WorldWideScience

Sample records for strong noncovalent interactions

  1. Introduction: Noncovalent Interactions

    Czech Academy of Sciences Publication Activity Database

    Hobza, Pavel; Řezáč, Jan

    2016-01-01

    Roč. 116, č. 9 (2016), s. 4911-4912 ISSN 0009-2665 Institutional support: RVO:61388963 Keywords : noncovalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 47.928, year: 2016

  2. Noncovalent interactions in biochemistry

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Hobza, Pavel

    2011-01-01

    Roč. 1, č. 1 (2011), s. 3-17 ISSN 1759-0876 R&D Projects: GA MŠk LC512 Grant - others:NSF EPSCORE(US) EPS-0701525; Korea Science and Engineering Foundation(KR) R32-2008-000-10180-0 Institutional research plan: CEZ:AV0Z40550506 Keywords : noncovalent interactions * WFT calculations * DFT calculations * applications Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Theoretical exploration of pnicogen bond noncovalent interactions ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 10. Theoretical ... Keywords. Noncovalent interaction; pnicogen bond; natural bond orbital theory; natural resonance theory; electron density topological property. ... The natural bond orbital interactions in the ZBs are mainly LP1,2 (O) → * (P-X). The P-X ...

  4. Noncovalent Interactions in Organic Electronic Materials

    KAUST Repository

    Ravva, Mahesh Kumar

    2017-06-29

    In this chapter, we provide an overview of how noncovalent interactions, determined by the chemical structure of π-conjugated molecules and polymers, govern essential aspects of the electronic, optical, and mechanical characteristics of organic semiconductors. We begin by describing general aspects of materials design, including the wide variety of chemistries exploited to control the electronic and optical properties of these materials. We then discuss explicit examples of how the study of noncovalent interactions can provide deeper chemical insights that can improve the design of new generations of organic electronic materials.

  5. The origins of the directionality of noncovalent intermolecular interactions.

    Science.gov (United States)

    Wang, Changwei; Guan, Liangyu; Danovich, David; Shaik, Sason; Mo, Yirong

    2016-01-05

    The recent σ-hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block-localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge-transfer interaction whose magnitude determines the covalency in noncovalent bonds. © 2015 Wiley Periodicals, Inc.

  6. Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies

    Czech Academy of Sciences Publication Activity Database

    Hobza, Pavel

    2012-01-01

    Roč. 45, č. 4 (2012), s. 663-672 ISSN 0001-4842 R&D Projects: GA ČR GBP208/12/G016 Grant - others:European Social Fund(XE) CZ.1.05/2.1.00/03.0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : non-covalent interactions * covalent interactions * quantum chemical approach Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 20.833, year: 2012

  7. Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Riley, Kevin Eugene; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 11 (2012), s. 4285-4292 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : halogenated molecules * noncovalent interactions * benchmark calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  8. Noncovalent cation-π interactions – their role in nature

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2014-11-01

    Full Text Available Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions – cation-π interactions – is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation–aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  9. Understanding substituent effects in noncovalent interactions involving aromatic rings.

    Science.gov (United States)

    Wheeler, Steven E

    2013-04-16

    Noncovalent interactions involving aromatic rings such as π-stacking, cation/π, and anion/π interactions are central to many areas of modern chemistry. Decades of experimental studies have provided key insights into the impact of substituents on these interactions, leading to the development of simple intuitive models. However, gas-phase computational studies have raised some doubts about the physical underpinnings of these widespread models. In this Account we review our recent efforts to unravel the origin of substituent effects in π-stacking and ion/π interactions through computational studies of model noncovalent dimers. First, however, we dispel the notion that so-called aromatic interactions depend on the aromaticity of the interacting rings by studying model π-stacked dimers in which the aromaticity of one of the monomers can be "switched off". Somewhat surprisingly, the results show that not only is aromaticity unnecessary for π-stacking interactions, but it actually hinders these interactions to some extent. Consequently, when thinking about π-stacking interactions, researchers should consider broader classes of planar molecules, not just aromatic systems. Conventional models maintain that substituent effects in π-stacking interactions result from changes in the aryl π-system. This view suggests that π-stacking interactions are maximized when one ring is substituted with electron-withdrawing groups and the other with electron donors. In contrast to these prevailing models, we have shown that substituent effects in π-stacking interactions can be described in terms of direct, local interactions between the substituents and the nearby vertex of the other arene. As a result, in polysubstituted π-stacked dimers the substituents operate independently unless they are in each other's local environment. This means that in π-stacked dimers in which one arene is substituted with electron donors and the other with electron acceptors the interactions will

  10. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  11. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design.

    Science.gov (United States)

    Zhou, P; Huang, J; Tian, F

    2012-01-01

    Specific noncovalent interactions that are indicative of attractive, directional intermolecular forces have always been of key interest to medicinal chemists in their search for the "glue" that holds drugs and their targets together. With the rapid increase in the number of solved biomolecular structures as well as the performance enhancement of computer hardware and software in recent years, it is now possible to give more comprehensive insight into the geometrical characteristics and energetic landscape of certain sophisticated noncovalent interactions present at the binding interface of protein receptors and small ligands based on accumulated knowledge gaining from the combination of two quite disparate but complementary approaches: crystallographic data analysis and quantum-mechanical ab initio calculation. In this perspective, we survey massive body of published works relating to structural characterization and theoretical investigation of three kinds of strong, specific, direct, enthalpy-driven intermolecular forces, including hydrogen bond, halogen bond and salt bridge, involved in the formation of protein-ligand complex architecture in order to characterize their biological functions in conferring affinity and specificity for ligand recognition by host protein. In particular, the biomedical implications of raised knowledge are discussed with respect to potential applications in rational drug design.

  13. Inter- and intramolecular non-covalent interactions in 1-methylimidazole-2-carbaldehyde complexes of copper, silver, and gold

    Science.gov (United States)

    Koskinen, Laura; Jääskeläinen, Sirpa; Hirva, Pipsa; Haukka, Matti

    2014-09-01

    Three new imidazole compounds, [CuBr2(mimc)2] (1), [Ag(mimc)2][CF3SO3] (2), and [AuCl3(mimc)] (3) (mimc = 1-methylimidazole-2-carbaldehyde), have been synthesized, structurally characterized, and further analyzed using the QTAIM analysis. The compounds exhibit self-assembled 3D networks arising from intermolecular non-covalent interactions such as metallophilic interactions, metal-π contacts, halogens-halogen interactions, and hydrogen bonds. These weak interactions have a strong impact on the coordination sphere of the metal atoms and on the packing of compounds 1, 2, and 3.

  14. Non-covalent interactions of cadmium sulphide and gold nanoparticles with DNA

    Science.gov (United States)

    Atay, Z.; Biver, T.; Corti, A.; Eltugral, N.; Lorenzini, E.; Masini, M.; Paolicchi, A.; Pucci, A.; Ruggeri, G.; Secco, F.; Venturini, M.

    2010-08-01

    Mercaptoethanol-capped CdS nanoparticles (CdSnp) and monohydroxy-(1-mercaptoundec-11-yl)tetraethylene-glycol-capped Au nanoparticles (Aunp) were synthesised, characterised and their interactions with DNA were investigated. Aunp are stable in different aqueous solvents, whereas CdSnp do precipitate in 0.1 M NaCl and form two different cluster types in 0.1 M NaNO3. As regards the CdSnp/DNA interaction, absorbance and fluorescence titrations, ethidium bromide displacement assays and gel electrophoresis experiments indicate that a non-covalent interaction between DNA and the CdSnp external surface does take place. The binding constant was evaluated to be equal to (2.2 ± 0.5) × 105 M-1. On the contrary, concerning Aunp, no direct interaction with DNA could be observed. Possible interaction with serum albumin was also checked, but no effects could be observed for either CdSnp or Aunp. Finally, short-time exposure of cultured cells to nanoparticles revealed the ability of CdSnp to enter the cells and allocate both in cytosol and nucleus, thus promoting cell proliferation at low concentration ( p resulted in a significant inhibition of cell growth, accompanied by apoptotic cell death. Aunp neither enter the cells, nor do affect cell proliferation. In conclusion, our data indicate that CdSnp can strongly interact with living cells and nucleic acid while no effects or interactions were observed for Aunp.

  15. Equilibrium isotope effects on noncovalent interactions in a supramolecular host-guest system.

    Science.gov (United States)

    Mugridge, Jeffrey S; Bergman, Robert G; Raymond, Kenneth N

    2012-02-01

    The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs. © 2011 American Chemical Society

  16. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  17. Attractive Noncovalent Interactions in the Mechanism of Grubbs Second-Generation Ru Catalysts for Olefin Metathesis.

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan; Truhlar, Donald G.

    2007-05-10

    Second-generation ruthenium carbenoid catalysts for olefin metathesis are a hundred to a thousand times more active than first-generation catalysts, despite a slower initiation step. A new density functional capable of treating medium-range correlation energy shows that the relative rates of generation of the catalyst are determined by attractive noncovalent interactions.

  18. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  19. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions

    International Nuclear Information System (INIS)

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-01-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., P=O and P–O − ) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P. - Highlights: • Noncovalent interactions between polyphosphate and HA were quantitatively evaluated. • Hydrogen bonding was the main driving force in the interaction between HA and poly-P. • The association played important roles in the environmental fate of poly-P in waters. - Stable polyP-HA complex would be formed through the noncovalent interactions and thus influence the poly-P fates in the natural environments.

  20. 25th anniversary article: reversible and adaptive functional supramolecular materials: "noncovalent interaction" matters.

    Science.gov (United States)

    Liu, Kai; Kang, Yuetong; Wang, Zhiqiang; Zhang, Xi

    2013-10-18

    Supramolecular materials held together by noncovalent interactions, such as hydrogen bonding, host-guest interactions, and electrostatic interactions, have great potential in material science. The unique reversibility and adaptivity of noncovalent intreractions have brought about fascinating new functions that are not available by their covalent counterparts and have greatly enriched the realm of functional materials. This review article aims to highlight the very recent and important progresses in the area of functional supramoleuclar materials, focusing on adaptive mechanical materials, smart sensors with enhanced selectivity, soft luminescent and electronic nanomaterials, and biomimetic and biomedical materials with tailored structures and functions. We cannot write a complete account of all the interesting work in this area in one article, but we hope that it can in a way reflect the current situation and future trends in this prosperously developing area of functional supramolecular materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Description of Non-Covalent Interactions in SCC-DFTB Methods

    Czech Academy of Sciences Publication Activity Database

    Miriyala, Vijay Madhav; Řezáč, Jan

    2017-01-01

    Roč. 38, č. 10 (2017), s. 688-697 ISSN 0192-8651 R&D Projects: GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : density functional tight binding * DFTB3 * non-covalent interactions * dispersion correction * hydrogen bonding correction Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.229, year: 2016

  2. Non-covalent O⋅⋅⋅O interactions among isopolyanions using a cis ...

    Indian Academy of Sciences (India)

    WINTEC

    2008-05-09

    May 9, 2008 ... N–H⋅⋅⋅O and C–H⋅⋅⋅O hydrogen bonds, in which the protonated organic cation plays a significant role. The crystal structure also reveals an unusual cluster–cluster (non-covalent O⋅⋅⋅O) interaction using cis-. (MoO2} moieties of the isopolyanion. N–H⋅⋅⋅O hydrogen bonds, originated from ...

  3. Non-Covalent Interaction: Revealed by Rotational Spectroscopy

    OpenAIRE

    Gou, Qian

    2014-01-01

    The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halo...

  4. Strong interaction phenomenology

    International Nuclear Information System (INIS)

    Giffon, M.

    1989-01-01

    A brief review of high energy hadronic data (Part I)is followed by an introduction to the standard (Weinberg Salam Glashow) model of electroweak interactions and its extension to the hadrons (Part II). Rudiments of QCD and of the parton model area given in Part III together with a quick review of the spectroscopy of heavy flavours whereas Part IV is devoted to the introduction to deep inelastic scattering and to the so-called EMC effects. (author)

  5. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.

    Science.gov (United States)

    Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan

    2016-05-05

    Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.

  6. Self-assembly of bridged silsesquioxanes: modulating structural evolution via cooperative covalent and noncovalent interactions.

    Science.gov (United States)

    Creff, Gaelle; Pichon, Benoît P; Blanc, Christophe; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Roy, Pascale; Bartlett, John R; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2013-05-07

    The self-assembly of a bis-urea phenylene-bridged silsesquioxane precursor during sol-gel synthesis has been investigated by in situ infrared spectroscopy, optical microscopy, and light scattering. In particular, the evolution of the system as a function of processing time was correlated with covalent interactions associated with increasing polycondensation and noncovalent interactions such as hydrogen bonding. A comprehensive mechanism based on the hydrolysis of the phenylene-bridged organosilane precursor prior to the crystallization of the corresponding bridged silsesquioxane via H-bonding and subsequent irreversible polycondensation is proposed.

  7. Noncovalent Interactions Accompanying Encapsulation of Resorcinol within Azacalix[4]pyridine Macrocycle.

    Science.gov (United States)

    Lande, Dipali N; Bhadane, Smita A; Gejji, Shridhar P

    2017-03-02

    Electronic structure and noncovalent interactions within the inclusion complexes of resorcinol and calix[4]pyridine (CXP[4]) or azacalix[4]pyridine (N-CXP[4]) macrocycles have been analyzed by employing hybrid M06-2X density functional theory. It has been demonstrated that substitution of a heteroatom (-NH-) at the bridging position of the CXP[4] alters the shape of the cavity from a "box-shaped" to funnel-like one. Penetration of resorcinol guest within the CXP[4] cavity renders a "butterfly-like" structure to the complex, whereas the N-CXP[4] complex reveals distorted geometry with the guest being nearer to one of the pyridine rings at the upper rim of the host. Underlying hydrogen bonding, π···π, and other weak interactions are characterized using the Quantum Theory of Atoms in Molecules (QTAIM) and Noncovalent Interactions Reduced Density Gradient (NCI-RDG) methods. The coexistence of multiple intermolecular interactions is envisaged through the frequency shifts of the characteristic -NH and -OH vibrations in their calculated vibrational spectra. The guest protons confined to the host cavity exhibit shielding, while those facilitating hydrogen bonding engender the downfield signals in their calculated 1 H NMR spectra.

  8. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher

    2015-10-30

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.

  9. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  10. Stereodynamic tetrahydrobiisoindole “NU-BIPHEP(O”s: functionalization, rotational barriers and non-covalent interactions

    Directory of Open Access Journals (Sweden)

    Golo Storch

    2016-07-01

    Full Text Available Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC allowed for the determination of rotational barriers of ΔG‡298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(Os”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.

  11. Core/Shell Conjugated Polymer/Quantum Dot Composite Nanofibers through Orthogonal Non-Covalent Interactions

    Directory of Open Access Journals (Sweden)

    Brad W. Watson

    2016-11-01

    Full Text Available Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.

  12. Using PyMOL to Explore the Effects of ph on Noncovalent Interactions between Immunoglobulin G and Protein A: A Guided-Inquiry Biochemistry Activity

    Science.gov (United States)

    Roche Allred, Zahilyn D.; Tai, Heeyoung; Bretz, Stacey Lowery; Page, Richard C.

    2017-01-01

    Students' understandings of foundational concepts such as noncovalent interactions, pH and pK[subscript a] are crucial for success in undergraduate biochemistry courses. We developed a guided-inquiry activity to aid students in making connections between noncovalent interactions and pH/pK[subscript a]. Students explore these concepts by examining…

  13. Study of the non-covalent interactions of ginsenosides and lysozyme using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Tang, Jun; Fu, Qiang; Cui, Meng; Xing, Junpeng; Liu, Zhiqiang; Liu, Shuying

    2015-11-15

    Ginsenosides are an important class of natural products extracted from ginseng that possess various important biological activities. Studies of interactions of ginsenosides with proteins are essential for comprehensive understanding of the biological activities of ginsenosides. In this study, the interactions of ginsenosides with lysozyme were investigated by electrospray ionization mass spectrometry (ESI-MS). Both protopanaxadiol-type and protopanaxatriol-type ginsenosides were chosen to explore the interactions of ginsenosides towards lysozyme near the physiological conditions by direct ESI-MS, respectively. Comparative experiments were conducted to confirm the interactions were specific. In addition, the dissociation constants of ginsenoside-lysozyme complexes were determined by a ESI-MS titration strategy. The results showed ginsenosides bound to lysozyme at the stoichiometries of 1:1 and 2:1. The association constants of ginsenosides to lysozyme were in the order of Re>Rd>Rf>Rg2 >Rg3 . According to their structures, the binding affinities associated with the type of aglycone and the type and the number of sugar moieties linked on the aglycone. It has been demonstrated that ESI-MS is a powerful tool to probe the non-covalent interactions between lysozyme and ginsenosides. These results provide insights into the interaction of ginsenosides with lysozyme at the molecular level. The developed strategy could be applied to determine the interactions of proteins with other natural products. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Exploring the "intensity fading" phenomenon in the study of noncovalent interactions by MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Yanes, Oscar; Aviles, Francesc X; Roepstorff, Peter

    2007-01-01

    The difficulties to detect intact noncovalent complexes involving proteins and peptides by MALDI-TOF mass spectrometry have hindered a widespread use of this approach. Recently, "intensity fading MS" has been presented as an alternative strategy to detect noncovalent interactions in solution...... the intensity fading phenomenon, as well as a comparison with the strategy based on the direct detection of intact complexes by MALDI MS. For this purpose, the study is focused on two different protease-inhibitor complexes naturally occurring in solution, together with a heterogeneous mixture of nonbinding...

  15. Microsolvation and the Effects of Non-Covalent Interactions on Intramolecular Dynamics

    Science.gov (United States)

    Foguel, Lidor; Vealey, Zachary; Vaccaro, Patrick

    2017-06-01

    Physicochemical processes brought about by non-covalent interactions between neighboring molecules are undeniably of crucial importance in the world around us, being responsible for effects ranging from the subtle (yet precise) control of biomolecular recognition events to the very existence of condensed phases. Of particular interest is the differential ability of distinct non-covalent forces, such as those mediated by dispersion-dominated aryl (π-π) coupling and electrostatically-driven hydrogen bonding, to affect unimolecular transformations by altering potential surface topographies and the nature of reaction coordinates. A concerted experimental and computational investigation of "microsolvation" (solvation at the molecular level) has been undertaken to elucidate the site-specific coupling between solute and solvent degrees of freedom, as well as attendant consequences for the efficiency and pathway of intrinsic proton-transfer dynamics. Targeted species have been synthesized in situ under "cold" supersonic free-jet expansion conditions (T_{rot} ≈ 1-2K) by complexing an active (proton-transfer) substrate with various ligands (e.g., water isotopologs and benzene derivatives) for which competing interaction mechanisms can lead to unique binding motifs. A series of fluorescence-based spectroscopic measurements have been performed on binary adducts formed with the prototypical 6-hydroxy-2-formylfulvene (HFF) system, where a quasi-linear intramolecular O-H...O bond and a zero-point energy that straddles the proton-transfer barrier crest synergistically yield the largest tunneling-induced splitting ever reported for the ground electronic state of an isolated neutral molecule. Such characteristics afford a localized metric for unraveling incipient changes in unimolecular reactivity, with comparison of experimentally observed and quantum-chemical predicted rovibronic landscapes serving to discriminate complexes built upon electrostatic (hydrogen-bonding) and

  16. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta p...

  17. Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions

    NARCIS (Netherlands)

    Fiammengo, R.; Timmerman, P.; Huskens, Jurriaan; Versluis, Kees; Heck, Albert J.R.; Reinhoudt, David

    2002-01-01

    Non-covalent synthesis of calix[4]arene capped porphyrins can be achieved in polar solvents (up to 45% molar fraction of water) via ionic interaction. Thus tetracationic meso-tetrakis(N-alkylpyridinium-3-yl) porphyrins 1a–d and tetra anionic 25,26,27,28-tetrakis(2-ethoxyethoxy)-calix[4]arene

  18. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  19. Noncovalent Interaction Energies in Covalent Complexes: TEM-1 beta-Lactamase and beta-Lactams

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K. (NWU)

    2010-03-08

    The class A {beta}-lactamase TEM-1 is a key bacterial resistance enzyme against {beta}-lactam antibiotics, but little is known about the energetic bases for complementarity between TEM-1 and its inhibitors. Most inhibitors form a covalent adduct with the catalytic Ser70, making the measurement of equilibriumconstants, and hence interaction energies, technically difficult. This study evaluates noncovalent interactions withincovalent complexes by examining the differential stability of TEM-1 and its inhibitor adducts. The thermal denaturation of TEM-1 follows a two-state, reversible model with a melting temperature (T{sub m}) of 51.6 C and a van't Hoff enthalpy of unfolding ({Delta}H{sub VH}) of 146.2 kcal/mol at pH 7.0. The stability of the enzyme changes on forming an inhibitor adduct. As expected, some inhibitors stabilize TEM-1; transition-state analogues increase the T{sub m} by up to 3.7 C(1.7 kcal/mol). Surprisingly, all {beta}-lactam covalent acyl-enzyme complexes tested destabilize TEM-1 significantly relative to the apoenzyme. For instance, the clinically used inhibitor clavulanic acid and the {beta}-lactamase-resistant {beta}-lactams moxalactam and imipenem destabilize TEM-1 by over 2.6 C (1.2 kcal/mol) in their covalent adducts. Based on the structure of the TEM-1/imipenem complex (Maveyraud et al., J Am Chem Soc 1998;120:9748-52), destabilization by moxalactam and imipenem is thought to be caused by a steric clash between the side-chain of Asn132 and the 6(7)-{alpha} group of these {beta}-lactams. To test this hypothesis, the mutant enzyme N132A was made. In contrast with wild-type, the covalent complexes between N132A and both imipenem and moxalactam stabilize the enzyme, consistent with the hypothesis. To investigate the structural bases of this dramatic change instability, the structure of N132A/imipenem was determined by X-ray crystallography. In the complex with N132A, imipenemadopts a very different conformation from that observed in the wild

  20. Noncovalent interactions of metal cations and arenes probed with thallium(I) complexes.

    Science.gov (United States)

    Jurca, Titel; Korobkov, Ilia; Gorelsky, Serge I; Richeson, Darrin S

    2013-05-20

    The synthesis, characterization, and computational analysis of Tl(I) complexes bearing the bis(imino)pyridine scaffold, [{ArN═CPh}2(NC5H3)]Tl(+)(OTf)(-) (Ar = 2,6-Et2C6H33, 2,5-(t)Bu2C6H3, 4), are reported. The cations of these species showed long Tl-N and Tl-OTf distances indicating only weak or no ligand coordination. Computational analysis of the interactions between the Tl cation and the ligands (orbital populations, bond order, and energy decomposition analysis) point to only minimal covalent interactions of the cation with the ligands. The weak ligand-to-metal donation allows for additional interactions between the Tl cation and arene rings that are either intramolecular, in the case of 3, or intermolecular. From benzene or toluene, 4 crystallizes with inverted sandwich structures having two [{(2,5-(t)Bu2C6H3)N═CPh}2(NC5H3)]Tl(+) cations bridged by either benzene or toluene. A density functional computational description of these Tl-arene contacts required exchange-correlation functionals with long-range exchange corrections (e.g., CAM-B3LYP or LC-PBE) and show that Tl-arene contacts are stabilized by noncovalent interactions.

  1. Noncovalent interactions from electron density topology and solvent effects on spectral properties of Schiff bases

    Science.gov (United States)

    Gandhimathi, S.; Balakrishnan, C.; Theetharappan, M.; Neelakantan, M. A.; Venkataraman, R.

    2017-03-01

    Two Schiff bases were prepared by the condensation of o-allyl substituted 2,4-dihydroxy acetophenone with 1,2-diaminopropane (L1) and ethanediamine (L2) and characterized by elemental analysis, and ESI-MS, IR, UV-Vis, 1H and 13C NMR spectral techniques. The effect of solvents with respect to different polarities on UV-Vis and emission spectra of L1 and L2 was investigated at room temperature show that the compounds exist in keto and enol forms in solution and may be attributed to the intramolecular proton transfer in the ground state. The solute-solvent interactions, change in dipole moment and solvatochromic properties of the compounds were studied based on the solvent polarity parameters. For L1 and L2, the ground and excited state electronic structure calculations were carried out by DFT and TD-DFT at B3LYP/6-311G (d,p) level, respectively. The IR, NMR and electronic absorption spectra computed were compared with the experimental observations. The intramolecular charge transfer within the molecule is evidenced from the HOMO and LUMO energy levels and surface analysis. The noncovalent interactions like hydrogen bonding and van der Waals interactions were identified from the molecular geometry and electron localization function. These interactions in molecules have been studied by using reduced density gradient and graphed by Multiwfn.

  2. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano

    2017-09-01

    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  3. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo

    2016-07-01

    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  4. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  5. Inverting Steric Effects: Using "Attractive" Noncovalent Interactions To Direct Silver-Catalyzed Nitrene Transfer.

    Science.gov (United States)

    Huang, Minxue; Yang, Tzuhsiung; Paretsky, Jonathan D; Berry, John F; Schomaker, Jennifer M

    2017-12-06

    Nitrene transfer (NT) reactions represent powerful and direct methods to convert C-H bonds into amine groups that are prevalent in many commodity chemicals and pharmaceuticals. The importance of the C-N bond has stimulated the development of numerous transition-metal complexes to effect chemo-, regio-, and diastereoselective NT. An ongoing challenge is to understand how subtle interactions between catalyst and substrate influence the site-selectivity of the C-H amination event. In this work, we explore the underlying reasons why Ag(tpa)OTf (tpa = tris(pyridylmethyl)amine) prefers to activate α-conjugated C-H bonds over 3° alkyl C(sp 3 )-H bonds and apply these insights to reaction optimization and catalyst design. Experimental results suggest possible roles of noncovalent interactions (NCIs) in directing the NT; computational studies support the involvement of π···π and Ag···π interactions between catalyst and substrate, primarily by lowering the energy of the directed transition state and reaction conformers. A simple Hess's law relationship can be employed to predict selectivities for new substrates containing competing NCIs. The insights presented herein are poised to inspire the design of other catalyst-controlled C-H functionalization reactions.

  6. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  7. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  8. Nine supramolecular assemblies from 5,7-dimethyl-1,8-naphthyridine-2-amine and carboxylic acids by strong classical H-bonds and other noncovalent associations

    Science.gov (United States)

    Ding, Aihua; Jin, Shouwen; Jin, Shide; Guo, Ming; Liu, Hui; Guo, Jianzhong; Wang, Daqi

    2017-12-01

    This article demonstrates 5,7-dimethyl-1,8-naphthyridine-2-amine based organic salt formation in nine crystalline solids 1-9, in which the carboxylates have been integrated. Addition of equivalents of the COOH to the solution of 5,7-dimethyl-1,8-naphthyridine-2-amine generates the singly protonated cationic species which direct the carboxylates. The nine compounds crystallize as their organic salts with the COOH proton transferred to the aromatic N of the 5,7-dimethyl-1,8-naphthyridine-2-amine. All salts have been characterized by IR, mp, EA and XRD technique. The major driving force in 1-9 is the classical H-bonds from 5,7-dimethyl-1,8-naphthyridine-2-amine and the acids, here the Nsbnd H⋯O H-bonds were found in all salts. Other extensive non-covalent interactions also exhibit great functions in space association of the molecular counterparts in relevant crystals. Except 4, all salts had the CHsbnd O, or CH3sbnd O interactions or both. Except 9, the common R22 (8) graph set has been observed in all salts due to the H-bonds and the non-covalent associations. For the synergistic interactions of the classical H-bonds and the various non-covalent associations, the salts displayed 1D-3D structures.

  9. Atomic Ensemble Effects and Non-Covalent Interactions at the Electrode–Electrolyte Interface

    Directory of Open Access Journals (Sweden)

    Angel Cuesta

    2016-09-01

    Full Text Available Cyanide-modified Pt(111 electrodes have been recently employed to study atomic ensemble effects in electrocatalysis. This work, which will be briefly reviewed, reveals that the smallest site required for methanol dehydrogenation and formic acid dehydration is composed of three contiguous Pt atoms. By blocking these trigonal sites, the specific adsorption of anions, such as sulfate and phosphate, can be inhibited, thus increasing the rate of oxygen reduction reaction by one order of magnitude or more. Moreover, alkali metal cations affect hydrogen adsorption on cyanide-modified Pt(111. This effect is attributed to the non-covalent interactions at the electrical double layer between specifically adsorbed anions or dipoles and the alkali metal cations. A systematic investigation is conducted on the effect of the concentration of alkali metal cations. Accordingly, a simple model that reproduces the experimental observations accurately and enables the understanding of the trends in the strength of the interaction between M+ and CNad when moving from Li+ to Cs+, as well as the deviations from the expected trends, is developed. This simple model can also explain the occurrence of super-Nernstian shifts of the equilibrium potential of interfacial proton-coupled electron transfers. Therefore, the model can be generally applied to explain quantitatively the effect of cations on the properties of the electrical double layer. The recently reported effects of alkali metal cations on several electrocatalytic reactions must be mediated by the interaction between these cations and chemisorbed species. As these interactions seem to be adequately and quantitatively described by our model, we expect the model to also be useful to describe, explain, and potentially exploit these effects.

  10. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)], E-mail: ghoffmann@holycross.edu; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)

    2007-10-01

    The effects of amines on the induction of mitotic gene conversion by bleomycin (BLM) were studied at the trp5 locus in Saccharomyces cerevisiae strain D7. BLM induces double-strand breaks in DNA and is a potent recombinagen in this assay. The polyamine spermidine causes concentration-dependent protection against the genotoxicity of BLM, reducing the convertant frequency by over 90% under the most protective conditions. Spermine, diethylenetriamine, ethylenediamine, putrescine, and ethylamine were also antigenotoxic in combined treatments with BLM. There was a general correspondence between the protective effect and the number of amino groups, suggesting that more strongly cationic amines tend to be stronger antirecombinagens. Electrostatic association of the amines with DNA probably hinders BLM access to the 4' position of deoxyribose where it generates a free radical. Other amines interact with BLM differently from these unbranched aliphatic amines. The aminothiol cysteamine inhibits the genotoxicity of BLM under hypoxic conditions but increases it under euoxic conditions. In contrast, pargyline potentiates the genotoxicity of BLM under hypoxic conditions but not under euoxic conditions. The antirecombinagenic effect of cysteamine apparently involves DNA binding and depletion of oxygen needed for BLM activity, whereas its potentiation of BLM entails its serving as an electron source for the activation of BLM. Pargyline may enhance BLM indirectly by preventing the depletion of oxygen by monoamine and polyamine oxidase. The planar 9-aminoacridine weakly induces gene conversion in strain D7, but it is strongly synergistic with BLM. Enhancement of BLM activity by this compound and by the related nitroacridine Entozon is apparently mediated by intercalation of the acridine ring system into DNA. Thus, the influence of amines on the genotoxicity of BLM in yeast encompasses antigenotoxic, potentiating, and synergistic interactions. The underlying mechanisms involve

  11. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaojie; Liao, Qiaogan; Manley, Eric F.; Wu, Zishan; Wang, Yulun; Wang, Weida; Yang, Tingbin; Shin, Young-Eun; Cheng, Xing; Liang, Yongye; Chen, Lin X.; Baeg, Kang-Jun; Marks, Tobin J.; Guo, Xugang

    2016-03-15

    We report the design, synthesis, and implemention in semiconducting polymers of a novel head-to-head linkage containing the TRTOR (3-alkyl-3'-alkoxy-2,2'-bithiophene) donor subunit having a single strategically optimized, planarizing noncovalent S···O interaction. Diverse complementary thermal, optical, electrochemical, X-ray scattering, electrical, photovoltaic, and electron microscopic characterization techniques are applied to establish structure-property correlations in a TRTOR-based polymer series. In comparison to monomers having double S···O interactions, replacing one alkoxy substituent with a less electron-donating alkyl one yields TRTOR-based polymers with significantly depressed (0.2-0.3 eV) HOMOs. Furthermore, the weaker single S···O interaction and greater TRTOR steric encumberance enhances materials processability without sacrificing backbone planarity. From another perspective, TRTOR has comparable electronic properties to ring-fused 5Hdithieno[ 3,2-b:2',3'-d]pyran (DTP) subunits, but a centrosymmetric geometry which promotes a more compact and ordered structure than bulkier, axisymmetric DTP. Compared to monosubstituted TTOR (3-alkoxy-2,2'-bithiophene), alkylation at the TRTOR bithiophene 3-position enhances conjugation and polymer crystallinity with contracted π-π stacking. Grazing incidence wide-angle X-ray scattering (GIWAXS) data reveal that the greater steric hindrance and the weaker single S···O interaction are not detrimental to close packing and high crystallinity. As a proof of materials design, copolymerizing TRTOR with phthalimides yields copolymers with promising thin-film transistor mobility as high as 0.42 cm2/(V·s) and 6.3% power conversion efficiency in polymer solar cells, the highest of any phthalimide copolymers reported to date. The depressed TRTOR HOMOs imbue these polymers with substantially increased Ion/Ioff ratios and Voc’s versus analogous subunits with multiple electron donating

  12. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaojie [Shenzhen Key Laboratory; Liao, Qiaogan [Shenzhen Key Laboratory; Manley, Eric F. [Department; Chemical; Wu, Zishan [Shenzhen Key Laboratory; Wang, Yulun [Shenzhen Key Laboratory; Wang, Weida [Shenzhen Key Laboratory; Yang, Tingbin [Shenzhen Key Laboratory; Shin, Young-Eun [Department; Cheng, Xing [Shenzhen Key Laboratory; Liang, Yongye [Shenzhen Key Laboratory; Chen, Lin X. [Department; Chemical; Baeg, Kang-Jun [Department; Marks, Tobin J. [Department; Guo, Xugang [Shenzhen Key Laboratory

    2016-03-15

    We report the design, synthesis, and implemention in semiconducting polymers of a novel head-to-head linkage containing the TRTOR (3-alkyl-3'-alkoxy-2,2'-bithiophene) donor subunit having a single strategically optimized, planarizing noncovalent S···O interaction. Diverse complementary thermal, optical, electrochemical, X-ray scattering, electrical, photovoltaic, and electron microscopic characterization techniques are applied to establish structure–property correlations in a TRTOR-based polymer series. In comparison to monomers having double S···O interactions, replacing one alkoxy substituent with a less electron-donating alkyl one yields TRTOR-based polymers with significantly depressed (0.2–0.3 eV) HOMOs. Furthermore, the weaker single S···O interaction and greater TRTOR steric encumberance enhances materials processability without sacrificing backbone planarity. From another perspective, TRTOR has comparable electronic properties to ring-fused 5H-dithieno[3,2-b:2',3'-d]pyran (DTP) subunits, but a centrosymmetric geometry which promotes a more compact and ordered structure than bulkier, axisymmetric DTP. Compared to monosubstituted TTOR (3-alkoxy-2,2'-bithiophene), alkylation at the TRTOR bithiophene 3-position enhances conjugation and polymer crystallinity with contracted π–π stacking. Grazing incidence wide-angle X-ray scattering (GIWAXS) data reveal that the greater steric hindrance and the weaker single S···O interaction are not detrimental to close packing and high crystallinity. As a proof of materials design, copolymerizing TRTOR with phthalimides yields copolymers with promising thin-film transistor mobility as high as 0.42 cm2/(V·s) and 6.3% power conversion efficiency in polymer solar cells, the highest of any phthalimide copolymers reported to date. The depressed TRTOR HOMOs imbue these polymers with substantially increased Ion/Ioff ratios and Voc’s versus analogous subunits with multiple electron

  13. Insight into the Interaction between DNA Bases and Defective Graphenes: Covalent or Non-covalent

    Science.gov (United States)

    Xu, Zhenfeng; Meher, Biswa Ranjan; Eustache, Darnashley; Wang, Yixuan

    2013-01-01

    Although some metal clusters and molecules were found to more significantly bind to defective graphenes than to pristine graphenes, exhibiting chemisorptions on defective graphenes, the present investigation shows that the adsorption of DNA bases on mono- and di-vacant defective graphenes does not show much difference from that on pristine graphene, and is still dominantly driven by noncovalent interactions. In the present study the adsorptions of the nucleobases, adenine (A), cytosine (C), guanine, (G), and thymine (T) on pristine and defective graphenes, are fully optimized using a hybrid-meta GGA density functional theory (DFT), M06-2X/6-31G*, and the adsorption energies are then refined with both M06-2X and B97-D/6-311++G**. Graphene is modeled as nano-clusters of C72H24, C71H24, and C70H24 for pristine, mono- and divacant defective graphenes, respectively, supplemented by a few larger ones. The result shows that guanine has the maximum adsorption energy in all of the three adsorption systems; and the sequence of the adsorption strength is G>A>T>C on the pristine and di-vacant graphene and G>T>A>C on the mono-vacant graphene. In addition, the binding energies of the DNA bases with the pristine graphene are less than the corresponding ones with di-vacant defective graphene; however, they are greater than those of mono-vacant graphene with guanine and adenine, while it is dramatic that the binding energies of mono-vacant graphene with thymine and cytosine appear larger than those of pristine graphene. PMID:24215998

  14. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts.

    Science.gov (United States)

    Raynal, Matthieu; Ballester, Pablo; Vidal-Ferran, Anton; van Leeuwen, Piet W N M

    2014-03-07

    Supramolecular catalysis is a rapidly expanding discipline which has benefited from the development of both homogeneous catalysis and supramolecular chemistry. The properties of classical metal and organic catalysts can now be carefully tailored by means of several suitable approaches and the choice of reversible interactions such as hydrogen bond, metal-ligand, electrostatic and hydrophobic interactions. The first part of these two subsequent reviews will be dedicated to catalytic systems for which non-covalent interactions between the partners of the reaction have been designed although mimicking enzyme properties has not been intended. Ligand, metal, organocatalyst, substrate, additive, and metal counterion are reaction partners that can be held together by non-covalent interactions. The resulting catalysts possess unique properties compared to analogues lacking the assembling properties. Depending on the nature of the reaction partners involved in the interactions, distinct applications have been accomplished, mainly (i) the building of bidentate ligand libraries (intra ligand-ligand), (ii) the building of di- or oligonuclear complexes (inter ligand-ligand), (iii) the alteration of the coordination spheres of a metal catalyst (ligand-ligand additive), and (iv) the control of the substrate reactivity (catalyst-substrate). More complex systems that involve the cooperative action of three reaction partners have also been disclosed. In this review, special attention will be given to supramolecular catalysts for which the observed catalytic activity and/or selectivity have been imputed to non-covalent interaction between the reaction partners. Additional features of these catalysts are the easy modulation of the catalytic performance by modifying one of their building blocks and the development of new catalytic pathways/reactions not achievable with classical covalent catalysts.

  15. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.

    1999-05-01

    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  16. Advances in oral controlled drug delivery: the role of drug-polymer and interpolymer non-covalent interactions.

    Science.gov (United States)

    De Robertis, Simona; Bonferoni, Maria Cristina; Elviri, Lisa; Sandri, Giuseppina; Caramella, Carla; Bettini, Ruggero

    2015-03-01

    After more than four decades of intense research, oral controlled drug delivery systems (DDSs) still represent a topic of major interest for pharmaceutical scientist and formulators. This can be explained in part by considering the economic value of oral DDSs whose market accounts for more than half of the overall drug delivery market. Polymeric systems based on drug-polymer non-covalent interaction represent a limited, but growing part of the field. Despite the large amount of literature and published reviews covering specific aspects, there is still need for a review of the relevant literature providing a general picture of the topic. The present review aims at presenting the latest findings in drug-polymer and interpolymer non-covalent interactions in oral controlled delivery while providing a specific perspective and a critical point of view, particularly on the tools and methods used for the study of these DDSs. Four main sections are considered: i) ionic interactions between drugs and polymers; ii) interpolymer complexes; iii) hydrogen bond; and iv) hydrophobic interactions. The largest part of the scientific literature deals with systems based on drug-polymer ionic interactions while hydrogen bonding and hydrophobic interaction though, very promising, are more difficult to exploit, and therefore less studied. An accurate and exhaustive representation of the specific role of the chemical functions in establishing predictable interactions between drug and polymers is still required.

  17. Non-covalent interactions between thio-caffeine derivatives and water-soluble porphyrin in ethanol-water environment

    Science.gov (United States)

    Lipke, Agnieszka; Makarska-Bialokoz, Magdalena; Sierakowska, Arleta; Jasiewicz, Beata

    2018-03-01

    To determine the binding interactions and ability to form the non-covalent systems, the association process between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP) and a series of five structurally diverse thio-caffeine analogues has been studied in ethanol and ethanol-water solutions, analyzing its absorption and steady-state fluorescence spectra. The porphyrin fluorescence lifetimes in the systems studied were established as well. During the titration with thio-caffeine compounds the slight bathochromic effect and considerable hypochromicity of the porphyrin Soret band maximum can be noted. The fluorescence quenching effect observed for interactions in H2TTMePP - thio-caffeine derivative systems, as well as the order of binding and fluorescence quenching constants (of 105-103 mol- 1) suggest the existence of the mechanism of static quenching due to the formation of non-covalent and non-fluorescent stacking complexes. In all the systems studied the phenomenon of the fractional accessibility of the fluorophore for the quencher was observed as well. Additionally, the specific binding interactions, due to the changes in reaction environment polarity, can be observed. It was found that thio-caffeine compounds can quench the porphyrin fluorescence according to the structure of thio-substituent in caffeine molecule. The obtained results can be potentially useful from scientific, therapeutic or environmental points of view.

  18. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.

    1990-01-01

    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  19. Effects of non-covalent interactions with 5-O-caffeoylquinic acid (chlorogenic acid) on the heat denaturation and solubility of globular proteins

    NARCIS (Netherlands)

    Prigent, S.V.E.; Gruppen, H.; Visser, A.J.W.G.; Koningsveld, G.A. van; Jong, G.A.H. de; Voragen, A.G.J.

    2003-01-01

    The non-covalent interactions between the monomeric phenolic compound chlorogenic acid (5-CQA) and bovine serum albumin (BSA), lysozyme, and α-lactalbumin were characterized, and their effect on protein properties was examined. 5-CQA had a low affinity for all three proteins, and these interactions

  20. Thermal solid-state Z/E isomerization of 2-alkylidene-4-oxothiazolidines: effects of non-covalent interactions

    Directory of Open Access Journals (Sweden)

    ZDRAVKO DŽAMBASKI

    2011-03-01

    Full Text Available Configurational isomerization of stereo-defined 5-substituted and unsubstituted 2-alkylidene-4-oxothiazolidines (1 in the solid state, giving the Z/E mixtures in various ratios, was investigated by 1H-NMR spectroscopy, X-ray powder crystallography and differential scanning calorimetry (DSC. The Z/E composition can be rationalized in terms of non-covalent interactions, involving intermolecular and intramolecular hydrogen bonding and directional non-bonded 1,5-type S×××O interactions. X-Ray powder crystallography, using selected crystalline (Z-4-oxothiazolidine substrates, revealed transformation to the amorphous state during the irreversible Z®E process. A correlation between previous results on the Z/E isomerization in solution and now in the solid state was established.

  1. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  2. The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions

    Science.gov (United States)

    Burns, Lori A.; Faver, John C.; Zheng, Zheng; Marshall, Michael S.; Smith, Daniel G. A.; Vanommeslaeghe, Kenno; MacKerell, Alexander D.; Merz, Kenneth M.; Sherrill, C. David

    2017-10-01

    Accurate potential energy models are necessary for reliable atomistic simulations of chemical phenomena. In the realm of biomolecular modeling, large systems like proteins comprise very many noncovalent interactions (NCIs) that can contribute to the protein's stability and structure. This work presents two high-quality chemical databases of common fragment interactions in biomolecular systems as extracted from high-resolution Protein DataBank crystal structures: 3380 sidechain-sidechain interactions and 100 backbone-backbone interactions that inaugurate the BioFragment Database (BFDb). Absolute interaction energies are generated with a computationally tractable explicitly correlated coupled cluster with perturbative triples [CCSD(T)-F12] "silver standard" (0.05 kcal/mol average error) for NCI that demands only a fraction of the cost of the conventional "gold standard," CCSD(T) at the complete basis set limit. By sampling extensively from biological environments, BFDb spans the natural diversity of protein NCI motifs and orientations. In addition to supplying a thorough assessment for lower scaling force-field (2), semi-empirical (3), density functional (244), and wavefunction (45) methods (comprising >1M interaction energies), BFDb provides interactive tools for running and manipulating the resulting large datasets and offers a valuable resource for potential energy model development and validation.

