity assumption. The weak oddness of a cubic graph G is the minimum number of odd components (i.e., with an odd number of vertices in the complement of a join of G. We obtain an upper bound of weak oddness in terms of weak cores, and thus an upper bound of oddness in terms of cores as a by-product.
A proof of the conjecture on the twin primes
Energy Technology Data Exchange (ETDEWEB)
Zuo-ling, Zhou [Department of Lingnan college, Sun Yat-sen University GuangZhou, GuangDong, 510275 (China)
2016-06-08
In this short note, we have proved the conjecture on twin primes using some thoughts of the set theory. Firstly, using the original sieve method and a new notation(concept)introduced by myself, the conjecture on twin primes is summed up as an elementary successive limit, afterwards we form a subsequence of positive integers,and using it,we prove that the successive limits are commutative and complete the proof of the conjecture on twin primes We also give a more straightforward proof of the conjecture.
On a conjecture of Chen-Guo-Wang
Ning, Bo; Zheng, Yu
2015-01-01
Towards confirming Sun's conjecture on the strict log-concavity of combinatorial sequence involving the n$th$ Bernoulli number, Chen, Guo and Wang proposed a conjecture about the log-concavity of the function $\\theta(x)=\\sqrt[x]{2\\zeta(x)\\Gamma(x+1)}$ for $x\\in (6,\\infty)$, where $\\zeta(x)$ is the Riemann zeta function and $\\Gamma(x)$ is the Gamma function. In this paper, we first prove this conjecture along the spirit of Zhu's previous work. Second, we extend Chen et al.'s conjecture in the ...
The FZZ-duality conjecture. A proof
Energy Technology Data Exchange (ETDEWEB)
Hikida, Y. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-05-15
We prove that the cigar conformal field theory is dual to the Sine-Liouville model, as conjectured originally by Fateev, Zamolodchikov and Zamolodchikov. Since both models possess the same chiral algebra, our task is to show that correlations of all tachyon vertex operators agree. We accomplish this goal through an off-critical version of the geometric Langlands duality for sl(2). More explicitly, we combine the well-known self-duality of Liouville theory with an intriguing correspondence between the cigar and Liouville field theory. The latter is derived through a path integral treatment. After a very detailed discussion of genus zero amplitudes, we extend the duality to arbitrary closed surfaces. (orig.)
The FZZ-duality conjecture. A proof
International Nuclear Information System (INIS)
Hikida, Y.; Schomerus, V.
2008-05-01
We prove that the cigar conformal field theory is dual to the Sine-Liouville model, as conjectured originally by Fateev, Zamolodchikov and Zamolodchikov. Since both models possess the same chiral algebra, our task is to show that correlations of all tachyon vertex operators agree. We accomplish this goal through an off-critical version of the geometric Langlands duality for sl(2). More explicitly, we combine the well-known self-duality of Liouville theory with an intriguing correspondence between the cigar and Liouville field theory. The latter is derived through a path integral treatment. After a very detailed discussion of genus zero amplitudes, we extend the duality to arbitrary closed surfaces. (orig.)
Fusion rules and four-point functions in the AdS3 Wess-Zumino-Novikov-Witten model
International Nuclear Information System (INIS)
Baron, Walter H.; Nunez, Carmen A.
2009-01-01
We study the operator product expansion in the AdS 3 Wess-Zumino-Novikov-Witten (WZNW) model. The operator-product expansion of primary fields and their spectral flow images is computed from the analytic continuation of the expressions in the H 3 + WZNW model, adding spectral flow. We argue that the symmetries of the affine algebra require a truncation which establishes the closure of the fusion rules on the Hilbert space of the theory. Although the physical mechanism determining the decoupling is not completely understood, we present several consistency checks on the results. A preliminary analysis of factorization allows to obtain some properties of four-point functions involving fields in generic sectors of the theory, to verify that they agree with the spectral flow selection rules and to show that the truncation must be realized in physical amplitudes for consistency.
Chai, Han-Peng; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Guan, Yue-Yang
2017-08-01
Korteweg-de Vries (KdV)-type equations are seen to describe the shallow-water waves, lattice structures and ion-acoustic waves in plasmas. Hereby, we consider an extension of the KdV-type equations called the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients in an inhomogeneous medium. Via the Hirota bilinear method and symbolic computation, we derive the bilinear forms, N-soliton solutions and Bäcklund transformation. Effects of the first- and higher-order dispersion terms are investigated. Soliton evolution and interaction are graphically presented and analyzed: Both the propagation velocity and direction of the soliton change when the dispersion terms are time-dependent; The interactions between/among the solitons are elastic, independent of the forms of the coefficients in the equations.
On Selberg's small eigenvalue conjecture and residual eigenvalues
DEFF Research Database (Denmark)
Risager, Morten S.
2011-01-01
We show that Selberg’s eigenvalue conjecture concerning small eigenvalues of the automorphic Laplacian for congruence groups is equivalent to a conjecture about the non-existence of residual eigenvalues for a perturbed system. We prove this using a combination of methods from asymptotic perturbat...
The Process of Student Cognition in Constructing Mathematical Conjecture
Astawa, I. Wayan Puja; Budayasa, I. Ketut; Juniati, Dwi
2018-01-01
This research aims to describe the process of student cognition in constructing mathematical conjecture. Many researchers have studied this process but without giving a detailed explanation of how students understand the information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and prove the…
An approximate version of the Tree Packing Conjecture
Czech Academy of Sciences Publication Activity Database
Böttcher, J.; Hladký, Jan; Piguet, Diana; Taraz, A.
2016-01-01
Roč. 211, č. 1 (2016), s. 391-446 ISSN 0021-2172 Institutional support: RVO:67985840 ; RVO:67985807 Keywords : Ringel's conjecture * Gyarfas-Lehel conjecture * Tree packing Subject RIV: BA - General Mathematics Impact factor: 0.796, year: 2016 http://link.springer.com/article/10.1007%2Fs11856-015-1277-2
Relaxion monodromy and the Weak Gravity Conjecture
International Nuclear Information System (INIS)
Ibáñez, L.E.; Montero, M.; Uranga, A.M.; Valenzuela, I.
2016-01-01
The recently proposed relaxion models require extremely large trans-Planckian axion excursions as well as a potential explicitly violating the axion shift symmetry. The latter property is however inconsistent with the axion periodicity, which corresponds to a gauged discrete shift symmetry. A way to make things consistent is to use monodromy, i.e. both the axion and the potential parameters transform under the discrete shift symmetry. The structure is better described in terms of a 3-form field C_μ_ν_ρ coupling to the SM Higgs through its field strength F_4. The 4-form also couples linearly to the relaxion, in the Kaloper-Sorbo fashion. The extremely small relaxion-Higgs coupling arises in a see-saw fashion as g≃F_4/f, with f being the axion decay constant. We discuss constraints on this type of constructions from membrane nucleation and the Weak Gravity Conjecture. The latter requires the existence of membranes, whose too fast nucleation could in principle drive the theory out of control, unless the cut-off scale is lowered. This allows to rule out the simplest models with the QCD axion as relaxion candidate on purely theoretical grounds. We also discuss possible avenues to embed this structure into string theory.
Relaxion monodromy and the Weak Gravity Conjecture
Energy Technology Data Exchange (ETDEWEB)
Ibáñez, L.E.; Montero, M. [Departamento de Física Teórica, Facultad de CienciasUniversidad Autónoma de Madrid, 28049 Madrid (Spain); Instituto de Física Teórica IFT-UAM/CSIC,C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Uranga, A.M. [Instituto de Física Teórica IFT-UAM/CSIC,C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Valenzuela, I. [Max-Planck-Institut fur Physik,Fohringer Ring 6, 80805 Munich (Germany); Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)
2016-04-05
The recently proposed relaxion models require extremely large trans-Planckian axion excursions as well as a potential explicitly violating the axion shift symmetry. The latter property is however inconsistent with the axion periodicity, which corresponds to a gauged discrete shift symmetry. A way to make things consistent is to use monodromy, i.e. both the axion and the potential parameters transform under the discrete shift symmetry. The structure is better described in terms of a 3-form field C{sub μνρ} coupling to the SM Higgs through its field strength F{sub 4}. The 4-form also couples linearly to the relaxion, in the Kaloper-Sorbo fashion. The extremely small relaxion-Higgs coupling arises in a see-saw fashion as g≃F{sub 4}/f, with f being the axion decay constant. We discuss constraints on this type of constructions from membrane nucleation and the Weak Gravity Conjecture. The latter requires the existence of membranes, whose too fast nucleation could in principle drive the theory out of control, unless the cut-off scale is lowered. This allows to rule out the simplest models with the QCD axion as relaxion candidate on purely theoretical grounds. We also discuss possible avenues to embed this structure into string theory.
Planckian axions and the Weak Gravity Conjecture
International Nuclear Information System (INIS)
Bachlechner, Thomas C.; Long, Cody; McAllister, Liam
2016-01-01
Several recent works http://dx.doi.org/10.1088/1475-7516/2015/09/020, http://dx.doi.org/10.1007/JHEP08(2015)032, http://dx.doi.org/10.1007/JHEP10(2015)023 have claimed that the Weak Gravity Conjecture (WGC) excludes super-Planckian displacements of axion fields, and hence large-field axion inflation, in the absence of monodromy. We argue that in theories with N≫1 axions, super-Planckian axion diameters D are readily allowed by the WGC. We clarify the nontrivial relationship between the kinetic matrix K — unambiguously defined by its form in a Minkowski-reduced basis — and the diameter of the axion fundamental domain, emphasizing that in general the diameter is not solely determined by the eigenvalues f_1"2≤…≤f_N"2 of K: the orientations of the eigenvectors with respect to the identifications imposed by instantons must be incorporated. In particular, even if one were to impose the condition f_N M_p_l does not immediately imply the existence of unsuppressed higher harmonic contributions to the potential. Finally, we argue that in effective axion-gravity theories, the zero-form version of the WGC can be satisfied by gravitational instantons that make negligible contributions to the potential.
Interpreting multiple dualities conjectured from superconformal index identities
Khmelnitsky, A
2010-01-01
We consider field theory side of new multiple Seiberg dualities conjectured within superconformal index matching approach. We study the case of SU(2) supersymmetric QCD and find that the numerous conjectured duals are different faces of handful of master theories. These different faces are inequivalent to each other in a very peculiar sense. Some master theories are fully known; we construct superpotentials for others. We confirm that all index identities correspond to theories flowing to one and the same theory in the infrared, thus supporting the conjecture of index matching for Seiberg dual theories. However, none of the index identities considered in this paper actually implies an entirely new, unknown duality.
The Hodge conjecture and arithmetic quotients of complex balls
Bergeron, Nicolas; Millson, John; Moeglin, Colette
2013-01-01
Let $S$ be a closed Shimura variety uniformized by the complex $n$-ball. The Hodge conjecture predicts that every Hodge class in $H^{2k} (S, \\Q)$, $k=0, \\ldots, n$, is algebraic. We show that this holds for all degree $k$ away from the neighborhood $]n/3, 2n/3[$ of the middle degree. We also address the Tate conjecture and the generalized form of the Hodge conjecture and extend most of our results to Shimura varieties associated to unitary groups of any signature. The proofs make use of the r...
A nonperturbative proof of Dijkgraaf-Vafa conjecture
International Nuclear Information System (INIS)
Terashima, Seiji
2016-01-01
In this note we exactly compute the gaugino condensation of an arbitrary four dimensional N=1 supersymmetric gauge theory in confining phase, using the localization technique. This result gives a nonperturbative proof of the Dijkgraaf-Vafa conjecture.
Some remarks on Cîrtoaje’s conjecture
Directory of Open Access Journals (Sweden)
Ladislav Matejíčka
2016-10-01
Full Text Available Abstract In this paper, we give new conditions under which the Cîrtoaje’s conjecture is also valid. We also show that a certain generalization of the Cîrtoaje’s inequality fulfils an interesting property.
The Combinatorial Rigidity Conjecture is False for Cubic Polynomials
DEFF Research Database (Denmark)
Henriksen, Christian
2003-01-01
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....
Note: Dynamic Conjectural Variations in a Lanchester Oligopoly
Gary M. Erickson
1997-01-01
An approach based on dynamic conjectural variations is advanced for developing dynamic advertising strategies in a Lanchester oligopoly differential game. The approach allows competitors to anticipate rival reactions to market-share state variables, and maintains the computational advantage of open-loop Nash equilibrium strategies. In an empirical application to the ready-to-eat cereal industry, it is shown that advertising strategies based on dynamic conjectural variations can better explain...
Can we observationally test the weak cosmic censorship conjecture?
International Nuclear Information System (INIS)
Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo
2014-01-01
In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)
Can we observationally test the weak cosmic censorship conjecture?
Energy Technology Data Exchange (ETDEWEB)
Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)
2014-08-15
In general relativity, gravitational collapse of matter fields ends with the formation of a spacetime singularity, where the matter density becomes infinite and standard physics breaks down. According to the weak cosmic censorship conjecture, singularities produced in the gravitational collapse cannot be seen by distant observers and must be hidden within black holes. The validity of this conjecture is still controversial and at present we cannot exclude that naked singularities can be created in our Universe from regular initial data. In this paper, we study the radiation emitted by a collapsing cloud of dust and check whether it is possible to distinguish the birth of a black hole from the one of a naked singularity. In our simple dust model, we find that the properties of the radiation emitted in the two scenarios is qualitatively similar. That suggests that observational tests of the cosmic censorship conjecture may be very difficult, even in principle. (orig.)
A Proof of the Hilbert-Smith Conjecture
McAuley, Louis F.
2001-01-01
The Hilbert-Smith Conjecture states that if G is a locally compact group which acts effectively on a connected manifold as a topological transformation group, then G is a Lie group. A rather straightforward proof of this conjecture is given. The motivation is work of Cernavskii (``Finite-to-one mappings of manifolds'', Trans. of Math. Sk. 65 (107), 1964.) His work is generalized to the orbit map of an effective action of a p-adic group on compact connected n-manifolds with the aid of some new...
The cosmic censorship hypothesis and the positive energy conjecture
International Nuclear Information System (INIS)
Jang, P.S.; Wald, R.W.
1979-01-01
The position so far is summarized. Penrose derived an inequality; if a data set was found to violate this then the assumptions deriving the inequality must be false. In this case it could show a counter example to the cosmic censorship hypothesis. The authors have shown elsewhere that a positive energy argument of Geroch can be modified to rule out a violation of Penrose's inequality with any time-symmetric initial data set whose apparent horizon consists of a single component. This increases confidence in the hypothesis and also indicates there may be a close relationship between this conjecture and the positive energy conjecture. (UK)
Breakdown of maximality conjecture in continuous phase transitions
International Nuclear Information System (INIS)
Mukamel, D.; Jaric, M.V.
1983-04-01
A Landau-Ginzburg-Wilson model associated with a single irreducible representation which exhibits an ordered phase whose symmetry group is not a maximal isotropy subgroup of the symmetry group of the disordered phase is constructed. This example disproves the maximality conjecture suggested in numerous previous studies. Below the (continuous) transition, the order parameter points along a direction which varies with the temperature and with the other parameters which define the model. An extension of the maximality conjecture to reducible representations was postulated in the context of Higgs symmetry breaking mechanism. Our model can also be extended to provide a counter example in these cases. (author)
International Nuclear Information System (INIS)
Dubrovsky, V.G.; Formusatik, I.B.
2003-01-01
The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular
Quark approach to Santilli's conjecture on hadronic structure - II
International Nuclear Information System (INIS)
Animalu, A.O.E.
1982-08-01
In this paper, we continue an earlier investigation of an exactly soluble relativistic Bohr-type model of the internal structure of the proton (three-quark baryon system) and the pion (quark-antiquark meson system), based on a realization of Santilli's conjecture that the hadronic constituents are extended (non-pointlike) objects. The model is abstracted from an expansion of a Yukawa-type potential between the valence quarks and a massive core, in which the meson or gluon exchange term has the effect of reducing the effective Bohr radius for binding to a value less than the radius of the strong charge sphere (or Compton wavelength) of each constituent, so that appreciable overlap of charge volumes occurs, to within a typical distance of order 0.25F or 1/(800 MeV) in qqq-system, and order 1/(1200 MeV) in qq-bar-system, which are comparable to gluon masses, msub(G) approx.= 800 to 1200 MeV, required by the lattice QCD and the MIT Bag Model. Based on the assumptions that the ground state of the proton has 1s 2 2s valence quark configuration, the non-strange quark mass is msub(p)/3, and the dimensionless strong coupling constant of the Yukawa-type potential is g 2 =1, the mass of the proton core is determined self-consistently to be 2470 MeV, exactly balancing the quark binding energy so that the valence quarks appear free. The model correctly predicts the masses of the well-known resonant states of the proton with Jsup(P)=1/2 + as excited states associated with the configuration 1s2s 2 and predicts an upper bound (spectroscopic limit) for the mass of the excited states of the proton in ns 2 ms configuration, as n→infinity and m→infinity, to be 3409 MeV. Based on a generalization of the model to qq-bar-systems, an upper bound (spectroscopic limit) for the mass of qq-bar in ns 2 configuration, as n→infinity, is found to be 3096 MeV, which is the mass of the J/psi-meson. The relation of the model to violation of time-reversal invariance (T-symmetry) by non
Quantum golden field theory - Ten theorems and various conjectures
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
Ten theorems and few conjectures related to quantum field theory as applied to high energy physics are presented. The work connects classical quantum field theory with the golden mean renormalization groups of non-linear dynamics and E-Infinity theory
Coupled skinny baker's maps and the Kaplan-Yorke conjecture
Gröger, Maik; Hunt, Brian R.
2013-09-01
The Kaplan-Yorke conjecture states that for ‘typical’ dynamical systems with a physical measure, the information dimension and the Lyapunov dimension coincide. We explore this conjecture in a neighborhood of a system for which the two dimensions do not coincide because the system consists of two uncoupled subsystems. We are interested in whether coupling ‘typically’ restores the equality of the dimensions. The particular subsystems we consider are skinny baker's maps, and we consider uni-directional coupling. For coupling in one of the possible directions, we prove that the dimensions coincide for a prevalent set of coupling functions, but for coupling in the other direction we show that the dimensions remain unequal for all coupling functions. We conjecture that the dimensions prevalently coincide for bi-directional coupling. On the other hand, we conjecture that the phenomenon we observe for a particular class of systems with uni-directional coupling, where the information and Lyapunov dimensions differ robustly, occurs more generally for many classes of uni-directionally coupled systems (also called skew-product systems) in higher dimensions.
Coupled skinny baker's maps and the Kaplan–Yorke conjecture
International Nuclear Information System (INIS)
Gröger, Maik; Hunt, Brian R
2013-01-01
The Kaplan–Yorke conjecture states that for ‘typical’ dynamical systems with a physical measure, the information dimension and the Lyapunov dimension coincide. We explore this conjecture in a neighborhood of a system for which the two dimensions do not coincide because the system consists of two uncoupled subsystems. We are interested in whether coupling ‘typically’ restores the equality of the dimensions. The particular subsystems we consider are skinny baker's maps, and we consider uni-directional coupling. For coupling in one of the possible directions, we prove that the dimensions coincide for a prevalent set of coupling functions, but for coupling in the other direction we show that the dimensions remain unequal for all coupling functions. We conjecture that the dimensions prevalently coincide for bi-directional coupling. On the other hand, we conjecture that the phenomenon we observe for a particular class of systems with uni-directional coupling, where the information and Lyapunov dimensions differ robustly, occurs more generally for many classes of uni-directionally coupled systems (also called skew-product systems) in higher dimensions. (paper)
Topological Hochschild homology and the Bass trace conjecture
DEFF Research Database (Denmark)
Berrick, A. J.; Hesselholt, Lars
2015-01-01
We use the methods of topological Hochschild homology to shed new light on groups satisfying the Bass trace conjecture. Factorization of the Hattori–Stallings rank map through the Bökstedt–Hsiang–Madsen cyclotomic trace map leads to Linnell's restriction on such groups. As a new consequence...
Counterexamples to the B-spline Conjecture for Gabor Frames
DEFF Research Database (Denmark)
Lemvig, Jakob; Nielsen, Kamilla Haahr
2016-01-01
The frame set conjecture for B-splines Bn, n≥2, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infin...
Sharpening the weak gravity conjecture with dimensional reduction
International Nuclear Information System (INIS)
Heidenreich, Ben; Reece, Matthew; Rudelius, Tom
2016-01-01
We investigate the behavior of the Weak Gravity Conjecture (WGC) under toroidal compactification and RG flows, finding evidence that WGC bounds for single photons become weaker in the infrared. By contrast, we find that a photon satisfying the WGC will not necessarily satisfy it after toroidal compactification when black holes charged under the Kaluza-Klein photons are considered. Doing so either requires an infinite number of states of different charges to satisfy the WGC in the original theory or a restriction on allowed compactification radii. These subtleties suggest that if the Weak Gravity Conjecture is true, we must seek a stronger form of the conjecture that is robust under compactification. We propose a “Lattice Weak Gravity Conjecture” that meets this requirement: a superextremal particle should exist for every charge in the charge lattice. The perturbative heterotic string satisfies this conjecture. We also use compactification to explore the extent to which the WGC applies to axions. We argue that gravitational instanton solutions in theories of axions coupled to dilaton-like fields are analogous to extremal black holes, motivating a WGC for axions. This is further supported by a match between the instanton action and that of wrapped black branes in a higher-dimensional UV completion.
Proof of a conjecture of Colliot-Th\\'el\\`ene
Denef, Jan
2011-01-01
We prove a conjecture of Colliot-Th\\'el\\`ene that implies the Ax-Kochen Theorem on p-adic forms. We obtain it as an easy consequence of a diophantine excision theorem whose proof forms the body of the present paper.
Contributions to a conjecture of Mueller and Schmidt on Thue ...
Indian Academy of Sciences (India)
N Saradha
MS received 11 April 2016; revised 2 September 2016; published online 3 August 2017. Abstract. ... It was conjectured in [11] that it may be possible to replace the factor s2 in (4) by s. ...... 42 (2001) 199–209. [6] Gy˝ory K, On the number of ...
Proof of a conjecture on the supports of Wigner distributions
Janssen, A.J.E.M.
1998-01-01
In this note we prove that the Wigner distribution of an f ¿ L2(Rn) cannot be supported by a set of finite measure in R2n unless f = 0. We prove a corresponding statement for cross-ambiguity functions. As a strengthening of the conjecture we show that for an f ¿ L2(Rn) its Wigner distribution has a
Fermat's last theorem and Catalan's conjecture in weak exponential arithmetics
Czech Academy of Sciences Publication Activity Database
Glivický, Petr; Kala, V.
2017-01-01
Roč. 63, 3-4 (2017), s. 162-174 ISSN 0942-5616 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : Fermat's last theorem * Catalan's conjecture Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.250, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/malq.201500069/full
Nonglobal proof of the thin--sandwich conjecture
International Nuclear Information System (INIS)
Pereira, C.M.
1981-01-01
A gravitational thin--sandwich conjecture was first proposed by Wheeler and coworkers during the period 1962--4. The present paper contains a proof of the nonglobal form of this gravitational thin--sandwich conjecture. The proof (a) applies for arbitrary choices of the spatial metric and its time derivative; and (b) demonstrates the existence on a spacelike three-surface of solutions which satisfy conditions of continuity known to be sufficient to obtain existence and uniqueness of solutions to Einstein's equations off the three-surface and existence and uniqueness of geodesics. Riquier's existence theorem plays an important role in the proof. The relationship of the present results to previous work is discussed. Some global questions associated with the thin--sandwich conjecture are clarified. Some aspects of the relationship of the thin--sandwich conjecture to the problem of the quantization of the gravitational field are noted. Both the vacuum case and the case of a nonviscous fluid are included. The discussion allows for an arbitrary equation of state p = p
Gravitational entropy and the cosmological no-hair conjecture
Bolejko, Krzysztof
2018-04-01
The gravitational entropy and no-hair conjectures seem to predict contradictory future states of our Universe. The growth of the gravitational entropy is associated with the growth of inhomogeneity, while the no-hair conjecture argues that a universe dominated by dark energy should asymptotically approach a homogeneous and isotropic de Sitter state. The aim of this paper is to study these two conjectures. The investigation is based on the Simsilun simulation, which simulates the universe using the approximation of the Silent Universe. The Silent Universe is a solution to the Einstein equations that assumes irrotational, nonviscous, and insulated dust, with vanishing magnetic part of the Weyl curvature. The initial conditions for the Simsilun simulation are sourced from the Millennium simulation, which results with a realistically appearing but relativistic at origin simulation of a universe. The Simsilun simulation is evolved from the early universe (t =25 Myr ) until far future (t =1000 Gyr ). The results of this investigation show that both conjectures are correct. On global scales, a universe with a positive cosmological constant and nonpositive spatial curvature does indeed approach the de Sitter state. At the same time it keeps generating the gravitational entropy.