  3. Non-Covalent Interactions and Impact of Charge Penetration Effects in Linear Oligoacene Dimers and Single Crystals

    KAUST Repository

    Ryno, Sean

    2016-05-18

    Non-covalent interactions determine in large part the thermodynamic aspects of molecular packing in organic crystals. Using a combination of symmetry-adapted perturbation theory (SAPT) and classical multipole electrostatics, we describe the interaction potential energy surfaces for dimers of the oligoacene family, from benzene to hexacene. An analysis of these surfaces and a thorough assessment of dimers extracted from the reported crystal structures underline that high-order interactions (i.e., three-body non-additive interactions) must be considered in order to rationalize the details of the crystal structures. A comparison of the SAPT electrostatic energy with the multipole interaction energy demonstrates the importance of the contribution of charge penetration, which is shown to account for up to 50% of the total interaction energy in dimers extracted from the experimental single crystals; in the case of the most stable co-facial model dimers, this contribution is even larger than the total interaction energy. Our results highlight the importance of taking account of charge penetration in studies of the larger oligoacenes.

  4. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  5. Impact of processing on the noncovalent interactions between procyanidin and apple cell wall.

    Science.gov (United States)

    Le Bourvellec, Carine; Watrelot, Aude A; Ginies, Christian; Imberty, Anne; Renard, Catherine M G C

    2012-09-19

    Procyanidins can bind cell wall material in raw product, and it could be supposed that the same mechanism of retention of procyanidins by apple cell walls takes place in cooked products. To evaluate the influence of cell wall composition and disassembly during cooking on the cell walls' capacity to interact with procyanidins, four cell wall materials differing in their protein contents and physical characteristics were prepared: cell wall with proteins, cell wall devoid of protein, and two processed cell walls differing by their drying method. Protein contents varied from 23 to 99 mg/g and surface areas from 1.26 to 3.16 m(2)/g. Apple procyanidins with an average polymerization degree of 8.7 were used. The adsorption of apple procyanidins on solid cell wall material was quantified using the Langmuir isotherm formulation. The protein contents in cell wall material had no effect on procyanidin/cell wall interactions, whereas modification of the cell wall material by boiling, which reduces pectin content, and drying decreased the apparent affinity and increased the apparent saturation levels when constants were expressed relative to cell wall weight. However, boiling and drying increased apparent saturation levels and had no effect on apparent affinity when the same data were expressed per surface units. Isothermal titration calorimetry indicated strong affinity (K(a) = 1.4 × 10(4) M(-1)) between pectins solubilized by boiling and procyanidins. This study higllights the impact of highly methylated pectins and drying, that is, composition and structure of cell wall in the cell wall/procyanidin interactions.

  6. Using PyMOL to Explore the Effects of pH on Noncovalent Interactions between Immunoglobulin G and Protein A: A Guided-Inquiry Biochemistry Activity.

    Science.gov (United States)

    Roche Allred, Zahilyn D; Tai, Heeyoung; Bretz, Stacey Lowery; Page, Richard C

    2017-11-01

    Students' understandings of foundational concepts such as noncovalent interactions, pH and pK a are crucial for success in undergraduate biochemistry courses. We developed a guided-inquiry activity to aid students in making connections between noncovalent interactions and pH/pK a . Students explore these concepts by examining the primary and tertiary structures of immunoglobulin G (IgG) and Protein A. Students use PyMOL, an open source molecular visualization application, to (1) identify hydrogen bonds and salt bridges between and within the proteins at physiological pH and (2) apply their knowledge of pH/pK a to association rate constant data for these proteins at pH 4 and pH 11. The laboratory activity was implemented within a one semester biochemistry laboratory for students majoring in allied health disciplines, engineering, and biological sciences. Several extensions for more advanced students are discussed. Students' overall performance highlighted their ability to successfully complete tasks such as labeling and identifying noncovalent interactions and revealed difficulties with analyzing noncovalent interactions under varying pH/pK a conditions. Students' evaluations after completing the activity indicated they felt challenged but also recognized the potential of the activity to help them gain meaningful understanding of the connections between noncovalent interactions, pH, pK a , and protein structure. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):528-536, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  7. Including virtual photons in strong interactions

    International Nuclear Information System (INIS)

    Rusetsky, A.

    2003-01-01

    In the perturbative field-theoretical models we investigate the inclusion of the electromagnetic interactions into the purely strong theory that describes hadronic processes. In particular, we study the convention for splitting electromagnetic and strong interactions and the ambiguity of such a splitting. The issue of the interpretation of the parameters of the low-energy effective field theory in the presence of electromagnetic interactions is addressed, as well as the scale and gauge dependence of the effective theory couplings. We hope, that the results of these studies are relevant for the electromagnetic sector of ChPT. (orig.)

  8. Host-Guest Complexes of Cyclodextrins and Nanodiamonds as a Strong Non-Covalent Binding Motif for Self-Assembled Nanomaterials.

    Science.gov (United States)

    Schibilla, Frauke; Voskuhl, Jens; Fokina, Natalie A; Dahl, Jeremy E P; Schreiner, Peter R; Ravoo, Bart Jan

    2017-11-13

    We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host-guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. We found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs. Additionally, cyclodextrin vesicles (CDVs) were decorated with d-mannose by using adamantane, diamantane, and triamantane as non-covalent anchors, and the resulting vesicles were compared with the lectin concanavalin A in agglutination experiments. Agglutination was directly correlated to the host-guest association: adamantane showed lower agglutination than di- or triamantane with β-CDV and almost no agglutination with γ-CDV, whereas high agglutination was observed for di- and triamantane with γ-CDV. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A theory of the strong interactions

    International Nuclear Information System (INIS)

    Gross, D.J.

    1979-01-01

    The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)

  10. Recognition of anions using urea and thiourea substituted calixarenes: A density functional theory study of non-covalent interactions

    Science.gov (United States)

    Athar, Mohd; Lone, Mohsin Y.; Jha, Prakash C.

    2018-02-01

    Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F-, Cl-, Br-) and linear anions (CN-, N3-, SCN-) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order "charge transfer" interactions of n-σ∗NH and n-σ∗OH type along the H-bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.

  11. Electroweak and Strong Interactions Phenomenology, Concepts, Models

    CERN Document Server

    Scheck, Florian

    2012-01-01

    Electroweak and Strong Interaction: Phenomenology, Concepts, Models, begins with relativistic quantum mechanics and some quantum field theory which lay the foundation for the rest of the text. The phenomenology and the physics of the fundamental interactions are emphasized through a detailed discussion of the empirical fundamentals of unified theories of strong, electromagnetic, and weak interactions. The principles of local gauge theories are described both in a heuristic and a geometric framework. The minimal standard model of the fundamental interactions is developed in detail and characteristic applications are worked out. Possible signals of physics beyond that model, notably in the physics of neutrinos are also discussed. Among the applications scattering on nucleons and on nuclei provide salient examples. Numerous exercises with solutions make the text suitable for advanced courses or individual study. This completely updated revised new edition contains an enlarged chapter on quantum chromodynamics an...

  12. Noncovalent Labeling of Biomolecules with Red and Near- Infrared Dyes

    Directory of Open Access Journals (Sweden)

    Lucjan Strekowski

    2004-02-01

    Full Text Available Biopolymers such as proteins and nucleic acids can be labeled with a fluorescent marker to allow for their detection. Covalent labeling is achieved by the reaction of an appropriately functionalized dye marker with a reactive group on a biomolecule. The recent trend, however, is the use of noncovalent labeling that results from strong hydrophobic and/or ionic interactions between the marker and biomolecule of interest. The main advantage of noncovalent labeling is that it affects the functional activity of the biomolecule to a lesser extent. The applications of luminescent cyanine and squarylium dyes are reviewed.

  13. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    probes like photons, pions or protons or the heated and compressed hadronic matter generated in a heavy-ion collision. Leaving any nuclear medium without strong final-state interactions, dileptons are the optimum decay channel as they avoid any final-state distortion of the 4- momenta of the decay products entering eq.

  14. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    Properties of hadrons in strongly interacting matter provide a link between quantum chromodynamics in the ... Top: Spectral function of the ρ-meson at normal nuclear matter density as a function of mass and ... directly but folded with the branching ratio ΓV →p1+p2 /Γtot into the specific final channel one is investigating.

  15. Affinity capillary electrophoresis and density functional theory study of noncovalent interactions of cyclic peptide [Gly6]-antamanide with small cations.

    Science.gov (United States)

    Pangavhane, Sachin; Böhm, Stanislav; Makrlík, Emanuel; Ruzza, Paolo; Kašička, Václav

    2017-08-01

    ACE and density functional theory were employed to study the noncovalent interactions of cyclic decapeptide glycine-6-antamanide ([Gly 6 ]AA), synthetic derivative of native antamanide (AA) peptide from the deadly poisonous fungus Amanita phalloides, with small cations (Li + , Rb + , Cs + , NH 4 + , and Ca 2+ ) in methanol. The strength of these interactions was quantified by the apparent stability constants of the appropriate complexes determined by ACE. The stability constants were calculated using the nonlinear regression analysis of the dependence of the effective electrophoretic mobility of [Gly 6 ]AA on the concentration of the above ions in the BGE (methanolic solution of 20 mM chloroacetic acid, 10 mM Tris, pH MeOH 7.8, containing 0-70 mM concentrations of the above ions added in the form of chlorides). Prior to stability constant calculation, the effective mobilities measured at actual temperature inside the capillary and at variable ionic strength of the BGEs were corrected to the values corresponding to the reference temperature of 25°C and to the constant ionic strength of 10 mM. From the above ions, Rb + and Cs + cations interacted weakly with [Gly 6 ]AA but no interactions of [Gly 6 ]AA with univalent Li + and NH 4 + ions and divalent Ca 2+ ion were observed. The apparent stability constants of [Gly 6 ]AA-Rb + and [Gly 6 ]AA-Cs + complexes were found to be equal to 13 ± 4 and 22 ± 3 L/mol, respectively. The structural characteristics of these complexes, such as position of the Rb + and Cs + ions in the cavity of the [Gly 6 ]AA molecule and the interatomic distances within these complexes, were obtained by the density functional theory calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Noncovalent Interactions in Specific Recognition Motifs of Protein-DNA Complexes

    Czech Academy of Sciences Publication Activity Database

    Stasyuk, Olga A.; Jakubec, Dávid; Vondrášek, Jiří; Hobza, Pavel

    2017-01-01

    Roč. 13, č. 2 (2017), s. 877-885 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * side chain interactions * interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.245, year: 2016

  17. MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Riley, K. E.; Řezáč, Jan; Pitoňák, M.; Hobza, Pavel

    2013-01-01

    Roč. 14, č. 4 (2013), s. 698-707 ISSN 1439-4235 R&D Projects: GA ČR GBP208/12/G016 Grant - others:European Social Fund(XE) CZ1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : benchmark dataset * complete basis set limit * correlation energy * MOllerPlesset perturbation theory * noncovalent interactions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.360, year: 2013

  18. Covalent and Non-Covalent DNA-Gold-Nanoparticle Interactions: New Avenues of Research.

    Science.gov (United States)

    Carnerero, Jose M; Jimenez-Ruiz, Aila; Castillo, Paula M; Prado-Gotor, Rafael

    2017-01-04

    The interactions of DNA, whether long, hundred base pair chains or short-chained oligonucleotides, with ligands play a key role in the field of structural biology. Its biological activity not only depends on the thermodynamic properties of DNA-ligand complexes, but can and often is conditioned by the formation kinetics of those complexes. On the other hand, gold nanoparticles have long been known to present excellent biocompatibility with biomolecules and are themselves remarkable for their structural, electronic, magnetic, optical and catalytic properties, radically different from those of their counterpart bulk materials, and which make them an important asset in multiple applications. Therefore, thermodynamic and kinetic studies of the interactions of DNA with nanoparticles acting as small ligands are key for a better understanding of those interactions to allow for their control and modulation and for the opening of new venues of research in nanomedicine, analytic and biologic fields. The interactions of gold nanoparticles with both DNA polymers and their smaller subunits; special focus is placed on those interactions taking place with nonfunctionalized gold nanoparticles are reviewed in the present work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Guanidine-phosphate non-covalent interaction in LAP crystal growth solution evidenced from spectroscopy studies

    Science.gov (United States)

    Wang, L.; Zhang, G. H.; Wang, X. Q.; Zhu, L. Y.; Xu, D.

    2015-09-01

    The similar L-arginine molecule aggregation has been found in L-arginine (LA) and L-arginine phosphate monohydrate (LAP) aqueous solutions. The special fluorescence emission at 380 nm of LA aggregates in LAP solution has been found, compared with the emission of LA solution at 415 nm, which has an obvious blue shift. By comparing the fluorescence spectra of several solutions for L-arginine and L-lysine salts, the interaction between phosphate and guanidine in LAP solution was considered to be the cause of its special fluorescence emission. Meanwhile, when LAP molecule formed in solution, the fluorescence emission wavelength and the UV absorption intensity at 296 nm of L-arginine solutions have mutated. Therefore, the group interaction involved by guanidine has changed the fluorescence properties of L-arginine aggregates in LAP solution, indicating that the specific interaction between phosphate and guanidine exists in LAP molecule.

  20. Optimizing Noncovalent Interactions Between Lignin and Synthetic Polymers to Develop Effective Compatibilizers

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Nathan [University of Tennessee, Knoxville (UTK); Harper, David [University of Tennessee, Knoxville (UTK), Center for Renewable Carbon; Dadmun, Mark D [ORNL

    2012-01-01

    Experiments are designed and completed to identify an effective polymeric compatibilizer for lignin polystyrene blends. Copolymers of styrene and vinylphenol are chosen as the structure of the compatibilizer as the VPh unit can readily form intermolecular hydrogen bonds with the lignin molecule. Electron microscopy, thermal analysis, and neutron refl ectivity results demonstrate that among these compatibilizers, a copolymer of styrene and VPh with 20% 30% VPh most readily forms intermolecular interactions with the lignin molecule and results in the most well-dispersed blends with lignin. This behavior is explained by invoking the competition of intra- and intermolecular hydrogen bonding and functional group accessibility in forming intermolecular interactions.

  1. Non-Covalent Interactions: Complexes of Guanidinium with DNA and RNA Nucleobases

    Czech Academy of Sciences Publication Activity Database

    Blanco, F.; Kelly, B.; Sanchez-Sanz, Goar; Trujillo, Cristina; Alkorta, I.; Elguero, J.; Rozas, I.

    2013-01-01

    Roč. 117, č. 39 (2013), s. 11608-11616 ISSN 1520-6106 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-274988 People Institutional support: RVO:61388963 Keywords : molecular -orbital methods * cation-pi interactions * minor-groove binders Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  2. Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Hobza, Pavel

    2016-01-01

    Roč. 116, č. 9 (2016), s. 5038-5071 ISSN 0009-2665 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * coupled cluster theory * intermolecular interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 47.928, year: 2016

  3. Range-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions.

    Science.gov (United States)

    Zhu, Wuming; Toulouse, Julien; Savin, Andreas; Angyán, János G

    2010-06-28

    Range-separated methods combining a short-range density functional with long-range random phase approximations (RPAs) with or without exchange response kernel are tested on rare-gas dimers and the S22 benchmark set of weakly interacting complexes of Jurecka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. The methods are also compared to full-range RPA approaches. Both range separation and inclusion of the Hartree-Fock exchange kernel largely improve the accuracy of intermolecular interaction energies. The best results are obtained with the method called RSH+RPAx, which yields interaction energies for the S22 set with an estimated mean absolute error of about 0.5-0.6 kcal/mol, corresponding to a mean absolute percentage error of about 7%-9% depending on the reference interaction energies used. In particular, the RSH+RPAx method is found to be overall more accurate than the range-separated method based on long-range second-order Moller-Plesset (MP2) perturbation theory (RSH+MP2).

  4. Strong interaction studies with kaonic atoms

    Directory of Open Access Journals (Sweden)

    Marton J.

    2016-01-01

    Full Text Available The strong interaction of antikaons (K− with nucleons and nuclei in the low-energy regime represents an active research field connected intrinsically with few-body physics. There are important open questions like the question of antikaon nuclear bound states - the prototype system being K−pp. A unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states of light kaonic atoms like kaonic hydrogen isotopes. In the SIDDHARTA experiment at the electron-positron collider DAΦNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K−p atom leading to a hadronic shift ϵ1s and a hadronic broadening Γ1s of the 1s state. The SIDDHARTA result triggered new theoretical work which achieved major progress in the understanding of the low-energy strong interaction with strangeness. Antikaon-nucleon scattering lengths have been calculated constrained by the SIDDHARTA data on kaonic hydrogen. For the extraction of the isospin-dependent scattering lengths a measurement of the hadronic shift and width of kaonic deuterium is necessary. Therefore, new X-ray studies with the focus on kaonic deuterium are in preparation (SIDDHARTA2. Many improvements in the experimental setup will allow to measure kaonic deuterium which is challenging due to the anticipated low X-ray yield. Especially important are the data on the X-ray yields of kaonic deuterium extracted from a exploratory experiment within SIDDHARTA.

  5. Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches

    Science.gov (United States)

    2015-01-01

    Quantum mechanical (QM) calculations of noncovalent interactions are uniquely useful as tools to test and improve molecular mechanics force fields and to model the forces involved in biomolecular binding and folding. Because the more computationally tractable QM methods necessarily include approximations, which risk degrading accuracy, it is essential to evaluate such methods by comparison with high-level reference calculations. Here, we use the extensive Benchmark Energy and Geometry Database (BEGDB) of CCSD(T)/CBS reference results to evaluate the accuracy and speed of widely used QM methods for over 1200 chemically varied gas-phase dimers. In particular, we study the semiempirical PM6 and PM7 methods; density functional theory (DFT) approaches B3LYP, B97-D, M062X, and ωB97X-D; and symmetry-adapted perturbation theory (SAPT) approach. For the PM6 and DFT methods, we also examine the effects of post hoc corrections for hydrogen bonding (PM6-DH+, PM6-DH2), halogen atoms (PM6-DH2X), and dispersion (DFT-D3 with zero and Becke–Johnson damping). Several orders of the SAPT expansion are also compared, ranging from SAPT0 up to SAPT2+3, where computationally feasible. We find that all DFT methods with dispersion corrections, as well as SAPT at orders above SAPT2, consistently provide dimer interaction energies within 1.0 kcal/mol RMSE across all systems. We also show that a linear scaling of the perturbative energy terms provided by the fast SAPT0 method yields similar high accuracy, at particularly low computational cost. The energies of all the dimer systems from the various QM approaches are included in the Supporting Information, as are the full SAPT2+(3) energy decomposition for a subset of over 1000 systems. The latter can be used to guide the parametrization of molecular mechanics force fields on a term-by-term basis. PMID:24803867

  6. Quantum Monte Carlo for noncovalent interactions: an efficient protocol attaining benchmark accuracy

    Czech Academy of Sciences Publication Activity Database

    Dubecký, M.; Derian, R.; Jurečka, P.; Mitas, L.; Hobza, Pavel; Otyepka, M.

    2014-01-01

    Roč. 16, č. 38 (2014), s. 20915-20923 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA ČR(CZ) GAP208/10/1742; GA MŠk(CZ) ED2.1.00/03.0058; European Social Fund(XE) CZ.1.07/2.3.00/30.0004; European Social Fund(XE) CZ.1.07/2.3.00/20.0058 Program:GA; ED Institutional support: RVO:61388963 Keywords : basis set limit * interaction energies * CCSD(T) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  7. Non-Covalent Interactions in the Crystal Structure of Methyl 4-Hydroxy-3-Nitrobenzoate

    Directory of Open Access Journals (Sweden)

    Jim Simpson

    2012-06-01

    Full Text Available Methyl 4-hydroxy-3-nitrobenzoate, (I, C8H7NO5, crystallizes with two unique molecules, A and B, in the asymmetric unit of the triclinic unit cell. The space group was assigned as P-1, with lattice parameters a = 0.72831(15, b = 1.0522(2, c = 1.1410(2 nm, α = 83.38(3, β = 80.83(3, γ = 82.02(3°, Z = 4, V = 0.8510(3 nm3, Mr = 197.15, Dc = 1.539 g/m3, µ= 0.131 mm−1, F(000 = 408, R = 0.1002 and wR = 0.2519. In the crystal structure, 12 hydrogen bonding and two p-stacking interactions link the molecules into infinite stacked sheets parallel to (101.

  8. Influence of Alkylammonium Acetate Buffers on Protein-Ligand Noncovalent Interactions Using Native Mass Spectrometry

    Science.gov (United States)

    Zhuang, Xiaoyu; Gavriilidou, Agni F. M.; Zenobi, Renato

    2017-02-01

    We investigate the influence of three volatile alkylammonium acetate buffers on binding affinities for protein-ligand interactions determined by native electrospray ionization-mass spectrometry (ESI-MS). Four different types of proteins were chosen for this study. A charge-reduction effect was observed for all the cases studied, in comparison to the ions formed in ammonium acetate solution. When increasing the collision energy, the complexes of trypsin and the ligand were found to be more stable when sprayed from alkylammonium acetate buffers than from ammonium acetate. The determined dissociation constant (Kd) also exhibited a drop (up to 40%) when ammonium acetate was replaced by alkylammonium acetate buffers for the case of lysozyme and the ligand. The prospective uses of these ammonium acetate analogs in native ESI-MS are discussed in this paper as well.

  9. Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics.

    Science.gov (United States)

    Wang, Ying; Jin, Xinsheng; Yu, Haoyu S; Truhlar, Donald G; He, Xiao

    2017-08-08

    We present the revM06-L functional, which we designed by optimizing against a larger database than had been used for Minnesota 2006 local functional (M06-L) and by using smoothness restraints. The optimization strategy reduced the number of parameters from 34 to 31 because we removed some large terms that increased the required size of the quadrature grid and the number of self-consistent-field iterations. The mean unsigned error (MUE) of revM06-L on 422 chemical energies is 3.07 kcal/mol, which is improved from 3.57 kcal/mol calculated by M06-L. The MUE of revM06-L for the chemical reaction barrier height database (BH76) is 1.98 kcal/mol, which is improved by more than a factor of 2 with respect to the M06-L functional. The revM06-L functional gives the best result among local functionals tested for the noncovalent interaction database (NC51), with an MUE of only 0.36 kcal/mol, and the MUE of revM06-L for the solid-state lattice constant database (LC17) is half that for M06-L. The revM06-L functional also yields smoother potential curves, and it predicts more-accurate results than M06-L for seven out of eight diversified test sets not used for parameterization. We conclude that the revM06-L functional is well suited for a broad range of applications in chemistry and condensed-matter physics.

  10. Fundamental Structure of Matter and Strong Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  11. Strong Interaction Studies with PANDA at FAIR

    International Nuclear Information System (INIS)

    Schönning, Karin

    2016-01-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme

  12. Strong Interactions Physics at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Pioppi, M.

    2005-03-14

    Recent results obtained by BABAR experiment and related to strong interactions physics are presented, with particular attention to the extraction of the first four hadronic-mass moments and the first three lepton-energy moments in semileptonic decays. From a simultaneous fit to the moments, the CKM element |V{sub cb}|, the inclusive B {yields} X{sub c}lv and other heavy quark parameters are derived. The second topic is the ambiguity-free measurement of cos(2{beta}) in B {yields} J/{Psi}K* decays. With approximately 88 million of B{bar B} pairs, negative solutions for cos(2{beta}) are excluded at 89%.

  13. Strong Interaction Studies with PANDA at FAIR

    Science.gov (United States)

    Schönning, Karin

    2016-10-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.

  14. Strong Interactive Massive Particles from a Strong Coupled Theory

    DEFF Research Database (Denmark)

    Yu. Khlopov, Maxim; Kouvaris, Christoforos

    2008-01-01

    (-2). These excessive techniparticles are all captured by $^4He$, creating \\emph{techni-O-helium} $tOHe$ ``atoms'', as soon as $^4He$ is formed in Big Bang Nucleosynthesis. The interaction of techni-O-helium with nuclei opens new paths to the creation of heavy nuclei in Big Bang Nucleosynthesis. Due...

  15. Understanding solution-state noncovalent interactions between xenobiotics and natural organic matter using 19F/1H heteronuclear saturation transfer difference nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Longstaffe, James G; Simpson, André J

    2011-08-01

    A combination of forward and reverse heteronuclear ((19)F/(1)H) saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic techniques were applied to characterize the noncovalent interactions between perfluorinated aromatic xenobiotics and dissolved humic acid. These NMR techniques produce detailed molecular-level descriptions of weak noncovalent associations between components in complex environmental mixtures, allowing the mechanisms underlying these interactions to be explored; (19)F observed heteronuclear STD (H-STD) is used to describe the average molecular orientation of the xenobiotics during their interactions with humic acid, whereas (1)H observed reverse-heteronuclear STD (RH-STD) is used to both identify and quantify preferences exhibited by xenobiotics for interactions at different types of humic acid moieties. First, by using H-STD, it is shown that selected aromatic organofluorides orient with their nonfluorine functional groups (OH, NH(2), and COOH) directed away from humic acid during the interactions, suggesting that these functional groups are not specifically involved. Second, the RH-STD experiment is shown to be sensitive to subtle differences in preferred interaction sites in humic acid and is used here to demonstrate preferential interactions at aromatic humic acid sites for selected aromatic xenobiotics, C(10)F(7)OH, and C(6)F(4)X(2), (where X = F, OH, NH(2), NO(2), or COOH), that can be predicted from the electrostatic potential density maps of the xenobiotic. Copyright © 2011 SETAC.

  16. Finite temperature system of strongly interacting baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc/sup 2//k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10/sup 11/ /sup 0/K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light.

  17. Finite temperature system of strongly interacting baryons

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.; Wheeler, J.W.

    1976-07-01

    A fully relativistic finite temperature many body theory is constructed and used to examine the bulk properties of a system of strongly interacting baryons. The strong interactions are described by a two parameter phenomenological model fit to a simple description of nuclear matter at T = 0. The zero temperature equation of state for such a system which has already been discussed in the literature was developed to give a realistic description of nuclear matter. The model presented here is the exact finite temperature extension of that model. The effect of the inclusion of baryon pairs for T greater than or equal to 2mc 2 /k is discussed in detail. The phase transition identified with nuclear matter vanishes for system temperatures in excess of T/sub C/ = 1.034 x 10 11 0 K. All values of epsilon (P,T) correspond to systems that are causal in the sense that the locally determined speed of sound never exceeds the speed of light

  18. Convex Modeling of Interactions with Strong Heredity.

    Science.gov (United States)

    Haris, Asad; Witten, Daniela; Simon, Noah

    2016-01-01

    We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.

  19. Strongly Interacting Matter at High Energy Density

    International Nuclear Information System (INIS)

    McLerran, L.

    2008-01-01

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N c arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma

  20. Toward a Strongly Interacting Scalar Higgs Particle

    International Nuclear Information System (INIS)

    Shalaby, Abouzeid M.; El-Houssieny, M.

    2008-01-01

    We calculate the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory. Rather than the corresponding Hermitian theory and due to the asymptotic freedom property of the theory, the vacuum energy does not blow up for large energy scales which is a good sign to solve the hierarchy problem when using this model to break the U(1)xSU(2) symmetry in the standard model. The theory is strongly interacting and in fact, all the dimensionful parameters in the theory like mass and energy are finite even for very high energy scales. Moreover, relative to the vacuum energy for the Hermitian φ 4 theory, the vacuum energy of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 theory is tiny, which is a good sign toward the solution of the cosmological constant problem. Remarkably, these features of the non-Hermitian and PT symmetric (-gφ 4 ) 2+1 scalar field theory make it very plausible to be employed as a Higgs mechanism in the standard model instead of the problematic Hermitian Higgs mechanism

  1. Role of charge transfer interaction and the chemical physics behind effective fulleropyrrolidine/porphyrin non-covalent interaction in solution.

    Science.gov (United States)

    Mondal, Ashis; Santhosh, Kotni; Bauri, Ajoy; Bhattacharya, Sumanta

    2014-01-01

    The present paper reports the photophysical insights on supramolecular interaction of a monoporphyrin derivative, namely, 1, with C60 pyrrolidine tris-acid ethyl ester (PyC60) in toluene and benzonitrile. The ground state interaction between PyC60 and 1 is facilitated through charge transfer interaction. Both UV-Vis and steady state measurements elicit almost similar magnitude of binding constant for the PyC60/1 complex in toluene and benzonitrile, viz., 6825 and 6540 dm(3 )mol(-1), respectively. Life time measurement evokes that rate of charge separation is fast in benzonitrile. Both hybrid-DFT and DFT calculations provide very good support in favor of electronic charge-separation in PyC60/1 system in vacuo. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nature of noncovalent interactions in catenane supramolecular complexes: calibrating the MM3 force field with ab initio, DFT, and SAPT methods.

    Science.gov (United States)

    Simeon, Tomekia M; Ratner, Mark A; Schatz, George C

    2013-08-22

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H···O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3]catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H···O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H···O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, we find that electrostatic interactions dominate the [C-H···O] hydrogen-bonding interactions, while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interaction energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correction have important differences compared to DFT-SAPT, while HF and even MP2 results are in poor agreement with DFT-SAPT.

  3. The Nature of Noncovalent Interactions in Catenane Supramolecular Complexes: Calibrating the MM3 Force Field with ab initio, DFT and SAPT Methods

    Science.gov (United States)

    Simeon, Tomekia M.; Ratner, Mark A.; Schatz, George C.

    2013-01-01

    The design and assembly of mechanically interlocked molecules, such as catenanes and rotaxanes, are dictated by various types of noncovalent interactions. In particular, [C-H⋯O] hydrogen-bonding and π-π stacking interactions in these supramolecular complexes have been identified as important noncovalent interactions. With this in mind, we examined the [3] catenane 2·4PF6 using molecular mechanics (MM3), ab initio methods (HF, MP2), several versions of density functional theory (DFT) (B3LYP, M0X), and the dispersion-corrected method DFT-D3. Symmetry adapted perturbation theory (DFT-SAPT) provides the highest level of theory considered, and we use the DFT-SAPT results both to calibrate the other electronic structure methods, and the empirical potential MM3 force field that is often used to describe larger catenane and rotaxane structures where [C-H⋯O] hydrogen-bonding and π-π stacking interactions play a role. Our results indicate that the MM3 calculated complexation energies agree qualitatively with the energetic ordering from DFT-SAPT calculations with an aug-cc-pVTZ basis, both for structures dominated by [C-H⋯O] hydrogen-bonding and π-π stacking interactions. When the DFT-SAPT energies are decomposed into components, and we find that electrostatic interactions dominate the [C-H⋯O] hydrogen-bonding interactions while dispersion makes a significant contribution to π-π stacking. Another important conclusion is that DFT-D3 based on M06 or M06-2X provides interactions energies that are in near-quantitative agreement with DFT-SAPT. DFT results without the D3 correct have important differences compared to DFT-SAPT while HF and even MP2 results are in poor agreement with DFT-SAPT. PMID:23941280

  4. De Sitter vacua of strongly interacting QFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchel, Alex [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Department of Physics and Astronomy, University of Western Ontario,London, Ontario N6A 5B7 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2J 2W9 (Canada); Karapetyan, Aleksandr [Department of Applied Mathematics, University of Western Ontario,London, Ontario N6A 5B7 (Canada)

    2017-03-22

    We use holographic correspondence to argue that Euclidean (Bunch-Davies) vacuum is a late-time attractor of the dynamical evolution of quantum gauge theories at strong coupling. The Bunch-Davies vacuum is not an adiabatic state, if the gauge theory is non-conformal — the comoving entropy production rate is nonzero. Using the N=2{sup ∗} gauge theory holography, we explore prospects of explaining current accelerated expansion of the Universe as due to the vacuum energy of a strongly coupled QFT.

  5. Relativistic rapprochement of electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs

  6. Computational Mechanistic Study of Redox-Neutral Rh(III)-Catalyzed C-H Activation Reactions of Arylnitrones with Alkynes: Role of Noncovalent Interactions in Controlling Selectivity.

    Science.gov (United States)

    Xing, Yang-Yang; Liu, Jian-Biao; Tian, Ying-Ying; Sun, Chuan-Zhi; Huang, Fang; Chen, De-Zhan

    2016-11-23

    The mechanism of redox-neutral Rh(III)-catalyzed coupling reactions of arylnitrones with alkynes was investigated by density functional theory (DFT) calculations. The free energy profiles associated with the catalytic cycle, involving C(sp 2 )-H activation, insertion of alkyne, transfer of O atom, cyclization and protodemetalation, are presented and analyzed. An overwhelming preference for alkyne insertion into Rh-C over Rh-O is observed among all pathways, and the most favorable route is determined. The pivalate-assisted C-H activation step is turnover-limiting, and the cyclization step determines the diastereoselectivity of the reaction, with the stereoselectivity arising mainly from the difference of noncovalent interactions in key transition states. The detailed mechanism of O atom transfer, Rh III -Rh I -Rh III versus Rh III -Rh V -Rh III cycle, is discussed.

  7. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  8. Supersymmetry and weak, electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1977-01-01

    A supersymmetric theory of particle interactions is discussed. It is based on the earlier model which involves gauge (or vector) superfields, and matter (or chiral) superfields; each of them describes a vector and a Majorana spinor in the first case, or a two-component Dirac spinor and a complex scalar in the second case. The new theory suggests the possible existence of spin - 1/2 gluons and heavy spin-0 quarks, besides spin - 1 gluons and spin - 1/2 quarks. To prevent scalar particles to be exchanged in processes such as μ or β decays a new class of leptons with its own quantum number is introduced; it includes charged leptons and a ''photonic neutrino''

  9. QCD : the theory of strong interactions Conference MT17

    CERN Multimedia

    2001-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  10. Dispersion-Corrected Spin-Component-Scaled Double-Hybrid Density Functional Theory: Implementation and Performance for Non-covalent Interactions.

    Science.gov (United States)

    Roch, Loïc M; Baldridge, Kim K

    2017-06-13

    The implementation of 300 combinations of generalized gradient approximation/local density approximation exchange-correlation dispersion-corrected spin-component-scaled double-hybrid (DSD) density functional theory (DFT) methods has been carried out and the performance assessed against several DFT and post-Hartree-Fock methods, enabling further advancements toward the long-standing challenge of accurate prediction of interaction energies and associated properties. The resulting framework is flexible and has been further extended to include the resolution of identity (RI) approximation for solving the critical four-center two-electron repulsion integrals in the basis of the Kohn-Sham orbitals for cost effectiveness. To evaluate the performance of this set of new cost-effective methods, denoted as RI-DSD-DFTs, seven validation data sets were designed to cover a broad range of non-covalent interactions with characteristic stabilizing contributions. Inclusion of the perturbative treatment of correlation effects is shown to significantly improve the description of weak interactions. The set of DSD-DFTs provide interaction energies with root-mean-square deviations and mean absolute errors within 0.5 kcal/mol. The cost-effective RI-DSD-DFT counterparts deviate by less than 0.18 kcal/mol on average with only 2% of the computational cost.

  11. Investigation of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1 with Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2017-10-01

    Full Text Available Aflatoxins are widely spread mycotoxins produced mainly by Aspergillus species. Consumption of aflatoxin-contaminated foods and drinks causes serious health risks for people worldwide. It is well-known that the reactive epoxide metabolite of aflatoxin B1 (AFB1 forms covalent adducts with serum albumin. However, non-covalent interactions of aflatoxins with human serum albumin (HSA are poorly characterized. Thus, in this study the complex formation of aflatoxins was examined with HSA applying spectroscopic and molecular modelling studies. Our results demonstrate that aflatoxins form stable complexes with HSA as reflected by binding constants between 2.1 × 104 and 4.5 × 104 dm3/mol. A binding free energy value of −26.90 kJ mol−1 suggests a spontaneous binding process between AFB1 and HSA at room-temperature, while the positive entropy change of 55.1 JK−1 mol−1 indicates a partial decomposition of the solvation shells of the interacting molecules. Modeling studies and investigations with site markers suggest that Sudlow’s Site I of subdomain IIA is the high affinity binding site of aflatoxins on HSA. Interaction of AFB1 with bovine, porcine, and rat serum albumins was also investigated. Similar stabilities of the examined AFB1-albumin complexes were observed suggesting the low species differences of the albumin-binding of aflatoxins.

  12. QCD : the theory of strong interactions Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD),predicts that the strong interac- tion is transmitted by the exchange of particles called glu- ons.Unlike the messengers of electromagnetism -pho- tons,which are electrically neutral -gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies.LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  13. Non-Covalent Interactions in Hydrogen Storage Materials LiN(CH32BH3 and KN(CH32BH3

    Directory of Open Access Journals (Sweden)

    Filip Sagan

    2016-03-01

    Full Text Available In the present work, an in-depth, qualitative and quantitative description of non-covalent interactions in the hydrogen storage materials LiN(CH32BH3 and KN(CH32BH3 was performed by means of the charge and energy decomposition method (ETS-NOCV as well as the Interacting Quantum Atoms (IQA approach. It was determined that both crystals are stabilized by electrostatically dominated intra- and intermolecular M∙∙∙H–B interactions (M = Li, K. For LiN(CH32BH3 the intramolecular charge transfer appeared (B–H→Li to be more pronounced compared with the corresponding intermolecular contribution. We clarified for the first time, based on the ETS-NOCV and IQA methods, that homopolar BH∙∙∙HB interactions in LiN(CH32BH3 can be considered as destabilizing (due to the dominance of repulsion caused by negatively charged borane units, despite the fact that some charge delocalization within BH∙∙∙HB contacts is enforced (which explains H∙∙∙H bond critical points found from the QTAIM method. Interestingly, quite similar (to BH∙∙∙HB intermolecular homopolar dihydrogen bonds CH∙∙∙HC appared to significantly stabilize both crystals—the ETS-NOCV scheme allowed us to conclude that CH∙∙∙HC interactions are dispersion dominated, however, the electrostatic and σ/σ*(C–H charge transfer contributions are also important. These interactions appeared to be more pronounced in KN(CH32BH3 compared with LiN(CH32BH3.

  14. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions.

    Science.gov (United States)

    Goerigk, Lars; Hansen, Andreas; Bauer, Christoph; Ehrlich, Stephan; Najibi, Asim; Grimme, Stefan

    2017-12-13

    We present the GMTKN55 benchmark database for general main group thermochemistry, kinetics and noncovalent interactions. Compared to its popular predecessor GMTKN30 [Goerigk and Grimme J. Chem. Theory Comput., 2011, 7, 291], it allows assessment across a larger variety of chemical problems-with 13 new benchmark sets being presented for the first time-and it also provides reference values of significantly higher quality for most sets. GMTKN55 comprises 1505 relative energies based on 2462 single-point calculations and it is accessible to the user community via a dedicated website. Herein, we demonstrate the importance of better reference values, and we re-emphasise the need for London-dispersion corrections in density functional theory (DFT) treatments of thermochemical problems, including Minnesota methods. We assessed 217 variations of dispersion-corrected and -uncorrected density functional approximations, and carried out a detailed analysis of 83 of them to identify robust and reliable approaches. Double-hybrid functionals are the most reliable approaches for thermochemistry and noncovalent interactions, and they should be used whenever technically feasible. These are, in particular, DSD-BLYP-D3(BJ), DSD-PBEP86-D3(BJ), and B2GPPLYP-D3(BJ). The best hybrids are ωB97X-V, M052X-D3(0), and ωB97X-D3, but we also recommend PW6B95-D3(BJ) as the best conventional global hybrid. At the meta-generalised-gradient (meta-GGA) level, the SCAN-D3(BJ) method can be recommended. Other meta-GGAs are outperformed by the GGA functionals revPBE-D3(BJ), B97-D3(BJ), and OLYP-D3(BJ). We note that many popular methods, such as B3LYP, are not part of our recommendations. In fact, with our results we hope to inspire a change in the user community's perception of common DFT methods. We also encourage method developers to use GMTKN55 for cross-validation studies of new methodologies.

  15. Synthesis and structure of 1,3-dimethyl-5-(p-sulfonamide-phenylazo)-6-aminouracil and its Ni(II) complex: Topological insights and investigation for noncovalent interactions

    Science.gov (United States)

    Debnath, Diptanu; Roy, Subhadip; Purkayastha, Atanu; Bauzá, Antonio; Choudhury, Rupasree; Ganguly, Rakesh; Frontera, Antonio; Misra, Tarun Kumar

    2017-08-01

    The azo-derivative, 1,3-dimethyl-5-(p-sulfonamide-phenylazo)-6-aminouracil (HL) containing 6-aminouracil (a biomolecule) and sulfonamide functionality (commonly found in sulfa-drugs), and its Ni(II) complex, NiIIL2 were synthesized. Single-crystal X-ray diffraction studies show that the ligand (HL) consists of an E conformation about the azo-linkage with a nearly planar geometry and the complex possesses distorted square planar geometry. The H-bonded underlying networks of HL and NiIIL2 were topologically classified revealing distinct topological types, namely tts and hxl, respectively. Moreover, topology of molecular packings in HL and NiIIL2 has also been discussed. Density functional theory (DFT) calculations, at the M06-2X/def2TZVP level of theory, are employed to characterize a great variety of non-covalent interactions that explicitly show the importance of antiparallel stacking interactions established by π--π+ interactions and H-bonds in the self-assembled dimmers in HL and lp-π/C-H⋯π interactions in NiIIL2. The results of NMR and UV-vis spectroscopies evidence that the ligand exists in hydrazone-imine-keto (B) tautomeric form in solution. The ligand absorption bands consist of the overlapping bands of π→π* and n→π* transitions. The complex experiences electronic transitions that consist of basically ILCT in character with some sort of participation of the atomic d-orbitals of the nickel. The pKa value of the ligand is found to be 4.09.

  16. Prospects for strong interaction physics at ISABELLE. [Seven papers

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, D P; Trueman, T L

    1977-01-01

    Seven papers are presented resulting from a conference intended to stimulate thinking about how ISABELLE could be used for studying strong interactions. A separate abstract was prepared for each paper for inclusion in DOE Energy Research Abstracts (ERA). (PMA)

  17. Solid-State [2+2] Photodimerization and Photopolymerization of α,ω-Diarylpolyene Monomers: Effective Utilization of Noncovalent Intermolecular Interactions in Crystals

    Directory of Open Access Journals (Sweden)

    Yoriko Sonoda

    2010-12-01

    Full Text Available [2+2] Photocycloaddition of olefins is a very useful reaction in synthetic organic chemistry to obtain cyclobutane-containing molecules, which are almost inaccessible by other methods. The reaction, when performed in the crystalline state, occurs more efficiently and selectively than in homogeneous solution due to tight and regular molecular arrangement in the crystal state. Despite numerous examples for the solid-state [2+2] photodimerization of monoenes, however, it is still a challenge to prepare not only dimers but also higher oligomers and polymers from conjugated polyenes, which have multiple reactive double bonds in a molecule. In our recent studies of the solid-state photoreactions of α,ω-diarylpolyenes, noncovalent intermolecular interactions in crystals were effectively utilized to prealign molecules in stacking arrangements, suitable for the [2+2] reaction. With appropriate ring-substituents, [2+2] photodimerization and photopolymerization of the polyenes took place, although the degree of polymerization was relatively low. This review will describe the details of these reactions.

  18. Strongly-Interacting Fermi Gases in Reduced Dimensions

    Science.gov (United States)

    2015-11-16

    superconductivity), nuclear physics (nuclear matter), high - energy physics (effective theories of the strong interactions ), astrophysics (compact stellar objects...strongly- interacting Fermi gases confined in a standing- wave CO2 laser trap. This trap produces a periodic quasi-two-dimensional pancake geometry...predictions of the phase diagram and high temperature superfluidity. Our recent measurements reveal that pairing energy and cloud profiles can be

  19. Off-Center Gaussian Functions, an Alternative Atomic Orbital Basis Set for Accurate Noncovalent Interaction Calculations of Large Systems

    Czech Academy of Sciences Publication Activity Database

    Melicherčík, M.; Pitoňák, M.; Kellö, V.; Hobza, Pavel; Neogrády, P.