Introduction to sofic and hyperlinear groups and Connes' embedding conjecture
Capraro, Valerio
2015-01-01
This monograph presents some cornerstone results in the study of sofic and hyperlinear groups and the closely related Connes' embedding conjecture. These notions, as well as the proofs of many results, are presented in the framework of model theory for metric structures. This point of view, rarely explicitly adopted in the literature, clarifies the ideas therein, and provides additional tools to attack open problems. Sofic and hyperlinear groups are countable discrete groups that can be suitably approximated by finite symmetric groups and groups of unitary matrices. These deep and fruitful notions, introduced by Gromov and Radulescu, respectively, in the late 1990s, stimulated an impressive amount of research in the last 15 years, touching several seemingly distant areas of mathematics including geometric group theory, operator algebras, dynamical systems, graph theory, and quantum information theory. Several long-standing conjectures, still open for arbitrary groups, are now settled for sofic or hyperlinear ...
Complex analysis conformal inequalities and the Bieberbach conjecture
Kythe, Prem K
2015-01-01
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis and differential equations, the book is suitable for graduate students engaged in analytical research on the topics and researchers working on related areas of complex analysis in one or more complex variables. The author first reviews the theory of analytic functions, univalent functions, and conformal mapping before covering various theorems related to the area principle and discussing Löwner theory. He then presents Schiffer’s variation method, the bounds for the fourth and higher-order coefficients, various subclasses of univalent functions, generalized convexity and the class of a-convex functions, and numerical estimates of the coefficient problem. The boo...
Three conjectures about school effectiveness: An exploratory study
Directory of Open Access Journals (Sweden)
Roelande H. Hofman
2015-12-01
Full Text Available In this article, we address three broad conjectures about what really matters with respect to school effectiveness. Our review of previous evidence prompted us to look at three sets of factors connected with classroom teachers, school policies and processes, and matters of governance. All three have featured prominently in the public arena. In particular, we look for the relative contributions of teacher-, school-, and governance indicators for educational effectiveness (measured by Math achievement. About 100 Dutch primary schools form the database together with findings of international school effectiveness research (studies, reviews, and meta-analyses. School-level variables are the most substantial in explaining educational effectiveness. The sector effect (public/private explains 16% of the between school variance, other school-level variables explain 51%, and the teacher- or classroom-level variables explain 32%. Some of the underlying variables are identified and we address three broad conjectures about what really matters with respect to school effectiveness.
Zassenhaus conjecture for A6 A6 A6
Indian Academy of Sciences (India)
(ZC1) For a finite group G, every torsion unit in its integral group ring ZG is conjugate to an element of ±G in the units of the rational group algebra QG. ... version of the Luthar–Passi method were shown in [2]. ... Of course, we ..... [2] Bovdi V, Höfert C and Kimmerle W, On the first Zassenhaus conjecture for integral group rings ...
Proof of a multipole conjecture due to Geroch
International Nuclear Information System (INIS)
Beig, R.; Simon, W.
1980-01-01
A result, first conjectured by Geroch, is proved to the extent, that the multipole moments of a static space-time characterize this space-time uniquely. As an offshoot of the proof one obtains an essentially coordinate-free algorithm for explicitly writing down a geometry in terms of it's moments in a purely algebraic manner. This algorithm seems suited for symbolic manipulation on a computer. (orig.)
Graph theory favorite conjectures and open problems 1
Hedetniemi, Stephen; Larson, Craig
2016-01-01
This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors’ favorite conjectures and open problems, enhancing the reader’s overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled “My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In...
What is the magnetic Weak Gravity Conjecture for axions
Energy Technology Data Exchange (ETDEWEB)
Hebecker, Arthur; Henkenjohann, Philipp [Institute for Theoretical Physics, University of Heidelberg (Germany); Witkowski, Lukas T. [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite, Paris (France)
2017-03-15
The electric Weak Gravity Conjecture demands that axions with large decay constant f couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-f strings curve space too much to exist as static solutions, thus ruling out large-f axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-f axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-f (non-periodic) pseudo-axions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The mixed Ax-Lindemann theorem and its applications to the Zilber-Pink conjecture
Gao, Ziyang
2014-01-01
The Zilber-Pink conjecture is a common generalization of the Andre-Oort and the Mordell-Lang conjectures. In this dissertation, we study its sub-conjectures: Andre-Oort, which predicts that a subvariety of a mixed Shimura variety having dense intersection with the set of special points is special;
On axionic field ranges, loopholes and the weak gravity conjecture
International Nuclear Information System (INIS)
Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo
2016-01-01
In this short note we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. We address in particular certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work http://dx.doi.org/10.1007/JHEP10(2015)023. We also point out the difficulties faced by attempts to evade these constraints. These new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
Fact Versus Conjecture in the History of Industrial Waste Utilization
Christine Meisner Rosen
2012-01-01
This piece is a response to Pierre Desrochers’s criticism of an article by me. This response challenges Desrochers’s argument that market forces compelled nineteenth- and early twentieth-century manufacturers to recycle, voluntarily, the vast majority of their wastes. I argue that Desrochers provides no counter-evidence that disproves my findings and that he bases some of his criticism on conjecture that is factually inaccurate and/or overly simplistic. I conclude that to do justice to this i...
Quantum hoop conjecture: Black hole formation by particle collisions
Energy Technology Data Exchange (ETDEWEB)
Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna (Italy); Micu, Octavian, E-mail: octavian.micu@spacescience.ro [Institute of Space Science, Bucharest, P.O. Box MG-23, RO-077125 Bucharest-Magurele (Romania); Scardigli, Fabio, E-mail: fabio@phys.ntu.edu.tw [Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2014-05-01
We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the hoop conjecture to quantum mechanics and estimate corrections to its classical counterpart.
Reverse engineering Turing Machines and insights into the Collatz conjecture
John Nixon
2017-01-01
In this paper I have extended my earlier work \\cite{jn} on small Turing Machines (TMs) by developing a method for obtaining recursive definitions of the irreducible regular rules (IRR) for a TM when explicit formulae for them cannot be obtained. This has been illustrated by two examples. The first example was randomly chosen and the second example was designed to simulate the Collatz conjecture. Analysis of this TM based on the its IRR suggested new approaches that might be the basis for a pr...
A conjecture for the effective condition of Jimbo's method
International Nuclear Information System (INIS)
Ma Zhongqi
1992-01-01
The method for constructing the spectrum-dependent solutions to the Yang-Baxter equation, according to Jimbo's theorem, is based on the existence of the representation matrix of e 0 , corresponding to the lowest negative root, in an irreducible representation of a quantum enveloping algebra. In this paper a conjecture for the existent condition of the representation matrix of e 0 is made. As an example, the adjoint representation of U q C 2 is discussed where the representation matrix e 0 does not exist because the existent condition is violated
Conjecture and hypothesis: The importance of reality checks
Directory of Open Access Journals (Sweden)
David Deamer
2017-03-01
Full Text Available In origins of life research, it is important to understand the difference between conjecture and hypothesis. This commentary explores the difference and recommends alternative hypotheses as a way to advance our understanding of how life can begin on the Earth and other habitable planets. As an example of how this approach can be used, two conditions have been proposed for sites conducive to the origin of life: hydrothermal vents in salty seawater, and fresh water hydrothermal fields associated with volcanic landmasses. These are considered as alternative hypotheses and the accumulating weight of evidence for each site is described and analyzed.
Analytic evidence for the Gubser-Mitra conjecture
International Nuclear Information System (INIS)
Miyamoto, Umpei
2008-01-01
A simple master equation for the static perturbation of charged black strings is derived with employing the gauge proposed by Kol. The sign changes of the potential in the master equation and specific heat of the background exactly coincide. That is, for the black strings with positive specific heat, the potential becomes positive definite to forbid the bound state implying the onset of Gregory-Laflamme instability. It can safely be said that this is the first analytic and explicit evidence for the Gubser-Mitra conjecture, correlating the classical and thermodynamic instabilities of black branes. Possible generalizations of the analysis are also discussed
The Quantum Focussing Conjecture and Quantum Null Energy Condition
Koeller, Jason
Evidence has been gathering over the decades that spacetime and gravity are best understood as emergent phenomenon, especially in the context of a unified description of quantum mechanics and gravity. The Quantum Focussing Conjecture (QFC) and Quantum Null Energy Condition (QNEC) are two recently-proposed relationships between entropy and geometry, and energy and entropy, respectively, which further strengthen this idea. In this thesis, we study the QFC and the QNEC. We prove the QNEC in a variety of contexts, including free field theories on Killing horizons, holographic theories on Killing horizons, and in more general curved spacetimes. We also consider the implications of the QFC and QNEC in asymptotically flat space, where they constrain the information content of gravitational radiation arriving at null infinity, and in AdS/CFT, where they are related to other semiclassical inequalities and properties of boundary-anchored extremal area surfaces. It is shown that the assumption of validity and vacuum-state saturation of the QNEC for regions of flat space defined by smooth cuts of null planes implies a local formula for the modular Hamiltonian of these regions. We also demonstrate that the QFC as originally conjectured can be violated in generic theories in d ≥ 5, which led the way to an improved formulation subsequently suggested by Stefan Leichenauer.
On the Anderson localization conjecture in Dusty Plasma
Liaw, Constanze; Busse, Kyle; Matthews, Lorin; Hyde, Truell
2015-11-01
In 1958, Anderson suggested that sufficiently large impurities in a semi-conductor could lead to spatial localization of electrons. This idea unfolded into the field of Anderson Localization, one of the most fascinating phenomena in solid-state physics as it plays a major role in the conductive properties of imperfectly ordered materials. The Anderson Localization Conjecture claims that random disorder of any strength causes localization of electrons in the medium. The problem has proven to be highly non-trivial. Over the years the community has argued whether spatial localization occurs in 2D for small impurities. From a mathematical standpoint, the conjecture is still considered an open question. In 2013, Liaw challenged the commonly held assumption that localization holds in 2D by introducing a new mathematically more rigorous method to test for extended states, and applying it to the discrete random Schrödinger operator. One of the advantages of the underlying method is its versatility. It can be applied to any ordered system such as colloids, crystals, and atomic lattices. In a cross-disciplinary effort we merge this method with a numerical code used to simulate 2D physics systems, in preparation for experimentally testing the theory against complex plasma crystals.
Reverse engineering Turing Machines and insights into the Collatz conjecture
Directory of Open Access Journals (Sweden)
John Nixon
2017-02-01
Full Text Available In this paper I have extended my earlier work \\cite{jn} on small Turing Machines (TMs by developing a method for obtaining recursive definitions of the irreducible regular rules (IRR for a TM when explicit formulae for them cannot be obtained. This has been illustrated by two examples. The first example was randomly chosen and the second example was designed to simulate the Collatz conjecture. Analysis of this TM based on the its IRR suggested new approaches that might be the basis for a proof of this conjecture. The method involves running the TM backwards from a configuration set (CS. This in general produces a tree of CSs at each step. The aim is to find CS's $\\mathtt{y}$ that are reachable from a CS $x$ that simply specifies the symbol about to be read and the machine state. This means that following the computation forward from $x$ by adding some symbols when needed at the pointer, the CS $y$ can be reached. These CS's form the basis of the LHS's of the IRR.
Challenging the weak cosmic censorship conjecture with charged quantum particles
International Nuclear Information System (INIS)
Richartz, Mauricio; Saa, Alberto
2011-01-01
Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstroem black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-(1/2) particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-(1/2) fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-(1/2) charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.
Cosmic censorship conjecture in Kerr-Sen black hole
Gwak, Bogeun
2017-06-01
The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.
Proof of the 1-factorization and Hamilton decomposition conjectures
Csaba, Béla; Lo, Allan; Osthus, Deryk; Treglown, Andrew
2016-01-01
In this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D\\geq 2\\lceil n/4\\rceil -1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, \\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D \\ge \\lfloor n/2 \\rfloor . Then every D-regular graph G on n vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices with minimum degree \\delta\\ge n/2. Then G contains at least {\\rm reg}_{\\rm even}(n,\\delta)/2 \\ge (n-2)/8 edge-disjoint Hamilton cycles. Here {\\rm reg}_{\\rm even}(n,\\delta) denotes the degree of the largest even-regular spanning subgraph one can guarantee in a graph on n vertices with minimum degree \\delta. (i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case \\delta= \\lceil n/2 \\rceil of (iii) answe...
Fate of the Hoop Conjecture in Quantum Gravity.
Anzà, Fabio; Chirco, Goffredo
2017-12-08
We consider a closed region R of 3D quantum space described via SU(2) spin networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary ∂R and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interpret such phenomenon as a pregeometric analogue of Thorne's "hoop conjecture," at the core of the formation of a horizon in general relativity.
On the standard conjecture for complex 4-dimensional elliptic varieties
International Nuclear Information System (INIS)
Tankeev, Sergei G
2012-01-01
We prove that the Grothendieck standard conjecture B(X) of Lefschetz type on the algebraicity of operators * and Λ of Hodge theory holds for every smooth complex projective model X of the fibre product X 1 × C X 2 , where X 1 →C is an elliptic surface over a smooth projective curve C and X 2 →C is a morphism of a smooth projective threefold onto C such that one of the following conditions holds: a generic geometric fibre X 2s is an Enriques surface; all fibres of the morphism X 2 →C are smooth K3-surfaces and the Hodge group Hg(X 2s ) of the generic geometric fibre X 2s has no geometric simple factors of type A 1 (the assumption on the Hodge group holds automatically if the number 22-rankNS(X 2s ) is not divisible by 4).
Cognition and Language: From Apprehension to Judgment -- Quantum Conjectures
Arecchi, F. T.
2014-12-01
We critically discuss the two moments of human cognition, namely, apprehension (A), whereby a coherent perception emerges from the recruitment of neuronal groups, and judgment (B), that entails the comparison of two apprehensions acquired at different times, coded in a suitable language and recalled by memory. (B) requires selfconsciousness, in so far as the agent who expresses the judgment must be aware that the two apprehensions are submitted to his/her own scrutiny and that it is his/her duty to extract a mutual relation. Since (B) lasts around 3 seconds, the semantic value of the pieces under comparison must be decided within this time. This implies a fast search of the memory contents. As a fact, exploring human subjects with sequences of simple words, we find evidence of a limited time window, corresponding to the memory retrieval of a linguistic item in order to match it with the next one in a text flow (be it literary, or musical,or figurative). Classifying the information content of spike trains, an uncertainty relation emerges between the bit size of a word and its duration. This uncertainty is ruled by a constant that can be given a numerical value and that has nothing to do with Planck's constant. A "quantum conjecture" in the above sense might explain the onset and decay of the memory window connecting successive pieces of a linguistic text. The conjecture here formulated is applicable to other reported evidences of quantum effects in human cognitive processes, so far lacking a plausible framework since no efforts to assign a quantum constant have been associated.
Energy Technology Data Exchange (ETDEWEB)
Morrison, David R., E-mail: drm@physics.ucsb.edu [Departments of Mathematics and Physics, U.C. Santa Barbara, Santa Barbara, CA 93106 (United States); Ronen Plesser, M. [Center for Geometry and Theoretical Physics, Duke University, Durham NC 27708 (United States)
2015-09-15
For complete intersection Calabi–Yau manifolds in toric varieties, Gross and Haase–Zharkov have given a conjectural combinatorial description of the special Lagrangian torus fibrations whose existence was predicted by Strominger, Yau and Zaslow. We present a geometric version of this construction, generalizing an earlier conjecture of the first author.
Constraining the interacting dark energy models from weak gravity conjecture and recent observations
International Nuclear Information System (INIS)
Chen Ximing; Wang Bin; Pan Nana; Gong Yungui
2011-01-01
We examine the effectiveness of the weak gravity conjecture in constraining the dark energy by comparing with observations. For general dark energy models with plausible phenomenological interactions between dark sectors, we find that although the weak gravity conjecture can constrain the dark energy, the constraint is looser than that from the observations.
Modelling of and Conjecturing on a Soccer Ball in a Korean Eighth Grade Mathematics Classroom
Lee, Kyeong-Hwa
2011-01-01
The purpose of this article was to describe the task design and implementation of cultural artefacts in a mathematics lesson based on the integration of modelling and conjecturing perspectives. The conceived process of integrating a soccer ball into mathematics lessons via modelling- and conjecturing-based instruction was first detailed. Next, the…
On a conjecture of Alley and Alder for fluids and Lorentz models
Ernst, M.H.; Beijeren, H. van
1981-01-01
We discuss a conjecture of Alley and Alder predicting a relation between the four-point and the two-point velocity autocorrelation functions for fluids and Lorentz models at sufficiently long times. If the conjecture is correct a modified Burnett coefficient can be defined, which has a finite value,
Notes from the Underground: A Propos of Givental's Conjecture
Energy Technology Data Exchange (ETDEWEB)
Song, Yun S.
2001-04-11
These brief notes record our puzzles and findings surrounding Givental's recent conjecture which expresses higher genus Gromov-Witten invariants in terms of the genus-0 data. We limit our considerations to the case of a projective line, whose Gromov-Witten invariants are well-known and easy to compute. We make some simple checks supporting his conjecture.
Existence and uniqueness of consistent conjectural variation equilibrium in electricity markets
International Nuclear Information System (INIS)
Liu, Youfei; Cai, Bin; Ni, Y.X.; Wu, Felix F.
2007-01-01
The game-theory based methods are widely applied to analyze the market equilibrium and to study the strategic behavior in the oligopolistic electricity markets. Recently, the conjecture variation approach, one of well-studied methods in game theory, is reported to model the strategic behavior in deregulated electricity markets. Unfortunately, the conjecture variation models have been criticized for the drawback of logical inconsistence and possibility of abundant equilibria. Aiming for this, this paper investigates the existence and uniqueness of consistent conjectural variation equilibrium in electricity markets. With several good characteristics of the electricity market and with an infinite horizon optimization model, it is shown that the consistent conjecture variation will satisfy a set of coupled nonlinear equations and there will be only one equilibrium. This result can provide the fundamentals for further applications of the conjecture variation approach. (author)
Investigation of the conjectured nucleon deformation at low momentum transfer
International Nuclear Information System (INIS)
Sparveris, N.F.; Georgakopoulos, S.; Karabarbounis, A.; Papanicolas, C.N.; Stiliaris, E.; Alarcon, R.; Six, E.; Bernstein, A.M.; Bertozzi, W.; Casagrande, F.; Dow, K.; Farkondeh, M.; Gilad, S.; Kowalski, S.; Milner, R.; Nakagawa, I.; Sirca, S.; Stave, S.; Tsentalovich, G.; Tschalaer, C.
2005-01-01
We report new precise H(e,e ' p)π 0 measurements at the Δ(1232) resonance at Q 2 =0.127 (GeV/c) 2 obtained at the MIT-Bates out-of-plane scattering facility which are particularly sensitive to the transverse electric amplitude (E2) of the γ * N→Δ transition. The new data have been analyzed together with those of earlier measurements to yield precise quadrupole to dipole amplitude ratios: Re(E 1+ 3/2 /M 1+ 3/2 )=(-2.3±0.3 stat+syst ±0.6 model )% and Re(S 1+ 3/2 /M 1+ 3/2 )=(-6.1±0.2 stat+syst ±0.5 model )% for M 1+ 3/2 =(41.4±0.3 stat+syst ±0.4 model )(10 -3 /m π + ). The derived amplitudes give credence to the conjecture of deformation in hadrons favoring, at low Q 2 , the dominance of mesonic effects.
Conjecture of twin primes (Still unsolved problem in Number Theory. An expository essay
Directory of Open Access Journals (Sweden)
Hayat Rezgui
2017-12-01
Full Text Available The purpose of this paper is to gather as much results of advances, recent and previous works as possible concerning the oldest outstanding still unsolved problem in Number Theory (and the most elusive open problem in prime numbers called "Twin primes conjecture" (8th problem of David Hilbert, stated in 1900 which has eluded many gifted mathematicians. This conjecture has been circulating for decades, even with the progress of contemporary technology that puts the whole world within our reach. So, simple to state, yet so hard to prove. Basic Concepts, many and varied topics regarding the Twin prime conjecture will be cover.
Analytical study of the conjecture rule for the combination of multipole effects in LHC
Guignard, Gilbert
1997-01-01
This paper summarizes the analytical investigation done on the conjecture law found by tracking for the effect on the dynamic aperture of the combination of two multipoles of various order. A one-dimensional model leading to an integrable system has been used to find closed formulae for the dynamic aperture associated with a fully distributed multipole. The combination has then been studied and the resulting expression compared with the assumed conjecture law. For integrated multipoles small with respect to the focusing strength, the conjecture appears to hold, though with an exponent different from the one expected by crude reasoning.
Liu, Hongyu
2012-01-01
In this note, we present some interesting observations on the Schiffer's conjecture, interior transmission eigenvalue problem and their connections to singular and nonsingular invisibility cloaking problems of acoustic waves.
Conjectures on the normal covering number of finite symmetric and alternating groups
Directory of Open Access Journals (Sweden)
Daniela Bubboloni
2014-06-01
Full Text Available Let gamma(Sn be the minimum number of proper subgroups Hi, i = 1,...,ell, of the symmetric group Sn such that each element in Sn lies in some conjugate of one of the Hi. In this paper we conjecture that gamma(Sn =(n/2(1-1/p_1 (1-1/p_2 + 2, where p1, p2 are the two smallest primes in the factorization of n and n is neither a prime power nor a product of two primes. Support for the conjecture is given by a previous result for the case where n has at most two distinct prime divisors. We give further evidence by confirming the conjecture for certain integers of the form n = 15q, for an infinite set of primes q, and by reporting on a Magma computation. We make a similar conjecture for gamma(An, when n is even, and provide a similar amount of evidence.
On the fourth moment of Hecke Maass forms and the Random Wave Conjecture
Buttcane, Jack; Khan, Rizwanur
2016-01-01
Conditionally on the Generalized Lindel\\"of Hypothesis, we obtain an asymptotic for the fourth moment of Hecke Maass cusp forms of large Laplacian eigenvalue for the full modular group. This lends support to the Random Wave Conjecture.
International Nuclear Information System (INIS)
Ji, Se-Wan; Nha, Hyunchul; Kim, M S
2015-01-01
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements. (paper)
Cosmic censorship and Weak Gravity Conjecture in the Einstein-Maxwell-dilaton theory
Yu, Ten-Yeh; Wen, Wen-Yu
2018-06-01
We explore the cosmic censorship in the Einstein-Maxwell-dilaton theory following Wald's thought experiment to destroy a black hole by throwing in a test particle. We discover that at probe limit the extremal charged dilaton black hole could be destroyed by a test particle with specific energy. Nevertheless the censorship is well protected if backreaction or self-force is included. At the end, we discuss an interesting connection between Hoop Conjecture and Weak Gravity Conjecture.
On Montgomery's pair correlation conjecture to the zeros of Riedmann zeta function
Li, Pei
2005-01-01
In this thesis, we are interested in Montgomery's pair correlation conjecture which is about the distribution of.the spacings between consecutive zeros of the Riemann Zeta function. Our goal is to explain and study Montgomery's pair correlation conjecture and discuss its connection with the random matrix theory. In Chapter One, we will explain how to define the Ftiemann Zeta function by using the analytic continuation. After this, several classical properties of the Ftiemann Zeta function wil...
Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space
Crisford, Toby; Santos, Jorge E.
2017-05-01
We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.