    2013-01-01

    Roč. 9, č. 12 (2013), s. 5296-5304 ISSN 1549-9618 Institutional support: RVO:61388963 Keywords : interaction energies * dimer * complexes * electron Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  20. Controlling noncovalent interactions between a lysine-rich α-helical peptide and self-assembled monolayers of alkanethiols on Au through functional group diversity

    Science.gov (United States)

    Raigoza, Annette F.; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    Reliably attaching a structured biomolecule to an inorganic substrate would enable the preparation of surfaces that incorporate both biological and inorganic functions and structures. To this end, we have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to well-ordered alkanethiol self-assembled monolayers (SAM) on a Au(111) surface, in which the SAM is composed of a mixture of methyl and azide termination. Proteins, however, are composed of many diverse functional groups, and this composition directly effects protein structure, interactions, and reactivity. Here, we explore the utility of mixed SAMs with alternative terminating functional groups to tune and direct the reactivity of the surface through noncovalent peptide-surface interactions. We study both polar surfaces (OH-terminated) and charged surfaces (COOH- and NH3-terminated, which are negatively and positively charged, respectively, under our reaction conditions). Surfaces were functionalized with a bipolar peptide composed of Lys and Leu residues that could express different interactions through either hydrophilic and/or charge (Lys) or hydrophobic (Leu) influences. X-ray photoelectron spectroscopy (XPS) and surface infrared spectroscopy were used to characterize surfaces at all stages of the peptide functionalization procedure. This strategy resulted in a high density of surface-bound α-helices without aggregation. Mixed SAMs that included a positively charged alkanethiol along with the azide-terminated thiol resulted in a more efficient reaction and better alignment of the peptide with the azide on the surface. Negatively charged surfaces increased physisorption of the peptide, which was then removed during sample rinsing. This work demonstrates that varying easily controlled chemical inputs during the functionalization steps allows the reaction conditions to be balanced for the chemical needs of a

  1. Quark imprisonment as the origin of strong interactions

    CERN Document Server

    Amati, Daniele

    1974-01-01

    A formal scheme is suggested in which the only dynamical ingredients are weak and electro-magnetic interactions with quarks and leptons treated on the same footing. Strong interactions are generated by the requirement that quarks do not appear physically. (7 refs).

  2. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  3. Accurate Open-Shell Noncovalent Interaction Energies from the Orbital-Optimized Møller-Plesset Perturbation Theory: Achieving CCSD Quality at the MP2 Level by Orbital Optimization.

    Science.gov (United States)

    Soydaş, Emine; Bozkaya, Uğur

    2013-11-12

    The accurate description of noncovalent interactions is one of the most challenging problems in modern computational chemistry, especially those for open-shell systems. In this study, an investigation of open-shell noncovalent interactions with the orbital-optimized MP2 and MP3 (OMP2 and OMP3) is presented. For the considered test set of 23 complexes, mean absolute errors in noncovalent interaction energies (with respect to CCSD(T) at complete basis set limits) are 0.68 (MP2), 0.37 (OMP2), 0.59 (MP3), 0.23 (OMP3), and 0.38 (CCSD) kcal mol(-1) . Hence, with a greatly reduced computational cost, one may achieve CCSD quality at the MP2 level by orbital optimization [scaling formally as O(N(6)) for CCSD compared to O(N(5)) for OMP2, where N is the number of basis functions]. Further, one may obtain a considerably better performance than CCSD using the OMP3 method, which has also a lower cost than CCSD.

  4. Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories

    Czech Academy of Sciences Publication Activity Database

    Riley, K. E.; Pitoňák, Michal; Jurečka, P.; Hobza, Pavel

    2010-01-01

    Roč. 110, č. 9 (2010), s. 5023-5063 ISSN 0009-2665 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : non covalent interactions * wave function theories * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  5. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  6. On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions

    Czech Academy of Sciences Publication Activity Database

    Hostaš, Jiří; Řezáč, Jan; Hobza, Pavel

    2013-01-01

    Roč. 568, May 1 (2013), s. 161-166 ISSN 0009-2614 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : basis-set limit * interaction energies * wave-function * NDDO approximations * benchmark database Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.991, year: 2013

  7. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    Science.gov (United States)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  8. Assessment of the Performance of MP2 and MP2 Variants for the Treatment of Noncovalent Interactions

    Czech Academy of Sciences Publication Activity Database

    Riley, Kevin Eugene; Platts, J. A.; Řezáč, Jan; Hobza, Pavel; Hill, J. G.

    2012-01-01

    Roč. 116, č. 16 (2012), s. 4159-4169 ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Grant - others:European Social Fund(XE) CZ1.05/2.1.00/03/0058 Institutional research plan: CEZ:AV0Z40550506 Keywords : plesset perturbation-theory * density-functional-theory * intermolecular interaction energies * molecular-orbital methods * auxiliary basis-sets * ab-initio Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012

  9. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases.

    Science.gov (United States)

    Gao, Ting; Li, Hongzhi; Li, Wenze; Li, Lin; Fang, Chao; Li, Hui; Hu, LiHong; Lu, Yinghua; Su, Zhong-Min

    2016-01-01

    Non-covalent interactions (NCIs) play critical roles in supramolecular chemistries; however, they are difficult to measure. Currently, reliable computational methods are being pursued to meet this challenge, but the accuracy of calculations based on low levels of theory is not satisfactory and calculations based on high levels of theory are often too costly. Accordingly, to reduce the cost and increase the accuracy of low-level theoretical calculations to describe NCIs, an efficient approach is proposed to correct NCI calculations based on the benchmark databases S22, S66 and X40 (Hobza in Acc Chem Rev 45: 663-672, 2012; Řezáč et al. in J Chem Theory Comput 8:4285, 2012). A novel type of NCI correction is presented for density functional theory (DFT) methods. In this approach, the general regression neural network machine learning method is used to perform the correction for DFT methods on the basis of DFT calculations. Various DFT methods, including M06-2X, B3LYP, B3LYP-D3, PBE, PBE-D3 and ωB97XD, with two small basis sets (i.e., 6-31G* and 6-31+G*) were investigated. Moreover, the conductor-like polarizable continuum model with two types of solvents (i.e., water and pentylamine, which mimics a protein environment with ε = 4.2) were considered in the DFT calculations. With the correction, the root mean square errors of all DFT calculations were improved by at least 70 %. Relative to CCSD(T)/CBS benchmark values (used as experimental NCI values because of its high accuracy), the mean absolute error of the best result was 0.33 kcal/mol, which is comparable to high-level ab initio methods or DFT methods with fairly large basis sets. Notably, this level of accuracy is achieved within a fraction of the time required by other methods. For all of the correction models based on various DFT approaches, the validation parameters according to OECD principles (i.e., the correlation coefficient R (2), the predictive squared correlation coefficient q (2) and [Formula

  10. Mixtures of Strongly Interacting Bosons in Optical Lattices

    International Nuclear Information System (INIS)

    Buonsante, P.; Penna, V.; Giampaolo, S. M.; Illuminati, F.; Vezzani, A.

    2008-01-01

    We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental observation that the addition of a small fraction of 41 K induces a significant loss of coherence in 87 Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices

  11. Glassy states in fermionic systems with strong disorder and interactions

    Science.gov (United States)

    Schwab, David J.; Chakravarty, Sudip

    2009-03-01

    We study the competition between interactions and disorder in two dimensions. Whereas a noninteracting system is always Anderson localized by disorder in two dimensions, a pure system can develop a Mott gap for sufficiently strong interactions. Within a simple model, with short-ranged repulsive interactions, we show that, even in the limit of strong interaction, the Mott gap is completely washed out by disorder for an infinite system for dimensions D≤2 , leading to a glassy state. Moreover, the Mott insulator cannot maintain a broken symmetry in the presence of disorder. We then show that the probability of a nonzero gap as a function of system size falls onto a universal curve, reflecting the glassy dynamics. An analytic calculation is also presented in one dimension that provides further insight into the nature of slow dynamics.

  12. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  13. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.

    1999-01-01

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  14. Strong light-matter interaction in graphene - Invited talk

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    of graphene with noble-metal nanostructures is currently being explored for strong light-graphene interaction. We introduce a novel hybrid graphene-metal system for studying light-matter interactions with gold-void nanostructures exhibiting resonances in the visible range[1]. The hybrid system is further......Graphene has attracted lots of attention due to its remarkable electronic and optical properties, thus providing great promise in photonics and optoelectronics. However, the performance of these devices is generally limited by the weak light-matter interaction in graphene. The combination...

  15. Controlling noncovalent interactions between a lysine-rich α-helical peptide and self-assembled monolayers of alkanethiols on Au through functional group diversity

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, Annette F.; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu

    2017-02-28

    Highlights: • Functional variety in SAMs control covalent binding of proteins to surfaces. • Peptide density on Au(111) surfaces controlled by SAM functional groups. • Affinity between biomolecule and SAM surface follows a Langmuir isotherm. • Surface chemistry can mimic functional group diversity in proteins and peptides. - Abstract: Reliably attaching a structured biomolecule to an inorganic substrate would enable the preparation of surfaces that incorporate both biological and inorganic functions and structures. To this end, we have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to well-ordered alkanethiol self-assembled monolayers (SAM) on a Au(111) surface, in which the SAM is composed of a mixture of methyl and azide termination. Proteins, however, are composed of many diverse functional groups, and this composition directly effects protein structure, interactions, and reactivity. Here, we explore the utility of mixed SAMs with alternative terminating functional groups to tune and direct the reactivity of the surface through noncovalent peptide-surface interactions. We study both polar surfaces (OH-terminated) and charged surfaces (COOH- and NH{sub 3}-terminated, which are negatively and positively charged, respectively, under our reaction conditions). Surfaces were functionalized with a bipolar peptide composed of Lys and Leu residues that could express different interactions through either hydrophilic and/or charge (Lys) or hydrophobic (Leu) influences. X-ray photoelectron spectroscopy (XPS) and surface infrared spectroscopy were used to characterize surfaces at all stages of the peptide functionalization procedure. This strategy resulted in a high density of surface-bound α-helices without aggregation. Mixed SAMs that included a positively charged alkanethiol along with the azide-terminated thiol resulted in a more efficient reaction and better

  16. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  17. Strongly interacting mesoscopic systems of anyons in one dimension

    DEFF Research Database (Denmark)

    Zinner, N. T.

    2015-01-01

    Using the fractional statistical properties of so-called anyonic particles, we present exact solutions for up to six strongly interacting particles in one-dimensional confinement that interpolate the usual bosonic and fermionic limits. Specifically, we consider two-component mixtures of anyons...

  18. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter

    2010-01-15

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  19. Interplay of Anderson localization and strong interaction in disordered systems

    International Nuclear Information System (INIS)

    Henseler, Peter

    2010-01-01

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length ξ, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of ξ for small and intermediate disorders and a strong reduction of ξ due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of ξ as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  20. A systematic study of the strong interaction with PANDA

    NARCIS (Netherlands)

    Messchendorp, J. G.; Hosaka, A; Khemchandani, K; Nagahiro, H; Nawa, K

    2011-01-01

    The theory of Quantum Chromo Dynamics (QCD) reproduces the strong interaction at distances much shorter than the size of the nucleon. At larger distance scales, the generation of hadron masses and confinement cannot yet be derived from first principles on basis of QCD. The PANDA experiment at FAIR

  1. Measurement of strong interaction parameters in antiprotonic hydrogen and deuterium

    CERN Document Server

    Augsburger, M A; Borchert, G L; Chatellard, D; Egger, J P; El-Khoury, P; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Siems, T; Simons, L M

    1999-01-01

    In the PS207 experiment at CERN, X-rays from antiprotonic hydrogen and deuterium have been measured at low pressure. The strong interaction shift and the broadening of the K/sub alpha / transition in antiprotonic hydrogen were $9 determined. Evidence was found for the individual hyperfine components of the protonium ground state. (7 refs).

  2. Emergence of junction dynamics in a strongly interacting Bose mixture

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Foerster, Angela; Zinner, Nikolaj Thomas

    We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the...

  3. Electrophilic-Nucleophilic Dualism of Nickel(II) toward Ni···I Noncovalent Interactions: Semicoordination of Iodine Centers via Electron Belt and Halogen Bonding via σ-Hole.

    Science.gov (United States)

    Bikbaeva, Zarina M; Ivanov, Daniil M; Novikov, Alexander S; Ananyev, Ivan V; Bokach, Nadezhda A; Kukushkin, Vadim Yu

    2017-11-06

    The nitrosoguanidinate complex [Ni{NH═C(NMe 2 )NN(O)} 2 ] (1) was cocrystallized with I 2 and sym-trifluorotriiodobenzene (FIB) to give associates 1·2I 2 and 1·2FIB. Structures of these solid species were studied by XRD followed by topological analysis of the electron density distribution within the framework of Bader's approach (QTAIM) at the M06/DZP-DKH level of theory and Hirshfeld surface analysis. Our results along with inspection of XRD (CCDC) data, accompanied by the theoretical calculations, allowed the identification of three types of Ni···I contacts. The Ni···I semicoordination of the electrophilic nickel(II) center with electron belt of I 2 was observed in 1·2I 2 , the metal-involving halogen bonding between the nucleophilic nickel(II)-d z 2 center and σ-hole of iodine center was recognized and confirmed theoretically in the structure of [FeNi(CN) 4 (IPz)(H 2 O)] n (IPz = 4-N-coordinated 2-I-pyrazine), whereas the arrangement of FIB in 1·2FIB provides a boundary case between the semicoordination and the halogen Ni···I bondings. In 1·2I 2 and 1·2FIB, noncovalent interactions were studied by variable temperature XRD detecting the expansion of noncovalent contacts with preservation of covalent bond lengths upon the temperature increase from 100 to 300 K. The nature and energies of all identified types of the Ni···I noncovalent interactions in the obtained (1·2I 2 and 1·2FIB) and in the previously reported ([FeNi(CN) 4 (IPz)(H 2 O)] n , [NiL 2 ](I 3 ) 2 ·2I 2 (L = o-phenylene-bis(dimethylphosphine), [NiL]I 2 (L = 1,4,8,11-tetra-azacyclotetradecane), Ni(en) 2 ] n [AgI 2 ] 2n (en = ethylenediamine), and [NiL](ClO 4 ) (L = 4-iodo-2-((2-(2-(2-pyridyl)ethylsulfanyl)ethylimino)methyl)-phenolate)) structures were studied theoretically. The estimated strengths of these Ni···I noncovalent contacts vary from 1.6 to 4.1 kcal/mol and, as expected, become weaker on heating. This work is the first emphasizing electrophilic-nucleophilic dualism

  4. Symmetry-protected collisions between strongly interacting photons.

    Science.gov (United States)

    Thompson, Jeff D; Nicholson, Travis L; Liang, Qi-Yu; Cantu, Sergio H; Venkatramani, Aditya V; Choi, Soonwon; Fedorov, Ilya A; Viscor, Daniel; Pohl, Thomas; Lukin, Mikhail D; Vuletić, Vladan

    2017-02-09

    Realizing robust quantum phenomena in strongly interacting systems is one of the central challenges in modern physical science. Approaches ranging from topological protection to quantum error correction are currently being explored across many different experimental platforms, including electrons in condensed-matter systems, trapped atoms and photons. Although photon-photon interactions are typically negligible in conventional optical media, strong interactions between individual photons have recently been engineered in several systems. Here, using coherent coupling between light and Rydberg excitations in an ultracold atomic gas, we demonstrate a controlled and coherent exchange collision between two photons that is accompanied by a π/2 phase shift. The effect is robust in that the value of the phase shift is determined by the interaction symmetry rather than the precise experimental parameters, and in that it occurs under conditions where photon absorption is minimal. The measured phase shift of 0.48(3)π is in excellent agreement with a theoretical model. These observations open a route to realizing robust single-photon switches and all-optical quantum logic gates, and to exploring novel quantum many-body phenomena with strongly interacting photons.

  5. Finding strongly interacting symmetry breaking at the SSC

    International Nuclear Information System (INIS)

    Golden, M.

    1989-02-01

    Pairs of gauge bosons, W and Z, are a probe of the electroweak symmetry-breaking sector, since the numbers of two gauge boson events are much larger in strongly coupled models than weak. The doubly charged channels W + W + and W/sup /minus//W/sup/minus// are cleanest, since they do not suffer from q/bar q/ or gg fusion backgrounds. The like-charged gauge boson events are observable only if the symmetry breaking sector is strongly interacting. 19 refs., 4 figs., 2 tabs

  6. On the strong crack-microcrack interaction problem

    Science.gov (United States)

    Gorelik, M.; Chudnovsky, A.

    1992-07-01

    The problem of the crack-microcrack interaction is examined with special attention given to the iterative procedure described by Chudnovsky and Kachanov (1983), Chudnovsky et al. (1984), and Horii and Nemat-Nasser (1983), which yields erroneous results as the crack tips become closer (i.e., for strong crack interaction). To understand the source of error, the traction distributions along the microcrack line on the n-th step of iteration representing the exact and asymptotic stress fields are compared. It is shown that the asymptotic solution gives a gross overestimation of the actual traction.

  7. Ruling out a strongly interacting standard Higgs model

    International Nuclear Information System (INIS)

    Riesselmann, K.; Willenbrock, S.

    1997-01-01

    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society

  8. A connection between the strong and weak interactions

    International Nuclear Information System (INIS)

    Treiman, S.B.

    1989-01-01

    By studying weak scattering reactions (such as pion-nucleon scattering), the author and his colleague Marvin L Goldberger became renowned in the 1950s for work on dispersion relations. As a result of their collaboration a remarkable and unexpected connection was found between strong and weak interaction quantities. Agreement with experiment was good. Work by others found the same result, but via the partially conserved axial reactor current relation between the axial current divergence and the canonical pion field. (UK)

  9. Thermodynamics of strong-interaction matter from Lattice QCD

    OpenAIRE

    Ding, Heng-Tong; Karsch, Frithjof; Mukherjee, Swagato

    2015-01-01

    We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open he...

  10. The Electron-Phonon Interaction in Strongly Correlated Systems

    International Nuclear Information System (INIS)

    Castellani, C.; Grilli, M.

    1995-01-01

    We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)

  11. Nonperturbative Dynamics of Strong Interactions from Gauge/Gravity Duality

    Energy Technology Data Exchange (ETDEWEB)

    Grigoryan, Hovhannes [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-08-01

    This thesis studies important dynamical observables of strong interactions such as form factors. It is known that Quantum Chromodynamics (QCD) is a theory which describes strong interactions. For large energies, one can apply perturbative techniques to solve some of the QCD problems. However, for low energies QCD enters into the nonperturbative regime, where di erent analytical or numerical tools have to be applied to solve problems of strong interactions. The holographic dual model of QCD is such an analytical tool that allows one to solve some nonperturbative QCD problems by translating them into a dual ve-dimensional theory de ned on some warped Anti de Sitter (AdS) background. Working within the framework of the holographic dual model of QCD, we develop a formalism to calculate form factors and wave functions of vector mesons and pions. As a result, we provide predictions of the electric radius, the magnetic and quadrupole moments which can be directly veri ed in lattice calculations or even experimentally. To nd the anomalous pion form factor, we propose an extension of the holographic model by including the Chern-Simons term required to reproduce the chiral anomaly of QCD. This allows us to nd the slope of the form factor with one real and one slightly o -shell photon which appeared to be close to the experimental ndings. We also analyze the limit of large virtualities (when the photon is far o -shell) and establish that predictions of the holographic model analytically coincide with those of perturbative QCD with asymptotic pion distribution amplitude. We also study the e ects of higher dimensional terms in the AdS/QCD model and show that these terms improve the holographic description towards a more realistic scenario. We show this by calculating corrections to the vector meson form factors and corrections to the observables such as electric radii, magnetic and quadrupole moments.

  12. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  13. Emergence of junction dynamics in a strongly interacting Bose mixture

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Foerster, Angela; Zinner, Nikolaj Thomas

    We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry...... of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared...

  14. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Søndberg Sørensen, Anders

    2011-01-01

    Semiconductor quantum dots (QDs) provide useful means to couple light and matter in applications such as light-harvesting1, 2 and all-solid-state quantum information processing3, 4. This coupling can be increased by placing QDs in nanostructured optical environments such as photonic crystals...... or metallic nanostructures that enable strong confinement of light and thereby enhance the light–matter interaction. It has thus far been assumed that QDs can be described in the same way as atomic photon emitters—as point sources with wavefunctions whose spatial extent can be disregarded. Here we demonstrate...

  15. Strongly interacting atom lasers in three-dimensional optical lattices.

    Science.gov (United States)

    Hen, Itay; Rigol, Marcos

    2010-10-29

    We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.

  16. Ising models of strongly coupled biological networks with multivariate interactions

    Science.gov (United States)

    Merchan, Lina; Nemenman, Ilya

    2013-03-01

    Biological networks consist of a large number of variables that can be coupled by complex multivariate interactions. However, several neuroscience and cell biology experiments have reported that observed statistics of network states can be approximated surprisingly well by maximum entropy models that constrain correlations only within pairs of variables. We would like to verify if this reduction in complexity results from intricacies of biological organization, or if it is a more general attribute of these networks. We generate random networks with p-spin (p > 2) interactions, with N spins and M interaction terms. The probability distribution of the network states is then calculated and approximated with a maximum entropy model based on constraining pairwise spin correlations. Depending on the M/N ratio and the strength of the interaction terms, we observe a transition where the pairwise approximation is very good to a region where it fails. This resembles the sat-unsat transition in constraint satisfaction problems. We argue that the pairwise model works when the number of highly probable states is small. We argue that many biological systems must operate in a strongly constrained regime, and hence we expect the pairwise approximation to be accurate for a wide class of problems. This research has been partially supported by the James S McDonnell Foundation grant No.220020321.

  17. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  18. Towards a unified gauge theory of gravitational and strong interactions

    International Nuclear Information System (INIS)

    Hehl, F.W.; Sijacki, D.

    1980-01-01

    The space-time properties of leptons and hadrons is studied and it is found necessary to extend general relativity to the gauge theory based on the four-dimensional affine group. This group translates and deforms the tetrads of the locally Minkowskian space-time. Its conserved currents, momentum, and hypermomentum, act as sources in the two field equations of gravity. A Lagrangian quadratic in torsion and curvature allows for the propagation of two independent gauge fields: translational e-gravity mediated by the tetrad coefficients, and deformational GAMMA-gravity mediated by the connection coefficients. For macroscopic matter e-gravity coincides with general relativity up to the post-Newtonian approximation of fourth order. For microscopic matter GAMMA-gravity represents a strong Yang-Mills type interaction. In the linear approximation, for a static source, a confinement potential is found. (author)

  19. Extreme states of matter in strong interaction physics an introduction

    CERN Document Server

    Satz, Helmut

    2018-01-01

    This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature latti...

  20. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  1. High-energy strong interactions: from `hard' to `soft'

    Science.gov (United States)

    Ryskin, M. G.; Martin, A. D.; Khoze, V. A.

    2011-04-01

    We discuss the qualitative features of the recent data on multiparticle production observed at the LHC. The tolerable agreement with Monte Carlos based on LO DGLAP evolution indicates that there is no qualitative difference between `hard' and `soft' interactions; and that a perturbative QCD approach may be extended into the soft domain. However, in order to describe the data, these Monte Carlos need an additional infrared cutoff k min with a value k min ˜2-3 GeV which is not small, and which increases with collider energy. Here we explain the physical origin of the large k min . Using an alternative model which matches the `soft' high-energy hadron interactions smoothly on to perturbative QCD at small x, we demonstrate that this effective cutoff k min is actually due to the strong absorption of low k t partons. The model embodies the main features of the BFKL approach, including the diffusion in transverse momenta, ln k t , and an intercept consistent with resummed next-to-leading log corrections. Moreover, the model uses a two-channel eikonal framework, and includes the contributions from the multi-Pomeron exchange diagrams, both non-enhanced and enhanced. The values of a small number of physically-motivated parameters are chosen to reproduce the available total, elastic and proton dissociation cross section (pre-LHC) data. Predictions are made for the LHC, and the relevance to ultra-high-energy cosmic rays is briefly discussed. The low x inclusive integrated gluon PDF, and the diffractive gluon PDF, are calculated in this framework, using the parameters which describe the high-energy pp and pbar{p} ` soft' data. Comparison with the PDFs obtained from the global parton analyses of deep inelastic and related hard scattering data and from diffractive deep inelastic data looks encouraging.

  2. Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Satyanarayan [Oklahoma State Univ., Stillwater, OK (United States); Babu, Kaladi [Oklahoma State Univ., Stillwater, OK (United States); Rizatdinova, Flera [Oklahoma State Univ., Stillwater, OK (United States); Khanov, Alexander [Oklahoma State Univ., Stillwater, OK (United States); Haley, Joseph [Oklahoma State Univ., Stillwater, OK (United States)

    2015-09-17

    The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry and trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks

  3. Peptide-microgel interactions in the strong coupling regime.

    Science.gov (United States)

    Hansson, Per; Bysell, Helena; Månsson, Ronja; Malmsten, Martin

    2012-09-06

    The interaction between lightly cross-linked poly(acrylic acid) microgels and oppositely charged peptides was investigated as a function of peptide length, charge density, pH, and salt concentration, with emphasis on the strong coupling regime at high charge contrast. By micromanipulator-assisted light microscopy, the equilibrium volume response of single microgel particles upon oligolysine and oligo(lysine/alanine) absorption could be monitored in a controlled fashion. Results show that microgel deswelling, caused by peptide binding and network neutralization, increases with peptide length (3 attraction between the network chains is described using an exponential force law, and the network elasticity by the inverse Langevin theory. The model was used to calculate the composition of microgels in contact with reservoir solutions of peptides and simple electrolytes. At high electrostatic coupling, the calculated swelling curves were found to display first-order phase transition behavior. The model was demonstrated to capture pH- and electrolyte-dependent microgel swelling, as well as effects of peptide length and charge density on microgel deswelling. The analysis demonstrated that the peptide charge (length), rather than the peptide charge density, determines microgel deswelling. Furthermore, a transition between continuous and discrete network collapse was identified, consistent with experimental results in the present investigations, as well as with results from the literature on microgel deswelling caused by multivalent cations.

  4. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  5. Strongly interacting matter at high densities with a soliton model

    Science.gov (United States)

    Johnson, Charles Webster

    1998-12-01

    One of the major goals of modern nuclear physics is to explore the phase diagram of strongly interacting matter. The study of these 'extreme' conditions is the primary motivation for the construction of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory which will accelerate nuclei to a center of mass (c.m.) energy of about 200 GeV/nucleon. From a theoretical perspective, a test of quantum chromodynamics (QCD) requires the expansion of the conditions examined from one phase point to the entire phase diagram of strongly-interacting matter. In the present work we focus attention on what happens when the density is increased, at low excitation energies. Experimental results from the Brookhaven Alternating Gradient Synchrotron (AGS) indicate that this regime may be tested in the 'full stopping' (maximum energy deposition) scenario achieved at the AGS having a c.m. collision energy of about 2.5 GeV/nucleon for two equal- mass heavy nuclei. Since the solution of QCD on nuclear length-scales is computationally prohibitive even on today's most powerful computers, progress in the theoretical description of high densities has come through the application of models incorporating some of the essential features of the full theory. The simplest such model is the MIT bag model. We use a significantly more sophisticated model, a nonlocal confining soliton model developed in part at Kent. This model has proven its value in the calculation of the properties of individual mesons and nucleons. In the present application, the many-soliton problem is addressed with the same model. We describe nuclear matter as a lattice of solitons and apply the Wigner-Seitz approximation to the lattice. This means that we consider spherical cells with one soliton centered in each, corresponding to the average properties of the lattice. The average density is then varied by changing the size of the Wigner-Seitz cell. To arrive at a solution, we need to solve a coupled set of

  6. Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction

    Science.gov (United States)

    Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.

    2017-06-01

    We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.

  7. The colours of strong interaction; L`interaction forte sous toutes ses couleurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The aim of this session is to draw a consistent framework about the different ways to consider strong interaction. A large part is dedicated to theoretical work and the latest experimental results obtained at the first electron collider HERA are discussed. (A.C.)

  8. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    and acceptor atoms due to complex formation) and interaction energy, Eint for a large variety of the non- covalent dimers in the categories HB, DHB, and XB. The MESP based eDA concept proposed by Mohan and. Suresh has unified the HB, DHB, and XB non-covalent complexes in a single category, the eDA complex.61.

  9. Noncovalent synthesis of nanostructures: combining coordination chemistry and hydrogen bonding

    NARCIS (Netherlands)

    Huck, W.T.S.; Huck, Wilhelm T.S.; Hulst, A.J.R.L.; Timmerman, P.; van Veggel, F.C.J.M.; Reinhoudt, David

    1997-01-01

    Rosettes that are held together by hydrogen bonds (see sketch on the right) were synthesized from metallodendrimers constructed by coordination chemistry. Two orthogonal, noncovalent interactions (metal-ligand and hydrogen bonding) were employed to build these nanosized dendrimers (M 7-28 kDa).

  10. Interaction of neutral particles with strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian; Keitel, Christoph H.; Di Piazza, Antonino [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2013-07-01

    Since the invention of the laser in the 1960s the experimentally available field strengths have continuously increased. The current peak intensity record is 2 x 10{sup 22} W/cm{sup 2} and next generation facilities such as ELI, HiPER and XCELS plan to reach even intensities of the order of 10{sup 24} W/cm{sup 2}. Thus, modern laser facilities are a clean source for very strong external electromagnetic fields and promise new and interesting high-energy physics experiments. In particular, strong laser fields could be used to test non-linear effects in quantum field theory. Earlier we have investigated how radiative corrections modify the coupling of a charged particle inside a strong plane-wave electromagnetic background field. However, a charged particle couples already at tree level to electromagnetic radiation. Therefore, we have now analyzed how the coupling between neutral particles and radiation is affected by a very strong plane-wave electromagnetic background field, when loop corrections are taken into account. In particular, the case of neutrinos is discussed.

  11. Intensities and strong interaction attenuation of kaonic x-rays

    CERN Document Server

    Backenstoss, Gerhard; Koch, H; Povel, H P; Schwitter, A; Tauscher, Ludwig

    1974-01-01

    Relative intensities of numerous kaonic X-ray transitions have been measured for the elements C, P, S, and Cl, from which level widths due to the strong K-nucleus absorption have been determined. From these and earlier published data, optical potential parameters have been derived and possible consequences on the nuclear matter distribution are discussed. (10 refs).

  12. Dynamical fermion mass generation by a strong Yukawa interaction

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš; Hošek, Jiří

    2005-01-01

    Roč. 72, č. 4 (2005), 045007 ISSN 0556-2821 R&D Projects: GA MŠk LA 080; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10480505 Keywords : dynamical mass generation * Yukawa interaction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.852, year: 2005

  13. Gauge theories of weak, electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Boehm, M.; Joos, H.

    1978-05-01

    This 10 lectures are devided into the chapters: Phenomenological basis of the quantum chromodynamics, phenomenology of weak interactions, quantum electrodynamics and gauge invariance, from the fermimodel to the quantum flavor dynamics, on the quantum theory of yang-mills-fields, spontaneous symmetry breaking - the Higgs-Kibble-mechanism, the Salam-Weinberg-model, asymptotic freedom, quark confinement and charmonium. (WL) [de

  14. Physics Performance Report for PANDA : Strong Interaction Studies with Antiprotons

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Heng, Y.; Liu, Z.; Liu, H.; Shen, X.; Wang, O.; Xu, H.; Becker, J.; Feldbauer, F.; Heinsius, F. -H.; Held, T.; Koch, H.; Kopf, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.; Wiedner, U.; Zhong, J.; Bianconi, A.; Bragadireanu, M.; Pantea, D.; Tudorache, A.; Tudorache, V.; De Napoli, M.; Giacoppo, F.; Raciti, G.; Rapisarda, E.; Sfienti, C.; Bialkowski, E.; Budzanowski, A.; Czech, B.; Kistryn, M.; Kliczewski, S.; Kozela, A.; Kulessa, P.; Pysz, K.; Schaefer, W.; Siudak, R.; Szczurek, A.; Czy. zycki, W.; Domagala, M.; Hawryluk, M.; Lisowski, E.; Lisowski, F.; Wojnar, L.; Gil, D.; Hawranek, P.; Kamys, B.; Kistryn, St.; Korcyl, K.; Krzemien, W.; Magiera, A.; Moskal, P.; Rudy, Z.; Salabura, P.; Smyrski, J.; Wronska, A.; Al-Turany, M.; Augustin, I.; Deppe, H.; Flemming, H.; Gerl, J.; Goetzen, K.; Hohler, R.; Lehmann, D.; Lewandowski, B.; Luehning, J.; Maas, F.; Mishra, D.; Orth, H.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schmitt, L.; Schwarz, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Brinkmann, K. -T.; Freiesleben, H.; Jaekel, R.; Kliemt, R.; Wuerschig, T.; Zaunick, H. -G.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Feshchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Kudaev, V. Ch.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevski, A.; . Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, A.; Shabratova, G. S.; Skachkova, A. N.; Skachkov, N. B.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopianov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Foehl, K.; Glazier, D.; Watts, D.; Woods, P.; Eyrich, W.; Lehmann, A.; Teufel, A.; Dobbs, S.; Metreveli, Z.; Seth, K.; Tann, B.; Tomaradze, A.; Bettoni, D.; Carassiti, V.; Cecchi, A.; Dalpiaz, P.; Fioravanti, E.; Garzia, I.; Negrini, M.; Savri`e, M.; Stancari, G.; Dulach, B.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Macri, M.; Marinelli, M.; Parodi, R. F.; Brodski, I.; Doering, W.; Drexler, P.; Dueren, M.; Gagyi-Palffy, Z.; Hayrapetyan, A.; Kotulla, M.; Kuehn, W.; Lange, S.; Liu, M.; Metag, V.; Nanova, M.; Novotny, R.; Salz, C.; Schneider, J.; Schoenmeier, P.; Schubert, R.; Spataro, S.; Stenzel, H.; Strackbein, C.; Thiel, M.; Thoering, U.; Yang, S.; Clarkson, T.; Cowie, E.; Downie, E.; Hill, G.; Hoek, M.; Ireland, D.; Kaiser, R.; Keri, T.; Lehmann, I.; Livingston, K.; Lumsden, S.; MacGregor, D.; McKinnon, B.; Murray, M.; Protopopescu, D.; Rosner, G.; Seitz, B.; Yang, G.; Babai, M.; Biegun, A. K.; Bubak, A.; Guliyev, E.; Suyam Jothi, Vanniarajan; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.; Smit, H.; van der Weele, J. C.; Garcia, F.; Riska, D. -O.; Buescher, M.; Dosdall, R.; Dzhygadlo, R.; Gillitzer, A.; Grunwald, D.; Jha, V.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Maier, R.; Mertens, M.; Ohm, H.; Prasuhn, D.; Randriamalala, T.; Ritman, J.; Roeder, M.; Stockmanns, T.; Wintz, P.; Wuestner, P.; Kisiel, J.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schroeder, B.; Achenbach, P.; Mora Espi, M. C.; Pochodzalla, J.; Sanchez, S.; Sanchez-Lorente, A.; Dormenev, V. I.; Fedorov, A. A.; Korzhik, M. V.; Missevitch, O. V.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Hoeppner, C.; Ketzer, B.; Konorov, I.; Mann, A.; Neubert, S.; Paul, S.; Weitzel, Q.; Khoukaz, A.; Rausmann, T.; Taeschner, A.; Wessels, J.; Varma, R.; Baldin, E.; Kotov, K.; Peleganchuk, S.; Tikhonov, Yu.; Boucher, J.; Hennino, T.; Kunne, R.; Ong, S.; Pouthas, J.; Ramstein, B.; Rosier, P.; Sudol, M.; Van de Wiele, J.; Zerguerras, T.; Dmowski, K.; Korzeniewski, R.; Przemyslaw, D.; Slowinski, B.; Boca, G.; Braghieri, A.; Costanza, S.; Fontana, A.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Belikov, N. I.; Davidenko, A. M.; Derevschikov, A. A.; Goncharenko, Y. M.; Grishin, V. N.; Kachanov, V. A.; Konstantinov, D. A.; Kormilitsin, V. A.; Kravtsov, V. I.; Matulenko, Y. A.; Melnik, Y. M.; Meschanin, A. P.; Minaev, N. G.; Mochalov, V. V.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Ryazantsev, A. V.; Semenov, P. A.; Soloviev, L. F.; Uzunian, A. V.; Vasiliev, A. N.; Yakutin, A. E.; Baeck, T.; Cederwall, B.; Bargholtz, C.; Geren, L.; Tegner, P. E.; Belostotski, S.; Gavrilov, G.; Itzotov, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.; Zhadanov, A.; Fava, L.; Panzieri, D.; Alberto, D.; Amoroso, A.; Botta, E.; Bressani, T.; Bufalino, S.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Ferrero, L.; Grasso, A.; Greco, M.; Kugathasan, T.; Maggiora, M.; Marcello, S.; Serbanut, G.; Sosio, S.; Bertini, R.; Calvo, D.; Coli, S.; De Remigis, P.; Feliciello, A.; Filippi, A.; Giraudo, G.; Mazza, G.; Rivetti, A.; Szymanska, K.; Tosello, F.; Wheadon, R.; Morra, O.; Agnello, M.; Iazzi, F.; Szymanska, K.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Ekstroem, C.; Calen, H.; Grape, S.; Hoeistad, B.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Thome, E.; Zlomanczuk, J.; Diaz, J.; Ortiz, A.; Borsuk, S.; Chlopik, A.; Guzik, Z.; Kopec, J.; Kozlowski, T.; Melnychuk, D.; Plominski, M.; Szewinski, J.; Traczyk, K.; Zwieglinski, B.; Buehler, P.; Gruber, A.; Kienle, P.; Marton, J.; Widmann, E.; Zmeskal, J.; Lutz, M. F. M.; Pire, B.; Scholten, O.; Timmermans, R.

    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy

  15. Coulomb plus strong interaction bound states - momentum space numerical solutions

    International Nuclear Information System (INIS)

    Heddle, D.P.; Tabakin, F.

    1985-01-01

    The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)

  16. Quantum memory with strong and controllable Rydberg-level interactions.

    Science.gov (United States)

    Li, Lin; Kuzmich, A

    2016-11-21

    Realization of distributed quantum systems requires fast generation and long-term storage of quantum states. Ground atomic states enable memories with storage times in the range of a minute, however their relatively weak interactions do not allow fast creation of non-classical collective states. Rydberg atomic systems feature fast preparation of singly excited collective states and their efficient mapping into light, but storage times in these approaches have not yet exceeded a few microseconds. Here we demonstrate a system that combines fast quantum state generation and long-term storage. An initially prepared coherent state of an atomic memory is transformed into a non-classical collective atomic state by Rydberg-level interactions in less than a microsecond. By sheltering the quantum state in the ground atomic levels, the storage time is increased by almost two orders of magnitude. This advance opens a door to a number of quantum protocols for scalable generation and distribution of entanglement.

  17. Hadron yields and the phase diagram of strongly interacting matter

    CERN Document Server

    Floris, Michele

    2014-01-01

    This paper presents a brief review of the interpretation of measurements of hadron yields in hadronic interactions within the framework of thermal models, over a broad energy range (from SIS to LHC energies, $\\sqrt{s_{NN}} \\simeq$ 2.5 GeV -- 5 TeV). Recent experimental results and theoretical developments are reported, with an emphasis on topics discussed during the Quark Matter 2014 conference.

  18. Theoretical studies in weak, electromagnetic and strong interactions. Attachments

    International Nuclear Information System (INIS)

    Nandi, S.

    1999-01-01

    The project covered a wide area of current research in theoretical high-energy physics. This included Standard Model (SM) as well as physics beyond the Standard Model. Specific topics included supersymmetry (SUSY), perturbative quantum chromodynamics (QCD), a new weak interaction for the third family (called topflavor), neutrino masses and mixings, topcolor model, Pade approximation, and its application to perturbative QCD and other physical processes

  19. Muons probe strong hydrogen interactions with defective graphene.

    Science.gov (United States)

    Riccò, Mauro; Pontiroli, Daniele; Mazzani, Marcello; Choucair, Mohammad; Stride, John A; Yazyev, Oleg V

    2011-11-09

    Here, we present the first muon spectroscopy investigation of graphene, focused on chemically produced, gram-scale samples, appropriate to the large muon penetration depth. We have observed an evident muon spin precession, usually the fingerprint of magnetic order, but here demonstrated to originate from muon-hydrogen nuclear dipolar interactions. This is attributed to the formation of CHMu (analogous to CH(2)) groups, stable up to 1250 K where the signal still persists. The relatively large signal amplitude demonstrates an extraordinary hydrogen capture cross section of CH units. These results also rule out the formation of ferromagnetic or antiferromagnetic order in chemically synthesized graphene samples.

  20. Interaction of Azobenzene and Benzalaniline with Strong Amido Bases.

    Science.gov (United States)

    Kornev, Alexander N; Sushev, Vyacheslav V; Zolotareva, Natalia V; Baranov, Evgenii V; Fukin, Georgy K; Abakumov, Gleb A

    2015-12-18

    The interaction of azobenzene with lithium dicyclohexylamide (Cy2NLi) in THF or Et2O afforded the ion-radical salt of azobenzene (1) structurally characterized for the first time and dicyclohexylaminyl radical, which begins a novel chain of transformations leading eventually to the imino-enamido lithium complex (3). Benzalaniline, being a relative of azobenzene, reacted with Cy2NLi without electron transfer by a proton-abstraction mechanism to form the dilithium salt of N(1),N(2),1,2-tetraphenylethene-1,2-diamine quantitatively.

  1. Spin effects in strong-field laser-electron interactions

    International Nuclear Information System (INIS)

    Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C

    2013-01-01

    The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.

  2. Strongly-interacting mirror fermions at the LHC

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2017-01-01

    Full Text Available The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. “mirror mesons”, with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  3. A non-linear theory of strong interactions

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    A non-linear theory of mesons, nucleons and hyperons is proposed. The three independent fields of the usual symmetrical pseudo-scalar pion field are replaced by the three directions of a four-component field vector of constant length, conceived in an Euclidean four-dimensional isotopic spin space. This length provides the universal scaling factor, all other constants being dimensionless; the mass of the meson field is generated by a φ 4 term; this destroys the continuous rotation group in the iso-space, leaving a 'cubic' symmetry group. Classification of states by this group introduces quantum numbers corresponding to isotopic spin and to 'strangeness'; one consequences is that, at least in elementary interactions, charge is only conserved module 4. Furthermore, particle states have not a well-defined parity, but parity is effectively conserved for meson-nucleon interactions. A simplified model, using only two dimensions of space and iso-space, is considered further; the non-linear meson field has solutions with particle character, and an indication is given of the way in which the particle field variables might be introduced as collective co-ordinates describing the dynamics of these particular solutions of the meson field equations, suggesting a unified theory based on the meson field alone. (author). 7 refs

  4. Pseudohalide Tectons within the Coordination Sphere of the Uranyl Ion: Experimental and Theoretical Study of C-H···O, C-H···S, and Chalcogenide Noncovalent Interactions.

    Science.gov (United States)

    Nuzzo, Stefano; Twamley, Brendan; Platts, James A; Baker, Robert J

    2018-03-15

    A series of uranyl thiocyanate and selenocyanate of the type [R 4 N] 3 [UO 2 (NCS) 5 ] (R 4 = n Bu 4 , Me 3 Bz, Et 3 Bz), [Ph 4 P][UO 2 (NCS) 3 (NO 3 )] and [R 4 N] 3 [UO 2 (NCSe) 5 ] (R 4 = Me 4 , n Pr 4 , Et 3 Bz) have been prepared and structurally characterized. The resulting noncovalent interactions have been examined and compared to other examples in the literature. The nature of these interactions is determined by the cation so that when the alkyl groups are small, chalcogenide···chalcogenide interactions are present, but this "switches off" when R = n Pr and charge assisted U═O···H-C and S(e)···H-C hydrogen bonding remain the dominant interaction. Increasing the size of the chain to n Bu results in only S···H-C interactions. The spectroscopic implications of these chalcogenide interactions have been explored in the vibrational and photophysical properties of the series [R 4 N] 3 [UO 2 (NCS) 5 ] (R 4 = Me 4 , Et 4 , n Pr 4 , n Bu 4 , Me 3 Bz, Et 3 Bz), [R 4 N] 3 [UO 2 (NCSe) 5 ] (R 4 = Me 4 , n Pr 4 , Et 3 Bz) and [Et 4 N] 4 [UO 2 (NCSe) 5 ][NCSe]. The data suggest that U═O···H-C interactions are weak and do not perturb the uranyl moiety. While the chalcogenide interactions do not influence the photophysical properties, a coupling of the U═O and δ(NCS) or δ(NCSe) vibrational modes is observed in the 77 K solid state emission spectra. A theoretical examination of representative examples of Se···Se, C-H···Se, and C-H···O═U by molecular electrostatic potentials and NBO and AIM methodologies gives a deeper understanding of these weak interactions. C-H···Se are individually weak but C-H···O═U interactions are even weaker, supporting the idea that the -yl oxo's are weak Lewis bases. An Atoms in Molecules study suggests that the chalcogenide interaction is similar to lone pair···π or fluorine···fluorine interactions. An oxidation of the NCS ligands to form [(UO 2 )(SO 4 ) 2 (H 2 O) 4 ]·3H 2 O was also noted.

  5. Magnetic dynamics of weakly and strongly interacting hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen

    2000-01-01

    The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance.......3(-0.8)(+1.0) x 10(-10) s for a rotation of the sublattice magnetization directions in the rhombohedral (111) plane. The corresponding median superparamagnetic blocking temperature is about 150 K. The dynamics of the second, dry sample, in which the particles are uncoated and thus allowed to aggregate, is slowed...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...

  6. Light and neutron scattering study of strongly interacting ionic micelles

    International Nuclear Information System (INIS)

    Degiorgio, V.; Corti, M.; Piazza, R.

    1989-01-01

    Dilute solutions of ionic micelles formed by biological glycolipids (gangliosides) have been investigated at various ionic strengths by static and dynamic light scaterring and by small-angle neutron scattering. The size and shape of the micelle is not appreciably affected by the added salt concentration in the range 0-100 mM NaCL. From the measured intensity of scattered light we derive the electric charge Z of the micelle by fitting the data to a theoretical calculation which uses a screened Coulomb potential for the intermicellar interaction, and the hypernetted chain approximation for the calculation of the radial distribution function. The correlation function derived from dynamic light scattering shows the long time contribution typical of concentrated polydisperse systems (author). 15 refs.; 6 figs

  7. Strong delayed interactive effects of metal exposure and warming

    DEFF Research Database (Denmark)

    Debecker, Sara; Dinh, Khuong Van; Stoks, Robby

    2017-01-01

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...

  8. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...

  9. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  10. Study of the interaction of atoms with strong laser fields

    International Nuclear Information System (INIS)

    Edwards, M.

    1984-01-01

    Three aspects of the interactions of atoms with high intensity laser fields were treated. All three were motivated by experiment. The first investigation was prompted by a recent experiment (Kruit et al. 1983) involving multiphoton ionization of Xe. In this experiment it was found that the photoelectron energy spectrum contained peaks that corresponded to the absorption of more than the minimum number of photons required to ionize the atom. A model approximation here showed good qualitative agreement with experiment. An experiment (Grove et al. 1977) designed to test a theoretical calculation of the dynamical Stark effect stimulated the second part of this thesis, namely: a study of how an adiabatically and near-adiabatically changing field intensity affects the resonance fluorescence spectrum of a two-level atom. It was found that there is an asymmetry in the spectrum for off-resonance excitation produced because the field turn-on repopulates the dressed state that is depopulated by spontaneous emission. The third part of this thesis was based on an experiment (Granneman and Van der Wiel 1976) that attempted to verify a perturbation calculation of the two-photon ionization cross section of Cs. A discrepancy of four orders of magnitude near a minimum in the cross section was found between theory and experiment. To explain this discrepancy it was suggested (Armstrong and Beers 1977) that the effective order of nonlinearity (k) for this process varied significantly around the minimum. This study involves a perturbation calculation of k. It was found that k varies rapidly around the minimum, and that this variation should be experimentally observable for laser intensities of the order of tens of GW cm -2

  11. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells.

    Science.gov (United States)

    Pernía Leal, M; Assali, M; Cid, J J; Valdivia, V; Franco, J M; Fernández, I; Pozo, D; Khiar, N

    2015-12-07

    To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of the dynamic hybrids obtained by non-covalent functionalizations. In the present work, we examined the molecular basis of an original strategy that combines the advantages of both functionalizations without their main drawbacks. The hierarchical self-assembly of diacetylenic-based neoglycolipids into highly organized and compacted rings around the nanotubes, followed by photopolymerization leads to the formation of nanotubes covered with glyconanorings with a shish kebab-type topology exposing the carbohydrate ligands to the water phase in a multivalent fashion. The glyconanotubes obtained are fully functional, and able to establish specific interactions with their cognate receptors. In fact, by taking advantage of this selective binding, an easy method to sense lectins as a working model of toxin detection was developed based on a simple analysis of TEM images. Remarkably, different experimental settings to assess cell membrane integrity, cell growth kinetics and cell cycle demonstrated the cellular biocompatibility of the sugar-coated carbon nanotubes compared to pristine single-walled carbon nanotubes.

  12. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    DEFF Research Database (Denmark)

    Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas

    2017-01-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous...

  13. On the nature of non-covalent interactions in isomers of 2,5-dichloro-1,4-benzoquinone dimers - ground- and excited-state properties

    Czech Academy of Sciences Publication Activity Database

    Pandiyan, B. V.; Deepa, Palanisamy; Kolandaivel, P.

    2014-01-01

    Roč. 16, č. 37 (2014), s. 19928-19940 ISSN 1463-9076 Institutional support: RVO:61388963 Keywords : hydrogen bonding interactions * density functional theory * circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  14. Accuracy of Several Wave Function and Density Functional Theory Methods for Description of Noncovalent Interaction of Saturated and Unsaturated Hydrocarbon Dimers

    Czech Academy of Sciences Publication Activity Database

    Granatier, Jaroslav; Pitoňák, M.; Hobza, Pavel

    2012-01-01

    Roč. 8, č. 7 (2012), s. 2282-2292 ISSN 1549-9618 Grant - others:APVV(SK) APVV-0059-10 Institutional research plan: CEZ:AV0Z40550506 Keywords : intermolecular interaction energies * Plesset perturbation-theory * molecular-orbital methods * protein rubredoxin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.389, year: 2012

  15. Solvent-dependent dihydrogen/dihydride stability for [Mo(CO)(Cp*)H(2)(PMe(3))(2)](+)[BF(4)](-) determined by multiple solvent...anion...cation non-covalent interactions.

    Science.gov (United States)

    Dub, Pavel A; Belkova, Natalia V; Filippov, Oleg A; Daran, Jean-Claude; Epstein, Lina M; Lledós, Agustí; Shubina, Elena S; Poli, Rinaldo

    2010-01-04

    Low-temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe(3))(2)] (1) by Et(2)OHBF(4) gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(eta(2)-H(2))(PMe(3))(2)](+) (2) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)(2)(PMe(3))(2)](+) (3) is the only observable product in dichloromethane. Both products were fully characterised (nu(CO) IR; (1)H, (31)P, (13)C NMR spectroscopies) at low temperature; they lose H(2) upon warming to 230 K at approximately the same rate (ca. 10(-3) s(-1)), with no detection of the non-classical form in CD(2)Cl(2), to generate [Mo(CO)(Cp*)(FBF(3))(PMe(3))(2)] (4). The latter also slowly decomposes at ambient temperature. One of the decomposition products was crystallised and identified by X-ray crystallography as [Mo(CO)(Cp*)(FHFBF(3))(PMe(3))(2)] (5), which features a neutral HF ligand coordinated to the transition metal through the F atom and to the BF(4) (-) anion through a hydrogen bond. The reason for the switch in relative stability between 2 and 3 was probed by DFT calculations based on the B3LYP and M05-2X functionals, with inclusion of anion and solvent effects by the conductor-like polarisable continuum model and by explicit consideration of the solvent molecules. Calculations at the MP4(SDQ) and CCSD(T) levels were also carried out for calibration. The calculations reveal the key role of non-covalent anion-solvent interactions, which modulate the anion-cation interaction ultimately altering the energetic balance between the two isomeric forms.

  16. Unveiling the non-covalent interactions of molecular homodimers by dispersion-corrected DFT calculations and collision-induced broadening of ro-vibrational transitions: application to (CH2F2)2 and (SO2)2.

    Science.gov (United States)

    Tasinato, Nicola; Grimme, Stefan

    2015-02-28

    Thermodynamic and spectroscopic properties of molecular complexes featuring non-covalent interactions, such as van der Waals forces and hydrogen bonds, are of fundamental interest in many fields, ranging from chemistry and biology to nanotechnology. In the present work the homodimers of difluoromethane (CH2F2) and sulfur dioxide (SO2) are investigated theoretically using dispersion-corrected density functional theory (DFT-D3) and experimentally by tunable diode laser (TDL) infrared (IR) spectroscopy. The dissociation energies of (CH2F2)2 and (SO2)2 are determined experimentally from the broadening of the ro-vibrational transitions of the corresponding monomers collisionally perturbed by a range of damping gases. The resulting dissociation energies are 2.79 ± 0.32 and 2.62 ± 0.16 kcal mol(-1) for the CH2F2 and SO2 dimers, respectively. Six to nine different stationary points on the PES of the two complexes are investigated theoretically at the DFT-D3 level, retrieving the corresponding dissociation energies, structures and rotational constants. Computations are carried out by employing six different density functionals (BLYP, TPSS, B3LYP, PBE0, TPSSh, and PW6B95) in conjunction with def2-TZVP and in a few cases def2-QZVP basis sets. DFT-D3 dissociation energies are benchmarked against reference values from CCSD(T)/CBS computations, and furthermore compared to experimental ones. A very good agreement between theory and experiment is attained, showing that DFT-D3 provides a significant improvement over standard DFT. This work shows that dissociation energies of homodimers can be consistently derived from collisional broadening cross sections and that interaction energies at various DFT-D3 levels (nearly) reach the accuracy of highly correlated wavefunction methods.

  17. Hyperspherical Treatment of Strongly-Interacting Few-Fermion Systems in One Dimension

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using...

  18. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  19. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    -range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated...

  20. Theoretical exploration of pnicogen bond noncovalent interactions ...

    Indian Academy of Sciences (India)

    the Science Research Foundation of Educational. Department of Gansu Province (2013A-102), and the “QingLan” Talent Engineering Funds of Tianshui. Normal University. References. 1. Michael G C, Corey A M and Mark S T 2011 J. Am. Chem. Soc. 133 10559. 2. Vazquez J, De S K, Chen L H, Riel-Mehan M, Emdadi.

  1. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...

  2. Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela

    2018-01-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calcula...

  3. Exploring Strong Interactions in Proteins with Quantum Chemistry and Examples of Their Applications in Drug Design.

    Directory of Open Access Journals (Sweden)

    Neng-Zhong Xie

    Full Text Available Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge are studied that are stronger than (or comparable to the common hydrogen bond interactions, and play important roles in protein-protein interactions.Quantum chemical methods MP2 and CCSD(T are used in calculations of interaction energies and structural optimizations.The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets. Typical examples of amino acid salt bridge, cation-π, and amide bridge interactions are analyzed, including the inhibitor design targeting neuraminidase (NA enzyme of influenza A virus, and the ligand binding interactions in the HCV p7 ion channel. The inhibition mechanism of the M2 proton channel in the influenza A virus is analyzed based on strong amino acid interactions.(1 The salt bridge interactions between acidic amino acids (Glu- and Asp- and alkaline amino acids (Arg+, Lys+ and His+ are the strongest residue-residue interactions. However, this type of interaction may be weakened by solvation effects and broken by lower pH conditions. (2 The cation- interactions between protonated amino acids (Arg+, Lys+ and His+ and aromatic amino acids (Phe, Tyr, Trp and His are 2.5 to 5-fold stronger than common hydrogen bond interactions and are less affected by the solvation environment. (3 The amide bridge interactions between the two amide-containing amino acids (Asn and Gln are three times stronger than hydrogen bond interactions, which are less influenced by the pH of the solution. (4 Ten of the twenty natural amino acids are involved in salt bridge, or cation-, or amide bridge interactions that often play important roles in protein-protein, protein-peptide, protein-ligand, and protein-DNA interactions.

  4. Gauge unification of basic forces particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    Corresponding to the two known types of gauge theories, Yang-Mills with spin-one mediating particles and Einstein Weyl with spin-two mediating particles, it is speculated that two distinct gauge unifications of the basic forces appear to be taking place. One is the familiar Yang-Mills unification of weak and electromagnetic forces with the strong. The second is the less familiar gauge unification of gravitation with spin-two tensor-dominated aspects of strong interactions. It is proposed that there are strongly interacting spin-two strong gravitons obeying Einstein's equations, and their existence gives a clue to an understanding of the (partial) confinement of quarks, as well as of the concept of hadronic temperature, through the use of Schwarzschild de-Sitter-like partially confining solitonic solutions of the strong gravity Einstein equation

  5. arXiv Recent results from the strong interactions program of NA61/SHINE

    CERN Document Server

    Pulawski, Szymon

    2017-01-01

    The NA61/SHINE experiment studies hadron production in hadron+hadron, hadron+nucleus and nucleus+nucleus collisions. The strong interactions program has two main purposes: study the properties of the onset of deconfinement and search for the signatures of the critical point of strongly interacting matter. This aim is pursued by performing a two-dimensional scan of the phase diagram by varying the energy/momentum (13A-158A GeV/c) and the system size (p+p, Be+Be, Ar+Sc, Xe+La) of the collisions. This publication reviews recent results from p+p, Be+Be and Ar+Sc interactions. Measured particle spectra are discussed and compared to NA49 results from Pb+Pb collisions. The results illustrate the progress towards scanning the phase diagram of strongly interacting matter.

  6. Strong excitonic interactions in the oxygen K-edge of perovskite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Kota; Miyata, Tomohiro [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Olovsson, Weine [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2017-07-15

    Excitonic interactions of the oxygen K-edge electron energy-loss near-edge structure (ELNES) of perovskite oxides, CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, together with reference oxides, MgO, CaO, SrO, BaO, and TiO{sub 2}, were investigated using a first-principles Bethe–Salpeter equation calculation. Although the transition energy of oxygen K-edge is high, strong excitonic interactions were present in the oxygen K-edge ELNES of the perovskite oxides, whereas the excitonic interactions were negligible in the oxygen K-edge ELNES of the reference compounds. Detailed investigation of the electronic structure suggests that the strong excitonic interaction in the oxygen K-edge ELNES of the perovskite oxides is caused by the directionally confined, low-dimensional electronic structure at the Ti–O–Ti bonds. - Highlights: • Excitonic interaction in oxygen-K edge is investigated. • Strong excitonic interaction is found in the oxygen-K edge of perovskite oxides. • The strong excitonic interaction is ascribed to the low-dimensional and confined electronic structure.

  7. Spectral asymptotics of a strong δ′ interaction supported by a surface

    International Nuclear Information System (INIS)

    Exner, Pavel; Jex, Michal

    2014-01-01

    Highlights: • Attractive δ ′ interactions supported by a smooth surface are considered. • Surfaces can be either infinite and asymptotically planar, or compact and closed. • Spectral asymptotics is determined by the geometry of the interaction support. - Abstract: We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive δ ′ interaction supported by a smooth surface in R 3 , either infinite and asymptotically planar, or compact and closed. Its second term is found to be determined by a Schrödinger type operator with an effective potential expressed in terms of the interaction support curvatures

  8. Precision determination of the strong interaction shift and width in pionic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D.F.; Covita, D.D.S.; Santos, J.M.F. dos; Veloso, J.F.C.A.; Fuhrmann, H.; Gruber, A.; Hirtl, A.; Ishiwatari, T.; Marton, J.; Schmid, P.; Zmeskal, J.; Gotta, D.; Hennebach, M.; Nekipelov, M.; Indelicato, P.; Jensen, T.; Bigot, E.O. Le; Trassinelli, M.; Simons, L.M.

    2005-01-01

    The new pionic hydrogen experiment at PSI aims at an improvement in the determination of the strong interaction ground state shift and width of the pionic hydrogen atom. High precision x-ray crystal spectroscopy is used to extract isospin separated scattering lengths with accuracies on the percent level. Compared to previous efforts, the energy resolution and statistics could be improved considerably and the background is much reduced. The response function of the Johann-type crystal spectrometer has been determined with a novel method with unprecedented accuracy. The inherent difficulties of the exotic atom's method result, from the fact that the formation of a sufficient amount of pionic hydrogen atoms requires a hydrogen target pressure of several bar at least. For the extraction of a strong interaction shift, an extrapolation method to vacuum conditions proved to be successful. This contribution mostly discusses the strategy to extract a result for the strong interaction width from the data.(author)

  9. Proceedings of the summer institute on particle physics: The strong interaction, from hadrons to partons

    International Nuclear Information System (INIS)

    Chan, J.; DePorcel, L.; Dixon, L.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q 2 . Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  10. Computational strong-field quantum dynamics intense light-matter interactions

    CERN Document Server

    2017-01-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time-dependent Schrödinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi-configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  11. Computational strong-field quantum dynamics. Intense light-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dieter (ed.) [Rostock Univ. (Germany). Inst. fuer Physik

    2017-09-01

    This graduate textbook introduces the computational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach.

  12. Lagrangian formulation for a gauge theory of strong and electromagnetic interactions defined on a Cartan bundle

    International Nuclear Information System (INIS)

    Drechsler, W.

    1977-01-01

    A Lagrangian formalism invariant under the gauge group U 1 xUSpsub(2.2) is set up in terms of spinor fields defined on a fiber bundle with Cartan connexion. The fiber of the Cartan bundle over space-time associated with strong interactions is characterized by an elementary length parameter R related to the range of the strong forces, and the structural group USpsub(2.2) of the bundle (being the covering group of the SOsub(4.1) de Sitter group) implies a gauge description of strong interactions based on the noncompact gauge group USpsub(2.2). The U 1 factor in the total gauge group corresponds to the usual gauge formulation for the electromagnetic interactions. The positivity of the energy associated with stable extended one-particle states in this dualistic description of charged hadronic matter immersed in the fiber geometry (this dualism is called strong fiber dynamics (SFD)) requires hadrons to be assigned to representations of the compact subgroup SU 2 xSU 2 of the strong-interaction gauge group USpsub(2.2). A brief discussion of the point-particle limit R→O is given by linking the presented SFD formalism for extended hadrons to an idealized description in terms of operators in a local quantum field theory

  13. Proceedings of Summer Institute of Particle Physics, July 27-August 7, 1981: the strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, A. (ed.)

    1982-01-01

    The ninth SLAC Summer Institute on Particle Physics was held in the period July 27 to August 7, 1981. The central topic was the strong interactions with the first seven days spent in a pedagogic mode and the last three in a topical conference. In addition to the morning lectures on experimental and theoretical aspects of the strong interactions, three were lectures on machine physics; this year it was electron-positron colliding beam machines, both storage rings and linear colliders. Twenty-three individual items from the meeting were prepared separately for the data base. (GHT)

  14. Strong interaction effects in high-Z K sup minus atoms

    Energy Technology Data Exchange (ETDEWEB)

    Batty, C.J.; Eckhause, M.; Gall, K.P.; Guss, P.P.; Hertzog, D.W.; Kane, J.R.; Kunselman, A.R.; Miller, J.P.; O' Brien, F.; Phillips, W.C.; Powers, R.J.; Roberts, B.L.; Sutton, R.B.; Vulcan, W.F.; Welsh, R.E.; Whyley, R.J.; Winter, R.G. (Rutherford-Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom (GB) College of William and Mary, Williamsburg, Virginia 23185 Boston University, Boston, Massachusetts 02215 University of Wyoming, Laramie, Wyoming 82071 California Institute of Technology, Pasadena, California 91125 Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)

    1989-11-01

    A systematic experimental study of strong interaction shifts, widths, and yields from high-{ital Z} kaonic atoms is reported. Strong interaction effects for the {ital K}{sup {minus}}(8{r arrow}7) transition were measured in U, Pb, and W, and the {ital K}{sup {minus}}(7{r arrow}6) transition in W was also observed. This is the first observation of two measurably broadened and shifted kaonic transitions in a single target and thus permitted the width of the upper state to be determined directly, rather than being inferred from yield data. The results are compared with optical-model calculations.

  15. Red-shifted carrier multiplication energy threshold and exciton recycling mechanisms in strongly interacting silicon nanocrystals.

    Science.gov (United States)

    Marri, Ivan; Govoni, Marco; Ossicini, Stefano

    2014-09-24

    We present density functional theory calculations of carrier multiplication properties in a system of strongly coupled silicon nanocrystals. Our results suggest that nanocrystal-nanocrystal interaction can lead to a reduction of the carrier multiplication energy threshold without altering the carrier multiplication efficiency at high energies, in agreement with experiments. The time evolution of the number of electron-hole pairs generated in a system of strongly interacting nanocrystals upon absorption of high-energy photons is analyzed by solving a system of coupled rate equations, where exciton recycling mechanisms are implemented. We reconsider the role played by Auger recombination which is here accounted also as an active, nondetrimental process.

  16. Molecular aggregation in water : the interplay of hydrophobic and electrostatic interactions

    NARCIS (Netherlands)

    Buwalda, Rixt Tietje

    2001-01-01

    Hydrophobic interactions belong to the most important noncovalent interactions and play an important role in many (bio)chemical processes. A number of processes in aqueous solution like protein folding, surfactant aggregation or molecular recognition processes strongly rely on the interactions

  17. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  18. Density functional theory for strongly-interacting electrons: Perspectives for Physics and Chemistry

    NARCIS (Netherlands)

    Gori Giorgi, P.; Seidl, M.

    2010-01-01

    Improving the accuracy and thus broadening the applicability of electronic density functional theory (DFT) is crucial to many research areas, from material science, to theoretical chemistry, biophysics and biochemistry. In the last three years, the mathematical structure of the strong-interaction

  19. Strong Coupling Asymptotics for a Singular Schrodinger Operator with an Interaction Supported by an Open Arc

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Pankrashkin, K.

    2014-01-01

    Roč. 39, č. 2 (2014), s. 193-212 ISSN 0360-5302 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Eigenvalue * Schrödinger operator * singular interaction * strong coupling * 35Q40 * 35P15 * 35J10 Subject RIV: BE - Theoretical Physics Impact factor: 1.013, year: 2014

  20. Spectral asymptotics of a strong delta ' interaction supported by a surface

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Jex, M.

    2014-01-01

    Roč. 378, 30-31 (2014), s. 2091-2095 ISSN 0375-9601 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : delta ' surface interaction * strong coupling expansion Subject RIV: BE - Theoretical Physics Impact factor: 1.683, year: 2014

  1. On eigenvalue asymptotics for strong delta-interactions supported by surfaces with boundaries

    Czech Academy of Sciences Publication Activity Database

    Dittrich, Jaroslav; Exner, Pavel; Kuhn, C.; Pankrashkin, K.

    2016-01-01

    Roč. 97, 1-2 (2016), s. 1-25 ISSN 0921-7134 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : singular Schrodinger operator * delta-interaction * strong coupling * eigenvalue Subject RIV: BE - Theoretical Physics Impact factor: 0.933, year: 2016

  2. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...

  3. Flavor changing strong interaction effects on top quark physics at the CERN LHC

    International Nuclear Information System (INIS)

    Ferreira, P.M.; Santos, R.; Oliveira, O.

    2006-01-01

    We perform a model independent analysis of the flavor changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model

  4. Interaction of a neutral composite particle with a strong Coulomb field

    International Nuclear Information System (INIS)

    Wong, Cheuk-Yin.

    1988-01-01

    The author discusses the interaction of the quasi-composite (e/sup /plus//e/sup /minus//) system with an external electromagnetic field. This problem addresses the question of the origin of strong positron lines in quasi-elastic heavy-ion reactions. 3 refs

  5. Description of meson strong and electromagnetic interactions in quantum chiral theory

    International Nuclear Information System (INIS)

    Volkov, M.K.; Pervushin, V.N.

    1978-01-01

    Strong and electromagnetic interactions of mesons in the framework of the chiral theory are considered. The pion-pion scattering phases, the pion electromagnetic form factor, the mean squared radius of a K-meson, and the electric and magnetic polarizabilities of pions are calculated using the superpropagator method. The rho-meson mass, Msub(rho)=800 MeV, is calculated too

  6. Strongly interacting bosons in a one-dimensional optical lattice at incommensurate densities

    NARCIS (Netherlands)

    Lazarides, A.|info:eu-repo/dai/nl/315556668; Tieleman, O.|info:eu-repo/dai/nl/341386456; de Morais Smith, C.|info:eu-repo/dai/nl/304836346

    2011-01-01

    We investigate quantum phase transitions occurring in a system of strongly interacting ultracold bosons in a one-dimensional optical lattice. After discussing the commensurate-incommensurate transition, we focus on the phases appearing at an incommensurate filling. We find a rich phase diagram, with

  7. Stimulated adiabatic passage in a dissipative ensemble of atoms with strong Rydberg-state interactions

    DEFF Research Database (Denmark)

    Petrosyan, David; Molmer, Klaus

    2013-01-01

    We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg...

  8. The strong interaction in e+e- annihilation and deep inelastic scattering

    International Nuclear Information System (INIS)

    Samuelsson, J.

    1996-01-01

    Various aspects of strong interactions are considered. Correlation effects in the hadronization process in a string model are studied. A discrete approximation scheme to the perturbative QCD cascade in e + e - annihilation is formulated. The model, Discrete QCD, predicts a rather low phase space density of 'effective gluons'. This is related to the properties of the running coupling constant. It provides us with a simple tool for studies of the strong interaction. It is shown that it reproduces well-known properties of parton cascades. A new formalism for the Deep Inelastic Scattering (DIS) process is developed. The model which is called the Linked Dipole Chain Model provides an interpolation between regions of high Q 2 (DGLAP) and low x-moderate Q 2 (BFKL). It gives a unified treatment of the different interaction channels an a DIS process. 17 figs

  9. Strongly interacting dark matter: Self-interactions and keV lines

    Science.gov (United States)

    Boddy, Kimberly K.; Feng, Jonathan L.; Kaplinghat, Manoj; Shadmi, Yael; Tait, Timothy M. P.

    2014-11-01

    We consider a simple supersymmetric hidden sector: pure SU (N ) gauge theory. Dark matter is made up of hidden glueballinos with mass mX and hidden glueballs with mass near the confinement scale Λ . For mX˜1 TeV and Λ ˜100 MeV , the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order Λ2/mX˜10 keV . We show that the radiative decays of the excited state can explain the observed 3.5 keV x-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.

  10. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η(5)-C5H5)(CO)2M≡EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study.

    Science.gov (United States)

    Pandey, Krishna K; Patidar, Pankaj; Bariya, Pankaj K; Patidar, Sunil K; Vishwakarma, Ravi

    2014-07-14

    Electronic, molecular structure and bonding energy analyses of the metal-aminosilylyne, -aminogermylyne, -aminostannylyne and -aminoplumbylyne complexes [(η(5)-C5H5)(CO)2M[triple bond, length as m-dash]EN(SiMe3)(Ph)] (M = Mo, W) and [(η(5)-C5H5)(CO)2Mo[triple bond, length as m-dash]GeN(SiMe3)(Mes)] have been investigated at DFT, DFT-D3 and DFT-D3(BJ) levels using BP86, PBE, PW91, RPBE, TPSS and M06-L functionals. The performance of metaGGA functionals for the geometries of aminoylyne complexes is better than GGA functionals. Significant dispersion interactions between OH, EC(O) and EH pairs appeared in the dispersion-corrected geometries. The non-covalent distances of these interactions follow the order DFT > DFT-D3(BJ) > DFT-D3. The values of Nalewajski-Mrozek bond order (1.22-1.52) and Pauling bond order (2.23-2.59) of the optimized structures at BP86/TZ2P indicate the presence of multiple bonds between metal and E atoms. The overall electronic charges transfer from transition-metal fragments to ligands. The topological analysis based on QTAIM has been performed to determine the analogy of non-covalent interactions. The strength of M[triple bond, length as m-dash]EN(SiMe3)(R) bonds has been evaluated by energy decomposition analysis. The electrostatic interactions are almost equal to orbital interactions. The M ← E σ-donation is smaller than the M → E π-back donation. Upon going from E = Si to E = Pb, the M-E bond orders decrease as Si > Ge > Sn > Pb, consistent with the observed geometry trends. The M-E uncorrected bond dissociation energies vary with the density functionals as RPBE DFT-D3 dispersion corrections to the BDEs correspond to the BP86 functional, ranging between 5.6-8.1 kcal mol(-1), which are smaller than the DFT-D3(BJ) dispersion corrections (10.1-12.0 kcal mol(-1)). The aryl substituents on nitrogen have an insignificant effect on M-E-N bending. The bending of the M-E-N bond angle has been discussed in terms of Jahn-Teller distortion. The

  11. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:[Formula: see text] Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex.

  12. Heavy quark mass effects and improved tests of the flavor independence of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration

    1998-08-01

    A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.

  13. Strong field approximation within a Faddeev-like formalism for laser-matter interactions

    International Nuclear Information System (INIS)

    Popov, Y.; Galstyan, A.; Piraux, B.; Mota-Furtado, F.; O'Mahony, P.F.

    2017-01-01

    We consider the interaction of atomic hydrogen with an intense laser field within the strong-field approximation (SFA). By using a Faddeev-like formalism, we introduce a new perturbative series in the binding potential of the atom. As a first test of this new approach, we calculate the electron energy spectrum in the very simple case of a photon energy higher than the ionisation potential. We show that by contrast to the standard perturbative series in the binding potential obtained within the strong field approximation, the first terms of the new series converge rapidly towards the results we get by solving the corresponding time-dependent Schroedinger equation. (authors)

  14. Anomalous Josephson effect in semiconductor nanowire with strong spin-orbit interaction and Zeeman effect

    Science.gov (United States)

    Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli

    2014-03-01

    We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.

  15. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  16. Instability of collective strong-interaction phenomena in hadron production as a possible origin of the weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1975-12-01

    A systematic calculus of long-range Regge cut effects in multiparticle production is constructed in the form of an infrared-divergent stochastic field theory. Total cross sections and two-body overlap integrals in such a theory may depend very sensitively upon internal quantum-numbers of incident particles, resulting in a strong symmetry breaking at ultra-high energies. Such symmetry violations will influence low energy processes through dispersion relations, and a bootstrap of weak interactions becomes possible. A rough analytic estimate of the scale of thresholds for such effects yields a BCS-type gap equation, which expresses the scale of weak and electromagnetic couplings in terms of purely strong-interaction parameters

  17. Bogolubov–Hartree–Fock Theory for Strongly Interacting Fermions in the Low Density Limit

    Energy Technology Data Exchange (ETDEWEB)

    Bräunlich, Gerhard [Friedrich-Schiller-University Jena, Institute for Mathematics (Germany); Hainzl, Christian [University of Tübingen, Mathematical Institute (Germany); Seiringer, Robert, E-mail: robert.seiringer@ist.ac.at [Institute of Science and Technology Austria (Austria)

    2016-06-15

    We consider the Bogolubov–Hartree–Fock functional for a fermionic many-body system with two-body interactions. For suitable interaction potentials that have a strong enough attractive tail in order to allow for two-body bound states, but are otherwise sufficiently repulsive to guarantee stability of the system, we show that in the low-density limit the ground state of this model consists of a Bose–Einstein condensate of fermion pairs. The latter can be described by means of the Gross–Pitaevskii energy functional.

  18. Strong constraints on self-interacting dark matter with light mediators

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Walia, Parampreet

    2017-04-01

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  19. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity.

    Science.gov (United States)

    Gan, Xuetao; Mak, Kin Fai; Gao, Yuanda; You, Yumeng; Hatami, Fariba; Hone, James; Heinz, Tony F; Englund, Dirk

    2012-11-14

    We demonstrate a large enhancement in the interaction of light with graphene through coupling with localized modes in a photonic crystal nanocavity. Spectroscopic studies show that a single atomic layer of graphene reduces the cavity reflection by more than a factor of one hundred, while also sharply reducing the cavity quality factor. The strong interaction allows for cavity-enhanced Raman spectroscopy on subwavelength regions of a graphene sample. A coupled-mode theory model matches experimental observations and indicates significantly increased light absorption in the graphene layer. The coupled graphene-cavity system also enables precise measurements of graphene's complex refractive index.

  20. Equilibration Dynamics of Strongly Interacting Bosons in 2D Lattices with Disorder.

    Science.gov (United States)

    Yan, Mi; Hui, Hoi-Yin; Rigol, Marcos; Scarola, V W

    2017-08-18

    Motivated by recent optical lattice experiments [J.-y. Choi et al., Science 352, 1547 (2016)SCIEAS0036-807510.1126/science.aaf8834], we study the dynamics of strongly interacting bosons in the presence of disorder in two dimensions. We show that Gutzwiller mean-field theory (GMFT) captures the main experimental observations, which are a result of the competition between disorder and interactions. Our findings highlight the difficulty in distinguishing glassy dynamics, which can be captured by GMFT, and many-body localization, which cannot be captured by GMFT, and indicate the need for further experimental studies of this system.

  1. Gauge unification of basic forces, particularly of gravitation with strong interactions

    International Nuclear Information System (INIS)

    Salam, A.

    1977-01-01

    An attempt is made to present a case for the use of both the Einstein--Weyl spin-two and the Yang--Mills spin-one gauge structures for describing strong interactions. By emphasizing both spin-one and -two aspects of this force, it is hoped that a unification of this force, on the one hand, with gravity theory and, on the other, with the electromagnetic and weak interactions can be achieved. A Puppi type of tetrahedral interralation of fundamental forces, with the strong force playing a pivotal role due to its mediation through both spin-one and -two quanta, is proposed. It is claimed that the gauge invariance of gravity theory permits the use of ambuguity-free nonpolynomial techniques and thereby the securing of relistic regularization in gravity-modified field theories with the Newtonian constant G/sub N/ providing a relistic cutoff. 37 references

  2. Les Houches Summer School : Strongly Interacting Quantum Systems out of Equilibrium

    CERN Document Server

    Millis, Andrew J; Parcollet, Olivier; Saleur, Hubert; Cugliandolo, Leticia F

    2016-01-01

    Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define dir...

  3. On the Frequency Distribution of Neutral Particles from Low-Energy Strong Interactions

    Directory of Open Access Journals (Sweden)

    Federico Colecchia

    2017-01-01

    Full Text Available The rejection of the contamination, or background, from low-energy strong interactions at hadron collider experiments is a topic that has received significant attention in the field of particle physics. This article builds on a particle-level view of collision events, in line with recently proposed subtraction methods. While conventional techniques in the field usually concentrate on probability distributions, our study is, to our knowledge, the first attempt at estimating the frequency distribution of background particles across the kinematic space inside individual collision events. In fact, while the probability distribution can generally be estimated given a model of low-energy strong interactions, the corresponding frequency distribution inside a single event typically deviates from the average and cannot be predicted a priori. We present preliminary results in this direction and establish a connection between our technique and the particle weighting methods that have been the subject of recent investigation at the Large Hadron Collider.

  4. Thermodynamics of strongly interacting fermions in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Khatami, Ehsan; Rigol, Marcos [Department of Physics, Georgetown University, Washington DC, 20057 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2011-11-15

    We study finite-temperature properties of strongly correlated fermions in two-dimensional optical lattices by means of numerical linked cluster expansions, a computational technique that allows one to obtain exact results in the thermodynamic limit. We focus our analysis on the strongly interacting regime, where the on-site repulsion is of the order of or greater than the band width. We compute the equation of state, double occupancy, entropy, uniform susceptibility, and spin correlations for temperatures that are similar to or below the ones achieved in current optical lattice experiments. We provide a quantitative analysis of adiabatic cooling of trapped fermions in two dimensions, by means of both flattening the trapping potential and increasing the interaction strength.

  5. Limitations due to strong head-on beam-beam interactions (MD 1434)

    CERN Document Server

    Buffat, Xavier; Iadarola, Giovanni; Papadopoulou, Parthena Stefania; Papaphilippou, Yannis; Pellegrini, Dario; Pojer, Mirko; Crockford, Guy; Salvachua Ferrando, Belen Maria; Trad, Georges; Barranco Garcia, Javier; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    The results of an experiment aiming at probing the limitations due to strong head on beam-beam interactions are reported. It is shown that the loss rates significantly increase when moving the working point up and down the diagonal, possibly due to effects of the 10th and/or 14th order resonances. Those limitations are tighter for bunches with larger beam-beam parameters, a maximum total beam-beam tune shift just below 0.02 could be reached.

  6. Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles.

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi; Volansky, Tomer; Wacker, Jay G

    2015-07-10

    A recent proposal is that dark matter could be a thermal relic of 3→2 scatterings in a strongly coupled hidden sector. We present explicit classes of strongly coupled gauge theories that admit this behavior. These are QCD-like theories of dynamical chiral symmetry breaking, where the pions play the role of dark matter. The number-changing 3→2 process, which sets the dark matter relic abundance, arises from the Wess-Zumino-Witten term. The theories give an explicit relationship between the 3→2 annihilation rate and the 2→2 self-scattering rate, which alters predictions for structure formation. This is a simple calculable realization of the strongly interacting massive-particle mechanism.

  7. Noncovalent Attachment of PbS Quantum Dots to Single- and Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Anirban Das

    2014-01-01

    Full Text Available Attachment of PbS quantum dots (QD to single-walled carbon nanotubes (SWNT and multiwalled carbon nanotubes (MWCNT is described; wherein commercially obtained PbS-QD of size 2.7 nm, stabilized by oleic acid, are added to a suspension of single- or multiwalled carbon nanotubes (CNT prefunctionalized noncovalently with 1,2-benzenedimethanethiol (1,2-BDMT in ethanol. The aromatic part of 1,2-BDMT attaches to the CNT by π-π stacking interactions, noncovalently functionalizing the CNT. The thiol part of the 1,2-BDMT on the functionalized CNT replaces oleic acid on the surface of the QD facilitating the noncovalent attachment of the QD to the CNT. The composites were characterized by TEM and FTIR spectroscopy. Quenching of NIR fluorescence of the PbS-QD on attachment to the carbon nanotubes (CNT was observed, indicating FRET from the QD to the CNT.

  8. arXiv Recent results and future of the NA61/SHINE strong interactions program

    CERN Document Server

    Lysakowski, Bartosz

    2018-01-01

    NA61/SHINE is a fixed target experiment at the CERN Super-Proton- Synchrotron. The main goals of the experiment are to discover the critical point of strongly interacting matter and study the properties of the onset of deconfnement. In order to reach these goals the collaboration studies hadron production properties in nucleus-nucleus, proton-proton and proton-nucleus interactions. In this talk, recent results on particle production in p+p interactions, as well as Be+Be and Ar+Sc collisions in the SPS energy range are reviewed. The results are compared with available world data. The future of the NA61/SHINE scientifc program is also presented.

  9. Strong late-time circumstellar interaction in the peculiar supernova iPTF14hls

    Science.gov (United States)

    Andrews, Jennifer E.; Smith, Nathan

    2018-03-01

    We present a moderate-resolution spectrum of the peculiar Type II supernova iPTF14hls taken on day 1153 after discovery. This spectrum reveals the clear signature of shock interaction with dense circumstellar material (CSM). We suggest that this CSM interaction may be an important clue for understanding the extremely unusual photometric and spectroscopic evolution seen over the first 600 days of iPTF14hls. The late-time spectrum shows a double-peaked intermediate-width Hα line indicative of expansion speeds around 1000 km s-1, with the double-peaked shape hinting at a disc-like geometry in the CSM. If the CSM was highly asymmetric, perhaps in a disc or torus that was ejected from the star 3-6 years prior to explosion, then the CSM interaction could have been overrun and hidden below the SN ejecta photosphere from a wide range of viewing angles. In that case, CSM interaction luminosity would have been thermalized well below the photosphere, potentially sustaining the high luminosity without exhibiting the traditional observational signatures of strong CSM interaction (narrow Hα emission and X-rays). Variations in density structure of the CSM could account for the multiple rebrightenings of the lightcurve. We propose that a canonical 1× 1051 erg explosion energy with enveloped CSM interaction as seen in some recent SNe, rather than an entirely new explosion mechanism, may be adequate to explain the peculiar evolution of iPTF14hls.

  10. Role of high-order dispersion on strong-field laser-molecule interactions

    Science.gov (United States)

    Dantus, Marcos; Nairat, Muath

    2016-05-01

    Strong-field (1012- 1016 W/ cm2) laser-matter interactions are characterized by the extent of fragmentation and charge of the resulting ions as a function of peak intensity and pulse duration. Interactions are influenced by high-order dispersion, which is difficult to characterize and compress. Fourth-order dispersion (FOD) causes a time-symmetric pedestal, while third-order dispersion (TOD) causes a leading (negative) or following (positive) pedestal. Here, we report on strong-field interactions with pentane and toluene molecules, tracking the molecular ion and the doubly charged carbon ion C2+ yields as a function of TOD and FOD for otherwise transform-limited (TL) 35fs pulses. We find TL pulses enhance molecular ion yield and suppress C2+ yield, while FOD reverses this trend. Interestingly, the leading pedestal in negative TOD enhances C2+ yield compared to positive TOD. Pulse pedestals are of particular importance in strong-field science because target ionization or alignment can be induced well before the main pulse arrives. A pedestal following an intense laser pulse can cause sequential ionization or accelerate electrons causing cascaded ionization. Control of high-order dispersion allows us to provide strong-field measurements that can help address the mechanisms responsible for different product ions in the presence and absence of pedestals. Financial support of this work comes from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, DOE SISGR (DE-SC0002325)

  11. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-03-01

    Full Text Available Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1 using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing

  12. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  13. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouk, María; Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Álvarez-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Martínez-Herrera, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 México D.F. (Mexico); Puente-Lee, Iván [Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)

    2013-06-15

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H{sub 2}TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  14. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    International Nuclear Information System (INIS)

    Bassiouk, María; Basiuk, Vladimir A.; Basiuk, Elena V.; Álvarez-Zauco, Edgar; Martínez-Herrera, Melchor; Rojas-Aguilar, Aaron; Puente-Lee, Iván

    2013-01-01

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H 2 TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  15. Observation of Spin-Polarons in a strongly interacting Fermi liquid

    Science.gov (United States)

    Zwierlein, Martin

    2009-03-01

    We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.

  16. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    International Nuclear Information System (INIS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ, effective magnetic field H 1 , H 2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry. (paper)

  17. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts.

    Science.gov (United States)

    Matsubu, John C; Zhang, Shuyi; DeRita, Leo; Marinkovic, Nebojsa S; Chen, Jingguang G; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-02-01

    The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCO x ) on reducible oxide supports (TiO 2 and Nb 2 O 5 ) that induce oxygen-vacancy formation in the support and cause HCO x -functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO 2 -reduction selectivity.

  18. Studies of the strong and electroweak interactions at the Z0 pole

    International Nuclear Information System (INIS)

    Hildreth, M.D.

    1995-03-01

    This thesis presents studies of the strong and electroweak forces, two of the fundamental interactions that govern the behavior of matter at high energies. The authors have used the hadronic decays of Z 0 bosons produced with the unique experimental apparatus of the e + e - Linear Collider at the Stanford Linear Accelerator Center (SLAC) and the SLAC Large Detector (SLD) for these measurements. Employing the precision tracking capabilities of the SLD, they isolated samples of Z 0 events containing primarily the decays of the Z 0 to a chosen quark type. With an inclusive selection technique, they have tested the flavor independence of the strong coupling, α s by measuring the rates of multi-jet production in isolated samples of light (uds), c, and b quark events. They find: α s uds /α s all 0.987 ± 0.027(stat) ± 0.022(syst) ± 0.022(theory), α s c /α s all = 1.012 ± 0.104(stat) ± 0.102(syst) ± 0.096(theory), α s b /α s all = 1.026 ± 0.041(stat) ± 0.030(theory), which implies that the strong interaction is independent of quark flavor within the present experimental sensitivity. They have also measured the extent of parity-violation in the Z 0 c bar c coupling, given by the parameter A c 0 , using a sample of fully and partially reconstructed D* and D + meson decays and the longitudinal polarization of the SLC electron beam. This sample of charm quark events was derived with selection techniques based on their kinematic properties and decay topologies. They find A c 0 = 0.73 ± 0.22(stat) ± 0.10(syst). This value is consistent with that expected in the electroweak standard model of particle interactions

  19. Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.

    Science.gov (United States)

    Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke

    2008-02-22

    Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).

  20. Viscosity in strongly interacting quantum field theories from black hole physics.

    Science.gov (United States)

    Kovtun, P K; Son, D T; Starinets, A O

    2005-03-25

    The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of variant Planck's over 2pi/4pik(B) for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.

  1. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  2. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  3. Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

    Science.gov (United States)

    Davis, J. C. Séamus; Lee, Dung-Hai

    2013-01-01

    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs. PMID:24114268

  4. Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems

    Science.gov (United States)

    Meyer, Gregory; Machado, Francisco; Yao, Norman

    2017-04-01

    Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.

  5. Possible Cosmological consequences of thermodynamics in a unified approach to gravitational and strong interactions

    International Nuclear Information System (INIS)

    Recami, E.; Tonin Zanchin, V.; Martinez, J.M.