Conjecture Mapping: An Approach to Systematic Educational Design Research
Sandoval, William
2014-01-01
Design research is strongly associated with the learning sciences community, and in the 2 decades since its conception it has become broadly accepted. Yet within and without the learning sciences there remains confusion about how to do design research, with most scholarship on the approach describing what it is rather than how to do it. This…
Seebikad vanakreeka moodi / Kadri Novikov
Novikov, Kadri
2009-01-01
Kreeka romaanist ehk 1. saj. eKr kuni 4. saj. pKr kirjutatud mahukatest proosafiktsioonidest, mis oma olemuselt on segu armastus- ja seiklusromaanidest. Pikemalt on vaatluse all Charitoni "Chaireas ja Kallirhoe", Xenophoni "Ephesose lood", Achilleus Tatiose "Leukippe ja Kleitophon", Longose "Daphnis ja Chloe" ning Heliodorose "Aithiopika"
Directory of Open Access Journals (Sweden)
M. Nabishahyakitash
2015-05-01
Full Text Available In this paper, we investigate Conjectural Variations elasticity in Iranians Food and Beverage industry using Iwata approach, The conjectural variation function is extracted from demand and supply information also optimization process on producers’ behavior. The experimental estimates of conjectural variation elasticities were obtained based on price elasticity of demand, cost elasticity and marginal cost elasticity for the selected industries. In this research demand function AIDS was used to obtain the price elasticity. The AIDS function was estimated using SUR and the demand price elasticity is calculated by calfent. The results show that "Vegetable oils and animal" industry with 19.37 have the most conjectural variation elasticity among the selected industries (The more divergent the conjectural variation elasticity is from zero the more likely the monopoly exists. In addition, dairy, sugar and malt industries have the most conjectural variation elasticity with 18.01, 17.18, and 10.51 respectively.
Papapetrou's naked singularity is a strong curvature singularity
International Nuclear Information System (INIS)
Hollier, G.P.
1986-01-01
Following Papapetrou [1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)], a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture. (author)
Conjectural variation based learning model of strategic bidding in spot market
International Nuclear Information System (INIS)
Yiqun Song; Yixin Ni; Fushuan Wen; Wu, F.F.
2004-01-01
In actual electricity market, which operates repeatedly on the basis of one hour or half hour, each firm might learn or estimate other competitors' strategic behaviors from available historical market operation data, and rationally aims at its maximum profit in the repeated biddings. A conjectural variation based learning method is proposed in this paper for generation firm to improve its strategic bidding performance. In the method, each firm learns and dynamically regulates its conjecture upon the reactions of its rivals to its bidding according to available information published in the electricity market, and then makes its optimal generation decision based on the updated conjectural variation of its rivals. Through such learning process, the equilibrium reached in the market is proven a Nash equilibrium. Motivation of generation firm to learn in the changing market environment and consequence of learning behavior in the market are also discussed through computer tests. (author)
Numerical Tests of the Cosmic Censorship Conjecture via Event-Horizon Finding
Okounkova, Maria; Ott, Christian; Scheel, Mark; Szilagyi, Bela
2015-04-01
We present the current state of our research on the possibility of naked singularity formation in gravitational collapse, numerically testing both the cosmic censorship conjecture and the hoop conjecture. The former of these posits that all singularities lie behind an event horizon, while the later conjectures that this is true if collapse occurs from an initial configuration with all circumferences C <= 4 πM . We reconsider the classical Shapiro & Teukolsky (1991) prolate spheroid naked singularity scenario. Using the exponentially error-convergent Spectral Einstein Code (SpEC) we simulate the collapse of collisionless matter and probe for apparent horizons. We propose a new method to probe for the existence of an event horizon by following characteristic from regions near the singularity, using methods commonly employed in Cauchy characteristic extraction. This research was partially supported by NSF under Award No. PHY-1404569.
On the validity of cosmic no-hair conjecture in an anisotropic inationary model
Do, Tuan Q.
2018-05-01
We will present main results of our recent investigations on the validity of cosmic no-hair conjecture proposed by Hawking and his colleagues long time ago in the framework of an anisotropic inflationary model proposed by Kanno, Soda, and Watanabe. As a result, we will show that the cosmic no-hair conjecture seems to be generally violated in the Kanno-Soda- Watanabe model for both canonical and non-canonical scalar fields due to the existence of a non-trivial coupling term between scalar and electromagnetic fields. However, we will also show that the validity of the cosmic no-hair conjecture will be ensured once a unusual scalar field called the phantom field, whose kinetic energy term is negative definite, is introduced into the Kanno-Soda-Watanabe model.
Toda molecule and Tomimatsu-Sato solution-towards the complete proof of Nakamura's conjecture
International Nuclear Information System (INIS)
Fukuyama, Takeshi; Koizumi, Kozo
2011-01-01
We discuss the Nakamura's conjecture stating that the Tomimatsu-Sato black hole solution with an integer deformation parameter n is composed of the special solutions of the Toda molecule equation at the nth lattice site. From the previous work, in which the conjecture was partly analytically proved, we go further towards the final full proof by rearranging the rotation parameter. The proof is explicitly performed for the highest and lowest orders. Though the proof for all orders still remains unsolved, the prospect to the full proof becomes transparent and workable by our method. (paper)
Supratman; Ryane, S.; Rustina, R.
2016-02-01
This study aims to explore the extent to which the use of analogy reasoning when students conduct conjecture in developing the scientific approach, so that the knowledge of the students can be used to build new knowledge. Analysis was conducted on student learning outcomes in Ciamis district. Based on these results, it was found the teacher not give an opportunity to the students to make conjecture on the students in problem solving as well as the construction of new knowledge. Moreover, teachers do not take advantage of analogical reasoning and scientific approach in constructing new knowledge.
Schottky’s conjecture, field emitters, and the point charge model
Directory of Open Access Journals (Sweden)
Kevin L. Jensen
2016-06-01
Full Text Available A Point Charge Model of conical field emitters, in which the emitter is defined by an equipotential surface of judiciously placed charges over a planar conductor, is used to confirm Schottky’s conjecture that field enhancement factors are multiplicative for a small protrusion placed on top of a larger base structure. Importantly, it is shown that Schottky’s conjecture for conical / ellipsoidal field emitters remains unexpectedly valid even when the dimensions of the protrusion begin to approach the dimensions of the base structure. The model is analytic and therefore the methodology is extensible to other configurations.
The AJ-conjecture for the Teichmüller TQFT
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Malusà, Alessandro
We formulate the AJ-conjecture for the Teichm\\"{u}ller TQFT and we prove it in the case of the figure-eight knot complement and the $5_2$-knot complement. This states that the level-$N$ Andersen-Kashaev invariant, $J^{(\\mathrm{b},N)}_{M,K}$, is annihilated by the non-homogeneous $\\widehat...
Proof of an entropy conjecture for Bloch coherent spin states and its generalizations
DEFF Research Database (Denmark)
H. Lieb, Elliott; Solovej, Jan Philip
2014-01-01
Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb...
Tax evasion in transition: Outcome of an institutional clash? - Testing Feige's conjecture
Gërxhani, K.
2003-01-01
A field survey of households was conducted in Tirana, Albania in 2000. A response rate of 89.3% yielded 1.340 valid questionnaires, allowing us to test Feige’s (1997) conjecture that more tax evasion will be observed, when formal and informal institutions clash. Respondents’ attitudes towards formal
Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data
Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...
The elementary theory of groups a guide through the proofs of the Tarski conjectures
Fine, Benjamin; Myasnikov, Alexei; Rosenberger, Gerhard; Spellman, Dennis
2014-01-01
After being an open question for sixty years the Tarski conjecture was answered in the affirmative by Olga Kharlampovich and Alexei Myasnikov and independently by Zlil Sela. This book is an examination of the material on the general elementary theory of groups that is necessary to begin to understand the proofs.
Informed Conjecturing of Solutions for Differential Equations in a Modeling Context
Winkel, Brian
2015-01-01
We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…
A note on "The Cartan-Hadamard conjecture and the Little Prince"
Michalakis, Spyridon
2017-01-01
We provide elementary proofs of Lemmas 7.1 and 7.4 appearing in "The Cartan-Hadamard conjecture and the Little Prince", by B. Kloeckner and G. Kuperberg. The Lemmas play an important role in the derivation of novel isoperimetric inequalities. The original proofs relied on Sage, a symbolic algebra package, to factor certain algebraic varieties into irreducible components.
Grothendieck’s conjecture for the Risch equation y’ = ay + b
Put, Marius van der
2001-01-01
A simple formulation of the Grothendieck’s conjecture, some information on p-curvatures, recent history and elementary proofs for the equations y’ = ay and y’ = b are given in the first two sections. For an inhomogeneous equation y’ = ay + b we propose an extension of the problem. One has to
A short proof of a conjecture on the Tr-choice number of even cycles
Sitters, R. A.
In this note we prove that the Tr-choice number of the cycle C2n is equal to the Tr-choice number of the path (tree) on 4n - 1 vertices, i.e. Tr-ch(C2n) = [((4n - 2)/(4n - 1))(2r + 2)] + 1. This solves a recent conjecture of Alon and Zaks.
Reviving the shear-free perfect fluid conjecture in general relativity
Sikhonde, Muzikayise E.; Dunsby, Peter K. S.
2017-12-01
Employing a Mathematica symbolic computer algebra package called xTensor, we present (1+3) -covariant special case proofs of the shear-free perfect fluid conjecture in general relativity. We first present the case where the pressure is constant, and where the acceleration is parallel to the vorticity vector. These cases were first presented in their covariant form by Senovilla et al. We then provide a covariant proof for the case where the acceleration and vorticity vectors are orthogonal, which leads to the existence of a Killing vector along the vorticity. This Killing vector satisfies the new constraint equations resulting from the vanishing of the shear. Furthermore, it is shown that in order for the conjecture to be true, this Killing vector must have a vanishing spatially projected directional covariant derivative along the velocity vector field. This in turn implies the existence of another basic vector field along the direction of the vorticity for the conjecture to hold. Finally, we show that in general, there exists a basic vector field parallel to the acceleration for which the conjecture is true.
A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture
Van Nguyen, Thu
2011-01-01
In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."
Ten Berge, J.M.F.; Stegeman, A.; Bennani-Dosse, M.
2009-01-01
The Candecomp/Parafac algorithm approximates a set of matrices X(1),...,X(I), by products of the form AC(i)B', with C(i) diagonal, i = 1,...,I. Carroll and Chang have conjectured that, when the matrices are symmetric, the resulting A and B will be column wise proportional. For cases of perfect fit,
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
International Nuclear Information System (INIS)
Gill, Tepper L.; Zachary, W.W.
2002-01-01
In this paper, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson's second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman's path integral, and to prove Dyson's first conjecture that the divergences are in part due to a violation of Heisenberg's uncertainly relations
Conjecturing via analogical reasoning constructs ordinary students into like gifted student
Supratman; Ratnaningsih, N.; Ryane, S.
2017-12-01
The purpose of this study is to reveal the development of knowledge of ordinary students to be like gifted students in the classroom based on Piaget's theory. In exposing it, students are given an open problem of classical analogy. Researchers explore students who conjecture via analogical reasoning in problem solving. Of the 32 students, through the method of think out loud and the interview was completed: 25 students conjecture via analogical reasoning. Of the 25 students, all of them have almost the same character in problem solving/knowledge construction. For that, a student is taken to analyze the thinking process while solving the problem/construction of knowledge based on Piaget's theory. Based on Piaget's theory in the development of the same knowledge, gifted students and ordinary students have similar structures in final equilibrium. They begin processing: assimilation and accommodation of problem, strategies, and relationships.
Black objects and hoop conjecture in five-dimensional space-time
Energy Technology Data Exchange (ETDEWEB)
Yamada, Yuta; Shinkai, Hisa-aki, E-mail: m1m08a26@info.oit.ac.j, E-mail: shinkai@is.oit.ac.j [Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka 573-0196 (Japan)
2010-02-21
We numerically investigated the sequences of initial data of a thin spindle and a thin ring in five-dimensional space-time in the context of the cosmic censorship conjecture. We modeled the matter in non-rotating homogeneous spheroidal or toroidal configurations under the momentarily static assumption, solved the Hamiltonian constraint equation and searched the apparent horizons. We discussed when S{sup 3} (black-hole) or S{sup 1} x S{sup 2} (black-ring) horizons ('black objects') are formed. By monitoring the location of the maximum Kretchmann invariant, an appearance of 'naked singularity' or 'naked ring' under special situations is suggested. We also discuss the validity of the hyper-hoop conjecture using a minimum area around the object, and show that the appearance of the ring horizon does not match with this hoop.
The approximate Loebl-Komlós--Sós conjecture and embedding trees in sparse graphs
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2015-01-01
Roč. 22, April (2015), s. 1-11 ISSN 1935-9179 R&D Projects: GA MŠk(CZ) 1M0545 Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl-Komlós-Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics Impact factor: 0.333, year: 2015 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11110
Static spacetimes with prescribed multipole moments: a proof of a conjecture by Geroch
International Nuclear Information System (INIS)
Herberthson, Magnus
2009-01-01
In this paper we give sufficient conditions on a sequence of multipole moments for a static spacetime to exist with precisely these moments. The proof is constructive in the sense that a metric having prescribed multipole moments up to a given order can be calculated. Since these sufficient conditions agree with already known necessary conditions, this completes the proof of a long standing conjecture due to Geroch.
Some Properties of the Distance Function and a Conjecture of De Giorgi
Eminenti, Manolo; Mantegazza, Carlo
2003-01-01
We analyse the geometric properties of the high derivatives of the distance function from a submanifold of the Euclidean space. In particular, we show some relations with the second fundamental form and its covariant derivatives of independent interest. As an application we prove a conjecture of Ennio De Giorgi on the evolution of submanifolds of the Euclidean space by the gradient of functionals depending on the derivatives of the distance function.
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
On a directed variation of the 1-2-3 and 1-2 Conjectures
DEFF Research Database (Denmark)
Barme, Emma; Bensmail, Julien; Przybyło, Jakub
2017-01-01
In this paper, we consider the following question, which stands as a directed analogue of the well-known 1-2-3 Conjecture: Given any digraph D with no arc uv verifying d+(u) = d¯(v) = 1, is it possible to weight the arcs of D with weights among ⟨1; 2; 3⟩ so that, for every arc uv of D, the sum of...
A Skew Version of the Loebl–Komlós–Sós Conjecture
Czech Academy of Sciences Publication Activity Database
Klimošová, T.; Piguet, Diana; Rozhoň, Václav
2017-01-01
Roč. 61, August (2017), s. 743-749 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y; GA ČR GBP202/12/G061 Institutional support: RVO:67985807 Keywords : extremal graph theory * trees * Loebl-Komlós-Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics
More about Birkhoff's invariant and Thorne's hoop conjecture for horizons
Energy Technology Data Exchange (ETDEWEB)
Cvetic, M [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Gibbons, G W; Pope, C N [DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)
2011-10-07
A recent precise formulation of the hoop conjecture in four spacetime dimensions is that the Birkhoff invariant {beta} (the least maximal length of any sweepout or foliation by circles) of an apparent horizon of energy E and area A should satisfy {beta} {<=} 4{pi}E. This conjecture together with the cosmic censorship or isoperimetric inequality implies that the length l of the shortest non-trivial closed geodesic satisfies l{sup 2} {<=} {pi}A. We have tested these conjectures on the horizons of all four-charged rotating black hole solutions of ungauged supergravity theories and found that they always hold. They continue to hold in the presence of a negative cosmological constant, and for multi-charged rotating solutions in gauged supergravity. Surprisingly, they also hold for the Ernst-Wild static black holes immersed in a magnetic field, which are asymptotic to the Melvin solution. In five spacetime dimensions we define {beta} as the least maximal area of all sweepouts of the horizon by two-dimensional tori, and find in all cases examined that {beta} (g) {<=} {l_brace}16 {pi}/ 3{r_brace} E, which we conjecture holds quiet generally for apparent horizons. In even spacetime dimensions D = 2N + 2, we find that for sweepouts by the product S{sup 1} x S{sup D-4}, {beta} is bounded from above by a certain dimension-dependent multiple of the energy E. We also find that l{sup D-2} is bounded from above by a certain dimension-dependent multiple of the horizon area A. Finally, we show that l{sup D-3} is bounded from above by a certain dimension-dependent multiple of the energy, for all Kerr-AdS black holes.
The approximate Loebl-Komlós--Sós conjecture and embedding trees in sparse graphs
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2015-01-01
Roč. 22, April (2015), s. 1-11 ISSN 1935-9179 R&D Projects: GA MŠk(CZ) 1M0545 Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl-Komlós-Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics Impact factor: 0.333, year: 2015 http://www.aimsciences.org/ journals /displayArticlesnew.jsp?paperID=11110
String dynamics at strong coupling
International Nuclear Information System (INIS)
Hull, C.M.
1996-01-01
The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)
Domination Game: Extremal Families for the 3/5-Conjecture for Forests
Directory of Open Access Journals (Sweden)
Henning Michael A.
2017-05-01
Full Text Available In the domination game on a graph G, the players Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated. This process eventually produces a dominating set of G; Dominator aims to minimize the size of this set, while Staller aims to maximize it. The size of the dominating set produced under optimal play is the game domination number of G, denoted by γg(G. Kinnersley, West and Zamani [SIAM J. Discrete Math. 27 (2013 2090-2107] posted their 3/5-Conjecture that γg(G ≤ ⅗n for every isolate-free forest on n vertices. Brešar, Klavžar, Košmrlj and Rall [Discrete Appl. Math. 161 (2013 1308-1316] presented a construction that yields an infinite family of trees that attain the conjectured 3/5-bound. In this paper, we provide a much larger, but simpler, construction of extremal trees. We conjecture that if G is an isolate-free forest on n vertices satisfying γg(G = ⅗n, then every component of G belongs to our construction.
A proof of a conjecture by Schweizer on the Drinfeld modular polynomial ΦT (X, Y )
DEFF Research Database (Denmark)
Bassa, Alp; Beelen, Peter
2011-01-01
In this paper we prove a conjecture by Schweizer on the reduction of the Drinfeld modular polynomial ΦT (X, Y ) modulo T − 1. The proof mainly involves manipulations of binomial coefficients in characteristic p....
Addazi, Andrea
2018-05-01
In companion papers (A. Addazi, Nuovo Cim. C, 38(1): 21 (2015); A. Addazi, Z. Berezhiani, and Y. Kamyshkov, arXiv:1607.00348), we have discussed current bounds on a new super-light baryo-photon, associated with a U(1) B-L gauge, from current neutron-antineutron data, which are competitive with Eötvös-type experiments. Here, we discuss the implications of possible baryo-photon detection in string theory and quantum gravity. The discovery of a very light gauge boson should imply violation of the weak gravity conjecture, carrying deep consequences for our understanding of holography, quantum gravity and black holes. We also show how the detection of a baryo-photon would exclude the generation of all B–L violating operators from exotic stringy instantons. We will argue against the common statement in the literature that neutron-antineutron data may indirectly test at least the 300–1000 TeV scale. Searches for baryo-photons can provide indirect information on the Planck (or string) scale (quantum black holes, holography and non-perturbative stringy effects). This strongly motivates new neutron-antineutron experiments with adjustable magnetic fields dedicated to the detection of super-light baryo-photons.
Classical and quantum models of strong cosmic censorship
International Nuclear Information System (INIS)
Moncrief, V.E.
1983-01-01
The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models. (author)
Classical and quantum models of strong cosmic censorship
Energy Technology Data Exchange (ETDEWEB)
Moncrief, V.E. (Yale Univ., New Haven, CT (USA). Dept. of Physics)
1983-04-01
The cosmic censorship conjecture states that naked singularities should not evolve from regular initial conditions in general relativity. In its strong form the conjecture asserts that space-times with Cauchy horizons must always be unstable and thus that the generic solution of Einstein's equations must be inextendible beyond its maximal Cauchy development. In this paper it is shown that one can construct an infinite-dimensional family of extendible cosmological solutions similar to Taub-NUT space-time; however, each of these solutions is unstable in precisely the way demanded by strong cosmic censorship. Finally it is shown that quantum fluctuations in the metric always provide (though in an unexpectedly subtle way) the ''generic perturbations'' which destroy the Cauchy horizons in these models.
Smeenk, Chris
2003-12-01
The study of Einstein's theory of general relativity experienced a renaissance beginning in the early 1960s. Prior to this resurgence of interest, general relativity was isolated from mainstream physics-admired for its elegance, perhaps, but only from a distance. The generation of students who risked their careers by entering this neglected field has now reached the age of festschrifts. In June of 2000, Caltech hosted ;Kipfest,; a conference in honor of Kip Thorne's 60th birthday. Thorne started graduate school at Princeton in 1962 and began research in general relativity under John Wheeler's guidance in the heady early days of the renaissance. Since then, he has played a prominent role in general relativity: as co-author of the influential textbook Gravitation, as a leader in research regarding astrophysical applications of Einstein's theory, and as a co-founder and chief advocate for the Laser Interferometer Gravitational Wave Observatory (LIGO), to mention a few aspects of his far-reaching work. ;Kipfest; included 14 speakers discussing fields to which Thorne has contributed. But the conference also reflected Thorne's long-standing commitment to communicating science to a general audience: Igor Novikov, Stephen Hawking, Timothy Ferris, and Alan Lightman gave popular talks at ;Kipfest,; with Thorne himself tricked into delivering a fifth. The Future of Spacetime gathers adaptations of these five lectures, along with a lengthy introductory essay by Richard Price.
The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 945-982 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics; Pure mathematics (UIVT-O) Impact factor: 0.755, year: 2016 http://epubs.siam.org/doi/10.1137/140982842
A Conjecture on Institutional Rationalities and Property Rights in Public Procurement of Innovation
DEFF Research Database (Denmark)
Ågren, Robert; Rolfstam, Max
2013-01-01
The increased interest in using public procurement as a policy tool for innovation has renewed a need for understanding the procurement process. A conjecture on institutional rationalities and property rights is offered to explain the hurdles present for conducting successful procurement projects....... If an efficient negotiation solution is to be achieved participants in procurement projects need to be aware of the other participants’ institutional rationalities and actively consider these while concluding the terms of procurement projects. Consequently, future policy efforts towards increased innovation have...... to be targeting the process of public procurement of innovation, rather than focusing on regulatory issues....
Proof of Murphy-Cohen Conjecture on One-Dimensional Hard Ball Systems
Institute of Scientific and Technical Information of China (English)
Lizhou CHEN
2007-01-01
We prove the Murphy and Cohen's conjecture that the maximum number of collisions of n+1 elastic particles moving freely on a line is n(n+1)/2 if no interior particle has mass less than the arithmetic mean of the masses of its immediate neighbors.In fact,we prove the stronger result that,for the same conclusion,the condition that no interior particle has mass less than the geometric mean,rather than the arithmetic mean,of the masses of its immediate neighbors suffices.
Adjamagbo Determinant and Serre conjecture for linear groups over Weyl algebras
Adjamagbo, Kossivi
2008-01-01
Thanks to the theory of determinants over an Ore domain, also called Adjamagbo determinant by the Russian school of non commutative algebra, we extend to any Weyl algebra over a field of characteristic zero Suslin theorem solving what Suslin himself called the $K_1$-analogue of the well-known Serre Conjecture and asserting that for any integer $n$ greater than 2, any $n$ by $n$ matrix with coefficients in any algebra of polynomials over a field and with determinant one is the product of eleme...
The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 945-982 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics ; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics ; Pure mathematics (UIVT-O) Impact factor: 0.755, year: 2016 http://epubs.siam.org/doi/10.1137/140982842
The Approximate Loebl-Komlos-Sos Conjecture III: The Finer Structure of LKS Graphs
Czech Academy of Sciences Publication Activity Database
Hladký, J.; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 1017-1071 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545; GA ČR GJ16-07822Y Grant - others:EPRSC(GB) EP/D063191/1; EPRSC(GB) EP/J501414/1; FP7(XE) PIEF-GA-2009-253925; GA MŠK(CZ) CZ.1.05/1.1.00/02.0090 Institutional support: RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.755, year: 2016
End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture.