    1986-01-01

    A unified geometrical approach to strong and gravitational interactions has been recently proposed, based on the classical methods of General Relativity. According to it, hadrons can be regarded as black-hole type solutions of new field equations describing two tensorial metric-field (the ordinary gravitational field, and the strong one). In this paper, we first seize the opportunity for an improved exposition of some elements of the theory relevant to our present scope. Secondly, by extending the Bekenstein-Hawking thermodynamics to the above mentioned strong black-holes (SBH), it is shown: 1) that SBH thermodynamics seems to require a new expansion of our cosmos after its Big Crunch (i.e. that a recontraction of our cosmos has to be followed by a new creation); 2) that a collapsing star with mass M approximately in the range 3 to 5 solar masses, once reached the neutron-star density, could re-explode tending to form a (radiating) object with a diameter of the order of 1 light-day: thus failing to create a gravitational black-hole

  6. Deterministic alternatives to the full configuration interaction quantum Monte Carlo method for strongly correlated systems

    Science.gov (United States)

    Tubman, Norm; Whaley, Birgitta

    The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.

  7. Studies of the strong and electroweak interactions at the Z0 pole

    Energy Technology Data Exchange (ETDEWEB)

    Hildreth, Michael Douglas [Stanford Univ., CA (United States)

    1995-03-01

    This thesis presents studies of the strong and electroweak forces, two of the fundamental interactions that govern the behavior of matter at high energies. The authors have used the hadronic decays of Z0 bosons produced with the unique experimental apparatus of the e+e- Linear Collider at the Stanford Linear Accelerator Center (SLAC) and the SLAC Large Detector (SLD) for these measurements. Employing the precision tracking capabilities of the SLD, they isolated samples of Z0 events containing primarily the decays of the Z0 to a chosen quark type. With an inclusive selection technique, they have tested the flavor independence of the strong coupling, αs by measuring the rates of multi-jet production in isolated samples of light (uds), c, and b quark events. They find: α$s\\atop{uds}$/α$s\\atop{all}$ 0.987 ± 0.027(stat) ± 0.022(syst) ± 0.022(theory), α$c\\atop{s}$/α$all\\atop{s}$ = 1.012 ± 0.104(stat) ± 0.102(syst) ± 0.096(theory), α$b\\atop{s}$/α$all\\atop{s}$ = 1.026 {+-} 0.041(stat) ± 0.030(theory), which implies that the strong interaction is independent of quark flavor within the present experimental sensitivity. They have also measured the extent of parity-violation in the Z0 c$\\bar{c}$ coupling, given by the parameter A $0\\atop{c}$, using a sample of fully and partially reconstructed D* and D+ meson decays and the longitudinal polarization of the SLC electron beam. This sample of charm quark events was derived with selection techniques based on their kinematic properties and decay topologies. They find A$0\\atop{c}$ = 0.73 ± 0.22(stat) ± 0.10(syst). This value is consistent with that expected in the electroweak standard model of particle interactions.

  8. Uniform strongly interacting soliton gas in the frame of the Nonlinear Schrodinger Equation

    Science.gov (United States)

    Gelash, Andrey; Agafontsev, Dmitry

    2017-04-01

    The statistical properties of many soliton systems play the key role in the fundamental studies of integrable turbulence and extreme sea wave formation. It is well known that separated solitons are stable nonlinear coherent structures moving with constant velocity. After collisions with each other they restore the original shape and only acquire an additional phase shift. However, at the moment of strong nonlinear soliton interaction (i.e. when solitons are located close) the wave field are highly complicated and should be described by the theory of inverse scattering transform (IST), which allows to integrate the KdV equation, the NLSE and many other important nonlinear models. The usual approach of studying the dynamics and statistics of soliton wave field is based on relatively rarefied gas of solitons [1,2] or restricted by only two-soliton interactions [3]. From the other hand, the exceptional role of interacting solitons and similar coherent structures - breathers in the formation of rogue waves statistics was reported in several recent papers [4,5]. In this work we study the NLSE and use the most straightforward and general way to create many soliton initial condition - the exact N-soliton formulas obtained in the theory of the IST [6]. We propose the recursive numerical scheme for Zakharov-Mikhailov variant of the dressing method [7,8] and discuss its stability with respect to increasing the number of solitons. We show that the pivoting, i.e. the finding of an appropriate order for recursive operations, has a significant impact on the numerical accuracy. We use the developed scheme to generate statistical ensembles of 32 strongly interacting solitons, i.e. solve the inverse scattering problem for the high number of discrete eigenvalues. Then we use this ensembles as initial conditions for numerical simulations in the box with periodic boundary conditions and study statics of obtained uniform strongly interacting gas of NLSE solitons. Author thanks the

  9. Modeling a nonperturbative spinor vacuum interacting with a strong gravitational wave

    Energy Technology Data Exchange (ETDEWEB)

    Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science, NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)

    2015-07-15

    We consider the propagation of strong gravitational waves interacting with a nonperturbative vacuum of spinor fields. To described the latter, we suggest an approximate model. The corresponding Einstein equation has the form of the Schroedinger equation. Its gravitational-wave solution is analogous to the solution of the Schroedinger equation for an electron moving in a periodic potential. The general solution for the periodic gravitational waves is found. The analog of the Kronig-Penney model for gravitational waves is considered. It is shown that the suggested gravitational-wave model permits the existence of weak electric charge and current densities concomitant with the gravitational wave. Based on this observation, a possible experimental verification of the model is suggested. (orig.)

  10. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  11. Description of meson strong weak and electromagnetic interactions in quantum chiral theory

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1979-01-01

    The picture of all the principal meson decays of the basic octet has been obtained in the framework of the SU(3)xSU(3) symmetric chiral model of the field theory. An attempt is made to generalize the nonlinear chiral model for the case of charmed hadrons, i.e., a transition from the SU(3)xSU(3) group to the SU(4)xSU(4) group. The authors have succeeded in elucidating unambiguously the role of the Kabibbo angle both in weak and strong interactions (it defines the structure of weak hadron currents and hadron mass splitting in isotopic multiplets). Proceeding from decays of the basic octet mesons it has been shown that the nonlinear chiral SU(3)xSU(3) symmetric theory may be considered as the quantum field theory, which satisfactorily describes the low-energy meson physics in two first orders of the perturbation theory (tree and single-loop approximations)

  12. Particle-Hole Character of the Higgs and Goldstone Modes in Strongly Interacting Lattice Bosons

    Science.gov (United States)

    Di Liberto, M.; Recati, A.; Trivedi, N.; Carusotto, I.; Menotti, C.

    2018-02-01

    We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of the condensate density oscillations. Possible detection protocols are also discussed.

  13. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions.

    Science.gov (United States)

    Lu, L; Song, M; Liu, W; Reyes, A P; Kuhns, P; Lee, H O; Fisher, I R; Mitrović, V F

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2 NaOsO 6 . Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba 2 NaOsO 6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.

  14. Are strong empathizers better mentalizers? Evidence for independence and interaction between the routes of social cognition.

    Science.gov (United States)

    Kanske, Philipp; Böckler, Anne; Trautwein, Fynn-Mathis; Parianen Lesemann, Franca H; Singer, Tania

    2016-09-01

    Although the processes that underlie sharing others' emotions (empathy) and understanding others' mental states (mentalizing, Theory of Mind) have received increasing attention, it is yet unclear how they relate to each other. For instance, are people who strongly empathize with others also more proficient in mentalizing? And (how) do the neural networks supporting empathy and mentalizing interact? Assessing both functions simultaneously in a large sample (N = 178), we show that people's capacities to empathize and mentalize are independent, both on a behavioral and neural level. Thus, strong empathizers are not necessarily proficient mentalizers, arguing against a general capacity of social understanding. Second, we applied dynamic causal modeling to investigate how the neural networks underlying empathy and mentalizing are orchestrated in naturalistic social settings. Results reveal that in highly emotional situations, empathic sharing can inhibit mentalizing-related activity and thereby harm mentalizing performance. Taken together, our findings speak against a unitary construct of social understanding and suggest flexible interplay of distinct social functions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases

    Science.gov (United States)

    Olsen, Ben A.; Luciuk, Chris; Smale, Scott; Böttcher, Florian; Sharum, Haille; Trotzky, Stefan; Enss, Tilman; Thywissen, Joseph H.

    2017-04-01

    Conjectured quantum bounds on transport appear to be respected in many strongly interacting many-body systems. Since transport occurs as a system relaxes to equilibrium, many such bounds can be recast as an upper bound on the local relaxation rate kB T / ℏ . Systems saturating this ``Planckian'' bound lack well defined quasiparticles promoting transport. We measure the transport properties of 2D ultracold Fermi gases of 40K during transverse demagnetization in a magnetic field gradient. Using a phase-coherent spin-echo sequence, we distinguish bare spin diffusion from the Leggett-Rice effect, in which demagnetization is slowed by the precession of spin current around the local magnetization. When the 2D scattering length is tuned near an s-wave Feshbach resonance to be comparable to the inverse Fermi wave vector kF- 1 , we find that the bare transverse spin diffusivity reaches a minimum of 1 . 7(6) ℏ / m . Demagnetization is also reflected in the growth rate of the s-wave contact, observed using time-resolved rf spectroscopy. At unitarity, the contact rises to 0 . 28(3) kF2 per particle, measuring the breaking of scaling symmetry. Our observations support the conjecture that under strong scattering, the local relaxation rate is bounded from above by kB T / ℏ .

  16. New precision era of experiments on strong interaction with strangeness at DAFNE/LNF-INFN

    Directory of Open Access Journals (Sweden)

    Ishiwatari T.

    2014-03-01

    Full Text Available The strong-interaction shifts and widths of kaonic hydrogen, deuterium, 3He, and 4He were measured in the SIDDHARTA experiment. The most precise values of the shift and width of the kaonic hydrogen 1s state were determined to be ϵ1s = −283 ± 36(stat±6(syst eV and Γ1s = 541±89(stat±22(syst eV. The upper limit of the kaonic deuterium Kα yield was found to be ≤ 0.39%. In addition, the shifts and widths of the kaonic 3He and 4He 2p states were determined to be ϵ2p(3He = −2 ± 2(stat ± 4(syst eV and Γ2p(3He = 6 ± 6(stat ± 7(syst eV; ϵ2p(4He = +5 ± 3(stat ± 4(syst eV and Γ2p(4He = 14 ± 8(stat ± 5(syst eV. These values are important for the constraints of the low-energy K¯N$\\bar KN$ interaction in theoretical approaches.

  17. Interaction of a strong stellar wind with a mutiphase interstellar medium

    International Nuclear Information System (INIS)

    Wolff, M.T.

    1986-01-01

    The interaction of a strong stellar wind with the interstellar medium produces a hot, low density cavity surrounded by a swept-up shell of gas. This cavity-plus-shell structure is collectively called an interstellar bubble. In calculations prior to this work, researchers assumed that the interstellar medium surrounding the wind-blowing star was described by a constant density and temperature (i.e., was homogeneous). This dissertation improves on these earlier calculations by assuming that the interstellar medium surrounding the star is inhomogeneous or multiphase. Gas flows are modeled by assuming that the inhomogeneous phases of the interstellar medium (the clouds) and the intercloud gas form two distinct but interacting fluid that can exchange mass momentum and energy with each other. In one set of calculations, it is assumed that thermal conductive evaporation of clouds brought about by the clouds sitting inside a region of hot (T ≅ 10 6 K) gas is the only mass exchange process operation between the clouds and intercloud fluid. It was found that the mass injection from the clouds to the intercloud gas via the process of thermal evaporation can significantly modify the structure of the interstellar bubble from that found in previous studies

  18. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    Science.gov (United States)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals

  19. Advances in the Application of the Similarity Renormalization Group to Strongly Interacting Systems

    Science.gov (United States)

    Wendt, Kyle Andrew

    The Similarity Renormalization Group (SRG) as applied in nuclear physics is a tool to soften and decouple inter-nucleon interactions. The necessity for such a tool is generated by the strong coupling of high- and low-momentum degrees of freedom in modern precision interactions. In recent years the SRG have been used with great success in enhancing few (2-12) nucleon calculations, but there are still many open questions about the nature of the SRG, and how it affects chiral forces. This thesis focuses on three topics within the study of the SRG as it applies to nuclear few-body interactions, with a focus on nuclear forces from chiral effective field theory. The typical SRG applied to nuclear physics is the T̂ rel-SRG, which uses the relative kinetic energy to generate a renormalizing flow. However, this generator explicitly violates criteria that ensure the SRG will decouple the interaction. Previous study of this generator found for a simple model that as the resolution is lowered past the momentum scales associated with a bound state, the T̂rel-SRG enhances coupling near the bound state whereas the classical Wegner generator completely decouples the bound state. In practice, this has not been an issue because the only two-body bound state is very shallow, and therefore well below the SRG softening scales. This study is extended to use leading order chiral effective field theory with large cutoffs to explore this decoupling. This builds in the same low energy physics while including spurious high energy details, including high energy bound states. The evolutions with T̂rel-SRG are compared to the evolution with Wegner's generator. During the decoupling process, the SRG can induce new non-local contributions to the interactions, which inhibits its application using Quantum Monte Carlo (QMC) methods. Separating out the non-local terms is numerically difficult. Instead an approximate separation is applied to T̂ rel-SRG evolved interactions and the nature of the

  20. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  1. Critical Behavior of a Strongly-Interacting 2D Electron System

    Science.gov (United States)

    Sarachik, Myriam P.

    2013-03-01

    Two-dimensional (2D) electron systems that obey Fermi liquid theory at high electron densities are expected to undergo one or more transitions to spatially and/or spin-ordered phases as the density is decreased, ultimately forming a Wigner crystal in the dilute, strongly-interacting limit. Interesting, unexpected behavior is observed with decreasing electron density as the electrons' interactions become increasingly important relative to their kinetic energy: the resistivity undergoes a transition from metallic to insulating temperature dependence; the resistance increases sharply and then saturates abruptly with increasing in-plane magnetic field; a number of experiments indicate that the electrons' effective mass exhibits a substantial increase approaching a finite ``critical'' density. There has been a great deal of debate concerning the underlying physics in these systems, and many have questioned whether the change of the resistivity from metallic to insulating signals a phase transition or a crossover. In this talk, I will report measurements that show that with decreasing density ns, the thermopower S of a low-disorder 2D electron system in silicon exhibits a sharp increase by more than an order of magnitude, tending to a divergence at a finite, disorder-independent density nt, consistent with the critical form (- T / S) ~(ns -nt) x with x = 1 . 0 +/- 0 . 1 (T is the temperature). Unlike the resistivity which may not clearly distinguish between a transition and crossover behavior, the thermopower provides clear evidence that a true phase transition occurs with decreasing density to a new low-density phase. Work supported by DOE Grant DE-FG02-84ER45153, BSF grant 2006375, RFBR, RAS, and the Russian Ministry of Science.

  2. Strongly self-interacting vector dark matter via freeze-in

    Science.gov (United States)

    Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da

    2018-01-01

    We study a vector dark matter (VDM) model in which the dark sector couples to the Standard Model sector via a Higgs portal. If the portal coupling is small enough the VDM can be produced via the freeze-in mechanism. It turns out that the electroweak phase transition have a substantial impact on the prediction of the VDM relic density. We further assume that the dark Higgs boson which gives the VDM mass is so light that it can induce strong VDM self-interactions and solve the small-scale structure problems of the Universe. As illustrated by the latest LUX data, the extreme smallness of the Higgs portal coupling required by the freeze-in mechanism implies that the dark matter direct detection bounds are easily satisfied. However, the model is well constrained by the indirect detections of VDM from BBN, CMB, AMS-02, and diffuse γ/X-rays. Consequently, only when the dark Higgs boson mass is at most of O (keV) does there exist a parameter region which leads to a right amount of VDM relic abundance and an appropriate VDM self-scattering while satisfying all other constraints simultaneously.

  3. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    International Nuclear Information System (INIS)

    Abuki, Hiroaki; Brauner, Tomas

    2008-01-01

    We investigate the 1/N expansion proposed recently as a strategy to include quantum fluctuation effects in the nonrelativistic, attractive Fermi gas at and near unitarity. We extend the previous results by calculating the next-to-leading order corrections to the critical temperature along the whole crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation. We demonstrate explicitly that the extrapolation from the mean-field approximation, based on the 1/N expansion, provides a useful approximation scheme only on the BCS side of the crossover. We then apply the technique to the study of strongly interacting relativistic many-fermion systems. Having in mind the application to color superconductivity in cold dense quark matter, we develop, within a simple model, a formalism suitable to compare the effects of order parameter fluctuations in phases with different pairing patterns. Our main conclusion is that the relative correction to the critical temperature is to a good accuracy proportional to the mean-field ratio of the critical temperature and the chemical potential. As a consequence, it is significant even rather deep in the BCS regime, where phenomenologically interesting values of the quark-quark coupling are expected. Possible impact on the phase diagram of color-superconducting quark matter is discussed.

  4. Three-dimensional RAGE Simulations of Strong Shocks Interacting with Sapphire Balls

    Science.gov (United States)

    Wilde, B. H.; Coker, R. F.; Rosen, P. A.; Foster, J. M.; Hartigan, P.; Carver, R.; Blue, B. E.; Hansen, J. F.

    2007-11-01

    The goal of our 2007-2008 NLUF experiments at the OMEGA laser facility is to investigate the physics associated with the interaction of strong shocks and jets with clumpy media. These experiments have close analogs with structures observed in a variety of astrophysical flows, including jets from young stars, outflows from planetary nebulae, and extragalactic jets. In these experiments, a multi-mega bar shock is created in a plastic layer by heating a hohlraum to 190 eV temperature with 5 kJ of laser energy. The shock enters a 0.3 g/cc RF foam into which are embedded 500 micron diameter sapphire balls. The shock shears off the ball such that it creates thin two-dimensional sheets of sapphire which subsequently break up and undergo the three-dimensional Widnall instability (Widnall, S. E., Bliss, D. B., & Tsai, C. 1974, J. Fluid Mech., 66, 35). The time evolution of the ball/balls is diagnosed with dual-axes point-projection radiography. In this poster, we discuss the results of high-resolution three-dimensional radiation-hydrodynamic simulations with the adaptive-mesh-refinement RAGE code of single and multiple balls. Comparisons with data from our August shots will be made.

  5. Introduction to gauge theories of the strong, weak, and electromagnetic interactions

    International Nuclear Information System (INIS)

    Quigg, C.

    1980-07-01

    The plan of these notes is as follows. Chapter 1 is devoted to a brief evocative review of current beliefs and prejudices that form the context for the discussion to follow. The idea of Gauge Invariance is introduced in Chapter 2, and the connection between conservation laws and symmetries of the Lagrangian is recalled. Non-Abelian gauge field theories are constructed in Chapter 3, by analogy with the familiar case of electromagnetism. The Yang-Mills theory based upon isospin symmetry is constructed explicitly, and the generalization is made to other gauge groups. Chapter 4 is concerned with spontaneous symmetry breaking and the phenomena that occur in the presence or absence of local gauge symmetries. The existence of massless scalar fields (Goldstone particles) and their metamorphosis by means of the Higgs mechanism are illustrated by simple examples. The Weinberg-Salam model is presented in Chapter 5, and a brief resume of applications to experiment is given. Quantum Chromodynamics, the gauge theory of colored quarks and gluons, is developed in Chapter 6. Asymptotic freedom is derived schematically, and a few simple applications of perturbative QCD ae exhibited. Details of the conjectured confinement mechanism are omitted. The strategy of grand unified theories of the strong, weak, and electromagnetic interactions is laid out in Chapter 7. Some properties and consequences of the minimal unifying group SU(5) are presented, and the gauge hierarchy problem is introduced in passing. The final chapter contains an essay on the current outlook: aspirations, unanswered questions, and bold scenarios

  6. Parametric analysis of the thermodynamic properties for a medium with strong interaction between particles

    International Nuclear Information System (INIS)

    Dubovitskii, V.A.; Pavlov, G.A.; Krasnikov, Yu.G.

    1996-01-01

    Thermodynamic analysis of media with strong interparticle (Coulomb) interaction is presented. A method for constructing isotherms is proposed for a medium described by a closed multicomponent thermodynamic model. The method is based on choosing an appropriate nondegenerate frame of reference in the extended space of thermodynamic variables and provides efficient thermodynamic calculations in a wide range of parameters, for an investigation of phase transitions of the first kind, and for determining both the number of phases and coexistence curves. A number of approximate thermodynamic models of hydrogen plasma are discussed. The approximation corresponding to the n5/2 law, in which the effects of particle attraction and repulsion are taken into account qualitatively, is studied. This approximation allows studies of thermodynamic properties of a substance for a wide range of parameters. In this approximation, for hydrogen at a constant temperature, various properties of the degree of ionization are revealed. In addition, the parameters of the second critical point are found under conditions corresponding to the Jovian interior

  7. Theory and phenomenology of strong and weak interaction high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Carruthers, P.; Thews, R.L.

    1988-01-01

    This paper contains progress information on the following topics in High Energy Physics: strong, electromagnetic, and weak interactions; aspects of quark-gluon models for hadronic interactions, decays, and structure; the dynamical generation of a mass gap and the role and truthfulness of perturbation theory; statistical and dynamical aspects of hadronic multiparticle production; and realization of chiral symmetry and temperature effects in supersymmetric theories

  8. A Unified Theory of Interaction: Gravitation, Electrodynamics and the Strong Force

    Directory of Open Access Journals (Sweden)

    Wagener P.

    2009-01-01

    Full Text Available A unified model of gravitation and electromagnetism is extended to derive the Yukawa potential for the strong force. The model satisfies the fundamental characteristics of the strong force and calculates the mass of the pion.

  9. Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Zuolun; Zhang, Shoufeng; Wei, Jinbei; Ye, Kaiqi; Liu, Yu; Marder, Todd B; Wang, Yue

    2017-08-03

    Noncovalent synthesis of one-dimensional (1D) organic nano-/micro-materials with controllable geometric shapes or morphologies and special luminescent and electronic properties is one of the greatest challenges in modern chemistry and material science. Control of noncovalent interactions is fundamental for realizing desired 1D structures and crucial for understanding the functions of these interactions. Here, a series of thiophene-fused phenazines composed of a halogen-substituted π-conjugated plate and a pair of flexible side chains is presented, which displays halogen-dependent 1D self-assemblies. Luminescent 1D twisted wires, straight rods, and zigzag wires, respectively, can be generated in sequence when the halogen atoms are varied from the lightest F to the heaviest I. It was demonstrated that halogen-dependent anisotropic noncovalent interactions and mirror-symmetrical crystallization dominated the 1D-assembly behaviors of this class of molecules. The methodology developed in this study provides a potential strategy for constructing 1D organic materials with unique optoelectronic functions.

  10. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    Science.gov (United States)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  11. Proceedings of the 24. SLAC summer institute on particle physics: The strong interaction, from hadrons to partons

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.; DePorcel, L.; Dixon, L. [eds.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}. Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Experimental, theoretical, and mathematical elements for a possible Lie-admissible generalization of the notion of particle under strong interactions

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1981-01-01

    A primary objective of the research is the achievement of clear experimental knowledge on the intrinsic characteristics of particles (such as magnetic moment, spin, space parity, etc.) under strong interactions. These characteristics, when known, have been measured a number of times, but all times for particles under long range electromagnetic interactions (e.g., for bubble chamber techniques). The same characteristics are then generally assumed to persist under the different physical conditions of the strong interactions, while no direct or otherwise final measurement under strong interactions exists at this time. The advocated physical knowledge is clearly important for controlled fusion, as well as for a serious study of the foundations of strong interactions. The paper initiates the study by considering the following alternatives. A: the electromagnetic characteristics of particles persist in the transition to the strong; or B: variations in these characteristics are physically conceivable, mathematically treatable, and experimentally detectable. The need to conduct additional experiments, and achieve a final resolution of the issue, is stressed throughout the paper. In the hope of contributing toward this future goal, the paper then reviews the quantitative treatment of possible deviations via the Lie-admissible generalization of Lie's theory, with particular reference to the Lie-admissible generalizations of Lie group, Lie algebras, and enveloping associative algebras. A generalized notion of extended particle under nonlocal nonpotential strong interactions emerge from these studies. The theory is applied to the re-elaboration of the data on the spinor symmetry via neutron interferometers. It is shown that the data are indeed consistent with a breaking of the SU(2)-spin symmetry due to nonlocal nonpotential forces. A number of experiments for the future resolution of the issue are indicated

  13. Interaction of the electromagnetic precursor from a relativistic shock with the upstream flow - I. Synchrotron absorption of strong electromagnetic waves

    Science.gov (United States)

    Lyubarsky, Yuri

    2018-02-01

    This paper is the first in the series of papers aiming to study interaction of the electromagnetic precursor waves generated at the front of a relativistic shock with the upstream flow. It is motivated by a simple consideration showing that the absorption of such an electromagnetic precursor could yield an efficient transformation of the kinetic energy of the upstream flow to the energy of accelerated particles. Taking into account that the precursor is a strong wave, in which electrons oscillate with relativistic velocities, the standard plasma-radiation interaction processes should be reconsidered. In this paper, I calculate the synchrotron absorption of strong electromagnetic waves.

  14. The significance of a new correspondence principle for electromagnetic interaction in strong optical field ionisation

    International Nuclear Information System (INIS)

    Boreham, B. W.; Hora, H.

    1997-01-01

    We have recently developed a correspondence principle for electromagnetic interaction. When applied to laser interactions with electrons this correspondence principle identifies a critical laser intensity I*. This critical intensity is a transition intensity separating classical mechanical and quantum mechanical interaction regimes. In this paper we discuss the further application of I* to the interaction of bound electrons in atoms. By comparing I* with the ionisation threshold intensities as calculated from a cycle-averaged simple-atom model we conclude that I* can be usefully interpreted as a lower bound to the classical regime in studies of ionisation of gas atoms by intense laser beams

  15. Uncovering new strong dynamics via topological interactions at the 100 TeV collider

    DEFF Research Database (Denmark)

    Molinaro, Emiliano; Sannino, Francesco; Thomsen, Anders Eller

    2017-01-01

    In models of composite Higgs dynamics, new composite pseudoscalars can interact with the Higgs and electroweak gauge bosons via anomalous interactions, stemming from the topological sector of the underlying theory. We show that a future 100 TeV proton-proton collider (FCC-pp) will be able to test...

  16. Scale-up of Λ3 : Massive gravity with a higher strong interaction scale

    Science.gov (United States)

    Gabadadze, Gregory

    2017-10-01

    Pure massive gravity is strongly coupled at a certain low scale, known as Λ3. I show that the theory can be embedded into another one, with new light degrees of freedom, to increase the strong scale to a significantly larger value. Certain universal aspects of the proposed mechanism are discussed, notably that the coupling of the longitudinal mode to a stress tensor is suppressed, thus making the linear theory consistent with the fifth-force exclusion. An example of the embedding theory studied in detail is five-dimensional anti-de Sitter massive gravity, with a large cosmological constant. In this example, the four-dimensional (4D) strong scale can be increased by 19 orders of magnitude. Holographic duality then suggests that the strong scale of the 4D massive gravity can be increased by coupling it to a 4D nonlocal conformal field theory, endowed with a UV cutoff; however, the five-dimensional classical gravity picture appears to be more tractable.

  17. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    Science.gov (United States)

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Metal-insulator transition in SrIrO3 with strong spin-orbit interaction.

    Science.gov (United States)

    Wu, Fei-Xiang; Zhou, Jian; Zhang, L Y; Chen, Y B; Zhang, Shan-Tao; Gu, Zheng-Bin; Yao, Shu-Hua; Chen, Yan-Feng

    2013-03-27

    The thickness-dependent metal-insulator transition is observed in meta-stable orthorhombic SrIrO3 thin films synthesized by pulsed laser deposition. SrIrO3 films with thicknesses less than 3 nm demonstrate insulating behaviour, whereas those thicker than 4 nm exhibit metallic conductivity at high temperature, and insulating-like behaviour at low temperature. Weak/Anderson localization is mainly responsible for the observed thickness-dependent metal-insulator transition in SrIrO3 films. Temperature-dependent resistance fitting shows that electrical-conductivity carriers are mainly scattered by the electron-boson interaction rather than the electron-electron interaction. Analysis of the magneto-conductance proves that the spin-orbit interaction plays a crucial role in the magneto-conductance property of SrIrO3.

  19. Strongly interacting vector bosons at the CERN LHC Quartic anomalous couplings

    CERN Document Server

    Belyaev, A; González-Garciá, M Concepción; Mizukoshi, J K; Novaes, S F; Zacharov, I E

    1999-01-01

    We analyze the potential of the CERN Large Hadron Collider to study anomalous quartic vector--boson interactions through the production of vector--boson pairs accompanied by jets. In the framework of $SU(2)_L \\otimes U(1)_Y$ chiral Lagrangians, we examine all effective operators of order $p^4$ that lead to new four--gauge--boson interactions but do not alter trilinear vertices. In our analyses, we perform the full tree level calculation of the processes leading to two jets plus vector--boson pairs, $W^+W^-$, $W^\\pm W^\\pm$, $W^\\pm Z$, or $ZZ$, taking properly into account the interference between the standard model and the anomalous contributions. We obtain the bounds that can be placed on the anomalous quartic interactions and we study the strategies to distinguish the possible new couplings.

  20. A model-independent description of few-body system with strong interaction

    International Nuclear Information System (INIS)

    Simenog, I.V.

    1985-01-01

    In this contribution, the authors discuss the formulation of equations that provide model-independent description of systems of three and more nucleons irrespective of the details of the interaction, substantiate the approach, estimate the correction terms with respect to the force range, and give basic qualitative results obtained by means of the model-independent procedure. They consider three nucleons in the doublet state (spin S=I/2) taking into account only S-interaction. The elastic nd-scattering amplitude may be found from the model-independent equations that follow from the Faddeev equations in the short-range-force limit. They note that the solutions of several model-independent equations and basic results obtained with the use of this approach may serve both as a standard solution and starting point in the discussion of various conceptions concerning the details of nuclear interactions

  1. The strong interaction at the collider and cosmic-rays frontiers

    CERN Document Server

    d'Enterria, David; Pierog, Tanguy; Ostapchenko, Sergey; Werner, Klaus

    2012-01-01

    First data on inclusive particle production measured in proton-proton collisions at the Large Hadron Collider (LHC) are compared to predictions of various hadron-interaction Monte Carlos (QGSJET, EPOS and SIBYLL) used commonly in high-energy cosmic-ray physics. While reasonable overall agreement is found for some of the models, none of them reproduces consistently the sqrt(s) evolution of all the measured observables. We discuss the implications of the new LHC data for the modeling of the non-perturbative and semihard parton dynamics in hadron-hadron and cosmic-rays interactions at the highest energies studied today.

  2. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes

    Science.gov (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Jin, Xueshen; Liu, Zhihui; Paradisopoulou, Parthena; He, Zhang

    2013-10-01

    Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M ⩾ 5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.

  3. Spectral asymptotics of a strong delta ' interaction on a planar loop

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Jex, M.

    2013-01-01

    Roč. 46, č. 34 (2013), s. 345201 ISSN 1751-8113 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrodinger operators * strong coupling asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.687, year: 2013 http://iopscience.iop.org/1751-8121/46/34/345201/pdf/1751-8121_46_34_345201.pdf

  4. Noncovalent functionalization of single-walled carbon nanotubes.

    Science.gov (United States)

    Zhao, Yan-Li; Stoddart, J Fraser

    2009-08-18

    Single-walled carbon nanotubes (SWNTs) have attracted much attention on account of their potential to be transformed into new materials that can be employed to address a wide range of applications. The insolubility of the SWNTs in most solvents and the difficulties of handling these highly intractable carbon nanostructures, however, are restricting their real-life applications at the present time. To improve upon the properties of the SWNTs, low-cost and industrially feasible approaches to their modifications are constantly being sought by chemists and materials scientists. Together, they have shown that noncovalent functionalization of the SWNTs can do much to preserve the desired properties of the SWNTs while remarkably improving their solubilities. This Account describes recent advances in the design, synthesis, and characterization of SWNT hybrids and evaluates applications of these new hybrid materials based on noncovalently functionalized SWNTs. Their solubilization enables the characterization of these hybrids as well as the investigation of the properties of the SWNTs using solution-based techniques. Cognizant of the structural properties of the functional molecules on the SWNTs, we present some of the recent work carried out by ourselves and others under the umbrella of the following three subtopics: (i) aromatic small-molecule-based noncovalent functionalization, (ii) biomacromolecule-based noncovalent functionalization, and (iii) polymer-based noncovalent functionalization. Several examples for the applications of noncovalently functionalized SWNT hybrids in the fabrication of field-effect transistor (FET) devices, chemical sensors, molecular switch tunnel junctions (MSTJs), and photovoltaic devices are highlighted and discussed. The blossoming of new methods for the noncovalent functionalization of the SWNTs promises a new generation of SWNT hybrid-based integrated multifunctional sensors and devices, an outcome which is essential for the development of

  5. Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae)

    Science.gov (United States)

    Maria J. Lombardero; Matthew P. Ayres; Richard W. Hofstetter; John C. Moser; Kier D. Lepzig

    2003-01-01

    Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which auacks and kills pine trees in North America. Tarsonemus mites...

  6. Numerical investigation into strong axis bending shear interaction in rolled I-shaped steel sections

    NARCIS (Netherlands)

    Dekker, R.W.A.; Snijder, B.H.; Maljaars, J.

    2016-01-01

    Clause 6.2.8 of EN 1993-1-1 covers the design rules on bending-shear resistance, taking presence of shear into account by a reduced yield stress for the shear area. Numerical research on bending-shear interaction by means of the Abaqus Finite Element modelling soft-ware is presented. The numerical

  7. When polarons meet polaritons: Exciton-vibration interactions in organic molecules strongly coupled to confined light fields

    Science.gov (United States)

    Wu, Ning; Feist, Johannes; Garcia-Vidal, Francisco J.

    2016-11-01

    We present a microscopic semianalytical theory for the description of organic molecules interacting strongly with a cavity mode. Exciton-vibration coupling within the molecule and exciton-cavity interaction are treated on an equal footing by employing a temperature-dependent variational approach. The interplay between strong exciton-vibration coupling and strong exciton-cavity coupling gives rise to a hybrid ground state, which we refer to as the lower polaron polariton. Explicit expressions for the ground-state wave function, the zero-temperature quasiparticle weight of the lower polaron polariton, the photoluminescence line strength, and the mean number of vibrational quanta are obtained in terms of the optimal variational parameters. The dependence of these quantities upon the exciton-cavity coupling strength reveals that strong cavity coupling leads to an enhanced vibrational dressing of the cavity mode, and at the same time a vibrational decoupling of the dark excitons, which in turn results in a lower polaron polariton resembling a single-mode dressed bare lower polariton in the strong-coupling regime. Thermal effects on several observables are briefly discussed.

  8. Studies on the independence of the strong interactions on the flavor quantum numbers with bottom, charm, strange, and light quarks

    International Nuclear Information System (INIS)

    Biebel, O.

    1993-11-01

    A study of possible flavour dependence of the strong interaction is presented using data collected with the OPAL detector at the e + e - collider LEP. Four subsamples of events, highly enriched in bottom, charm, strange and light quarks are obtained from high momentum electrons and muons, D *± mesons, K s 0 mesons, and highly energetic stable charged particles, respectively. From the jet production rates of each of these four samples a strong coupling constant α s f for the dominant quark flavour is derived. The ratios of α s for a specific quark flavour f and its complementary flavours are determined to be α s b /α s udsc =1.017±0.036, α s c /α s udsb =0.918±0.115, α s s /α s udcb =1.158±0.164, α s uds /α s cb =1.038 ± 0.221, where the errors are combinations of statistical and systematic uncertainties. In combining the relevant data samples, a systematic study of possible dependence of the strong interaction on quark mass, weak isospin, and generation is performed. No evidence for any such dependence of the strong coupling constant α s is observed. Finally all samples are combined to determine the strong coupling constant of each flavour individually. Again the results are well consistent with the flavour independence of QCD. (orig.)

  9. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure-affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids.

    Science.gov (United States)

    Cao, Hui; Jia, Xueping; Shi, Jian; Xiao, Jianbo; Chen, Xiaoqing

    2016-07-01

    Dietary stilbenoids are associated with many benefits for human health, which depend on their bioavailability and bioaccessibility. The stilbenoid-human serum albumin (HSA) interactions are investigated to explore the structure-affinity relationship and influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. The structure-affinity relationship of the stilbenoids-HSA interaction was found as: (1) the methoxylation enhanced the affinity, (2) an additional hydroxyl group increases the affinity and (3) the glycosylation significantly weakened the affinity. HSA obviously masked the free radical scavenging potential of stilbenoids. The stabilities of stilbenoids in different medium were determined as: HSA solution>human plasma>Dulbecco's modified Eagle's medium. It appears that the milk enhanced the cell uptake of stilbenoids with multi-hydroxyl groups and weakened the cell uptake of stilbenoids with methoxyl group on EA.hy 926 endothelial cells. The stilbenoids are hardly absorbed by human umbilical vein endothelial cells in the presence of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Strong electron-phonon interaction in the high-Tc superconductors: Evidence from the infrared

    International Nuclear Information System (INIS)

    Timusk, T.; Porter, C.D.; Tanner, D.B.

    1991-01-01

    We show that low-frequency structure in the infrared reflectance of the high-temperature superconductor YBa 2 Cu 3 O 7 results from the electron-phonon interaction. Characteristic antiresonant line shapes are seen in the phonon region of the spectrum and the frequency-dependent scattering rate of the mid-infrared electronic continuum has peaks at 150 cm -1 (19 meV) and at 360 cm -1 (45 meV) in good agreement with phonon density-of-states peaks in neutron time-of-flight spectra that develop in superconducting samples. The interaction between the phonons and the charge carriers can be understood in terms of a charged-phonon model

  11. Application of the CIP Method to Strongly Nonlinear Wave-Body Interaction Problems

    OpenAIRE

    Zhu, Xinying

    2006-01-01

    Water entry and exit, green water on deck, sloshing in tanks and capsizing in intact and damaged conditions are examples on violent fluid motion. The combination of model tests, theoretical analysis and Computational Fluid Dynamics (CFD) methods is emphasized in treating these problems. Because mixing of air and liquid may occur, the interaction between the flow in the air and in the liquid ought to be considered in numerical simulations. Further, the mixing of air and liquid represents a sca...

  12. On the starting process of strongly nonlinear vortex/Rayleigh-wave interactions

    OpenAIRE

    BROWN, P. G.; BROWN, S. N.; SMITH, F. T.; TIMOSHIN, S. N.

    1993-01-01

    An oncoming two-dimensional laminar boundary layer that develops an unstable inflection point and becomes three-dimensional is described by the Hall-Smith (1991) vortex/wave interaction equations. These equations are now examined in the neighbourhood of the position where the critical surface starts to form. A consistent structure is established in which an inviscid core flow is matched to a viscous buffer-layer solution where the appropriate jump condition on the transverse shear stress is s...

  13. Second sound in a two-dimensional Bose gas: From the weakly to the strongly interacting regime

    Science.gov (United States)

    Ota, Miki; Stringari, Sandro

    2018-03-01

    Using Landau's theory of two-fluid hydrodynamics, we investigate first and second sounds propagating in a two-dimensional (2D) Bose gas. We study the temperature and interaction dependence of both sound modes and show that their behavior exhibits a deep qualitative change as the gas evolves from the weakly interacting to the strongly interacting regime. Special emphasis is placed on the jump of both sounds at the Berezinskii-Kosterlitz-Thouless transition, caused by the discontinuity of the superfluid density. We find that the excitation of second sound through a density perturbation becomes weaker and weaker as the interaction strength increases as a consequence of the decrease in the thermal expansion coefficient. Our results could be relevant for future experiments on the propagation of sound on the Bose-Einstein condensate (BEC) side of the BCS-BEC crossover of a 2D superfluid Fermi gas.

  14. Renormalization-Group Transformations Under Strong Mixing Conditions: Gibbsianness and Convergence of Renormalized Interactions

    Science.gov (United States)

    Bertini, Lorenzo; Cirillo, Emilio N. M.; Olivieri, Enzo

    1999-12-01

    In this paper we study a renormalization-group map: the block averaging transformation applied to Gibbs measures relative to a class of finite-range lattice gases, when suitable strong mixing conditions are satisfied. Using a block decimation procedure, cluster expansion, and detailed comparison between statistical ensembles, we are able to prove Gibbsianness and convergence to a trivial (i.e., Gaussian and product) fixed point. Our results apply to the 2D standard Ising model at any temperature above the critical one and arbitrary magnetic field.

  15. CLEO-c and CESR-c: A new frontier in strong and weak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, Stephen J

    2003-06-01

    We report on the physics potential of a charm and QCD factory, based on a proposal for the conversion of the existing CESR machine and CLEO detector: ''CESR-c and OLEO-c''. Such a facility will make major contributions to the field of quark flavor physics in this decade. It may also provide the best chance for understanding non-perturbative QCD, which is essential to understanding the strongly-coupled sectors of the new physics that lies beyond the Standard Model.

  16. CLEO-c and CESR-c: A new frontier in strong and weak interactions

    Science.gov (United States)

    Richichi, Stephen J.

    2003-06-01

    We report on the physics potential of a charm and QCD factory, based on a proposal for the conversion of the existing CESR machine and CLEO detector: "CESR-c and OLEO-c". Such a facility will make major contributions to the field of quark flavor physics in this decade. It may also provide the best chance for understanding non-perturbative QCD, which is essential to understanding the strongly-coupled sectors of the new physics that lies beyond the Standard Model.

  17. CLEO-c and CESR-c: A new frontier in strong and weak interactions

    International Nuclear Information System (INIS)

    Richichi, Stephen J.

    2003-01-01

    We report on the physics potential of a charm and QCD factory, based on a proposal for the conversion of the existing CESR machine and CLEO detector: ''CESR-c and OLEO-c''. Such a facility will make major contributions to the field of quark flavor physics in this decade. It may also provide the best chance for understanding non-perturbative QCD, which is essential to understanding the strongly-coupled sectors of the new physics that lies beyond the Standard Model

  18. Final Report - Composite Fermion Approach to Strongly Interacting Quasi Two Dimensional Electron Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John

    2009-11-30

    Work related to this project introduced the idea of an effective monopole strength Q* that acted as the effective angular momentum of the lowest shell of composite Fermions (CF). This allowed us to predict the angular momentum of the lowest band of energy states for any value of the applied magnetic field simply by determining N{sub QP} the number of quasielectrons (QE) or quasiholes (QH) in a partially filled CF shell and adding angular momenta of the N{sub QP} Fermions excitations. The approach reported treated the filled CF level as a vacuum state which could support QE and QH excitations. Numerical diagonalization of small systems allowed us to determine the angular momenta, the energy, and the pair interaction energies of these elementary excitations. The spectra of low energy states could then be evaluated in a Fermi liquid-like picture, treating the much smaller number of quasiparticles and their interactions instead of the larger system of N electrons with Coulomb interactions.

  19. Strong electromagnetic pulses generated in high-intensity laser-matter interactions

    Science.gov (United States)

    Rączka, P.; Dubois, J.-L.; Hulin, S.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.

    2018-01-01

    Results are reported of an experiment performed at the Eclipse laser facility in CELIA, Bordeaux, on the generation of strong electromagnetic pulses. Measurements were performed of the target neutralization current, the total target charge and the tangential component of the magnetic field for the laser energies ranging from 45 mJ to 92 mJ with the pulse duration approximately 40 fs, and for the pulse durations ranging from 39 fs to 1000 fs, with the laser energy approximately 90 mJ. It was found that the values obtained for thick (mm scale) Cu targets are visibly higher than values reported in previous experiments, which is argued to be a manifestation of a strong dependence of the target electric polarization process on the laser contrast and hence on the amount of preplasma. It was also found that values obtained for thin (μm scale) Al foils were visibly higher than values for thick Cu targets, especially for pulse durations longer than 100 fs. The correlations between the total target charge versus the maximum value of the target neutralization current, and the maximum value of the tangential component of the magnetic field versus the total target charge were analysed. They were found to be in very good agreement with correlations seen in data from previous experiments, which provides a good consistency check on our experimental procedures.

  20. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    Science.gov (United States)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  1. Relaxation of strongly coupled Coulomb systems after rapid changes of the interaction potential

    CERN Document Server

    Gericke, D O; Semkat, D; Bonitz, M; Kremp, D

    2003-01-01

    The relaxation of charged particle systems after sudden changes of the pair interaction strength is investigated. As examples, we show the results for plasmas after ionization and after a rapid change of screening. Comparisons are made between molecular dynamics simulation and a kinetic description based on the Kadanoff-Baym equations. We found the latter very sensitive to the way the scattering cross section is treated. We also predict the new equilibrium state requiring only conservation of energy. In this case, the correlation energy is computed using the hypernetted chain approximation.

  2. Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Michael D.; Baer, Marcel D.; Mundy, Christopher J.

    2016-03-10

    The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids using a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges

  3. Stability condition of a strongly interacting boson-fermion mixture across an interspecies Feshbach resonance

    International Nuclear Information System (INIS)

    Yu Zengqiang; Zhai Hui; Zhang Shizhong

    2011-01-01

    We study the properties of dilute bosons immersed in a single-component Fermi sea across a broad boson-fermion Feshbach resonance. The stability of the mixture requires that the bare interaction between bosons exceeds a critical value, which is a universal function of the boson-fermion scattering length, and exhibits a maximum in the unitary region. We calculate the quantum depletion, momentum distribution, and the boson contact parameter across the resonance. The transition from condensate to molecular Fermi gas is also discussed.

  4. Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)

    2016-04-28

    We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.

  5. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Li, Yuchen; Hu, Han; Jiang, Lei; Cheng, Qunfeng

    2015-10-27

    Graphene is the strongest and stiffest material, leading to the development of promising applications in many fields. However, the assembly of graphene nanosheets into macrosized nanocomposites for practical applications remains a challenge. Nacre in its natural form sets the "gold standard" for toughness and strength, which serves as a guide to the assembly of graphene nanosheets into high-performance nanocomposites. Here we show the strong, tough, conductive artificial nacre based on graphene oxide through synergistic interactions of hydrogen and covalent bonding. Tensile strength and toughness was 4 and 10 times higher, respectively, than that of natural nacre. The exceptional integrated strong and tough artificial nacre has promising applications in aerospace, artificial muscle, and tissue engineering, especially for flexible supercapacitor electrodes due to its high electrical conductivity. The use of synergistic interactions is a strategy for the development of high-performance nanocomposites.

  6. Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.

  7. Equilibration of a strongly interacting plasma: holographic analysis of local and nonlocal probes

    Directory of Open Access Journals (Sweden)

    Bellantuono Loredana

    2016-01-01

    Full Text Available The relaxation of a strongly coupled plasma towards the hydrodynamic regime is studied by analyzing the evolution of local and nonlocal observables in the holographic approach. The system is driven in an initial anisotropic and far-from equilibrium state through an impulsive time-dependent deformation (quench of the boundary spacetime geometry. Effective temperature and entropy density are related to the position and area of a black hole horizon, which has formed as a consequence of the distortion. The behavior of stress-energy tensor, equal-time correlation functions and Wilson loops of different shapes is examined, and a hierarchy among their thermalization times emerges: probes involving shorter length scales thermalize faster.

  8. Nonlinear interaction of charged particles with strong laser pulses in a gaseous media

    Directory of Open Access Journals (Sweden)

    H. K. Avetissian

    2007-07-01

    Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.

  9. Strongly coupled interaction between a ridge of fluid and an inviscid airflow

    KAUST Repository

    Paterson, C.

    2015-07-01

    © 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.

  10. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials

    Science.gov (United States)

    Xiao, Shuyuan; Wang, Tao; Jiang, Xiaoyun; Yan, Xicheng; Cheng, Le; Wang, Boyun; Xu, Chen

    2017-05-01

    Graphene has emerged as a promising building block in modern optics and optoelectronics due to its novel optical and electrical properties. In the mid-infrared and terahertz (THz) regime, graphene behaves like metals and supports surface plasmon resonances (SPRs). Moreover, the continuously tunable conductivity of graphene enables active SPRs and gives rise to a range of active applications. However, the interaction between graphene and metal-based resonant metamaterials has not been fully understood. In this work, a simulation investigation on the interaction between the graphene layer and THz resonances supported by the two-gap split ring metamaterials is systematically conducted. The simulation results show that the graphene layer can substantially reduce the Fano resonance and even switch it off, while leaving the dipole resonance nearly unaffected, which is well explained with the high conductivity of graphene. With the manipulation of graphene conductivity via altering its Fermi energy or layer number, the amplitude of the Fano resonance can be modulated. The tunable Fano resonance here together with the underlying physical mechanism can be strategically important in designing active metal-graphene hybrid metamaterials. In addition, the ‘sensitivity’ to the graphene layer of the Fano resonance is also highly appreciated in the field of ultrasensitive sensing, where the novel physical mechanism can be employed in sensing other graphene-like two-dimensional materials or biomolecules with the high conductivity.

  11. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  12. Strong electromagnetic pulses generated in laser-matter interactions with 10TW-class fs laser

    Science.gov (United States)

    Rączka, Piotr; Rosiński, Marcin; Zaraś-Szydłowska, Agnieszka; Wołowski, Jerzy; Badziak, Jan

    2018-01-01

    The results of an experiment on the generation of electromagnetic pulses (EMP) in the interaction of 10TW fs pulses with thick (mm scale) and thin foil (μm scale) targets are described. Such pulses, with frequencies in the GHz range, may pose a threat to safe and reliable operation of high-power, high-intensity laser facilities. The main point of the experiment is to investigate the fine temporal structure of such pulses using an oscilloscope capable of measurements at very high sampling rate. It is found that the amazing reproducibility of such pulses is confirmed at this high sampling rate. Furthermore, the differences between the EMP signals generated from thick and thin foil targets are clearly seen, which indicates that besides electric polarization of the target and the target neutralization current there may be other factors essential for the EMP emission.

  13. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    Science.gov (United States)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  14. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions

    DEFF Research Database (Denmark)

    Jochumsen, Nicholas; Marvig, Rasmus Lykke; Pedersen, Søren Damkiær

    2016-01-01

    Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequen......Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole......-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five...... independent loci that synergistically create the phenotype. Strong intergenic epistasis limits the number of possible evolutionary pathways to resistance. Mutations in transcriptional regulators are essential for resistance evolution and function as nodes that potentiate further evolution towards higher...

  15. Voltage-Controlled Switching of Strong Light-Matter Interactions using Liquid Crystals.

    Science.gov (United States)

    Hertzog, Manuel; Rudquist, Per; Hutchison, James A; George, Jino; Ebbesen, Thomas W; Börjesson, Karl

    2017-12-22

    We experimentally demonstrate a fine control over the coupling strength of vibrational light-matter hybrid states by controlling the orientation of a nematic liquid crystal. Through an external voltage, the liquid crystal is seamlessly switched between two orthogonal directions. Using these features, for the first time, we demonstrate electrical switching and increased Rabi splitting through transition dipole moment alignment. The C-N str vibration on the liquid crystal molecule is coupled to a cavity mode, and FT-IR is used to probe the formed vibropolaritonic states. A switching ratio of the Rabi splitting of 1.78 is demonstrated between the parallel and the perpendicular orientation. Furthermore, the orientational order increases the Rabi splitting by 41 % as compared to an isotropic liquid. Finally, by examining the influence of molecular alignment on the Rabi splitting, the scalar product used in theoretical modeling between light and matter in the strong coupling regime is verified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inelastic strong interactions at high energies. Annual progress report, June 1, 1979-May 1, 1980

    International Nuclear Information System (INIS)

    Suranyi, P.

    1980-02-01

    Investigations in the area of Grand Unified Field Theories were begun. Various ways of breaking the SU(5) symmetric theory of Georgi and Glashow were studied. As usual, an approx. 24 of Higgs breaks the symmetry from SU(5) to SU(3)/sub c/xSU(2)xU(1). It was found that an approx. 45 of Higgs is acceptable for breaking the symmetry from SU(3)/sub c/xSU(2)xU(1) to SU(3)/sub c/xU(1)/sub em/. In addition phenomenologically correct quark-lepton mass ratios are obtained by use of renormalization-group techniques if there are 6 generations of particles in the theory. Efforts directed at the development of approximate methods for extracting information from quantum field theories were continued. The quantum mechanics of polynomial potentials as a model for quantum field theories was investigated. A perturbation expansion for the energy levels and wave functions was constructed and has been proven to be convergent for arbitrary values of the coupling constants, in contrast to ordinary perturbation expansions that have a zero radius of convergence. The physical significance of the new perturbation expansions was explored both in the weak and strong coupling limits

  17. Strong-coupling superconductivity in the two-dimensional t-J model supplemented by a hole-phonon interaction

    International Nuclear Information System (INIS)

    Sherman, A.; Schreiber, M.

    1995-01-01

    We use the Eliashberg formalism for calculating T c in a model of cuprate perovskites with pairing mediated by both magnons and apex-oxygen vibrations. The influence of strong correlations on the energy spectrum is taken into account in the spin-wave approximation. It is shown that the hole-magnon interaction alone cannot yield high T c . But together with a moderate hole-phonon interaction it does lead to d-wave superconductivity at temperatures and hole concentrations observed in cuprates. High T c are connected with a large density of states due to extended Van Hove singularities, a conformity of the two interactions for the d symmetry, and high phonon frequencies

  18. Flutter-by Interactive Butterfly Using interactivity to excite and educate children about butterflies and the National Museum of Play at The Strong's Dancing Wings Butterfly Garden

    Science.gov (United States)

    Powers, Lydia

    The National Museum of Play at The Strong's Dancing Wings Butterfly Garden is a tropical rainforest that allows visitors to step into the world of butterflies, but lacks a more comprehensive educational element to teach visitors additional information about butterflies. Flutter-by Interactive Butterfly is a thesis project designed to enhance younger visitors' experience of the Dancing Wings Butterfly Garden with an interactive educational application that aligns with The Strong's mission of encouraging learning, creativity, and discovery. This was accomplished through a series of fun and educational games and animations, designed for use as a kiosk outside the garden and as a part of The Strong's website. Content, planning, and organization of this project has been completed through research and observation of the garden in the following areas: its visitors, butterflies, best usability practices for children, and game elements that educate and engage children. Flutter-by Interactive Butterfly teaches users about the butterfly's life cycle, anatomy, and characteristics as well as their life in the Dancing Wings Butterfly Garden. Through the use of the design programs Adobe Illustrator, Flash, and After Effects; the programming language ActionScript3.0; a child-friendly user interface and design; audio elements and user takeaways, Flutter-by Interactive Butterfly appeals to children of all ages, interests, and learning styles. The project can be viewed at lydiapowers.com/Thesis/FlutterByButterfly.html

  19. Some issues linked to the description of systems in strong interaction

    International Nuclear Information System (INIS)

    Theussl, L.

    2001-06-01

    In the first part of this work we have dealt with some issues that are relevant in the area of nucleonic resonances within different constituent quark models. In this context we have concentrated on the theoretical description of Pi and Nu decays for N and Delta resonances. The results obtained point to the necessity of a more microscopic description of the dynamics which is at the same time responsible for the binding of quarks inside baryons and the decay of the latter ones. In the second part we have contributed to the study of crossed two-boson exchanges in the Bethe-Salpeter equation as well as to the investigation of different three-dimensional approaches that follow from the Bethe-Salpeter equation in a certain non-relativistic reduction scheme. These one include in particular an equation whose interaction depends on the total energy of the system. It was shown that such an equation is able to account for a certain number of properties of Bethe-Salpeter equation, in particular, that there also arise abnormal solutions in such an approach. (author)

  20. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    International Nuclear Information System (INIS)

    Assali, Mohyeddin; Leal, Manuel Pernía; Khiar, Noureddine; Fernández, Inmaculada

    2013-01-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar–supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane. (paper)

  1. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    Science.gov (United States)

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  2. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Directory of Open Access Journals (Sweden)

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  3. Perturbative Analysis of the Influence of Strong Interaction on the Relations between A$_{2\\pi}$ Creation Probabilities in ns-States

    CERN Document Server

    Voskresenskaya, O O

    2002-01-01

    It is shown that the relations between probabilities of A_{2\\pi}-atoms creation in ns-states, derived with neglecting of strong interaction between pions, hold practically unchanged if the strong interaction is taken into account in the first order of perturbation theory. The formulation of Deser equation for the energy levels shift of the hadronic atoms (HA) is given in terms of effective range of strong interaction and relative correction to the coulombic wave function of HA at origin, caused by strong interaction.

  4. Cirhin up-regulates a canonical NF-{kappa}B element through strong interaction with Cirip/HIVEP1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bin; Mitchell, Grant A. [Genetique Medicale, Centre de Recherche CHU Sainte-Justine, Departement de Pediatrie, Universite de Montreal, Montreal, QC (Canada); Richter, Andrea, E-mail: andrea.richter@umontreal.ca [Genetique Medicale, Centre de Recherche CHU Sainte-Justine, Departement de Pediatrie, Universite de Montreal, Montreal, QC (Canada)

    2009-11-01

    North American Indian childhood cirrhosis (NAIC/CIRH1A) is a severe autosomal recessive intrahepatic cholestasis. All NAIC patients have a homozygous mutation in CIRH1A that changes conserved Arg565 to Trp (R565W) in Cirhin, a nucleolar protein of unknown function. Subcellular localization is unaffected by the mutation. Yeast two-hybrid screening identified Cirip (Cirhin interaction protein) and found that interaction between Cirip and R565W-Cirhin was weakened. Co-immunoprecipitation of the two proteins from nuclear extracts of HeLa cells strongly supports the yeast two hybrid results. Cirip has essentially the same sequence as the C-terminal of HIVEP1, a regulator of a canonical NF-{kappa}B sequence. Since Cirip has the zinc fingers required for this interaction, we developed an in vitro assay based on this element in mammalian cells to demonstrate functional Cirhin-Cirip interaction. The strong positive effect of Cirip on the NF-{kappa}B sequence was further increased by both Cirhin and R565W-Cirhin. Importantly, the effect of R565W-Cirhin was weaker than that of the wild type protein. We observed increased levels of Cirhin-Cirip complex in nuclear extracts in the presence of this NF-{kappa}B sequence. Our hypothesis is that Cirhin is a transcriptional regulatory factor of this NF-{kappa}B sequence and could be a participant in the regulation of other genes with NF-{kappa}B responsive elements. Since the activities of genes regulated through NF-{kappa}B responsive elements are especially important during development, this interaction may be a key to explain the perinatal appearance of NAIC.

  5. Roles of the quadrupole interaction and of the quadratic stark effect in spectral lines from plasmas interacting with a strong quasimonochromatic electric field

    Czech Academy of Sciences Publication Activity Database

    Sauvan, P.; Dalimier, E.; Riconda, C.; Oks, E.; Renner, Oldřich; Weber, S.

    2010-01-01

    Roč. 1, č. 2 (2010), s. 123-128 ISSN 2229-3159 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-plasma interaction * PIC plasma model ing * strong quasimonochromatic electric fields * x-ray line broadening * stark effect * floquet theory Subject RIV: BH - Optics, Masers, Lasers http://www.auburn.edu/academic/cosam/departments/physics/iramp/1_2/sauvan_et_al.pdf

  6. Osteoclast formation is strongly reduced both in vivo and in vitro in the absence of CD47/SIRPα-interaction

    International Nuclear Information System (INIS)

    Lundberg, Pernilla; Koskinen, Cecilia; Baldock, Paul A.; Loethgren, Hanna; Stenberg, Asa; Lerner, Ulf H.; Oldenborg, Per-Arne

    2007-01-01

    Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPα) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPα-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPα strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP) + osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47 -/- mice were strongly reduced, and bones of CD47 -/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPα interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47 -/- mice

  7. Effect of citric acid on noncovalent interactions in biopolymer jellies

    Directory of Open Access Journals (Sweden)

    Kuanyzhbek Musabekov

    2015-09-01

    Full Text Available The effect of citric acid on the formation of gels based on gelatine, melon pulp and sugar has been studied. It is found that the structuring of gelatin the presence of melon pulp is due to hydrogen bonds between the amino acids of gelatin and pectin melon by hydrogen bonds. It is shown that the structuring of gelatin and gelatin – melon pulp depends on the concentration of sugar. The addition of acid in the pectin-gelatin composition reduces the pH, the solubility of pectin and accelerates the formation of jelly. This is due to the fact that in the presence of citric acid reduced the degree of dissociation of galacturonic acid. The intensity of the effect of citric acid on the structure in the presence of melon pulp could be explained by the formation of hydrogen bonds between pectin and citric acid.

  8. Quantum Monte Carlo Methods Describe Noncovalent Interactions with Subchemical Accuracy

    Czech Academy of Sciences Publication Activity Database

    Dubecký, M.; Jurečka, P.; Derian, R.; Hobza, Pavel; Otyepka, M.; Mitas, L.

    2013-01-01

    Roč. 9, č. 10 (2013), s. 4287-4292 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ.1.05/2.1.00/03.0058; Operational Program Education for Competitiveness(XE) CZ.1.07/2.3.00/30.0004; Operational Program Education for Competitiveness(XE) CZ.1.07/2.3.00/20.0058 Institutional support: RVO:61388963 Keywords : Gaussian-basis sets * wave-functions * electronic-structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  9. Noncovalent Interactions: a Challenge for Experiment and Theory

    Czech Academy of Sciences Publication Activity Database

    Müller-Dethlefs, K.; Hobza, Pavel

    2000-01-01

    Roč. 100, č. 1 (2000), s. 143-167 ISSN 0009-2665 R&D Projects: GA ČR GA203/98/1166; GA AV ČR IAA4040903 Institutional research plan: CEZ:AV0Z4040901; CEZ:A54/98:Z4-040-9-ii Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 21.244, year: 1999

  10. Covalent and non-covalent functionalization and solubilization of ...

    Indian Academy of Sciences (India)

    Non-covalent functionalization of DWNTs has been carried out by using polyethylene glycol (PEG) and polyoxyethylene(40)nonylphenyl ether (IGPAL), both of which enable solubilization in aqueous media. These functionalized DWNTs have been characterized by transmission electron microscopy, IR and Raman ...

  11. Covalent and non-covalent functionalization and solubilization of ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Double-walled carbon nanotubes (DWNTs) have been functionalized by both covalent and non-covalent means. Covalent functionalization has been carried out by attaching an aliphatic amide function to DWNTs which enable solubilization in non-polar solvents. Solubilization in non-polar sol- vents has also been ...

  12. Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment.

    Science.gov (United States)

    Davis, Jonathan H

    2017-11-24

    Using data from the ν-cleus detector, based on the surface of Earth, we place constraints on dark matter in the form of strongly interacting massive particles (SIMPs) which interact with nucleons via nuclear-scale cross sections. For large SIMP-nucleon cross sections, the sensitivity of traditional direct dark matter searches using underground experiments is limited by the energy loss experienced by SIMPs, due to scattering with the rock overburden and experimental shielding on their way to the detector apparatus. Hence, a surface-based experiment is ideal for a SIMP search, despite the much larger background resulting from the lack of shielding. We show using data from a recent surface run of a low-threshold cryogenic detector that values of the SIMP-nucleon cross section up to approximately 10^{-27}  cm^{2} can be excluded for SIMPs with masses above 100 MeV.

  13. Strong interactions - quark models

    International Nuclear Information System (INIS)

    Goto, M.; Ferreira, P.L.

    1979-01-01

    The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt

  14. Strong quadrupole interaction in electron paramagnetic resonance. Study of the indium hexacyanide (III) in KCl irradiated with electrons

    International Nuclear Information System (INIS)

    Vugman, N.V.

    1973-08-01

    The radiation effects in ]Ir III (CN) 6 ] 3- diamagnetic complexe inserted in the KCl lattice and irradiated with electrons of 2MeV by electron spin resonance (ESR) are analysed. Formulas for g and A tensors in the ligand field approximation, are derivated to calculate non coupling electron density in the metal. The X polarization field of inner shells is positive, indicating a 6s function mixture in the non coupling electron molecular orbital. The observed hyperfine structure is assigned to 4 equivalent nitrogen and one non equivalent nitrogen. This hypothesis is verified by experience of isotope substitution with 15 N. The s and p spin density in ligands are calculated and discussed in terms of molecular obitals. The effects of strong quadrupole interaction into the EPR spectra of ]Ir II (CN) 5 ] 3- complex are analysed by MAGNSPEC computer program to diagonalize the Spin Hamiltonian of the system. Empiric rules for EPR espectrum interpretation with strong quadrupole interaction. A review of EPR technique and a review of main concepts of crystal-field and ligand field theories, are also presented. (M.C.K.) [pt

  15. Noncovalent functionalization of graphene by CdS nanohybrids for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Qi, Wei, E-mail: qiwei@tju.edu.cn [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Su, Rongxin [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); He, Zhimin [Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China)

    2014-10-01

    Graphene–CdS (GR–CdS) nanocomposites were synthesized via a noncovalent functionalization process. To retain the intrinsic electronic and mechanical properties of graphene, the pristine graphene was firstly modified with 1-aminopyrene based on a strong π–π bond between the pyrenyl groups and the carbon rings of the graphene. Then the CdS nanocrystals were uniformly grown on the amino-graphene. The GR–CdS nanocomposites were characterized by UV–vis spectroscopy and scanning electron microscopy. A glucose biosensor was then fabricated based on the as-prepared GR–CdS nanocomposite by immobilizing glucose oxidase (GOD) in a chitosan thin film on a glassy carbon electrode. Direct electron transfer between GOD and the electrode was achieved and the biosensor showed good electrocatalytic activity with glucose ranging from 0.5 to 7.5 mM and a sensitivity of 45.4 μA mM{sup −1} cm{sup −2}. This work provided a simple and nondestructive functionalization strategy to fabricate graphene-based hybrid nanomaterials and it is expected that this composite film may find more potential applications in biosensors and biocatalysis. - Highlights: • A simple noncovalent approach to synthesize graphene–CdS (GR–CdS) nanocomposites • Direct electrochemistry of glucose oxidase based on synergistic effect of GR–CdS • A sensitive glucose biosensor was fabricated based on the GR–CdS hybrids.

  16. Noncovalent functionalization of graphene by CdS nanohybrids for electrochemical applications

    International Nuclear Information System (INIS)

    Wang, Li; Qi, Wei; Su, Rongxin; He, Zhimin

    2014-01-01

    Graphene–CdS (GR–CdS) nanocomposites were synthesized via a noncovalent functionalization process. To retain the intrinsic electronic and mechanical properties of graphene, the pristine graphene was firstly modified with 1-aminopyrene based on a strong π–π bond between the pyrenyl groups and the carbon rings of the graphene. Then the CdS nanocrystals were uniformly grown on the amino-graphene. The GR–CdS nanocomposites were characterized by UV–vis spectroscopy and scanning electron microscopy. A glucose biosensor was then fabricated based on the as-prepared GR–CdS nanocomposite by immobilizing glucose oxidase (GOD) in a chitosan thin film on a glassy carbon electrode. Direct electron transfer between GOD and the electrode was achieved and the biosensor showed good electrocatalytic activity with glucose ranging from 0.5 to 7.5 mM and a sensitivity of 45.4 μA mM −1 cm −2 . This work provided a simple and nondestructive functionalization strategy to fabricate graphene-based hybrid nanomaterials and it is expected that this composite film may find more potential applications in biosensors and biocatalysis. - Highlights: • A simple noncovalent approach to synthesize graphene–CdS (GR–CdS) nanocomposites • Direct electrochemistry of glucose oxidase based on synergistic effect of GR–CdS • A sensitive glucose biosensor was fabricated based on the GR–CdS hybrids

  17. In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice.

    Science.gov (United States)

    Miao, Yuxuan; Zhou, Jia; Chen, Cuicui; Shen, Delong; Song, Wei; Feng, Yongjun

    2008-12-01

    Pantoea (formerly Enterobacter) agglomerans YS19 is a dominant diazotrophic endophyte isolated from rice (Oryza sativa cv. Yuefu) grown in a temperate-climate region in west Beijing, China. In vitro adsorption and invasion of YS19 on host plant root were studied in this research. Adsorption of YS19 on rice seedling roots closely resembled the Langmuir adsorption and showed a higher adsorption quantity than the control strains Paenibacillus polymyxa WY110 (a rhizospheric bacterium from the same rice cultivar) and Escherichia coli HB101 (a general model bacterium). Adsorption dynamics study revealed high rates and a long duration of the YS19-rice root adsorption process. Adsorption of YS19 was mainly observed on the root hair, though which it enters the plant. This in vitro adsorption study revealed an apparent strong interaction between YS19 and rice at the early endophyte-host recognition stage.

  18. Measurement of the strong-interaction shift and broadening of the ground state of the panti p atom

    International Nuclear Information System (INIS)

    Ziegler, M.; Duch, K.D.; Heel, M.; Kalinowsky, H.; Kayser, F.; Klempt, E.; Rieger, R.; Schreiber, O.; Straumann, U.; Weidenauer, P.; Ahmad, S.; Comyn, M.; Armenteros, R.; Bailey, D.; Barlag, S.; Gastaldi, U.; Landua, R.; Auld, E.G.; Axen, D.A.; Erdman, K.L.; Howard, B.; Howard, R.; White, B.L.; Beer, G.A.; Marshall, G.M.; Robertson, L.P.; Bizot, J.C.; Delcourt, B.; Jeanjean, J.; Nguyen, H.; Dahme, W.; Feld-Dahme, F.; Schaefer, U.; Wodrich, W.R.; Prevot, N.; Sabev, C.

    1988-01-01

    The K α X-rays from panti p atoms formed in H 2 gas at normal temperature and pressure are unambiguously identified by coincidences with L X-rays populating the 2P level. Background due to inner bremsstrahlung is suppressed by selecting events annihilating into neutral final states only. The K α line is observed with a significance of more than 25 standard deviations at an energy of 8.67(15) keV. From fits to the K α line we obtain a strong-interaction shift and width of the 1S level, averaged over the unresolved spin singlet and triplet contributions, of ΔE + iΓ/2 = [-0.70(15) + i0.80(2)] keV. (orig.)

  19. Dynamical models of hadrons based on string model and behaviour of strongly interacting matter at high density

    International Nuclear Information System (INIS)

    Senda Ikuo.

    1991-05-01

    We propose dynamical models of hadrons, the nucleation model and the free-decay model, in which results of string model are used to represent interactions. The dynamical properties of hadrons, which are obtained by string model, are examined and their parameters are fitted by experimental data. The equilibrium properties of hadrons at high density are investigated by the nucleation model and we found a singular behaviour at energy density 3 ∼ 5 GeV/fm 3 , where hadrons coalesce to create highly excited states. We argue that this singular behaviour corresponds to the phase transition to quark-gluon plasma. The possibility to observe the production of high density strongly interacting matter at collider experiments are discussed using the free-decay model, which produces pion distributions as decay products of resonances. We show that our free-decay model recovers features of hadron distributions obtained in hadron collision experiments. Finally the perspectives and extensions are discussed. (author). 34 refs, 19 figs, 2 tabs

  20. Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations

    Science.gov (United States)

    Liu, J. Q.; Xiao, T.; Liao, K.; Wu, P.

    2007-04-01

    Homogeneous dispersion of carbon nanotubes (CNTs) throughout the polymer matrix and their adequate interfacial bonding are critical for load transfer in CNT-polymer composites. However, both cannot be realized simultaneously by either covalent or noncovalent functionalization. A hybrid system integrating both covalent and noncovalent functionalizations is presented for interfacial design of CNT-polymer composites. To investigate the feasibility of this system, examples of the epoxidized single-walled carbon nanotube (SWNT) subsequently wrapped by poly(m-phenylenevinylene- co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV) are studied by means of molecular dynamics simulations. It is shown by our results that PmPV molecules are miscible with epoxy resin and tend to wrap around the epoxidized SWNT, which could be used to weaken the interaction between SWNTs and consequently improve the dispersion of SWNTs into the matrix. The interfacial shear strength of CNT-polymer composites can be improved significantly by properly designed functionalizations, especially the hybrid system.

  1. Effects of strong interactions between Ti and ceria on the structures of Ti/CeO2.

    Science.gov (United States)

    Yao, Xiao-Dan; Zhu, Kong-Jie; Teng, Bo-Tao; Yu, Cao-Ming; Zhang, Yun-Lei; Liu, Ya; Fan, Maohong; Wen, Xiao-Dong

    2016-11-30

    The effects of strong interactions between Ti and ceria on the structures of Ti/CeO 2 (111) are systematically investigated by density functional theory calculation. To our best knowledge, the adsorption energy of a Ti atom at the hollow site of CeO 2 is the highest value (-7.99 eV) reported in the literature compared with those of Au (-0.88--1.26 eV), Ag (-1.42 eV), Cu (-2.69 eV), Pd (-1.75 eV), Pt (-2.62 eV) and Sn (-3.68 eV). It is very interesting to find that Ti adatoms disperse at the hollow site of CeO 2 (111) to form surface TiO x species, instead of aggregating to form Ti metal clusters for the Ti-CeO 2 interactions that are much stronger than those of Ti-Ti ones. Ti adatoms are completely oxidized to Ti 4+ ions if they are monatomically dispersed on the next near hollow sites of CeO 2 (111) (xTi-NN-hollow); while Ti 3+ ions are observed when they locate at the near hollow sites (xTi-N-hollow). Due to the electronic repulsive effects among Ti 3+ ions, the adsorption energies of xTi-N-hollow are slightly weaker than those of xTi-NN-hollow. Simultaneously, the existence of unstable Ti 3+ ions on xTi-N-hollow also leads to the restructuring of xTi-N-hollow by surface O atoms of ceria transferring to the top of Ti 3+ ions, or oxidation by O 2 adsorption and dissociation. Both processes improve the stability of the xTi/CeO 2 system by Ti 3+ oxidation. Correspondingly, surface TiO 2 -like species form. This work sheds light into the structures of metal/CeO 2 catalysts with strong interactions between the metal and the ceria support.

  2. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  3. Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress.

    Science.gov (United States)

    Gálvez, Loli; González, Esther M; Arrese-Igor, Cesar

    2005-09-01

    Symbiotic N2 fixation in legume nodules declines under a wide range of environmental stresses. A high correlation between N2 fixation decline and sucrose synthase (SS; EC 2.4.1.13) activity down-regulation has been reported, although it has still to be elucidated whether a causal relationship between SS activity down-regulation and N2 fixation decline can be established. In order to study the likely C/N interactions within nodules and the effects on N2 fixation, pea plants (Pisum sativum L. cv. Sugar snap) were subjected to progressive water stress by withholding irrigation. Under these conditions, nodule SS activity declined concomitantly with apparent nitrogenase activity. The levels of UDP-glucose, glucose-1-phosphate, glucose-6-phosphate, and fructose-6-phosphate decreased in water-stressed nodules compared with unstressed nodules. Drought also had a marked effect on nodule concentrations of malate, succinate, and alpha-ketoglutarate. Moreover, a general decline in nodule adenylate content was detected. NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42) was the only enzyme whose activity increased as a result of water deficit, compensating for a possible C/N imbalance and/or supplying NADPH in circumstances that the pentose phosphate pathway was impaired, as suggested by the decline in glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) activity. The overall results show the occurrence of strong C/N interactions in nodules subjected to water stress and support a likely limitation of carbon flux that might be involved in the decline of N2 fixation under drought.

  4. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems.

    Science.gov (United States)

    Tsuchimochi, Takashi

    2015-10-14

    Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.

  5. Proceedings of RIKEN BNL Research Center Workshop: The Approach to Equilibrium in Strongly Interacting Matter. Volume 118

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Venugopalan, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berges, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaizot, J. -P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gelis, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-04-09

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshop is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.

  6. Measurement of the strong interaction coupling constant αs by jet study in the H1 experiment

    International Nuclear Information System (INIS)

    Squinabol, F.

    1997-01-01

    The H1 experiment allows to study hadronic jets produced in deep inelastic lepton (27.5 GeV) scattering off protons (820 GeV). The coupling constant of the strong interaction α s can be extracted from the measurement of the 2-jets rate in the final state. The use of the JADE algorithm is optimal for events with high energy transfer (100-4,000 GeV 2 ), corresponding to the 1994 and 1995 data. The error on α s (M Z 0 2 ) is dominated by the uncertainty from the hadronic energy measurement and the experimental resolution effects on jets. The theoretical error is dominated by the renormalization scale dependence. The final result is (M Z 0 2 ) 0.118 -0.008 +0.008 . This analysis is extended to smaller momentum transfers (25-100 GeV 2 ) using the factorizable K t algorithm, taking the transferred momentum as energy scale of the particle re-clustering. The result α s (M Z 0 2 ) 0.117 -0.008 +0.009 is compatible with the previous one. The precision of the measurement performed in this thesis is 7%. A precision of 4% could be achieved after progresses in the theoretical framework and/or after a significant increase of the luminosity. (author)

  7. Aacsfi-PSC. Advanced accelerator concepts for strong field interaction simulated with the Plasma-Simulation-Code

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, Hartmut [Munich Univ. (Germany). Chair for Computational and Plasma Physics

    2016-11-01

    Since the installation of SuperMUC phase 2 the 9216 nodes of phase 1 are more easily available for large scale runs allowing for the thin foil and AWAKE simulations. Besides phase 2 could be used in parallel for high throughput of the ion acceleration simulations. Challenging to our project were the full-volume checkpoints required by PIC that strained the I/O-subsystem of SuperMUC to its limits. New approaches considered for the next generation system, like burst buffers could overcome this bottleneck. Additionally, as the FDTD solver in PIC is strongly bandwidth bound, PSC will benefit profoundly from high-bandwidth memory (HBM) that most likely will be available in future HPC machines. This will be of great advantage as in 2018 phase II of AWAKE should begin, with a longer plasma channel further increasing the need for additional computing resources. Last but not least, it is expected that our methods used in plasma physics (many body interaction with radiation) will be more and more adapted for medical diagnostics and treatments. For this research field we expect centimeter sized volumes with necessary resolutions of tens of micro meters resulting in boxes of >10{sup 12} voxels (100-200 TB) on a regular basis. In consequence the demand for computing time and especially for data storage and data handling capacities will also increase significantly.

  8. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  9. Hydrogen scrambling in non-covalent complexes of peptides.

    Science.gov (United States)

    Modzel, Maciej; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-15

    Mass spectrometry analysis combined with hydrogen-deuterium exchange (HDX-MS) is arising as a tool for quick analysis of native protein conformation. However, during collision-induced dissociation (CID) the spatial distribution of deuterium is not always conserved. It is therefore important to find out how hydrogen scrambling occurs--this study concentrates on the possibility of scrambling between amino acid residues spatially close together, but not connected by covalent bonds. Peptides used in this study were synthesized by Fmoc strategy. Deuteration occurred in ammonia formate solution in D(2)O. Non-covalent complexes consisting of a deuterated and a non-deuterated peptide were analyzed by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FT-ICR-MS) with quadrupole mass filter. Low-energy CID was used for complex dissociation. The complexes were isolated on a quadrupole and subjected to CID to cause dissociation. The deuterium distribution before and after the dissociation of a non-covalent complex to its components was measured. The study revealed that no significant scrambling occurred between the constituents of the complexes--the degree of scrambling did not exceed 10%. The results obtained for the complexes should be similar to those for protein parts spatially close together--hydrogen scrambling between them should be negligible. The knowledge that almost all the scrambling occurs along peptide chains gives a better insight into the mechanism of HDX inside a protein. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Structural characterization of a noncovalent complex between ubiquitin and the transactivation domain of the erythroid-specific factor EKLF.

    Science.gov (United States)

    Raiola, Luca; Lussier-Price, Mathieu; Gagnon, David; Lafrance-Vanasse, Julien; Mascle, Xavier; Arseneault, Genevieve; Legault, Pascale; Archambault, Jacques; Omichinski, James G

    2013-11-05

    Like other acidic transactivation domains (TAD), the minimal TAD from the erythroid-specific transcription factor EKLF (EKLFTAD) has been shown to contribute both to its transcriptional activity as well as to its ubiquitin(UBI)-mediated degradation. In this article, we examine the activation-degradation role of the acidic TAD of EKLF and demonstrate that the first 40 residues (EKLFTAD1) within this region form a noncovalent interaction with UBI. Nuclear magnetic resonance (NMR) structural studies of an EKLFTAD1-UBI complex show that EKLFTAD1 adopts a 14-residue α helix that forms the recognition interface with UBI in a similar manner as the UBI-interacting helix of Rabex5. We also identify a similar interaction between UBI and the activation-degradation region of SREBP1a, but not with the activation-degradation regions of p53, GAL4, and VP16. These results suggest that select activation-degradation regions like the ones found in EKLF and SREBP1a function in part through their ability to form noncovalent interactions with UBI. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mapping a Noncovalent Protein-Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

    Science.gov (United States)

    Clarke, David J.; Murray, Euan; Hupp, Ted; Mackay, C. Logan; Langridge-Smith, Pat R. R.

    2011-08-01

    Noncovalent protein-ligand and protein-protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein-ligand interactions. In this way the site of protein-ligand interfaces can be identified. To date, protein-ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein-peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein-peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide-protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein-protein interfaces.

  12. Mapping the Binding Interface in a Noncovalent Size Variant of a Monoclonal Antibody Using Native Mass Spectrometry, Hydrogen-Deuterium Exchange Mass Spectrometry, and Computational Analysis.

    Science.gov (United States)

    Yan, Yuetian; Wei, Hui; Jusuf, Sutjano; Krystek, Stanley R; Chen, Jie; Chen, Guodong; Ludwig, Richard T; Tao, Li; Das, Tapan K

    2017-11-01

    Variants of monoclonal antibody containing an extra light chain have been reported in protein products. Due to potential impact on potency and immunogenicity, it is important to understand the formation mechanism of such variants so that appropriate control strategies can be implemented to assure product quality. In a model monoclonal antibody, we observed a size variant with an extra light chain noncovalently associated with the monomer (later named as "1.2mer"). The interaction between monomer and the extra light chain was characterized by native spray and hydrogen-deuterium exchange mass spectrometry techniques. The goal is to understand the nature of the noncovalent interaction, to map out the interaction interface and regions of potential conformational distortions. In addition, computational modeling was used to aid in binding site identification. The combined results identify the interaction interface to be located in the heavy chain region 38-57 and in the extra light chain region 30-50. To the best of our knowledge, this study is the first to characterize noncovalent interaction of a size variant comprising an antibody monomer and an extra light chain. Structural knowledge generated in this research work is invaluable for process development and construct design of antibody-based biopharmaceuticals. Copyright © 2017. Published by Elsevier Inc.

  13. Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide.

    Science.gov (United States)

    Saikia, Nabanita; Deka, Ramesh C

    2013-09-01

    The application of graphene and related nanomaterials like boron nitride (BN) nanosheets, BN-graphene hybrid nanomaterials, and graphene oxide (GO) for adsorption of anticancer chemotherapeutic camptothecin (CPT) along with the effect on electronic properties prior to functionalization and after functionalization has been reported using density functional theory (DFT) calculations. The inclusion of dispersion correction to DFT is instrumental in accounting for van der Waals π-π stacking between CPT and the nanomaterial. The adsorption of CPT exhibits significant strain within the nanosheets and noncovalent adsorption of CPT is thermodynamically favoured onto the nanosheets. In case of GO, surface incorporation of functional groups result in significant crumpling along the basal plane and the interaction is basically mediated by H-bonding rather than π-π stacking. Docking studies predict the plausible binding of CPT, CPT functionalized graphene and GO with topoisomerase I (top 1) signifying that CPT interacts through π stacking with AT and GC base pairs of DNA and in presence of nano support, DNA bases preferentially gets bound to the basal plane of graphene and GO rather than the edges. At a theoretical level of understanding, our studies point out the noncovalent interaction of CPT with graphene based nanomaterials and GO for loading and delivery of anticancer chemotherapeutic along with active binding to Top1 protein.

  14. Noncovalent Intermediate of Thymidylate Synthase: Fact or Fiction?

    Science.gov (United States)

    Kholodar, Svetlana A; Kohen, Amnon

    2016-07-06

    Thymidylate synthase is an attractive target for antibiotic and anticancer drugs due to its essential role in the de novo biosynthesis of the DNA nucleotide thymine. The enzymatic reaction is initiated by a nucleophilic activation of the substrate via formation of a covalent bond to an active site cysteine. The traditionally accepted mechanism is then followed by a series of covalently bound intermediates, where that bond is only cleaved upon product release. Recent computational and experimental studies suggest that the covalent bond between the protein and substrate is actually quite labile. Importantly, these findings predict the existence of a noncovalently bound bisubstrate intermediate, not previously anticipated, which could be the target of a novel class of drugs inhibiting DNA biosynthesis. Here we report the synthesis of the proposed intermediate and findings supporting its chemical and kinetic competence. These findings substantiate the predicted nontraditional mechanism and the potential of this intermediate as a new drug lead.

  15. Non-Covalent Organocatalyzed Domino Reactions Involving Oxindoles: Recent Advances

    Directory of Open Access Journals (Sweden)

    Tecla Gasperi

    2017-09-01

    Full Text Available The ubiquitous presence of spirooxindole architectures with several functionalities and stereogenic centers in bioactive molecules has been appealing for the development of novel methodologies seeking their preparation in high yields and selectivities. Expansion and refinement in the field of asymmetric organocatalysis have made possible the development of straightforward strategies that address these two requisites. In this review, we illustrate the current state-of-the-art in the field of spirooxindole synthesis through the use of non-covalent organocatalysis. We aim to provide a concise overview of very recent methods that allow to the isolation of unique, densely and diversified spirocyclic oxindole derivatives with high structural diversity via the use of cascade, tandem and domino processes.

  16. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    DEFF Research Database (Denmark)

    Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-01-01

    the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...

  17. A Comprehensive Analysis of Jet Quenching via a Hybrid Strong/Weak Coupling Model for Jet-Medium Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-12-15

    Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.

  18. Pesticide interactions with soil affected by olive mill wastewater (OMW): how strong and long-lasting is the OMW effect?

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda

    2017-04-01

    Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears

  19. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    Science.gov (United States)

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  20. The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes.

    Science.gov (United States)

    Sylvetsky, Nitai; Kesharwani, Manoj K; Martin, Jan M L

    2017-10-07

    We have developed a new basis set family, denoted as aug-cc-pVnZ-F12 (or aVnZ-F12 for short), for explicitly correlated calculations. The sets included in this family were constructed by supplementing the corresponding cc-pVnZ-F12 sets with additional diffuse functions on the higher angular momenta (i.e., additional d-h functions on non-hydrogen atoms and p-g on hydrogen atoms), optimized for the MP2-F12 energy of the relevant atomic anions. The new basis sets have been benchmarked against electron affinities of the first- and second-row atoms, the W4-17 dataset of total atomization energies, the S66 dataset of noncovalent interactions, the Benchmark Energy and Geometry Data Base water cluster subset, and the WATER23 subset of the GMTKN24 and GMTKN30 benchmark suites. The aVnZ-F12 basis sets displayed excellent performance, not just for electron affinities but also for noncovalent interaction energies of neutral and anionic species. Appropriate CABSs (complementary auxiliary basis sets) were explored for the S66 noncovalent interaction benchmark: between similar-sized basis sets, CABSs were found to be more transferable than generally assumed.

  1. Experimental and numerical study of the strong interaction between wakes of cylindrical obstacles; Etude experimentale et numerique de l'interaction forte entre sillages d'obstacles cylindriques

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Ch

    1998-04-02

    In the context of thermal-hydraulics of nuclear reactors, strong interaction between wakes is encountered in the bottom of reactor vessels where control and measurement rods of variable size and disposition interact with the overall wakes generated in these flow zones. This study deals with the strong interaction between two wakes developed downstream of two parallel cylinders with a small spacing. The analysis focusses on the effect of the Reynolds regime which controls the equilibrium between the inertia and viscosity forces of the fluid and influences the large scale behaviour of the flow with the development of hydrodynamic instabilities and turbulence. The document is organized as follows: the characteristic phenomena of wakes formation downstream of cylindrical obstacles are recalled in the first chapter (single cylinder, interaction between two tubes, case of a bundle of tubes perpendicular to the flow). The experimental setup (hydraulic loop, velocity and pressure measurement instrumentation) and the statistical procedures applied to the signals measured are detailed in chapters 2 and 3. Chapter 4 is devoted to the experimental study of the strong interaction between two tubes. Laser Doppler velocity measurements in the wakes close to cylinders and pressure measurements performed on tube walls are reported in this chapter. In chapter 5, a 2-D numerical simulation of two typical cases of interaction (Re = 1000 and Re = 5000) is performed. In the last chapter, a more complex application of strong interactions inside and downstream of a bunch of staggered tubes is analyzed experimentally for equivalent Reynolds regimes. (J.S.)