Figueras, Pau; Kunesch, Markus; Tunyasuvunakool, Saran
2016-02-19
We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain thin rings, we identify a new, elastic-type instability dominating the evolution, causing the system to settle to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected by necks which become ever thinner over time.
International Nuclear Information System (INIS)
Hobbs, B.F.; Rijkers, F.A.M.
2004-05-01
The conjectured supply function (CSF) model calculates an oligopolistic equilibrium among competing generating companies (GenCos), presuming that GenCos anticipate that rival firms will react to price increases by expanding their sales at an assumed rate. The CSF model is generalized here to include each generator's conjectures concerning how the price of transmission services (point-to-point service and constrained interfaces) will be affected by the amount of those services that the generator demands. This generalization reflects the market reality that large producers will anticipate that they can favorably affect transmission prices by their actions. The model simulates oligopolistic competition among generators while simultaneously representing a mixed transmission pricing system. This mixed system includes fixed transmission tariffs, congestion-based pricing of physical transmission constraints (represented as a linearized dc load flow), and auctions of interface capacity in a path-based pricing system. Pricing inefficiencies, such as export fees and no credit for counterflows, can be simulated. The model is formulated as a linear mixed complementarity problem, which enables very large market models to be solved. In the second paper of this two-paper series, the capabilities of the model are illustrated with an application to northwest Europe, where transmission pricing is based on such a mixture of approaches
International Nuclear Information System (INIS)
Wals, A.F.; Hobbs, B.F.; Rijkers, F.A.M.
2004-05-01
The conjectured transmission price response model presented in the first of this two-paper series considers the expectations of oligopolistic generators regarding how demands for transmission services affect the prices of those services. Here, the model is applied to northwest Europe, simulating a mixed transmission pricing system including export fees, a path-based auction system for between-country interfaces, and implicit congestion-based pricing of internal country constraints. The path-based system does not give credit for counterflows when calculating export capability. The application shows that this no-netting policy can exacerbate the economic inefficiencies caused by oligopolistic pricing by generators. The application also illustrates the effects of different generator conjectures regarding rival supply responses and transmission prices. If generators anticipate that their increased demand for transmission services will increase transmission prices, then competitive intensity diminishes and energy prices rise. In the example here, the effect of this anticipation is to double the price increase that results from oligopolistic (Cournot) competition among generators
The positive action conjecture and asymptotically euclidean metrics in quantum gravity
International Nuclear Information System (INIS)
Gibbons, G.W.; Pope, C.N.
1979-01-01
The positive action conjecture requires that the action of any asymptotically Euclidean 4-dimensional Riemannian metric be positive, vanishing if and only if the space is flat. Because any Ricci flat, asymptotically Euclidean metric has zero action and is local extremum of the action which is a local minimum at flat space, the conjecture requires that there are no Ricci flat asymptotically Euclidean metrics other than flat space, which would establish that flat space is the only local minimum. We prove this for metrics on R 4 and a large class of more complicated topologies and for self-dual metrics. We show that if Rsupμsubμ >= 0 there are no bound states of the Dirac equation and discuss the relevance to possible baryon non-conserving processes mediated by gravitational instantons. We conclude that these are forbidden in the lowest stationary phase approximation. We give a detailed discussion of instantons invariant under an SU(2) or SO(3) isometry group. We find all regular solutions, none of which is asymptotically Euclidean and all of which possess a further Killing vector. In an appendix we construct an approximate self-dual metric on K3 - the only simply connected compact manifold which admits a self-dual metric. (orig.) [de
A complete formulation of Baum-Connes' conjecture for the action of discrete quantum groups
International Nuclear Information System (INIS)
Goswami, D.; Kuku, A.O.
2003-01-01
We formulate a version of Baum-Connes' conjecture for a discrete quantum group, building on our earlier work. Given such a quantum group A, we construct a directed family {ε F } of C*-algebras (F varying over some suitable index set), borrowing previous ideas, such that there is a natural action of A on each ε F satisfying the assumptions of [8], which makes it possible to define the 'analytical assembly map', say μ i r,F , i=0,1, from the A- equivariant K-homology groups of ε F to the K-theory groups of the 'reduced' dual A-circumflex r . As a result, we can define the Baum-Connes' maps μ i r : lim→ KK i A (ε F ,C) → K i (A-circumflex r ), and in the classical case, i.e. when A is C 0 (G) for a discrete group, the isomorphism of the above maps for i=0,1 is equivalent to the Baum-Connes' conjecture. (author)
Nanodeserts: A Conjecture in Nanotechnology to Enhance Quasi-Photosynthetic CO2 Absorption
Directory of Open Access Journals (Sweden)
Wenfeng Wang
2016-01-01
Full Text Available This paper advances “nanodeserts” as a conjecture on the possibility of developing the hierarchical structured polymeric nanomaterials for enhancing abiotic CO2 fixation in the soil-groundwater system beneath deserts (termed as quasi-photosynthetic CO2 absorption. Arid and semiarid deserts ecosystems approximately characterize one-third of the Earth’s land surface but play an unsung role in the carbon cycling, considering the huge potentials of such CO2 absorption to expand insights to the long-sought missing CO2 sink and the naturally unneglectable turbulence in temperature sensitivities of soil respiration it produced. “Nanodeserts” as a reconciled concept not only indicate a conjecture in nanotechnology to enhance quasi-photosynthetic CO2 absorption, but also aim to present to the desert researchers a better understanding of the footprints of abiotic CO2 transport, conversion, and assignment in the soil-groundwater system beneath deserts. Meanwhile, nanodeserts allow a stable temperature sensitivity of soil respiration in deserts by largely reducing the CO2 release above the deserts surface and highlighting the abiotic CO2 fixation beneath deserts. This may be no longer a novelty in the future.
Broken bridges: a counter-example of the ER=EPR conjecture
International Nuclear Information System (INIS)
Chen, Pisin; Wu, Chih-Hung; Yeom, Dong-han
2017-01-01
In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, these two parts can be trapped by bubbles. If these bubbles are reasonably large, then within the scrambling time, there should appear an Einstein-Rosen bridge between the two black holes. Now by tracing more details on the bubble dynamics, one can identify parameters such that one of the two bubbles either monotonically shrinks or expands. Because of the change of vacuum energy, one side of the black hole would evaporate completely. Due to the shrinking of the apparent horizon, a signal of one side of the Einstein-Rosen bridge can be viewed from the opposite side. We analytically and numerically demonstrate that within a reasonable semi-classical parameter regime, such process can happen. Bubbles are a non-perturbative effect, which is the crucial reason that allows the transmission of information between the two black holes through the Einstein-Rosen bridge, even though the probability is highly suppressed. Therefore, the ER=EPR conjecture cannot be generic in its present form and its validity maybe restricted.
Broken bridges: a counter-example of the ER=EPR conjecture
Energy Technology Data Exchange (ETDEWEB)
Chen, Pisin; Wu, Chih-Hung; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: b02202007@ntu.edu.tw, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)
2017-06-01
In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, these two parts can be trapped by bubbles. If these bubbles are reasonably large, then within the scrambling time, there should appear an Einstein-Rosen bridge between the two black holes. Now by tracing more details on the bubble dynamics, one can identify parameters such that one of the two bubbles either monotonically shrinks or expands. Because of the change of vacuum energy, one side of the black hole would evaporate completely. Due to the shrinking of the apparent horizon, a signal of one side of the Einstein-Rosen bridge can be viewed from the opposite side. We analytically and numerically demonstrate that within a reasonable semi-classical parameter regime, such process can happen. Bubbles are a non-perturbative effect, which is the crucial reason that allows the transmission of information between the two black holes through the Einstein-Rosen bridge, even though the probability is highly suppressed. Therefore, the ER=EPR conjecture cannot be generic in its present form and its validity maybe restricted.
A new algorithm to compute conjectured supply function equilibrium in electricity markets
International Nuclear Information System (INIS)
Diaz, Cristian A.; Villar, Jose; Campos, Fco Alberto; Rodriguez, M. Angel
2011-01-01
Several types of market equilibria approaches, such as Cournot, Conjectural Variation (CVE), Supply Function (SFE) or Conjectured Supply Function (CSFE) have been used to model electricity markets for the medium and long term. Among them, CSFE has been proposed as a generalization of the classic Cournot. It computes the equilibrium considering the reaction of the competitors against changes in their strategy, combining several characteristics of both CVE and SFE. Unlike linear SFE approaches, strategies are linearized only at the equilibrium point, using their first-order Taylor approximation. But to solve CSFE, the slope or the intercept of the linear approximations must be given, which has been proved to be very restrictive. This paper proposes a new algorithm to compute CSFE. Unlike previous approaches, the main contribution is that the competitors' strategies for each generator are initially unknown (both slope and intercept) and endogenously computed by this new iterative algorithm. To show the applicability of the proposed approach, it has been applied to several case examples where its qualitative behavior has been analyzed in detail. (author)
Quasinormal Modes and Strong Cosmic Censorship
Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron
2018-01-01
The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.
Papapetrou's naked singularity is a strong curvature singularity
Energy Technology Data Exchange (ETDEWEB)
Hollier, G.P.
1986-11-01
Following Papapetrou (1985, a random walk in General Relativity ed. J. Krishna-Rao (New Delhi: Wiley Eastern)), a spacetime with a naked singularity is analysed. This singularity is shown to be a strong curvature singularity and thus a counterexample to a censorship conjecture.
Property A and Coarse Embedding for Locally Compact Groups
DEFF Research Database (Denmark)
Li, Kang
property A. In a joint work with Knudby, we characterize the connected simple Lie groups with the discrete topology that have different approximation properties (see Article B). Moreover, we give a contractive Schur multiplier characterization of locally compact groups coarsely embeddable into Hilbert......In the study of the Novikov conjecture, property A and coarse embedding of metric spaces were introduced by Yu and Gromov, respectively. The main topic of the thesis is property A and coarse embedding for locally compact second countable groups. We prove that many of the results that are known...... to hold in the discrete setting, hold also in the locally compact setting.In a joint work with Deprez, we show that property A is equivalent to amenability at infinity and the strong Novikov conjecture is true for every locally compact group that embeds coarsely into a Hilbert space (see Article A...
Directory of Open Access Journals (Sweden)
Keryn G. Woodman
2016-11-01
Full Text Available In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely “anecdotal” evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD. This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.
Woodman, Keryn G; Coles, Chantal A; Lamandé, Shireen R; White, Jason D
2016-11-09
In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely "anecdotal" evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD). This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.
Spin(7) instantons and the Hodge conjecture for certain abelian four-folds: A modest proposal
International Nuclear Information System (INIS)
Ramadas, T.R.
2008-04-01
The Hodge Conjecture is equivalent to a statement about conditions under which a complex vector bundle on a smooth complex projective variety (stably) admits a holomorphic structure. In the case of abelian four-folds, recent work in gauge theory suggests an approach using Spin(7) instantons. I advertise a class of examples due to Mumford where this approach could be tested. I construct explicit smooth vector bundles whose Chern characters are given Hodge classes - an instanton connection on these bundles would endow them with a holomorphic structure and thus prove that these classes are algebraic. I use complex multiplication to exhibit Cayley cycles representing the given Hodge classes. What is missing is an appropriate glueing theorem. (author)
Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets
Energy Technology Data Exchange (ETDEWEB)
Cinti, F., E-mail: fabio.cinti@fi.infn.i [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Rettori, A. [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Pini, M.G. [ISC-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Mariani, M.; Micotti, E. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Lascialfari, A. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Institute of General Physiology and Biological Chemistry, University of Milano, Via Trentacoste 2, I-20134 Milano (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Papinutto, N. [CIMeC, University of Trento, Via delle Regole, 101 38060 Mattarello (Italy); Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Amato, A. [Paul Scherrer Institute, CH-5232 Villingen PSI (Switzerland); Caneschi, A.; Gatteschi, D. [INSTM R.U. Firenze and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Italy); Affronte, M. [CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Department of Physics, University of Modena and Reggio Emilia Via Campi 213/A, I-41100 Modena (Italy)
2010-05-15
Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac){sub 3}NITEt. The specific heat presents two anomalies at T{sub 0}=2.19(2)K and T{sub N}=1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T{sub N}=1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.
Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets
International Nuclear Information System (INIS)
Cinti, F.; Rettori, A.; Pini, M.G.; Mariani, M.; Micotti, E.; Lascialfari, A.; Papinutto, N.; Amato, A.; Caneschi, A.; Gatteschi, D.; Affronte, M.
2010-01-01
Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac) 3 NITEt. The specific heat presents two anomalies at T 0 =2.19(2)K and T N =1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T N =1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.
A Conjecture on the Origine of Language, with many helps from Friedrich Nietzsche
Directory of Open Access Journals (Sweden)
Heesook Kim
2014-04-01
Full Text Available It is agreed upon that among all the living things that have existed, only humans can speak. However, we do not know yet since when we have spoken. We find that Nietzsche left distinctive ideas on the origin of language. Reflecting on “eternal recurrence” and “overmen”, the concepts that Nietzsche made popular, we found out that he would agree on dating the origin of language from some 70,000 years ago when the human population shrank drastically to as low as 2,000 in the wake of the super-volcanic eruption at Lake Toba. At that time, the eternal recurrence that had shackled our ancestors for a long time suddenly disappeared and the small band of surviving members could not help becoming overmen or supermen of entire human species. We ascertained the conjecture with the latest development in evolution theory, archaeology and anatomical analysis on human fossils.
Dynamics of second order rational difference equations with open problems and conjectures
Kulenovic, Mustafa RS
2001-01-01
This self-contained monograph provides systematic, instructive analysis of second-order rational difference equations. After classifying the various types of these equations and introducing some preliminary results, the authors systematically investigate each equation for semicycles, invariant intervals, boundedness, periodicity, and global stability. Of paramount importance in their own right, the results presented also offer prototypes towards the development of the basic theory of the global behavior of solutions of nonlinear difference equations of order greater than one. The techniques and results in this monograph are also extremely useful in analyzing the equations in the mathematical models of various biological systems and other applications. Each chapter contains a section of open problems and conjectures that will stimulate further research interest in working towards a complete understanding of the dynamics of the equation and its functional generalizations-many of them ideal for research project...
International Nuclear Information System (INIS)
Gutierrez-Alcaraz, G.; Tovar-Hernandez, Jose H.; Moreno-Goytia, Edgar L.
2009-01-01
Electricity spot markets generally operate on an hourly basis; under this condition GENCOs can closely observe their competitors' market behavior. For this purposes, a detailed dynamic model is one of the tools used by GENCOs to understand the behavioral variations of competitors over time. The required abilities to rapidly adjust one's own decision-making create a need for new learning procedures and models. Conjectural variations (CV) have been proposed as a learning approach. In this paper a model based on forward expectations (FE) is proposed as a learning approach, and through illustrative examples it is shown that the market equilibria found by the CV model are also obtained by the FE model. (author)
The hoop conjecture and cosmic censorship in the brane-world
Energy Technology Data Exchange (ETDEWEB)
Nakao, Ken-ichi; Nakamura, Kouji; Mishima, Takashi
2003-07-03
The initial data of gravity for a cylindrical matter distribution confined on the brane is studied in the framework of the single brane Randall-Sundrum scenario. We numerically found that the sufficiently thin configuration of matter leads to the formation of the marginal surface on the brane in the Randall-Sundrum model, even if the configuration is infinitely long. This means that the hoop conjecture proposed by Thorne does not hold in the Randall-Sundrum scenario; Even if a mass M does not get compacted into a region whose circumference (C) in every direction is C{approx}<4{pi}GM, black holes with horizons can form on the brane-world of the Randall-Sundrum scenario.
International Nuclear Information System (INIS)
Tsallis, C.
1980-01-01
It is conjectured that a logarithmic provides a very accurate approximation of the yet unknown critical frontier of a fully anisotropic homogeneous quenched bond-mixed q-state Potts ferromagnet in square lattice, where the random coupling constant J is distributed according to the laws P(J) and P'(J) for 'horizontal' and 'vertical' bonds respectively. Such an equation contains as particular cases a great number of exact results as well as a few recent conjectures (which are definitively only approximate). (Author) [pt
International Nuclear Information System (INIS)
Le Mehaute, Alain; El Kaabouchi, Abdelaziz; Nivanen, Laurent
2008-01-01
Advances in fractional analysis suggest a new way for the physics understanding of Riemann's conjecture. It asserts that, if s is a complex number, the non trivial zeros of zeta function 1/(ζ(s)) =Σ n=1 ∞ (μ(n))/(n s ) in the gap [0, 1], is characterized by s=1/2 (1+2iθ). This conjecture can be understood as a consequence of 1/2-order fractional differential characteristics of automorph dynamics upon opened punctuated torus with an angle at infinity equal to π/4. This physical interpretation suggests new opportunities for revisiting the cryptographic methodologies
van IJzendoorn, M H; Bakermans-Kranenburg, M J
2016-08-01
Despite the sometimes heated debate about the validity of human oxytocin studies, experimental oxytocin research with intranasal administration is a growing field with promising preliminary findings. The effects of intranasally administered oxytocin compared to placebo on brain neural activity have been supported in animal studies and in human studies of neural resting state. In several studies, oxytocin sniffs have been shown to lead to down-regulation of amygdala activation in response to infant attachment vocalisations. Meta-analytic evidence shows that oxytocin enhances the salience of (emotional) stimuli, lowers stress and arousal, and elevates empathic concern and tender care, in particular for offspring and in-group members. Less firm evidence points at the amnestic effects of oxytocin. We also note that the average effect sizes of oxytocin experiments are small to modest, and that most studies include a small number of subjects and thus are seriously underpowered, which implies a high risk for publication bias and nonreplicability. Nevertheless, we argue that the power of within-subjects experiments with oxytocin has been underestimated. Much more work is needed, however, to create a firm knowledge base of the neural and behavioural effects of oxytocin. Human oxytocin research is still taking place in the context of discovery, in which bold conjectures are being generated. In the context of justification, these conjectures should subsequently be subjected to stringent attempts at refutations before we jump to theoretical or clinical conclusions. For this context of justification, we propose a multisite multiple replications project on the social stimuli salience enhancing effect of oxytocin. Clinical application of oxytocin is premature. Meta-analytically, the use of oxytocin in clinical groups tends to show only effectiveness in changing symptomatology in individuals with autism spectrum disorders but, even then, it is not yet a validated therapy and its
Testing holographic conjectures of complexity with Born-Infeld black holes
Energy Technology Data Exchange (ETDEWEB)
Tao, Jun; Wang, Peng; Yang, Haitang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China)
2017-12-15
In this paper, we use Born-Infeld black holes to test two recent holographic conjectures of complexity, the ''Complexity = Action'' (CA) duality and ''Complexity = Volume 2.0'' (CV) duality. The complexity of a boundary state is identified with the action of the Wheeler-deWitt patch in CA duality, while this complexity is identified with the spacetime volume of the WdW patch in CV duality. In particular, we check whether the Born-Infeld black holes violate the generalized Lloyd bound: C ≤ (2)/(πℎ) [(M - QΦ) - (M - QΦ){sub gs}], where gs stands for the ground state for a given electrostatic potential. We find that the ground states are either some extremal black hole or regular spacetime with nonvanishing charges. For Born-Infeld black holes, we compute the action growth rate at the late-time limit and obtain the complexities in CA and CV dualities. Near extremality, the generalized Lloyd bound is violated in both dualities. Near the charged regular spacetime, this bound is satisfied in CV duality but violated in CA duality. When moving away from the ground state on a constant potential curve, the generalized Lloyd bound tends to be saturated from below in CA duality. (orig.)
Le Châtelier's conjecture: Measurement of colloidal eigenstresses in chemically reactive materials
Abuhaikal, Muhannad; Ioannidou, Katerina; Petersen, Thomas; Pellenq, Roland J.-M.; Ulm, Franz-Josef
2018-03-01
Volume changes in chemically reactive materials, such as hydrating cement, play a critical role in many engineering applications that require precise estimates of stress and pressure developments. But a means to determine bulk volume changes in the absence of other deformation mechanisms related to thermal, pressure and load variations, is still missing. Herein, we present such a measuring devise, and a hybrid experimental-theoretical technique that permits the determination of colloidal eigenstresses. Applied to cementitious materials, it is found that bulk volume changes in saturated cement pastes at constant pressure and temperature conditions result from a competition of repulsive and attractive phenomena that originate from the relative distance of the solid particles - much as Henry Louis Le Châtelier, the father of modern cement science, had conjectured in the late 19th century. Precipitation of hydration products in confined spaces entails a repulsion, whereas the concurrent reduction in interparticle distance entails activation of attractive forces in charged colloidal particles. This cross-over from repulsion to attraction can be viewed as a phase transition between a liquid state (below the solid percolation) and the limit packing of hard spheres, separated by an energy barrier that defines the temperature-dependent eigenstress magnitude.
Winding out of the Swamp: Evading the weak gravity conjecture with F-term winding inflation?
Directory of Open Access Journals (Sweden)
Arthur Hebecker
2015-09-01
Full Text Available We present a new model of large field inflation along a winding trajectory in the field space of two axionic fields, where the “axions” originate from the complex structure moduli sector of a Calabi–Yau 3-fold at large complex structure. The winding trajectory arises from fixing one combination of axions by bulk fluxes and allows for a transplanckian effective field range. The inflaton potential arises from small “instantonic” corrections to the geometry and realises natural inflation. By working in a regime of large complex structure for two complex structure moduli the inflaton potential can be made subdominant without severe tuning. We also discuss the impact of the recent ‘no-go theorems’ for transplanckian axion periodicities on our work. Interestingly, our setup seems to realise a loophole pointed out in arXiv:1503.00795 and arXiv:1503.04783: our construction is a candidate for a string theory model of large field inflation which is consistent with the mild form of the weak gravity conjecture for axions.
Akibue, Seiseki; Kato, Go
2018-04-01
For distinguishing quantum states sampled from a fixed ensemble, the gap in bipartite and single-party distinguishability can be interpreted as a nonlocality of the ensemble. In this paper, we consider bipartite state discrimination in a composite system consisting of N subsystems, where each subsystem is shared between two parties and the state of each subsystem is randomly sampled from a particular ensemble comprising the Bell states. We show that the success probability of perfectly identifying the state converges to 1 as N →∞ if the entropy of the probability distribution associated with the ensemble is less than 1, even if the success probability is less than 1 for any finite N . In other words, the nonlocality of the N -fold ensemble asymptotically disappears if the probability distribution associated with each ensemble is concentrated. Furthermore, we show that the disappearance of the nonlocality can be regarded as a remarkable counterexample of a fundamental open question in theoretical computer science, called a parallel repetition conjecture of interactive games with two classically communicating players. Measurements for the discrimination task include a projective measurement of one party represented by stabilizer states, which enable the other party to perfectly distinguish states that are sampled with high probability.
Some considerations about the quest for quantum gravity and a conjecture
International Nuclear Information System (INIS)
Matsas, George
2009-01-01
Full text. There are two main possible routes for the quest for quantum gravity; the top-down and the bottom-up ones. The first option is built on the hope that human endeavor and some luck will be enough to bring us over our goal, while the later one relies on our well tested physical theories to unveil reliable low-energy quantum gravity effects, which would eventually bridge us to the full theory. In this talk I shall argue in favor of the latter one and illustrate how this strategy can bring us new insights about some full quantum gravity problems. In particular, we will revisit in this context the problem of the existence of naked singularities and endorse the view that 'the cosmic censor' would be oblivious to processes involving quantum effects. Finally, inspired by our results, we raise a thought provoking conjecture connecting naked singularities to elementary particles, namely, that 'naked singularities and elementary particles would be low-energy manifestations of a same quantum gravity structure a nd argue that, if this is the case, the Higgs (scalar) boson expected to be found in the LHC would be a composite rather than an elementary particle. (author)
Watts, David
This dissertation studies electricity markets based on two-settlement systems and applies the concept of conjectural variation (CV) as a tool for representing different levels of competitiveness in the market. Some recent theoretical works are addressed to support the use of CV as a solution concept. A notion of consistency is introduced to make the level of competitiveness of the market endogenous, and allows finding consistent CV equilibria and the corresponding conditions for existence of equilibria. First, a case is studied in which firms hold exogenous levels of forward commitments. Then, backward induction and sub-game perfection are used to solve sequentially for the spot and forward market equilibrium. This allows analyzing how firms take positions in the forward market, based on considering their later impact on the spot market. It is concluded that positions taken in the forward market depend largely on firms expectations about the competitiveness of both the spot and the forward market. Forward markets are welfare enhancing even if they are not as competitive as the associated spot market as long as they are not too oligopolistie. The above formulation is used to model a dynamic scenario to analyze market stability, linking this research to Dr. Alvarado's earlier research on market stability. This brings about interesting trade offs between market power and market stability.