  2. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Self-pumped passive ring mirror in crystals with strong fanning

    Science.gov (United States)

    Bogodaev, N. V.; Zozulya, A. A.; Ivleva, Lyudmila I.; Korshunov, A. S.; Mamaev, A. V.; Polozkov, N. M.

    1992-05-01

    Most photorefractive crystals suitable for four-wave systems of phase self-conjugation and mutual conjugation have a fairly high level of light-induced scattering (fanning). This may imply that the nonlinearity of a crystal is too strong for optimal operation and a reduction in this nonlinearity would improve the characteristics. This statement is illustrated theoretically and experimentally using the geometry of a loop parametric oscillator as an example.

  3. Limits on cosmological variation of strong interaction and quark masses from big bang nucleosynthesis, cosmic, laboratory and Oklo data

    International Nuclear Information System (INIS)

    Flambaum, V.V.; Shuryak, E.V.

    2002-01-01

    Recent data on the cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of the possible variation of other constants. We discuss the variation of strong scale and quark masses. We derive limits on their relative change from (i) primordial big bang nucleosynthesis, (ii) the Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals

  4. Investigation of the source size and strong interaction with the femtoscopic correlations of baryons and antibaryons in heavy-ion collisions registered by ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00508100

    The strong interaction is one of the four fundamental forces of nature. It binds together quarks inside protons and neutrons (which are example of baryons - particles composed of three quarks) and assures the stability of the atomic nucleus. Parameters describing the strong potential are also crucial for the neutron stars models used in astrophysics. What is more, a precise study of strongly interacting particles may help to better understand the process of baryon annihilation. The current knowledge of the strong interactions between baryons other than nucle- ons is limited - there exist only a few measurements of the cross sections for pairs of (anti)baryons. The reason is that in many cases it is not possible to perform scattering experiments with beams of particles and antiparticles, as the exotic matter (such as Λ, Ξ or Σ baryons) is very shot-living. This issue can be solved thanks to the recent particle colliders like the Large Hadron Collider and experiments dedicated to study the heavy-ion collisio...

  5. Effect of exotic long-lived sub-strongly interacting massive particles in big bang nucleosynthesis and a new solution to the Li problem

    Directory of Open Access Journals (Sweden)

    Kawasaki Masahiro

    2012-02-01

    Full Text Available The plateau of 7Li abundance as a function of the iron abundance by spectroscopic observations of metal-poor halo stars (MPHSs indicates its primordial origin. The observed abundance levels are about a factor of three smaller than the primordial 7Li abundance predicted in the standard Big Bang Nucleosynthesis (BBN model. This discrepancy might originate from exotic particle and nuclear processes operating in BBN epoch. Some particle models include heavy (m >> 1 GeV long-lived colored particles which would be confined inside exotic heavy hadrons, i.e., strongly interacting massive particles (SIMPs. We have found reactions which destroy 7Be and 7Li during BBN in the scenario of BBN catalyzed by a long-lived sub-strongly interacting massive particle (sub-SIMP, X. The reactions are non radiative X captures of 7 Be and 7Li which can be operative if the X particle interacts with nuclei strongly enough to drive 7 Be destruction but not strongly enough to form a bound state with 4 He of relative angular momentum L = 1. We suggest that 7Li problem can be solved as a result of a new process beyond the standard model through which the observable signature was left on the primordial Li abundance.

  6. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  7. A new scalar resonance at 750 GeV: towards a proof of concept in favor of strongly interacting theories

    International Nuclear Information System (INIS)

    Son, Minho; Urbano, Alfredo

    2016-01-01

    We interpret the recently observed excess in the diphoton invariant mass as a new spin-0 resonant particle. On theoretical grounds, an interesting question is whether this new scalar resonance belongs to a strongly coupled sector or a well-defined weakly coupled theory. A possible UV-completion that has been widely considered in literature is based on the existence of new vector-like fermions whose loop contributions — Yukawa-coupled to the new resonance — explain the observed signal rate. The large total width preliminarily suggested by data seems to favor a large Yukawa coupling, at the border of a healthy perturbative definition. This potential problem can be fixed by introducing multiple vector-like fermions or large electric charges, bringing back the theory to a weakly coupled regime. However, this solution risks to be only a low-energy mirage: large multiplicity or electric charge can dangerously reintroduce the strong regime by modifying the renormalization group running of the dimensionless couplings. This issue is also tightly related to the (in)stability of the scalar potential. First, we study — in the theoretical setup described above — the parametric behavior of the diphoton signal rate, total width, and one-loop β functions. Then, we numerically solve the renormalization group equations, taking into account the observed diphoton signal rate and total width, to investigate the fate of the weakly coupled theory. We find that — with the only exception of few fine-tuned directions — weakly coupled interpretations of the excess are brought back to a strongly coupled regime if the running is taken into account.

  8. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  9. Strong Cation···π Interactions Promote the Capture of Metal Ions within Metal-Seamed Nanocapsule

    Science.gov (United States)

    2015-01-01

    Thallium ions are transported to the interior of gallium-seamed pyrogallol[4]arene nanocapsules. In comparison to the capture of Cs ions, the extent of which depends on the type and position of the anion employed in the cesium salt, the enhanced strength of Tl···π vs Cs···π interactions facilitates permanent entrapment of Tl+ ions on the capsule interior. “Stitching-up” the capsule seam with a tertiary metal (Zn, Rb, or K) affords new trimetallic nanocapsules in solid state. PMID:25405777

  10. Aharonov-Casher and spin Hall effects in mesoscopic ring structures with strong spin-orbit interaction

    Czech Academy of Sciences Publication Activity Database

    Borunda, M.F.; Liu, X.; Kovalev, A.A.; Liu, X.-J.; Jungwirth, Tomáš; Sinova, J.

    2008-01-01

    Roč. 78, č. 24 (2008), 245315/1-245315/9 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : Aharonov-Casher effect * spin Hall effect * spin-orbit interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  11. Universal low energy physics in one-dimensional multicompnent Fermi gases with a strongly repulsive $\\delta$-function interaction

    OpenAIRE

    Jiang, Yuzhu; He, Peng; Guan, Xi-Wen

    2016-01-01

    It was shown [Chin. Phys. Lett. 28, 020503 (2011)] that at zero temperature the ground state of the one-dimensional (1D) $w$-component Fermi gas coincides with that of the spinless Bose gas in the limit $\\omega\\to \\infty$. This behaviour was experimentally evidenced through a quasi-1D tightly trapping ultracold ${}^{173}$Yb atoms in the recent paper [Nature Physics 10, 198 (2014)]. However, understanding of low temperature behaviour of the Fermi gases with a repulsive interaction acquires spi...

  12. A Test of the Flavor Independence of Strong Interactions in e+e- Annihilation at the Z0 Pole

    Energy Technology Data Exchange (ETDEWEB)

    Muller, David

    1999-09-03

    This thesis presents a comparison of the strong coupling of the gluons to light (ql = u + d + s), c, and b quarks, determined from multijet rates in flavor-tagged samples of approximately 150,000 hadronic Z0 decays recorded with the SLC Large Detector at the SLAC Linear Collider between 1993 and 1995. Flavor separation among primary ql {anti ql} , c{anti c} and b {anti b} final states was made on the basis of the reconstructed mass of long-lived heavy-hadron decay vertices, yielding tags with high purity and low bias against {>=} 3-jet final states. The data obtained imply no flavor dependence within our sensitivity.

  13. Experimental characterization of a strongly coupled solid density plasma generated in a short-pulse laser target interaction

    International Nuclear Information System (INIS)

    Gregori, G.; Hansen, S.B.; Key, M.H.; King, J.; Mackinnon, A.J.; Park, H.; Patel, P.K.; Shepard, R.; Snavely, R.A.; Wilks, S.C.; Glenzer, S.H.

    2005-01-01

    We have measured high resolution copper Kα spectra from a picosecond high intensity laser produced plasma. By fitting the shape of the experimental spectra with a self-consistent-field model which includes all the relevant line shifts from multiply ionized atoms, we are able to infer time and spatially averaged electron temperatures (T e ) and ionization state (Z) in the foil. Our results show increasing values for T e and Z when the overall mass of the target is reduced. In particular, we measure temperatures in excess of 200 eV with Z ∼ 13-14. For these conditions the ion-ion coupling constant is Λ ii ∼ 8-9, thus suggesting the achievement of a strongly coupled plasma regime

  14. Hund Interaction, Spin-Orbit Coupling, and the Mechanism of Superconductivity in Strongly Hole-Doped Iron Pnictides

    Science.gov (United States)

    Vafek, Oskar; Chubukov, Andrey V.

    2017-02-01

    We present a novel mechanism of s -wave pairing in Fe-based superconductors. The mechanism involves holes near dx z/dy z pockets only and is applicable primarily to strongly hole doped materials. We argue that as long as the renormalized Hund's coupling J exceeds the renormalized interorbital Hubbard repulsion U', any finite spin-orbit coupling gives rise to s -wave superconductivity. This holds even at weak coupling and regardless of the strength of the intraorbital Hubbard repulsion U . The transition temperature grows as the hole density decreases. The pairing gaps are fourfold symmetric, but anisotropic, with the possibility of eight accidental nodes along the larger pocket. The resulting state is consistent with the experiments on KFe2 As2 .

  15. Electric quadrupole moments and strong interaction effects in pionic atoms of 165Ho, 175Lu, 176Lu, 179Hf and 181Ta

    International Nuclear Information System (INIS)

    Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.

    1981-05-01

    The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)

  16. High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization.

    Science.gov (United States)

    Fu, W; Nef, C; Tarasov, A; Wipf, M; Stoop, R; Knopfmacher, O; Weiss, M; Calame, M; Schönenberger, C

    2013-12-21

    Noncovalent functionalization is a well-known nondestructive process for property engineering of carbon nanostructures, including carbon nanotubes and graphene. However, it is not clear to what extend the extraordinary electrical properties of these carbon materials can be preserved during the process. Here, we demonstrated that noncovalent functionalization can indeed delivery graphene field-effect transistors (FET) with fully preserved mobility. In addition, these high-mobility graphene transistors can serve as a promising platform for biochemical sensing applications.

  17. Non-covalent modification of granulocyte-colony stimulating factor (G-CSF) by coiled-coil technology.

    Science.gov (United States)

    Reichert, Christian; Perozzo, Remo; Borchard, Gerrit

    2016-09-10

    We present here an approach to non-covalently combine an engineered model protein with a PEGylated peptide via coiled-coil binding. To this end a fusion protein of G-CSF and the peptide sequence (JunB) was created-one sequence of JunB was expressed at the N-terminal of GCSF. JunB is able to bind to the peptide sequence cFos, which was in turn covalently linked to a chain of poly(ethylene glycol) (PEG). The selected peptide sequences are leucine zipper motives from transcription factors and are known to bind to each other specifically by formation of a super secondary structure called coiled-coil. The binding between PEGylated peptides of various molecular weights and the modified protein was assessed by isothermal calorimetry (ITC), dynamic light scattering (DLS), circular dichroism (CD), and fluorescence anisotropy. Our findings show that the attachment of 2 and 5kDa PEG does not interfere with coiled-coil formation and thus binding of peptide to fusion protein. With this work we successfully demonstrate the non-covalent binding of a model moiety (PEG) to a protein through coiled-coil interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Disentangling weak and strong interactions in B → K*(→ Kπ)π Dalitz-plot analyses

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Jerome [CNRS, Aix-Marseille Univ., Universite de Toulon, CPT UMR 7332, Marseille (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay (France); Ocariz, Jose [Sorbonne Universites, UPMC Univ. Paris 06, UMR 7585, LPNHE, Paris (France); Universite Paris Diderot, LPNHE UMR 7585, Sorbonne Paris Cite, Paris (France); Perez Perez, Alejandro [Universite de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg (France); Collaboration: For the CKMfitter Group

    2017-08-15

    Dalitz-plot analyses of B → Kππ decays provide direct access to decay amplitudes, and thereby weak and strong phases can be disentangled by resolving the interference patterns in phase space between intermediate resonant states. A phenomenological isospin analysis of B → K*(→ Kπ)π decay amplitudes is presented exploiting available amplitude analyses performed at the BaBar, Belle and LHCb experiments. A first application consists in constraining the CKM parameters thanks to an external hadronic input. A method, proposed some time ago by two different groups and relying on a bound on the electroweak penguin contribution, is shown to lack the desired robustness and accuracy, and we propose a more alluring alternative using a bound on the annihilation contribution. A second application consists in extracting information on hadronic amplitudes assuming the values of the CKM parameters from a global fit to quark flavour data. The current data yields several solutions, which do not fully support the hierarchy of hadronic amplitudes usually expected from theoretical arguments (colour suppression, suppression of electroweak penguins), as illustrated from computations within QCD factorisation. Some prospects concerning the impact of future measurements at LHCb and Belle II are also presented. Results are obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using the Rfit scheme to handle theoretical uncertainties. (orig.)

  19. Strong- and Weak-Universal Critical Behaviour of a Mixed-Spin Ising Model with Triplet Interactions on the Union Jack (Centered Square) Lattice

    Science.gov (United States)

    Strečka, Jozef

    2018-01-01

    The mixed spin-1/2 and spin-S Ising model on the Union Jack (centered square) lattice with four different three-spin (triplet) interactions and the uniaxial single-ion anisotropy is exactly solved by establishing a rigorous mapping equivalence with the corresponding zero-field (symmetric) eight-vertex model on a dual square lattice. A rigorous proof of the aforementioned exact mapping equivalence is provided by two independent approaches exploiting either a graph-theoretical or spin representation of the zero-field eight-vertex model. An influence of the interaction anisotropy as well as the uniaxial single-ion anisotropy on phase transitions and critical phenomena is examined in particular. It is shown that the considered model exhibits a strong-universal critical behaviour with constant critical exponents when considering the isotropic model with four equal triplet interactions or the anisotropic model with one triplet interaction differing from the other three. The anisotropic models with two different triplet interactions, which are pairwise equal to each other, contrarily exhibit a weak-universal critical behaviour with critical exponents continuously varying with a relative strength of the triplet interactions as well as the uniaxial single-ion anisotropy. It is evidenced that the variations of critical exponents of the mixed-spin Ising models with the integer-valued spins S differ basically from their counterparts with the half-odd-integer spins S.

  20. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption

    Science.gov (United States)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.

    2015-07-01

    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  1. Time- and frequency-resolved detection of atomic coherence in the regime of strong-field interaction with intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Konorov, S. O.; Hepburn, J. W.; Milner, V.

    2011-01-01

    Understanding the effect of strong laser pulses on the evolution of an atomic or molecular wave function is important in the context of coherent control in the strong-field regime, when power broadening and dynamic Stark shifts become comparable with or bigger than the bandwidth of the control field. We experimentally demonstrate the method of complete characterization of a complex-valued amplitude of a quantum state driven by a strong two-photon field. The method is based on coherent scattering of a weak probe pulse from the strong-field-induced atomic coherence, followed by the detection of the time- and frequency-resolved parametric four-wave-mixing signal. We show that the proposed technique corresponds to a cross-correlation frequency-resolved optical gating (XFROG) of the highly perturbed evolution of an atomic quantum state. Utilizing the XFROG retrieval algorithm, we determine both the amplitude and phase of an atomic wave function at any time moment throughout the interaction with the driving field. The direct retrieval of the time-dependent phase of the wave function, rather than the population dynamics only, enables us to observe the strong-field effects with arbitrary time and frequency resolution.

  2. Onset of deconfinement and search for the critical point of strongly interacting matter at CERN SPS energies

    CERN Document Server

    Rybczynski, Maciej; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Bialkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Buncic, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J.G.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gazdzicki, M.; Grebieszkow, K.; Hohne, C.; Kadija, K.; Karev, A.; Kolesnikov, V.I.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Mackowiak-Pawlowska, M.; Makariev, M.; Malakhov, A.I.; Mateev, M.; Melkumov, G.L.; Mitrovski, M.; Mrowczynski, St.; Nicolic, V.; Palla, G.; Panagiotou, A.D.; Peryt, W.; Pluta, J.; Prindle, D.; Puhlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczynski, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Sikler, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Strobele, H.; Susa, T.; Szuba, M.; Utvic, M.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Vranic, D.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.

    2013-01-01

    The exploration of the QCD phase diagram particularly the search for a phase transition from hadronic to partonic degrees of freedom and possibly a critical endpoint, is one of the most challenging tasks in present heavy-ion physics. As observed by the NA49 experiment, several hadronic observables in central Pb+Pb collisions at the CERN SPS show qualitative changes in their energy dependence. These features are not observed in elementary interactions and indicate the onset of a phase transition in the SPS energy range. The existence of a critical point is expected to result in the increase of event-by-event fluctuations of various hadronic observables provided that the freeze-out of the measured hadrons occurs close to its location in the phase diagram and the evolution of the final hadron phase does not erase the fluctuations signals. A selection of NA49 results on di-pion and proton intermittency from the scan of the phase diagram will be discussed.

  3. Onset of deconfinement and search for the critical point of strongly interacting matter at CERN SPS energies

    CERN Document Server

    Rybczyński, Maciej

    2014-01-01

    The exploration of the QCD phase diagram particularly the search for a phase transition from hadronic to partonic degrees of freedom and possibly a critical endpoint, is one of the most challenging tasks in present heavy-ion physics. As observed by the NA49 experiment, several hadronic observables in central Pb+Pb collisions at the CERN SPS show qualitative changes in their energy dependence. These features are not observed in elementary interactions and indi- cate the onset of a phase transition in the SPS energy range. The existence of a critical point is expected to result in the increase of event-by-event fluctuations of various hadronic observables provided that the freeze-out of the measured hadrons occurs close to its location in the phase di- agram and the evolution of the final hadron phase does not erase the fluctuations signals. Further information about the existence and nature of a phase transition in the SPS energy range can be gained from the studies of event-by-event fluctuations of final stat...

  4. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  5. Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets

    Science.gov (United States)

    Rączka, P.; Dubois, J.-L.; Hulin, S.; Tikhonchuk, V.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.

    2017-12-01

    Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser-target interaction by pulses with the energy in the range of 45 mJ to 92 mJ on target and the pulse duration from 39 fs to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (micrometer thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20 to 50 percent higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different type on sub-ns scale, which is an effect going beyond a simple picture of the target acting as an antenna. The sub-ns structure appears to be reproducible to surprising degree. We found that there is in general a linear correlation between the maximum value of the magnetic field and the maximum neutralization current, which supports the target-antenna picture, except for pulses hundreds of fs long.

  6. Interactions between globular proteins and procyanidins of different degrees of polymerization

    NARCIS (Netherlands)

    Prigent, S.V.E.; Voragen, A.G.J.; Koningsveld, van G.A.; Baron, A.; Renard, C.M.; Gruppen, H.

    2009-01-01

    Interactions of proteins with phenolic compounds occur in food products containing vegetable sources, such as cocoa, cereals, or yogurts containing fruit. Such interactions can modify protein digestion and protein industrial properties. Noncovalent interactions between globular proteins (proteins

  7. Stable non-covalent labeling of layered silicate nanoparticles for biological imaging.

    Science.gov (United States)

    Mortimer, Gysell M; Jack, Kevin S; Musumeci, Anthony W; Martin, Darren J; Minchin, Rodney F

    2016-04-01

    Layered silicate nanoparticles (LSN) are widely used in industrial applications and consumer products. They also have potential benefits in biomedical applications such as implantable devices and for drug delivery. To study how nanomaterials interact with cells and tissues, techniques to track and quantify their movement through different biological compartments are essential. While radiolabels can be very sensitive, particularly for in vivo studies, fluorescent labeling has been preferred in recent years because of the array of methods available to image and quantify fluorescent nanoparticles. However, labeling can be problematic, especially if it alters the physical properties of the nanomaterial. Herein is described a novel non-covalent labeling technique for LSN using readily available fluorescent dimeric cyanine dyes without the need to use excess amounts of dye to achieve labeling, or the need for removal of unbound dye. The approach utilizes the cationic binding properties of layered silicate clays and the multiple quaternary nitrogens associated with the dyes. Preparation of YOYO-1 labeled LSN with optimal dispersion in aqueous media is presented. The utilization of the labeled particles is then demonstrated in cell binding and uptake studies using flow cytometry and confocal microscopy. The labeled LSN are highly fluorescent, stable and exhibit identical physical properties with respect to the unlabeled nanoparticles. The general approach described here is applicable to other cyanine dyes and may be utilized more widely for labeling nanoparticles that comprise a crystalline plate structure with a high binding capacity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters

    Science.gov (United States)

    Gu, Li-Qun; Dalla Serra, Mauro; Vincent, J. Bryan; Vigh, Gyula; Cheley, Stephen; Braha, Orit; Bayley, Hagan

    2000-01-01

    In this study, the charge selectivity of staphylococcal α-hemolysin (αHL), a bacterial pore-forming toxin, is manipulated by using cyclodextrins as noncovalent molecular adapters. Anion-selective versions of αHL, including the wild-type pore and various mutants, become more anion selective when β-cyclodextrin (βCD) is lodged within the channel lumen. By contrast, the negatively charged adapter, hepta-6-sulfato-β-cyclodextrin (s7βCD), produces cation selectivity. The cyclodextrin adapters have similar effects when placed in cation-selective mutant αHL pores. Most probably, hydrated Cl− ions partition into the central cavity of βCD more readily than K+ ions, whereas s7βCD introduces a charged ring near the midpoint of the channel lumen and confers cation selectivity through electrostatic interactions. The molecular adapters generate permeability ratios (PK+/PCl−) over a 200-fold range and should be useful in the de novo design of membrane channels both for basic studies of ion permeation and for applications in biotechnology. PMID:10760267

  9. Electron gas interacting in a metal, submitted to a strong magnetic field; Gas de eletrons interagentes num metal, sujeito a um campo magnetico forte

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Francisco Castilho

    1977-07-01

    Using the propagator's technique in the grand ensemble developed by Montroll and Ward we investigate the magnetic properties of an interacting electron gas in a strong magnetic field. The free propagator properly constructed shows that the spin paramagnetism does not have a term with strong temperature dependence, contrary to the result of Isihara. Considering the electron density to be constant, the dHVA oscillations in the magnetic susceptibility and sound velocity, considering the effects of first exchange interactions, show only one phase in agreement with experimental result, while Ichimura and Isihara obtained two phases differing by {pi}/2. The effects of first order exchange interactions in the dHVA oscillations of the magnetic susceptibility and sound velocity give rise to an exponential factor in the amplitudes of oscillator (Dingle factor), being the Dingle temperature linearly dependent of the Fermi velocity. The calculations of the ring diagram contribution to the grand partition function, show that the approximation used by Isihara for this calculations is not good and the dHVA oscillations of the contributions from the ring diagrams for the grand partition function have a phase differing by {pi}/2 from that obtained by Isihara. (author)

  10. $K^{0} \\leftrightharpoons \\overline{K}^0$ transitions monitored by strong interactions a new determination of the $K_{L} - K_{S}$ mass difference

    CERN Document Server

    Angelopoulos, Angelos; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Haymen, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Sakelliou, L; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D

    2001-01-01

    The CPLEAR set-up (modified) has been used to determine the K/sub L/- K/sub S/ mass difference by a method where neutral-kaon strangeness oscillations are monitored through kaon strong interactions, rather than semileptonic decays, thus requiring no assumptions on CPT invariance for the decay amplitudes. The result, Delta m= (0.5343+or-0.0063/sub stat/+or-0.0025/sub syst/)*10/sup 10/ h(cross) /s, provides a valuable input for CPT tests. (22 refs).

  11. The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels.

    Science.gov (United States)

    Park, Sarah S; Hendon, Christopher H; Fielding, Alistair J; Walsh, Aron; O'Keeffe, Michael; Dincă, Mircea

    2017-03-15

    The structure-directing role of the inorganic secondary building unit (SBU) is key for determining the topology of metal-organic frameworks (MOFs). Here we show that organic building units relying on strong π interactions that are energetically competitive with the formation of common inorganic SBUs can also play a role in defining the topology. We demonstrate the importance of the organic SBU in the formation of Mg 2 H 6 (H 3 O)(TTFTB) 3 (MIT-25), a mesoporous MOF with the new ssp topology. A delocalized electronic hole is critical in the stabilization of the TTF triad organic SBUs and exemplifies a design principle for future MOF synthesis.

  12. Quantitative Analysis of the Interaction Strength and Dynamics of Human IgG4 Half Molecules by Native Mass Spectrometry

    NARCIS (Netherlands)

    Rose, Rebecca J.; Labrijn, Aran F.; van den Bremer, Ewald T. J.; Loverix, Stefan; Lasters, Ignace; van Berkel, Patrick H. C.; van de Winkel, Jan G. J.; Schuurman, Janine; Parren, Paul W. H. I.; Heck, Albert J. R.

    2011-01-01

    Native mass spectrometry (MS) is a powerful technique for studying noncovalent protein-protein interactions. Here, native MS was employed to examine the noncovalent interactions involved in homodimerization of antibody half molecules (HL) in hinge-deleted human IgG4 (IgG4 Delta hinge). By analyzing

  13. LINE SHAPES OF DOPPLER-FREE RESONANCE IN SRFM: STRONG ATOM-WALL INTERACTION AND PRESSURE EFFECT ON THE FREQUENCY SHIFT OF AN ALKALI VAPOR

    Directory of Open Access Journals (Sweden)

    B BOUHAFS

    2003-12-01

    Full Text Available The attractive potential energy between the atoms of rubidium vapor and a dielectric wall has been investigated by monitoring the reflection light at the interface. The atom- wall interaction potential of the form V(z = - C /z3 (z: atom-wall allows to predict experimental results only for weak regime, i.e., where C<< 0.2 kHzmm3. In the strong interaction case, the dispersive line shape is turned into an absorption-type line shape. The influence of atomic density on the shift of  the selective reflection resonance  relatively to the frequency of unperturbed atomic transition is found to be red with a negative slope. This technique opens the way to characterize the windows made of different materials thin films.

  14. Extreme enhancement of blocking temperature by strong magnetic dipoles interaction of α-Fe nanoparticle-based high-density agglomerate

    International Nuclear Information System (INIS)

    Kura, H; Takahashi, M; Ogawa, T

    2011-01-01

    High-volume fraction α-Fe nanoparticle (NP) agglomerates were prepared using chemically synthesized NPs. In the agglomerate, NPs are separated by surfactant and NP superlattice with a hexagonal close-packed structure is locally realized. Volume fractions of NPs at 20% and 42% were obtained in agglomerates consisting of 2.9 nm and 8.2 nm diameter NPs, respectively. The high saturation magnetization of α-Fe NPs and high volume fraction of NPs in the agglomerate provide strong magnetic dipole-dipole interaction. The interaction energy of the agglomerate became much larger than the anisotropic energy of individual NPs. As a result, the blocking temperature of the 8.2 nm NP agglomerate was significantly enhanced from 52.2 K to around 500 K. (fast track communication)

  15. Strongly interacting matter under rotation

    Science.gov (United States)

    Jiang, Yin; Lin, Zi-Wei; Huang, Xu-Guang; Liao, Jinfeng

    2018-02-01

    The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.

  16. Strongly interacting matter under rotation

    Directory of Open Access Journals (Sweden)

    Jiang Yin

    2018-01-01

    Full Text Available The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.

  17. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata 700 064, India. Abstract. We review two ... tem, from which its energy density, pressure etc. can be obtained. But to describe the heavy-ion ... quantity follows the same steps as for its vacuum counterpart, with the replacement of free vacuum propagators by free ...

  18. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules. We show that, when the spectral sides of the sum rules are calculated correctly, they do not lead to any new results, but reproduce those of the vacuum sum rules.

  19. Statistical Mechanics of Ligand-Receptor Noncovalent Association, Revisited: Binding Site and Standard State Volumes in Modern Alchemical Theories.

    Science.gov (United States)

    Procacci, Piero; Chelli, Riccardo

    2017-05-09

    The present paper is intended to be a comprehensive assessment and rationalization, from a statistical mechanics perspective, of existing alchemical theories for binding free energy calculations of ligand-receptor systems. In detail, the statistical mechanics foundation of noncovalent interactions in ligand-receptor systems is revisited, providing a unifying treatment that encompasses the most important variants in the alchemical approaches from the seminal double annihilation method [ Jorgensen et al. J. Chem. Phys. 1988 ; 89 , 3742 ] to the double decoupling method [ Gilson et al. Biophys. J. 1997 ; 72 , 1047 ] and the Deng and Roux alchemical theory [ Deng and Roux J. Chem. Theory Comput. 2006 ; 2 , 1255 ]. Connections and differences between the various alchemical approaches are highlighted and discussed.

  20. Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction.

    Science.gov (United States)

    Li, Siwei; Xu, Yao; Chen, Yifu; Li, Weizhen; Lin, Lili; Li, Mengzhu; Deng, Yuchen; Wang, Xiaoping; Ge, Binghui; Yang, Ce; Yao, Siyu; Xie, Jinglin; Li, Yongwang; Liu, Xi; Ma, Ding

    2017-08-28

    A one-step ligand-free method based on an adsorption-precipitation process was developed to fabricate iridium/cerium oxide (Ir/CeO 2 ) nanocatalysts. Ir species demonstrated a strong metal-support interaction (SMSI) with the CeO 2 substrate. The chemical state of Ir could be finely tuned by altering the loading of the metal. In the carbon dioxide (CO 2 ) hydrogenation reaction it was shown that the chemical state of Ir species-induced by a SMSI-has a major impact on the reaction selectivity. Direct evidence is provided indicating that a single-site catalyst is not a prerequisite for inhibition of methanation and sole production of carbon monoxide (CO) in CO 2 hydrogenation. Instead, modulation of the chemical state of metal species by a strong metal-support interaction is more important for regulation of the observed selectivity (metallic Ir particles select for methane while partially oxidized Ir species select for CO production). The study provides insight into heterogeneous catalysts at nano, sub-nano, and atomic scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Phonon linewidth due to electron-phonon interactions with strong forward scattering in FeSe thin films on oxide substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Univ. of Tennessee, Knoxville, TN (United States); Rademaker, Louk [Univ. of California, Santa Barbara, CA (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnston, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2017-08-18

    Here, the discovery of an enhanced superconducting transition temperature Tc in monolayers of FeSe grown on several oxide substrates has opened a new route to high-Tc superconductivity through interface engineering. One proposal for the origin of the observed enhancement is an electronphonon (e-ph) interaction across the interface that peaked at small momentum transfers. In this paper, we examine the implications of such a coupling on the phononic properties of the system. We show that a strong forward scattering leads to a sizable broadening of phonon lineshape, which may result in charge instabilities at long-wavelengths. However, we further find that the inclusion of Coulombic screening significantly reduces the phonon broadening. Our results show that one might not expect anomalously broad phonon linewidths in the FeSe interface systems, despite the fact that the e-ph interaction has a strong peak in the forward scattering (small \\bfq ) direction.

  2. Zinc porphyrin-fullerene derivative noncovalently functionalized graphene hybrid as interfacial material for electrocatalytic application.

    Science.gov (United States)

    Fan, Suhua; Yang, Jiao; Wei, Ting; Zhang, Jie; Zhang, Ni; Chai, Mengqing; Jin, Xiaoyan; Wu, Hai

    2016-11-01

    In this paper, a p-methoxy zinc porphyrin-fullerene derivative (ZnPp-C60) noncovalently functionalized electrochemically reduced graphene oxide (ERGO) hybrid (ERGO@ZnPp-C60) was facilely obtained by π-π stacking interaction between zinc porphyrin ring and ERGO. The hybrid was characterized by scanning electron microscope (SEM), electrochemistry, UV-vis spectra, and density functional theory (DFT), which demonstrated that the presence of ERGO caused more redox reversibility and higher electrocatalytic activity of ZnPp-C60. By using their synergistic effects of the remarkable mechanical, electrical, catalytic, and structural properties, ERGO@ZnPp-C60 incorporated in tetraoctylammonium bromide (TOAB) film was modified on the glassy carbon electrode (GCE) to construct a novel non-enzymatic electrochemical sensor. The sensor exhibited enhancing response sensitivity for the electrocatalyic reduction of hydrogen peroxide with a high sensitivity of 451.3μAmM(-1) and a limit of detection (LOD) as low as 0.27μM. The sensitivity is 2-fold larger than that of TOAB/ZnPp-C60/GCE in the absence of ERGO. Although a high detecting sensitivity of 162.5μAmM(-1) for electrocatalytic oxidation of nitrite could be also obtained on the presented sensor, the sensitivity is lower than that of TOAB/ZnPp-C60/GCE (233.9μAmM(-1)) due to the change in the structure of ZnPp-C60 and the electronic interactions between GO and ZnPp-C60. Even though, the smart hybrid (ERGO@ZnPp-C60) possesses obvious advantage for the fabrication of non-enzymatic electrochemical sensor and paves a new avenue for constructing C60 derivative and graphene based materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Noncovalent functionalization of carbon nanotubes with porphyrins: meso-tetraphenylporphine and its transition metal complexes.

    Science.gov (United States)

    Basiuk, Elena V; Basiuk, Vladimir A; Santiago, Patricia; Puente-Lee, Iván

    2007-01-01

    Noncovalent functionalization of carbon nanotubes with meso-tetraphenylporphine (H2TPP) and its metal(II) complexes NiTPP and CoTPP was studied by means of different experimental techniques and theoretical calculations. As follows from the experimental adsorption curves, free H2TPP ligand exhibits the strongest adsorption of three porphyrins tested, followed by CoTPP and NiTPP. At the highest porphyrin concentrations studied, the adsorption at multi-walled carbon nanotubes was about 2% (by weight) for H2TPP, 1% for CoTPP, and 0.5% for NiTPP. Transmission electron microscopy observations revealed carbon nanotubes with a variable degree of surface coverage with porphyrin molecules. According to scanning electron microscopy, the nanotubes glue together rather than debundle; apparently, a large porphyrin excess resulting in polymolecular adsorption is essential for exfoliation/debundling of the nanotube ropes. The nanotube/porphyrins hybrids were studied by infrared and Raman spectroscopy, as well as by scanning tunneling microscopy. Electronic structure calculations were performed at the B3LYP/LANL2MB theoretical level with the unsubstituted porphine (H2P) and its Co(II) complex, on one hand, and open-end armchair (5,5) (ANT) and zigzag (8,0) (ZNT) SWNT models, on the other hand. The interaction of H2P with ANT was found to be by 3.9 kcal mol(-1) stronger than that of CoP. At the same time, CoP+ZNT complex is more stable by 42.7 kcal mol(-1) as compared to H2P+ZNT According to these calculated results, the free porphyrins interact less selectively with zigzag and armchair (i.e., semiconducting and metallic) nanotubes, whereas the difference becomes very large for the metal porphyrins. HOMO-LUMO structure, electrostatic potential and spin density distribution for the paramagnetic cobalt(II) complexes were analyzed.

  4. Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lindenberger, Jared J.; Veleti, Sri Kumar; Wilson, Brittney N.; Sucheck, Steven J.; Ronning, Donald R. (Toledo)

    2015-08-06

    GlgE is a bacterial maltosyltransferase that catalyzes the elongation of a cytosolic, branched α-glucan. In Mycobacterium tuberculosis (M. tb), inactivation of GlgE (Mtb GlgE) results in the rapid death of the organism due to a toxic accumulation of the maltosyl donor, maltose-1-phosphate (M1P), suggesting that GlgE is an intriguing target for inhibitor design. In this study, the crystal structures of the Mtb GlgE in a binary complex with maltose and a ternary complex with maltose and a maltosyl-acceptor molecule, maltohexaose, were solved to 3.3 Å and 4.0 Å, respectively. The maltohexaose structure reveals a dominant site for α-glucan binding. To obtain more detailed interactions between first generation, non-covalent inhibitors and GlgE, a variant Streptomyces coelicolor GlgEI (Sco GlgEI-V279S) was made to better emulate the Mtb GlgE M1P binding site. The structure of Sco GlgEI-V279S complexed with α-maltose-C-phosphonate (MCP), a non-hydrolyzable substrate analogue, was solved to 1.9 Å resolution, and the structure of Sco GlgEI-V279S complexed with 2,5-dideoxy-3-O-α-D-glucopyranosyl-2,5-imino-D-mannitol (DDGIM), an oxocarbenium mimic, was solved to 2.5 Å resolution. These structures detail important interactions that contribute to the inhibitory activity of these compounds, and provide information on future designs that may be exploited to improve upon these first generation GlgE inhibitors.

  5. How strong is it? The interpretation of force and compliance constants as bond strength descriptors.

    Science.gov (United States)

    Brandhorst, Kai; Grunenberg, Jörg

    2008-08-01

    Knowledge about individual covalent or non-covalent bond strengths is the Holy Grail of many modern molecular sciences. Recent developments of new descriptors for such interaction strengths based on potential constants are summarised in this tutorial review. Several publications for and against the use of compliance matrices (inverse force constants matrix) have appeared in the literature in the last few years. However the mathematical basis for understanding, and therefore interpreting, compliance constants is still not well developed. We therefore summarise the theoretical foundations and point to the advantages and disadvantages of the use of force constants versus compliance constants for the description of both non-covalent and covalent interactions.

  6. The intOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico

    Science.gov (United States)

    Ocampo-Torres, F. J.; García-Nava, H.; Durazo, R.; Osuna, P.; Díaz Méndez, G. M.; Graber, H. C.

    2011-03-01

    The Gulf of Tehuantepec air-sea interaction experiment ( intOA) took place from February to April 2005, under the Programme for the Study of the Gulf of Tehuantepec (PEGoT, Spanish acronym for Programa para el Estudio del Golfo de Tehuantepec). PEGoT is underway aiming for better knowledge of the effect of strong and persistent offshore winds on coastal waters and their natural resources, as well as performing advanced numerical modelling of the wave and surface current fields. One of the goals of the intOA experiment is to improve our knowledge on air-sea interaction processes with particular emphasis on the effect of surface waves on the momentum flux for the characteristic and unique conditions that occur when strong Tehuano winds blow offshore against the Pacific Ocean long period swell. For the field campaign, an air-sea interaction spar (ASIS) buoy was deployed in the Gulf of Tehuantepec to measure surface waves and the momentum flux between the ocean and the atmosphere. High frequency radar systems (phase array type) were in operation from two coastal sites and three acoustic Doppler current profilers were deployed near-shore. Synthetic aperture radar images were also acquired as part of the remote sensing component of the experiment. The present paper provides the main results on the wave and wind fields, addressing the direct calculation of the momentum flux and the drag coefficient, and gives an overview of the intOA experiment. Although the effect of swell has been described in recent studies, this is the first time for the very specific conditions encountered, such as swell persistently opposing offshore winds and locally generated waves, to show a clear evidence of the influence on the wind stress of the significant steepness of swell waves.

  7. Comparison of covalent and noncovalent immobilization of Malatya apricot pectinesterase (Prunus armeniaca L.).

    Science.gov (United States)

    Karakuş, Emine; Pekyardımcı, Sule

    2012-02-01

    Pectinesterase isolated from Malatya apricot pulp was noncovalently and covalently immobilized onto bentonite and glutaraldehyde-containing amino group functionalized porous glass beads surface at pH 8.0 and pH 9.0, respectively. The effect of various parameters such as pH, temperature, activation energy, heat and storage stability on immobilized enzyme were investigated. The optimum temperature of covalently and noncovalently immobilized PE was 50°C. This value was 60°C for free PE. Although optimum pH of covalently-immobilized PE was 8.0, this parameter was 9.0 for free and covalently-immobilized PE. The noncovalently immobilized enzyme exhibited better thermostability than the free and covalently immobilized PE.

  8. Hypersonic boundary layer in the vicinity of a point of inflection of leading edge on a flat wing in the regime of strong viscous interaction

    Science.gov (United States)

    Dudin, G. N.; Ledovskiy, A. V.

    2013-06-01

    The flow in a spatial hypersonic laminar boundary layer on a planar wing with a point of inflection in the leading edge is considered in the regime of strong viscous-inviscid interaction. The boundary problems are formulated for two cases: self-similar flow near the point of inflection of the leading edge and full three-dimensional (3D) boundary layer on a wing with variable sweep angle. The numerical solution is obtained using the finite-difference method. The results of parametric calculations of influence of a wing shape and the temperature factor on flow characteristics in the boundary layer are presented. The possibility of formation of local regions with high shear stress and heat flux is shown.

  9. Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Eriksen, E. H.; Midtgaard, J. M.

    2016-01-01

    One-dimensional multi-component Fermi or Bose systems with strong zero-range interactions can be described in terms of local exchange coefficients and mapping the problem into a spin model is thus possible. For arbitrary external confining potentials the local exchanges are given by highly non...... to the computational complexity of the high-dimensional integrals involved. An approach using the local density approximation would therefore be a most welcome approximation due to its simplicity. Here we assess the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has...... been the focus of previous studies and consider some double-wells of current experimental interest. We find that the local density approximation works quite well as long as the potentials resemble harmonic wells but break down for larger barriers. In order to explore the consequences of applying...

  10. Quantification of groundwater-stream water interactions based on temperature depth profiles under strong upwelling conditions in a sand-bed stream

    Science.gov (United States)

    Gaona, Jaime; Lewandowski, Jörg

    2017-04-01

    The quantification of groundwater-surface water interactions is not only required for budgets but also for an understanding of the complex relations between hyporheic exchange flows (HEF) and the associated chemical and biological processes that take place in hyporheic zones (HZ). Thus, there is a strong need to improve methods for flux estimation.The present study aims to quantify the vertical fluxes across the riverbed from data of temperature depth profiles recorded at the River Schlaube in East Brandenburg, Germany. In order to test the capabilities and limitations of existing methods, fluxes were calculated with an analytical (VFLUX, based on the amplitude attenuation and phase shift analysis) and a numerical (1DTempPro, parametrization based on observed values) approach for heat conduction. We conclude that the strong limitations of the flux estimates are caused by thermal and hydraulic heterogeneities of the sediment properties. Consequently, upscaling of fluxes must include other thermal techniques able to portray the spatial variability of thermal patterns, along with further developments of methods to link thermal depth profiles, thermal patterns of the surface of the streambed and all the other factors involved. Considering time and costs of temperature depth profiles of riverbeds, and the need for multiple devices to cover larger areas, it is additionally tested whether vertical fluxes can be infered from the uppermost temperature sensors of a data set. That would ease hyporheic investigations at larger scales.

  11. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory.

    Science.gov (United States)

    González-Durruthy, Michael; Werhli, Adriano V; Seus, Vinicius; Machado, Karina S; Pazos, Alejandro; Munteanu, Cristian R; González-Díaz, Humberto; Monserrat, José M

    2017-10-16

    The current molecular docking study provided the Free Energy of Binding (FEB) for the interaction (nanotoxicity) between VDAC mitochondrial channels of three species (VDAC1-Mus musculus, VDAC1-Homo sapiens, VDAC2-Danio rerio) with SWCNT-H, SWCNT-OH, SWCNT-COOH carbon nanotubes. The general results showed that the FEB values were statistically more negative (p  (SWCNT-VDAC1-Mus musculus) > (SWCNT-VDAC1-Homo sapiens) > (ATP-VDAC). More negative FEB values for SWCNT-COOH and OH were found in VDAC2-Danio rerio when compared with VDAC1-Mus musculus and VDAC1-Homo sapiens (p  r 2  > 0.97) was observed between n-Hamada index and VDAC nanotoxicity (or FEB) for the zigzag topologies of SWCNT-COOH and SWCNT-OH. Predictive Nanoparticles-Quantitative-Structure Binding-Relationship models (nano-QSBR) for strong and weak SWCNT-VDAC docking interactions were performed using Perturbation Theory, regression and classification models. Thus, 405 SWCNT-VDAC interactions were predicted using a nano-PT-QSBR classifications model with high accuracy, specificity, and sensitivity (73-98%) in training and validation series, and a maximum AUROC value of 0.978. In addition, the best regression model was obtained with Random Forest (R 2 of 0.833, RMSE of 0.0844), suggesting an excellent potential to predict SWCNT-VDAC channel nanotoxicity. All study data are available at https://doi.org/10.6084/m9.figshare.4802320.v2 .

  12. Non-covalent conjugation of cutinase from Fusarium sp. ICT SAC1 with pectin for enhanced stability: Process minutiae, kinetics, thermodynamics and structural study.