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites
Lee, J. H.; Choi, Woo Seok; Jeen, H.; Lee, H.-J.; Seo, J. H.; Nam, J.; Yeom, M. S.; Lee, H. N.
2017-01-01
The topotactic phase transition in SrCoO x (x = 2.5–3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured t...
An axion-induced SM/MSSM Higgs landscape and the Weak Gravity Conjecture
Energy Technology Data Exchange (ETDEWEB)
Herráez, Alvaro; Ibáñez, Luis E. [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain)
2017-02-22
We construct models in which the SM Higgs mass scans in a landscape. This is achieved by coupling the SM to a monodromy axion field through Minkowski 3-forms. The Higgs mass scans with steps given by δm{sub H}{sup 2}≃ημf, where μ and f are the axion mass and periodicity respectively, and η measures the coupling of the Higgs to the associated 3-form. The observed Higgs mass scale could then be selected on anthropic grounds. The monodromy axion may have a mass μ in a very wide range depending on the value of η, and the axion periodity f. For η≃1 and f≃10{sup 10} GeV , one has 10{sup −3} eV≲μ≲10{sup 3} eV, but ultralight axions with e.g. μ≃10{sup −17} eV are also possible. In a different realization we consider landscape models coupled to the MSSM. In the context of SUSY, 4-forms appear as being part of the auxiliary fields of SUSY multiplets. The scanning in the 4-forms thus translate into a landscape of vevs for the N=1 auxiliary fields and hence as a landscape for the soft terms. This could provide a rationale for the MSSM fine-tuning suggested by LHC data. In all these models there are 3-forms coupling to membranes which induce transitions between different vacua through bubble nucleation. The Weak Gravity Conjecture (WGC) set limits on the tension of these membranes and implies new physics thresholds well below the Planck scale. More generaly, we argue that in the case of string SUSY vacua in which the Goldstino multiplet contains a monodromy axion the WGC suggests a lower bound on the SUSY breaking scale m{sub 3/2}≳M{sub s}{sup 2}/M{sub p}.
Strong cosmic censorship in the case of T{sup 3}-Gowdy vacuum spacetimes
Energy Technology Data Exchange (ETDEWEB)
Ringstroem, Hans [Department of Mathematics, KTH, 100 44 Stockholm (Sweden)
2008-06-07
In 1952, Yvonne Choquet-Bruhat demonstrated that it makes sense to consider Einstein's vacuum equations from an initial value point of view; given initial data, there is a globally hyperbolic development. Since there are many developments, one does, however, not obtain uniqueness. This was remedied in 1969 when Choquet-Bruhat and Robert Geroch demonstrated that there is a unique maximal globally hyperbolic development (MGHD). Unfortunately, there are examples of initial data for which the MGHD is extendible, and, what is worse, extendible in inequivalent ways. Thus it is not possible to predict what spacetime one is in simply by looking at initial data and, in this sense, Einstein's equations are not deterministic. Since the examples exhibiting this behaviour are rather special, it is natural to conjecture that for generic initial data, the MGHD is inextendible. This conjecture is referred to as the strong cosmic censorship conjecture and is of central importance in mathematical relativity. In this paper, we shall describe this conjecture in detail, as well as its resolution in the special case of T{sup 3}-Gowdy spacetimes.
Strong cosmic censorship in the case of T3-Gowdy vacuum spacetimes
International Nuclear Information System (INIS)
Ringstroem, Hans
2008-01-01
In 1952, Yvonne Choquet-Bruhat demonstrated that it makes sense to consider Einstein's vacuum equations from an initial value point of view; given initial data, there is a globally hyperbolic development. Since there are many developments, one does, however, not obtain uniqueness. This was remedied in 1969 when Choquet-Bruhat and Robert Geroch demonstrated that there is a unique maximal globally hyperbolic development (MGHD). Unfortunately, there are examples of initial data for which the MGHD is extendible, and, what is worse, extendible in inequivalent ways. Thus it is not possible to predict what spacetime one is in simply by looking at initial data and, in this sense, Einstein's equations are not deterministic. Since the examples exhibiting this behaviour are rather special, it is natural to conjecture that for generic initial data, the MGHD is inextendible. This conjecture is referred to as the strong cosmic censorship conjecture and is of central importance in mathematical relativity. In this paper, we shall describe this conjecture in detail, as well as its resolution in the special case of T 3 -Gowdy spacetimes
Bianchi IX dynamics in bouncing cosmologies: homoclinic chaos and the BKL conjecture
Maier, Rodrigo; Damião Soares, Ivano; Valentino Tonini, Eduardo
2015-12-01
homoclinic orbits biasymptotic to the center manifold S 3. This behavior defines a chaotic saddle associated with S 3, indicating that the intersection points of the cylinders have the nature of a Cantor set with compact support S 2. This is an invariant signature of chaos in the model. We discuss the connection between these properties of the dynamics, namely the oscillatory approach to the bounce together with its chaotic behavior, and analogous features present in the BKL conjecture in general relativity.
Directory of Open Access Journals (Sweden)
S. Pascale
2012-01-01
Full Text Available The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m^{−2} K^{−1} of material entropy production is due to vertical heat transport and 5–7 mW m^{−2} K^{−1} to horizontal heat transport.
The approximate Loebl-Komlós-Sós Conjecture II: The rough structure of LKS graphs
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 983-1016 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics; Pure mathematics (UIVT-O) Impact factor: 0.755, year: 2016 http://epubs.siam.org/doi/10.1137/140982854
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 1072-1148 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics; Pure mathematics (UIVT-O) Impact factor: 0.755, year: 2016 http://epubs.siam.org/doi/10.1137/140982878
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 1072-1148 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics ; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics ; Pure mathematics (UIVT-O) Impact factor: 0.755, year: 2016 http://epubs.siam.org/doi/10.1137/140982878
The approximate Loebl-Komlós-Sós Conjecture II: The rough structure of LKS graphs
Czech Academy of Sciences Publication Activity Database
Hladký, Jan; Komlós, J.; Piguet, Diana; Simonovits, M.; Stein, M.; Szemerédi, E.
2017-01-01
Roč. 31, č. 2 (2017), s. 983-1016 ISSN 0895-4801 R&D Projects: GA MŠk(CZ) 1M0545 EU Projects: European Commission(XE) 628974 - PAECIDM Institutional support: RVO:67985840 ; RVO:67985807 Keywords : extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma Subject RIV: BA - General Mathematics ; BA - General Mathematics (UIVT-O) OBOR OECD: Pure mathematics ; Pure mathematics (UIVT-O) Impact factor: 0.755, year: 2016 http://epubs.siam.org/doi/10.1137/140982854
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Directory of Open Access Journals (Sweden)
E. H. Hara
2006-01-01
Full Text Available In this article, the hearing process is considered from a system engineering perspective. For those with total hearing loss, a cochlear implant is the only direct remedy. It first acts as a spectrum analyser and then electronically stimulates the neurons in the cochlea with a number of electrodes. Each electrode carries information on the separate frequency bands (i.e., spectrum of the original sound signal. The neurons then relay the signals in a parallel manner to the section of the brain where sound signals are processed. Photonic and tactile hearing systems displaying the spectrum of sound are proposed as alternative paths to the section of the brain that processes sound. In view of the plasticity of the brain, which can rewire itself, the following conjectures are offered. After a certain period of training, a person without the ability to hear should be able to decipher the patterns of photonic or tactile displays of the sound spectrum and learn to ‘hear’. This is very similar to the case of a blind person learning to ‘read’ by recognizing the patterns created by the series of bumps as their fingers scan the Braille writing. The conjectures are yet to be tested. Designs of photonic and tactile systems displaying the sound spectrum are outlined.
Directory of Open Access Journals (Sweden)
Rafael Del Valle Vega
2015-10-01
Full Text Available The Brualdi-Shen Conjecture on Eulerian Bipartite Tournaments states that any such graph can be decomposed into oriented 4-cycles. In this article we prove the balanced case of the mentioned conjecture. We show that for any $2n\\times 2n$ bipartite graph $G=(U\\cup V, E$ in which each vertex has $n$-neighbors with biadjacency matrix $M$ (or its transpose there is a proper edge coloring of a column permutation of $M$ denoted $M^{\\sigma}$ in which the nonzero entries of each of the $first$ $n$ columns are colored with elements from the set $\\{n+1, n+2, \\ldots, 2n\\}$ and the nonzero entries of each of the $last$ $n$ columns are colored with elements from the set $\\{1, 2, \\ldots, n\\}$ and if the nonzero entry $M^{\\sigma}_{r,j}$ is colored with color $i$ then $M^{\\sigma}_{r,i}$ must be a zero entry. Such a coloring will induce an oriented 4-cycle decomposition of the bipartite tournament corresponding to $M$. We achieve this by constructing an euler tour on the bipartite tournament which avoids traversing both pair of edges of any two internally disjoint $s$-$t$ 2-paths consecutively, where $s$ and $t$ belong to $V$.
Abortion: Strong's counterexamples fail
DEFF Research Database (Denmark)
Di Nucci, Ezio
2009-01-01
This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally...
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
1998-01-01
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
DEFF Research Database (Denmark)
Ehrig, Timo; Schmidt, Jens
2018-01-01
When strategists form conjectures about the future (such as whether a technol- ogy will solve a particular problem or what will be future sources of competitive advantage) they typically face multiple plausible but mutually contradictory possi- bilities, as the future may unfold in a myriad...... as ”un- willingness to give up”. Our results provide for a mechanism that allows managers to economize on their cognitive resources when resolving contradictions, and they also show that how managers resolve contradictions provides direction for their fur- ther search process. We develop propositions...... that are empirically testable and thus allow identifying boundary conditions of our results, and we discuss how our results may be useful to managers and teachers....
International Nuclear Information System (INIS)
Santilli, R.M.
1981-01-01
The objective of this paper is to present an outline of a number of criticisms of the quark models of hadron structure which have been present in the community of basic research for some time. The hope is that quark supporters will consider these criticisms and present possible counterarguments for a scientifically effective resolution of the issues. In particular, it is submitted that the problem of whether quarks exist as physical particles necessarily calls for the prior theoretical and experimental resolution of the question of the validity or invalidity, for hadronic structure, of the relativity and quantum mechanical laws established for atomic structure. The current theoretical studies leading to the conclusion that they are invalid are considered, together with the experimental situation. We also recall the doubts by Einstein, Fermi, Jordan, and others on the final character of contemporary physical knowledge. Most of all, this paper is an appeal to young minds of all ages. The possible invalidity for the strong interactions of the physical laws of the electromagnetic interactions, rather than constituting a scientific drawback, represents instead an invaluable impetus toward the search for covering laws specifically conceived for hadronic structure and strong interactions in general, a program which has already been initiated by a number of researchers. In turn, this situation appears to have all the ingredients for a new scientific renaissance, perhaps comparable to that of the early part of this century
International Nuclear Information System (INIS)
Santilli, R.M.
1981-01-01
The objective of this paper is to present an outline of a number of criticisms of the quark models of hadron structure which have been present in the community of basic research for some time. The hope is that quark supporters will consider these criticisms and present possible counterarguments for a scintifically effective resolution of the issues. In particular, it is submitted that the problem of whether quarks exist as physical particles necessarily calls for the prior theoretical and experimental resolution of the question of the validity or invalidity, for hadronic structure, of the relativity and quantum mechanical laws established for atomic structure. The current theoretical studies leading to the conclusion that they are invalid are considered, together with the experimental situation. We also recall the doubts by Einstein, Fermi, Jordan, and others on the final character of contemporary physical knowledge. Most of all, this paper is an appeal to young minds of all ages. The possible invalidity for the strong interactions of the physical laws of the electromagnetic interactions, rather than constituting a scientific drawback, represents instead an invaluable impetus toward the search for covering laws specifically conceived for hadronic structure and strong interactions in general, a program which has already been initiated by a number of researchers. In turn, this situation appears to have all the ingredients for a new scientific renaissance, perhaps comparable to that of the early part of this century
Dessi, Roberta; Rustichini, Aldo
2015-01-01
A large literature in psychology, and more recently in economics, has argued that monetary rewards can reduce intrinsic motivation. We investigate whether the negative impact persists when intrinsic motivation is strong, and test this hypothesis experimentally focusing on the motivation to undertake interesting and challenging tasks, informative about individual ability. We find that this type of task can generate strong intrinsic motivation, that is impervious to the effect of monetary incen...
Bitcoin Meets Strong Consistency
Decker, Christian; Seidel, Jochen; Wattenhofer, Roger
2014-01-01
The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new system, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certification authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar systems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state...
Strong gravity and supersymmetry
International Nuclear Information System (INIS)
Chamseddine, Ali H.; Salam, A.; Strathdee, J.
1977-11-01
A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group
Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models
Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil
2018-02-01
We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.
Probing strong-field general relativity near black holes
CERN. Geneva; Alvarez-Gaumé, Luís
2005-01-01
Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...
Directory of Open Access Journals (Sweden)
CHRISTOPHER H. TIENKEN
2008-04-01
Full Text Available Examining a popular political notion, this article presents results from a series of Spearman Rho calculations conducted to investigate relationships between countries’ rankings on international tests of mathematics and science and future economic competitiveness as measured by the 2006 World Economic Forum’s Growth Competitiveness Index (GCI. The study investigated the existence of relationships between international test rankings from three different time periods during the last 50 years of U.S. education policy development (i.e., 1957–1982, 1983–2000, and 2001–2006 and 2006 GCI ranks. It extends previous research on the topic by investigating how GCI rankings in the top 50 percent and bottom 50 percent relate to rankings on international tests for the countries that participated in each test. The study found that the relationship between ranks on international tests of mathematics and science and future economic strength is stronger among nations with lower-performing economies. Nations with strong economies, such as the United States, demonstrate a weaker, nonsignificant relationship.
Universality Conjecture and Results for a Model of Several Coupled Positive-Definite Matrices
Bertola, Marco; Bothner, Thomas
2015-08-01
The paper contains two main parts: in the first part, we analyze the general case of matrices coupled in a chain subject to Cauchy interaction. Similarly to the Itzykson-Zuber interaction model, the eigenvalues of the Cauchy chain form a multi level determinantal point process. We first compute all correlations functions in terms of Cauchy biorthogonal polynomials and locate them as specific entries of a matrix valued solution of a Riemann-Hilbert problem. In the second part, we fix the external potentials as classical Laguerre weights. We then derive strong asymptotics for the Cauchy biorthogonal polynomials when the support of the equilibrium measures contains the origin. As a result, we obtain a new family of universality classes for multi-level random determinantal point fields, which include the Bessel universality for 1-level and the Meijer-G universality for 2-level. Our analysis uses the Deift-Zhou nonlinear steepest descent method and the explicit construction of a origin parametrix in terms of Meijer G-functions. The solution of the full Riemann-Hilbert problem is derived rigorously only for p = 3 but the general framework of the proof can be extended to the Cauchy chain of arbitrary length p.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
International Nuclear Information System (INIS)
Marier, D.
1992-01-01
This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Plasmons in strong superconductors
International Nuclear Information System (INIS)
Baldo, M.; Ducoin, C.
2011-01-01
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.
Bories, Bart
2016-01-01
In 2011 Lemahieu and Van Proeyen proved the Monodromy Conjecture for the local topological zeta function of a non-degenerate surface singularity. The authors start from their work and obtain the same result for Igusa's p-adic and the motivic zeta function. In the p-adic case, this is, for a polynomial f\\in\\mathbf{Z}[x,y,z] satisfying f(0,0,0)=0 and non-degenerate with respect to its Newton polyhedron, we show that every pole of the local p-adic zeta function of f induces an eigenvalue of the local monodromy of f at some point of f^{-1}(0)\\subset\\mathbf{C}^3 close to the origin. Essentially the entire paper is dedicated to proving that, for f as above, certain candidate poles of Igusa's p-adic zeta function of f, arising from so-called B_1-facets of the Newton polyhedron of f, are actually not poles. This turns out to be much harder than in the topological setting. The combinatorial proof is preceded by a study of the integral points in three-dimensional fundamental parallelepipeds. Together with the work of L...
International Nuclear Information System (INIS)
Gorenstein, M. I.; Gazdzicki, M.
2011-01-01
Analysis of fluctuations of hadron production properties in collisions of relativistic particles profits from use of measurable intensive quantities which are independent of system size variations. The first family of such quantities was proposed in 1992; another is introduced in this paper. Furthermore we present a proof of independence of volume fluctuations for quantities from both families within the framework of the grand canonical ensemble. These quantities are referred to as strongly intensive ones. Influence of conservation laws and resonance decays is also discussed.
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
Strongly disordered superconductors
International Nuclear Information System (INIS)
Muttalib, K.A.
1982-01-01
We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Antonella Del Rosso
2016-01-01
Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO. The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...
Strongly interacting Higgs bosons
International Nuclear Information System (INIS)
Appelquist, T.; Bernard, C.
1980-01-01
The sensitivity of present-energy weak interactions to a strongly interacting heavy-Higgs-boson sector is discussed. The gauged nonlinear sigma model, which is the limit of the linear model as the Higgs-boson mass goes to infinity, is used to organize and catalogue all possible heavy-Higgs-boson effects. As long as the SU(2)/sub L/ x SU(2)/sub R/ symmetry of the Higgs sector is preserved, these effects are found to be small, of the order of the square of the gauge coupling times logarithms (but not powers) of the Higgs-boson mass divided by the W mass. We work in the context of a simplified model with gauge group SU(2)/sub L/; the extension to SU(2)/sub L/ x U(1) is briefly discussed
Ramm, D. J.
2015-06-01
We explore the possibly that either star-spots or pulsations are the cause of a periodic radial velocity (RV) signal (P ˜ 400 d) from the K-giant binary ν Octantis (P ˜ 1050 d, e ˜ 0.25), alternatively conjectured to have a retrograde planet. Our study is based on temperatures derived from 22 line-depth ratios (LDRs) for ν Oct and 20 calibration stars. Empirical evidence and stability modelling provide unexpected support for the planet since other standard explanations (star-spots, pulsations and additional stellar masses) each have credibility problems. However, the proposed system presents formidable challenges to planet formation and stability theories: it has by far the smallest stellar separation of any claimed planet-harbouring binary (a_{_bin} ˜ 2.6 au) and an equally unbelievable separation ratio (a_{_pl}/a_{_bin} ˜ 0.5), hence the necessity that the circumstellar orbit be retrograde. The LDR analysis of 215 ν Oct spectra acquired between 2001 and 2007, from which the RV perturbation was first revealed, have no significant periodicity at any frequency. The LDRs recover the original 21 stellar temperatures with an average accuracy of 45 ± 25 K. The 215 ν Oct temperatures have a standard deviation of only 4.2 K. Assuming the host primary is not pulsating, the temperatures converted to magnitude differences strikingly mimic the very stable photometric Hipparcos observations 15 years previously, implying the long-term stability of the star and demonstrating a novel use of LDRs as a photometric gauge. Our results provide substantial new evidence that conventional star-spots and pulsations are unlikely causes of the RV perturbation. The controversial system deserves continued attention, including with higher resolving-power spectra for bisector and LDR analyses.
The Virtual Reality Conjecture
Whitworth, Brian
2011-01-01
We take our world to be an objective reality, but is it? The assumption that the physical world exists in and of itself has struggled to assimilate the findings of modern physics for some time now. For example, an objective space and time would just "be", but in relativity, space contracts and time dilates. Likewise objective "things" should just inherently exist, but the entities of quantum theory are probability of existence smears, that spread, tunnel, superpose and entangle in physically ...
Strong-interaction nonuniversality
International Nuclear Information System (INIS)
Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.
1989-01-01
The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements
Wickens, F
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.
Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N
2017-11-22
The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.
Universal contact of strongly interacting fermions at finite temperatures
Energy Technology Data Exchange (ETDEWEB)
Hu Hui; Liu Xiaji; Drummond, Peter D, E-mail: hhu@swin.edu.au, E-mail: xiajiliu@swin.edu.au, E-mail: pdrummond@swin.edu.au [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)
2011-03-15
The recently discovered universal thermodynamic behavior of dilute, strongly interacting Fermi gases also implies a universal structure in the many-body pair-correlation function at short distances, as quantified by the contact I. Here, we theoretically calculate the temperature dependence of this universal contact for a Fermi gas in free space and in a harmonic trap. At high temperatures above the Fermi degeneracy temperature, T{approx}>T{sub F}, we obtain a reliable non-perturbative quantum virial expansion up to third order. At low temperatures, we compare different approximate strong-coupling theories. These make different predictions, which need to be tested either by future experiments or by advanced quantum Monte Carlo simulations. We conjecture that in the universal unitarity limit, the contact or correlation decreases monotonically with increasing temperature, unless the temperature is significantly lower than the critical temperature, T<
Weak cosmic censorship: as strong as ever.
Hod, Shahar
2008-03-28
Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.
Mehedi Faruk, Mir; Muktadir Rahman, Md
2016-03-01
The well known relation for ideal classical gas $\\Delta \\epsilon^2=kT^2 C_V$ which does not remain valid for quantum system is revisited. A new connection is established between energy fluctuation and specific heat for quantum gases, valid in the classical limit and the degenerate quantum regime as well. Most importantly the proposed Biswas-Mitra-Bhattacharyya (BMB) conjecture (Biswas $et.$ $al.$, J. Stat. Mech. P03013, 2015.) relating hump in energy fluctuation and discontinuity of specific heat is proved and precised in this manuscript.
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-e-Aleem; Rifique, M.
1987-03-01
The recent experimental measurements for anti-pp and ..cap alpha cap alpha.. elastic scattering at high energies have shown that the Chou-Yang conjecture regarding the relationship between the electromagnetic and the hadronic form factor of a particle is only an approximation. A new ansatz has been proposed to obtain hadronic form factors of proton and the ..cap alpha..-particle. These form factors have been used to explain the various characteristics of anti-pp, ..cap alpha cap alpha.. and p..cap alpha.. elastic scattering at high energies.
Huf, P. A.; Carminati, J.
2018-01-01
In this paper we explore the use of a new algebraic software package in providing independent covariant proof of a conjecture in general relativity. We examine the proof of two sub-cases of the shear-free conjecture σ =0 => ω Θ =0 by Senovilla et al. (Gen. Relativ. Gravit 30:389-411, 1998): case 1: for dust; case 2: for acceleration parallel to vorticity. We use TensorPack, a software package recently released for the Maple environment. In this paper, we briefly summarise the key features of the software and then demonstrate its use by providing and discussing examples of independent proofs of the paper in question. A full set of our completed proofs is available online at http://www.bach2roq.com/science/maths/GR/ShearFreeProofs.html. We are in agreeance with the equations provided in the original paper, noting that the proofs often require many steps. Furthermore, in our proofs we provide fully worked algebraic steps in such a way that the proofs can be examined systematically, and avoiding hand calculation. It is hoped that the elucidated proofs may be of use to other researchers in verifying the algebraic consistency of the expressions in the paper in question, as well as related literature. Furthermore we suggest that the appropriate use of algebraic software in covariant formalism could be useful for developing research and teaching in GR theory.
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Instabilities in strongly coupled plasmas
Kalman, G J
2003-01-01
The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.
Short proofs of strong normalization
Wojdyga, Aleksander
2008-01-01
This paper presents simple, syntactic strong normalization proofs for the simply-typed lambda-calculus and the polymorphic lambda-calculus (system F) with the full set of logical connectives, and all the permutative reductions. The normalization proofs use translations of terms and types to systems, for which strong normalization property is known.
International Nuclear Information System (INIS)
DeSantis, G.N.
1995-01-01
The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
Energy Technology Data Exchange (ETDEWEB)
Chang, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-11-07
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topological insulators can be induced by strong correlations alone.