    Science.gov (United States)

    Muley, Abhijeet B; Chaudhari, Sandeep A; Singhal, Rekha S

    2017-09-01

    Cutinase, a member of α/β-fold hydrolase family possess potentially diverse applications in several industrial processes and products. The present work aims towards thermo-stabilization of cutinase from novel source Fusarium sp. ICT SAC1 via non-covalent interaction with polysaccharides. Although all six polysaccharides chosen for study enhanced the thermal stability, pectin was found to be most promising. The interaction protocol for cutinase with pectin was optimized sequentially with respect to the ratio of enzyme to pectin, solution pH, and buffer strength. Cutinase-pectin conjugate under optimized conditions (1:12, pH-6.5, 50mM) showed enhanced thermal stability as evident from lower inactivation rate constant, higher half-life and D-value within the 40-55°C. A slender rise in K m and V max values and enhanced thermodynamic parameters of cutinase-pectin conjugate were observed after non-covalent interaction. Entropy values were 1.5-fold higher for cutinase-pectin conjugate at each temperature suggesting an upsurge in number of protein molecules in a transition activated state. Positive values of entropy for both forms of cutinase suggested a rise in disordered conformation. Noticeable conformational changes in cutinase after conjugation with pectin were confirmed by FTIR as well as fluorescence emission spectra. An increment in helix to turn conversion was observed in complexed cutinase vis-à-vis free cutinase. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Control of structural isomerism in noncovalent hydrogen-bonded assemblies using peripheral chiral information

    NARCIS (Netherlands)

    Prins, L.J.; Jolliffe, K.A.; Hulst, A.J.R.L.; Timmerman, P.; Reinhoudt, David

    2000-01-01

    The results of a systematic study of the structural isomerism in more than 30 noncovalent hydrogen-bonded assemblies are described. These dynamic assemblies, composed of three calix[4]arene dimelamines and six barbiturates/cyanurates, can be present in three isomeric forms with either D3, C3h, or Cs

  14. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  15. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    Science.gov (United States)

    Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.

    2018-01-01

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  16. 3D modelling of interaction of strongly nonlinear internal seiches with a concave lake topography and a phenomenon of the "lake monsters".

    Science.gov (United States)

    Terletska, Kateryna; Maderich, Vladimir; Brovchenko, Igor; Jung, Kyung Tae

    2013-04-01

    In the freshwater lakes in moderate latitudes stratification occurs as a result of the seasonal warming of the surface water layer. Than the intense wind surges (usually in autumn) tilt the surface and generate long basin-scale low-frequency standing internal waves (seiches). Depending on the initial interface tilt and stratification wide spectra of possible flow regimes can be observed [1]-[2].They varied from small amplitude symmetric seiches to large amplitude nonlinear waves.Nonlinearity leads to an asymmetry of internal waves and appearance of the surge or bore and further disintegration of it on a sequence of solitary waves. In present study degeneration of the strongly nonlinear internal seiches in elongated lakes with a concave "spoon-like" topography is investigated.Two different three-dimensional non-hydrostatic free-surface numerical models are used to investigate degeneration of large internal waves and its subsequent interaction with the concave lake slope. One of this model is non-hydrostatic model [3] and the other is a well-known MIT model. At first we consider idealized elongated elliptic-shape lake with the dimension of 5 km X 1 km with the maximal depth 30 m. The stratification in lake is assumed to be given in a form of the tangent function with a density difference between upper and lower layers 2 kgm-3 . It is assumed that motion in such lake is initiated by inclination of thermocline on a certain angle. Than lake adjusts to return to its original state producing internal seiches which begin interacting with a bottom topography. The process of degeneration of internal seiches in the lake with concave ends consist of chain of elementary processes: 1) steeping of long basin scale large amplitude wave, that evolve into internal surge, 2) surge interact with concave lake ends that leads the concentration of the flow and formation of down slope bottom jet along the lake axis, 3) due to cumulative effect local velocity in the jet accelerates up to

  17. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis.

    Science.gov (United States)

    Zhao, Yun; Law, Henry C H; Zhang, Zaijun; Lam, Herman C; Quan, Quan; Li, Guohui; Chu, Ivan K

    2015-10-09

    In this study we developed a fully automated three-dimensional (3D) liquid chromatography methodology-comprising hydrophilic interaction separation as the first dimension, strong cation exchange fractionation as the second dimension, and low-pH reversed-phase (RP) separation as the third dimension-in conjunction downstream with additional complementary porous graphitic carbon separation, to capture non-retained hydrophilic analytes, for both shotgun proteomics and N-glycomics analyses. The performance of the 3D system alone was benchmarked through the analysis of the total lysate of Saccharomyces cerevisiae, leading to improved hydrophilic peptide coverage, from which we identified 19% and 24% more proteins and peptides, respectively, relative to those identified from a two-dimensional hydrophilic interaction liquid chromatography and low-pH RP chromatography (HILIC-RP) system over the same mass spectrometric acquisition time; consequently, the 3D platform also provided enhanced proteome and protein coverage. When we applied the integrated technology to analyses of the total lysate of primary cerebellar granule neurons, we characterized a total of 2201 proteins and 16,937 unique peptides for this primary cell line, providing one of its most comprehensive datasets. Our new integrated technology also exhibited excellent performance in the first N-glycomics analysis of cynomolgus monkey plasma; we successfully identified 122 proposed N-glycans and 135 N-glycosylation sites from 122 N-glycoproteins, and confirmed the presence of 38 N-glycolylneuraminic acid-containing N-glycans, a rare occurrence in human plasma, through tandem mass spectrometry for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Non-covalent functionalization of carbon nanotubes: Controlling Chirality Selectivity via Alkyl Groups of Conjugated Co-Polymers

    Science.gov (United States)

    Weight, Braden; Gifford, Brendan; Kilina, Svetlana

    Carbon nanotubes (CNTs) play an important role in nanotechnology, including electronics, chemical sensors, and solar cells. Their electronic and optical properties depend on the size and geometry (chirality) of the nanotube. However, one main concern regarding nanotube application in optoelectronic devices is the difficulty of separating them based upon chirality after synthesis, as all known synthesis methods produce more than one chirality simultaneously. To get around this, one method is the functionalization of the CNTs via non-covalent bonding of co-polymers by wrapping them around the tube. We use force field simulations to explore the effects of various structural manipulations to the co-polymer 9,9-dialkylfluorenyl-2,7-diyl bipyridine (PFO-BPY) to find the preferential mechanisms of selective interactions between the PFO-BPY and CNTs of various chiralities. In particular, we focus on the effect of the branching in alkyl side-groups of PFO-BPY on their binding to the CNT surface. We have observed correlations between the side-group structures and their wrapping morphology on the CNT-Polymer interactions. Our calculations demonstrate that the branching in the position closest to the conjugated backboned results in the strongest interaction with all CNT. This research was supported by the National Science Foundation (CHE 1413614) and the Center for Computationally-Assisted Science and Technology at NDSU.

  19. Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: strong effects of weak interactions.

    Science.gov (United States)

    Pereira, Jorge F B; Barber, Patrick S; Kelley, Steven P; Berton, Paula; Rogers, Robin D

    2017-10-11

    The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH 3 (CH 2 ) 2 OH][OAc]), hydroxylammonium acetate ([NH 3 OH][OAc]), ethylammonium acetate ([NH 3 CH 2 CH 3 ][OAc]), and tetramethylammonium acetate ([N(CH 3 ) 4 ][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C 2 mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH 3 ) 4 ][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C 2 mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH 3 groups and [OAc] - , even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc] - ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C 2 mim][OAc] can be controlled.

  20. Functionalization of Strongly Interacting Magnetic Nanocubes with (Thermo)responsive Coating and their Application in Hyperthermia and Heat-Triggered Drug Delivery

    KAUST Repository

    Kakwere, Hamilton

    2015-04-03

    Herein we prepare nanohybrids by incorporating iron oxide nanocubes (cubic-IONPs) within a thermo-responsive polymer shell that can act as drug carriers for doxorubicin(doxo). The cubic-shaped nanoparticles employed are at the interface between superparamagnetic and ferromagnetic behavior and have an exceptionally high specific absorption rate (SAR) but their functionalization is extremely challenging compared to bare superparamagnetic iron oxide nanoparticles as they strongly interact with each other. By conducting the polymer grafting reaction using reversible addition-fragmentation chain transfer (RAFT) polymerization in a viscous solvent medium, we have here developed a facile approach to decorate the nanocubes with stimuli-responsive polymers. When the thermo-responsive shell is composed of poly(N-isopropyl acrylamide-co-polyethylene glycolmethylether acrylate), nanohybrids have a phase transition temperature, the lower critical solution temperature (LCST), above 37 °C in physiological conditions. Doxo loaded nanohybrids exhibited a negligible drug release below 37 °C but showed a consistent release of their cargo on demand by exploiting the capability of the nanocubes to generate heat under an alternating magnetic field (AMF). Moreover, the drug free nanocarrier does not exhibit cytotoxicity even when administered at high concentration of nanocubes (1g/L of iron) and internalized at high extent (260 pg of iron per cell). We have also implemented the synthesis protocol to decorate the surface of nanocubes with poly(vinylpyridine) polymer and thus prepare pH-responsive shell coated nanocubes.

  1. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  2. Organogel-derived Covalent-Noncovalent Hybrid Polymers as Alkali Metal Ion Scavengers for Partial Deionization of Water.

    Science.gov (United States)

    Prathap, Annamalai; Raju, Cijil; Sureshan, Kana M

    2018-04-12

    We show that crown ethers (CEs) 1-5 congeal both polar and non-polar solvents via their self-assembly through weak non-covalent interactions (NCI) such as CH...O and CH...π interactions. Di-isopropylidene-mannitol (6) is a known gelator that self-assembles through stronger OH...O H-bonding. These two gelators together also congeal non-polar solvents via their individual self-assembly. The gelator 6 self-assembles swiftly to fibers, which act as templates and attract CE to their surface through H-bonding and thereby facilitate their self-assembly through weak NCI. Polymerization of styrene gels made from CE and 6 followed by the washing off of the sacrificial gelator 6 yields robust porous polystyrene-crown ether hybrid matrices (PCH), having pore-exposed CEs. These PCHs were not only efficient in sequestering alkali metal ions from aqueous solutions but also can be recycled. This novel use of organogels for making solid sorbents for metal ion scavenging might be of great interest.

  3. Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Janowski, T.; Pitoňák, M.; Řezáč, Jan; Pulay, P.; Hobza, Pavel

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3364-3374 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : density functional theory * intermolecular interaction energies * correlated molecular calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  4. The noncovalent bonding of antibiotics to a polytetrafluoroethylene-benzalkonium graft

    International Nuclear Information System (INIS)

    Harvey, R.A.; Greco, R.S.

    1981-01-01

    This study evaluates the noncovalent bonding of anionic antibiotics to polytetrafluoroethylene grafts using benzalkonium chloride as a cationic anchor. The binding of radiolabeled surfactants and antibiotics was evaluated by liquid scintillation and in an in vitro microbiologic assay against Staphylococcus aureus. Significant quantities of antibiotic were bound when the grafts were pretreated with benzalkonium in ethanol or aqueous solution at elevated temperature. Bound antibiotic is stable in aqueous salt solutions, but slowly dissociates in the presence of blood or serum. The ionic nature of the bonding process is clarified by the use of a variety of antibiotics and surfactants with complementary charges. The ability of the benzalkonium treated grafts to adsorb antibiotic from blood is, likewise, demonstrated and the possibility of concomitantly binding heparin and antibiotic simultaneously is evaluated. These studies support the ability to noncovalently bond antibiotics to polytetrafluoroethylene surfaces and form the basis of eventually utilizing these surfaces in the prevention of vascular prosthetic infections

  5. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy

    Czech Academy of Sciences Publication Activity Database

    Lang, Kamil; Mosinger, Jiří; Wagnerová, Dana Marie

    2004-01-01

    Roč. 248, 3-4 (2004), s. 321-350 ISSN 0010-8545 R&D Projects: GA ČR GA203/01/0634; GA ČR GA203/02/0420; GA ČR GA203/02/1483 Institutional research plan: CEZ:AV0Z4032918 Keywords : non-covalent binding * porphyrin * excited states Subject RIV: CA - Inorganic Chemistry Impact factor: 6.446, year: 2004

  6. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  7. Origin of attraction in chalgogen-nitrogen interaction of 1,2,5-chalcogenadiazole dimers.

    Science.gov (United States)

    Tsuzuki, Seiji; Sato, Naoki

    2013-06-06

    Intermolecular interaction in the 1,2,5-chalcogenadiazole dimers was studied by ab initio molecular orbital calculations. Estimated CCSD(T) interaction energies for the thia-, selena- and tellura-diazole dimers are -3.14, -5.29, and -12.42 kcal/mol, respectively. The electrostatic and dispersion interactions are the major sources of the attraction in the dimers, although it was claimed that the orbital mixing (charge-transfer interaction) was the most prominent contribution to the stabilization. The induction (induced polarization) interaction also contributes largely to the attraction in the telluradiazole dimer. The large electrostatic and induction interactions are responsible for the strong attraction in the telluradiazole dimer. The short-range (orbital-orbital) interaction (sum of the exchange-repulsion and charge-transfer interactions) is repulsive. The directionality of the interactions increases in order of S interaction is mainly responsible for the directionality. The strong directionality suggests that the chalcogen-nitrogen interaction plays important roles in controlling the orientation of molecules in those organic crystals. The nature of the chalcogen-nitrogen interaction in the chalcogenadiazole dimers is similar to that of the halogen bond, which is an electrostatically driven noncovalent interaction.

  8. A Survey of Aspartate Phenylalanine and Glutamate Phenylalanine Interactions in the Protein Data Bank: Searching for Anion Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Harris, Jason B [ORNL; Adams, Rachel M [ORNL; Nguyen, Don [University of Tennessee, Knoxville (UTK); Spires, Jeremy [University of Tennessee, Knoxville (UTK); Howell, Elizabeth E. [University of Tennessee, Knoxville (UTK); Hinde, Robert J [ORNL

    2011-01-01

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242 8249]. To study the role of anion interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe Asp or Glu pairs separated by less than 7 in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura Morokuma energy calculations were performed on roughly 19000 benzene formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (2 to 7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion pairs are found throughout protein structures, in helices as well as strands. Numerous pairs also had nearby cation interactions as well as potential stacking. While more than 1000 structures did not contain an anion pair, the 3134 remaining structures contained approximately 2.6 anion pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  9. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study.

    Science.gov (United States)

    Habibizadeh, Mina; Rostamizadeh, Kobra; Dalali, Naser; Ramazani, Ali

    2017-05-01

    In this study, PEGylated multiwall carbon nanotubes (MWNTs)-based drug delivery system was developed. Ibuprofen as a model drug was loaded by physical and chemical method. The surface functionalization of nanotubes was carried out by enrichment of acylated groups. In order to synthesis PEGylated MWNTs, hydrophilic diamino-polyethylene glycol was covalently linked to the MWNTs surface via amidation reaction. Finally, ibuprofen was chemically and physically loaded on the PEGylated MWNTs. The resultants were characterized by FTIR, AFM, and DLS techniques. Cytotoxicity of PEGylated MWNTs were examined by MTT assay and the results revealed that PEG functionalized nanotubes did not show significant detrimental effects on the viability of L929 Cells. The percent of drug loading for chemically and physically drug payload carrier were determined to be 52.5% and 38%, respectively. The release of ibuprofen from covalently conjugated and non-covalent drug loaded PEGylated MWNTs at pH=7.4, and 5.3 were investigated, as well. From the results, it was found that chemically loaded MWNTs showed much sustained release behavior compared to the physically loaded one, especially at pH=5.3. The kinetic of drug release was also investigated. The results strongly suggest that the chemically conjugated PEGylated MWNTs could be used as controlled release system for various drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hemicyanine dyes derived from 2,3,3-trimethyl-3H-indolium as candidates for non-covalent protein probes.

    Science.gov (United States)

    Kabatc, Janina; Jurek, Katarzyna; Kostrzewska, Katarzyna; Orzeł, Łukasz

    2015-10-10

    Non-covalent interaction of hemicyanine dyes, derivatives of 2,3,3-trimethyl-3H-indolium with bovine serum albumin has been studied by spectral method. For this purpose, three hemicyanine dyes containing N-(2-carboxyethyl)-2,3,3-trimethyl-3H-indolium moiety were synthesized and their UV/Vis and fluorescence spectra, aggregation, photostability and association with bovine serum albumin were studied. The hemicyanine dyes with 2-ethylcarboxylic group was found to interact with bovine serum albumin, which is probably due to negative charge on the dye molecule at the expense of the carboxylic group and the ability to form hydrogen bonds with albumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

    Science.gov (United States)

    Yang, Yang; Zhang, Ying-Ming; Chen, Yong; Chen, Jia-Tong; Liu, Yu

    2016-01-01

    The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-β-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.

  12. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin

    Science.gov (United States)

    Sun, Wenchao; Fletcher, David; van Heeckeren, Rolf Christiaan; Davis, Pamela B.

    2014-01-01

    DNA nanoparticles (DNA NPs), which self-assemble from DNA plasmids and poly-L-lysine (pLL)-polyethylene glycol (PEG) block copolymers, transfect several cell types in vitro and in vivo with minimal toxicity and immune response. To further enhance the gene transfer efficiency of DNA NP and control its tropism, we established a strategy to efficiently attach peptide ligands to DNA NPs. The non-covalent biotin–streptavidin (SA) interaction was used for ligand conjugation to overcome problems associated with covalent conjugation methods. A fusion protein of SA with the HIV-1 TAT peptide was cloned, expressed, purified and attached to biotinylated DNA NPs. A modified SA system with tetrameric structure but monovalent biotin binding capacity was adopted and shown to reduce the aggregation of biotinylated DNA NPs compared to neutravidin. Compared to unmodified DNA NPs, TAT modified DNA NPs significantly enhanced in vitro gene transfer, particularly at low DNA concentrations. Studies of cellular uptake and cellular distribution of the DNA NPs indicated that attaching TAT enhanced binding of DNA NPs to cell surface but not internalization at high DNA concentrations. In vivo studies showed that TAT modified DNA NPs mediated equal level of gene transfer to the mouse airways via the luminal route compared to unmodified DNA NPs. PMID:22845840

  13. Non-covalent interactions in anisole-(CO2)(n) (n=1, 2) complexes

    Czech Academy of Sciences Publication Activity Database

    Becucci, M.; Mazzoni, F.; Pietraperzia, G.; Řezáč, Jan; Nachtigallová, Dana; Hobza, Pavel

    2017-01-01

    Roč. 19, č. 34 (2017), s. 22749-22758 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : density functional theory * anisole-water complex * equation of state Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  14. Evaluation of composite schemes for CCSDT(Q) calculations of interaction energies of noncovalent complexes

    Czech Academy of Sciences Publication Activity Database

    Demovičová, L.; Hobza, Pavel; Řezáč, Jan

    2014-01-01

    Roč. 16, č. 36 (2014), s. 19115-19121 ISSN 1463-9076 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : coupled-cluster theory * electron correlation * CCSD(T) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  15. Spin-component csaled coupled-clusters singles and doubles optimized towards calculation of noncovalent interactions

    Czech Academy of Sciences Publication Activity Database

    Pitoňák, Michal; Řezáč, Jan; Hobza, P.

    2010-01-01

    Roč. 12, č. 33 (2010), s. 9611-9614 ISSN 1463-9076 Grant - others:VEGA(SK) 1/0428/09; VEGA(SK) 1/0520/10; Korea Science(KR) R32-2008-000-10180-0 Institutional research plan: CEZ:AV0Z40550506 Keywords : correlation energy * spin component scaling * coupled clusters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  16. Non-covalent O⋅⋅⋅O interactions among isopolyanions using a cis ...

    Indian Academy of Sciences (India)

    WINTEC

    2008-05-09

    May 9, 2008 ... and acts as the cation in stabi- lizing the octamolybdate anion in 1. Compound 1 crystallizes in the triclinic space group P–1 with a = 9⋅925(3), b = 10⋅020(3), c = 10⋅414(3) Å, α = 88⋅811(4), β = 64⋅907(4), γ = 89⋅506(4)°, Z = 1. An in- teresting three-dimensional supramolecular structure, having ...

  17. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  18. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  19. A Survey of Aspartate-Phenylalanine and Glutamate-Phenylalanine Interactions in the Protein Data Bank: Searching for Anion-pi Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Harris, Jason B [ORNL; Adams, Rachel M [ORNL; Nguyen, Don [University of Tennessee; Spiers, Jeremy D [ORNL; Baudry, Jerome Y [ORNL; Howell, Elizabeth E [ORNL; Hinde, Robert J [ORNL

    2011-01-01

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-{pi} pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-{pi} interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 {angstrom} in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-{pi} pairs are found throughout protein structures, in helices as well as {beta} strands. Numerous pairs also had nearby cation-{pi} interactions as well as potential {pi}-{pi} stacking. While more than 1000 structures did not contain an anion-{pi} pair, the 3134 remaining structures contained approximately 2.6 anion-{pi} pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  20. A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion-π pairs.

    Science.gov (United States)

    Philip, Vivek; Harris, Jason; Adams, Rachel; Nguyen, Don; Spiers, Jeremy; Baudry, Jerome; Howell, Elizabeth E; Hinde, Robert J

    2011-04-12

    Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-π pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-π interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 Å in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-π pairs are found throughout protein structures, in helices as well as β strands. Numerous pairs also had nearby cation-π interactions as well as potential π-π stacking. While more than 1000 structures did not contain an anion-π pair, the 3134 remaining structures contained approximately 2.6 anion-π pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.

  1. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    Science.gov (United States)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  2. A Biochemical Study of Noncovalent Forces in Proteins Using Phycocyanin from Spirulina

    Science.gov (United States)

    Heller, Barbara A.; Gindt, Yvonne M.

    2000-11-01

    Protein tertiary structure is maintained by noncovalent forces. These forces are disrupted by simple environmental changes (increasing temperature, pH, or adding denaturants) but are not always simple to observe. This experiment, suitable for all levels of undergraduate biochemistry laboratories, uses absorption spectroscopy to monitor the denaturation of a pigmented protein. The protein, phycocyanin, contains a covalently attached pigment whose visible spectrum is sensitive to changes in protein environment. The experiment can be done in one or two 3-hour lab periods. The first session isolates the protein from cyanobacteria capsules and the second session studies the denaturation of the protein.

  3. The role of London dispersion interactions in strong and moderate intermolecular hydrogen bonds in the crystal and in the gas phase

    Science.gov (United States)

    Katsyuba, Sergey A.; Vener, Mikhail V.; Zvereva, Elena E.; Brandenburg, J. Gerit

    2017-03-01

    Two variants of density functional theory computations have been applied to characterization of hydrogen bonds of the 1-(2-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]), i.e. with and without inclusion of dispersion interactions. A comparison of the results demonstrates that London dispersion interactions have very little impact on the energetical, geometrical, infrared spectroscopic and electron density parameters of charge-assisted intermolecular hydrogen bonds functioning both in the crystal of the [C2OHmim][OAc] and in the isolated [C2OHmim]+ [OAc]- ion pairs.

  4. Theory and phenomenology of strong and weak interaction high energy physics: [Technical progress report, 5/1/86-4/30/87

    International Nuclear Information System (INIS)

    Thews, R.L.

    1986-01-01

    The research reported includes: low energy quark-hadron dynamics; quark-gluon models for hadronic interactions, decays and structure; mathematical and physical properties of nonlinear sigma models, Yang-Mills theories, and Coulomb gases, which are of interest in both particle physics and condensed matter physics; statistical and dynamical aspects of hadronic multiparticle production. 28 refs

  5. Aspects of electron-phonon interactions with strong forward scattering in FeSe Thin Films on SrTiO3 substrates

    Science.gov (United States)

    Wang, Y.; Nakatsukasa, K.; Rademaker, L.; Berlijn, T.; Johnston, S.

    2016-05-01

    Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small {q}) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system.

  6. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li.sub.2./sub.CuO.sub.2./sub.

    Czech Academy of Sciences Publication Activity Database

    Johnston, S.; Monney, C.; Bisogni, V.; Zhou, K.J.; Kraus, R.; Behr, G.; Strocov, V.N.; Málek, Jiří; Drechsler, S.L.; Geck, J.; Schmitt, T.; van den Brink, J.

    2016-01-01

    Roč. 7, Feb (2016), 1-7, č. článku 10653. ISSN 2041-1723 Institutional support: RVO:68378271 Keywords : X-ray scattering * electron-lattice interactions * spin-chain cuprates * renormalization of charge- transfer energy Subject RIV: BE - Theoretical Physics Impact factor: 12.124, year: 2016

  7. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin-spin interactions

    Czech Academy of Sciences Publication Activity Database

    Vavrinská, A.; Zelinka, J.; Šebera, Jakub; Sychrovský, Vladimír; Fiala, R.; Boelens, R.; Sklenář, V.; Trantírek, L.

    2016-01-01

    Roč. 64, č. 1 (2016), s. 53-62 ISSN 0925-2738 R&D Projects: GA ČR GA13-27676S Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : NMR * DFT calculations * spin-spin interactions * magnetic field Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.410, year: 2016 http://link.springer.com/article/10.1007/s10858-015-0005-x

  8. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon); Ekogo, T.B., E-mail: tekogo@yahoo.fr [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Kwato Njock, M.G., E-mail: mkwato@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)

    2016-12-15

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  9. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Science.gov (United States)

    Ongonwou, F.; Tetchou Nganso, H. M.; Ekogo, T. B.; Kwato Njock, M. G.

    2016-12-01

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  10. Surface Induced Dissociation Yields Quaternary Substructure of Refractory Noncovalent Phosphorylase B and Glutamate Dehydrogenase Complexes

    Science.gov (United States)

    Ma, Xin; Zhou, Mowei; Wysocki, Vicki H.

    2014-03-01

    Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at the maximum collision energy available in the instrument. Surface induced dissociation (SID) was applied to dissociate the two refractory protein complexes. Different charge state precursor ions of the two complexes were examined by CID and SID. The PHB dimer was successfully dissociated to monomers and the GDH hexamer formed trimeric subcomplexes that are informative of its quaternary structure. The unfolding of the precursor and the percentages of the distinct products suggest that the dissociation pathways vary for different charge states. The precursors at lower charge states (+21 for PHB dimer and +27 for GDH hexamer) produce a higher percentage of folded fragments and dissociate more symmetrically than the precusors at higher charge states (+29 for PHB dimer and +39 for GDH hexamer). The precursors at lower charge state may be more native-like than the higher charge state because a higher percentage of folded fragments and a lower percentage of highly charged unfolded fragments are detected. The combination of SID and charge reduction is shown to be a powerful tool for quaternary structure analysis of refractory noncovalent protein complexes, as illustrated by the data for PHB dimer and GDH hexamer.

  11. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Ratia, Kiira; Pegan, Scott; Takayama, Jun; Sleeman, Katrina; Coughlin, Melissa; Baliji, Surendranath; Chaudhuri, Rima; Fu, Wentao; Prabhakar, Bellur S.; Johnson, Michael E.; Baker, Susan C.; Ghosh, Arun K.; Mesecar, Andrew D. (Loyola); (Purdue); (UIC)

    2008-10-27

    We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC{sub 50} value of 20 {mu}M, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC{sub 50} of 15 {mu}M and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.

  12. Photoinduced Change in the Charge Order Pattern in the Quarter-Filled Organic Conductor (EDO-TTF)2PF6 with a Strong Electron-Phonon Interaction

    Science.gov (United States)

    Onda, Ken; Ogihara, Sho; Yonemitsu, Kenji; Maeshima, Nobuya; Ishikawa, Tadahiko; Okimoto, Yoichi; Shao, Xiangfeng; Nakano, Yoshiaki; Yamochi, Hideki; Saito, Gunzi; Koshihara, Shin-Ya

    2008-08-01

    The quasistable state in the photoinduced phase transition for the quasi-one-dimensional quarter-filled organic conductor (EDO-TTF)2PF6 has been examined by ultrafast reflective measurements and time-dependent model calculations incorporating both electron-electron and electron-phonon interactions. The transient optical conductivity spectrum over a wide probe photon-energy range revealed that photoexcitation induced a new type of charge-disproportionate state. Additionally, coherent and incoherent oscillations dependent on probe photon energies were found, as predicted by the calculation.

  13. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  14. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  15. Genomic selection strategies in breeding programs: Strong positive interaction between application of genotypic information and intensive use of young bulls on genetic gain

    DEFF Research Database (Denmark)

    Buch, Line Hjortø; Sørensen, Morten Kargo; Berg, Peer

    2012-01-01

    ) a positive interaction exists between the use of genotypic information and a short generation interval on ΔGAG and (iii) the inclusion of an indicator trait in the selection index will only result in a negligible increase in ΔGAG if genotypic information about the breeding goal trait is known. We examined......We tested the following hypotheses: (i) breeding schemes with genomic selection are superior to breeding schemes without genomic selection regarding annual genetic gain of the aggregate genotype (ΔGAG), annual genetic gain of the functional traits and rate of inbreeding per generation (ΔF), (ii...... four breeding schemes with or without genomic selection and with or without intensive use of young bulls using pseudo-genomic stochastic simulations. The breeding goal consisted of a milk production trait and a functional trait. The two breeding schemes with genomic selection resulted in higher ΔGAG...

  16. Distortion of He(2l2l`) Fano lineshapes by strong post-collision interaction in H{sup +}-He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Toulouse-3 Univ., 31 (France)

    1996-05-28

    The three-body post-collisional interaction (PCI) between the scattered proton, recoil target ion and emitted electron has been investigated by electron spectrometry near the 2l2l` helium resonances, in the 20-100 keV energy range (V{sub p} 0.9-2 au). Particular attention has been paid to the PCI deformations of the Fano lineshapes when V-vector``{sub p} {approx_equal} V-vector {sub e}(2l2l`). Their angle and collision velocity dependences have been studied for the first time experimentally. A large variety of lineshapes have been observed, all of them successfully described by a single formula. At the lowest proton velocities the rescattering effect (also called Coulomb two-path scattering) is seen. (Author).

  17. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  18. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD{sub 3}CN treated with a parallel multi-state EVB model

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, David R., E-mail: drglowacki@gmail.com [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Department of Computer Science, University of Bristol, Bristol BS8 1UB (United Kingdom); PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Orr-Ewing, Andrew J. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee (Belgium)

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational

  19. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model

    International Nuclear Information System (INIS)

    Glowacki, David R.; Orr-Ewing, Andrew J.; Harvey, Jeremy N.

    2015-01-01

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD 3 CN → DF + CD 2 CN reaction in CD 3 CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD 3 CN solvent, equilibrium power spectra of DF in CD 3 CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol −1 localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD 3 CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results

  20. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model.

    Science.gov (United States)

    Glowacki, David R; Orr-Ewing, Andrew J; Harvey, Jeremy N

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol(-1) localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral

  1. TRH receptor mobility in the plasma membrane is strongly affected by agonist binding and by interaction with some cognate signaling proteins.

    Science.gov (United States)

    Moravcova, Radka; Melkes, Barbora; Novotny, Jiri

    2018-02-01

    Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to G q/11 proteins. We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP). FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of G q/11 α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of G i α1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of G i α1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling. These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.

  2. Intramolecular interactions in dimedone and phenalen-1,3-dione adducts of 2(4)-pyridinecarboxaldehyde: Enol-enol and ring-chain tautomerism, strong hydrogen bonding, zwitterions

    Science.gov (United States)

    Sigalov, Mark; Shainyan, Bagrat; Krief, Pnina; Ushakov, Igor; Chipanina, Nina; Oznobikhina, Larisa

    2011-12-01

    The 2:1 adducts of dimedone and phenalen-1,3-dione with 2- and 4-pyridine carboxaldehyde, in spite of similar chemical behavior of their diketone precursors, have quite different tautomeric structure both in solid state and in solution. 2,2'-(Pyridin-2-ylmethanediyl)-bis(5,5-dimethyl-cyclohexane-1,3-dione) 5 exists as an equilibrium mixture of its dienol tautomer 5а' with two intramolecular H-bonds ОН⋯О dbnd С and OH ⋯N and the epimeric products of its reversible cyclization, that is, 4a-hydroxy-9-(pyridin-2-yl)-2,3,4,4a,6,7,9,9a-octahydro-5-H-xanthene-1,8-diones 5b (major) and 5c (minor), the latter appears only in polar media like DMSO. 2,2'-(Pyridin-4-ylmethanediyl)bis(5,5-dimethylcyclohexane-1,3-dione) 4, like other 2:1 dimedone-aldehyde adducts, both in solution and in solid state exists as dienol with two intramolecular H-bonds ОН ⋯О dbnd С. 4-[Bis(1H-phenalen-1,3(2H)-dione)methyl]pyridine 6 in nonpolar media like chloroform exists as dienol, but crystallizes from this solvent as zwitter-ion 6b with one very strong ionic hydrogen bond O sbnd H ⋯O sbnd and protonated pyridine nitrogen. The same zwitterion is formed in polar media (DMSO). For 2-[bis(1H-phenalen-1,3(2H)-dione)-methyl]-pyridine 7, fast exchange between its dienol tautomer 7a and zwitter-ion 7b occurs even in CD2Cl2, whereas in DMSO the equilibrium shifts towards zwitter-ion 7b.

  3. Ticks, Ixodes scapularis, Feed Repeatedly on White-Footed Mice despite Strong Inflammatory Response: An Expanding Paradigm for Understanding Tick–Host Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer M. Anderson

    2017-12-01

    Full Text Available Ticks transmit infectious agents including bacteria, viruses and protozoa. However, their transmission may be compromised by host resistance to repeated tick feeding. Increasing host resistance to repeated tick bites is well known in laboratory animals, including intense inflammation at the bite sites. However, it is not known whether this also occurs in wild rodents such as white-footed mice, Peromyscus leucopus, and other wildlife, or if it occurs at all. According to the “host immune incompetence” hypothesis, if these mice do not have a strong inflammatory response, they would not reject repeated tick bites by Ixodes scapularis. To test this hypothesis, histopathological studies were done comparing dermal inflammation in P. leucopus versus guinea pigs, Cavia porcellus, repeatedly infested with I. scapularis. In P. leucopus, the immune cell composition was like that seen in laboratory mouse models, with some differences. However, there was a broad sessile lesion with intact dermal architecture, likely enabling the ticks to continue feeding unimpeded. In contrast, in C. porcellus, there was a relatively similar mixed cellular profile, but there also was a large, leukocyte-filled cavitary lesion and scab-like hyperkeratotic changes to the epidermal layer, along with itching and apparent pain. Ticks attached to sensitized C. porcellus fed poorly or were dislodged, presumably due to the weakened anchoring of the tick’s mouthparts cemented in the heavily inflamed and disintegrating dermal tissues. This is the first time that the architecture of the skin lesions has been recognized as a major factor in understanding tick–host tolerance versus tick bite rejection. These findings broadly strengthen previous work done on lab animal models but also help explain why I. scapularis can repeatedly parasitize white-footed mice, supporting the “immune evasion theory” but cannot repeatedly parasitize other, non-permissive hosts such as guinea pigs.

  4. Generation of strong electromagnetic power at 35 GHz from the interaction of a resonant cavity with a relativistic electron beam generated by a free electron laser

    International Nuclear Information System (INIS)

    Lefevre, Thibaut

    2000-01-01

    The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr

  5. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Oberg, H. [Stockholm Univ., Stockholm (Sweden); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gladh, J. [Stockholm Univ., Stockholm (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Ostrom, H. [Stockholm Univ., Stockholm (Sweden); Pettersson, L. G. M. [Stockholm Univ., Stockholm (Sweden); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stockholm Univ., Stockholm (Sweden); Ablid-Pedersen, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  6. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Directory of Open Access Journals (Sweden)

    Giuseppe Carleo

    2017-08-01

    Full Text Available We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  7. Convergence of the Interaction Energies in Noncovalent Complexes in the Coupled-Cluster Methods Up to Full Configuration Interaction

    Czech Academy of Sciences Publication Activity Database

    Šimová, L.; Řezáč, Jan; Hobza, Pavel

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3420-3428 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ 1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : electron correlation * CCSDT model * quadruple excitations * perturbation-theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  8. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA Linked To Single Wall Carbon Nanotubes: Covalent Versus Non-Covalent Approach

    Science.gov (United States)

    Chung, C.-L.; Nguyen, K.; Lyonnais, S.; Streiff, S.; Campidelli, S.; Goux-Capes, L.; Bourgoin, J.-P.; Filoramo, A.

    2008-10-01

    Nanometer-scale structures represent a novel and intriguing field, where scientists and engineers manipulate materials at the atomic and molecular scale levels to produce innovative materials. Carbon nanotubes constitute a relatively new class of materials exhibiting exceptional mechanical and electronic properties and were found to be promising candidates for molecular electronics, sensing or biomedical applications. Considering the bottom-up strategy in nanotechnology, the combination of the recognition properties of DNA with the electronic properties of single walled carbon nanotubes (SWNTs) seems to be a promising approach for the future of electronics. With the aim to assemble DNA with SWNTs, two complementary strategies have been envisioned: the covalent linkage of DNA on carboxylic groups of SWNTs under classical coupling condition and the non-covalent approach based on biotin-streptavidin molecular recognition properties. Here, we present and compare the results that we obtained with these two different methods; we want to objectively show the advantages and disadvantages of each approach.

  10. Non-Covalent Binding of DNA to Carbon Nanotubes Controlled by Biological Recognition Complex

    Science.gov (United States)

    Goux-Capes, Laurence; Filoramo, Arianna; Cote, Denis; Valentin, Emmanuel; Bourgoin, Jean-Philippe; Patillon, Jean-Nöel

    2004-09-01

    Single wall carbon nanotubes (SWNTs) occupy a special place within molecular electronics. Indeed, they exist as semiconducting or metallic wires and have been used to demonstrate molecular devices like transistors, diodes or SET (single electron transistor). However, the future of this class of SWNT-based devices is strictly related to the development of a bottom-up self-assembly technique. The exceptional recognition properties of DNA molecule make it an ideal candidate for this task. Here, we describe a non-covalent method to connect carbon nanotubes to DNA strands using the streptavidin/biotin complex. Control experiments show that in absence of biotin, the DNA strand do not bind to SWNT. The binding of SWNT to DNA strand has also been carefully checked by washing experiments, showing the strength of the DNA anchorage on SWNTs. Combining this approach with molecular combing enable us to align nanotubes on substrate.

  11. Learning about Intermolecular Interactions from the Cambridge Structural Database

    Science.gov (United States)

    Battle, Gary M.; Allen, Frank H.

    2012-01-01

    A clear understanding and appreciation of noncovalent interactions, especially hydrogen bonding, are vitally important to students of chemistry and the life sciences, including biochemistry, molecular biology, pharmacology, and medicine. The opportunities afforded by the IsoStar knowledge base of intermolecular interactions to enhance the…

  12. Enhancing microparticle internalization by nonphagocytic cells through the use of noncovalently conjugated polyethyleneimine

    Directory of Open Access Journals (Sweden)

    Patiño T

    2012-11-01

    Full Text Available Tania Patiño, Carme Nogués, Elena Ibáñez, Leonardo BarriosUnitat de Biologia Cel lular, Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, SpainAbstract: Development of micro- and nanotechnology for the study of living cells, especially in the field of drug delivery, has gained interest in recent years. Although several studies have reported successful results in the internalization of micro- and nanoparticles in phagocytic cells, when nonphagocytic cells are used, the low internalization efficiency represents a limitation that needs to be overcome. It has been reported that covalent surface modification of micro- and nanoparticles increases their internalization rate. However, this surface modification represents an obstacle for their use as drug-delivery carriers. For this reason, the aim of the present study was to increase the capability for microparticle internalization of HeLa cells through the use of noncovalently bound transfection reagents: polyethyleneimine (PEI Lipofectamine™ 2000 and FuGENE 6®. Both confocal microscopy and flow cytometry techniques allowed us to precisely quantify the efficiency of microparticle internalization by HeLa cells, yielding similar results. In addition, intracellular location of microparticles was analyzed through transmission electron microscopy and confocal microscopy procedures. Our results showed that free PEI at a concentration of 0.05 mM significantly increased microparticle uptake by cells, with a low cytotoxic effect. As determined by transmission electron and confocal microscopy analyses, microparticles were engulfed by plasma-membrane projections during internalization, and 24 hours later they were trapped in a lysosomal compartment. These results show the potential use of noncovalently conjugated PEI in microparticle internalization assays.Keywords: HeLa cells, internalization efficiency, endocytosis, drug

  13. Toward Molecular Magnets of Organic Origin via Anion-π Interaction Involving m-Aminyl Diradical: A Theoretical Study

    DEFF Research Database (Denmark)

    Bhattacharya, Debojit; Shil, Suranjan; Misra, Anirban

    2016-01-01

    Here we study a set of novel magnetic organic molecular species with different halide ions (fluoride, chloride, bromide) absorbed ∼2 Å above or below the center of an aromatic π-ring in an m-aminyl diradical. Focus is on the nature of anion-π interaction and its impact on magnetic properties......, specifically on magnetic anisotropy and on intramolecular magnetic exchange coupling. In the development of single molecule magnets, magnetic anisotropy is considered to be the most influential factor. A new insight regarding the magnetic anisotropy that determines the barrier height for relaxation...... of magnetization of m-aminyl diradical-derived anionic complexes is obtained from calculations of the axial zero-field-splitting (ZFS) parameter D. The noncovalent anion-π interaction strongly influences magnetic anisotropy in m-aminyl-halide diradical complexes. In particular, the change of D values from positive...

  14. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  15. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    ... used to extract experimental information on in-medium properties of hadrons. Results on the light vector mesons ρ, , and , are summarized and compared. Almost all experiments report a softening of the spectral functions with increases in width depending on the density and temperature of the hadronic environment.

  16. Strongly Interacting Matter in Magnetic Field

    Science.gov (United States)

    Mao, Shijun; Wu, Youjia; Zhuang, Pengfei

    Inverse magnetic catalysis effect on the chiral phase transition is investigated in the frame of SU(2) NJL model with Pauli-Villars regularization scheme. We consider two scenarios, the chiral chemical potential μ5 caused by sphalerons and magnetic inhibition of mesons π0. With different chiral chemical potential, we always obtain magnetic catalysis in the mean field calculation, due to the enhancement of Fermi surface of the pairing fermions by μ5. On the other hand, when going beyond the mean field approximation by including the feed-down from mesons to quarks, the competition between the magnetic catalysis effect of quarks and magnetic inhibition effect of mesons leads to the transition from inverse magnetic catalysis to delayed magnetic catalysis with increasing magnetic field.

  17. Strong interactions studies with medium energy probes

    International Nuclear Information System (INIS)

    Seth, K.K.

    1993-10-01

    This progress report refers to the period August 1992 to August 1993, which includes the first year of the three-year period December 1, 1992--November 30, 1995 of the existing research contract. As anticipated in the 1992--1995 proposal the major preoccupation during 1992--1993 was with Fermilab experiment E760. This experiment, whose primary objective is to make very high-resolution study of Charmonium Spectroscopy via proton-antiproton annihilations, has turned out to be a veritable gold-mine of exciting hadronic physics in other areas as well. These include the proton from factor in the time-life region, proton-antiproton forward scattering, QCD scaling laws, and light quark spectroscopy. A large fraction of the data from E760 have been analyzed during this year, and several papers have been published. In addition to the E760 experiment at Fermilab continued progress was made earlier nuclear physics-related experiments at LAMPF, MIT, and NIKHEF, and their results for publication. Topics include high- resolution electron scattering, quasi-free electron scattering and low-energy pion double charge exchange

  18. Vector mesons in strongly interacting matter

    Indian Academy of Sciences (India)

    Results on the light vector mesons ρ, , and , are summarized and compared. Almost all experiments report a softening of the spectral functions with increases in width depending on the density and temperature of the hadronic environment. No evidence for mass shifts is found in majority of the experiments. Remaining ...

  19. Strongly Interacting Fermi Gases in Two Dimensions

    Science.gov (United States)

    2012-07-17

    Phys. 82, 3045 (2010). [4] M. Inguscio, W. Ketterle, C. Salomon, eds., Ultracold Fermi gases, Proceedings of the International School of Physics Enrico ... Enrico Fermi ,” Course CLXIV, Varenna, 2006, edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS, Amsterdam, 2008). [3] W. Ketterle and M...International School of Physics ‘‘ Enrico Fermi ,’’ Course CLXIV, edited by M. Inguscio, W. Ketterle, and C. Salomon (Elsevier, Amsterdam, 2008). [4] S

  20. Some recent results on strong interactions

    International Nuclear Information System (INIS)

    Diebold, R.

    1978-01-01

    A preview of a rapporteur talk is given on the three active fields of high energy hadron reactions with high multiplicity, charm searches and related topics, and ultrahigh energy events and exotic phenomena of cosmic radiation. 53 references