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
Strong interactions at high energy
International Nuclear Information System (INIS)
Anselmino, M.
1995-01-01
Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics
Strong-field dissociation dynamics
International Nuclear Information System (INIS)
DiMauro, L.F.; Yang, Baorui.
1993-01-01
The strong-field dissociation behavior of diatomic molecules is examined under two distinctive physical scenarios. In the first scenario, the dissociation of the isolated hydrogen and deuterium molecular ions is discussed. The dynamics of above-threshold dissociation (ATD) are investigated over a wide range of green and infrared intensities and compared to a dressed-state model. The second situation arises when strong-field neutral dissociation is followed by ionization of the atomic fragments. The study results in a direct measure of the atomic fragment's ac-Stark shift by observing the intensity-dependent shifts in the electron or nuclear fragment kinetic energy. 8 figs., 14 refs
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Strong Decomposition of Random Variables
DEFF Research Database (Denmark)
Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.
2007-01-01
A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...... of a discrete random variable....
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
The colours of strong interaction
International Nuclear Information System (INIS)
1995-01-01
The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)
Strong cosmic censorship and the strong curvature singularities
International Nuclear Information System (INIS)
Krolak, A.
1987-01-01
Conditions are given under which any asymptotically simple and empty space-time that has a partial Cauchy surface with an asymptotically simple past is globally hyperbolic. It is shown that this result suggests that the Cauchy horizons of the type occurring in Reissner--Nordstroem and Kerr space-times are unstable. This in turn gives support for the validity of the strong cosmic censorship hypothesis
Strongly Correlated Systems Theoretical Methods
Avella, Adolfo
2012-01-01
The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...
Strongly correlated systems numerical methods
Mancini, Ferdinando
2013-01-01
This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...
Strongly correlated systems experimental techniques
Mancini, Ferdinando
2015-01-01
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...
Flavour Democracy in Strong Unification
Abel, S A; Abel, Steven; King, Steven
1998-01-01
We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.
Dynamics of hadron strong production and decay
International Nuclear Information System (INIS)
Burns, T. J.; Close, F. E.; Thomas, C. E.
2008-01-01
We generalize results of lattice QCD to determine the spin-dependent symmetries and factorization properties of meson production in Okubo-Zweig-Iizuka allowed processes. This explains some conjectures previously made in the literature about axial meson decays and gives predictions for exclusive decays of vector charmonia, including ways of establishing the structure of Y(4260) and Y(4325) from their S-wave decays. Factorization gives a selection rule which forbids e + e - →D*D 2 near threshold with the tensor meson in helicity 2. The relations among amplitudes for double charmonia production e + e - →ψ+χ 0,1,2 are expected to differ from the analogous relations among light flavor production such as e + e - →ωf 0,1,2
PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
International Nuclear Information System (INIS)
L'Huillier, A.
2002-01-01
When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)
Rydberg atoms in strong fields
International Nuclear Information System (INIS)
Kleppner, D.; Tsimmerman, M.
1985-01-01
Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented
Strong versions of Bell's theorem
International Nuclear Information System (INIS)
Stapp, H.P.
1994-01-01
Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption
Strongly interacting light dark matter
International Nuclear Information System (INIS)
Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo
2016-07-01
In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.
Weak consistency and strong paraconsistency
Directory of Open Access Journals (Sweden)
Gemma Robles
2009-11-01
Full Text Available In a standard sense, consistency and paraconsistency are understood as, respectively, the absence of any contradiction and as the absence of the ECQ (“E contradictione quodlibet” rule that allows us to conclude any well formed formula from any contradiction. The aim of this paper is to explain the concepts of weak consistency alternative to the standard one, the concepts of paraconsistency related to them and the concept of strong paraconsistency, all of which have been defined by the author together with José M. Méndez.
Energy Technology Data Exchange (ETDEWEB)
Dowrick, N.J. (Dept. of Physics, Oxford (United Kingdom)); McDougall, N.A. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))
1992-07-09
We show that two well-known solutions to the strong CP problem, the axion and a massless quark, may be understood in terms of the mechanism recently proposed by Samuel where long-range interactions between topological charges may be responsible for the removal of CP violation. We explain how the axion and a QCD meson (identified as the {eta}' if all quarks are massless) suppress fluctuations in global topological charge by almost identical dynamical although the masses, couplings and relevant length scales are very different. Furthermore, we elucidate the precise origin of the {eta}' mass. (orig.).
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Estimation of strong ground motion
International Nuclear Information System (INIS)
Watabe, Makoto
1993-01-01
Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event
Strong Mechanoluminescence from Oxynitridosilicate Phosphors
Energy Technology Data Exchange (ETDEWEB)
Zhang Lin; Xu Chaonan; Yamada, Hiroshi, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku, Tosu, Saga 841-0052 (Japan)
2011-10-29
We successfully developed a novel Mechanoluminescence (ML) material with water resistance, oxynitridosilicate; BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+}. The crystal structure, photoluminescence (PL) and ML properties were characterized. The ML of BaSi{sub 2}O{sub 2}N{sub 2}: Eu{sup 2+} is so strong that the blue-green emission can be observed by the naked eyes clearly. In addition, it shows superior water resistance property. No changes were found in the ML intensities during the total water treatment test.
Effective lagrangian for strong interactions
International Nuclear Information System (INIS)
Jain, P.
1988-01-01
We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
Strong Selective Adsorption of Polymers.
Ge, Ting; Rubinstein, Michael
2015-06-09
A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the
Strong growth for Queensland mining
Energy Technology Data Exchange (ETDEWEB)
1990-10-01
The Queensland mining industry experienced strong growth during 1989-90 as shown in the latest statistics released by the Department of Resource Industries. The total value of Queensland mineral and energy production rose to a new record of $5.1 billion, an increase of 16.5% on 1988-89 production. A major contributing factor was a 20.9 percent increase in the value of coal production. While the quantity of coal produced rose only 1.1 percent, the substantial increase in the value of coal production is attributable to higher coal prices negotiated for export contracts. In Australian dollar terms coal, gold, lead, zinc and crude oil on average experienced higher international prices than in the previous year. Only copper and silver prices declined. 3 tabs.
Strong moduli stabilization and phenomenology
Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A
2013-01-01
We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).
Strongly interacting W's and Z's
International Nuclear Information System (INIS)
Gaillard, M.K.
1984-01-01
The study focussed primarily on the dynamics of a strongly interacting W, Z(SIW) sector, with the aim of sharpening predictions for total W, Z yield and W, Z multiplicities expected from WW fusion for various scenarios. Specific issues raised in the context of the general problem of modeling SIW included the specificity of the technicolor (or, equivalently, QCD) model, whether or not a composite scalar model can be evaded, and whether the standard model necessarily implies an I = J = O state (≅ Higgs particle) that is relatively ''light'' (M ≤ hundreds of TeV). The consensus on the last issue was that existing arguments are inconclusive. While the author shall briefly address compositeness and alternatives to the technicolor model, quantitative estimates will be of necessity based on technicolor or an extrapolation of pion data
Uniquely Strongly Clean Group Rings
Institute of Scientific and Technical Information of China (English)
WANG XIU-LAN
2012-01-01
A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.
Electrophoresis in strong electric fields.
Barany, Sandor
2009-01-01
Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a
Strong Ideal Convergence in Probabilistic Metric Spaces
Indian Academy of Sciences (India)
In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...
Strong Statistical Convergence in Probabilistic Metric Spaces
Şençimen, Celaleddin; Pehlivan, Serpil
2008-01-01
In this article, we introduce the concepts of strongly statistically convergent sequence and strong statistically Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong statistical limit points and the strong statistical cluster points of a sequence in this space and investigate the relations between these concepts.
2006-01-01
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...
Remnants of strong tidal interactions
International Nuclear Information System (INIS)
Mcglynn, T.A.
1990-01-01
This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs
Strongly correlated perovskite fuel cells
Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram
2016-06-01
Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.
Strong seismic ground motion propagation
International Nuclear Information System (INIS)
Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.
1988-10-01
At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials
Conjecturing via Reconceived Classical Analogy
Lee, Kyeong-Hwa; Sriraman, Bharath
2011-01-01
Analogical reasoning is believed to be an efficient means of problem solving and construction of knowledge during the search for and the analysis of new mathematical objects. However, there is growing concern that despite everyday usage, learners are unable to transfer analogical reasoning to learning situations. This study aims at facilitating…
Cosmic censorship conjecture revisited: covariantly
International Nuclear Information System (INIS)
Hamid, Aymen I M; Goswami, Rituparno; Maharaj, Sunil D
2014-01-01
In this paper we study the dynamics of the trapped region using a frame independent semi-tetrad covariant formalism for general locally rotationally symmetric (LRS) class II spacetimes. We covariantly prove some important geometrical results for the apparent horizon, and state the necessary and sufficient conditions for a singularity to be locally naked. These conditions bring out, for the first time in a quantitative and transparent manner, the importance of the Weyl curvature in deforming and delaying the trapped region during continual gravitational collapse, making the central singularity locally visible. (paper)
Goyal, N.; Olver, N.K.; Shepherd, F.B.
2013-01-01
We consider the following network design problem. We are given an undirected graph G = (V,E) with edge costs c(e) and a set of terminal nodes W ⊆ V. A hose demand matrix is any symmetric matrix D, indexed by the terminals, such that for each i ∈ W, Σ
Strongly interacting photons and atoms
International Nuclear Information System (INIS)
Alge, W.
1999-05-01
This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Promoting Strong Written Communication Skills
Narayanan, M.
2015-12-01
The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987
Russia needs a strong counterpart
International Nuclear Information System (INIS)
Slovak, K.; Marcan, P.
2008-01-01
In this paper an interview with the head of OMV, Wolfgang Ruttenstorfer is published. There is extract from this interview: Q: There have been attempts to take over MOL for a quite long time. Do you think you can still succeed? Since the beginning we kept saying that this would not happen from one day to another. But it may take two to three years. But we are positive that it is justified. Q: Resistance from MOL and the Hungarian government is strong. We have tried to persuade the Hungarian government. We offered them a split company management. A part of the management would be in Budapest. We would locate the management of the largest division - the refinery, there. And of course only the best could be part of the management. We would not nominate people according to their nationality, it would not matter whether the person was Austrian, Hungarian or Slovak. We want a Central European company, not Hungarian, Romanian or Slovak company. Q: Would the transaction still be attractive if, because of pressure exercised by Brussels, you had to sell Slovnaft or your refinery in Szazhalobatta? We do not intend to sell any refineries. Q: Rumours are spreading that the Commission may ask you to sell a refinery? We do not want to speculate. Let us wait and see what happens. We do not want to sell refineries. Q: It is said that OMV is coordinating or at least consulting its attempts to acquire MOL with Gazprom. There are many rumours in Central Europe. But I can tell you this is not true. We are interested in this merger because we feel the increasing pressure exercised by Kazakhstan and Russia. We, of course, have a good relationship with Gazprom which we have had enjoyed for over forty years. As indeed Slovakia has. Q: A few weeks ago Austrian daily Wirtschaftsblatt published an article about Gazprom's interest in OMV shares. That is gossip that is more than ten years' old. Similarly to the rumours that Gazprom is a shareholder of MOL. There are no negotiations with Gazprom
International Nuclear Information System (INIS)
Sahoo, Pragati; Tiwari, Swatantra Kumar; De, Sudipan; Sahoo, Raghunath
2017-01-01
The main perspectives of Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory are to study the properties of the strongly interacting matter and to explore the conjectured Quantum Chromodynamics (QCD) phase diagram. Lattice QCD (lQCD) predicts a smooth crossover at vanishing baryon chemical potential (μ B ) and other QCD based theoretical models predicts first order phase transition at large μB. Searching of the Critical Point in the QCD phase diagram, finding the evidence and nature of phase transition, studying the properties of the matter formed in nuclear collisions as a function of √sNN are the main goals of RHIC. To investigate the nature of the matter produced at heavy-ion collisions, the thermodynamical and transport quantities like: energy density, shear viscosity etc. are studied. It is expected that the ratio of shear viscosity (η) to entropy density (s) would exhibit a minimum value near the QCD critical point
Hod, Shahar
2018-05-01
The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.
Elaboration of the recently proposed test of Pauli's principle under strong interactions
International Nuclear Information System (INIS)
Ktorides, C.N.; Myung, H.C.; Santilli, R.M.
1980-01-01
The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character
Strong magnetic fields and non equilibrium dynamics in QCD
Energy Technology Data Exchange (ETDEWEB)
Mueller, Niklas
2017-06-21
and topology is intriguing and often mysterious, yet central to many of the fundamental mechanisms of nature. As the anomalous violation of classical symmetries in the earliest stages of the universe is conjectured to be responsible for the dominance of matter over anti-matter, researchers attempt to recreate the dynamics of matter under extreme conditions at heavy ion collider experiments and thus understand these challenging mechanisms. In the early universe as well as in present day experiments the emergence of quantum anomalies is tied to out-of-equilibrium systems. In this thesis we focus on a comprehensive attempt at establishing the theoretical foundations of the non-equilibrium description of anomalous and topological dynamics. To this end we present a selection of different techniques and approximation schemes, which are motivated by the properties of the space-time evolution of QCD matter in ultra-relativistic heavy ion collisions. Most importantly we aim to illustrate that the techniques, which are presented here, are applicable to a number of systems in nature, starting from strong-field laser physics to cosmology. The nature of topological effects is much richer in out-of-equilibrium systems and in accord with present progress in the experimental study of anomalous effects, we hope to contribute to the establishment of a novel view on anomalies and topology beyond the previous equilibrium paradigm.
Energy Technology Data Exchange (ETDEWEB)
Boes, Roderick H.
2011-07-01
This book shows that matter and consciousness are intertwined and mutually produce. Quantum vacuum fluctuations ensure that the latent energy of each event is present as zero-point energy simultaneously at all points of the cosmos.
Slater, Paul B.
2018-04-01
We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of
Strong Bisimilarity of Simple Process Algebras
DEFF Research Database (Denmark)
Srba, Jirí
2003-01-01
We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv......) strong regularity of BPA. We also demonstrate NL-hardness of strong regularity problems for the normed subclasses of BPP and BPA. Bisimilarity problems of simple process algebras are introduced in a general framework of process rewrite systems, and a uniform description of the new techniques used...
Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations
Energy Technology Data Exchange (ETDEWEB)
Kwon, K.D.; Refson, K.; Bone, S.; Qiao, R.; Yang, W.; Liu, Z.; Sposito, G.
2010-11-01
Mackinawite is a naturally occurring layer-type FeS mineral important in biogeochemical cycles and, more recently, in the development of microbial fuel cells. Conflicting results have been published as to the magnetic properties of this mineral, with Moessbauer spectroscopy indicating no magnetic ordering down to 4.2 K but density functional theory (DFT) predicting an antiferromagnetic ground state, similar to the Fe-based high-temperature superconductors with which it is isostructural and for which it is known that magnetism is suppressed by strong itinerant spin fluctuations. We investigated this latter possibility for mackinawite using photoemission spectroscopy, near-edge x-ray absorption fine structure spectroscopy, and DFT computations. Our Fe 3{sub s} core-level photoemission spectrum of mackinawite showed a clear exchange-energy splitting (2.9 eV) consistent with a 1 {micro}{sub B} magnetic moment on the Fe ions, while the Fe L-edge x-ray absorption spectrum indicated rather delocalized Fe 3{sub d} electrons in mackinawite similar to those in Fe metal. Our DFT computations demonstrated that the ground state of mackinawite is single-stripe antiferromagnetic, with an Fe magnetic moment (2.7 {micro}{sub B}) that is significantly larger than the experimental estimate and has a strong dependence on the S height and lattice parameters. All of these trends signal the existence of strong itinerant spin fluctuations. If spin fluctuations prove to be mediators of electron pairing, we conjecture that mackinawite may be one of the simplest Fe-based superconductors.
Introduction to gauge theories of the strong, weak, and electromagnetic interactions
International Nuclear Information System (INIS)
Quigg, C.
1980-07-01
The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios
Application of strong phosphoric acid to radiochemistry
International Nuclear Information System (INIS)
Terada, Kikuo
1977-01-01
Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)
Karima, H. R.; Majidi, M. A.
2018-04-01
Excitons, quasiparticles associated with bound states between an electron and a hole and are typically created when photons with a suitable energy are absorbed in a solid-state material. We propose to study a possible emergence of excitons, created not by photon absorption but the effect of strong electronic correlations. This study is motivated by a recent experimental study of a substrate material SrTiO3 (STO) that reveals strong exitonic signals in its optical conductivity. Here we conjecture that some excitons may already exist in the ground state as a result of the electronic correlations before the additional excitons being created later by photon absorption. To investigate the existence of excitons in the ground state, we propose to study a simple 4-energy-level model that mimics a situation in strongly-correlated semiconductors. The four levels are divided into two groups, lower and upper groups separated by an energy gap, Eg , mimicking the valence and the conduction bands, respectively. Further, we incorporate repulsive Coulomb interactions between the electrons. The model is then solved by exact diagonalization method. Our result shows that the toy model can demonstrate band gap widening or narrowing and the existence of exciton in the ground state depending on interaction parameter values.
Strong Stationary Duality for Diffusion Processes
Fill, James Allen; Lyzinski, Vince
2014-01-01
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...
Strongly correlating liquids and their isomorphs
Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.
2010-01-01
This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...
Atom collisions in a strong electromagnetic field
International Nuclear Information System (INIS)
Smirnov, V.S.; Chaplik, A.V.
1976-01-01
It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed
Physics challenges in the strong interactions
International Nuclear Information System (INIS)
Ellis, S.D.
1992-01-01
The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders
Physics challenges in the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, S.D. [Univ. of Washington, Seattle (United States)
1992-12-31
The study of strong interactions is now a mature field for which scientist now know that the correct underlying theory is QCD. Here, an overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.
Theoretical studies of strongly correlated fermions
Energy Technology Data Exchange (ETDEWEB)
Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).
The strong reflecting property and Harrington's Principle
Cheng, Yong
2015-01-01
In this paper we characterize the strong reflecting property for $L$-cardinals for all $\\omega_n$, characterize Harrington's Principle $HP(L)$ and its generalization and discuss the relationship between the strong reflecting property for $L$-cardinals and Harrington's Principle $HP(L)$.
Strong Nash Equilibria and the Potential Maimizer
van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.
1996-01-01
A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class
Large N baryons, strong coupling theory, quarks
International Nuclear Information System (INIS)
Sakita, B.
1984-01-01
It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)
The lambda sigma calculus and strong normalization
DEFF Research Database (Denmark)
Schack-Nielsen, Anders; Schürmann, Carsten
Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus, ...
Optimization of strong and weak coordinates
Swart, M.; Bickelhaupt, F.M.
2006-01-01
We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation
78 FR 15710 - Strong Sensitizer Guidance
2013-03-12
... the supplemental definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science...'' definition, assist manufacturers in understanding how CPSC staff would assess whether a substance and/or...
Seismic switch for strong motion measurement
Harben, P.E.; Rodgers, P.W.; Ewert, D.W.
1995-05-30
A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.
Dual field theory of strong interactions
International Nuclear Information System (INIS)
Akers, D.
1987-01-01
A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137
Strong and superstrong pulsed magnetic fields generation
Shneerson, German A; Krivosheev, Sergey I
2014-01-01
Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.
Semi-strong split domination in graphs
Directory of Open Access Journals (Sweden)
Anwar Alwardi
2014-06-01
Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad
Strong-force theorists scoop Noble Prize
Durrani, Matin
2004-01-01
Three US theorists have shared the 2004 Nobel Prize in Physics "for the discovery of asymptotic freedom in the theory of the strong interaction". Their theoretical work explains why quarks behave almost as free particles at high energies (½ page)
Strong-coupling theory of superconductivity
International Nuclear Information System (INIS)
Rainer, D.; Sauls, J.A.
1995-01-01
The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)
Nuclear physics from strong coupling QCD
Fromm, Michael
2009-01-01
The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.
Modeling and synthesis of strong ground motion
Indian Academy of Sciences (India)
There have been many developments in modeling techniques, and ... damage life and property in a city or region. How- ... quake of 26 January 2001 as a case study. 2. ...... quake derived from a dense strong-motion network; Bull. Seismol.
Physics challenges in the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, S.D.
1991-01-01
An overview of the challenges to be faced in the area of the strong interactions during the 1990`s is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.
Physics challenges in the strong interactions
International Nuclear Information System (INIS)
Ellis, S.D.
1991-01-01
An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders
Strong interaction effects in hadronic atoms
International Nuclear Information System (INIS)
Kaufmann, W.B.
1977-01-01
The WKB method is applied to the calculation of strong interaction-induced level widths and shifts of hadronic atoms. The calculation, while elementary enough for undergraduate quantum mechanics students, gives a good account of kaonic and antiprotonic atom data
Perturbation of an exact strong gravity solution
International Nuclear Information System (INIS)
Baran, S.A.
1982-10-01
Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)
Calculating hadronic properties in strong QCD
International Nuclear Information System (INIS)
Pennington, M.R.
1996-01-01
This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)
Strong Coupling Corrections in Quantum Thermodynamics
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
The Charm and Beauty of Strong Interactions
El-Bennich, Bruno
2018-01-01
We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.
Interaction of strong electromagnetic fields with atoms
International Nuclear Information System (INIS)
Brandi, H.S.; Davidovich, L.; Zagury, N.
1982-06-01
Several non-linear processes involvoing the interaction of atoms with strong laser fields are discussed, with particular emphasis on the ionization problem. Non-perturbative methods which have been proposed to tackle this problem are analysed, and shown to correspond to an expansion in the intra-atomic potential. The relation between tunneling and multiphoton absorption as ionization mechanisms, and the generalization of Einstein's photoelectric equation to the strong-field case are discussed. (Author) [pt
Building strong brands – does it matter?
Aure, Kristin Gaaseide; Nervik, Kristine Dybvik
2014-01-01
Brand equity has proven, through several decades of research, to be a primary source of competitive advantage and future earnings (Yoo & Donthu, 2001). Building strong brands has therefore become a priority for many organizations, with the presumption that building strong brands yields these advantages (Yasin et al., 2007). A quantitative survey was conducted at Sunnmøre in Norway in order to answer the two developed research questions. - Does the brand equity dimensions; brand...
Algebra of strong and electroweak interactions
International Nuclear Information System (INIS)
Bolokhov, S.V.; Vladimirov, Yu.S.
2004-01-01
The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru
Manipulating light with strongly modulated photonic crystals
International Nuclear Information System (INIS)
Notomi, Masaya
2010-01-01
Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994
National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...
Energy Technology Data Exchange (ETDEWEB)
Hegedűs, Árpád; Konczer, József [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)
2016-08-09
In this paper, we solved numerically the Quantum Spectral Curve (QSC) equations corresponding to some twist-2 single trace operators with even spin from the sl(2) sector of AdS{sub 5}/CFT{sub 4} correspondence. We describe all technical details of the numerical method which are necessary to implement it in C++ language. In the S=2,4,6,8 cases, our numerical results confirm the analytical results, known in the literature for the first 4 coefficients of the strong coupling expansion for the anomalous dimensions of twist-2 operators. In the case of the Konishi operator, due to the high precision of the numerical data we could give numerical predictions to the values of two further coefficients, as well. The strong coupling behaviour of the coefficients c{sub a,n} in the power series representation of the P {sub a}-functions is also investigated. Based on our numerical data, in the regime, where the index of the coefficients is much smaller than λ{sup 1/4}, we conjecture that the coefficients have polynomial index dependence at strong coupling. This allows one to propose a strong coupling series representation for the P-functions being valid far enough from the real short cut. In the paper the qualitative strong coupling behaviour of the P-functions at the branch points is also discussed.
The extended reciprocity: Strong belief outperforms persistence.
Kurokawa, Shun
2017-05-21
The existence of cooperation is a mysterious phenomenon and demands explanation, and direct reciprocity is one key potential explanation for the evolution of cooperation. Direct reciprocity allows cooperation to evolve for cooperators who switch their behavior on the basis of information about the opponent's behavior. Here, relevant to direct reciprocity is information deficiency. When the opponent's last move is unknown, how should players behave? One possibility is to choose cooperation with some default probability without using any further information. In fact, our previous paper (Kurokawa, 2016a) examined this strategy. However, there might be beneficial information other than the opponent's last move. A subsequent study of ours (Kurokawa, 2017) examined the strategy which uses the own last move when the opponent's last move is unknown, and revealed that referring to the own move and trying to imitate it when information is absent is beneficial. Is there any other beneficial information else? How about strong belief (i.e., have infinite memory and believe that the opponent's behavior is unchanged)? Here, we examine the evolution of strategies with strong belief. Analyzing the repeated prisoner's dilemma game and using evolutionarily stable strategy (ESS) analysis against an invasion by unconditional defectors, we find the strategy with strong belief is more likely to evolve than the strategy which does not use information other than the opponent player's last move and more likely to evolve than the strategy which uses not only the opponent player's last move but also the own last move. Strong belief produces the extended reciprocity and facilitates the evolution of cooperation. Additionally, we consider the two strategies game between strategies with strong belief and any strategy, and we consider the four strategies game in which unconditional cooperators, unconditional defectors, pessimistic reciprocators with strong belief, and optimistic reciprocators with
Electromagnetic processes in strong crystalline fields
2007-01-01
We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.
Coherent Vortices in Strongly Coupled Liquids
International Nuclear Information System (INIS)
Ashwin, J.; Ganesh, R.
2011-01-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Coherent Vortices in Strongly Coupled Liquids
Ashwin, J.; Ganesh, R.
2011-04-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Strong Coupling between Plasmons and Organic Semiconductors
Directory of Open Access Journals (Sweden)
Joel Bellessa
2014-05-01
Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.
Institutionalizing Strong Sustainability: A Rawlsian Perspective
Directory of Open Access Journals (Sweden)
Konrad Ott
2014-02-01
Full Text Available The article aims to provide some ethical orientation on how sustainability might be actualized by institutions. Since institutionalization is about rules and organization, it presupposes ideas and concepts by which institutions can be substantiated. After outlining terminology, the article deals with underlying ethical and conceptual problems which are highly relevant for any suggestions concerning institutionalization. These problems are: (a the ethical scope of the sustainability perspective (natural capital, poverty, sentient animals, (b the theory of justice on which ideas about sustainability are built (capability approach, Rawlsianism, and (c the favored concept of sustainability (weak, intermediate, and strong sustainability. These problems are analyzed in turn. As a result, a Rawlsian concept of rule-based strong sustainability is proposed. The specific problems of institutionalization are addressed by applying Rawls’s concept of branches. The article concludes with arguments in favor of three transnational duties which hold for states that have adopted Rawlsian strong sustainability.
A theory of the strong interactions
International Nuclear Information System (INIS)
Gross, D.J.
1979-01-01
The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)
Electronic Structure of Strongly Correlated Materials
Anisimov, Vladimir
2010-01-01
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Strongly interacting matter in magnetic fields
Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung
2013-01-01
The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...
Analytical solution of strongly nonlinear Duffing oscillators
El-Naggar, A.M.; Ismail, G.M.
2016-01-01
In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε)α=α(ε) is defined such that the value of α is always small regardless of the magnitude of the original parameter εε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to αα. Approximate solution obtained by the present method is compared with the solution of energy balance m...
Strong WW scattering at photon linear colliders
International Nuclear Information System (INIS)
Berger, M.S.
1994-06-01
We investigate the possibility of observing strong interactions of longitudinally polarized weak vector bosons in the process γγ → ZZ at a photon linear collider. We make use of polarization of the photon beams and cuts on the decay products of the Z bosons to enhance the signal relative to the background of transversely polarized ZZ pairs. We find that the background overwhelms the signal unless there are strong resonant effects, as for instance from a technicolor analogue of the hadronic f 2 (1270) meson
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Universal behavior of strongly correlated Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)
2007-06-30
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
Universal behavior of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G
2007-01-01
This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)
De Sitter vacua of strongly interacting QFT
Energy Technology Data Exchange (ETDEWEB)
Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada)
2017-03-22
We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.
Optical spectral weight anomalies and strong correlation
International Nuclear Information System (INIS)
Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.
2007-01-01
The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value
Strong cosmic censorship in de Sitter space
Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.
2018-05-01
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
Natural strong CP conservation in flipped physics
Energy Technology Data Exchange (ETDEWEB)
Frampton, P.H. (Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC (USA)); Kephart, T.W. (Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (USA))
1990-08-13
A natural axion-free solution of the strong {ital CP} problem {ital at} {ital tree} {ital level} is noted within an E(6) grand unified theory. Using this as a springboard, it is shown that several flipped SU(5) theories which occur in superstring phenomenology contain within them a mechanism which enforces {bar {theta}}=0 at high accuracy.
Riesz basis for strongly continuous groups.
Zwart, Heiko J.
Given a Hilbert space and the generator of a strongly continuous group on this Hilbert space. If the eigenvalues of the generator have a uniform gap, and if the span of the corresponding eigenvectors is dense, then these eigenvectors form a Riesz basis (or unconditional basis) of the Hilbert space.
Earthquake source model using strong motion displacement
Indian Academy of Sciences (India)
The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...
Cosmological applications of strong gravitational lensing
DEFF Research Database (Denmark)
Paraficz, Danuta
value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...
Discrete symmetries, strong CP problem and gravity
International Nuclear Information System (INIS)
Senjanovic, G.
1993-05-01
Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs
Phase transition from strong-coupling expansion
International Nuclear Information System (INIS)
Polonyi, J.; Szlachanyi, K.
1982-01-01
Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)
The stability of the strong gravity solution
International Nuclear Information System (INIS)
Baran, S.A.
1978-01-01
The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Strong motion duration and earthquake magnitude relationships
International Nuclear Information System (INIS)
Salmon, M.W.; Short, S.A.; Kennedy, R.P.
1992-06-01
Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions
Strong imploding shock, the representative curve
International Nuclear Information System (INIS)
Mishkin, E.A.; Alejaldre, C.
1981-01-01
The representative curve of the ideal gas behind the front of a spherically, or cylindrically, symmetric strong imploding shock is shown to pass through the point where the reduced pressure is maximum, P(xisub(m)) = Psub(m)sub(a)sub(x). (orig.)
Reducing Weak to Strong Bisimilarity in CCP
Directory of Open Access Journals (Sweden)
Andrés Aristizábal
2012-12-01
Full Text Available Concurrent constraint programming (ccp is a well-established model for concurrency that singles out the fundamental aspects of asynchronous systems whose agents (or processes evolve by posting and querying (partial information in a global medium. Bisimilarity is a standard behavioural equivalence in concurrency theory. However, only recently a well-behaved notion of bisimilarity for ccp, and a ccp partition refinement algorithm for deciding the strong version of this equivalence have been proposed. Weak bisimiliarity is a central behavioural equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this paper we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm for deciding this equivalence.
Physics challenges in the strong interactions
Energy Technology Data Exchange (ETDEWEB)
Ellis, S.D.
1991-01-01
An overview of the challenges to be faced in the area of the strong interactions during the 1990's is presented. As an illustrative example special attention is given to the analysis of jets as studied at hadron colliders.
Strongly \\'etale difference algebras and Babbitt's decomposition
Tomašić, Ivan; Wibmer, Michael
2015-01-01
We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.
Strongly coupled semidirect mediation of supersymmetry breaking
International Nuclear Information System (INIS)
Ibe, M.; Izawa, K.-I.; Nakai, Y.
2009-01-01
Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.
Strong Turbulence in Low-beta Plasmas
DEFF Research Database (Denmark)
Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling
1980-01-01
An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....
Strong industrial base vital for economic revival
2001-01-01
At the inauguration of a 2-day conference on nuclear technology in Islamabad, the chairman of PAEC said that Pakistan needs to develop a strong industrial base and capability to export equipment to improve the economic condition of the country. He descibed how Pakistan has already had a breakthrough with the export of equipment to CERN, Geneva (1 page).
Strong field control of predissociation dynamics.
Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis
2013-01-01
Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.
Bottomonia: open bottom strong decays and spectrum
Directory of Open Access Journals (Sweden)
Santopinto E.
2014-05-01
Full Text Available We present our results for the bottomonium spectrum with self energy corrections. The bare masses used in the calculation are computed within Godfrey and Isgur’s relativized quark model. We also discuss our results for the open bottom strong decay widths of higher bottomonia in the 3P0 pair-creation model.
Strong and Reversible Monovalent Supramolecular Protein Immobilization
Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc
2010-01-01
Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The
Steering neutral atoms in strong laser fields
International Nuclear Information System (INIS)
Eilzer, S; Eichmann, U
2014-01-01
The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)
Rotating compressible fluids under strong stratification
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Lu, Y.; Novotný, A.
2014-01-01
Roč. 19, October (2014), s. 11-18 ISSN 1468-1218 Keywords : rotating fluid * compressible Navier-Stokes * strong stratification Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121814000212#
Spin Wave Theory of Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1977-01-01
A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...
Black holes and the strong cosmic censorship
International Nuclear Information System (INIS)
Krolak, A.
1984-01-01
The theory of black holes developed by Hawking in asymptotically flat space-times is generalized so that black holes in the cosmological situations are included. It is assumed that the strong version of the Penrose cosmic censorship hypothesis holds. (author)
Patterns of strong coupling for LHC searches
Energy Technology Data Exchange (ETDEWEB)
Liu, Da [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, People’s Republic of (China); Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Pomarol, Alex [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland); Dept. de Física and IFAE-BIST,Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Rattazzi, Riccardo [Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Riva, Francesco [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland)
2016-11-23
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or WW scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.
Strong drifts effects on neoclassical transport
International Nuclear Information System (INIS)
Tessarotto, M.; Gregoratto, D.; White, R.B.
1996-01-01
It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature
Super symmetry in strong and weak interactions
International Nuclear Information System (INIS)
Seshavatharam, U.V.S.; Lakshminarayana, S.
2010-01-01
For strong interaction two new fermion mass units 105.32 MeV and 11450 MeV are assumed. Existence of "Integral charge quark bosons", "Integral charge effective quark fermions", "Integral charge (effective) quark fermi-gluons" and "Integral charge quark boso-gluons" are assumed and their masses are estimated. It is noticed that, characteristic nuclear charged fermion is X s · 105.32 = 938.8 MeV and corresponding charged boson is X s (105.32/x) = 415.0 where X s = 8.914 is the inverse of the strong coupling constant and x = 2.26234 is a new number by using which "super symmetry" can be seen in "strong and weak" interactions. 11450 MeV fermion and its boson of mass = 11450/x = 5060 MeV plays a crucial role in "sub quark physics" and "weak interaction". 938.8 MeV strong fermion seems to be the proton. 415 MeV strong boson seems to be the mother of the presently believed 493,496 and 547 MeV etc, strange mesons. With 11450 MeV fermion "effective quark-fermi-gluons" and with 5060 MeV boson "quark boso-gluon masses" are estimated. "Effective quark fermi-gluons" plays a crucial role in ground state charged baryons mass generation. Light quark bosons couple with these charged baryons to form doublets and triplets. "Quark boso-gluons" plays a crucial role in ground state neutral and charged mesons mass generation. Fine and super-fine rotational levels can be given by [I or (I/2)] power(1/4) and [I or (I/2)] power(1/12) respectively. Here, I = n(n+1) and n = 1, 2, 3, … (author)
Strong dynamics and lattice gauge theory
Schaich, David
In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses
Waves in strong centrifugal fields: dissipationless gas
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2015-04-01
Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.
Hydrogen atoms in a strong magnetic field
International Nuclear Information System (INIS)
Santos, R.R. dos.
1975-07-01
The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt
Strongly not relatives Kähler manifolds
Directory of Open Access Journals (Sweden)
Zedda Michela
2017-02-01
Full Text Available In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter families of Bergman-Hartogs and Fock-Bargmann-Hartogs domains are strongly not relative to projective Kähler manifolds.
Strong ground motion prediction using virtual earthquakes.
Denolle, M A; Dunham, E M; Prieto, G A; Beroza, G C
2014-01-24
Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.
Analytical solution of strongly nonlinear Duffing oscillators
Directory of Open Access Journals (Sweden)
A.M. El-Naggar
2016-06-01
Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.
Cosmogenic photons strongly constrain UHECR source models
Directory of Open Access Journals (Sweden)
van Vliet Arjen
2017-01-01
Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.
New strong interactions above the electroweak scale
International Nuclear Information System (INIS)
White, A.R.
1994-01-01
Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed
Quantum strongly secure ramp secret sharing
DEFF Research Database (Denmark)
Zhang, Paul; Matsumoto, Rytaro Yamashita
2015-01-01
Quantum secret sharing is a scheme for encoding a quantum state (the secret) into multiple shares and distributing them among several participants. If a sufficient number of shares are put together, then the secret can be fully reconstructed. If an insufficient number of shares are put together...... however, no information about the secret can be revealed. In quantum ramp secret sharing, partial information about the secret is allowed to leak to a set of participants, called an unqualified set, that cannot fully reconstruct the secret. By allowing this, the size of a share can be drastically reduced....... This paper introduces a quantum analog of classical strong security in ramp secret sharing schemes. While the ramp secret sharing scheme still leaks partial information about the secret to unqualified sets of participants, the strong security condition ensures that qudits with critical information can...
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Equilibrium and stability in strongly inhomogeneous plasmas
International Nuclear Information System (INIS)
Mynick, H.E.
1978-10-01
The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability
Orbits in weak and strong bars
Contopoulos, George
1980-01-01
The authors study the plane orbits in simple bar models embedded in an axisymmetric background when the bar density is about 1% (weak), 10% (intermediate) or 100% (strong bar) of the axisymmetric density. Most orbits follow the stable periodic orbits. The basic families of periodic orbits are described. In weak bars with two Inner Lindblad Resonances there is a family of stable orbits extending from the center up to the Outer Lindblad Resonance. This family contains the long period orbits near corotation. Other stable families appear between the Inner Lindblad Resonances, outside the Outer Lindblad Resonance, around corotation (short period orbits) and around the center (retrograde). Some families become unstable or disappear in strong bars. A comparison is made with cases having one or no Inner Lindblad Resonance. (12 refs).
Marital Expectations in Strong African American Marriages.
Vaterlaus, J Mitchell; Skogrand, Linda; Chaney, Cassandra; Gahagan, Kassandra
2017-12-01
The current exploratory study utilized a family strengths framework to identify marital expectations in 39 strong African American heterosexual marriages. Couples reflected on their marital expectations over their 10 or more years of marriage. Three themes emerged through qualitative analysis and the participants' own words were used in the presentation of the themes. African Americans indicated that there was growth in marital expectations over time, with marital expectations often beginning with unrealistic expectations that grew into more realistic expectations as their marriages progressed. Participants also indicated that core expectations in strong African American marriages included open communication, congruent values, and positive treatment of spouse. Finally, participants explained there is an "I" in marriage as they discussed the importance of autonomy within their marital relationships. Results are discussed in association with existing research and theory. © 2016 Family Process Institute.
Strong spin-photon coupling in silicon
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Electrons in a strong magnetic field
International Nuclear Information System (INIS)
Itzykson, C.
1985-05-01
We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited
Magnetic properties of strongly asymmetric nuclear matter
International Nuclear Information System (INIS)
Kutschera, M.; Wojcik, W.
1988-01-01
We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)
Strong coupling analogue of the Born series
International Nuclear Information System (INIS)
Dolinszky, T.
1989-10-01
In a given partial wave, the strength of the centrifugal term to be incorporated into the WKBA solutions in different spatial regions can be adjusted so as to make the first order wave functions everywhere smooth and, in strong coupling, exactly reproduce Quantum Mechanics throughout the space. The relevant higher order approximations supply an absolute convergent series expansion of the exact scattering state. (author) 4 refs.; 2 figs.; 2 tabs
Strong disorder RG approach of random systems
International Nuclear Information System (INIS)
Igloi, Ferenc; Monthus, Cecile
2005-01-01
There is a large variety of quantum and classical systems in which the quenched disorder plays a dominant ro-circumflex le over quantum, thermal, or stochastic fluctuations: these systems display strong spatial heterogeneities, and many averaged observables are actually governed by rare regions. A unifying approach to treat the dynamical and/or static singularities of these systems has emerged recently, following the pioneering RG idea by Ma and Dasgupta and the detailed analysis by Fisher who showed that the Ma-Dasgupta RG rules yield asymptotic exact results if the broadness of the disorder grows indefinitely at large scales. Here we report these new developments by starting with an introduction of the main ingredients of the strong disorder RG method. We describe the basic properties of infinite disorder fixed points, which are realized at critical points, and of strong disorder fixed points, which control the singular behaviors in the Griffiths-phases. We then review in detail applications of the RG method to various disordered models, either (i) quantum models, such as random spin chains, ladders and higher dimensional spin systems, or (ii) classical models, such as diffusion in a random potential, equilibrium at low temperature and coarsening dynamics of classical random spin chains, trap models, delocalization transition of a random polymer from an interface, driven lattice gases and reaction diffusion models in the presence of quenched disorder. For several one-dimensional systems, the Ma-Dasgupta RG rules yields very detailed analytical results, whereas for other, mainly higher dimensional problems, the RG rules have to be implemented numerically. If available, the strong disorder RG results are compared with another, exact or numerical calculations
Strong, Ductile Rotor For Cryogenic Flowmeters
Royals, W. T.
1993-01-01
Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.
Hemingway's Scar and His Strong Will
Institute of Scientific and Technical Information of China (English)
许颖
2009-01-01
Hemingway's inner world is not balanced He had a strong will,and on the other hand,he is hurt severely.Based on the analysis of Hemingway's experience and his works,the paper aims to study Hemingway's life attitude:Men,all sooner or later,go down to defeat:it is how they face the ordeal that determines their status.
Strongly stable real infinitesimally symplectic mappings
Cushman, R.; Kelley, A.
We prove that a mapA εsp(σ,R), the set of infinitesimally symplectic maps, is strongly stable if and only if its centralizerC(A) insp(σ,R) contains only semisimple elements. Using the theorem that everyB insp(σ,R) close toA is conjugate by a real symplectic map to an element ofC(A), we give a new
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Strong beam production for some elements
International Nuclear Information System (INIS)
Camplan, J.; Chaumont, J.; Meunier, R.
1974-01-01
Three electromagnetic isotope separators are installed in Rene Bernas Laboratory, one being especially adapted to ion implantation. The three apparatus use the same type of ion source and system of beam extraction. The special ion source is distinguishable from the others only by its smaller dimensions. These sources allow strong currents to be obtained for almost every element. The source and its extraction system are briefly described, examples of beams obtained are given [fr
Simulation of turbulent flows containing strong shocks
International Nuclear Information System (INIS)
Fryxell, Bruce; Menon, Suresh
2008-01-01
Simulation of turbulent flows with strong shocks is a computationally challenging problem. The requirements for a method to produce accurate results for turbulence are orthogonal to those needed to treat shocks properly. In order to prevent an unphysical rate of decay of turbulent structures, it is necessary to use a method with very low numerical dissipation. Because of this, central difference schemes are widely used. However, computing strong shocks with a central difference scheme can produce unphysical post-shock oscillations that corrupt the entire flow unless additional dissipation is added. This dissipation can be difficult to localize to the area near the shock and can lead to inaccurate treatment of the turbulence. Modern high-resolution shock-capturing methods usually use upwind algorithms to provide the dissipation necessary to stabilize shocks. However, this upwind dissipation can also lead to an unphysical rate of decay of the turbulence. This paper discusses a hybrid method for simulating turbulent flows with strong shocks that couples a high-order central difference scheme with a high-resolution shock-capturing method. The shock-capturing method is used only in the vicinity of discontinuities in the flow, whereas the central difference scheme is used in the remainder of the computational domain. Results of this new method will be shown for a variety of test problems. Preliminary results for a realistic application involving detonation in gas-particle flows will also be presented.
Transport phenomena in strongly correlated Fermi liquids
International Nuclear Information System (INIS)
Kontani, Hiroshi
2013-01-01
Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.
Strong CP, flavor, and twisted split fermions
International Nuclear Information System (INIS)
Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri
2005-01-01
We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)
Prevention of strong earthquakes: Goal or utopia?
Mukhamediev, Sh. A.
2010-11-01
In the present paper, we consider ideas suggesting various kinds of industrial impact on the close-to-failure block of the Earth’s crust in order to break a pending strong earthquake (PSE) into a number of smaller quakes or aseismic slips. Among the published proposals on the prevention of a forthcoming strong earthquake, methods based on water injection and vibro influence merit greater attention as they are based on field observations and the results of laboratory tests. In spite of this, the cited proofs are, for various reasons, insufficient to acknowledge the proposed techniques as highly substantiated; in addition, the physical essence of these methods has still not been fully understood. First, the key concept of the methods, namely, the release of the accumulated stresses (or excessive elastic energy) in the source region of a forthcoming strong earthquake, is open to objection. If we treat an earthquake as a phenomenon of a loss in stability, then, the heterogeneities of the physicomechanical properties and stresses along the existing fault or its future trajectory, rather than the absolute values of stresses, play the most important role. In the present paper, this statement is illustrated by the classical examples of stable and unstable fractures and by the examples of the calculated stress fields, which were realized in the source regions of the tsunamigenic earthquakes of December 26, 2004 near the Sumatra Island and of September 29, 2009 near the Samoa Island. Here, just before the earthquakes, there were no excessive stresses in the source regions. Quite the opposite, the maximum shear stresses τmax were close to their minimum value, compared to τmax in the adjacent territory. In the present paper, we provide quantitative examples that falsify the theory of the prevention of PSE in its current form. It is shown that the measures for the prevention of PSE, even when successful for an already existing fault, can trigger or accelerate a catastrophic
The INGV Real Time Strong Motion Database
Massa, Marco; D'Alema, Ezio; Mascandola, Claudia; Lovati, Sara; Scafidi, Davide; Gomez, Antonio; Carannante, Simona; Franceschina, Gianlorenzo; Mirenna, Santi; Augliera, Paolo
2017-04-01
The INGV real time strong motion data sharing is assured by the INGV Strong Motion Database. ISMD (http://ismd.mi.ingv.it) was designed in the last months of 2011 in cooperation among different INGV departments, with the aim to organize the distribution of the INGV strong-motion data using standard procedures for data acquisition and processing. The first version of the web portal was published soon after the occurrence of the 2012 Emilia (Northern Italy), Mw 6.1, seismic sequence. At that time ISMD was the first European real time web portal devoted to the engineering seismology community. After four years of successfully operation, the thousands of accelerometric waveforms collected in the archive need necessary a technological improvement of the system in order to better organize the new data archiving and to make more efficient the answer to the user requests. ISMD 2.0 was based on PostgreSQL (www.postgresql.org), an open source object- relational database. The main purpose of the web portal is to distribute few minutes after the origin time the accelerometric waveforms and related metadata of the Italian earthquakes with ML≥3.0. Data are provided both in raw SAC (counts) and automatically corrected ASCII (gal) formats. The web portal also provide, for each event, a detailed description of the ground motion parameters (i.e. Peak Ground Acceleration, Velocity and Displacement, Arias and Housner Intensities) data converted in velocity and displacement, response spectra up to 10.0 s and general maps concerning the recent and the historical seismicity of the area together with information about its seismic hazard. The focal parameters of the events are provided by the INGV National Earthquake Center (CNT, http://cnt.rm.ingv.it). Moreover, the database provides a detailed site characterization section for each strong motion station, based on geological, geomorphological and geophysical information. At present (i.e. January 2017), ISMD includes 987 (121
77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities
2012-03-20
... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... enable them to develop and implement economic strategies to become more competitive, sustainable, and... resources to develop and implement their economic vision and strategies. Sec. 2. White House Council on...
Numerical Calculation of the Phase Space Density for the Strong-Strong Beam-Beam Interaction
International Nuclear Information System (INIS)
Sobol, A.; Ellison, J.A.
2003-01-01
We developed a parallel code to calculate the evolution of the 4D phase space density of two colliding beams, which are coupled via the collective strong-strong beam-beam interaction, in the absence of diffusion and damping, using the Perron-Frobenius (PF) operator technique
DeVoe, Ellen R.; Paris, Ruth
2015-01-01
Through Strong Families Strong Forces, a reflective parenting program for military families with young children, we were privileged to work with contemporary military fathers who served in the post-9/11 conflicts in Afghanistan and Iraq. Due to this work, the authors gained valuable insight into the complexity of fathering during wartime, the…
Renormalization in theories with strong vector forces
International Nuclear Information System (INIS)
Kocic, A.
1991-01-01
There are not many field theories in four dimensions that have sensible ultraviolet and interesting (non-trivial) infrared behavior. At present, asymptotically free theories seem to have deserved their legitimacy and there is a strong prejudice that they might be the only ones to have such a distinction. This belief stems mostly from the fact that most of the knowledge of field theory in four dimensions comes from perturbation theory. However, nonperturbative studies of the lower dimensional theories reveal a host of interesting phenomena that are perturbative studies of the lower dimensional theories reveal a host of interesting phenomena that perturbatively inaccessible. The lack of asymptotic freedom implies that the coupling constant grows at short distances and perturbation theory breaks down. Thus, in such theories, ultraviolet behavior requires nonperturbative treatment. Recently, the interest in strongly coupled gauge theories has been revived. In particularly, four dimensional quantum electrodynamics has received considerable attention. This was motivated by the discovery of an ultraviolet stable fixed point at strong couplings. If this fixed point would turn out to be non-gaussian, then QED would be the first nontrivial nonasymptotically free theory in four dimensions. The importance of such a result would be twofold. First, the old question of the existence of QED could be settled. Of course, this would be the case provided that the low energy limit of the theory actually describes photons and electrons; apriori, there is no reason to assume this. Second, the discovery of a nontrivial nonasymptotically free theory would be of great paradigmatic value. The theories which quenched QED resembles the most are nonabelian gauge theories with many flavors with beta-function positive or vanishing at weak couplings. These theories are at present considered as viable candidates for technicolor unification schemes
Many Body Structure of Strongly Interacting Systems
Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI
2006-01-01
This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.
The Dark Side of Strongly Coupled Theories
DEFF Research Database (Denmark)
Kouvaris, Christoforos
2008-01-01
We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...
Hawking radiation and strong gravity black holes
International Nuclear Information System (INIS)
Qadir, A.; Sayed, W.A.
1979-01-01
It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)
Strong piezoelectricity in bioinspired peptide nanotubes.
Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil
2010-02-23
We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.
Phase diagram of strongly correlated Fermi systems
International Nuclear Information System (INIS)
Zverev, M.V.; Khodel', V.A.; Baldo, M.
2000-01-01
Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru
Strong Interaction Studies with PANDA at FAIR
Schönning, Karin
2016-10-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.
Strong Interaction Studies with PANDA at FAIR
International Nuclear Information System (INIS)
Schönning, Karin
2016-01-01
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme
Development of a strong electromagnet wiggler
International Nuclear Information System (INIS)
Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.
1987-01-01
The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs
Calorimetric measurement of strong γ emitting sources
International Nuclear Information System (INIS)
Brangier, B.; Herczeg, C.; Henry, R.
1968-01-01
This publication gives the principle and a description of an adiabatic calorimeter for measuring the real activity of strong gamma-emitting sources by absorbing the emitted energy in a mass of copper. Because of the difficulty of evaluating the amount self- absorption, we have built a calorimeter for measuring the self- absorption, and a description of it is given.The results of these three measurements are fairly satisfactory. The calibration and the actual measurements obtained are given with a few corrections made necessary by the design of the apparatus. The correlation of the various results is discussed. (author) [fr
Unification of electromagnetic, strong and weak interaction
International Nuclear Information System (INIS)
Duong Van Phi; Duong Anh Duc
1993-09-01
The Unification of Electromagnetic, Strong and Weak Interactions is realized in the framework of the Quantum Field Theory, established in an 8-dimensional Unified Space. Two fundamental, spinor and vector field equations are considered. The first of the matter particles and the second is of the gauge particles. Interaction Lagrangians are formed from the external and internal currents and the external and internal vector field operators. Generators of the local gauge transformations are the combinations of the matrices of the first field equation. (author). 15 refs
Gravitational leptogenesis, C, CP and strong equivalence
International Nuclear Information System (INIS)
McDonald, Jamie I.; Shore, Graham M.
2015-01-01
The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.
Strongly interacting Higgs sector without technicolor
International Nuclear Information System (INIS)
Liu Chuan; Kuti, J.
1994-12-01
Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)
Strong signatures of right-handed compositeness
Energy Technology Data Exchange (ETDEWEB)
Redi, Michele [INFN, Sesto Fiorentino, Firenze (Italy); Sanz, Veronica [York Univ., Toronto, ON (Canada). Dept. of Physics and Astronomy; Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Vries, Maikel de; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-05-15
Right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, that are motivated by flavor physics, one expects large cross sections for the production of new resonances coupled to light quarks. We study experimental strong signatures of right-handed compositeness at the LHC, and constrain the parameter space of these models with recent results by ATLAS and CMS. We show that the LHC sensitivity could be significantly improved if dedicated searches were performed, in particular in multi-jet signals.
Bright branes for strongly coupled plasmas
International Nuclear Information System (INIS)
Mateos, David; Patino, Leonardo
2007-01-01
We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
Strong coupling transmutation of Yukawa theory
International Nuclear Information System (INIS)
Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.
1981-01-01
In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)
Categorization of States Beyond Strong and Weak
Directory of Open Access Journals (Sweden)
Peter Tikuisis
2017-09-01
Full Text Available The discourse on poor state performers has suffered from widely varying definitions on what distinguishes certain weak states from others. Indices that rank states from strong to weak conceal important distinctions that can adversely affect intervention policy. This deficiency is addressed by grouping states according to their performance on three dimensions of statehood: authority, legitimacy, and capacity. The resultant categorization identifies brittle states that are susceptible to regime change, impoverished states often considered as aid darlings, and fragile states that experience disproportionately high levels of violent internal conflict. It also provides a quantifiable means to analyze transitions from one state type to another for more insightful intervention policy.
Strong Interactions Physics at BaBar
Energy Technology Data Exchange (ETDEWEB)
Pioppi, M.
2005-03-14
Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.
Gravitational leptogenesis, C, CP and strong equivalence
Energy Technology Data Exchange (ETDEWEB)
McDonald, Jamie I.; Shore, Graham M. [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)
2015-02-12
The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.
International Nuclear Information System (INIS)
Chidume, C.E.
1994-03-01
Let E be a real q-uniformly smooth Banach space. Suppose T is a strongly pseudo-contractive map with open domain D(T) in E. Suppose further that T has a fixed point in D(T). Under various continuity assumptions on T it is proved that each of the Mann iteration process or the Ishikawa iteration method converges strongly to the unique fixed point of T. Related results deal with iterative solutions of nonlinear operator equations involving strongly accretive maps. Explicit error estimates are also provided. (author). 38 refs
A strongly interacting polaritonic quantum dot
Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan
2018-06-01
Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.
Between strong continuity and almost continuity
Directory of Open Access Journals (Sweden)
J.K. Kohli
2010-04-01
Full Text Available As embodied in the title of the paper strong and weak variants of continuity that lie strictly between strong continuity of Levine and almost continuity due to Singal and Singal are considered. Basic properties of almost completely continuous functions (≡ R-maps and δ-continuous functions are studied. Direct and inverse transfer of topological properties under almost completely continuous functions and δ-continuous functions are investigated and their place in the hier- archy of variants of continuity that already exist in the literature is out- lined. The class of almost completely continuous functions lies strictly between the class of completely continuous functions studied by Arya and Gupta (Kyungpook Math. J. 14 (1974, 131-143 and δ-continuous functions defined by Noiri (J. Korean Math. Soc. 16, (1980, 161-166. The class of almost completely continuous functions properly contains each of the classes of (1 completely continuous functions, and (2 al- most perfectly continuous (≡ regular set connected functions defined by Dontchev, Ganster and Reilly (Indian J. Math. 41 (1999, 139-146 and further studied by Singh (Quaestiones Mathematicae 33(2(2010, 1–11 which in turn include all δ-perfectly continuous functions initi- ated by Kohli and Singh (Demonstratio Math. 42(1, (2009, 221-231 and so include all perfectly continuous functions introduced by Noiri (Indian J. Pure Appl. Math. 15(3 (1984, 241-250.
Strong white photoluminescence from annealed zeolites
International Nuclear Information System (INIS)
Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji
2014-01-01
The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies
Caviton dynamics in strong Langmuir turbulence
DuBois, Don; Rose, Harvey A.; Russell, David
1990-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear "caviton" excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that "free" Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed.
Caviton dynamics in strong Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.; Rose, H.A.; Russell, D.
1990-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound damping the turbulent energy is dominantly in non-linear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful HF waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. (orig.)
Fractional Transport in Strongly Turbulent Plasmas
Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana
2017-07-01
We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.
Caviton dynamics in strong Langmuir turbulence
International Nuclear Information System (INIS)
DuBois, D.; Rose, H.A.; Russell, D.
1989-01-01
Recent studies based on long time computer simulations of Langmuir turbulence as described by Zakharov's model will be reviewed. These show that for strong to moderate ion sound samping the turbulent energy is dominantly in nonlinear ''caviton'' excitations which are localized in space and time. A local caviton model will be presented which accounts for the nucleation-collapse-burnout cycles of individual cavitons as well as their space-time correlations. This model is in detailed agreement with many features of the electron density fluctuation spectra in the ionosphere modified by powerful hf waves as measured by incoherent scatter radar. Recently such observations have verified a prediction of the theory that ''free'' Langmuir waves are emitted in the caviton collapse process. These observations and theoretical considerations also strongly imply that cavitons in the heated ionosphere, under certain conditions, evolve to states in which they are ordered in space and time. The sensitivity of the high frequency Langmuir field dynamics to the low frequency ion density fluctuations and the related caviton nucleation process will be discussed. 40 refs., 19 figs
Hypernuclear matter in strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)
2013-01-17
Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.
Radiative properties of strongly magnetized plasmas
International Nuclear Information System (INIS)
Weisheit, J.C.
1993-11-01
The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal
Strong correlations in few-fermion systems
Energy Technology Data Exchange (ETDEWEB)
Bergschneider, Andrea
2017-07-26
In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.
Can strong gravitational lensing constrain dark energy?
International Nuclear Information System (INIS)
Lee, Seokcheon; Ng, K.-W.
2007-01-01
We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy
Towards TDDFT for Strongly Correlated Materials
Directory of Open Access Journals (Sweden)
Shree Ram Acharya
2016-09-01
Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.
Holographic gauge mediation via strongly coupled messengers
International Nuclear Information System (INIS)
McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske
2010-01-01
We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.
Finite temperature system of strongly interacting baryons
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light
Strong eukaryotic IRESs have weak secondary structure.
Directory of Open Access Journals (Sweden)
Xuhua Xia
Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.
Qubit absorption refrigerator at strong coupling
Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira
2017-12-01
We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.
Finite temperature system of strongly interacting baryons
Energy Technology Data Exchange (ETDEWEB)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.
1976-07-01
A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.
Strongly coupled models at the LHC
International Nuclear Information System (INIS)
Vries, Maikel de
2014-10-01
In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision
Strongly Correlated Electron Systems: An Operatorial Perspective
Di Ciolo, Andrea; Avella, Adolfo
2018-05-01
We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.
Characterization of strong (241)Am sources.
Vesterlund, Anna; Chernikova, Dina; Cartemo, Petty; Axell, Kåre; Nordlund, Anders; Skarnemark, Gunnar; Ekberg, Christian; Ramebäck, Henrik
2015-05-01
Gamma ray spectra of strong (241)Am sources may reveal information about the source composition as there may be other radioactive nuclides such as progeny and radioactive impurities present. In this work the possibility to use gamma spectrometry to identify inherent signatures in (241)Am sources in order to differentiate sources from each other, is investigated. The studied signatures are age, i.e. time passed since last chemical separation, and presence of impurities. The spectra of some sources show a number of Doppler broadened peaks in the spectrum which indicate the presence of nuclear reactions on light elements within the sources. The results show that the investigated sources can be differentiated between by age and/or presence of impurities. These spectral features would be useful information in a national nuclear forensics library (NNFL) in cases when the visual information on the source, e.g. the source number, is unavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strongly coupled band in 140Gd
International Nuclear Information System (INIS)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N.
2005-01-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, Kπ = 8 - isomers, with lifetimes ranging from ns to ms, are known in 128 Xe, 130 Ba, 132 Ce, 134 Nd, 136 Sm, and 138 Gd[. In 140 Gd, we have observed for the first time a band also based on an Iπ = 8 - state. This could be the first case of a Kπ = 8 - state observed in an N=76 even-even isotope. The systematics of the Kπ = 8 - isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The 140 Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in 140 Gd
Electromagnetic radiation from strong Langmuir turbulence
International Nuclear Information System (INIS)
Akimoto, K.; Rowland, H.L.; Papadopoulos, K.
1988-01-01
A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons
Diffraction scattering of strongly bound system
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-04-01
The scattering of a hadron on a strongly bound system of two hadrons (dihadron) is considered in the high-energy limit for the relative hadron-dihadron motion. The dihadron scatterer motion and the internal interaction are included in our consideration. It is shown that only small values of the internal transfer momentum of dihadron particles bring the principal contribution to the three-particle propagator in eikonal approximation. On the basis of the exact analytical solution of the integral equation for the total Green function the scattering amplitude is derived. It is shown that the scattering amplitude contains only single, double, and triple scattering terms. The three new terms to the Glauber formula for the total cross section are obtained. These terms decrease both the true total hadron-hadron cross section and the screening correction. (orig.)
Strong Interactions, (De)coherence and Quarkonia
Bellucci, Stefano; Tiwari, Bhupendra Nath
2011-01-01
Quarkonia are the central objects to explore the non-perturbative nature of non-abelian gauge theories. We describe the confinement-deconfinement phases for heavy quarkonia in a hot QCD medium and thereby the statistical nature of the inter-quark forces. In the sense of one-loop quantum effects, we propose that the "quantum" nature of quark matters follows directly from the thermodynamic consideration of Richardson potential. Thereby we gain an understanding of the formation of hot and dense states of quark gluon plasma matter in heavy ion collisions and the early universe. In the case of the non-abelian theory, the consideration of the Sudhakov form factor turns out to be an efficient tool for soft gluons. In the limit of the Block-Nordsieck resummation, the strong coupling obtained from the Sudhakov form factor yields the statistical nature of hadronic bound states, e.g. kaons and Ds particles.
Circuit electromechanics with single photon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Investigation of strong motion processing procedures
International Nuclear Information System (INIS)
Rinaldi, D.; Goula, X.; Menu, J.M.
1988-03-01
The work which is described here presents preliminary results of an on-going research relating to the accurate recording and quality processing of earthquake strong ground motions. The work is the product of a tripartite co-operation between three European Centres (ENEA, PAS-ISP Laboratorio Ingengneria dei Siti, Rome/CEA, IPSN, Fontenay-aux-Roses, ICST, Department of Civil Engineering, London), which have carried out independently similar research in the recent past. Other European Institutes joined the three mentioned organizations for discussions during a Workshop (June 1985) held in Casaccia (ENEA Research Centre of Rome). The aim of the research is a thorough analysis of various factors affecting the recovery of true ground accelerations recorded with analogue instruments. The separate and cumulative effects of the type of recording accelerometer, the digitization equipment and the correction routines have been analysed. Global comparisons have been achieved to obtain a general insight into various standard processing procedures
Quantization rules for strongly chaotic systems
International Nuclear Information System (INIS)
Aurich, R.; Bolte, J.
1992-09-01
We discuss the quantization of strongly chaotic systems and apply several quantization rules to a model system given by the unconstrained motion of a particle on a compact surface of constant negative Gaussian curvature. We study the periodic-orbit theory for distinct symmetry classes corresponding to a parity operation which is always present when such a surface has genus two. Recently, several quantization rules based on periodic orbit theory have been introduced. We compare quantizations using the dynamical zeta function Z(s) with the quantization condition cos(π N(E)) = 0, where a periodix-orbit expression for the spectral staircase N(E) is used. A general discussion of the efficiency of periodic-orbit quantization then allows us to compare the different methods. The system dependence of the efficiency, which is determined by the topological entropy τ and the mean level density anti d(E), is emphasized. (orig.)
Transport phenomena in strongly correlated Fermi liquids
Kontani, Hiroshi
2013-01-01
In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...
Towards Integrated Marmara Strong Motion Network
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy
Machine Learning Phases of Strongly Correlated Fermions
Directory of Open Access Journals (Sweden)
Kelvin Ch’ng
2017-08-01
Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
Neutrino oscillations in strong magnetic fields
International Nuclear Information System (INIS)
Likhachev, G.G.; Studenikin, A.I.
1994-07-01
Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs
Strong and electromagnetic interactions in hadron systems
International Nuclear Information System (INIS)
Aissat, N.; Amghar, A.; Cano, F.; Gonzalez, F.; Noguera, S.; Carbonell, J.; Desplanques, B.; Silvestre-Brac, B.; Karmanov, V.; Mathiot, J.F.
1997-01-01
The pionic strong decay amplitudes of baryon resonances are studied in a constituent quark model. Particular attention is given to the operator describing the transition. The nucleon form factors are calculated in a non-relativistic approach, with emphasis on the highest momentum transfers. The aim is to determine the ingredients that are essential in getting correct results and are likely to be required for a more realistic estimate in a fully relativistic approach. The deuteron form factors have been calculated in the light-front approach using wave functions determined in a perturbative way. The derivation of the neutron charge form factor from the deuteron structure function, A(q 2 ), is reanalyzed including further mesonic exchange contributions. (authors)
Combinatorial description of space and strong interactions
International Nuclear Information System (INIS)
Zenczykowski, P.
1988-01-01
A reinterpretation is given of a successful phenomenological approach to hadron self-energy effects known as the unitarized quark model. General arguments are given that the proper description of strong interactions may require abandoning the assignment of a primary role to continuous concepts such as position and momentum in favor of discrete ones such as spin or W-spin. The reinterpretation exploits an analogy between the W-spin diagrams occurring in the calculations of hadronic loop effects and the spin network idea of Penrose. A connection between the S-matrix approach to hadron masses and the purely algebraic approach characteristic of the quark model is indicated. Several hadron mass relations generated by a resulting SU(6)/sub w/-group-theoretic expression are presented and discussed. Results of an attempt to generalize the scheme to the description of hadron vertices are reported
Scaling of chaos in strongly nonlinear lattices.
Mulansky, Mario
2014-06-01
Although it is now understood that chaos in complex classical systems is the foundation of thermodynamic behavior, the detailed relations between the microscopic properties of the chaotic dynamics and the macroscopic thermodynamic observations still remain mostly in the dark. In this work, we numerically analyze the probability of chaos in strongly nonlinear Hamiltonian systems and find different scaling properties depending on the nonlinear structure of the model. We argue that these different scaling laws of chaos have definite consequences for the macroscopic diffusive behavior, as chaos is the microscopic mechanism of diffusion. This is compared with previous results on chaotic diffusion [M. Mulansky and A. Pikovsky, New J. Phys. 15, 053015 (2013)], and a relation between microscopic chaos and macroscopic diffusion is established.
Study on characteristics of vertical strong motions
International Nuclear Information System (INIS)
Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.
1993-01-01
Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)
Atomic physics of strongly correlated systems
International Nuclear Information System (INIS)
Lin, C.D.
1986-01-01
This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles
Strong crystal size effect on deformation twinning
DEFF Research Database (Denmark)
Yu, Qian; Shan, Zhi-Wei; Li, Ju
2010-01-01
plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...
Noise Spectroscopy in Strongly Correlated Oxides
Alsaqqa, Ali M.
Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the
Strong quantum scarring by local impurities
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-11-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.
Functional calculus in strong plasma turbulence
International Nuclear Information System (INIS)
Ahmadi, G.; Hirose, A.
1980-01-01
The theory of electrostatic plasma turbulence is considered. The basic equations for the dynamics of the hierarchy of the moment equations are derived and the difficulty of the closure problem for strong plasma turbulence is discussed. The characteristic functional in phase space is introduced and its relations to the correlation functions are described. The Hopf functional equation for dynamics of the characteristic functional is derived, and its equivalence to the hierarchy of the moment equations is established. Similar formulations were carried out in velocity-wave vector space. The cross-spectral moments and the characteristic functional are considered and their relationships are studied. An approximate solution for Hopf's equation for the nearly normal turbulence is obtained which is shown to predict diffusion of the mean distribution function in velocity space. (author)
Strong mobility in weakly disordered systems
Energy Technology Data Exchange (ETDEWEB)
Ben-naim, Eli [Los Alamos National Laboratory; Krapivsky, Pavel [BOSTON UNIV
2009-01-01
We study transport of interacting particles in weakly disordered media. Our one-dimensional system includes (i) disorder, the hopping rate governing the movement of a particle between two neighboring lattice sites is inhomogeneous, and (ii) hard core interaction, the maximum occupancy at each site is one particle. We find that over a substantial regime, the root-mean-square displacement of a particle s grows superdiffusively with time t, {sigma}{approx}({epsilon}t){sup 2/3}, where {epsilon} is the disorder strength. Without disorder the particle displacement is subdiffusive, {sigma} {approx}t{sup 1/4}, and therefore disorder strongly enhances particle mobility. We explain this effect using scaling arguments, and verify the theoretical predictions through numerical simulations. Also, the simulations show that regardless of disorder strength, disorder leads to stronger mobility over an intermediate time regime.
Pentacene Excitons in Strong Electric Fields.
Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus
2018-02-05
Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Designing asymmetric multiferroics with strong magnetoelectric coupling
Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team
2015-03-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
Effective Induction Heating around Strongly Magnetized Stars
Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.
2018-05-01
Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.
Is It Possible to Predict Strong Earthquakes?
Polyakov, Y. S.; Ryabinin, G. V.; Solovyeva, A. B.; Timashev, S. F.
2015-07-01
The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequent processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake a few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on 28 February 2013) recorded at two different sites in the southeastern part of the Kamchatka Peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential "immediate" (up to 2 weeks) deterministic precursors because of the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of K irshvink (Soc Am 90, 312-323, 2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard "input-sensor-response" approach to determine what input signals trigger specific seismic escape brain activity responses.
Phase structure of strongly correlated Fermi gases
International Nuclear Information System (INIS)
Roscher, Dietrich
2015-01-01
Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.
Cyclotron resonance cooling by strong laser field
International Nuclear Information System (INIS)
Tagcuhi, Toshihiro; Mima, Kunioka
1995-01-01
Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers
Bodrum Strong Motion Network, Mugla, Turkey
Alcik, H. A.; Tanircan, G.; Korkmaz, A.
2015-12-01
The Gulf of Gökova is located in southwestern Turkey near the Aegean Sea and surrounded by Datça Peninsula to the south, the island of Kos to the west and Bodrum Peninsula to the north. The Bodrum peninsula with a population of one million in summer season is one of the most populated touristic centers of Turkey. This region is also surrounded by numerous active seismic entities such as Ula-Ören Fault Zone, Gökova Graben etc.. and demonstrates high seismic hazard. In the past, many destructive earthquakes have occurred in southwestern Turkey. One of the destructive historical earthquakes is 1493 Kos event (Mw=6.9) caused heavy damage in Bodrum. In the instrumental period seismic activity in the Gökova region includes the Ms>6.0 earthquakes of 23 April 1933 (Ms=6.4), 23 May 1941 (Ms=6.0), 13 December 1941 (Ms=6.5) events. Intense earthquake activity (Mw5+) occurred in Gulf of Gökova in August 2004 and January 2005. Considering the high seismicity and population of this region, a strong ground motion monitoring system stationed in dense settlements in the Bodrum Peninsula: Bodrum, Turgutreis, Yalıkavak, Çiftlik and Ortakent was deployed on June 2015. The network consists of 5 strong motion recorders, has been set up with the aim of monitoring of regional earthquakes, collecting accurate and reliable data for engineering and scientific research purposes, in particular to provide input for future earthquake rapid reporting and early warning implementation projects on urban environments in the Bodrum peninsula and the surrounding areas. In this poster presentation, we briefly introduce the Bodrum Network and discuss our future plans for further developments.